Powered by Deep Web Technologies
Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Future fuels and engines for railroad locomotives. Volume I: summary  

DOE Green Energy (OSTI)

A study was made of the potential for reducing the dependence of railroads on petroleum fuel, particularly diesel No. 2. The study takes two approaches: (1) to determine how the use of diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other than diesel No. 2 both in diesel and other types of engines. The study consists of two volumes; volume 1 is a summary and volume 2 is the technical document. The study indicates that the possible reduction in fuel usage by increasing the efficiency of the present engine is limited; it is already highly energy efficient. The use of non-petroleum fuels, particularly the oil shale distillates, offers a greater potential. A coal-fired locomotive using any one of a number of engines appears to be the best alternative to the diesel-electric locomotive with regard to life-cycle cost, fuel availability, and development risk. The adiabatic diesel is the second-rated alternative with high thermal efficiency (up to 64%) as its greatest advantage. The risks associated with the development of the adiabatic diesel, however, are higher than those for the coal-fired locomotive. The advantage of the third alternative, the fuel cell, is that it produces electricity directly from the fuel. At present, the only feasible fuel for a fuel cell locomotive is methanol. Synthetic hydrocarbon fuels, probably derived from oil shale, will be needed if present diesel-electric locomotives are used beyond 1995. Because synthetic hydrocarbon fuels are particularly suited to medium-speed diesel engines, the first commercial application of these fuels may be by the railroad industry.

Liddle, S.G.; Bonzo, B.B.; Purohit, G.P.; Stallkamp, J.A.

1981-11-01T23:59:59.000Z

2

Future fuels and engines for railroad locomotives. Volume II. Technical document  

DOE Green Energy (OSTI)

A study was made of the potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2. The study takes two approaches: (1) to determine how the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other then Diesel No. 2 both in Diesel and other types of engines. The study indicates that the possible reduction in fuel usage by increasing the efficiency of the present engine is limited; it is already highly energy efficient. The use of non-petroleum fuels, particularly the oil shale distillates, offers a greater potential. A coal-fired locomotive using any one of a number of engines appears to be the best alternative to the diesel-electric locomotive with regard to life-cycle cost, fuel availability, and development risk. The adiabatic diesel is the second-rated alternative with high thermal efficiency (up to 64%) as its greatest advantage. The risks associated with the development of the adiabatic diesel, however, are higher than those for the coal-fired locomotive. The advantage of the third alternative, the fuel cell, is that it produces electricity directly from the fuel. At present, the only feasible fuel for a fuel cell locomotive is methanol. Synthetic hydrocarbon fuels, probably derived from oil shale, will be needed if present diesel-electric locomotives are used beyond 1995. Because synthetic hydrocarbon fuels are particularly suited to medium-speed diesel engines, the first commercial application of these fuels may be by the railroad industry.

Liddle, S.G.; Bonzo, B.B.; Purohit, G.P.; Stallkamp, J.A.

1981-11-01T23:59:59.000Z

3

Railroad fuel-oil consumption in 1928  

SciTech Connect

Data are presented, by districts, covering the consumption of fuel oil for various uses by railroads.

Redfield, A.H.

1930-01-01T23:59:59.000Z

4

ILLINOIS -RAILROAD ENGINEERING Impact of Automated Condition  

E-Print Network (OSTI)

oduc o Methods ­ Mainline Efficiency U i Di t hUsing Dispatch Simulation Software Future Work #12Acoustic Bearing Detectors ­ Wheel Impact Load Detectors ­ Hunting Truck Detectors ­ Truck Performance Detectors Administration (FRA) Office of Safety Analysis #12;8/27/2010 10 Slide 10 ILLINOIS - RAILROAD ENGINEERING Cost

Barkan, Christopher P.L.

5

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Transportation Stakeholders National Transportation Stakeholders National Transportation Stakeholders National Transportation Stakeholders Forum Forum 2011 Annual Meeting 2011 Annual Meeting 2011 Annual Meeting 2011 Annual Meeting May 11, 2011 May 11, 2011 Evaluation of Shortline Railroads Evaluation of Shortline Railroads & & & & SNF/HLW Rail Shipment Inspections SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads Evaluation of Shortline Railroads Evaluation of Shortline Railroads Evaluation of Shortline Railroads Task: Task: Task: Task: Identify Shortline Railroads Serving Nuclear Power Plants Identify Shortline Railroads Serving Nuclear Power Plants

6

The potential for LNG as a railroad fuel in the U.S.  

Science Conference Proceedings (OSTI)

Freight railroad operations in the US represent a substantial opportunity for liquefied natural gas (LNG) to displace diesel fuel. With the promise of achieving an overwhelming economic advantage over diesel fuel, this paper presents some discussion to the question, ``Why is the application of LNG for railroad use in the US moving so slowly?'' A brief overview of the freight railroad operations in the US is given, along with a summary of several railroad LNG demonstration projects. US Environmental Protection Agency and California Air Resources Board exhaust emission regulations may cause the railroad industry to move from small-scale LNG demonstration projects to using LNG as a primary freight railroad transportation fuel in selected regions or route-specific applications.

Fritz, S.G.

2000-01-01T23:59:59.000Z

7

Applications of Engineering and Financial Analysis to the Valuation of Investments in Railroad Infrastructure  

E-Print Network (OSTI)

This record of study presents the findings of industry research projects performed during a one-year doctoral internship with the Austin Rail Group of HNTB Corporation. Four main internship objectives were established that address infrastructure problems related to the railroad industry and required the integration of engineering and financial analysis to develop effective project evaluation tools. Completion of the objectives resulted in: 1. Transformation of the Federal Railroad Administration methodology currently used to perform highway-railroad grade crossing analyses to a system of equations that can easily be used to evaluate regional rail infrastructure investments. Transportation engineering equations based on queuing theory were extended to new but equivalent formulations that accommodate unlimited, discrete train performance data from computer simulations of rail networks. 2. Application of risk assessment methods and railroad accident statistics to recommend a cost-effective alternative to legislative proposals to relocate hazardous materials transported by rail around metropolitan areas. A risk analysis model was developed to predict the risk of exposure from the release of a hazardous material following a train derailment so that changes in exposure achieved by alternative risk mitigation strategies could be observed. 3. A new method of measuring the susceptibility of railroads to financial distress following the catastrophic loss of a timber railroad bridge. Economic and finance principles were used to predict financial distress by determining of the number of revenue periods required to offset economic loss. 4. Demonstration of the use of financial market data in calculating the discount rate of public railroad companies for engineering analyses that involve negotiations with the public agencies. Surface Transportation Board rulings on the determination of a railroad?s cost of equity were applied to a comparative assessment of costs of capital for Class I railroads. A hypothetical example was used to demonstrate the interrelationship between engineering design strategies and their effects on the pricing of compensation to a railroad for right-of-way acquisition. These results, in fulfillment of the doctoral internship objectives, have provided HNTB with economic decision analysis tools and a series of conclusions used to provide recommendations to the Illinois, Missouri, and Texas Departments of Transportation, the Texas Legislature, and the railroad industry.

Roco, Craig E.

2009-05-01T23:59:59.000Z

8

Plenary II -- Evaluation of Shortline Railroads  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOT DOT U.S. DOT Federal Railroad Federal Railroad Administration Administration DOE Rail TEC DOE Rail TEC Winter Winter Meeting Meeting February February 6, 6, 2008, San Antonio, TX 2008, San Antonio, TX Evaluation of Shortline Railroads Evaluation of Shortline Railroads Tasked for the Transportation of Spent Nuclear Fuel Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads Evaluation of Shortline Railroads Task: Task: Identify Shortline Railroads Serving Nuclear Power Plants or Identify Shortline Railroads Serving Nuclear Power Plants or Involved in the Transportation Link Involved in the Transportation Link Establish Contact Information with Railroads Officials Establish Contact Information with Railroads Officials Field Review of each Railroad

9

Kaiser Engineers Railroad Tractive Effort Test, LOFT - A and M track  

SciTech Connect

This LTR contains the original results of the Railroad Locomotive Tractive Effort Test performed by Kaiser Engineers on July 29, 1965, using an existing 24-wheel 500-ton dolly and the existing shielded locomotive. The test was conducted to confirm calculations of the tractive effort required to move the LOFT dolly (MTA) through the four-rail high bay curve and the curve into the LOFT containment vessel.

White, E.R.

1978-05-09T23:59:59.000Z

10

Engine fuels from biomass  

SciTech Connect

Methods discussed for the conversion of biomass to engine fuels include the production of producer gas, anaerobic fermentation to give biogas, fermentation of sugars and starches to give EtOH, and the production of synthesis gas for conversion to MeOH or hydrocarbons. Also discussed are the suitability of these fuels for particular engines, biomass availability, and the economics of biomass-derived engine fuels.

Parker, H.W.

1982-01-01T23:59:59.000Z

11

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

the batteries, and to power accessories like the air condi- tioner and heater. Hybrid electric cars can exceed#12;#12;Hydrogen Fuel Cell Engines MODULE 8: FUEL CELL HYBRID ELECTRIC VEHICLES CONTENTS 8.1 HYBRID ELECTRIC VEHICLES .................................................................................. 8-1 8

12

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

#12;#12;Hydrogen Fuel Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS CONTENTS 11.1 GLOSSARY Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS OBJECTIVES This module is for reference only. Hydrogen MODULE 11: GLOSSARY AND CONVERSIONS PAGE 11-1 11.1 Glossary This glossary covers words, phrases

13

Coal-fueled diesel engines for locomotive applications  

DOE Green Energy (OSTI)

GE Transportation Systems (GE/TS) completed a two and one half year study into the economic viability of a coal fueled locomotive. The coal fueled diesel engine was deemed to be one of the most attractive options. Building on the BN-NS study, a proposal was submitted to DOE to continue researching economic and technical feasibility of a coal fueled diesel engine for locomotives. The contract DE-AC21-85MC22181 was awarded to GE Corporate Research and Development (GE/CRD) for a three year program that began in March 1985. This program included an economic assessment and a technical feasibility study. The economic assessment study examined seven areas and their economic impact on the use of coal fueled diesels. These areas included impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The results of the study indicated the merits for development of a coal-water slurry (CWS) fueled diesel engine. The technical feasibility study examined the combustion of CWS through lab and bench scale experiments. The major accomplishments from this study have been the development of CWS injection hardware, the successful testing of CWS fuel in a full size, single cylinder, medium speed diesel engine, evaluation of full scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions.

Hsu, B.D.; Najewicz, D.J.; Cook, C.S.

1993-11-01T23:59:59.000Z

14

Railroad and locomotive technology roadmap.  

Science Conference Proceedings (OSTI)

Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry-government workshop in January 2001 to gauge industry interest. As a result, the railroads, their suppliers, and the federal government5 have embarked on a cooperative effort to further improve railroad fuel efficiency--by 25% between now and 2010 and by 50% by 2020, on an equivalent gallon per revenue ton-mile basis, while meeting emission standards, all in a cost-effective, safe manner. This effort aims to bring the collaborative approaches of other joint industry-government efforts, such as FreedomCAR and the 21st Century Truck partnership, to the problem of increasing rail fuel efficiency. Under these other programs, DOE's Office of FreedomCAR and Vehicle Technologies has supported research on technologies to reduce fuel use and air emissions by light- and heavy-duty vehicles. DOE plans to bring similar efforts to bear on improving locomotives. The Department of Transportation's Federal Railroad Administration will also be a major participant in this new effort, primarily by supporting research on railroad safety. Like FreedomCAR and the 21st Century Truck program, a joint industry-government research effort devoted to locomotives and railroad technology could be a 'win' for the public and a 'win' for industry. Industry's expertise and in-kind contributions, coupled with federal funding and the resources of the DOE's national laboratories, could make for an efficient, effective program with measurable energy efficiency targets and realistic deployment schedules. This document provides the necessary background for developing such a program. Potential R&D pathways to greatly improve the efficiency of freight transportation by rail, while meeting future emission standards in a cost-effective, safe manner, were developed jointly by an industry-government team as a result of DOE's January 2001 Workshop on Locomotive Emissions and System Efficiency and are presented here. The status of technology, technical targets, barriers, and technical approaches for engine, locomotive, rail systems, and advanced power plants and fuels are presented.

Stodolsky, F.; Gaines, L.; Energy Systems

2003-02-24T23:59:59.000Z

15

U.S. DOT Federal Railroad Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOT DOT Federal Railroad Administration U.S. Department of Energy Transportation External Coordination Working Group (TEC) July 24-25, 2007 Kansas City, Missouri Evaluation of Shortline Railroads Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads  Task:  Identify Shortline Railroads Serving Nuclear Power Plants or Involved in the Transportation Link  Establish Contact Information with Railroads Officials  Field Review of each Railroad's Physical and Operational Infrastructure  Qualify each Railroads Present Operational Status Against a Safe Acceptable Standard  Facilitate Upgrades to Meet Safe Acceptable Standards Evaluation of Shortline Railroads

16

Energy Conservation Projects to Benefit the Railroad Industry  

DOE Green Energy (OSTI)

The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.

Clifford Mirman; Promod Vohra

2009-12-31T23:59:59.000Z

17

APS Research Fuels Engineering Interest  

NLE Websites -- All DOE Office Websites (Extended Search)

5th, 2003 5th, 2003 APS Research Fuels Engineering Interest Award-winning research on the characteristics of fuel sprays from injectors is one of the featured articles in the May 2003 issue of Mechanical Engineering and on the Web site of that magazine. The studies, carried out at APS's X-ray Operation and Research beamline 1-BM and the Cornell High Energy Synchrotron Source, revealed startling new information about fuel sprays, including the presence of a shockwave as the spray leaves the injector nozzle. Entitled "Penetrating Vision," the article in Mechanical Engineering, by associate editor John DeGaspari, notes that "an investigative technique using x-rays is causing engine designers to sit up and take notice." In the article, Scott Parrish, General Motors R&D senior research engineer, notes

18

Remote Sensing of Railroad Locomotive Emissions: A Feasibility Study  

E-Print Network (OSTI)

Remote Sensing of Railroad Locomotive Emissions: A Feasibility Study Peter J. Popp, Gary A. Bishop, DC 20590 #12;Remote Sensing of Railroad Engine Emissions 2 INTRODUCTION Many cities in the United be #12;Remote Sensing of Railroad Engine Emissions 3 operated at a preset power output and fixed engine

Denver, University of

19

Solid fuel applications to transportation engines  

SciTech Connect

The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

1980-06-01T23:59:59.000Z

20

Combustion engineering issues for solid fuel systems  

SciTech Connect

The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ENGINE COMBUSTION CONTROL VIA FUEL REACTIVITY ...  

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a ...

22

Attachments for fire modeling for Building 221-T, T Plant canyon deck and railroad tunnel  

SciTech Connect

The purpose of this attachment is to provide historical information and documentation for Document No. WHC-SD-CP-ANAL-008 Rev 0, ``Fire Modeling for Building 221-T--T Plant Canyon Deck and Railroad Tunnel``, dated September 29, 1994. This data compilation contains the following: Resumes of the Technical Director, Senior Engineer and Junior Engineer; Review and Comment Record; Software Files; CFAST Input and Output Files; Calculation Control Sheets; and Estimating Sprinkler Actuation Time in the Canyon and Railroad Tunnel. The T Plant was originally a fuel reprocessing facility. It was modified later to decontaminate and repair PuRex process equipment.

Oar, D.L. [Westinghouse Hanford Co., Richland, WA (United States)

1995-01-23T23:59:59.000Z

23

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

24

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

25

Argonne TTRDC - Experts - Engines & Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Engines & Fuels Experts Engines & Fuels Experts Click on a name to see a full résumé. Raj Sekar, Section Leader, Engine and Emissions Research phone: 630/252-5101, fax: 630/252-3443, e-mail: rsekar@anl.gov MS, Mechanical Engineering, University of Wisconsin MBA, Research & Development Management, Indiana University 30+ years of experience in engine research (15 years at Cummins Engine Company) 5 patents, 35+ reviewed publications in engine-related technologies Bipin Bihari, Mechanical Engineer phone: 630/252-6492, fax: 630/252-3443, e-mail: bihari@anl.gov PhD, Physics, Indian Institute of Technology, Kanpur Experience in optical diagnostics techniques and laser spectroscopy Author or co-author of 58+ articles Munidhar S. Biruduganti, Research Engineer phone: 630/252-1765, fax: 630/252-3443, e-mail: mbiruduganti@anl.gov

26

Utilization of alternative fuels in diesel engines:  

DOE Green Energy (OSTI)

The thrust of this resarch program has been to determine the effect of various alternative and synthetic fuels on the performance and emissions from Diesel engines. The purpose of research was to investigate the various fuels for extension of existing supplies or as emergency substitutes for Diesel fuels. Thus, the work did not emphasize optimization of the engines for a given fuel;the engines were generally run at manufacturers specifications for conventional fuels. During the various studies, regulated and unregualted emissions were investigated and the biological activity of the soluble organics on the particulate emissions was determined using the Ames test procedure. During the present contract period, three experimental programs were carried out. The first program investigated the utilization of methane and propane in an indirect injection, multicylinder engine. In the other two studies, a single cylinder direct injection Diesel engine was used to investigate the performance and emission characteristics of synthetic fuels derived from tar sands and oil shale and of three fuels derived from coal by the Exxon Donor Solvent (EDS) process. The body of this report consists of three chapters which summarize the experimental equipment, procedures, and major results from the studies of methane and propane fumigation, of synthetic fuels from oil shale and tar sands and of the coal-derived fuels.

Not Available

1987-06-01T23:59:59.000Z

27

Investigation of impact of fuel injection strategy and biodiesel fueling on engine emissions and performance.  

E-Print Network (OSTI)

??Both biodiesel fueling and changes of fuel injection pressure have significant impacts on diesel engine emissions. The investigations of their impacts on engine exhaust NOx (more)

Ye, Peng

2011-01-01T23:59:59.000Z

28

Laser Glazing of Railroad Rails [Laser Applications Laboratory] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Glazing of Railroad Laser Glazing of Railroad Rails Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Glazing of Railroad Rails Project description: Laser glazing of rails. Category: Project with industrial partner (American Association of Railroads) Bookmark and Share

29

Regenerative fuel cell engineering - FY99  

Science Conference Proceedings (OSTI)

The authors report the work conducted by the ESA-EPE Fuel Cell Engineering Team at Los Alamos National Laboratory during FY99 on regenerative fuel cell system engineering. The work was focused on the evaluation of regenerative fuel cell system components obtained through the RAFCO program. These components included a 5 kW PEM electrolyzer, a two-cell regenerative fuel cell stack, and samples of the electrolyzer membrane, anode, and cathode. The samples of the electrolyzer membrane, anode, and cathode were analyzed to determine their structure and operating characteristics. Tests were conducted on the two-cell regenerative fuel cell stack to characterize its operation as an electrolyzer and as a fuel cell. The 5 kW PEM electrolyzer was tested in the Regenerative Fuel Cell System Test Facility. These tests served to characterize the operation of the electrolyzer and, also, to verify the operation of the newly completed test facility. Future directions for this work in regenerative fuel cell systems are discussed.

Michael A. Inbody; Rodney L. Borup; James C. Hedstrom; Jose Tafoya; Byron Morton; Lois Zook; Nicholas E. Vanderborgh

2000-01-01T23:59:59.000Z

30

Argonne TTRDC - Engines - Multi-Dimensional Modeling - Fuel Spray...  

NLE Websites -- All DOE Office Websites (Extended Search)

primary breakup mechanisms. In a diesel engine, liquid fuel is injected into the combustion chamber near the end of the compression stroke. Following injection, the fuel...

31

Fuel effects in homogeneous charge compression ignition (HCCI) engines  

E-Print Network (OSTI)

Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

Angelos, John P. (John Phillip)

2009-01-01T23:59:59.000Z

32

Fuel-cell engine stream conditioning system  

SciTech Connect

A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2002-01-01T23:59:59.000Z

33

Engine combustion control via fuel reactivity stratification  

Science Conference Proceedings (OSTI)

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2013-12-31T23:59:59.000Z

34

Utiization of alternate fuels in diesel engines  

DOE Green Energy (OSTI)

Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

Lestz, S.S.

1980-09-01T23:59:59.000Z

35

Advanced fuel chemistry for advanced engines.  

SciTech Connect

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

36

Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines  

DOE Green Energy (OSTI)

Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

Johnson, R.N.; Hayden, H.L.

1994-01-01T23:59:59.000Z

37

Fuel burner and combustor assembly for a gas turbine engine  

DOE Patents (OSTI)

A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

Leto, Anthony (Franklin Lakes, NJ)

1983-01-01T23:59:59.000Z

38

Use of an Engine Cycle Simulation to Study a Biodiesel Fueled Engine  

E-Print Network (OSTI)

Based on the GT-Power software, an engine cycle simulation for a biodiesel fueled direct injection compression ignition engine was developed and used to study its performance and emission characteristics. The major objectives were to establish the engine model for simulation and then apply the model to study the biodiesel fueled engine and compare it to a petroleum-fueled engine. The engine model was developed corresponding to a 4.5 liter, John Deere 4045 four-cylinder diesel engine. Submodels for flow in intake/exhaust system, fuel injection, fuel vaporization and combustion, cylinder heat transfer, and energy transfer in a turbocharging system were combined with a thermodynamic analysis of the engine to yield instantaneous in-cylinder parameters and overall engine performance and emission characteristics. At selected engine operating conditions, sensitivities of engine performance and emission on engine load/speed, injection timing, injection pressure, EGR level, and compression ratio were investigated. Variations in cylinder pressure, ignition delay, bsfc, and indicated specific nitrogen dioxide were determined for both a biodiesel fueled engine and a conventional diesel fueled engine. Cylinder pressure and indicated specific nitrogen dioxide for a diesel fueled engine were consistently higher than those for a biodiesel fueled engine, while ignition delay and bsfc had opposite trends. In addition, numerical study focusing on NOx emission were also investigated by using 5 different NO kinetics. Differences in NOx prediction between kinetics ranged from 10% to 65%.

Zheng, Junnian

2009-08-01T23:59:59.000Z

39

Cold start fuel management of port-fuel-injected internal combustion engines  

E-Print Network (OSTI)

The purpose of this study is to investigate how changes in fueling strategy in the second cycle of engine operation influence the delivered charge fuel mass and engine out hydrocarbon (EOHC) emissions in that and subsequent ...

Cuseo, James M. (James Michael)

2005-01-01T23:59:59.000Z

40

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Battery and Vehicle Battery and Engine Research Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Google Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Delicious Rank Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

42

Hydrogen-fueled internal combustion engines.  

DOE Green Energy (OSTI)

The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

2009-12-01T23:59:59.000Z

43

Improving combustion stability in a bi-fuel engine  

Science Conference Proceedings (OSTI)

This article describes how a new strategy for ignition timing control can reduce NOx emissions from engines using CNG and gasoline. Until a proper fueling infrastructure is established, a certain fraction of vehicles powered by compressed natural gas (CNG) must have bi-fuel capability. A bi-fuel engine, enjoying the longer range of gasoline and the cleaner emissions of CNG, can overcome the problem of having few CNG fueling stations. However, bi-fuel engines must be optimized to run on both fuels since low CNG volumetric efficiency causes power losses compared to gasoline.

NONE

1995-06-01T23:59:59.000Z

44

Neural network control of air-to-fuel ratio in a bi-fuel engine  

Science Conference Proceedings (OSTI)

In this paper, a neural network-based control system is proposed for fine control of the intake air/fuel ratio in a bi-fuel engine. This control system is an add-on module for an existing vehicle manufacturer's electronic control units (ECUs). Typically ... Keywords: Artificial neural networks, bi-fuel engines, compressed natural gas (CNG), fuel injection control

G. Gnanam; S. R. Habibi; R. T. Burton; M. T. Sulatisky

2006-09-01T23:59:59.000Z

45

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Task: Identify Shortline Railroads Serving Nuclear Power Plants Establish Contact Information with Railroads Officials Field Review of each Railroad's Physical and Operational Infrastructure Facilitate Upgrades to Meet Safe Acceptable Standards Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel More Documents & Publications TEC Meeting Summaries - February 2008 Presentations TEC Meeting Summaries - July 2007 Presentations TEC Meeting Summaries - September 2006

46

Development of PC 4 dual-fuel engine  

SciTech Connect

Recently, utilization of natural gas, which is considered to be one of most important alternative fuels for petroleum, has been marked. As thermal efficiency of dual-fuel engine is higher than those of other prime movers with gaseous fuel, i.e., spark-ignited gas engine or gas turbine, it is possible to construct fuel-economical gas power plants with dual-fuel engines. However, its horsepower has been limited to the rather lower range. In 1984, NKK succeeded in developing large-sized dual-fuel engines based on the Pielstick PC4 diesel engine. The horsepower is 1200 HP/cyl, i.e. 21,600 HP for 18-cyclinder engine.

Nishikawa, T.; Utsuyama, S.; Maruyama, S.; Ono, T.; Kitahara, S.

1985-01-01T23:59:59.000Z

47

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

48

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blue Bird Corp. - Vision Application: Bus - School Fuel Type: Propane Maximum Seating: 77 Power Source(s): Ford Motor Co. - 6.8L V10 Engine - Roush CleanTech liquid propane fuel...

49

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blue Bird Corp. - Vision Blue Bird Corp. - Micro Bird G5 Ford Motor Co. - 6.8L V10 Engine - Roush CleanTech liquid propane fuel system Fuel Type: Propane Displacement: 6.8...

50

NREL: ReFUEL Laboratory - Engine Dynamometer Test Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Dynamometer Test Cells Engine Dynamometer Test Cells The ReFUEL Laboratory features two engine dynamometer test cells-one for heavy-duty engines and another for light-duty engines. Heavy-Duty Engine Dynamometer Test Cell Capabilities Photo of heavy-duty engine dynamometer test cell in laboratory setting. Heavy-duty engines are certified as meeting emission regulations by the manufacturer using an engine dynamometer. These protocols, known as the Heavy-Duty Federal Test Procedures (HD-FTP), are highly standardized, and results can be readily compared between laboratories. Because the heavy-duty engine dynamometer test cell performs the HD-FTP on engines up to 600 hp, advanced fuels can be evaluated in a way that is meaningful to the engine-research community. In addition to testing a wide

51

Welcome - Fuels, Engines, and Emissions Research Center - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

dynamometers bench-top engine exhaust simulators unique diagnostic and measurement tools fuel cell characterization systems There are many ways to work with FEERC including a...

52

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Champion Bus Inc. - CTS - Front Engine Application: Bus - Shuttle Fuel Type: CNG Maximum Seating: 32 Power Source(s): Cummins Westport - ISL G 8.9L...

53

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blue Bird Corp. - All American Rear Engine Application: Bus - School Fuel Type: CNG Maximum Seating: 84 Power Source(s): Cummins Westport - ISL G 8.9L...

54

Plenary II -- Evaluation of Shortline Railroads  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Shortline Railroads Task: Task: Identify Shortline Railroads Serving Nuclear Power Plants or Identify Shortline Railroads Serving Nuclear Power Plants or...

55

Modeling the effect of engine assembly mass on engine friction and vehicle fuel economy  

DOE Green Energy (OSTI)

In this paper, an analytical model is developed to estimate the impact of reducing engine assembly mass (the term engine assembly refers to the moving components of the engine system, including crankshafts, valve train, pistons, and connecting rods) on engine friction and vehicle fuel economy. The relative changes in frictional mean effective pressure and fuel economy are proportional to the relative change in assembly mass. These changes increase rapidly as engine speed increases. Based on the model, a 25% reduction in engine assembly mass results in a 2% fuel economy improvement for a typical mid-size passenger car over the EPA Urban and Highway Driving Cycles.

An, Feng [University of California, Riverside, CA (United States); Stodolsky, F. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

56

G. Uniform Engine Fuels and Automotive Lubricants ...  

Science Conference Proceedings (OSTI)

... dherence to automotive manufacturers' recommended requirements ... in Flexible Fuel Vehicles (FFV) Only ... states, Consult Vehicle Manufacturer Fuel ...

2013-10-25T23:59:59.000Z

57

Use of alcohol fuel: engine-conversion demonstration. Final report  

DOE Green Energy (OSTI)

The use of ethanol as a fuel extender when mixed with gasoline, and the use of both hydrated and anhydrous ethanol as a fuel in gasoline and diesel engines are discussed. Required engine modifications for efficient use of ethanol are described, and include engine compression alterations, carburetor adjustments, and arrangement for fuel preheating. In 1981 and 1982 a demonstration of ethanol use in spark ignition engines was conducted at a major public park in South Carolina. The demonstration included a controlled road test with a pick-up truck and a demonstration of ethanol use in small, air cooled gasoline engines. One problem that was identified was that of contaminated fuel that clogged the fuel system after a few days' operation. (LEW)

Marsh, W.K. (ed.)

1982-01-01T23:59:59.000Z

58

Coal-fueled high-speed diesel engine development  

DOE Green Energy (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

59

Multiple fuel supply system for an internal combustion engine  

DOE Patents (OSTI)

A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

Crothers, William T. (Sunol, CA)

1977-01-01T23:59:59.000Z

60

Microbial fuel cells: novel microbial physiologies and engineering approaches  

E-Print Network (OSTI)

The possibility of generating electricity with microbial fuel cells has been recognized for some time with minimal negative environmental impact. Producing electricity from organic matter with microbial fuel cellsMicrobial fuel cells: novel microbial physiologies and engineering approaches Derek R Lovley

Lovley, Derek

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Federal Railroad Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legislation Legislation Kevin R. Blackwell FRA Hazmat Division Washington, DC Federal Railroad Safety Accountability and Improvement Act of 2007 (FRSAIA)-H.R. 1516 /S. 918 DOT supports this reauthorization bill over H.R. 2095 The provisions of H.R. 2095, while not exactly the same, are very similar to this bill in regard to the core provisions Core provisions: Review and reform the Federal hours of service requirements Establish a new risk reduction program alongside the current existing safety program, and Mandate reporting by States and railroads to the DOT's National Crossing Inventory Federal Railroad Safety Improvement Act of 2007 (FRSIA) - H.R. 2095 Letter from DOT's General Counsel's office addressing DOT's

62

Engineered Biosynthesis of Alternative Biodiesel Fuel - Energy ...  

While biodiesel may perform comparably to fossil-derived fuels, ... Fuel molecule size can be adjusted for either gasoline or diesel compatibility;

63

Operation of an aircraft engine using liquefied methane fuel  

SciTech Connect

The operation of a reciprocating aircraft engine on methane fuel is demonstrated. Since storage of the methane fuel in the gaseous state would impractical for a flight fuel system, a liquid storage system was used. System valving was configured to deliver only liquid methane to the engine supply line. The equipment description includes photo and diagram illustrations of the liquid methane storage dewar, and photos of the methane heat exchanger, pressure regulator and air-fuel mixer. The engine test results are presented for gasoline and methane in terms of RPM, horsepower, fuel flow, specific energy consumption and standard conditions horsepower. Conclusions include the finding that conversion of an aircraft reciprocating engine to operate on liquified methane is possible with very satisfactory results.

Raymer, J.A.

1982-01-01T23:59:59.000Z

64

Federal Railroad Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE TRANSPORTATION EXTERNAL WORKING GROUP MEETING Pueblo, CO. September 20, 2005 Presented by Kevin R. Blackwell Radioactive Materials/Hazardous Materials Specialist Federal Railroad Administration - HQ Hazmat Division, Washington, DC. Federal Railroad Administration Dedicated Train Study - Report to Congress November 2003 - FRA' s Ofc. Of Research & Development (RDV), as lead on the Dedicated Train Study (DTS), received draft final report from the Volpe National Transportation Systems Center (VNTSC), the contractor conducting the study. February, 2004 - FRA completed review of DFR and submitted editorial corrections back to VNTSC. Final draft of the DTS with editorial corrections received from VNTSC in February, 2004. March to September 2004 -

65

2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

DOE Green Energy (OSTI)

The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

Chalk, S.

2000-12-11T23:59:59.000Z

66

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2000 ANNUAL PROGRESS REPORT FUELS F O R ADVANCED CIDI ENGINES A N D FUEL CELLS A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., National Renewable Energy Laboratory, and QSS Group, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Fuels for Advanced CIDI

67

EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0203: Spent Nuclear Fuel Management and Idaho National EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs SUMMARY This EIS considers programmatic (DOE-wide) alternative approaches to safely, efficiently, and responsibly manage existing and projected quantities of spent nuclear fuel until the year 2035. This amount of time may be required to make and implement a decision on the ultimate disposition of spent nuclear fuel. DOE's spent nuclear fuel responsibilities include fuel generated by DOE production, research, and development reactors; naval reactors; university and foreign research reactors; domestic non-DOE reactors such as those at the National Institute

68

Diesel engine lubrication with poor quality residual fuel  

Science Conference Proceedings (OSTI)

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

69

Development of an engine fuel and spark controller  

E-Print Network (OSTI)

The objective of this research was to develop an engine control unit (ECU) for a four cylinder engine to be used in a Formula SAE racers. The ECU must provide effective fuel injection and spark ignition control and provide for easy adjustment by the user for engine tuning purposes. The controller was designed to operate using a speed-throttle fuel map, with acceleration enrich, meet and other fuel compensating factors. A paired double-tiring strategy was adapted to avoid the complications associated with sequential fuel injection. The ECU utilized a Motorola 68HC16 development board, as well as special injector and ignition driver circuits. The software was designed to be primarily interrupt driven, with a task manager to arbitrate among other tasks. A user interface program, which runs on a PC, allows the user to instantly alter operating parameters in the ECU during engine tuning and development. The controller was tested on a Yamaha YZF 600 motorcycle engine with a custom intake manifold and fuel injection system. The fuel and spark maps and other parameters were configured for this engine by using the user interface. Dynamometer testing verities that engine performance with this ECU meets design specifications.

Suter, William Gregory

1999-01-01T23:59:59.000Z

70

Novel injector techniques for coal-fueled diesel engines  

DOE Green Energy (OSTI)

This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

71

Combustion: Sandwiched Between Engines and Fuel (Trying to Make...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion: Sandwiched Between Engines and Fuel (Trying to Make Bread from Combustion) Speaker(s): Robert Dibble Date: March 10, 2010 - 12:00pm Location: 90-3122 This seminar will...

72

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blue Bird Corp. - Micro Bird G5 Application: Bus - School Fuel Type: Propane Maximum Seating: 30 Power Source(s): Ford Motor Co. - 6.8L V10 Engine - Roush CleanTech liquid propane...

73

Engines - Fuel Injection and Spray Research - Alternative Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sprays Alternative fuel sprays Non-petroleum fuels are gaining popularity in the U.S. Ethanol is being blended with gasoline in varying proportions, and biodiesel is being sold at...

74

Alcohol fuel conversion apparatus for internal combustion engines  

Science Conference Proceedings (OSTI)

An alcohol fuel conversion apparatus is described for internal combustion engines comprising: fuel storage means containing an alcohol fuel; primary heat exchanger means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchanger means; a heat source for heating the heat exchange means; pressure relief valve means, in closed fluid communication with the primary heat exchange means, operable to release heated pressurized alcohol into an expansion chamber; converter means, including the expansion chamber, in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; carburetor means in fluid communication with the converter means for metering and mixing vaporized alcohol with air for proper combustion and for feeding the mixture to an internal combustion engine; and pump means for pressurized pumping of alcohol from the fuel storage means to the heat exchanger means, converter means, carburetor means, and to the engine.

Carroll, B.I.

1987-01-13T23:59:59.000Z

75

G. Uniform Engine Fuels and Automotive Lubricants ...  

Science Conference Proceedings (OSTI)

... 3.6. Fuel Oils. 3.6.1. Labeling of Grade Required. Fuel Oil shall be identified by the grades of No. ... 3.10. Liquefied Petroleum Gas (LPG). ...

2013-10-25T23:59:59.000Z

76

Fuel Cycle Technologies Program - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

77

Surrogate Model Development for Fuels for Advanced Combustion Engines  

Science Conference Proceedings (OSTI)

The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

Anand, Krishnasamy [University of Wisconsin, Madison; Ra, youngchul [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin; Bunting, Bruce G [ORNL

2011-01-01T23:59:59.000Z

78

The piston dynamics under knock situation of diesel dual fuel engine: a numerical study  

Science Conference Proceedings (OSTI)

A compression ignition engine fueled by natural gas or Diesel Dual Fuel (DDF) engine is a promising engine for the future of a high oil price. Unfortunately, the DDF engine knocks easily: this leads to damage of pistons. So, the understanding of the ... Keywords: diesel dual fuel engine, knock, mixed-lubrication, modelling, piston secondary motion, simulation

Krisada Wannatong; Somchai Chanchaona; Surachai Sanitjai

2007-01-01T23:59:59.000Z

79

Elimination of abnormal combustion in a hydrogen-fueled engine  

DOE Green Energy (OSTI)

This report covers the design, construction, and testing of a dedicated hydrogen-fueled engine. Both part-load and full-load data were taken under laboratory conditions. The engine design included a billet aluminum single combustion chamber cylinder-head with one intake valve, two sodium coiled exhaust valves, and two spark plugs. The cylinder-head design also included drilled cooling passages. The fuel-delivery system employed two modified Siemens electrically actuated fuel injectors, The exhaust system included two separate headers, one for each exhaust port. The piston/ring combination was designed specifically for hydrogen operation.

Swain, M.R.; Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

1995-11-01T23:59:59.000Z

80

Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware  

DOE Green Energy (OSTI)

Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

Li, Sharon

2000-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel  

SciTech Connect

The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

Corporan, E. [Air Force Research Laboratory, Wright-Patterson AFB, OH; DeWitt, M. [Air Force Research Laboratory, Wright-Patterson AFB, OH; Klingshirn, Christopher D [ORNL; Striebich, Richard [Air Force Research Laboratory, Wright-Patterson AFB, OH; Cheng, Mengdawn [ORNL

2010-01-01T23:59:59.000Z

82

Federal Railroad Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Transportation Federal Railroad Administration Overview of Proposed Rail Safety & Security Rulemakings Kevin R. Blackwell FRA Hazmat Division Washington, DC Federal Authority DOT Authority to regulate safety and security of hazardous materials transportation Hazardous Materials Transportation Law (49 U.S.C. 5101 et.seq.) Federal Railroad Safety Act (49 U.S.C. 20101 et.seq.) TSA Authority to regulate security of hazardous material transportation Aviation Transportation Security Act (Pub. L. 107-71, 115 Stat. 597) Routing as a Part of the Transportation Cycle Routing decisions are continually made as a part of the transportation cycle for a variety of reasons. E c o n o m i c s Security S a f e t y Routing Decision Pyramid DOT NPRM HM-232E NPRM published on December 21, 2006.

83

Federal Railroad Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Du Update Du Jour Department Of Energy Transportation External Coordination Working Group Meeting Albuquerque, New Mexico April 21-23, 2004 Presented by Kevin R. Blackwell Radioactive Materials Program Manager Federal Railroad Administration Federal Railroad Administration Dedicated Train Study- Report to Congress FRA' s Research & Development Office (as lead on the study) received a draft final report from the Volpe National Transportation Systems Center (VNTSC) in late November, 2003. Editorial corrections were made and a final draft dated February, 2004 was provided to FRA. Final Draft Report FRA has been reviewed and been sent to FRA Administrator for clearance and forwarding to DOT OST. FRA has already "Officially Coordinated" and briefed DOT OST and

84

Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell  

Science Conference Proceedings (OSTI)

Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuelmaking them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once theyre pumped out of the tank.

None

2010-07-01T23:59:59.000Z

85

FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES  

DOE Green Energy (OSTI)

In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for todays engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

Don Ferguson; Geo. A. Richard; Doug Straub

2008-06-13T23:59:59.000Z

86

Fuel property effects on engine combustion processes. Final report  

DOE Green Energy (OSTI)

A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

Cernansky, N.P.; Miller, D.L.

1995-04-27T23:59:59.000Z

87

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

DOE Green Energy (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

88

Study on the Photogrammetric Application to the Fuel Cell Engine Vibration Testing  

Science Conference Proceedings (OSTI)

Owing to its energy-saving and environment-friendly features, the fuel cell car has become the future trend of vehicle development. To prolong the engines life span, the suspension of fuel cell engine needs to be appropriately designed, which ... Keywords: fuel cell engine, vibration testing, close-up photogrammetry, image processing

Chuqi Su; Xiang Lin

2009-10-01T23:59:59.000Z

89

Nuclear Fuel Cycle and Waste Management Technologies - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuel Cycle and Nuclear Fuel Cycle and Waste Management Technologies Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Fuel Cycle and Waste Management Technologies Overview Bookmark and Share Much of the NE Division's research is directed toward developing software and performing analyses, system engineering design, and experiments to support the demonstration and optimization of the electrometallurgical

90

Engines - Fuel Injection and Spray Research - Diesel Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Sprays Diesel Sprays Chris Powell and fuel spray xray beamline Christopher Powell, an engine research scientist, fits a specially designed X-ray pressure window to a high-pressure chamber used in diesel spray research. These windows allow Argonne researchers to use X-rays to probe diesel sprays under the high-density conditions found in diesel engines. Diesel sprays Diesel engines are significantly more fuel-efficient than their gasoline counterparts, so wider adoption of diesels in the U.S. would decrease the nation’s petroleum consumption. However, diesels emit much higher levels of pollutants, especially particulate matter and NOx (nitrogen oxides). These emissions have prevented more manufacturers from introducing diesel passenger cars. Researchers are exploring ways to reduce pollution formation in the engine

91

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

92

High-alcohol microemulsion fuel performance in a diesel engine  

DOE Green Energy (OSTI)

Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear, stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.

West, B.H.; Compere, A.L.; Griffith, W.L.

1990-01-01T23:59:59.000Z

93

Alternative fuels for heavy duty engines: Status of fleet trials  

DOE Green Energy (OSTI)

The overall objectives of Annex 3 are to collect, assess and disseminate data on the use of methanol and natural gas in heavy duty compression ignition engines. Originally, the objective was directed at methanol, but in 1990 the mandate of Annex 3 was broadened to include natural gas. This is the latest update on field trials using these two fuels. The report outlines progress being made and identifies major trends. The more important events since the last progress report include: the US Environmental Protection Agency (EPA) Certification of Detroit Diesel Corporation's 6V-92 methanol engine; the introduction of transit buses in Windsor, Ontario, Canada, using DDC methanol engines; an introduction of two DDC engined ethanol fueled transit buses at Regina, Saskatchewan, Canada; the testing of catalytic converters, by Detroit Diesel Corporation, with alcohol powered engines; the discontinuance of methanol in MAN engines/buses at Seattle Metro; a tender for over 100 methanol powered transit buses for South Coast Rapid Transit District (SCRTD), Los Angeles, California; the potential purchase of an additional 150 methanol powered buses for SCRTD, in addition to 10 buses for Sacramento Regional Transit District; and, the expanded interest of transit properties in using natural gas in both compressed natural gas (CNG) and liquefied natural gas (LNG) engines. 21 figs.

Not Available

1991-08-01T23:59:59.000Z

94

Innovative coal-fueled diesel engine injector  

DOE Green Energy (OSTI)

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

95

Gas fuel in a four-stroke engine  

Science Conference Proceedings (OSTI)

This paper refers to the behavior of a four-stroke gasoline engine that is used for the function of a small generator. The generator functioned at different electrical loads 500W, 1000W, 1500W and 2000W. During the use of gas fuel 80%butane -20%propane ... Keywords: biofuels, gas emissions, gas propane-butane mixture

Charalampos Arapatsakos

2009-02-01T23:59:59.000Z

96

FY2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS FOR ADVANCED CIDI FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and QSS Group, Inc., for their artistic, editorial and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

97

Modeling and cold start in alcohol-fueled engines  

DOE Green Energy (OSTI)

Neat alcohol fuels offer several benefits over conventional gasoline in automotive applications. However, their low vapor pressure and high heat of vaporization make it difficult to produce a flammable vapor composition from a neat alcohol fuel during a start under cold ambient conditions. Various methods have been introduced to compensate for this deficiency. In this study, the authors applied computer modeling and simulation to evaluate the potential of four cold-start technologies for engines fueled by near-neat alcohol. The four technologies were a rich combustor device, a partial oxidation reactor, a catalytic reformer, and an enhanced ignition system. The authors ranked the competing technologies by their ability to meet two primary criteria for cold starting an engine at {minus}25 deg C and also by several secondary parameters related to commercialization. Their analysis results suggest that of the four technologies evaluated, the enhanced ignition system is the best option for further development.

Markel, A.J.; Bailey, B.K.

1998-05-01T23:59:59.000Z

98

Emissions and efficiency of agricultural diesels using low-proof ethanol as supplement fuel. [Tractor engines  

Science Conference Proceedings (OSTI)

Experimental investigations were made to evaluate the potential of using low-proof ethanol to supplement diesel fuel in agricultural engines. Fumigation, mechanical emulsification, and chemical emulsifiers were used to introduce a significant amount of alcohol with diesel fuel for engine operation. A total of five diesel tractor engines were tested using each of the fuel systems. Exhaust products and fuel usage were determined at various engine speed/load conditions. 5 references, 12 figures, 14 tables.

Allsup, J.R.; Clingenpeel, J.M.

1984-01-01T23:59:59.000Z

99

Tracing Fuel Component Carbon in the Emissions from Diesel Engines  

DOE Green Energy (OSTI)

The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place {sup 14}C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in {sup 14}C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific {sup 14}C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO{sub 2}, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable {sup 14}C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of {sup 14}C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

Buchholz, B A; Mueller, C J; Martin, G C; Cheng, A S E; Dibble, R W; Frantz, B R

2002-10-14T23:59:59.000Z

100

Federal Railroad Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety & Security Safety & Security Rulemakings Kevin R. Blackwell FRA Hazmat Division Washington, DC Federal Authority DOT Authority to regulate safety and security of hazardous materials transportation Hazardous Materials Transportation Law (49 U.S.C. 5101 et.seq.) Federal Railroad Safety Act (49 U.S.C. 20101 et.seq.) TSA Authority to regulate security of hazardous material transportation Aviation Transportation Security Act (Pub. L. 107-71, 115 Stat. 597) Routing as a Part of the Transportation Cycle Routing decisions are continually made as a part of the transportation cycle for a variety of reasons. Security Routing Decision Pyramid DOT NPRM HM-232E NPRM published on December 21, 2006. Seeks to clarify and enhance existing regulations. Rail Carriers who transport carloads of more than 5000 lbs of 1.1, 1.2, or 1.3

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Engineered Nano-scale Ceramic Supports for PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Eric L. Brosha, Anthony Burrell, Neil Henson, Jonathan Phillips, and Tommy Rockward Los Alamos National Laboratory Timothy Ward, Plamen Atanassov University of New Mexico Karren More Oak Ridge National Laboratory Fuel Cell Technologies Program Kick-off Meeting September 30 - October 1, 2009 Washington DC Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Fuel Cell Technologies Objectives  Develop a ceramic alternative to carbon material supports for a polymer electrolyte fuel cell cathode that exhibits an enhanced resistance to corrosion and Pt coalescence while preserving positive attributes of carbon such as

102

Application of neural network for air-fuel ratio identification in spark ignition engine  

Science Conference Proceedings (OSTI)

In the present work, Recurrent Neural Network (RNN) is used for Air-Fuel Ratio (AFR) identification in Spark Ignition (SI) engine. AFR identification is difficult due to nonlinear and dynamic behaviour of SI engines. Delays present in the engine ... Keywords: AFR sensors, RNNs, air-fuel ratio control, air-fuel ratio sensors, engine modelling, recurrent neural networks, simulation, spark ignition engines, virtual sensors

Samir Saraswati; Satish Chand

2008-10-01T23:59:59.000Z

103

Numerical modeling of hydrogen-fueled internal combustion engines  

DOE Green Energy (OSTI)

The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop a engine design capability based on KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions of this engine satisfy the Equivalent Zero Emission Vehicle (EZEV) standard established by the California Resource Board. 26 refs., 10 figs., 1 tab.

Johnson, N.L.; Amsden, A.A.

1996-12-31T23:59:59.000Z

104

Experimental Study of Air-Fuel Ratio Control Strategy for a Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

One of the most attractive combustive features for hydrogen fuel is its wide range of flammability. The wide flammability limits allow hydrogen engine to be operated at extremely lean airfuel ratios compared to conventional fuels. Concepts for ... Keywords: Hydrogen internal combustion engine, Air/Fuel ratio, Control strategy

Zhong-yu Zhao; Fu-shui Liu

2010-11-01T23:59:59.000Z

105

The Intelligent Study on Diesel-LNG Dual Fuel Marine Diesel Engine  

Science Conference Proceedings (OSTI)

In this article, a diesel engine named "X6170ZC" has been converted into a dual-fuel engine of diesel and liquefied natural gas (LNG). The principle, composition and characteristics of electronic control system for the engine have been introduced. An ... Keywords: engine, dual-fuel, intelligent

Zhang Liang

2012-03-01T23:59:59.000Z

106

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Vehicle and Heavy-Duty Vehicle and Engine Search to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search on AddThis.com... Heavy-Duty Vehicle and Engine Search Search our database to find and compare specific vehicles, engines, or hybrid propulsion systems and generate printable reports.

107

Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells  

DOE Green Energy (OSTI)

The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

Zhu, Yimin

2009-07-16T23:59:59.000Z

108

Energy study of railroad freight transportation. Volume 1. Executive summary  

SciTech Connect

The railroad industry plays a vital role in transporting goods, raw materials, and food necessary to the well being of the population and necessary to facilitate the operations of our industrial economy. Because of the vital part that the railroad industry plays in the economy and because of its ability to move goods with relatively small amounts of fuel, the US ERDA embarked on a study to determine the role of the Federal government in promoting conservation in the industry and in freight movements in general. Toward this final objective, the study compiled a description of the railroad industry, its structure, equipment, facilities, economics, and energy consumption; compiled a description of the regulation of the industry and considered ways in which the regulation has affected fuel consumption by the railroads; and analyzed candidates for fuel efficiency improvement and evaluated them on the basis of economics and the likelihood of their adoption by industry. A description of the industry, an analysis of energy consumption by the industry, a discussion of mechanisms for evaluating efficiency improvement proposals, a description and evaluation of conservation efficiency improvement proposals, a description and evaluation of conservation opportunities, and a discussion of recommended activities are included.

1979-08-01T23:59:59.000Z

109

Energy study of railroad freight transportation. Volume 4. Efficiency improvements and industry future  

DOE Green Energy (OSTI)

Railroad equipment and operating practices were largely developed in an era during which the price of fuel was a relatively minor part of the cost of railroad operations; however, fuel has now become a scarce and expensive resource. Although many opportunities exist for installing new equipment and operating practices that will result in fuel conservation, cost and market factors can promote or retard the rate at which changes are adopted, and only limited technology may be available for use in conservation applications. Conservation opportunities are identified and potential technological and operational improvements are described that can be introduced; the process of introducing new technology in the railroad industry is analyzed; the future of the railroad industry is assessed; and research and development that will contribute to the adoption of energy conservation equipment or processes in the industry are identified.

Not Available

1979-08-01T23:59:59.000Z

110

Reactor Physics and Fuel Cycle Analysis - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Bookmark and Share Reactor physics and fuel cycle analysis is a core competency of the Nuclear Engineering (NE) Division. The Division has played a major role in the design and analysis of advanced reactors, particularly liquid-metal-cooled reactors. NE researchers have concentrated on developing computer codes for

111

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Collection Methods to someone by E-mail Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Data Collection Methods on AddThis.com... Heavy-Duty Vehicle and Engine Data Collection Methods To maintain the Heavy-Duty Vehicle and Engine Search tool, the National

112

Farm scale biogas-fueled engine/induction generator system  

Science Conference Proceedings (OSTI)

A 3.6 liter spark ignition engine coupled to an induction generator produced 21 kW of electric power at 1260 rpm operating on biogas (55% methane, 45% carbon dioxide). Power output increased by 3.55 kW for a 10 rpm increase in shaft speed. Operating at over 16 kW output, power factor was greater than .8 and generator efficiency was greater than 85%. Engine operation is insensitive to small changes in spark advance. Recommended spark advance for a biogas engine is about 45/sup 0/. Minimum brake specific fuel consumption of 270 g CH/sub 4//kWh occurs at a manifold vacuum of 5 cmHg and an equivalence ratio in the range of .6 to .8.

Stahl, T.; Fischer, J.R.; Harris, F.D.

1982-12-01T23:59:59.000Z

113

FY2002 Progress Report for Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels for Advanced Compression Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen November 2002 Fuels for Advanced CIDI Engines FY 2002 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. FUEL/LUBRICANT EFFECTS TESTING ON ENGINE PERFORMANCE . . . . . . . . . 13 A. Oil Consumption Contribution to CIDI PM Emissions during Transient Operation . . . . . . . . . . . . . . . . . . . .13

114

Evaluating flexibility in railroad construction projects  

E-Print Network (OSTI)

This thesis aims to valuate flexibilities in a large-scale railroad construction project. In general, a railroad construction project involves a large amount of flexibilities due to its long construction period and conflicts ...

Oh, Choong Ryun, 1972-

2005-01-01T23:59:59.000Z

115

Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine  

DOE Green Energy (OSTI)

The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

Bunting, Bruce G [ORNL; Eaton, Scott J [ORNL; Crawford, Robert W [Rincon Ranch Consulting

2009-01-01T23:59:59.000Z

116

Compatibility of alternative fuels with advanced automotive gas-turbine and Stirling engines. A literature survey  

DOE Green Energy (OSTI)

The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain research efforts is discussed. Future research efforts planned at Lewis are described. 52 references.

Cairelli, J.; Horvath, D.

1981-05-01T23:59:59.000Z

117

Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation  

DOE Patents (OSTI)

A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

Dec, John E. (Livermore, CA); Sjoberg, Carl-Magnus G. (Livermore, CA)

2006-10-31T23:59:59.000Z

118

The Fuel Control System and Performance Optimization of a Spark-Ignition LPG Engine  

Science Conference Proceedings (OSTI)

This paper presents an approach to control air fuel ratio of a Liquefied Petroleum Gas (LPG) automotive engine. The optimization of compression ratio is also described in this paper. HC, CO & NOx emissions of LPG engines can be reduced after the application ... Keywords: control, LPG engine, air fuel ratio, optimization

Hongwei Cui

2009-04-01T23:59:59.000Z

119

U.S. Railroad Safety Statistics and Trends  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Railroad Safety Statistics and Trends Railroad Safety Statistics and Trends Robert E. Fronczak, P.E. Assistant VP- Environment & Hazmat Association of American Railroads Transportation External Coordination Working Group Meeting September 21, 2005 Railroad Safety: Topics Safety Statistics & Trends Train Safety (Train Accidents) Employee Safety Hazardous Materials Safety U.S. Railroad Safety Statistics: Main Themes Railroads have dramatically improved safety over the last two and a half decades. Railroads compare favorably with other industries & transportation modes. The most troubling railroad safety problems arise from factors largely outside railroad control. Railroads have implemented numerous and effective technological improvements and company-wide safety programs.

120

Fuel injector for use in a gas turbine engine  

Science Conference Proceedings (OSTI)

A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

Wiebe, David J.

2012-10-09T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A critical analysis of grounding practices for railroad tracks in electric utility stations  

Science Conference Proceedings (OSTI)

A railroad spur is often routed into a large substation or generating plant to facilitate installation of large power transformers or other large pieces of equipment and to transport fuel to the plant. Because the metal rails may transfer hazardous potentials into or out of the switchyard area during ground faults, precautions must be taken to limit the hazardous voltages. This analysis looks for common trends of voltages along railroad tracks in a controlled model of a substation grounding system during a ground fault. Current practices to limit these transferred potentials are based on crude approximations and engineering judgment. Recently developed computer programs allow a much better model of the grounding system, track and the hazardous scenarios to which a person might be subject. Several cases were used to illustrate some of the most common techniques used to limit hazardous voltages, and some of these techniques were found to be quite ineffective. Except for the cases where the tracks near the substation were removed, the potential transferred along the tracks produced several scenarios with touch and/or step voltages exceeding the tolerable limits.

Garrett, D.L.; Wallace, K.A. (Southern Co. Services, Birmingham, AL (United States))

1993-01-01T23:59:59.000Z

122

Fuel injector nozzle for an internal combustion engine  

DOE Green Energy (OSTI)

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2008-11-04T23:59:59.000Z

123

Effects of different fuels on a turbocharged, direct injection, spark ignition engine  

E-Print Network (OSTI)

The following pages describe the experimentation and analysis of two different fuels in GM's high compression ratio, turbocharged direct injection (TDI) engine. The focus is on a burn rate analysis for the fuels - gasoline ...

Negrete, Justin E

2010-01-01T23:59:59.000Z

124

Flameholding Studies for Lean Premixed Fuel Injectors for Application in Gas Turbine Engines.  

E-Print Network (OSTI)

??Due to the ever-increasing demand for energy, it is likely that stationary gas turbine engines will require the use of fuels with a diverse range (more)

Marzelli, Steven

2010-01-01T23:59:59.000Z

125

A homogenous combustion catalyst for fuel efficiency improvements in diesel engines fuelled with diesel and biodiesel.  

E-Print Network (OSTI)

??[Truncated abstract] The ferrous picrate based homogeneous combustion catalyst has been claimed to promote diesel combustion and improve fuel efficiency in diesel engines. However, the (more)

Zhu, Mingming

2012-01-01T23:59:59.000Z

126

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels  

E-Print Network (OSTI)

DK, Weiss R: Synthetic biology: new engineering rules for anfrom bugs to synthetic biology to fuels Sung Kuk Lee, Howardengineering and synthetic biology will provide new tools for

Kuk Lee, Sung

2010-01-01T23:59:59.000Z

127

Fuel injection system and method of operating the same for an engine  

DOE Patents (OSTI)

A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

Topinka, Jennifer Ann (Niskayuna, NY); DeLancey, James Peter (Corinth, NY); Primus, Roy James (Niskayuna, NY); Pintgen, Florian Peter (Niskayuna, NY)

2011-02-15T23:59:59.000Z

128

Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis  

DOE Green Energy (OSTI)

Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

Not Available

1991-12-01T23:59:59.000Z

129

Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels  

DOE Patents (OSTI)

An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

2011-11-01T23:59:59.000Z

130

PLIF flow visualization of methane gas jet from spark plug fuel injector in a direct injection spark ignition engine  

Science Conference Proceedings (OSTI)

A Spark Plug Fuel Injection (SPFI), which is a combination of a fuel injector and a spark plug was developed with the aim to convert any gasoline port injection spark ignition engine to gaseous fuel direct injection [1]. A direct fuel injector is combined ... Keywords: air-fuel mixing, direct fuel injection, flow visualization, gaseous fuel, laser-induced fluorescent

Taib Iskandar Mohamad; How Heoy Geok

2008-11-01T23:59:59.000Z

131

Effect of in-cylinder liquid fuel films on engine-out unburned hydrocarbon emissions for SI engines  

E-Print Network (OSTI)

Nearly all of the hydrocarbon emissions from a modern gasoline-fueled vehicle occur when the engine is first started. One important contributing factor to this is the fact that, during this time, temperatures throughout ...

Costanzo, Vincent S. (Vincent Stanley), 1979-

2011-01-01T23:59:59.000Z

132

LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System  

Science Conference Proceedings (OSTI)

The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

Dr. John Garnier; Dr. Kevin McHugh

2012-09-01T23:59:59.000Z

133

Railroad electrification in America's future: an assessment of prospects and impacts. Final report  

SciTech Connect

Such considerations as the level of traffic, the relative financial health of individual railroads, the capacity of the associated supply and engineering/construction industries, and the logical connecting points at classifying yards, as well as the national interest value of creating a continuous system, continental in scope, were used to construct a scenario for railroad electrification that closely approximates how an electrification program might be implemented. For the economic reasons cited, much of the US railroad system would remain conventionally powered. This scenario provides for an electrified network involving 14 mainlines operated by 10 companies that could transport much of the nation's rail-borne freight. Five years of planning and engineering work would be required for each link before construction could begin. With 1000 miles or less of electrified route per year, 14 years would be needed to construct the 9000-mile network of our scenario. (The scenario constructed runs from 1980 to 1998.) The analysis was aided with the construction of the SRI Railroad Industry Model. Basically a model of industry operations and finances, the model produces income statements and balance sheets at yearly intervals. Railroad energy costs, railroad freight levels, maintenance costs, purchases and leases of rooling stock, electrification facility investments, future inflation, rate setting practices, annual depreciation, taxes, and profits were calculated.

White, R.K.; Yabroff, I.W.; Dickson, E.M.; Zink, R.A.; Gray, M.E.; Moon, A.E.

1980-01-01T23:59:59.000Z

134

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

135

Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy  

DOE Green Energy (OSTI)

A technique for measuring the fuel dilution of oil in a diesel engine is presented. Fuel dilution can occur when advanced in-cylinder fuel injection techniques are employed for the purpose of producing rich exhaust for lean NOx trap catalyst regeneration. Laser-induced fluorescence (LIF) spectroscopy is used to monitor the oil in a Mercedes 1.7-liter engine operated on a dynamometer platform. A fluorescent dye suitable for use in diesel fuel and oil systems is added to the engine fuel. The LIF spectra are monitored to detect the growth of the dye signal relative to the background fluorescence of the oil; fuel mass concentration is quantified based on a known sample set. The technique was implemented with fiber optic probes which can be inserted at various points in the oil system of the engine. A low cost 532-nm laser diode was used for excitation of the fluorescence. Measurements of fuel dilution of oil are presented for various in-cylinder injection strategies for rich operation of the diesel engine. Rates of fuel dilution increase for all strategies relative to normal lean operation, and higher fuel dilution rates are observed when extra fuel injection occurs later in the combustion cycle when fuel penetration into the cylinder wall oil film is more likely.

Parks, II, James E [ORNL; Partridge Jr, William P [ORNL

2007-01-01T23:59:59.000Z

136

Advanced turbine design for coal-fueled engines  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500[degrees]F (815[degrees]C), relatively innocuous salts. In this study it is found that at 1650[degrees]F (900[degrees]C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

137

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

138

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

DOE Green Energy (OSTI)

This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

E.T. (Skip) Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

2002-12-31T23:59:59.000Z

139

Diesel - soy oil blends as fuel in a four stroke engine when the fuel temperatures are different  

Science Conference Proceedings (OSTI)

Due to the fact that petroleum is decreased in nowadays and also the fact that the environment sustains a lot of damage, it is necessary to be replaced by renewable fuels that can be used in the engines and are friendlily to the environment. This paper ... Keywords: biofuels, gas emissions, soy oil fuel

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis; Konstantinos Mitroulas; Marianthi Moschou

2011-12-01T23:59:59.000Z

140

Enhancing Railroad Hazardous Materials Transportation Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16,...

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Partial oxidation for improved cold starts in alcohol-fueled engines: Phase 2 topical report  

DOE Green Energy (OSTI)

Alcohol fuels exhibit poor cold-start performance because of their low volatility. Neat alcohol engines become difficult, if not impossible, to start at temperatures close to or below freezing. Improvements in the cold-start performance (both time to start and emissions) are essential to capture the full benefits of alcohols as an alternative transportation fuel. The objective of this project was to develop a neat alcohol partial oxidation (POX) reforming technology to improve an alcohol engine`s ability to start at low temperatures (as low as {minus}30 C) and to reduce its cold-start emissions. The project emphasis was on fuel-grade ethanol (E95) but the technology can be easily extended to other alcohol fuels. Ultimately a compact, on-vehicle, ethanol POX reactor was developed as a fuel system component to produce a hydrogen-rich, fuel-gas mixture for cold starts. The POX reactor is an easily controllable combustion device that allows flexibility during engine startup even in the most extreme conditions. It is a small device that is mounted directly onto the engine intake manifold. The gaseous fuel products (or reformate) from the POX reactor exit the chamber and enter the intake manifold, either replacing or supplementing the standard ethanol fuel consumed during an engine start. The combustion of the reformate during startup can reduce engine start time and tail-pipe emissions.

NONE

1998-04-01T23:59:59.000Z

142

Series 50 propane-fueled Nova bus: Engine development, installation, and field trials  

SciTech Connect

The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

Smith, B.

1999-01-01T23:59:59.000Z

143

Experimental hydrogen-fueled automotive engine design data-base project. Volume 2. Main technical report  

DOE Green Energy (OSTI)

Operational performance and emissions characteristics of hydrogen-fueled engines are reviewed. The project activities are reviewed including descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained. Analyses of other hydrogen engine project data are also presented and compared with the results of the present effort.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

144

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Van Hool - A300L Fuel Cel Application: Bus - Transit Fuel Type: Hydrogen Maximum Seating: 28 Power Source(s): UTC Power - PureMotion Model 120 Fuel Cell System...

145

Engineered nano-scale ceramic supports for PEM fuel cells  

DOE Green Energy (OSTI)

Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the major aim of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. This latter aspect is key to attaining the 2015 DOE technical targets for platinum group metal (PGM) loadings (0.20 mg/cm{sup 2}). The benefits of the use of carbon-supported catalysts to drastically reduce Pt loadings from the early, conventional Pt-black technology are well known. The supported platinum catalyzed membrane approach widely used today for fabrication of membrane electrode assemblies (MEAs) was developed shortly thereafter these early reports. Of direct relevance to this present work, are the investigations into Pt particle growth in PEM fuel cells, and subsequent follow-on work showing evidence of Pt particles suspended free of the support within the catalyst layer. Further, durability work has demonstrated the detrimental effects of potential cycling on carbon corrosion and the link between electrochemical surface area and particle growth. To avoid the issues with carbon degradation altogether, it has been proposed by numerous fuel cell research groups to replace carbon supports with conductive materials that are ceramic in nature. Intrinsically, these many conductive oxides, carbides, and nitrides possess the prerequisite electronic conductivity required, and offer corrosion resistance in PEMFC environments; however, most reports indicate that obtaining sufficient surface area remains a significant barrier to obtaining desirable fuel ceU performance. Ceramic materials that exhibit high electrical conductivity and necessary stability under fuel cell conditions must also exhibit high surface area as a necessary adjunct to obtaining high Pt dispersions and Pt utilization targets. Our goal in this work is to identify new synthesis approaches together with materials that will lead to ceramic supports with high surface areas and high Pt dispersions. Several strong candidates for use as PEMFC catalyst supports include: transition metal nitrides and substoichiometric titanium oxides, which hither to now have been prepared by other researcher groups with relatively low surface areas (ca. 1-50 m{sup 2}/g typical). To achieve our goals of engineering high surface area, conductive ceramic support for utilization in PEMFCs, a multi-institutional and multi-disciplinary team with experience synthesizing and investigating these materials has been assembled. This team is headed by Los Alamos National Laboratory and includes Oak Ridge National Laboratory and the University of New Mexico. This report describes our fiscal year 2010 technical progress related to applying advanced synthetiC methods towards the development of new ceramic supports for Pt catalysts for PEM fuel cells.

Brosha, Eric L [Los Alamos National Laboratory; Blackmore, Karen J [Los Alamos National Laboratory; Burrell, Anthony K [Los Alamos National Laboratory; Henson, Neil J [Los Alamos National Laboratory; Phillips, Jonathan [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

146

G. Uniform Engine Fuels, Petroleum Products, and Automotive ...  

Science Conference Proceedings (OSTI)

... 1.33. Liquefied Natural Gas (LNG). ... LNG automotive fuel shall be labeled with its automotive fuel rating in accordance with 16 CFR Part 306. ...

2011-08-30T23:59:59.000Z

147

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogenCNG blends (HCNG). The plant is used daily to fuel vehicles operated in...

148

Method and apparatus for controlling fuel/air mixture in a lean burn engine  

DOE Patents (OSTI)

The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

1998-04-07T23:59:59.000Z

149

Preliminary investigation of the effects of coal-water slurry fuels on the combustion in GE coal fueled diesel engine (Task 1. 1. 2. 2. 1, Fuels)  

DOE Green Energy (OSTI)

In prior work with the coal fired diesel research engine, a necessity to determine the sensitivity of the engine to a wider range of fuels was resolved and included in the R and D Test Plan submitted on 2/9/89. In general, the economic viability and universal acceptance of the commercial engine will be a factor of its ability to tolerate the widest range of source fuels with minimal fuel beneficiation. As detailed in the R and D Test Plan, a preliminary investigation on the effects of coal-water slurry (CWS) fuels on the combustion in a GE single cylinder test engine was conducted. The following conclusions are obtained from this investigation. All the test CWS fuels were successfully burned in the GE engine combustion system. They include: 3 to 15 microns mean particle size; 0.7 to 2.8% ash level; KY Blue Gem and PA Mariana bituminous coal, WY Kemmer and Spring Creek Sub-Bituminous coal; coal beneficiated with physical and chemical processes; two kinds of additives for OTISCA CWS; and burnout is not effected by ash or particle size within the test range. For each kind of CWS fuel, the detail design parameters of the fuel injection system has to be compatible. With sufficiently high fuel injection pressure, the 3 micron mean particle size OTISCA fuel burns faster than the 5 micron ones. For OTISCA fuel, the burn rate using Ammonium Lignosulfonate as additive is faster than using Ammonium Condensed Naphthalene Sulfonate. Appendices contain data on heat release, fuel characterization reports from two laboratories, general engine test data, and particulate size distribution. 3 refs.

Not Available

1990-06-01T23:59:59.000Z

150

Coal-liquid fuel/diesel engine operating compatibility. Final report  

DOE Green Energy (OSTI)

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

151

Argonne TTRDC - Engines - Compression-Ignition - diesel, fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compression Ignition Engines Clean Diesel Technologies for Greener Performance Mechanical engineer Alan Kastengren examines a diesel injection nozzle used in Argonne's X-ray spray...

152

Performance and emission studies on biodiesel-liquefied petroleum gas dual fuel engine with exhaust gas recirculation  

Science Conference Proceedings (OSTI)

Biodiesel is an alternative fuel to diesel derived from vegetable oils by transesterification process. It can be used in diesel engines with/without any modification in the engine system. Biodiesel engines emit slightly higher NO x emissions

A. S. Ramadhas; S. Jayaraj; C. Muraleedharan

2010-01-01T23:59:59.000Z

153

High-pressure coal fuel processor development  

DOE Green Energy (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. A successful conclusion of the program will enable further component development work and full-scale system demonstrations of this potentially important technology. This paper covers the work on fuel processor rig testing completed in FY92.

Greenhalgh, M.L.; Wen, C.S.; Smith, L.

1992-12-31T23:59:59.000Z

154

High-pressure coal fuel processor development  

DOE Green Energy (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. A successful conclusion of the program will enable further component development work and full-scale system demonstrations of this potentially important technology. This paper covers the work on fuel processor rig testing completed in FY92.

Greenhalgh, M.L.; Wen, C.S.; Smith, L.

1992-01-01T23:59:59.000Z

155

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Champion Bus Inc. - Defender Azure Dynamics - Balance Parallel Hybrid Drive Fuel Type: Hybrid - Gasoline...

156

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Freightliner - M2 106 Hybrid Applications: Tractor, Vocational truck Fuel Type: Hybrid - Diesel Electric...

157

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Front Load (Contender, Atlantic, Low-Profile) Application: Refuse hauler Fuel Type: CNG Maximum Seating: 2...

158

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: Vision Motor Corp. - Tyrano Eaton - Hybrid Drive System Fuel Type: Hybrid - Diesel Electric...

159

Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)  

DOE Green Energy (OSTI)

The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

Taylor, J.; Li, H.; Neill, S.

2006-08-01T23:59:59.000Z

160

Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines  

DOE Green Energy (OSTI)

The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

Hodgson, J.W.; Irick, D.K. [Univ. of Tennessee, Knoxville, TN (United States)

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Enhancing Railroad Hazardous Materials Transportation Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Railroad Hazardous g Railroad Hazardous g Materials Transportation Safety Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Radioactive Materials Program Manager Radioactive Materials Program Manager H d M t i l Di i i H d M t i l Di i i Hazmat Hazardous Materials Division Hazardous Materials Division Federal Railroad Administration Federal Railroad Administration Presentation for the Presentation for the DOE NTSF Meeting DOE NTSF Meeting May 10 May 10- -12, 2011 12, 2011 Our Regulated Community * More than 550 l d railroads * 170,000 miles of track * 220,000 employees * 1.3 million railcars * 20,000 locomotives Hazmat * 3,500 chemical shippers * Roughly 2 Million Roughly 2 Million annual HM shipments HM-232E Introduction * Notice of Proposed Rulemaking d b * Issued December 21, 2006 * Interim Final Rule

162

Turbocharged engine operations using knock resistant fuel blends for engine efficiency improvements  

E-Print Network (OSTI)

Engine downsizing with a turbocharger has become popular these days in automotive industries. Downsizing the engine lets the engine operate in a more efficient region, and the engine boosting compensates for the power loss ...

Jo, Young Suk

2013-01-01T23:59:59.000Z

163

Distillate Fuel Oil Sales for Railroad Use  

Gasoline and Diesel Fuel Update (EIA)

3,634,512 3,229,625 2,759,140 2,974,641 3,121,150 3,118,150 3,634,512 3,229,625 2,759,140 2,974,641 3,121,150 3,118,150 1984-2012 East Coast (PADD 1) 580,632 500,071 459,324 482,929 514,418 492,156 1984-2012 New England (PADD 1A) 69,282 47,582 43,763 53,930 51,126 33,306 1984-2012 Connecticut 4,450 3,219 2,219 2,006 2,006 5,195 1984-2012 Maine 126 1,694 7,252 8,284 6,818 5,970 1984-2012 Massachusetts 63,896 40,378 24,852 33,130 32,647 12,307 1984-2012 New Hampshire 119 126 697 86 124 116 1984-2012 Rhode Island 13 72 4 24 3 133 1984-2012 Vermont 678 2,092 8,740 10,400 9,528 9,586 1984-2012 Central Atlantic (PADD 1B) 210,461 177,750 152,309 196,570 233,005 204,527 1984-2012 Delaware 1,404 1,120 1,096 879 126 149 1984-2012 District of Columbia 0 0 0 1,229 6,392 6,770 1984-2012

164

Distillate Fuel Oil Sales for Railroad Use  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 210,461: 177,750: 152,309: 196,570: 233,005: 204,527: 1984-2012: Delaware: 1,404: 1,120: ... Washington: 105,180: 78,701: ...

165

Railroad transportation of spent nuclear fuel  

Science Conference Proceedings (OSTI)

This report documents a detailed analysis of rail operations that are important for assessing the risk of transporting high-level nuclear waste. The major emphasis of the discussion is towards ''general freight'' shipments of radioactive material. The purpose of this document is to provide a basis for selecting models and parameters that are appropriate for assessing the risk of rail transportation of nuclear waste.

Wooden, D.G.

1986-03-01T23:59:59.000Z

166

Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies  

DOE Green Energy (OSTI)

In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

Chia-fon F. Lee; Alan C. Hansen

2010-09-30T23:59:59.000Z

167

Energy Conservation Potential in Natural Gas Fueled Reciprocating Engines - A Preliminary Market Evaluation  

E-Print Network (OSTI)

A study was undertaken of the usage rates of both fuel and lubricants in reciprocating engines fueled with natural gas. The study was conducted to determine the potential for energy conservation, if use is made of more fuel efficient natural gas engine oils. Governmental and non-governmental published reports and personal interviews with users, suppliers, and manufacturers were utilized in estimating fuel and lubricant consumption figures for the year 1976. Certain important facts emerged: 1) The installed horsepower of reciprocating engines fueled by natural gas was estimated at 38,800,000 hp. 2) Reciprocating engines fueled by natural gas operated an estimated 115.2 billion brake horsepower - hours. 3) Total natural gas consumed to operate these reciprocating engines in 1976 was estimated at 962 billion cubic feet. 4) The estimated crankcase and cylinder lubricants consumed in natural gas reciprocating engines in 1976 was 33.6 million gallons. This figure represents 2% of the total United States lubricant usage. 5) Widespread use of more fuel efficient crankcase and cylinder lubricants (containing stable colloidal additives) could result in a savings of 28,850,000,000 cubic feet of natural gas each year. The natural gas thus saved would be sufficient to serve all residential customers in the metropolitan Houston area for nine (9) months of each year.

Johnson, D. M.

1979-01-01T23:59:59.000Z

168

Spent Nuclear Fuel project systems engineering management plan  

SciTech Connect

The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

Womack, J.C.

1995-10-03T23:59:59.000Z

169

Novel injector techniques for coal-fueled diesel engines. Final report  

DOE Green Energy (OSTI)

This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

170

Method and apparatus for minimizing the fuel usage in an internal combustion engine  

SciTech Connect

An apparatus and method is disclosed for minimizing the fuel usage in an internal combustion engine. The subject invention is particularly adapted for use with an engine installation subject to varying loads and which includes a governor for varying fuel flow as a function of load. In operation, the combustibles in the exhaust gas of the engine is continuously monitored. The measured level of combustibles is then compared with a predetermined level corresponding to optimum efficiency. A controller is provided for varying the air/fuel ratio supplied to the engine for maximizing efficiency in correspondence with the preset level. By this arrangement, energy output is increased permitting the governor to further reduce fuel flow, thereby minimizing energy costs.

Smojven, R.R.

1984-09-18T23:59:59.000Z

171

Effect of market fuel variation and cetane improvers on CAI combustion in a GDI engine  

E-Print Network (OSTI)

There is continued interest in improving the fuel conversion efficiency of internal combustion engines and simultaneously reducing their emissions. One promising technology is that of Controlled Auto Ignition (CAI) combustion. ...

Cedrone, Kevin David

2010-01-01T23:59:59.000Z

172

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

DOE Green Energy (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

173

Development of HCNG Blended Fuel Engine with Control of NOx Emissions  

Science Conference Proceedings (OSTI)

With increasing concern about energy shortage and environmental protection, research on reducing exhaust emissions, reducing fuel consumption, reducing engine noise and increasing specific outputs has become the major researching aspect in combustion ...

K. R. Patil; P. M. Khanwalkar; S. S. Thipse; K. P. Kavathekar; S. D. Rairikar

2009-12-01T23:59:59.000Z

174

Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors  

DOE Patents (OSTI)

The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

Riecke, George T. (Ballston Spa, NY); Stotts, Robert E. (Newark, NY)

1992-01-01T23:59:59.000Z

175

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Thomas Built Buses - Minotour Propane Application: Bus - School Fuel Type: Propane Maximum Seating: 30 Power Source(s): General Motors - 6.0L V8 - CleanFUEL USA liquid propane...

176

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Collins Bus Corp. - NexBus Propane Thomas Built Buses - Minotour Propane General Motors - 6.0L V8 - CleanFUEL USA liquid propane injection (LPI) system Fuel Type: Propane...

177

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Collins Bus Corp. - NexBus Propane Application: Bus - School Fuel Type: Propane Maximum Seating: 30 Power Source(s): General Motors - 6.0L V8 - CleanFUEL USA liquid propane...

178

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vision Motor Corp. - Tyrano Application: Tractor Fuel Type: Hydrogen Power Source(s): Vision Motor Corp. - 65kW Hydrogen Fuel Cell Hybrid System(s): Eaton - Hybrid Drive System...

179

IV. Uniform Regulations G. Uniform Engine Fuels and ...  

Science Conference Proceedings (OSTI)

... An electrochemical energy conversion device in which fuel and an oxidant react to generate electricity without consumption, physically or ...

2012-12-13T23:59:59.000Z

180

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Freightliner - Cascadia 113 NG Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G...

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kenworth - W900S Application: Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G...

182

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Elgin Sweeper Company - Broom BearCrosswindEaglePelican General Motors - 3.0L Fuel Type: CNG Displacement: 3...

183

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Volvo - VNM Daycab Application: Tractor Fuel Type: CNG Power Source(s): Cummins Westport - ISL G 8.9L...

184

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Trans Tech - ETrans Smith Electric Vehicles - 120kW induction motor with lithium-ion batteries Fuel Type: Electricity...

185

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: Hino - 195h Hino - Hino 5L Fuel Type: Hybrid - Diesel Hydraulic Displacement: 5.0 liters...

186

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel  

DOE Green Energy (OSTI)

Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

1999-05-03T23:59:59.000Z

187

Biodiesel: The clean, green fuel for diesel engines (fact sheet)  

SciTech Connect

Natural, renewable resources such as vegetable oils and recycled restaurant greases can be chemically transformed into clean-burning biodiesel fuels. As its name implies, biodiesel is like diesel fuel except that it's organically produced. It's also safe for the environment, biodegradable, and produces significantly less air pollution than diesel fuel.

Tyson, K.S.

2000-04-11T23:59:59.000Z

188

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

DOE Green Energy (OSTI)

This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

2005-05-01T23:59:59.000Z

189

Apparatus for controlling the air-fuel ratio in an internal combustion engine  

Science Conference Proceedings (OSTI)

Apparatus for controlling the air-fuel ratio in an internal combustion engine to substantially maintain the ratio at a predetermined value while the engine is operating under various load conditions. The engine has a carburetor with an air passageway through which air is drawn into the engine. Fuel is supplied to the carburetor through a fuel system and mixed with air passing through the carburetor. The presence of oxygen in the combustion products, which is a function of the air-fuel ratio of the mixture, is sensed and a first electrical signal representative of the oxygen content is supplied. The first electrical signal is compared with a predetermined reference level which is a function of the predetermined value to produce a second electrical signal having first and second signal elements, a first signal element being produced when the air-fuel ratio of the mixture is greater than the predetermined level and a second signal element being produced when the ratio is less than the level. A control responsive to the second electrical signal supplies to an air metering unit a control signal by which the quantity of air introduced into the fuel system is controlled. A change in the control signal is produced whenever the second electrical signal has a transition from one signal element to the other thereby for the air metering unit to change the quantity of air introduced into the fuel system conduit by an amount necessary to substantially maintain the air-fuel ratio at the predetermined value.

Gantzert, T.R.; Hicks, D.L.; Lindberg, A.W.

1981-07-21T23:59:59.000Z

190

Engineering guidelines for total energy are even more vital during fuel shortage  

SciTech Connect

Large total-energy facilities, from 3 to 20 MW in capacity, are studied, but the guidelines are applicable to small units also. Heat-balance analysis, fuel costs, load factor, load-profile match, and control-system design are engineering parameters for total-energy systems that will improve fuel economy. (MCW)

Kauffmann, W.M.

1974-04-01T23:59:59.000Z

191

Enhanced model and fuzzy strategy of air to fuel ratio control for spark ignition engines  

Science Conference Proceedings (OSTI)

Various mathematical models for the air to fuel ratio and control for spark ignition (SI) engines have been proposed to satisfy technical specifications. This paper reveals an improvement of the mean value model (MVEM) and a simple yet effective nonlinear ... Keywords: Air-fuel ratio, FOPDDT, Fuzzy control, Internal combustion, Nonlinear control

Anurak Jansri; Pitikhate Sooraksa

2012-09-01T23:59:59.000Z

192

Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump  

DOE Patents (OSTI)

An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2001-01-01T23:59:59.000Z

193

North American Short Line and Regional Railroads Industry Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Short Line and American Short Line and Short Line and American Short Line and Regional Railroad Association Regional Railroad Association " " The Voice of America The Voice of America ' ' s Independent Railroads s Independent Railroads " " 4/27/2005 2 ASLRRA Membership ASLRRA Membership 0 100 200 300 400 500 600 700 800 Total Number of Member Companies 1943 1953 1963 1973 1983 1993 2003 Year ASLRRA Member History (1943 - 2003) Associate Railroad

194

Research on the Performance and Emission of a Port Fuel Injection Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

A 2.0L nature aspirate gasoline engine was modified to port fuel injection (PFI) hydrogen internal combustion engine (HICE) and a series dynamometer tests were carried out. The in-cylinder combustion process was analyzed, the performance, thermal efficiency ... Keywords: hydrogen ICE, performance, emission, combustion characteristics

Dawei Sun; Fushui Liu

2011-02-01T23:59:59.000Z

195

Research on the Performance and Emission of a Port Fuel Injection Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

A 2.0L nature aspirate gasoline engine was modified to port fuel injection (PFI) hydrogen internal combustion engine (HICE) and a series dynamometer tests were carried out. The in-cylinder combustion process was analyzed, the performance, thermal efficiency ... Keywords: hydrogen ICE, performance, emission, combustion characteristics

Dawei Sun; Fushui Liu

2010-12-01T23:59:59.000Z

196

Injection Timing Effects on Brake Fuel Conversion Efficiency and Engine System's Respones  

E-Print Network (OSTI)

Societal concerns on combustion-based fuel consumption are ever-increasing. With respect to internal combustion engines, this translates to a need to increase brake fuel conversion efficiency (BFCE). Diesel engines are a relatively efficient internal combustion engine to consider for numerous applications, but associated actions to mitigate certain exhaust emissions have generally deteriorated engine efficiency. Conventionally, diesel engine emission control has centered on in-cylinder techniques. Although these continue to hold promise, the industry trend is presently favoring the use of after-treatment devices which create new opportunities to improve the diesel engine's brake fuel conversion efficiency. This study focuses on injection timing effects on the combustion processes, engine efficiency, and the engine system's responses. The engine in the study is a medium duty diesel engine (capable of meeting US EPA Tier III off road emission standards) equipped with common rail direct fuel injection, variable geometry turbo charging, and interfaced with a custom built engine controller. The study found that injection timing greatly affected BFCE by changing the combustion phasing. BFCE would increase up to a maximum then begin to decrease as phasing became less favorable. Combustion phasing would change from being mostly mixing controlled combustion to premixed combustion as injection timing would advance allowing more time for fuel to mix during the ignition delay. Combustion phasing, in turn, would influence many other engine parameters. As injection timing is advanced, in-cylinder temperatures and pressures amplify, and intake and exhaust manifold pressures deteriorate. Rate of heat release and rate of heat transfer increase when injection timing is advanced. Turbocharger speed falls with the advancing injection timing. Torque, however, rose to a maximum then fell off again even though engine speed and fueling rate were held constant between different injection timings. Interestingly, the coefficient of heat transfer changes from a two peak curve to a smooth one peak curve as the injection timing is advanced further. The major conclusion of the study is that injection advance both positively and negatively influences the diesel engine's response which contributes to the brake fuel conversion efficiency.

McLean, James Elliott

2011-08-01T23:59:59.000Z

197

Wear mechanism and wear prevention in coal-fueled diesel engines  

DOE Green Energy (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

198

Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing  

DOE Green Energy (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

199

Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels  

SciTech Connect

The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

2013-08-31T23:59:59.000Z

200

Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil  

Science Conference Proceedings (OSTI)

Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility with the petroleum-based diesel fuel (PBDF). Therefore, in this study, the prediction of the engine performance and exhaust emissions is carried ... Keywords: ANN, Biodiesel, Diesel engine, Emissions, Engine performance

Mustafa Canakci; Ahmet Necati Ozsezen; Erol Arcaklioglu; Ahmet Erdil

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New Flyer - Xcelsior Applications: Bus - Transit, Trolley Fuel Types: CNG, LNG, Hydrogen, Electricity, Hybrid - Diesel Electric Maximum Seating: varies Power Source(s): Cummins...

202

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Freightliner - Business Class M2 112 Applications: Tractor, Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L...

203

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

114SD Application: Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L Cummins Westport - ISX12 G...

204

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

20 G Application: Refuse hauler Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L...

205

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cargotec - Ottawa 4x2 Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L...

206

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Volvo - VNL Daycab Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G Volvo - D12-LNG...

207

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Peterbilt Motors - 384 Application: Tractor Fuel Types: CNG, LNG Maximum Seating: 2 Power Source(s): Cummins Westport - ISL G 8.9L...

208

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ElDorado National - XHF Application: Bus - Transit Fuel Types: CNG, LNG Maximum Seating: 39 Power Source(s): Cummins Westport - ISL G 8.9L...

209

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heil Environmental - RapidRail Application: Refuse hauler Fuel Type: CNG Maximum Seating: 3 Power Source(s): Cummins Westport - ISL G 8.9L...

210

Gas turbine engine control using electrically driven fuel metering pumps.  

E-Print Network (OSTI)

??The aim of this thesis, developed in ROLLS ROYCE PLC, has been to investigate the use of an innovative fuel system on aero gas turbine (more)

BERTOLUCCI, ALESSIO

2008-01-01T23:59:59.000Z

211

Engines - Fuel Injection and Spray Research - X-rays, Diesel...  

NLE Websites -- All DOE Office Websites (Extended Search)

procedure since the physics of spray atomization and its influence on combustion, pollutant formation and fuel efficiency are not well understood. A deeper...

212

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Odyssey XLT Application: Bus - Shuttle Fuel Types: CNG, Hybrid - Diesel Electric Maximum Seating: 50 Hybrid System(s): Eaton - Diesel Electric Hybrid Additional Description:...

213

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

86HE Application: Tractor Fuel Type: Hybrid - Diesel Electric Power Source(s): Paccar - MX-13 Hybrid System(s): Eaton - Diesel Electric Hybrid...

214

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

T370 hybrid truck Application: Vocational truck Fuel Type: Hybrid - Diesel Electric Maximum Seating: 2 Hybrid System(s): Eaton - Diesel Electric Hybrid Additional Description:...

215

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Elgin Sweeper Company - Broom BearCrosswindEaglePelican Ford Motor Co. - 2.5L Propane Fuel Type: Propane Displacement: 2.5 liters...

216

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Capacity Trucks - TJ5000TJ7000 General Motors - 8.0L V8 Fuel Type: Propane Displacement: 8.0 liters...

217

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ElDorado National - Axess Ebus - EBUS22FC New Flyer - Xcelsior Ballard Power Systems - FCvelocity-HD6 fuel cell...

218

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

XE-30 Application: Tractor Fuel Type: Electricity Power Source(s): Balqon - 200-hp, 230V, AC induction motor with 215kWh, 600V, lithium...

219

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Champion Bus Inc. - Defender Application: Bus - Shuttle Fuel Type: Hybrid - Gasoline Electric Hybrid System(s): Azure Dynamics - Balance Parallel Hybrid Drive Additional...

220

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles International - EVI-MD Application: Vocational truck Fuel Type: Electricity Power Source(s): Electric Vehicles International - 260-hp AC permanent magnet motor...

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Thomas Built Buses - Saf-T-Liner C2e Hybrid Application: Bus - School Fuel Type: Hybrid - Diesel Electric Maximum Seating: 81...

222

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mule M150 Application: Vocational truck Fuel Type: Electricity Power Source(s): Balqon - 200-hp AC induction motor with lithium...

223

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Peterbilt Motors - 320 HLA Application: Refuse hauler Fuel Type: Hybrid - Diesel Hydraulic Power Source(s): Cummins - ISL 8.9L Hybrid System(s):...

224

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Motor Coach Industries - D4500 CT Hybrid Commuter Coach Application: Bus - Transit Fuel Types: CNG, Hybrid - Diesel Electric Maximum Seating: 57 Power Source(s): Cummins Westport -...

225

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gillig Corp. - Diesel-Electric Hybrid Bus and CNG Bus Application: Bus - Transit Fuel Types: CNG, Hybrid - Diesel Electric Maximum Seating: 40 Power Source(s): Cummins Westport -...

226

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Boulder Electric Vehicle - DV-500 Delivery Truck Application: Van Fuel Type: Electricity Power Source(s): Boulder Electric Vehicle - AC brushless induction motor with lithium-ion...

227

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Boulder Electric Vehicle - DV-500 Delivery Truck Boulder Electric Vehicle - AC brushless induction motor with lithium-ion batteries Fuel Type: Electricity...

228

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hino - 195h Application: Vocational truck Fuel Type: Hybrid - Diesel Electric Power Source(s): Hino - Hino 5L Hybrid System(s): Hino - Hino Hybrid Drive...

229

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ford Motor Co. - Transit Connect Ford Motor Co. - 2.0L I-4 Fuel Types: CNG, Propane Displacement: 2.0 liters...

230

Mixture of micronized coal powder with gaseous fuels for use in internal combustion engines  

DOE Patents (OSTI)

An improved fuel mixture for use in internal combustion engines is described. This fuel is an intimate mixture of micronized coal, having an average particle size of less than 100 microns, with a gaseous fuel selected from natural gas and coal-derived. The coal can be present from more than 0 percent to less than 100 percent, with generally the lower percentages being preferred. The addition of the coal to the gaseous fuel improves engine efficiency and power rating, and also decreases peak engine pressure allowing for higher compression ratios. An increase in the amount of the coal increases the oxides of sulfur while reducing the oxides of nitrogen in the exhaust. An increase in the amount of gas, on the other hand, increases the oxides of nitrogen but lowers oxides of sulfur. Accordingly, a preferred mixture will depend upon a particular application for the coal/gas fuel and thereby increases user fuel flexibility considerations. Modeling of the fuel mixture for use in a diesel engine is described. 3 figs., 3 tabs.

Carpenter, L.K.

1990-01-03T23:59:59.000Z

231

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels  

SciTech Connect

The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

2009-12-02T23:59:59.000Z

232

Coal-fueled diesel technology development. Final report, March 3, 1988--January 31, 1994  

DOE Green Energy (OSTI)

Since 1979, the US Department of Energy has been sponsoring Research and Development programs to use coal as a fuel for diesel engines. In 1984, under the partial sponsorship of the Burlington Northern and Norfolk Southern Railroads, GE completed a 30-month study on the economic viability of a coal-fueled locomotive. In response to a GE proposal to continue researching the economic and technical feasibility of a coal-fueled diesel engine for locomotives, DOE awarded a contract to GE Corporate Research and Development for a three-year program that began in March 1985 and was completed in 1988. That program was divided into two parts: an Economic Assessment Study and a Technical Feasibility Study. The Economic Assessment Study evaluated the benefits to be derived from development of a coal-fueled diesel engine. Seven areas and their economic impact on the use of coal-fueled diesels were examined; impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The Technical Feasibility Study used laboratory- and bench-scale experiments to investigate the combustion of coal. The major accomplishments of this study were the development of injection hardware for coal water slurry (CWS) fuel, successful testing of CWS fuel in a full-size, single-cylinder, medium-speed diesel engine, evaluation of full-scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions. Full combustion of CWS fuel was accomplished at full and part load with reasonable manifold conditions.

Not Available

1944-01-01T23:59:59.000Z

233

Wear mechanism and wear prevention in coal-fueled diesel engines  

DOE Green Energy (OSTI)

Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

Schwalb, J.A.; Ryan, T.W.

1991-10-01T23:59:59.000Z

234

Wear mechanism and wear prevention in coal-fueled diesel engines. Final report  

DOE Green Energy (OSTI)

Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

Schwalb, J.A.; Ryan, T.W.

1991-10-01T23:59:59.000Z

235

KIVA: Increases engine efficiency while improving fuel economy  

NLE Websites -- All DOE Office Websites (Extended Search)

in automotive catalytic converters Design of fire suppression systems Pulsed detonation propulsion systems design Benefits: Increases engine efficiency while reducing harmful...

236

Power System and Railroad Electromagnetic Compatibility Handbook  

Science Conference Proceedings (OSTI)

This book is a source of technology and data for preventing and mitigating ac electrical interference problems on railroads. All aspects of electromagnetic compatibility (EMC) where railroad systems are the receptors are examined. This includes well-understood areas such as magnetic induction from transmission lines as well as less understood areas such as conducted interference from distribution systems and effects of harmonics. Chapters examine all known effects of ac interference, including personnel ...

2006-11-29T23:59:59.000Z

237

Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines  

DOE Green Energy (OSTI)

Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

1999-05-05T23:59:59.000Z

238

Engines - Fuel Injection and Spray Research - Dynamic Imaging of Injector  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel injectors in motion Fuel injectors in motion This animated image is a result of the high penetrating power of X-rays which make it possible to permeate the outer steel structure and capture the internal components of fuel injectors in motion. Dynamic Imaging of Injector Operation The high-penetrating, powerful X-rays go through the outer steel structure to get a picture of the fuel injector parts as they move. The high X-ray flux at Argonne's APS makes this possible. These measurements are critical for the development of computational spray models, since they can precisely measure the time-dependent geometry of the fuel passages inside the injector. Injector manufacturers also use these measurements since they can reveal whether a particular component is functioning as designed.

239

An investigation of lean combustion in a natural gas-fueled spark-ignited engine  

SciTech Connect

The objective of this work was to investigate the performance and emission characteristics of natural gas in an original equipment manufacturer (OEM), light-duty, spark-ignited engine being operated in the lean fueling regime and compare the operation with gasoline fueling cases. Data were acquired for several operating conditions of speed, throttle position, air-fuel equivalence ratio, and spark timing for both fuels. Results showed that for stoichiometric fueling, with a naturally aspirated engine, a power loss of 10 to 15 percent can be expected for natural gas over gasoline fueling. For lean operation, however, power increases can be expected for equivalence ratios below about {phi} = 0.80 with natural gas fueling as compared to gasoline. Higher brake thermal efficiencies can also be expected with natural gas fueling with maximum brake torque (MBT) timings over the range of equivalence ratios investigated in this work. Coefficient of variation (COV) data based on the indicated mean effective pressure (IMEP) demonstrated that the engine is much less sensitive to equivalence ratio leaning for natural gas fueling as compared to gasoline cases. The lean limit for a COV of 10 percent was about {phi} = 0.72 for gasoline and {phi} = 0.63 for natural gas. Lean fueling resulted in significantly reduced NO{sub x} levels where a lower plateau for NO{sub x} concentrations was reached at {phi} near or below 0.70, which corresponded to about 220 ppm. For natural gas fueling, this corresponded to about 1.21 gm/kW-h. Finally, with MBT timings, relatively short heat release durations were obtained for lean fueling with natural gas compared to gasoline.

Gupta, M.; Bell, S.R.; Tillman, S.T. [Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Mechanical Engineering

1996-06-01T23:59:59.000Z

240

Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens  

Science Conference Proceedings (OSTI)

The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

DOE Green Energy (OSTI)

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

242

Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine  

SciTech Connect

Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1214 species and 5401 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation. Experimental data are available for both how the combustion phasing changes with fueling at a constant intake temperature, and also how the intake temperature has to be changed with pressure in order to maintain combustion phasing for a fixed equivalence ratio. Three different surrogate fuel mixtures are used for the modeling. Predictions are in reasonably good agreement with the engine data. In addition, the heat release rate is calculated and compared to the data from experiments. The model predicts less low-temperature heat release than that measured. It is found that the low temperature heat-release rate depends strongly on engine speed, reactions of RO{sub 2}+HO{sub 2}, fuel composition, and pressure boost.

Naik, C V; Pitz, W J; Sj?berg, M; Dec, J E; Orme, J; Curran, H J; Simmie, J M; Westbrook, C K

2005-01-07T23:59:59.000Z

243

Characterization of coal-water slurry fuel sprays from diesel engine injectors  

Science Conference Proceedings (OSTI)

Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

Caton, J.A.; Kihm, K.D.

1993-06-01T23:59:59.000Z

244

Diesel fuel component contribution to engine emissions and performance. Final report  

DOE Green Energy (OSTI)

Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

1994-11-01T23:59:59.000Z

245

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Nova Bus - LFS HEV Application: Bus - Transit Fuel Type: Hybrid - Diesel Electric Maximum Seating: 40 Power Source(s): Cummins - ISB 6.7L Hybrid System(s): Allison Transmission -...

246

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Nova Bus - LFS Artic HEV Application: Bus - Transit Fuel Type: Hybrid - Diesel Electric Maximum Seating: 62 Power Source(s): Cummins - ISB 6.7L Hybrid System(s): Allison...

247

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

82 Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L Additional Description: A heavy-duty truck designed for regional-haul applications....

248

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

- W900S Freightliner - Cascadia 113 NG Kenworth - T660 Tractor Kenworth - T800 Short Hood Volvo - VNL Daycab Cummins Westport - ISX12 G Fuel Types: CNG, LNG Displacement: 11.9...

249

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Axess Application: Bus - Transit Fuel Types: CNG, LNG, Hydrogen, Hybrid - Diesel Electric Maximum Seating: 41 Power Source(s): Cummins Westport - ISL G 8.9L Ballard Power Systems -...

250

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

North American Bus Industries - 42BRT Application: Bus - Transit Fuel Types: CNG, LNG, Hybrid - Diesel Electric Maximum Seating: 43 Power Source(s): Cummins Westport - ISL G 8.9L...

251

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

T800 Short Hood Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G Additional Description: Can be configured to accomplish a variety of...

252

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

T660 Tractor Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G Additional Description: A Class 8 heavy-duty truck designed for on-highway...

253

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CrosswindEaglePelican Applications: Street sweeper, Vocational truck Fuel Types: CNG, LNG, Propane Power Source(s): Cummins Westport - ISL G 8.9L Ford Motor Co. - 2.5L Propane...

254

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

60BRT Application: Bus - Transit Fuel Types: CNG, LNG, Hybrid - Diesel Electric Maximum Seating: 43 Power Source(s): Cummins Westport - ISL G 8.9L Cummins - ISL 8.9L Hybrid...

255

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

E-Z Rider II BRT Application: Bus - Transit Fuel Types: CNG, LNG, Hybrid - Diesel Electric Maximum Seating: 33 Power Source(s): Cummins Westport - ISL G 8.9L Cummins - ISB 6.7L...

256

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

T440 Tractor Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L Additional Description: Can be a Class 7 or a Class 8 truck...

257

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kenworth - T470 Tractor Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L Additional Description: Can be a Class 7 or a Class 8 truck...

258

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kenworth - T370 diesel electric tractor Application: Tractor Fuel Type: Hybrid - Diesel Electric Maximum Seating: 3 Power Source(s): Paccar - PX-6 6.7L Hybrid System(s): Eaton -...

259

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

IC Bus - HC Hybrid Series Application: Bus - Shuttle Fuel Type: Hybrid - Diesel Electric Maximum Seating: 45 Power Source(s): Navistar - MaxxForce DT Hybrid System(s): Eaton -...

260

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

T270 hybrid Applications: Tractor, Vocational truck Fuel Type: Hybrid - Diesel Electric Power Source(s): Paccar - PX-6 6.7L Hybrid System(s): Eaton - Diesel Electric Hybrid...

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kenworth - T270 hybrid Kenworth - T370 diesel electric tractor Peterbilt Motors - 337338 Peterbilt Motors - 330 Hybrid Paccar - PX-6 6.7L Fuel Type: Hybrid - Diesel Hydraulic...

262

NREL Engineer Elected to Fuel Cell and Hydrogen Energy ...  

Keith Wipke of the U.S. Department of Energys National Renewable Energy Laboratory was recently elected to the Board of Directors of the Fuel Cell and ...

263

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Transit Connect Application: Van Fuel Types: CNG, Propane Power Source(s): Ford Motor Co. - 2.0L I-4 Additional Description: CNG and propane models are available from contract...

264

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Turtle Top - Van Terra Application: Bus - Shuttle Fuel Types: CNG, Propane Maximum Seating: 15 Power Source(s): Ford Motor Co. - 6.8L V-10 Additional Description: Turtle Top...

265

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ford Motor Co. - E-Series Cargo VanWagon Application: Van Fuel Types: CNG, Propane Power Source(s): Ford Motor Co. - 6.8L V-10 Ford Motor Co. - 5.4L V-8 Additional Description:...

266

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

North American Bus Industries - CompoBus Application: Bus - Transit Fuel Types: CNG, Hybrid - Diesel Electric Maximum Seating: 47 Power Source(s): Cummins Westport - ISL G 8.9L...

267

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Capacity Trucks - TJ5000TJ7000 Application: Tractor Fuel Type: Propane Power Source(s): Ford Motor Co. - 6.8L V-10 General Motors - 8.0L V8...

268

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

DesignLine Corp. - Eco-Smart 1 Application: Bus - Transit Fuel Type: Electricity Maximum Seating: 28 Power Source(s): Bosch Rexroth - Two 120kW induction motors Additional...

269

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

DesignLine Corp. - EcoSaver IV Application: Bus - Transit Fuel Types: Hybrid - CNG Electric, Hybrid - Diesel Electric Maximum Seating: 40 Power Source(s): Capstone Turbine Corp. -...

270

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

StarTrans - Senator Application: Bus - Shuttle Fuel Type: CNG Maximum Seating: 17 Power Source(s): Ford Motor Co. - 6.8L V-10 Ford Motor Co. - 5.4L V-8 Additional Description: May...

271

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

31LFW 35LFW 40LFW Application: Bus - Transit Fuel Types: CNG, Hybrid - Diesel Electric Maximum Seating: 40 Power Source(s): Cummins Westport - ISL G 8.9L Cummins - ISL 8.9L...

272

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Odyssey XL Application: Bus - Shuttle Fuel Types: CNG, Propane Maximum Seating: 41 Power Source(s): Ford Motor Co. - 6.8L V-10 Additional Description: Available as a Ford F-550...

273

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cutaway and Stripped Chassis Application: Vocational truck Fuel Types: CNG, Propane, Ethanol Power Source(s): Ford Motor Co. - 6.8L V-10 Ford Motor Co. - 5.4L V-8 Additional...

274

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Enova Systems - Enova Ze step van Application: Van Fuel Type: Electricity Power Source(s): Enova Systems - 120kW all-electric drive system Additional Description: Built on a...

275

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ebus - EBUS22FC Application: Bus - Shuttle Fuel Types: Hydrogen, Hybrid - Gasoline Electric Maximum Seating: 22 Power Source(s): Capstone Turbine Corp. - C30 (30kW) Micro Turbine...

276

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

LFX Application: Bus - Transit Fuel Type: Hybrid - Diesel Electric Maximum Seating: Varies Power Source(s): Cummins - ISL 8.9L Cummins - ISB 6.7L Hybrid System(s): Allison...

277

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Autocar - E3 Hybrid Application: Refuse hauler Fuel Type: Hybrid - Diesel Electric Power Source(s): Cummins - ISL 8.9L Hybrid System(s): Parker Hannifin Corp. - RunWise...

278

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Thomas Built Buses - Saf-T-Liner HDX CNG Application: Bus - School Fuel Type: CNG Maximum Seating: 90 Power Source(s): Cummins Westport - ISL G 8.9L...

279

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Odyssey Application: Bus - Shuttle Fuel Types: CNG, Propane Maximum Seating: 24 Power Source(s): Ford Motor Co. - 6.8L V-10 Additional Description: Available as Chevrolet G4500 or...

280

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Goshen Coach - GCIIG-Force Application: Bus - Shuttle Fuel Types: CNG, Propane Maximum Seating: 33 Power Source(s): General Motors - 6.0L V-8 Ford Motor Co. - 6.8L V-10 Additional...

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

StarTrans - Senator Ford Motor Co. - E-Series Cutaway and Stripped Chassis Ford Motor Co. - E-Series Cargo VanWagon Ford Motor Co. - 5.4L V-8 Fuel Types: CNG, Propane, Ethanol...

282

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Proterra - EcoRide BE35 Application: Bus - Transit Fuel Type: Electricity Maximum Seating: 35 Power Source(s): UQM - PowerPhase 150kW permanent magnet motor Hybrid System(s):...

283

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Trans Tech - ETrans Application: Bus - School Fuel Type: Electricity Maximum Seating: 52 Power Source(s): Smith Electric Vehicles - 120kW induction motor with lithium-ion...

284

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Balqon - XE-20 Application: Tractor Fuel Type: Electricity Power Source(s): Balqon - 200-hp, 230V, AC induction motor with 215kWh, 312V, lithium-ion batteries...

285

Improving the performance and fuel consumption of dual chamber stratified charge spark ignition engines  

DOE Green Energy (OSTI)

A combined experimental and theoretical investigation of the nature of the combustion processes in a dual chamber stratified charge spark ignition engine is described. This work concentrated on understanding the mixing process in the main chamber gases. A specially constructed single cylinder engine was used to both conduct experiments to study mixing effects and to obtain experimental data for the validation of the computer model which was constructed in the theoretical portion of the study. The test procedures are described. Studies were conducted on the effect of fuel injection timing on performance and emissions using the combination of orifice size and prechamber to main chamber flow rate ratio which gave the best overall compromise between emissions and performance. In general, fuel injection gave slightly higher oxides of nitrogen, but considerably lower hydrocarbon and carbon monoxide emissions than the carbureted form of the engine. Experiments with engine intake port redesign to promote swirl mixing indicated a substantial increase in the power output from the engine and, that an equivalent power levels, the nitric oxide emissions are approximately 30% lower with swirl in the main chamber than without swirl. The development of a computer simulation of the combustion process showed that a one-dimensional combustion model can be used to accurately predict trends in engine operation conditions and nitric oxide emissions even though the actual flame in the engine is not completely one-dimensional, and that a simple model for mixing of the main chamber and prechamber intake gases at the start of compression proved adequate to explain the effects of swirl, ignition timing, overall fuel air ratio, volumetric efficiency, and variations in prechamber air fuel ratio and fuel rate percentage on engine power and nitric oxide emissions. (LCL)

Sorenson, S.C.; Pan, S.S.; Bruckbauer, J.J.; Gehrke, G.R.

1979-09-01T23:59:59.000Z

286

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT Science Arizona Public Service Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing Alternative Fuel Pilot Plant The Arizona Public Service Alternative Fuel Pilot Plant is a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogen/ CNG blends (HCNG). The plant is used daily to fuel vehicles operated in Arizona Public Service's fleet. Hydrogen Subsystem The plant's hydrogen system consists of production, compression, storage, and dispensing. The hydrogen produced is suitable for use in fuel cell-powered vehicles, for which the minimum hydrogen purity goal is 99.999%. Hydrogen is produced using an electrolysis process that separates water into hydrogen and oxygen. At present, the hydrogen is

287

Online learning of a neural fuel control system for gaseous fueled si engines  

Science Conference Proceedings (OSTI)

This dissertation presents a new type of fuel control algorithm for gaseous fuelled vehicles. Gaseous fuels such as hydrogen and natural gas have been shown to be less polluting than liquid fuels such as gasoline, both at the tailpipe and on a total ...

Travis Kent Wiens

2008-01-01T23:59:59.000Z

288

Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing  

SciTech Connect

Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry on the operation of a spark-assisted gasoline HCCI engine. The engine employed is a single cylinder, 500 cc, port fuel injected research engine, operating near lambda = 1.0 and equipped with hydraulic variable valve actuation. HCCI is initiated by early exhaust valve closing to retain exhaust in the cylinder, thereby increasing the cylinder gas temperature. This is also referred to as a 'negative overlap' strategy. A total of 10 custom blended gasolines and three different batches of indolene from two suppliers were run at 5 speed-load combinations and performance was characterized by timing sweeps. Within the quality of the data set, we can say the all fuels provided equivalent combustion and performance characteristics when compared at the same combustion phasing. The fuels did, however, require different degrees of retained exhaust as measured by exhaust valve closing angle to achieve the same combustion phasing. Fuels with higher octane sensitivity were found to ignite more easily or more quickly and to burn more quickly than fuels with lower octane sensitivity. This is an expected result since the engine is naturally aspirated and operates with high compression temperatures due to the high retained exhaust fraction and recompression.

Bunting, Bruce G [ORNL

2006-01-01T23:59:59.000Z

289

Evaluation of dissociated and steam-reformed methanol as automotive engine fuels  

SciTech Connect

Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state are discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H/sub 2/ + CO and 3H/sub 2/ + CO/sub 2/ respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed methanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol. 36 references, 27 figures, 3 tables.

Lalk, T.R.; McCall, D.M.; McCanlies, J.M.

1984-05-01T23:59:59.000Z

290

Estimating the impact on fuel tax revenues from a changing light vehicle fleet with increased advanced internal combustion engine vehicles and electric vehicles.  

E-Print Network (OSTI)

??Advanced fuel economies in both traditional internal combustion engine vehicles (ICEs) and electric vehicles (EVs) have a strong influence on transportation revenue by reducing fuel (more)

Hall, Andrea Lynn

2013-01-01T23:59:59.000Z

291

Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen  

Science Conference Proceedings (OSTI)

Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

None

2010-07-15T23:59:59.000Z

292

Micronized-coal-water slurry sprays from a diesel engine positive displacement fuel injection system  

DOE Green Energy (OSTI)

Experiments have been conducted to characterize the sprays from a modified positive displacement fuel injection system for a diesel engine. Diesel fuel water and three concentrations of micronized-coal-water slurry were used in these experiments. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal slurry fuel from the pump, and a single-hole fuel nozzle. The sprays were injected into a pressurized chamber equipped with windows. High speed movies and still photographs of the sprays were obtained. In addition, instaneous fuel line pressures and needle lifts were obtained. Data were acquired as a function of fluid, nozzle orifice diameter, rack setting and chamber conditions. The high speed movies were used to determine spray penetration and spray growth.

Caton, J.A.; Kihm, K.D.; Seshadri, A.K.; Zicterman, G. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1991-12-31T23:59:59.000Z

293

Software: Reactor Physics and Fuel Cycle Analysis - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis > Analysis > Software Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Software Bookmark and Share An extensive powerful suite of computer codes developed and validated by the NE Division and its predecessor divisions at Argonne supports the development of fast reactors; many of these codes are also applicable to other reactor types. A brief description of these codes follows. Contact

294

Fabrication of small-orifice fuel injectors for diesel engines.  

DOE Green Energy (OSTI)

Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

Woodford, J. B.; Fenske, G. R.

2005-04-08T23:59:59.000Z

295

Innovative coal-fueled diesel engine injector. Final report  

DOE Green Energy (OSTI)

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

296

(Wear mechanism and wear prevention in coal-fueled diesel engines)  

DOE Green Energy (OSTI)

The overall objectives of this program is to develop the engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; definition of the specific effect of each coal-related lube oil contaminant; determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; evaluation of several different engine design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and presentation of the engine/lubricant system and design determined to have the most potential. 2 figs., 3 tabs.

Not Available

1989-09-15T23:59:59.000Z

297

Wear mechanism and wear prevention in coal-fueled diesel engines  

DOE Green Energy (OSTI)

The overall objective of this program is to develop the engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; definition of the specific effect of each coal-related lube oil contaminant; determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; evaluation of several different engine design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and presentation of the engine/lubricant system design determined to have the most potential. 2 figs., 3 tabs.

Not Available

1989-03-20T23:59:59.000Z

298

Wear mechanism and wear prevention in coal-fueled diesel engines  

DOE Green Energy (OSTI)

The overall objective of this program is to develop the diesel engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: Definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; Definition of the specific effect of each coal-related lube oil contaminant; Determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; Evaluation of several different engine design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and Presentation of the engine/lubricant system design determined to have the most potential.

Not Available

1990-06-20T23:59:59.000Z

299

Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991  

DOE Green Energy (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

300

In-cylinder pressure characteristics of a CI engine using blends of diesel fuel and methyl esters of beef tallow  

Science Conference Proceedings (OSTI)

A Cummins N14-410 diesel engine was operated on 12 fuels produced by blending methyl tallowate, methyl soyate, and ethanol with no. 2 diesel fuel. Engine in-cylinder pressure data were used to evaluate engine performance. Peak cylinder pressures for each fuel blend at all engine speeds were lower than peak pressure for diesel fuel with the exception of the 80% diesel, 13% methyl tallowate, and 7% ethanol; and the 80% diesel, 6.5% methyl tallowate, 6.5% methyl soyate and 7% ethanol blends. The indicated mean effective pressure (IMEP) values for all fuel blends were less than for diesel fuel. The differences in IMEP values correlated with differences in power output of the engine. Similarly, maximum rates of pressure rise for most fuel blends were less than for diesel fuel. It was concluded that the fuel blends used in this study would have no detrimental long-term effects on engine performance, wear, and knock. 6 refs., 4 figs., 7 tabs.

Ali, Y.; Hanna, M.A.; Borg, J.E. [Univ. of Nebraska, Lincoln, NE (United States)

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network (OSTI)

In the wake of global warming and fossil fuel depletion, renewed attention has been paid to shifting away from the use of petroleum based fuels. The world?s energy demand is commencing its dependency on alternative fuels. Such alternative fuels in use today consist of bio-alcohols (such as ethanol), hydrogen, biomass, and natural oil/fat derived fuels. However, in this study, the focus will be on the alternative fuel derived from natural oils and fats, namely biodiesel. The following study characterizes the performance of a medium-duty diesel engine fuelled with biodiesel and conventional diesel. The objective is accomplished by taking measurements of manifold pressure and temperature, fuel flow, air flow, and torque. The study first characterizes a John Deere 4.5 liter 4 cylinder direct injection engine with exhaust gas recirculation (EGR), common rail fuel injection, and variable turbo-charging with conventional petroleum diesel to set a reference for comparison. The study then proceeds to characterize the differences in engine performance as a result of using biodiesel relative to conventional diesel. The results show that torque decreases with the use of biodiesel by about 10%. The evaluation of engine performance parameters shows that torque is decreased because of the lower heating value of biodiesel compared to conventional diesel. The insignificant difference between the other performance parameters shows that the ECM demands the same performance of the engine regardless of the fuel being combusted by the engine.

Esquivel, Jason

2008-12-01T23:59:59.000Z

302

An experimental study of fuel injection strategies in CAI gasoline engine  

Science Conference Proceedings (OSTI)

Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuel mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)

Hunicz, J.; Kordos, P. [Department of Combustion Engines and Transport, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

2011-01-15T23:59:59.000Z

303

Upgrading railroad test track, Pueblo, Colorado  

Science Conference Proceedings (OSTI)

The railroad test track (RTT) at the Transportation Technology Center (TTC) in Pueblo, Colo., was constructed in the early 1970s to support high-speed testing of new railroad rolling stock. Through the years it has been used to test a wide range of railroad passenger and freight cars and locomotives. Now, 20 years later, a new high-speed train set is being procured by Amtrak for service in the improved Northeast Corridor. The test facilities at Pueblo will play an important role in acceptance and safety testing of new high-speed train sets in the US. The Federal Railroad Administration (FRA) commissioned a study to review the existing condition of the test track and to make recommendations as to possible improvement options so that the facility would be able to test current and future generations of high-speed rail equipment. This paper describes the condition of the test track and explores ways in which it may be modified to accommodate the testing of high-speed train technologies in the near future and into the next century.

Briggs, K. III; Chamberlain, K. [Parsons Brinckerhoff Quade and Douglas, Inc., Boston, MA (United States)

1997-01-01T23:59:59.000Z

304

A combustion model for IC engine combustion simulations with multi-component fuels  

Science Conference Proceedings (OSTI)

Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

2011-01-15T23:59:59.000Z

305

Wear mechanism and wear prevention in coal-fueled diesel engines  

DOE Green Energy (OSTI)

The overall objective of this program is to develop the engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; definition of the specific effect of each coal-related lube oil contaminant; determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; evaluation of several different design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and presentation of the engine/lubricant system design determined to have the most potential. 2 figs., 3 tabs.

Not Available

1990-02-19T23:59:59.000Z

306

Study of low-temperature-combustion diesel engines as an on-board reformer for intermediate temperature Solid Oxide Fuel Cell vehicles  

E-Print Network (OSTI)

Fuel cells have been recognized as a feasible alternative to current IC engines. A significant technical problem yet to be resolved is the on bound fuel supply before fuel cells can be practically used for vehicles. Use ...

Hahn, Tairin

2006-01-01T23:59:59.000Z

307

Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids  

SciTech Connect

Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

2010-07-12T23:59:59.000Z

308

Advanced turbine design for coal-fueled engines  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

309

Abrasive wear by coal-fueled diesel engine and related particles  

DOE Green Energy (OSTI)

The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1992-09-01T23:59:59.000Z

310

Environmental Statements, Availability, Etc., Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8679 8679 Thursday June 1, 1995 Part III Department of Energy Environmental Statements, Availability, Etc.; Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs: Notice 28680 Federal Register / Vol. 60, No. 105 / Thursday, June 1, 1995 / Notices DEPARTMENT OF ENERGY Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: The Department of Energy has issued a Record of Decision on Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs. The Record of Decision includes a Department-wide decision to

311

Proceedings of the eighth annual coal-fueled heat engines and gas stream cleanup systems contractors review meeting  

SciTech Connect

The goal of the Heat Engines and Gas Stream Cleanup Programs at Morgantown Energy Technology Center is to develop essential technologies so the private sector can commercialize power plants burning coal-derived fuels. The purpose of this annual meeting is to provide a forum for scientists and engineers to present their results, exchange ideas and talk about their plans. Topics discussed were: Heat Engines Commercialization and Proof of Concepts Projects; Components and Testing of Coal-Fueled Gas Turbines; Advances in Barrier Filters; Pulse Combustion/Agglomeration; Advances in Coal-Fueled Diesels; Gas Stream Cleanup; Turbine and Diesel Emissions; and Poster Presentations.

Webb, H.A.; Bedick, R.C.; Geiling, D.W.; Cicero, D.C. (eds.)

1991-07-01T23:59:59.000Z

312

Diesel fuels from shale oil. [Review of selected research  

DOE Green Energy (OSTI)

High-boiling shale oil produced from Rocky Mountain oil shale can be reduced in molecular weight by recycle thermal cracking and by coking. Selected research on the production of diesel fuels from shale oil is reviewed. Diesel fuels of good quality have been made from cracked shale oil by acid and caustic treating. Diesel oil made by this process performed acceptably in an in-service test for powering a railroad engine in a 750-hour test. Better quality diesel fuels were made by hydrogenation of a coker distillate. Even better quality diesel fuels, suitable also for use as high-quality distillate burner fuels, have been made by hydrocracking of a crude shale oil from underground in-situ retorting experiments.

Cottingham, P.L.

1976-01-01T23:59:59.000Z

313

The Fuels and Lubricants Research Division of Southwest Research includes extensive engines, fuels and lubricants research,  

E-Print Network (OSTI)

Caterpillar 1K Lubricant Test This test evaluates the piston deposits, liner wear, and oil consumption and oil consumption. The test is proposed for inclusion in the PC-10 category. Mack T8/T8A/T8E Lubricant of Mack engine oil specification EON+ 03, CI-4+ and will be included in PC-10. Mack T12 Lubricant Test

Chapman, Clark R.

314

Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines  

SciTech Connect

Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGLs) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical LNG like fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

2007-03-01T23:59:59.000Z

315

Fuel property effects on engine combustion processes. Annual report, January 1, 1993--December 31, 1993  

DOE Green Energy (OSTI)

Our engine studies have concentrated on 2 areas of interest to autoignition and emissions from engines. In the first, we investigated the effect of nitric oxide (NO) on the reactivity and autoignition behavior of 87 PRF. In the second study, we continued work on the effects of blending ethers on the reactivity and autoignition of a primary reference fuel blend, 87 PRF, with emphasis placed on the chemical interactions between ethers and the baseline fuel. The effects of nitric oxide (NO) on the reactivity and autoignition behavior of 87 PRF were examined in our research engine under motored conditions at compression ratios of 5.2 and 8.2. The most significant conclusions of our study are: (1) nitric oxide does interact with the hydrocarbon oxidation at conditions typically experienced by the end gas in a fired engine; (2) the effect is complex and, depending on the reaction environment, the same concentration of NO can produce dramatically different results. These results are particularly important given the fact that residual fractions and recycled exhaust gases in spark ignited engines typically result in about 200--600 ppm of NO in the unburned charge. The octane enhancing ethers, MTBE, ETBE, TAME, and DIPE, were blended into 87 PRF at a constant 0 atom fraction of 1.94% in the fuel mixtures and the mixtures were tested under motored conditions at our new compression ratio of 8.2. This new compression ratio allows studies on autoignition behaviors of 87 PRF with and without ethers. The results showed that, when using 87 PRF/ether mixtures, reactivity was significantly reduced as indicated by the higher inlet temperature required to initiate reactivity, significantly lower maximum CO concentration and the significantly higher inlet temperature required for autoignition.

Cernansky, N.P.

1994-01-10T23:59:59.000Z

316

Railroad Commission of Texas | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Logo: Railroad Commission of Texas Name Railroad Commission of Texas Address 1701 N. Congress Place Austin, Texas Zip 78701 Year founded 1891 Phone number (512) 463-7158 Website http://www.rrc.state.tx.us/ Coordinates 30.2790636°, -97.7382267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2790636,"lon":-97.7382267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Microsoft Word - RailroadIsland_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dorie Welch Project Manager - KEWM-4 Proposed Action: Railroad Island Property Funding. Fish and Wildlife Project No.: 2011-003-00, Contract # BPA-006468 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural protection, habitat preservation and wildlife management. Location: Monroe Quadrangle, in Lane County, Oregon (near Junction City, Oregon). Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The BPA is proposing to fund The Mackenzie River Trust (the Trust) to acquire a 63-acre parcel that will be known as Railroad Island. The Trust will provide BPA a conservation easement over the entire 63-acre property that will prevent

318

Reducing cold start hydrocarbon emissions from port fuel injected spark ignition engines with improved management of hardware & controls  

E-Print Network (OSTI)

An experimental study was performed to investigate strategies for reducing cold start hydrocarbon (HC) emissions from port fuel injected (PFI) spark ignition (SI) engines with better use of existing hardware and control ...

Lang, Kevin R., 1980-

2006-01-01T23:59:59.000Z

319

On fuel selection in controlled auto-ignition engines : the link between intake conditions, chemical kinetics, and stratification  

E-Print Network (OSTI)

The objective of this research is to examine the impact fuel selection can have on the high-load limit in a stratified Compression Auto-Ignition (CAI) engine. This was accomplished by first studying the validity of the ...

Maria, Amir Gamal

2012-01-01T23:59:59.000Z

320

Experimental hydrogen-fueled automotive engine design data-base project. Volume 1. Executive summary report  

DOE Green Energy (OSTI)

A preliminary hydrogen-fueled automotive piston engine design data-base now exists as a result of a research project at the University of Miami. The effort, which is overviewed here, encompassed the testing of 19 different configurations of an appropriately-modified, 1.6-liter displacement, light-duty automotive piston engine. The design data base includes engine performance and exhaust emissions over the entire load range, generally at a fixed speed (1800 rpm) and best efficiency spark timing. This range was sometimes limited by intake manifold backfiring and lean-limit restrictions; however, effective measures were demonstrated for obviating these problems. High efficiency, competitive specific power, and low emissions were conclusively demonstrated.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Transportation fuels and engines for optimum energy utilization: An assessment of energy consumption from resources through end use: Final report, Volume 1, August 1985 for the project, Technical assessment of future engines and alternative fuels  

DOE Green Energy (OSTI)

This study was initiated to investigate the potential for improving the resource utilization efficiency in the manufacture and end-use of fuels for transportation. While emphasis is placed on the development of fuels from coal and oil shale and on the engine technologies most suitable for those fuels, petroleum-derived fuels are considered as well. A necessary part of this study was to develop information about the energy efficiency of various steps of fuel processing, both with synthetic fuels and petroleum. The configurations of synthetic fuel processes and petroleum refineries are, of course, seemingly endless in number, so, in order to keep the study at a manageable and affordable scope, only a very limited number of synthetic fuel processes were investigated in detail and only major upgrading process operations were included.

Thomas, R.L.; Cornell, J.J.

1985-08-01T23:59:59.000Z

322

Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load  

Science Conference Proceedings (OSTI)

It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

2012-01-01T23:59:59.000Z

323

Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

2008-01-01T23:59:59.000Z

324

Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets  

Science Conference Proceedings (OSTI)

The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

Bunting, Bruce G [ORNL

2012-10-01T23:59:59.000Z

325

Isotopic Tracing of Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-in-Diesel Blends  

DOE Green Energy (OSTI)

Accelerator Mass Spectrometry (AMS) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuels along with a diesel fuel baseline were investigated. The test fuels were comprised of {sup 14}C depleted diesel fuel mixed with contemporary grain ethanol (>400 the {sup 14}C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMS analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0% ethanol fuels, respectively).

Cheng, A.S.; Dibble, R.W.; Buchholz, B.

1999-11-22T23:59:59.000Z

326

Market Effects of Environmental Regulation: Coal, Railroads and the 1990 Clean Air Act  

E-Print Network (OSTI)

Rate Study: Final Report on Coal Transportation, DOE/EIA-of Environmental Regulation: Coal, Railroads, and the 1990of Environmental Regulation: Coal, Railroads, and the 1990

Busse, Meghan R.; Keohane, Nathaniel O.

2004-01-01T23:59:59.000Z

327

Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines  

DOE Green Energy (OSTI)

The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

2011-01-01T23:59:59.000Z

328

Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993  

DOE Green Energy (OSTI)

The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

1993-09-01T23:59:59.000Z

329

Lower Atlantic (PADD 1C) Distillate Fuel Oil and Kerosene ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 300,889: 274,739: 263,252: 232,429: 230,287: 254,322: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 275,489: ...

330

California Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 309,249: 232,151: 190,082: 225,123: 257,297: 241,967: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 101,932: ...

331

Rocky Mountain (PADD4) Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 262,644: 222,054: 212,571: 228,200: 245,446: 214,160: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 27: 26: 19: ...

332

Kentucky Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 170,042: 94,124: 48,002: 42,101: 67,347: 61,840: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 91,516: 104,387: ...

333

Pennsylvania Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 118,670: 113,851: 90,800: 124,258: 146,291: 140,663: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 25,735: ...

334

Georgia Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 78,927: 69,710: 62,072: 63,770: 71,374: 63,902: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 14,016: 10,831: ...

335

Illinois Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 40,116: 51,287: 55,322: 72,188: 58,526: 63,808: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 71,805: 101,851: ...

336

Ohio Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 333,069: 316,926: 206,134: 179,048: 203,135: 175,258: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 12,122: ...

337

High-pressure coal fuel processor development  

DOE Green Energy (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. (Caterpillar, Inc., Peoria, IL (United States))

1992-12-01T23:59:59.000Z

338

Abrasive wear by diesel engine coal-fuel and related particles  

DOE Green Energy (OSTI)

The purpose of the work summarized in this report was to obtain a basic understanding of the factors which are responsible for wear of the piston ring and cylinder wall surfaces in diesel engines utilizing coal-fuel. The approach included analytical studies using scanning electron microscopy and energy dispersive x-ray analyses to characterize coal-fuel and various combustion particles, and two different wear tests. The wear tests were a modified pin-on-disk test and a block-on-ring test capable of either unidirectional or reciprocating-rotational sliding. The wear tests in general were conducted with mixtures of the particles and lubricating oil. The particles studied included coal-fuel, particles resulting from the combustion of coal fuel, mineral matter extracted during the processing of coal, and several other common abrasive particle types among which quartz was the most extensively examined. The variables studied included those associated with the particles, such as particle type, size, and hardness; variables related to contact conditions and the surrounding environment; and variables related to the type and properties of the test specimen materials.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-09-01T23:59:59.000Z

339

Engineering a 70-percent efficient, indirect-fired fuel-cell bottomed turbine cycle  

SciTech Connect

The authors introduce the natural gas, indirect-fired fuel-cell bottomed turbine cycle (NG-IFFC) as a novel power plant system for the distributed power and on-site markets in the 20 to 200 megawatt (MW) size range. The NG-IFFC system is a new METC-patented system. This power-plant system links the ambient pressure, carbonate fuel cell in tandem with a gas turbine, air compressor, combustor, and ceramic heat exchanger. Performance calculations based on Advanced System for Process Engineering (ASPEN) simulations show material and energy balances with expected power output. Early results indicated efficiencies and heat rates for the NG-IFFC are comparable to conventionally bottomed, carbonate fuel-cell steam-bottomed cycles. More recent calculations extended the in-tandem concept to produce near-stoichiometric usage of the oxygen. This is made possible by reforming the anode stream to completion and using all hydrogen fuel in what will need to be a special combustor. The performance increases dramatically to 70%.

Williams, M.C.; Micheli, P.L.; Parsons, E.L. Jr.

1996-08-01T23:59:59.000Z

340

A coal-water slurry fueled internal combustion engine and method for operating same  

DOE Patents (OSTI)

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, M.H.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coal-water slurry fuel internal combustion engine and method for operating same  

SciTech Connect

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01T23:59:59.000Z

342

Comparative study of heavy-duty engine operation with diesel fuel and ignition-improved methanol  

Science Conference Proceedings (OSTI)

Methanol can be made suitable for compression ignition engines by ignition-improving additives. The ignition improver demand can be minimized by increasing the compression ratio. The technical suitability of this fuel can be regarded as proven, since most of the problems connected with its use have been solved. Its economic viability, however, has still to be doubted. From an environmental point of view, ignition-improved methanol deserves great interest due to the total absence of soot in the exhaust and the considerably reduced NO/sub x/ emission.

Hardenberg, H.O.

1987-01-01T23:59:59.000Z

343

Development of OTM Syngas Process and Testing of Syngas Derived Ulta-clean Fuels in Diesel Engines and Fuel Cells Budget Period 3  

DOE Green Energy (OSTI)

This topical report summarizes work accomplished for the Program from January 1, 2003 through December 31,2004 in the following task areas: Task 1--Materials Development; Task 2--Composite Development; Task 4--Reactor Design and Process Optimization; Task 8--Fuels and Engine Testing; 8.1 International Diesel Engine Program; and Task IO: Program Management. Most of the key technical objectives for this budget period were achieved. Only partial success was achieved relative to cycle testing under pressure Major improvements in material performance and element reliability have been achieved. A breakthrough material system has driven the development of a compact planar reactor design capable of producing either hydrogen or syngas. The planar reactor shows significant advantages in thermal efficiency and costs compared to either steam methane reforming with CO{sub 2} recovery or autothermal reforming. The fuel and engine testing program is complete The single cylinder test engine evaluation of UCTF fuels begun in Budget Period 2 was finished this budget period. In addition, a study to evaluate new fuel formulations for an HCCl engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; Siv Aasland; Kjersti Kleveland; Ann Hooper; Leo Bonnell; John Hemmings; Jack Chen; Bart A. Van Hassel

2004-12-31T23:59:59.000Z

344

Soot and liquid-phase fuel distributions in a newly designed optically accessible D.I. diesel engine  

DOE Green Energy (OSTI)

Two-dimensional (2-D) laser-sheet imaging has been used to examine the soot and liquid-phase fuel distributions in a newly designed, optically accessible, direct-injection Diesel engine of the heavy-duty size class. The design of this engine preserves the intake port geometry and basic dimensions of a Cummins N-series production engine. It also includes several unique features to provide considerable optical access. Liquid-phase fuel and soot distribution studies were conducted at a medium speed (1,200 rpm) using a Cummins closed-nozzle fuel injector. The scattering was used to obtain planar images of the liquid-phase fuel distribution. These images show that the leading edge of the liquid-phase portion of the fuel jet reaches a maximum length of 24 mm, which is about half the combustion bowl radius for this engine. Beyond this point virtually all the fuel has vaporized. Soot distribution measurements were made at a high load condition using three imaging diagnostics: natural flame luminosity, 2-D laser-induced incandescence, and 2-D elastic scattering. This investigation showed that the soot distribution in the combusting fuel jet develops through three stages. First, just after the onset of luminous combustion, soot particles are small and nearly uniformly distributed throughout the luminous region of the fuel jet. Second, after about 2 crank angle degrees a pattern develops of a higher soot concentration of larger sized particles in the head vortex region of the jet and a lower soot concentration of smaller sized particles upstream toward the injector. Third, after fuel injection ends, both the soot concentration and soot particle size increase rapidly in the upstream portion of the fuel jet.

Dec, J.E. [Sandia National Labs., Livermore, CA (United States); Espey, C. [Pennsylvania State Univ., University Park, PA (United States)

1993-10-01T23:59:59.000Z

345

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Railroad Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Railroad Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.434,"lon":-115.529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Effects of engine speed, fueling rate, and combustion phasing on the thermal stratification required to limit HCCI knocking intensity.  

DOE Green Energy (OSTI)

Thermal stratification has the potential to reduce pressure-rise rates and allow increased power output for HCCI engines. This paper systematically examines how the amount of thermal stratification of the core of the charge has to be adjusted to avoid excessive knock as the engine speed and fueling rate are increased. This is accomplished by a combination of multi-zone chemical-kinetics modeling and engine experiments, using iso-octane as the fuel. The experiments show that, for a low-residual engine configuration, the pressure traces are self-similar during changes to the engine speed when CA50 is maintained by adjusting the intake temperature. Consequently, the absolute pressure-rise rate measured as bar/ms increases proportionally with the engine speed. As a result, the knocking (ringing) intensity increases drastically with engine speed, unless counteracted by some means. This paper describes how adjustments of the thermal width of the in-cylinder charge can be used to limit the ringing intensity to 5 MW/m2 as both engine speed and fueling are increased. If the thermal width can be tailored without constraints, this enables smooth operation even for combinations of high speed, high load, and combustion phasing close to TDC. Since large alterations of the thermal width of the charge are not always possible, combustion retard is considered to reduce the requirement on the thermal stratification. The results show that combustion retard carries significant potential since it amplifies the benefit of a fixed thermal width. Therefore, the thermal stratification required for operation with an acceptable knocking intensity can be decreased substantially by the use of combustion retard. This enables combinations of high engine speed and high fueling rate even for operation with the naturally occurring thermal stratification. However, very precise control of the combustion phasing will likely be required for such operation.

Sjoberg, Magnus; Dec, John E.

2004-12-01T23:59:59.000Z

347

Experimental evaluation of oxygen-enriched air and emulsified fuels in a single-cylinder diesel engine  

DOE Green Energy (OSTI)

The performance of a single-cylinder, direct-injection diesel engine was measured with intake oxygen levels of up to 35% and fuel water contents of up to 20%. Because a previous study indicated that the use of a less-expensive fuel would be more economical, two series of tests with No. 4 diesel fuel and No. 2 diesel fuel were conducted. To control the emissions of nitrogen oxides (NO{sub x}), water was introduced into the combustion process in the form of water-emulsified fuel, or the fuel injection timing was retarded. In the first series of tests, compressed oxygen was used; in the second series of tests, a hollow-tube membrane was used. Steady-state engine performance and emissions data were obtained. Test results indicated a large increase in engine power density, a slight improvement in thermal efficiency, and significant reductions in smoke and particulate-matter emissions. Although NO{sub x} emissions increased, they could be controlled by introducing water and retarding the injection timing. The results further indicated that thermal efficiency is slightly increased when moderately water-emulsified fuels are used, because a greater portion of the fuel energy is released earlier in the combustion process. Oxygen-enriched air reduced the ignition delay and caused the heat-release rate and cumulative heat-release rates to change measurably. Even at higher oxygen levels, NO{sub x} emissions decreased rapidly when the timing was retarded, and the amount of smoke and the level of particulate-matter emissions did not significantly increase. The single-cylinder engine tests confirmed the results of an earlier technical assessment and further indicated a need for a low-pressure-drop membrane specifically designed for oxygen enrichment. Extension data set indexed separately. 14 refs.

Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J.

1991-11-01T23:59:59.000Z

348

Railroad Consolidation and Market Power: Challenges to a Deregulating Electric Utility Industry  

Science Conference Proceedings (OSTI)

The railroad industry is shrinking into a handful of mega-carriers, a development of great importance to the electric utility industry, which depends on railroads for most shipments of coal. As the electric utilities face deregulation, the impact of railroad market power on the delivered price of coal is a critical competitive issue. This report examines the motivations for railroad consolidation and assesses the likely business strategies of the five major coal hauling railroads.

1997-03-08T23:59:59.000Z

349

Engineering-economic analyses of automotive fuel economy potential in the United States  

SciTech Connect

Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

Greene, D.L.; DeCicco, J.

2000-02-01T23:59:59.000Z

350

DEVELOPMENT OF OTM SYNGAS PROCESS AND TESTING OF SYNGAS-DERIVED ULTRA-CLEAN FUELS IN DIESEL ENGINES AND FUEL CELLS  

DOE Green Energy (OSTI)

This topical report summarizes work accomplished for the Program from January 1 through September 15, 2001 in the following task areas: Task 1--materials development; Task 2--composite element development; Task 3--tube fabrication; Task 4--reactor design and process optimization; Task 5--catalyst development; Task 6--P-1 operation; Task 8--fuels and engine testing; and Task 10--project management. OTM benchmark material, LCM1, exceeds the commercial oxygen flux target and was determined to be sufficiently robust to carry on process development activities. Work will continue on second-generation OTM materials that will satisfy commercial life targets. Three fabrication techniques for composite elements were determined to be technically feasible. These techniques will be studied and a lead manufacturing process for both small and large-scale elements will be selected in the next Budget Period. Experiments in six P-0 reactors, the long tube tester (LTT) and the P-1 pilot plant were conducted. Significant progress in process optimization was made through both the experimental program and modeling studies of alternate reactor designs and process configurations. Three tailored catalyst candidates for use in OTM process reactors were identified. Fuels for the International diesel engine and Nuvera fuel cell tests were ordered and delivered. Fuels testing and engine development work is now underway.

E.T. (Skip) Robinson; James P. Meagher; Ravi Prasad

2001-10-31T23:59:59.000Z

351

Historic Railroad Building Goes Net Zero | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero July 29, 2010 - 5:16pm Addthis Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Lindsay Gsell What are the key facts? Former electric railroad barn uses less energy than it generates. Historic building has solar and geothermal energy systems. Construction company receiving federal and state tax credits. Dovetail Construction Company saw a unique challenge - and opportunity - with a neglected 1880s-era Richmond and Chesapeake Bay Railway Car Barn.

352

Historic Railroad Building Goes Net Zero | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero July 29, 2010 - 5:16pm Addthis Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Lindsay Gsell What are the key facts? Former electric railroad barn uses less energy than it generates. Historic building has solar and geothermal energy systems. Construction company receiving federal and state tax credits. Dovetail Construction Company saw a unique challenge - and opportunity - with a neglected 1880s-era Richmond and Chesapeake Bay Railway Car Barn.

353

Coal-fueled diesel locomotive test  

DOE Green Energy (OSTI)

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

1993-01-01T23:59:59.000Z

354

The Biodiesel Handbook, 2nd EditionChapter 3 The Basics of Diesel Engines and Diesel Fuels  

Science Conference Proceedings (OSTI)

The Biodiesel Handbook, 2nd Edition Chapter 3 The Basics of Diesel Engines and Diesel Fuels Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters AOCS 14987AFD8C4C7FBFCBA3FD4D98DB9DC5 Press ...

355

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network (OSTI)

the compression stroke. The residues calculated from the proposed model were validated with those generated from to detect the fuel ethanol concentration by placing them in the tank or in the fuel line. However by means of the closed-loop air/fuel ratio correction signal based on the Exhaust Gas Oxygen (EGO) sensor

Stefanopoulou, Anna

356

Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)  

SciTech Connect

Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

Chad Smutzer

2006-01-01T23:59:59.000Z

357

High Ethanol Fuel Endurance: A Study of the Effects of Running Gasoline with 15% Ethanol Concentration in Current Production Outboard Four-Stroke Engines and Conventional Two-Stroke Outboard Marine Engines  

DOE Green Energy (OSTI)

Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deterioration that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.

Hilbert, D.

2011-10-01T23:59:59.000Z

358

Gulf Coast (PADD 3) Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 699,882: 631,796: 542,036: 573,037: 694,053: 729,109: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 613,864: ...

359

New York Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 63,226: 44,510: 35,307: 33,709: 42,254: 35,237: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 12,339: 10,814: ...

360

Florida Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 71,962: 55,219: 35,537: 41,430: 47,283: 61,059: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 140,493: 153,438: ...

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

West Virginia Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 15,766: 15,416: 10,143: 11,650: 12,711: 10,456: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 45,429: 28,568: 99: ...

362

Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends  

Science Conference Proceedings (OSTI)

Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

Kirby S. Chapman; Amar Patil

2007-06-30T23:59:59.000Z

363

Lower railroad energy consumption reflects improved efficiency ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, biomass and ethanol.

364

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01T23:59:59.000Z

365

High-pressure coal fuel processor development. Final report  

DOE Green Energy (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. [Caterpillar, Inc., Peoria, IL (United States)

1992-12-01T23:59:59.000Z

366

Engines - Spark Ignition Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Ignition Engines Spark Ignition Engines Thomas Wallner and omni engine Thomas Wallner and the omnivorous engine Background Today the United States import more than 60% of its crude oil and petroleum products. Transportation accounts for a major portion of these imports. Research in this field is focused on reducing the dependency on foreign oil by increasing the engine efficiency on the one hand and blending gasoline with renewable domestic fuels, such as ethanol, on the other. Argonne's Research The main focus of research is on evaluation of advanced combustion concepts and effects of fuel properties on engine efficiency, performance and emissions. The platforms used are a single-cylinder research engine as well as an automotive-size four-cylinder engine with direct fuel injection.

367

Dual Fuel Conversion System for Diesel Engines: Inventions and Innovation Project Fact Sheet  

DOE Green Energy (OSTI)

Project fact sheet written for the Inventions and Innovation Program about a new dual fuel conversion system allows diesel fuel switching with clean burning natural gas.

Wogsland, J.

2001-01-25T23:59:59.000Z

368

A cost-effective and fuel-conserving nonelectric air conditioner that combines engine-driven compression and absorption cycles  

SciTech Connect

A natural-gas-fueled electricity-producing condensing furnace with the potential of being mass produced at a cost of less than $1000 and providing a cost-effective and highly fuel-conserving alternative to virtually every residential gas furnace in the world has been developed. While this is a new system, it completely consists of existing mass-produced components including single-cylinder air-cooled engines, induction motors/generators, and control devices. Thus, timely commercialization can be expected and an important new energy technology and industry can result. However, all the benefits of this electricity-producing furnace occur during the winter. This has stimulated the search for a new system that can provide comparable benefits in terms of fuel conservation, the environment, and electric utility peak reduction during the summer, along with the prospects of a new and efficient new use for the natural gas surpluses that occur during the summer. The resulting system, which can use existing component equipment, is a commercial-size nonelectric air conditioner that consists of an automobile-type engine converted to natural gas, or possibly a diesel or combustion turbine, driving a Freon compression cycle, with virtually all of the engine reject heat from the exhaust and from the engine cooling system driving a conventional absorption air conditioning cycle.

Wicks, F.

1988-01-01T23:59:59.000Z

369

Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine  

Science Conference Proceedings (OSTI)

The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

West, B.; Green, J.B. [Oak Ridge National Lab., TN (United States)

1994-07-01T23:59:59.000Z

370

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Engineering1354608000000EngineeringSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Engineering Some of these resources are LANL-only and will require Remote Access. Key Resources Reference Standards Data Sources Organizations Journals Key Resources Engineering Village Includes Engineering Index (Ei) and Compendex Knovel Handbooks, databases, and eBooks integrated with analytical and search tools IEEE Xplore Full text access to technical literature, standards, and conference proceedings in engineering and technology SPIE Digital Library Full-text papers from SPIE journals and proceedings published since 1998; subject coverage includes optics, photonics, electronic imaging, visual information processing, biomedical optics, lasers, and

371

Connecticut Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 314,674: 301,591: 272,255: 271,852: 274,578: 274,507: 1984-2012: ...

372

South Carolina Adjusted Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 751,994: 695,077: 654,296: 726,647: 725,148: 655,638: 1984-2012: ...

373

Maryland Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 606,247: 548,583: 540,590: 579,203: 540,843: 531,683: 1984-2012: ...

374

Nebraska Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 446,825: 433,745: 461,938: 639,618: 603,268: 584,362: 1984-2012: ...

375

Massachusetts Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 487,861: 463,886: 443,620: 445,626: 460,154: 444,532: 1984-2012: ...

376

Michigan Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 970,806: 891,487: 819,086: 864,049: 854,644: 877,692: 1984-2012: ...

377

Minnesota Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 804,699: 761,187: 633,806: 665,652: 704,971: 746,974: 1984-2012: ...

378

District of Columbia Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 10,721: 15,894: 11,949: 13,216: 15,149: 15,321: 1984-2012: Residual ...

379

Minnesota Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 817,786: 767,218: 640,572: 678,530: 713,572: 763,303: 1984-2012: ...

380

New Jersey Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 1,088,505: 978,515: 760,035: 831,955: 952,930: 837,191: 1984-2012: ...

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wisconsin Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 788,665: 798,348: 703,583: 738,953: 719,417: 780,145: 1984-2012: ...

382

Connecticut Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 314,309: 300,255: 272,598: 271,767: 274,640: 273,827: 1984-2012: ...

383

Kansas Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 581,898: 610,088: 588,362: 554,334: 548,183: 573,992: 1984-2012: ...

384

Michigan Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 964,966: 888,432: 814,460: 855,592: 850,681: 871,756: 1984-2012: ...

385

Delaware Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 68,223: 61,302: 57,382: 56,676: 57,720: 57,230: 1984-2012: Residual ...

386

Nebraska Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 448,098: 435,444: 472,303: 689,579: 627,110: 613,232: 1984-2012: ...

387

Utah Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 525,714: 470,714: 420,706: 426,584: 508,266: 486,456: 1984-2012: ...

388

Technology assessment of alternative transportation fuels. Annual report  

DOE Green Energy (OSTI)

A brief summary is presented of major accomplishments in a research program on the impact of synthetic fuels, electric vehicles, and railroad electification on energy consumption by the US transportation sector. (LCL)

Not Available

1978-01-13T23:59:59.000Z

389

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrodynamics Bioscience, Biosecurity, Health Chemical Science Earth, Space Sciences Energy Engineering High Energy Density Plasmas, Fluids Information Science, Computing,...

390

Lower railroad energy consumption reflects improved efficiency ...  

U.S. Energy Information Administration (EIA)

Electricity. Sales, revenue and prices, power plants, fuel use, stocks, generation, ... Tonnage moved in 2012 was significantly lower than the 2006 ...

391

Controlling fuel and diluent gas flow for a diesel engine operating in the fuel rich low-temperature-combustion mode  

E-Print Network (OSTI)

The flow of a diluent gas supplied to a motoring engine was controlled at a diluent to air mass flow ratios of 10%, 30%, 50%, and 70%. This arrangement was a significant set up for running the engine in the Low-Temperature ...

Lopez, David M

2007-01-01T23:59:59.000Z

392

Shockwave Engine: Wave Disk Engine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engines pistons to pump and powers the car. MSUs engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engines rotors causing them to turn, which generates electricity. MSUs redesigned engine would be the size of a cooking pot and contain fewer moving partsreducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

None

2010-01-14T23:59:59.000Z

393

Assessing the level of service for shipments originating or terminating on short line railroads  

E-Print Network (OSTI)

This thesis measures railroad freight trip time and trip time reliability for freight rail shipments involving short lines in 2006. It is based on an underlying MIT study commissioned by members of the short line railroading ...

Alpert, Steven M

2007-01-01T23:59:59.000Z

394

Effect of directed port air flow on liquid fuel transport in a port fuel injected spark ignition engine  

E-Print Network (OSTI)

With highly efficient modem catalysts, startup HC emissions have become a significant portion of the trip total. Liquid fuel is a major source of HC emissions during the cold start and fast idle period. Thus the control ...

Scaringe, Robert J. (Robert Joseph)

2007-01-01T23:59:59.000Z

395

Railroad Commission of Texas, Oil and Gas Division | Open Energy  

Open Energy Info (EERE)

Railroad Commission of Texas, Oil and Gas Division Railroad Commission of Texas, Oil and Gas Division Jump to: navigation, search State Texas Name Texas Railroad Commission, Oil and Gas Division Address 1701 N. Congress City, State Austin, Texas Zip 78711-2967 Website http://www.rrc.state.tx.us/dat Coordinates 30.2759689°, -97.7359951° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2759689,"lon":-97.7359951,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

The Nevada railroad system: Physical, operational, and accident characteristics  

Science Conference Proceedings (OSTI)

This report provides a description of the operational and physical characteristics of the Nevada railroad system. To understand the dynamics of the rail system, one must consider the system`s physical characteristics, routing, uses, interactions with other systems, and unique operational characteristics, if any. This report is presented in two parts. The first part is a narrative description of all mainlines and major branchlines of the Nevada railroad system. Each Nevada rail route is described, including the route`s physical characteristics, traffic type and volume, track conditions, and history. The second part of this study provides a more detailed analysis of Nevada railroad accident characteristics than was presented in the Preliminary Nevada Transportation Accident Characterization Study (DOE, 1990).

NONE

1991-09-01T23:59:59.000Z

397

ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS  

SciTech Connect

Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program ?Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications,? (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R&D, Golden, Colorado by Entech Global for process evaluation tests. The tests successfully demonstrated the capability of advanced column flotation as well as selective agglomeration to produce ultra-clean coal at specified levels of purity and recovery efficiency. Test results and the experience gained during the operation of the PDU have provided valuable insights into the processes studied. Based on the design data obtained from the test work and a set of project design criteria, two sets of conceptual designs for commercial CWF production plants have been developed, one using column flotation and the other using selective agglomeration process. Using these designs, Capital as well as Operating and Maintenance (O&M) cost estimates for the plants have been compiled. These estimates have then been used to derive the annualized cost of production of premium CWF on a commercial scale. Further, a series of sensitivity analysis have been completed to evaluate the effects of variations in selected cost components and process parameters on the overall economics of premium fuel production

NONE

1997-06-01T23:59:59.000Z

398

Audit of the Use of Hanford Site Railroad System, WR-B-97-04...  

NLE Websites -- All DOE Office Websites (Extended Search)

Railroad System, WR-B-97-04 Audit of the Use of Hanford Site Railroad System, WR-B-97-04 Audit of the Use of Hanford Site Railroad System, WR-B-97-04 More Documents & Publications...

399

Argonne TDC: Engineering Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

400

Characteristics of Emitted Carbonyl Compounds by using Biodiesel fuel with constant H2/O2 in a Heavy-Duty Diesel Engine.  

E-Print Network (OSTI)

??The emission tests were conducted under steady-state cycle condition in a heavy-duty diesel engine using 0% to 30% ratios of biodiesel fuel with constant H2/O2 (more)

Shih, Jia-Yu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Railroad accident report: Head-on collision between Iowa Interstate Railroad Extra 470 West and Extra 406 East with release of hazardous materials near Altoona, Iowa, on July 30, 1988. Irregular report  

SciTech Connect

About 11:40 a.m. central daylight saving time on July 30, 1988, Iowa Interstate Railroad Ltd. (IAIS) freight trains Extra 470 West and Extra 406 East collided head on within the yard limits of Altoona, Iowa, about 10 miles east of Des Moines, Iowa. All 5 locomotive units from both trains; 11 cars of Extra 406 East; and 3 cars, including two tank cars containing denatured alcohol, of Extra 470 West derailed. The denatured alcohol, which was released through the pressure relief valves and the manway domes of the two derailed tank cars, was ignited by the fire resulting from the collision of the locomotives. Both crew members of Extra 470 West were fatally injured; the two crew members of Extra 406 East were only slightly injured. The estimated damage (including lading) as a result of this accident exceeded $1 million. The major safety issues in the accident include operational methods employed by the IAIS, training and selection of train and engine personnel, supervisory oversight by the IAIS, design of closure fittings on hazardous materials rail tanks, and oversight of regional railroads by the Federal Railroad Administration.

Not Available

1989-07-06T23:59:59.000Z

402

Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME  

DOE Green Energy (OSTI)

The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: (1) Substantially lower intake temperature needed for stable HCCI combustion; (2) Inconclusive impact on engine BMEP and power produced; (3) Small reduction in the thermal efficiency of the engine; (4) Moderate reduction in the unburned hydrocarbons in the exhaust; (5) Slight increase in NOx emissions in the exhaust; (6) Slight reduction in CO2 in the exhaust; and (7) Increased knocking at rich stoichiometry. The major accomplishments and findings from the project can be summarized as follows: (1) A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. (2) A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen. (3) The benefits of using hydrogen to extend, up to a limit, the stable operating window for HCCI combustion of natural gas at higher intake pressures, leaner air to fuel ratios or lower inlet temperatures was documented.

John Pratapas; Daniel Mather; Anton Kozlovsky

2007-03-31T23:59:59.000Z

403

A systems engineering methodology for fuel efficiency and its application to a tactical wheeled vehicle demonstrator  

E-Print Network (OSTI)

The U.S. Department of Defense faces growing fuel demand, resulting in increasing costs and compromised operational capability. In response to this issue, the Fuel Efficient Ground Vehicle Demonstrator (FED) program was ...

Luskin, Paul (Paul L.)

2010-01-01T23:59:59.000Z

404

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels  

E-Print Network (OSTI)

biomass to fuels will involve the development of dedicated energy plants that maximize solar energy conversion to chemical

Kuk Lee, Sung

2010-01-01T23:59:59.000Z

405

Optimal Railroad Rail Grinding for Fatigue Mitigation  

E-Print Network (OSTI)

This dissertation aims to study the benefit of rail grinding on service life of railroad rails, focusing on failures due to rolling contact fatigue (RCF) at the rail head. Assuming a tangent rail with one-point contact at the running surface, a finite element analysis of a full-scale wheel-rail rolling contact with a nonlinear isotropic kinematic hardening material model is performed to simulate the accumulation of residual stresses and strains in the rail head. Using rolling stress and strain results from the sixth loading cycle, in which residual stresses and strains are at their steady-state, as input, two critical plane fatigue criteria are proposed for fatigue analyses. The first fatigue criterion is the stress-based approachnamely the Findley fatigue criterion. It suggests an important role of tensile residual stresses on subsurface crack nucleation and early growth in the rail head, but applications of the criterion to the near-running-surface region are limited because of plastic deformation from wheel-rail contact. The second fatigue criterion is the strain-based approachnamely the Fatemi-Socie fatigue criterion. Contributed mainly from shear strain amplitudes and factorized by normal stress components, the criterion also predicts fatigue crack nucleation at the subsurface as a possible failure mode as well as fatigue crack nucleation at the near-surface, while maintaining its validity in both regions. A collection of fatigue test data of various types of rail steel from literature is analyzed to determine a relationship between fatigue damages and number of cycles to failure. Considering a set of wheel loads with their corresponding number of rolling passage as a loading unit (LU), optimizations of grinding schedules with genetic algorithm (GA) show that fatigue life of rail increases by varying amount when compared against that from the no-grinding case. Results show that the proposed grinding schedules, optimized with the exploratory and local-search genetic algorithms, can increase fatigue life of rail by 240 percent. The optimization framework is designed to be able to determine a set of optimal grinding schedules for different types of rail steel and different contact configurations, i.e. two-point contact occurred when cornering.

Tangtragulwong, Potchara

2010-12-01T23:59:59.000Z

406

Wear mechanism and wear prevention in coal-fueled diesel engines  

DOE Green Energy (OSTI)

Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

Schwalb, J.A.

1991-06-01T23:59:59.000Z

407

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck  

DOE Green Energy (OSTI)

A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

2005-11-01T23:59:59.000Z

408

Railroad transportation of nuclear waste and other Hazardous materials  

Science Conference Proceedings (OSTI)

Railroads continue to have duties to shippers and the public, and they may not take the law into their own hands. Except for emergencies - and then only for the duration of the emergency - they must carry all commodities without regard to whether they are dangerous, unless the proper agency of the federal government has relieved them of that obligation. (author)

McBride, Michael F.

2008-04-15T23:59:59.000Z

409

Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex  

SciTech Connect

Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

Susan Stacy; Julie Braun

2006-12-01T23:59:59.000Z

410

Engineering analysis of low enriched uranium fuel using improved zirconium hydride cross sections  

E-Print Network (OSTI)

A neutronic and thermal hydraulic analysis of the 1-MW TRIGA research reactor at the Texas A&M University Nuclear Science Center using a new low enriched uranium fuel (named 30/20 fuel) was completed. This analysis provides safety assessment for the change out of the existing high enriched uranium fuel to this high-burnup, low enriched uranium fuel design. The codes MCNP and Monteburns were utilized for the neutronic analysis while the code PARET was used to determine fuel and cladding temperatures. All of these simulations used improved zirconium hydride cross sections that were provided by Dr. Ayman Hawari at North Carolina State University. The neutronic and thermal analysis showed that the reactor will operate with approximately the same fuel lifetime as the current high enriched uranium fuel and stay within the thermal and safety limits for the facility. It was also determined that the control rod worths and the temperature coefficient of reactivity would provide sufficient negative reactivity to control the reactor during the fuelâ??s complete lifetime. An assessment of the fuelâ??s viability for use with the Advanced Fuel Cycle Initiativeâ??s Reactor Accelerator Coupling Experiments program was also performed. The objective of this study was to confirm the continued viability of these experiments with the reactor operating using this new fuel. For these experiments, the accelerator driven system must produce fission heating in excess of 1 kW when driven by a 20 kW accelerator system. This criterion was met using the new fuel. Therefore the change out of the fuel will not affect the viability of these experiments.

Candalino, Robert Wilcox

2006-08-01T23:59:59.000Z

411

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Lawrence Livermore National Laboratory Home Technologies Core Competencies Showcase Careers Partnerships About Advanced Manufacturing Developing high-performance materials, devices, components, and assemblies enabled by innovative design tools and novel manufacturing techniques Learn more Applied Electromagnetics Supporting the development of electromagnetic systems that are pervasive and paramount to the greater National Security community. Learn more Data Sciences Enabling better decisions through the development and application of state-of-the-art techniques in machine learning, statistics, and decision sciences Learn more Precision Engineering Embracing determinism to guide rigorous design, construction, and metrology of mechatronic systems, instruments, and manufactured components

412

Amtrak fuel consumption study  

Science Conference Proceedings (OSTI)

This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC). A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations.

Hitz, J.

1981-02-01T23:59:59.000Z

413

Use of LIF image acquisition and analysis in developing a calibrated technique for in-cylinder investigation of the spatial distribution of air-to-fuel mixing in direct injection gasoline engines  

Science Conference Proceedings (OSTI)

This paper presents the role of image acquisition and analysis in the development of a new strategy for the calibration of measurements of fuel distribution in gasoline direct injection engines. Images are acquired from a motored experimental engine ... Keywords: LIF, air-to-fuel mixing, gasoline direct injection engine, image analysis, intensified image acquisition, laser-induced fluorescence

Guillaume de Sercey; Graeme Awcock; Morgan Heikal

2005-12-01T23:59:59.000Z

414

Use of LIF image acquisition and analysis in developing a calibrated technique for in-cylinder investigation of the spatial distribution of air-to-fuel mixing in direct injection gasoline engines  

Science Conference Proceedings (OSTI)

This paper presents the role of image acquisition and analysis in the development of a new strategy for the calibration of measurements of fuel distribution in gasoline direct injection engines. Images are acquired from a motored experimental engine ... Keywords: Air-to-fuel mixing, Gasoline direct injection engine, Image analysis, Intensified image acquisition, LIF, Laser-induced fluorescence

Guillaume de Sercey; Graeme Awcock; Morgan Heikal

2005-12-01T23:59:59.000Z

415

Vehicle fuel economy benefit and aftertreatment requirement of an HCCI-SI engine system.  

E-Print Network (OSTI)

??This body of work dimensions the HCCI fuel economy benefits and required aftertreatment performance for compliance with emissions regulations in North America and Europe. The (more)

Hardy, AliciA Jillian Jackson, 1978-

2007-01-01T23:59:59.000Z

416

Appendix F Item 237-4: Handbook 130, Engine Fuels and ...  

Science Conference Proceedings (OSTI)

... at 2. 75 The "aggressive ethanol" used in the study contained impurities found in fuel grade ethanol including sulfuric acid, acetic acid, water, and ...

2011-12-13T23:59:59.000Z

417

An artificial neural network system for diagnosing gas turbine engine fuel faults  

DOE Green Energy (OSTI)

The US Army Ordnance Center & School and Pacific Northwest Laboratories are developing a turbine engine diagnostic system for the M1A1 Abrams tank. This system employs Artificial Neural Network (AN) technology to perform diagnosis and prognosis of the tank`s AGT-1500 gas turbine engine. This paper describes the design and prototype development of the ANN component of the diagnostic system, which we refer to as ``TEDANN`` for Turbine Engine Diagnostic Artificial Neural Networks.

Illi, O.J. Jr. [Army Ordnance Center and School, Aberdeen Proving Ground, MD (United States). Knowledge Engineering Group (KEG); Greitzer, F.L.; Kangas, L.J. [Pacific Northwest Lab., Richland, WA (United States); Reeve, T. [Expert Solutions, Stratford, CT (United States)

1994-04-01T23:59:59.000Z

418

Develop the dual fuel conversion system for high output, medium speed diesel engines. Final report  

DOE Green Energy (OSTI)

The original plan for the project involved design modifications to an existing system to enhance its performance and increase the limit of power that was achieved by the original design and to apply the higher performance product to the full sized engine and test its performance. The new system would also be applied to a different engine model. The specific work would include the redesign of gas injectors, piston configurations and two types of igniters, engine instrumentation, monitoring and testing.

NONE

1998-07-16T23:59:59.000Z

419

Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects  

DOE Green Energy (OSTI)

A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

2001-03-12T23:59:59.000Z

420

Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels  

SciTech Connect

The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high?fidelity models that served as the basis for the reduced order models used for internal state estimation. The high?fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high?fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

2013-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

NONE

2000-01-01T23:59:59.000Z

422

Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

NONE

1998-07-01T23:59:59.000Z

423

Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

NONE

1998-05-01T23:59:59.000Z

424

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through January 2000.

NONE

2000-02-01T23:59:59.000Z

425

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through October 1999.

NONE

1999-11-01T23:59:59.000Z

426

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

NONE

1999-12-01T23:59:59.000Z

427

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through February 1999.

NONE

1999-03-01T23:59:59.000Z

428

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through September 1999.

NONE

1999-10-01T23:59:59.000Z

429

Mercury retorting of calcine waste, contaminated soils and railroad ballast at the Idaho National Egineering Laboratory  

SciTech Connect

The Idaho National Engineering Laboratory (INEL) has been involved in nuclear reactor research and development for over 40 years. One of the earliest major projects involved the development of a nuclear powered aircraft engine, a long-term venture which used mercury as a shielding medium. Over the course of several years, a significant amount of mercury was spilled along the railroad tracks where the test engines were transported and stored. In addition, experiments with volume reduction of waste through a calcine process employing mercury as a catalyst resulted in mercury contaminated calcine waste. Both the calcine and Test Area North wastes have been identified in Department of Energy Action Memorandums to be retorted, thereby separating the mercury from the various contaminated media. Lockheed Idaho Technologies Company awarded the Mercury Retort contract to ETAS Corporation and assigned Parsons Engineering Science, Inc. to manage the treatment field activities. The mercury retort process entails a mobile unit which consists of four trailer-mounted subsystems requiring electricity, propane, and a water supply. This mobile system demonstrates an effective strategy for retorting waste and generating minimal secondary waste.

Cotten, G.B.; Rothermel, J.S. [Parsons Engineering Science, Inc., Houston, TX (United States); Sherwood, J. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Heath, S.A.; Lo, T.Y.R. [ETAS Corporation (United States)

1996-02-28T23:59:59.000Z

430

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management  

SciTech Connect

This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

1994-06-01T23:59:59.000Z

431

Evaluation of Performance and Emission Characteristics of Turmuric Leaves Based Fuel on 4 Stroke SI Engine  

Science Conference Proceedings (OSTI)

This paper describes an experimental study concerning the feasibility of using bio-oil namely turmeric leaves based oil obtained from the resin of turmeric plants. The emission and performance characteristics of a 4-stroke spark ignited engine were studied ... Keywords: turmeric leaves oil, biofuel, 4stroke engine

Sachin I. Meshram; M. S. Deshmukh

2010-11-01T23:59:59.000Z

432

Control of HCCI engine fueled with gasoline with electro-hydraulic variable valve system  

Science Conference Proceedings (OSTI)

The homogeneous charge compression ignition-HCCI (also to be known as controlled auto ignition-CAI) engine concept has the potential to be highly efficient and to produce low NOx emissions whilst conventional engine suffered from consumption and emission ... Keywords: HCCI, gasoline, trapped residual gas

Gao Fengjun; Guo Yingnan; Liu Fafa; Li Hua; Ji Honggang; Tan Manzhi

2010-03-01T23:59:59.000Z

433

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

DOE Green Energy (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL; Curran, Scott [ORNL; Prikhodko, Vitaly Y [ORNL; Sluder, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

434

Administrative Law Judge Opinions on Locomotive Engineers issued by the  

NLE Websites -- All DOE Office Websites (Extended Search)

Administrative Law Judge Opinions on Locomotive Engineers issued by the Administrative Law Judge Opinions on Locomotive Engineers issued by the Federal Railroad Administration Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data Administrative Law Judge Opinions on Locomotive Engineers issued by the Federal Railroad Administration Dataset Summary Description These final opinions made in the adjudication of cases involve decisions by the Federal Railroad Administrator on appeals involving the agency's qualification and certification of locomotive engineers program pursuant to 49 C.F.R. ''§240.411. Tags {law,data.gov,transportation,qualifications,certifications,"locomotive engineers"} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

435

Alabama Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 979,566: 854,244: 791,004: 859,486: 917,892: 871,796: 1984-2012: ...

436

Arizona Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 877,174: 799,123: 746,952: 751,025: 767,565: 761,995: 1984-2012: ...

437

Rhode Island Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 77,882: 61,856: 59,789: 65,067: 65,295: 62,041: 1984-2012: Residual ...

438

South Carolina Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 752,984: 699,864: 653,641: 726,889: 724,974: 656,396: 1984-2012: ...

439

Utah Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 512,415: 464,448: 420,807: 427,293: 507,559: 486,956: 1984-2012: ...

440

New Jersey Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 1,091,896: 991,981: 755,753: 832,806: 951,803: 842,035: 1984-2012: ...

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicle fuel economy benefit and aftertreatment requirement of an HCCI-SI engine system  

E-Print Network (OSTI)

This body of work dimensions the HCCI fuel economy benefits and required aftertreatment performance for compliance with emissions regulations in North America and Europe. The following parameters were identified as key ...

Hardy, AliciA Jillian Jackson, 1978-

2007-01-01T23:59:59.000Z

442

Field Evaluation of Fumigation Bi-Fuel Systems Installed on Diesel Engine-Generators  

Science Conference Proceedings (OSTI)

Thousands of megawatts of emergency generation provide backup power to industry and businesses in the United States and Canada. Typically, individual size is relatively small, ranging from 100 kW to 2000 kW. Most are diesel-fueled generators. Diesel generators are generally the low-cost option. Their application also allows compliance with regulatory requirements for on-site fuel storage. Use of these generators other than for emergency power is coming under increased scrutiny by environmental regulatory...

2006-01-10T23:59:59.000Z

443

Advanced turbine design for coal-fueled engines. Quarterly technical report, [July 1, 1989--September 30, 1989  

SciTech Connect

Coal-fueled gas turbines require the development of a number of new technologies which are being identified by METC and its Heat Engines Contractors. Three significant problems, that were Identified early in the development of coal-fueled engines, are the rapid wear of the turbine airfoils due to particulate erosion, the accumulation of deposits on portions of the airfoil surfaces due to slag deposition and the rapid corrosion of airfoils after the breakdown of surface coatings. The technology development study contained in this program is focused on improving the durability of the turbine through the development of erosion and deposition resistant airfoils and turbine operating conditions. The baseline turbine meanline design vas modified to prevent a local shock on the suction side of the rotor airfoil. New particle dimensionless parameters to be varied were determined. Three first-stage turbine meanline designs have been completed. The design of nev turbine airfoil shapes has been initiated. The calculation of particle trajectories has been completed for the baseline turbine vane and blade airfoils. The erosion model described in the previous technical report vas incorporated in the Post Processing Trajectory Analysis Code.

1989-12-31T23:59:59.000Z

444

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

445

Utility Response to Railroad Market Power: Assessment of Options  

Science Conference Proceedings (OSTI)

Coal transportation is one of the largest and potentially least competitive costs of power generation. This report reviews possible strategies and recourse available to utilities to counter railroad market power. The implosion of the major carriers into just two major companies in the east and the west heralds an era of duopoly pricing for which no single solution presents itself, past strategies may no longer apply, and the prospect of burgeoning power transactions may offer surprisingly little help to ...

1997-10-31T23:59:59.000Z

446

An Improved Model-Based Methodology for Calibration of an Alternative Fueled Engine.  

E-Print Network (OSTI)

??The EcoCAR challenge is a three year competition with the goal of re-engineering a 2009 General Motors crossover utility vehicle to improve vehicle emissions and (more)

Everett, Ryan Vincent

2011-01-01T23:59:59.000Z

447

Simulation of a novel electromechanical engine valve drive to quantify performance gains in fuel consumption  

E-Print Network (OSTI)

This thesis describes the modeling and simulation of a novel electromechanical valve drive known as the MIT EMV. This valve drive allows an engine to achieve variable valve timing which has been shown to produce improvements ...

Miller, Justin (Justin Lee)

2011-01-01T23:59:59.000Z

448

Staged combustion with piston engine and turbine engine supercharger  

DOE Patents (OSTI)

A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O' Brien, Kevin C. (San Ramon, CA)

2006-05-09T23:59:59.000Z

449

Staged combustion with piston engine and turbine engine supercharger  

DOE Patents (OSTI)

A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O' Brien, Kevin C. (San Ramon, CA)

2011-11-01T23:59:59.000Z

450

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Fuel cells have the potential to replace the internal-combustion engine in...

451

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

452

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ballard Power Systems (3) Balqon (3) Bosch Rexroth (1) Boulder Electric Ballard Power Systems (3) Balqon (3) Bosch Rexroth (1) Boulder Electric Vehicle (1) Capstone Turbine Corp. (2) Cummins (2) Cummins Westport (2) Electric Vehicles International (1) Enova Systems (1) Ford Motor Co. (5) General Motors (5) Hino (1) KEM (1) Navistar (1) Paccar (2) Smith Electric Vehicles (2) UQM (2) UTC Power (1) Valence (1) Vision Motor Corp. (2) Volvo (1) Westport Innovations (1) Fuel Type All CNG (8) Electricity (11) Ethanol (2) Hybrid - Diesel Hydraulic (5) Hydrogen (3) LNG (4) Propane (10) Application All Bus - School (6) Bus - Shuttle (9) Bus - Transit (11) Refuse hauler (2) Street sweeper (5) Tractor (13) Trolley (3) Van (9) Vocational truck (16) Go Compare Ballard Power Systems - FCvelocity-HD6 fuel cell Ballard Power Systems - Hydrogen Fuel Cell

453

Experimental evaluation of oxygen-enriched air and emulsified fuels in a single-cylinder diesel engine. Volume 1, Concept evaluation  

DOE Green Energy (OSTI)

The performance of a single-cylinder, direct-injection diesel engine was measured with intake oxygen levels of up to 35% and fuel water contents of up to 20%. Because a previous study indicated that the use of a less-expensive fuel would be more economical, two series of tests with No. 4 diesel fuel and No. 2 diesel fuel were conducted. To control the emissions of nitrogen oxides (NO{sub x}), water was introduced into the combustion process in the form of water-emulsified fuel, or the fuel injection timing was retarded. In the first series of tests, compressed oxygen was used; in the second series of tests, a hollow-tube membrane was used. Steady-state engine performance and emissions data were obtained. Test results indicated a large increase in engine power density, a slight improvement in thermal efficiency, and significant reductions in smoke and particulate-matter emissions. Although NO{sub x} emissions increased, they could be controlled by introducing water and retarding the injection timing. The results further indicated that thermal efficiency is slightly increased when moderately water-emulsified fuels are used, because a greater portion of the fuel energy is released earlier in the combustion process. Oxygen-enriched air reduced the ignition delay and caused the heat-release rate and cumulative heat-release rates to change measurably. Even at higher oxygen levels, NO{sub x} emissions decreased rapidly when the timing was retarded, and the amount of smoke and the level of particulate-matter emissions did not significantly increase. The single-cylinder engine tests confirmed the results of an earlier technical assessment and further indicated a need for a low-pressure-drop membrane specifically designed for oxygen enrichment. Extension data set indexed separately. 14 refs.

Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J.

1991-11-01T23:59:59.000Z

454

NREL: Vehicles and Fuels Research - Advanced Combustion and Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion and Fuels Projects NREL's advanced combustion and fuels projects bridge fundamental chemical kinetics and engine research to investigate how new vehicle fuels...

455

Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1  

DOE Green Energy (OSTI)

This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

Chan, A.K.

2000-02-23T23:59:59.000Z

456

Proceedings of FUELCELL2005 Third International Conference on Fuel Cell Science, Engineering and Technology  

E-Print Network (OSTI)

for estimating the system performance. Unlike other existing thermal models, it in- cludes the gas supply system voltage is calculated quasi-statically. Measurement data of a 1.25kW, 24-cell fuel cell stack or a residential power supply cannot be pas- s

Stefanopoulou, Anna

457

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine  

DOE Green Energy (OSTI)

In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

Curran, Scott [ORNL; Prikhodko, Vitaly Y [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Kokjohn, Sage [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin

2010-01-01T23:59:59.000Z

458

Engines - Spark Ignition Engines - Direct Injection - Omnivorous Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Injection, Spark-Ignited Engines Direct Injection, Spark-Ignited Engines Omnivorous Engine Omnivorous Engine Setup Omnivorous Engine Setup New engine technology has made possible engines that will operate on a wide variety of fuel inputs, from gasoline to naptha to ethanol to methanol, without driver intervention. Although flexible fuel vehicles have been produced in the millions, their engines have always been optimized for gasoline operation while accepting significant performance and efficiency degradations when using the alternative fuel. This project seeks to combine in-cylinder measurement technology, and advanced controls to optimize spark timing, the quantity and timing of injected fuel, to produce an "omnivorous engine"--one that will be able to run on any liquid spark ignition fuel with optimal efficiency and low

459

Minimization of Pressurized Water Reactor Radiation Fields through Fuel Deposit Engineering: Deposit Property Evaluation and Optimization  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide an initial assessment of the options for modification of pressurized water reactor (PWR) primary side corrosion product deposits (crud) to minimize the incorporation of activated crud into out-of-core surfaces, thus reducing the intensity of out-of-core radiation fields. This report summarizes the current knowledge of PWR fuel crud characteristics, including crystallographic structure (crystal habits), and buildup mechanisms. The report also reviews the ...

2013-11-11T23:59:59.000Z

460

Monovalve with integrated fuel injector and port control valve, and engine using same  

DOE Patents (OSTI)

An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface, is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.

Milam, David M. (Metamora, IL)

2001-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "railroad engine fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: Compatible Vehicles: Cargotec - Ottawa 4x2 Elgin Sweeper Company - Broom Bear/Crosswind/Eagle/Pelican North American Bus Industries - 60BRT North American Bus Industries - 31LFW / 35LFW / 40LFW ElDorado National - E-Z Rider II BRT ElDorado National - Axess ElDorado National - XHF Champion Bus Inc. - CTS - Front Engine Motor Coach Industries - D4500 CT Hybrid Commuter Coach Gillig Corp. - Diesel-Electric Hybrid Bus and CNG Bus Freightliner - Business Class M2 112 Blue Bird Corp. - All American Rear Engine Capacity Trucks - TJ9000 Heil Environmental - RapidRail McNeilus - Rear Load (Std, HD, XC, Tag, MS, Metro-Pak) McNeilus - CNG Cement Mixer North American Bus Industries - 42BRT Heil Environmental - DuraPack Python Heil Environmental - Rear Loader Thomas Built Buses - Saf-T-Liner HDX CNG

462

Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference  

SciTech Connect

The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

Geiling, D.W. [ed.

1993-08-01T23:59:59.000Z

463

Fundamental studies of fuel chemistry as related to internal combustion engine phenomena. Final technical report, October 1987--December 1989  

DOE Green Energy (OSTI)

Intent of this research effort was to provide insight (through homogeneous gas phase kinetic studies at different constant pressures) to the fuel chemistry issues important to autoignition in engines. Conditions of the proposed experiments were chosen to be similar to engine parameters under knocking conditions: 700--1100 K temperatures, 1--20 atm pressures, and stoichiometries around 1. A variable pressure flow reactor was designed in which a range of reaction pressures and lower reaction temperatures could be accessed. Crossed beam optical access, continuous on-line gas sampling (nondispersive infrared, oxygen paramagnetic, H thermo-conductive, Fourier transform infrared, off-line GC, GC/mass spectrometric, wet chemical), and temperature measurements at the sampling location are available; reacting systems with reaction times ranging from 50--100 ms to 15--20 s can be studied. Testing has begun. Experiments on isobutene/oxygen mixtures have been conducted in the old atmospheric pressure flow reactor at 1150 K and in an equivalence ratio range of pyrolysis with 100 ppM oxygen background to 0.42. The kinetic model indicates that the inhibitory effect of isobutene at high temps is due to depletion of the active radical pool and formation of unreactive stable species and methyl radicals; isobutene oxidation/pyrolysis is heavily influenced by the chemistry of methyl radicals. The reaction of hydroperoxy radical (HO{sub 2}) with methyl radical and its effect on isobutene oxidation will be studied in the new reactor.

Dryer, F.L.; Brezinsky, K.

1990-09-01T23:59:59.000Z

464

Evaluation of wear resistant ceramic valve seats in gas-fueled power generation engines. Topical report, December 1991-April 1994  

SciTech Connect

This project is directed at the reduction of valve recession in natural gas-fueled engines. Ceramic valve seat inserts have been procured, installed in a Caterpillar G3516 natural gas generator set, and tested for 1000 hours. Two different silicon nitride materials are being utilized for the valve seats in addition to stock Eatonite metallic inserts. Three valve face materials are being tested. These include stock Caterpillar stellite 1 faced, stellite 6 faced, and unfaced valves. A test matrix was used to allow comparison of all three valve face materials in combination with all three insert materials. The testing is scheduled to continue for an additional 7000 hours. No problems have been encountered with the test materials. In general, it has been shown that two types of silicon nitride materials have at least short term durability in engine operation. Neither material has exhibited any deficiencies thus far. An economic analysis spreadsheet has been created to calculate potential cost savings potential using ceramic valve seat inserts. Valve recession data for the first 1000 hours shows expected trends. Exhaust valve positions are wearing more than intake valve positions. If the intake positions and all positions with unfaced valve are ignored, then ceramic inserts paired with Stellite 1 valves show the most wear.

Burrahm, R.W.; Branecky, R.J.; Sui, P.C.; Latusek, J.P.; Hsu, S.M.

1994-12-01T23:59:59.000Z

465

Advanced turbine design for coal-fueled engines. Topical report, Task 1.6, Task 1.7  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500{degrees}F (815{degrees}C), relatively innocuous salts. In this study it is found that at 1650{degrees}F (900{degrees}C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

466

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary  

Science Conference Proceedings (OSTI)

This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

Not Available

1994-06-01T23:59:59.000Z

467

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A  

SciTech Connect

This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

1994-06-01T23:59:59.000Z

468

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1  

Science Conference Proceedings (OSTI)

This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

Not Available

1994-06-01T23:59:59.000Z

469