National Library of Energy BETA

Sample records for rail air water

  1. air_water.cdr

    Office of Legacy Management (LM)

    122011 Air Monitoring Groundwater Monitoring Surface Water Monitoring A continuously operating air monitoring network was in place from 1986 through 2000 for the Weldon Spring ...

  2. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  3. New Air and Water-Resistive Barrier Technologies for Commercial...

    Energy Savers [EERE]

    New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive ...

  4. Chicago Clean Air, Clean Water Project: Environmental Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future Citation Details In-Document Search Title: Chicago Clean Air, Clean Water ...

  5. MHK Technologies/Water Air Pump WAP | Open Energy Information

    Open Energy Info (EERE)

    Water Air Pump WAP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Air Pump WAP.jpg Technology Profile Primary Organization Shamil...

  6. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  7. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  8. Radial arm strike rail

    DOE Patents [OSTI]

    McKeown, Mark H.; Beason, Steven C.

    1991-01-01

    The radial arm strike rail assembly is a system for measurement of bearings, directions, and stereophotography for geologic mapping, particularly where magnetic compasses are not appropriate. The radial arm, pivoting around a shaft axis, provides a reference direction determination for geologic mapping and bearing or direction determination. The centerable and levelable pedestal provide a base for the radial arm strike rail and the telescoping camera pedestal. The telescoping feature of the radial arm strike rail allows positioning the end of the rail for strike direction or bearing measurement with a goniometer.

  9. Method and apparatus for extracting water from air

    DOE Patents [OSTI]

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  10. Method and apparatus for extracting water from air

    DOE Patents [OSTI]

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  11. Analysis of supersaturated air in natural waters and reservoirs

    SciTech Connect (OSTI)

    D'Aoust, B.G.; Clark, M.J.R.

    1980-11-01

    Supersaturation of water by air or other gases can be caused by temperature increase, air or gas injection by pressurized pumping, or turbulent injection by falling water that traps air. The physics of supersaturation are outlined, and alternative sampling and analysis techniques used to evaluate the extent of supersaturation are described. These techniques range from complex, exacting procedures commonly used in the biomedical analytical laboratory to simple, portable methods suited to field application or continuous monitoring. Analytical techniques tested during 1976-78 in the Columbia and Snake river system, both of which were seriously supersaturated as a result of entrainment of air into water spilling over hydroelectric dams, are comparatively evaluated.

  12. Effect of CO{sub 2} air mixtures on the pH of air-stripped water...

    Office of Scientific and Technical Information (OSTI)

    pH of air-stripped water at Treatment Facility D Citation Details In-Document Search Title: Effect of COsub 2 air mixtures on the pH of air-stripped water at Treatment Facility ...

  13. Hydroxide Anion at the Air-Water Interface (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Title: Hydroxide Anion at the Air-Water Interface Here we use first-principles molecular dynamics simulations, in which the forces are obtained "on the fly" from electronic...

  14. New Air and Water-Resistive Barrier Technologies for Commercial Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings Lead Performer: Oak Ridge

  15. Analysis of supersaturated air in natural waters and reservoirs

    SciTech Connect (OSTI)

    D'Aoust, B.G.; Clark, M.J.R.

    1980-11-01

    Supersaturation of air or other gases in water can be caused by a temperature increase, air or gas injection by pressurized pumping, or turbulent injection by falling water which traps air when spills are allowed by hydroelectric projects. Evaluation of this problem requires both an understanding of the physics of the situation and practical knowledge of a number of alternative techniques for analysis. These range from complex, exacting procedures commonly used in the biomedical analytical laboratory to simple, portable methods well suited to use in the field or continuous monitoring. The authors have reviewed and refined several of these methods, have developed others, and have compared relevant techniques in the field and laboratory.

  16. USDOE Top-of-Rail Lubricant Project

    SciTech Connect (OSTI)

    Mohumad F. Alzoubi; George R. Fenske; Robert A. Erck; Amrit S. Boparai

    2002-02-01

    Lubrication of wheel/rail systems has been recognized for the last two decades as a very important issue for railroads. Energy savings and less friction and wear can be realized if a lubricant can be used at the wheel/rail interface. On the other hand, adverse influences are seen in operating and wear conditions if improper or excessive lubrication is used. Also, inefficiencies in lubrication need to be avoided for economic and environmental reasons. The top-of-rail (TOR) lubricant concept was developed by Texaco Corporation to lubricate wheels and rails effectively and efficiently. Tranergy Corporation has been developing its SENTRAEN 2000{trademark} lubrication system for the last ten years, and this revolutionary new high-tech on-board rail lubrication system promises to dramatically improve the energy efficiency, performance, safety, and track environment of railroads. The system is fully computer-controlled and ensures that all of the lubricant is consumed as the end of the train passes. Lubricant quantity dispensed is a function of grade, speed, curve, and axle load. Tranergy also has its LA4000{trademark} wheel and rail simulator, a lubrication and traction testing apparatus. The primary task of this project was collecting and analyzing the volatile and semivolatile compounds produced as the lubricant was used. The volatile organic compounds were collected by Carbotrap cartridges and analyzed by adsorption and gas chromatography/mass spectrometry (GC/MS). The semivolatile fraction was obtained by collecting liquid that dripped from the test wheel. The collected material was also analyzed by GC/MS. Both of these analyses were qualitative. The results indicated that in the volatile fraction, the only compounds on the Environmental Protection Agency's (EPA) Superfund List of Analytes detected were contaminants either in the room air or from other potential contamination sources in the laboratory. Similarly, in the semivolatile fraction none of the detected compounds are on the EPA's Superfund List of Analytes. The major compound in the semivolatile fraction is 1,2-propanediol, which was also found as the major component of the TOR lubricant before testing. Other compounds found in trace quantities either were present in the TOR lubricant or were small fragments from the polymeric component of the TOR lubricant. The second task for Argonne in this project was to investigate the effects of axle load, angle of attack, and quantity of lubricant on lateral friction forces, as well as the consumption time of the TOR lubricant. The second task was to collect and qualitatively identify any volatile and semivolatile compounds produced upon use of the TOR lubricant.

  17. East Germany struggles to clean its air and water

    SciTech Connect (OSTI)

    Cherfas, J.

    1990-04-20

    East Germans are working hard on a strategy to improve their polluted environment. Industrial plants are largely responsible for this pollution. A shroud of haze veils the suburbs of East Berlin. Far to the south the giant power plants around Leipzig pour more dust and sulfur dioxide into the air than in any other country in Europe. More than 90% of the country's electricity comes from brown coal, accompanied by prodigious quantities of dust and sulfur dioxide: almost 6 million tones of sulfur dioxide and more than 2 million tones of dust in 1988. East Germany enjoys some of the cheapest energy in the world, and the world's third highest energy consumption per capita, behind the United States, and Canada. Naturally, is also suffers air quality and health problems. The country is trying to cut down on consumption and clean up on generation. Actually, water quality is the number one priority, which unlike air is in very short supply.

  18. Evaporation of water with single and multiple impinging air jets

    SciTech Connect (OSTI)

    Trabold, T.A.; Obot, N.T. )

    1991-08-01

    An experimental investigation of impingement water evaporation under a single jet and arrays of circular jets was made. The parametric study included the effects of jet Reynolds number and standoff spacing for both single and multiple jets, as well as surface-to-nozzle diameter ratio and fractional nozzle open area for single and multiple jets, respectively. The nozzle exit temperature of the air jet, about the same as that of the laboratory, was 3-6C higher than that of the evaporating water. Predictive equations are provided for mass transfer coefficient in terms of the flow and geometric conditions.

  19. Naval Spent Fuel Rail Shipment Accident Exercise Objectives ...

    Office of Environmental Management (EM)

    Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives PDF icon Naval Spent Fuel Rail Shipment Accident Exercise ...

  20. Shipping Radioactive Waste by Rail from Brookhaven National Laboratory...

    Office of Environmental Management (EM)

    Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Shipping Radioactive Waste by Rail...

  1. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Rail Conference Call Summaries TEC Working Group Topic Groups Rail Conference Call Summaries CONFERENCE CALL SUMMARIES Rail Topic Group Inspections Subgroup Planning Subgroup...

  2. Segmented rail linear induction motor

    DOE Patents [OSTI]

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  3. Segmented rail linear induction motor

    DOE Patents [OSTI]

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  4. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Summaries Rail Topic Group TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group Rail Topic Group PDF icon May 17, 2007 PDF icon January 16, 2007 PDF icon...

  5. TEC Working Group Topic Groups Rail

    Broader source: Energy.gov [DOE]

    The Rail Topic Group has the responsibility to identify and discuss current issues and concerns regarding rail transportation of radioactive materials by the Department of Energy (DOE). The group’s...

  6. Microsoft Word - Crude by rail July 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving Crude Oil by Rail Page 1 of 10 Summary U.S. crude oil production has risen sharply in recent years, with much of the increased output moving by rail. In 2008, U.S. Class I ...

  7. PRB rail loadings shatter record

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2008-09-15

    Rail transport of coal in the Powder River Basin has expanded, with a record 2,197 trains loaded in a month. Arch Coal's Thunder basin mining complex has expanded by literally bridging the joint line railway. The dry fork mine has also celebrated its safety achievements. 4 photos.

  8. Dyess Air Force Base Water Conservation and Green Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Dyess Air Force Base Water Conservation and Green Energy Dyess Air Force Base Water Conservation and Green Energy Fact sheet describes the Federal Energy Management Program (FEMP) Energy Savings Performance Contract (ESPC) Success Story on water conservation and green energy at Dyess Air Foce Base at Dyess, Texas. PDF icon espc_ss_dyess.pdf More Documents & Publications Energy Savings Performance Contract Success Stories Energy Savings Performance Contract ENABLE Briefing Harold

  9. Microsoft PowerPoint - Rail_Kneitel [Compatibility Mode]

    Office of Environmental Management (EM)

    1 Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Terri Kneitel, PE, PMP U.S. Department of Energy National Transportation Stakeholders Forum May 14, 2014 2 Discussion Topics * Why Rail? * How is waste shipped? * What do we ship by rail? * DOT Requirements * Where does the waste go? * Logistics * BNL Rail Shipment Overview * Extensive Outreach - BNL Transportation Working Group * BNL Rail Shipment & Notification Protocols 5/16/2014 2 3 Why Rail? Rail * 1 car hauls

  10. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  11. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect (OSTI)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  12. Top-of-Rail lubricant

    SciTech Connect (OSTI)

    Alzoubi, M. F.; Fenske, G. R.; Erck, R. A.; Boparai, A. S.

    2000-07-14

    Analysis of the volatile and semivolatile fractions collected after use of the TOR lubricant indicated that other than contaminants in the collection laboratory, no compounds on the EPA's Target Compound Lists (Tables 2 and 5) were detected in these fractions. The data of these qualitative analyses, given in the various tables in the text, indicate only the relative amounts of the tentatively identified compounds. The authors recommend that quantitative analysis be performed on the volatile and semivolatile fractions to allow confirmation of the tentatively identified compounds and to obtain absolute amounts of the detected compounds. Additionally, the semivolatile fraction should be analyzed by liquid chromatography/mass spectrometry to identify compounds that are not chromatographable under the temperature program used for determination of semivolatile compounds. Introducing the top-of-rail (TOR) lubricant into the wheel/rail interface results in a reduction of almost 60% of lateral friction force over the forces encountered under dry conditions. This reveals good potential for energy savings, as well as wear reduction, for railroad companies. In TOR lubrication, an increase in the angle of attack and axle load results in increased lateral friction and rate of lubricant consumption. The most efficient TOR lubricant quantity to be used in the wheel/rail interface must be calculated precisely according to the number of cars, axle loads, train speed, and angle of attack.

  13. Rail-to-rail differential input amplification stage with main and surrogate differential pairs

    DOE Patents [OSTI]

    Britton, Jr., Charles Lanier; Smith, Stephen Fulton

    2007-03-06

    An operational amplifier input stage provides a symmetrical rail-to-rail input common-mode voltage without turning off either pair of complementary differential input transistors. Secondary, or surrogate, transistor pairs assume the function of the complementary differential transistors. The circuit also maintains essentially constant transconductance, constant slew rate, and constant signal-path supply current as it provides rail-to-rail operation.

  14. The politics of Peacekeeper Rail Garrison. Doctoral thesis

    SciTech Connect (OSTI)

    Van Tassel, A.R.

    1992-01-01

    In 1985, the Congress capped at 50 the number of Peacekeeper ICBMs that could be deployed in vulnerable Minuteman silos, thereby sending the Reagan administration and the Air Force in search of another basing mode so that 100 of the ton-warhead missiles could be deployed as recommended by the Scowcroft Commission. The result was Peacekeeper rail garrison--a strategic nuclear weapon system that combined the Peacekeeper missile with railroad trains garrisoned at military installations. The missile trains would have dispersed across the nation's railways only during times of 'national need like the Cuban Missile Crisis. This case study examines the politics of that weapon system in order to contribute to the literature regarding weapons acquisition, test a number of propositions suggested by the bureaucratic politics model, and assess the influence of nonbureaucratic forces and actors on Peacekeeper rail garrison's fortunes.

  15. Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rail Pressure and Biodiesel Composition on Soot Nanostructure Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure Fractal dimensions of particle aggregates and ...

  16. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction ...

  17. TEC Working Group Topic Groups Rail Archived Documents | Department...

    Office of Environmental Management (EM)

    Archived Documents TEC Working Group Topic Groups Rail Archived Documents ARCHIVED DOCUMENTS PDF icon Inspections Summary Matrix PDF icon TEC Transportation Safety WIPP-PIG Rail...

  18. TEC Working Group Topic Groups Rail Key Documents | Department...

    Office of Environmental Management (EM)

    Rail Key Documents TEC Working Group Topic Groups Rail Key Documents KEY DOCUMENTS Radiation Monitoring Subgroup Intermodal Subgroup Planning Subgroup PDF icon Current FRA State...

  19. TEC Working Group Topic Groups Rail Meeting Summaries | Department...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Rail Meeting Summaries MEETING SUMMARIES PDF icon Kansas City TEC Meeting, Rail Topic Group Summary - July 25, 2007 PDF icon Atlanta TEC...

  20. Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-water/air cooled condenser with low water consumption and 2) an enhanced turbine with high efficiency.

  1. Method and apparatus for extracting water from air using a desiccant

    DOE Patents [OSTI]

    Spletzer, Barry L.; Callow, Diane Schafer

    2003-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.

  2. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOE Patents [OSTI]

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  3. TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic

    Office of Environmental Management (EM)

    Group | Department of Energy Summaries Rail Topic Group TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group Rail Topic Group PDF icon May 17, 2007 PDF icon January 16, 2007 PDF icon August 31, 2006 PDF icon July 27, 2006 PDF icon June 8, 2006 PDF icon April 20, 2006 PDF icon March 9, 2006 PDF icon January 26, 2006 PDF icon November 9, 2005 PDF icon September 15, 2005 PDF icon April 28, 2005 PDF icon March 24, 2005 PDF icon February 24, 2005 PDF icon January 27,

  4. PHOENIX ENERGIZES LIGHT RAIL CORRIDOR WITH UPGRADES

    Broader source: Energy.gov [DOE]

    Designed to promote energy efficiency in buildings in Phoenix, Arizona’s 10-mile-long Light Rail Corridor, Energize Phoenix focused on performing energy upgrades and reducing energy use in...

  5. Moab Resumes Rail Shipments After Rockslide

    Broader source: Energy.gov [DOE]

    MOAB, Utah – EM’s Moab Uranium Mill Tailings Remedial Action Project recently resumed rail shipments after an almost two-month halt due to a major rockslide.

  6. Influence of entrapped air pockets on hydraulic transients in water pipelines

    SciTech Connect (OSTI)

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen

    2011-01-01

    The pressure variations associated with a filling undulating pipeline containing an entrapped air pocket are investigated both experimentally and numerically. The influence of entrapped air on abnormal transient pressures is often ambiguous since the compressibility of the air pocket permits the liquid flow to accelerate but also partly cushions the system, with the balance of these tendencies being associated with the initial void fraction of the air pocket. Earlier experimental research involved systems with an initial void fraction greater than 5.8%; this paper focuses on initial void fractions ranging from 0% to 10%, in order to more completely characterize the transient response. Experimental results show that the maximum pressure increases and then decreases as the initial void fraction decreases. A simplified model is developed by neglecting the liquid inertia and energy loss of a short water column near the air-water interface. Comparisons of the calculated and observed results show the model is able to accurately predict peak pressures as a function of void fraction and filling conditions. Rigid water column models, however, perform poorly with small void fractions.

  7. Avoidance responses of salmon and trout to air-supersaturated water

    SciTech Connect (OSTI)

    Stevens, D.G.; Nebeker, A.V.; Baker, R.J.

    1980-11-01

    Coho (Oncorhynchus kisutch), sockeye (O. nerka), and chinook (O. tschawystcha) salmon smolts, and rainbow trout (Salmo gairdneri) avoided air-supersaturated water when tested in a shallow round tank. Steelheads (S. gairdneri) did not consistently avoid the supersaturated water and died from gas bubble disease. The salmon and rainbow trout generally avoided 145 and 125% saturation but did not always avoid 115%. Territorial activity reduced avoidance by steelheads and rainbow trout.

  8. Keeping Climate Change Solutions on Track: The Role of Rail ...

    Open Energy Info (EERE)

    Keeping Climate Change Solutions on Track: The Role of Rail Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Keeping Climate Change Solutions on Track: The Role of Rail...

  9. TEC Working Group Topic Groups Rail Conference Call Summaries Inspections

    Office of Environmental Management (EM)

    Subgroup | Department of Energy Summaries Inspections Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Inspections Subgroup Inspections Subgroup PDF icon April 6, 2006 PDF icon February 23, 2006 Draft PDF icon January 24, 2006 More Documents & Publications TEC Working Group Topic Groups Rail Conference Call Summaries Planning Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Tracking Subgroup TEC Working Group Topic Groups Rail Conference Call

  10. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring

    Office of Environmental Management (EM)

    Subgroup | Department of Energy Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup PDF icon Draft Work Plan - February 4, 2008 More Documents & Publications TEC Working Group Topic Groups Rail Meeting Summaries TEC Working Group Topic Groups Rail Conference Call Summaries Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup

  11. Advanced Diesel Common Rail Injection System for Future Emission Legislation

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Robert Bosch GMBH Common Rail System Engineering for PC Diesel Systems

  12. Pollutant transfer through air and water pathways in an urban environment

    SciTech Connect (OSTI)

    Brown, M.; Burian, S.; McPherson, T.; Streit, G.; Costigan, K.; Greene, B.

    1998-12-31

    The authors are attempting to simulate the transport and fate of pollutants through air and water pathways in an urban environment. This cross-disciplinary study involves linking together models of mesoscale meteorology, air pollution chemistry and deposition, urban runoff and stormwater transport, water quality, and wetland chemistry and biology. The authors are focusing on the transport and fate of nitrogen species because (1) they track through both air and water pathways, (2) the physics, chemistry, and biology of the complete cycle is not well understood, and (3) they have important health, local ecosystem, and global climate implications. The authors will apply their linked modeling system to the Los Angeles basin, following the fate of nitrates from their beginning as nitrate-precursors produced by auto emissions and industrial processes, tracking their dispersion and chemistry as they are transported by regional winds and eventually wet or dry deposit on the ground, tracing their path as they are entrained into surface water runoff during rain events and carried into the stormwater system, and then evaluating their impact on receiving water bodies such as wetlands where biologically-mediated chemical reactions take place. In this paper, the authors wish to give an overview of the project and at the conference show preliminary results.

  13. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect (OSTI)

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  14. Rail gun development for EOS research

    SciTech Connect (OSTI)

    Fowler, C.M.; Peterson, D.R.; Hawke, R.S.; Brooks, A.L.

    1981-01-01

    The status of a railgun program for EOS research in progress at Los Alamos and Livermore National Laboratories is described. The operating principle of rail guns, the power supplies used to drive them, diagnostic techniques used to monitor their performance and initial efforts to develop projectiles suitable for EOS research are discussed. (WHK)

  15. Rail Networks Are Getting Smarter | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rail Networks Are Getting Smarter Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) RailConnect 360 makes rail networks and operations smarter RailConnect 360 includes Movement Planner, Yard Planner and Trip Optimizer RailConnect 360 increases efficiency Freight trains moving faster could save railroads millions yearly

  16. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    SciTech Connect (OSTI)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  17. Towards a unified picture of the water self-ions at the air-water...

    Office of Scientific and Technical Information (OSTI)

    OH- prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs. interfacial behavior of H3O+ and OH- that employs forces...

  18. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  19. Bibliography of work on the photocatalytic removal of hazardous compounds from water and air

    SciTech Connect (OSTI)

    Blake, D.M.

    1994-05-01

    This is a bibliography of information in the open literature on work that has been done to date on the photocatalytic oxidation of compounds, principally organic compounds. The goal of the listing is removing hazardous oompounds from water or air. It contains lists of substances and literature citations. The bibliography includes information obtained through the middle of 1993 and some selected references for the balance of that year.

  20. Simulation studies of diesel engine performance with oxygen enriched air and water emulsified fuels

    SciTech Connect (OSTI)

    Assanis, D.N.; Baker, D. ); Sekar, R.R.; Siambekos, C.T.; Cole, R.L.; Marciniak, T.J. )

    1990-01-01

    A computer simulation code of a turbocharged, turbocompound diesel engine was modified to study the effects of using oxygen-enriched combustion air and water-emulsified diesel fuels. Oxygen levels of 21 percent to 40 percent by volume in the combustion air were studied. Water content in the fuel was varied from 0 percent to 50 percent mass. Simulation studies and a review and analysis of previous work in this area led to the following conclusions about expected engine performance and emissions: the power density of the engine is significantly increased by oxygen enrichment. Ignition delay and particulate emissions are reduced. Combustion temperatures and No{sub x} emissions are increased with oxygen enrichment but could be brought back to the base levels by introducing water in the fuel. The peak cylinder pressure which increases with the power output level might result in mechanical problems with engine components. Oxygen enrichment also provides an opportunity to use cheaper fuel such as No. 6 diesel fuel. Overall, the adverse effects of oxygen enrichment could be countered by the addition of water and it appears that an optimum combination of water content, oxygen level, and base diesel fuel quality may exist. This could yield improved performance and emissions characteristics compared to a state-of-the-art diesel engine. 9 refs., 8 figs.

  1. Fracture toughness of Alloy 690 and EN52 weld in air and water

    SciTech Connect (OSTI)

    Brown, C.M.; Mills, W.J.

    1999-06-01

    The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.

  2. Microsoft PowerPoint - Rail_Massaro

    Office of Environmental Management (EM)

    4 Annual Meeting of the National Transportation Stakeholders Forum May 13-15, 2014 in Bloomington, MN Safety Compliance Oversight Plan "SCOP" Tasks * Operational Integrity Train Crew, Train Dispatchers, etc. * Emergency Response Carrier Emergency Response Plans, Personnel Radioactive Awareness Training * Route Infrastructure Integrity Track Geometry, Bridge Inspection, etc. Hazardous Materials 2 Safety Compliance Oversight Plan "SCOP" Tasks * Highway-Rail Grade Crossing

  3. RAIL ROUTING PRACTICES AND PROPOSED ALTERNATIVES

    Office of Environmental Management (EM)

    on "Strawman" Report: RAIL ROUTING PRACTICES AND PROPOSED ALTERNATIVES Number Section Comment Response RTG-1-AAR SECTION II Safeguards Routing Regulations, Para. 2 The NRC has identified five types of route characteristics that receive special consideration when NRC staff review routes for approval pursuant to 10 CFR 73: (1) routes through highly populated areas; (2) routes that would place the shipment or escort vehicle in a significantly disadvantageous position (for example, tunnels

  4. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  5. Recommended Parameter Values for GENII Modeling of Radionuclides in Routine Air and Water Releases

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Arimescu, Carmen; Napier, Bruce A.; Hay, Tristan R.

    2012-11-01

    The GENII v2 code is used to estimate dose to individuals or populations from the release of radioactive materials into air or water. Numerous parameter values are required for input into this code. User-defined parameters cover the spectrum from chemical data, meteorological data, agricultural data, and behavioral data. This document is a summary of parameter values that reflect conditions in the United States. Reasonable regional and age-dependent data is summarized. Data availability and quality varies. The set of parameters described address scenarios for chronic air emissions or chronic releases to public waterways. Considerations for the special tritium and carbon-14 models are briefly addressed. GENIIv2.10.0 is the current software version that this document supports.

  6. Paraho environmental data. Part I. Process characterization. Par II. Air quality. Part III. Water quality

    SciTech Connect (OSTI)

    Heistand, R.N.; Atwood, R.A.; Richardson, K.L.

    1980-06-01

    From 1973 to 1978, Development Engineering, Inc. (DEI), a subsidiary of Paraho Development Corporation, demostrated the Paraho technology for surface oil shale retorting at Anvil Points, Colorado. A considerable amount of environmentally-related research was also conducted. This body of data represents the most comprehensive environmental data base relating to surface retorting that is currently available. In order to make this information available, the DOE Office of Environment has undertaken to compile, assemble, and publish this environmental data. The compilation has been prepared by DEI. This report includes the process characterization, air quality, and water quality categories.

  7. Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future

    SciTech Connect (OSTI)

    none, none; Tuchman, Nancy

    2015-11-11

    The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has been launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.

  8. TEC Working Group Topic Groups Rail Key Documents Planning Subgroup...

    Office of Environmental Management (EM)

    Planning Subgroup Planning Subgroup PDF icon Rail Planning Timeline PDF icon Benchmarking Project: AREVA Trip Report More Documents & Publications TEC Meeting Summaries -...

  9. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring...

    Office of Environmental Management (EM)

    Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup PDF icon Draft Work Plan - February 4,...

  10. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Compression Ignition Engine Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure

  11. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Summaries Inspections Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Inspections Subgroup Inspections Subgroup PDF icon April 6, 2006 PDF icon February 23,...

  12. TEC Working Group Topic Groups Rail Key Documents Intermodal...

    Office of Environmental Management (EM)

    Intermodal Subgroup TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup Intermodal Subgroup PDF icon Draft Work Plan More Documents & Publications TEC Working...

  13. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  14. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    SciTech Connect (OSTI)

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initial monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.

  15. STOMP Sparse Vegetation Evapotranspiration Model for the Water-Air-Energy Operational Mode

    SciTech Connect (OSTI)

    Ward, Anderson L.; White, Mark D.; Freeman, Eugene J.; Zhang, Z. F.

    2005-09-15

    The Water-Air-Energy (WAE) Operational Mode of the Subsurface Transport Over Multiple Phases (STOMP) numerical simulator solves the coupled conservation equations for water mass, air mass, and thermal energy in multiple dimensions. This addendum describes the theory, input file formatting, and application of a soil-vegetation-atmosphere transfer (SVAT) scheme for STOMP that is based on a sparse vegetation evapotranspiration model. The SVAT scheme is implemented as a boundary condition on the upper surface of the computational domain and has capabilities for simulating evaporation from bare surfaces as well as evapotranspiration from sparsely vegetated surfaces populated with single or multiple plant species in response to meteorological forcings. With this extension, the model calculates water mass, air mass and thermal energy across a boundary surface in addition to root-water transport between the subsurface and atmosphere. This mode represents the barrier extension of the WAE mode and is designated as STOMP-WAE-B. Input for STOMP-WAE-B is specified via three input cards and include: atmospheric conditions through the Atmospheric Conditions Card; time-invariant plant species data through the Plant Properties Card; and time varying plant species data through the Boundary Conditions Card. Two optional cards, the Observed Data and UCODE Control Cards allow use of STOMP-WAE with UCODE in an inverse mode to estimate model parameters. STOMP-WAE was validated by solving a number of test problems from the literature that included experimental observations as well as analytical or numerical solutions. Several of the UNSAT-H verification problems are included along with a benchmark simulation derived from a recently published intercode comparison for barrier design tools. Results show that STOMP is able to meet, and in most cases, exceed performance of other commonly used simulation codes without having to resort to may of their simplifying assumptions. Use of the fully coupled STOMP simulator to guide barrier design will result in optimized designs with reduced construction costs; reduced environmental impacts at borrow sites; and minimized post-closure care and monitoring needs, while meeting regulatory requirements.

  16. Assessment of the risk of transporting liquid chlorine by rail

    SciTech Connect (OSTI)

    Andrews, W.B.

    1980-03-01

    This report presents the risk of shipping liquid chlorine by rail. While chlorine is not an energy material, there are several benefits to studying chlorine transportation risks. First, chlorine, like energy materials, is widely used as a feedstock to industry. Second, it is the major purification agent in municipal water treatment systems and therefore, provides direct benefits to the public. Finally, other risk assessments have been completed for liquid chlorine shipments in the US and Europe, which provide a basis for comparison with this study. None of the previous PNL energy material risk assessments have had other studies for comparison. For these reasons, it was felt that a risk assessment of chlorine transportation by rail could provide information on chlorine risk levels, identify ways to reduce these risks and use previous studies on chlorine risks to assess the strengths and weaknesses of the PNL risk assessment methodology. The risk assessment methodology used in this study is summarized. The methodology is presented in the form of a risk assessment model which is constructed for ease of periodic updating of the data base so that the risk may be reevaluated as additional data become available. The report is sectioned to correspond to specific analysis steps identified in the model. The transport system and accident environment are described. The response of the transport system to accident environments is described. Release sequences are postulated and evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a direct comparison with other reports in this series.

  17. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  18. Effects of hydrostatic pressure on steelhead survival in air-supersaturated water

    SciTech Connect (OSTI)

    Knittel, M.D.; Chapman, G.A.; Garton, R.R.

    1980-11-01

    Juvenile steelheads (Salmo gairdneri) were placed in cages and suspended at various depths in water supersaturated with air at levels from 120 to 140% of normal atmospheric gas pressure. Survival times of fish held at 10, 50, and 100 cm depth increased with increasing depth at a given level of supersaturation. When the hydrostatic pressure (7.4 mm Hg per 10 cm of water depth) was subtracted from the excess gas pressure (relative to surface barometric pressure) mortality curves (times to 50% mortality versus excess gas pressure) for fish at all three depths essentially coincided. The significant measure of supersaturation appears to be the pressure of dissolved gases in excess of the sum of barometric and hydrostatic pressures. Steelheads held near the surface in supersaturated water for a near-lethal period and then lowered to a depth providing total hydrostatic compensation appeared to recover completely in about 2 hours. The longer fish remained at depth, the longer their survival time when they subsequently were reexposed to surface conditions.

  19. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  20. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Thompson, Bill

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  1. Comparative responses of speckled dace and cutthroat trout to air-supersaturated water

    SciTech Connect (OSTI)

    Nebeker, A.V.; Hauck, A.K.; Baker, F.D.; Weitz, S.L.

    1980-11-01

    Speckled dace (Rhinichthys osculus) are more tolerant of air-supersaturated water than adult or juvenile cutthroat trout (Salmo clarki). Speckled dace were tested in concentrations from 110 to 142% saturation and had a 96-hour median lethal concentration (LC50) of 140%, a 7-day LC50 of 137%, and 2-week LC50's of 129 and 131% saturation. The estimated mean threshold concentration, based on time to 50% death (TM50), was 123% saturation. The speckled dace also exhibited consistent external signs of gas bubble disease. Cutthroat trout were tested from 111 to 130% saturation and had 96-hour LC50's of 119 and 120% (adults) and 119 and 119% (juveniles) saturation. Estimated mean threshold concentrations (from TM50 values) were 117% (adults) and 114% (juveniles) saturation. Signs of gas bubble disease exhibited by the cutthroat trout were similar to those seen with other salmonids examined in earlier studies.

  2. Offset-free rail-to-rail derandomizing peak detect-and-hold circuit

    DOE Patents [OSTI]

    DeGeronimo, Gianluigi; O'Connor, Paul; Kandasamy, Anand

    2003-01-01

    A peak detect-and-hold circuit eliminates errors introduced by conventional amplifiers, such as common-mode rejection and input voltage offset. The circuit includes an amplifier, three switches, a transistor, and a capacitor. During a detect-and-hold phase, a hold voltage at a non-inverting in put terminal of the amplifier tracks an input voltage signal and when a peak is reached, the transistor is switched off, thereby storing a peak voltage in the capacitor. During a readout phase, the circuit functions as a unity gain buffer, in which the voltage stored in the capacitor is provided as an output voltage. The circuit is able to sense signals rail-to-rail and can readily be modified to sense positive, negative, or peak-to-peak voltages. Derandomization may be achieved by using a plurality of peak detect-and-hold circuits electrically connected in parallel.

  3. Impact of commuter-rail services in Toronto region

    SciTech Connect (OSTI)

    Wells, S.S.; Hutchinson, B.G.

    1996-07-01

    Ridership of the commuter-rail system that was implemented in the Greater Toronto Area (GTA) in 1967 increased at an annual, average compound rate of 11.4% until 1989. Demand has leveled substantially during 1990--94 and has averaged only 2.1% per year, which probably reflects the suburbanization of employment. Urban economic theory is used to explain the way in which central-business-district (CBD) employees respond differently to suburban commuter-rail services and rapid transit services, mainly serving the inner intermediate suburbs. Travel data collected in 1986 and 1991 confirmed the effects suggested by the theory. Commuter-rail passengers are drawn from the larger suburban households, living principally in single-family houses, and commuter-rail passengers are more sensitive to access and egress distances than subway passengers. Policies that improve the quality of access and egress components of commuting trips from the suburbs stimulate passenger demand. Also, land-use policies that promote high-density, residential development at suburban commuter-rail stations are unlikely to contribute significantly to commuter-rail demand, and the lakeshore commuter-rail line that has been in service since 1967 has not had a significant impact on residential sorting and on the generation of additional demands.

  4. Robotics virtual rail system and method

    DOE Patents [OSTI]

    Bruemmer, David J. (Idaho Falls, ID); Few, Douglas A. (Idaho Falls, ID); Walton, Miles C. (Idaho Falls, ID)

    2011-07-05

    A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

  5. Consistency in the Sum Frequency Generation Intensity and Phase Vibrational Spectra of the Air/Neat Water Interface

    SciTech Connect (OSTI)

    Feng, Ranran; Guo, Yuan; Lu, Rong; Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2011-06-16

    Tremendous progresses have been made in quantitative understanding and interpretation of the hydrogen bonding and ordering structure at the air/water interface since the first sum-frequency generation vibrational spectroscopy (SFG-VS) measurement on the neat air/water interface by Q. Du et al. in 1993 (PRL, 70, 2312-2316, 1993.). However, there are still disagreements and controversies on the consistency between the different experiment measurements and the theoretical computational results. One critical problem lies in the inconsistency between the SFG-VS intensity measurements and the recently developed SFG-VS phase spectra measurements of the neat air/water interface, which has inspired various theoretical efforts trying to understand them. In this report, the reliability of the SFG-VS intensity spectra of the neat air/water interface is to be quantitatively examined, and the sources of possible inaccuracies in the SFG-VS phase spectral measurement is to be discussed based on the non-resonant SHG phase measurement results. The conclusion is that the SFG-VS intensity spectra data from different laboratories are now quantitatively converging and in agreement with each other, and the possible inaccuracies and inconsistencies in the SFG-VS phase spectra measurements need to be carefully examined against the properly corrected phase standard.

  6. Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure

    Broader source: Energy.gov [DOE]

    Fractal dimensions of particle aggregates and the fringe lengths and fringe tortuosity within the primary soot particles has been assessed as functions of load, rail pressure, and biodiesel content.

  7. Coal-by-Rail Business-as-Usual Reference Case

    Broader source: Energy.gov [DOE]

    As proposed carbon emission standards reduce domestic coal use, the role of coal in the U.S. energy mix may be expected to decline. If such a decline were to occur, how would it affect rail traffic? Today, coal represents a major share of rail tonnage and gross revenue. While growth in other traffic―most notably, crude oil―may offset some of any potential decline in coal shipments, would it be sufficient? This paper explores trends in coal production volumes and use, rail tonnage and revenue, and the distribution of traffic origins and destinations in order to consider the impact of potential changes in future coal traffic. Rather than modeling discrete flows, it draws on historical data and forecasts maintained by the U.S. Department of Energy’s Energy Information Administration (EIA), industry studies and analyses, and background knowledge of the rail industry, specific routes and service territories, and commodity-level traffic volumes.

  8. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    modes, the Coal Waybill Data is based only on rail shipments. Due to the different nature of the data sources, users should exercise caution when attempting to combine the two...

  9. Proposed Work Scope for the Rail Topic Group

    Office of Environmental Management (EM)

    (TEC) Working Group's Rail Topic Group (RTG) is to provide stakeholder perspectives and ... or as necessary, reporting back to the full RTG on the bimonthly calls and at meetings. ...

  10. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  11. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  12. Kinetics of trans-cis isomerization in azobenzene dimers at an air-water interface

    SciTech Connect (OSTI)

    Kumar, Bharat; Suresh, K. A.

    2009-08-15

    We have studied the kinetics of trans to cis isomerization under the illumination of ultraviolet light, in the Langmuir monolayer of mesogenic azobenzene dimer, bis-[5-(4{sup '}-n-dodecyloxy benzoyloxy)-2-(4{sup ''}-methylphenylazo)phenyl] adipate, at an air-water interface. We find that the trans to cis isomerization reaction of the molecules in the monolayer shows deviation from the first-order kinetics unlike those reported on Langmuir monolayers of azobenzene molecules. We attribute the deviation from first-order kinetics to the simultaneous photoisomerization of trans isomers to form cis isomers and the reverse thermal isomerization of cis isomers to form trans isomers. Our analysis of the rate of change of mole fraction of trans isomers to form cis isomers indicates a first-order kinetics for trans to cis photoisomerization reaction and a second-order kinetics for cis to trans thermal isomerization reaction. This second-order kinetics mechanism is similar to the Lindemann-Hinshelwood mechanism for the unimolecular reactions at low concentration of reactants. The formation of the activated cis isomer by collisions is a slow process as compared to the decay of the activated cis isomer to trans isomer in the liquid expanded phase. This results in the second-order kinetics for the thermal isomerization of cis isomers.

  13. Correlation of Oil-Water and Air-Water Contact Angles of Diverse Silanized Surfaces and Relationship to Fluid Interfacial Tensions

    SciTech Connect (OSTI)

    Grate, Jay W.; Dehoff, Karl J.; Warner, Marvin G.; Pittman, Jonathan W.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Martinus

    2012-02-24

    The use of air-water, {Theta}{sub wa}, or air-liquid contact angles is customary in surface science, while oil-water contact angles {Theta}{sub ow}, are of paramount importance in subsurface multiphase flow phenomena including petroleum reocovery, nonaqueous phase liquid fate and transport, and geological carbon sequestration. In this paper we determine both the air-water and oil-water contact angles of silica surfaces modified with a diverse selection of silanes, using hexadecane as the oil. The silanes included alkylsilanes, alkylarylsilanes, and silanes with alkyl or aryl groups that are functionalized with heteroatoms such as N, O, and S. These silanes yielded surfaces with wettabilities from water-wet to oil wet, including specific silanized surfaces functionalized with heteroatoms that yield intermediate wet surfaces. The oil-water contact angles for clean and silanized surfaces, excluding one partially fluorinated surface, correlate linearly with air-water contact angles with a slope of 1.41 (R = 0.981, n = 13). These data were used to examine a previously untested theoretical treatment relating air-water and oil-water contact angles in terms of fluid interfacial energies. Plotting the cosines of these contact angles against one another, we obtain a linear relationship in excellent agreement with the theoretical treatment; the data fit cos {Theta}{sub ow} = 0.667 cos {Theta}{sub ow} + 0.384 (R = 0.981, n = 13), intercepting cos {Theta}{sub ow} = -1 at -0.284. The theoretical slope, based on the fluid interfacial tensions {Theta}{sub wa}, {Theta}{sub ow}, and {Theta}{sub oa}, is 0.67. We also demonstrate how silanes can be used to alter the wettability of the interior of a pore network micromodel device constructed in silicon/silica with a glass cover plate. Such micromodels are used to study multiphase flow phenomena. The contact angle of the resulting interior was determined in situ. An intermediate wet micromodel gave a contact angle in excellent agreement with that obtained on an open planar silica surface using the same silane.

  14. Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

  15. The Rail Alignment Environmental Impact Statement: An Update

    SciTech Connect (OSTI)

    R. Sweeney

    2005-01-20

    On July 23,2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the US. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based on public comments and the environmental analyses in the Repository EIS, DOE identified a preference for the Caliente rail corridor in Nevada. On April 8, 2004, DOE issued a Record of Decision (ROD) on the Mode of Transportation and Nevada Rail Corridor for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada. In this ROD, the DOE announced that it had decided to select the mostly rail scenario analyzed in the Repository EIS as the transportation mode both on a national basis and in the State of Nevada. Under the mostly rail scenario, the DOE would rely on a combination of rail, truck and possibly barge to transport to the repository site at Yucca Mountain up to 70,000 MTHM of spent nuclear fuel and high-level radioactive waste, with most of the spent nuclear fuel and high-level radioactive waste being transported by rail. This will ultimately require construction of a rail line in Nevada to the repository. In addition, the DOE has decided to select the Caliente rail corridor in which to examine potential alignments within which to construct that rail line. A corridor is a strip of land, approximately 400 meters (0.25 miles) wide, that encompasses one of several possible routes through which DOE could build a rail line. An alignment is the specific location of a rail line in a corridor, and would likely be 60 meters [200 feet] or less in width. Also on April 8, 2004, DOE issued a Notice of Intent to Prepare an Environmental Impact Statement for the Alignment, Construction, and Operation of a Rail Line to a Geologic Repository at Yucca Mountain, Nye County, NV. In the Notice of Intent, the Department announced its intent to prepare a Rail Alignment EIS to assist in selecting a possible alignment for construction of a rail line that would connect the repository at Yucca Mountain to an existing main rail line in Nevada. The Rail Alignment EIS also would consider the potential construction and operation of a rail-to-truck intermodal transfer facility, proposed to be located at the confluence of an existing mainline railroad and a highway, to support legal-weight truck transportation until the rail system is fully operational. This corridor is approximately 513 kilometers (319 miles) long and would cost an estimated $880 million (2001 dollars). Should DOE decide to build the Caliente corridor, it may be the longest rail line built in the United States since the Transcontinental Railroad was constructed in 1869. Some of the challenges in building this rail corridor are steep grades (the corridor crosses over 7 mountain ranges), isolated terrain, possible tunnels, and stakeholder acceptance.

  16. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    production systems with minimal water consumption by deploying: 1) a hybrid-waterair cooled condenser with low water consumption and 2) an enhanced turbine with high efficiency. ...

  17. Evaluating Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances Michael J. Iacono, Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421 USA 1. Overview Objectives: * Evaluate water vapor and temperature simulation in two versions of CAM3 by comparing modeled and observed cloud-cleared AIRS spectral radiances. * Use spectral differences to verify comparisons between modeled water vapor and temperature and observed

  18. Coal-by-Rail: A Business-as-Usual Reference Case | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal-by-Rail: A Business-as-Usual Reference Case Title Coal-by-Rail: A Business-as-Usual Reference Case Publication Type Report Year of Publication 2015 Authors Mintz, MM, Saricks,...

  19. Crude Oil Movements of Crude of by Rail between PAD Districts

    U.S. Energy Information Administration (EIA) Indexed Site

    Notes: Rail movements of crude oil are estimates based on EIA analysis of data from the Surface Transportation Board and other information. See movements of crude oil by rail for ...

  20. Turbine blade squealer tip rail with fence members

    DOE Patents [OSTI]

    Little, David A

    2012-11-20

    A turbine blade includes an airfoil, a blade tip section, a squealer tip rail, and a plurality of chordally spaced fence members. The blade tip section includes a blade tip floor located at an end of the airfoil distal from the root. The blade tip floor includes a pressure side and a suction side joined together at chordally spaced apart leading and trailing edges of the airfoil. The squealer tip rail extends radially outwardly from the blade tip floor adjacent to the suction side and extends from a first location adjacent to the airfoil trailing edge to a second location adjacent to the airfoil leading edge. The fence members are located between the airfoil leading and trailing edges and extend radially outwardly from the blade tip floor and axially from the squealer tip rail toward the pressure side.

  1. Microsoft Word - Summary of Rail Comparison for Topic Group 7-1-02.doc

    Office of Environmental Management (EM)

    7/1/2002 1 Summary of the TEC Working Group Rail Topic Group report entitled "Transportation Safety WIPP-PIG Rail Comparison" In 1999, the Transportation External Coordination (TEC) Working Group developed a report entitled the "TEC/WG Transportation Safety Rail Comparison" to provide summary information to TEC participants concerning operational approaches, for rail transport in addressing a variety of transportation issues, objectives, approaches and procedures arising from

  2. USED FUEL RAIL SHOCK AND VIBRATION TESTING OPTIONS ANALYSIS

    SciTech Connect (OSTI)

    Ross, Steven B.; Best, Ralph E.; Klymyshyn, Nicholas A.; Jensen, Philip J.; Maheras, Steven J.

    2014-09-29

    The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data that are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges) on the surrogate fuel assemblies, cask and cradle structures, and the railcar so that forces and deflections that would result in the greatest potential for damage to high burnup and long-cooled UNF can be determined. For purposes of this report we consider testing on controlled track when we have control of the track and speed to facilitate modeling.

  3. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    SciTech Connect (OSTI)

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V{sub b}) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel`s color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber.

  4. Rail assembly for use in a radioactive environment

    DOE Patents [OSTI]

    Watts, Ralph E.

    1989-01-01

    An improved rail assembly and method of construction thereof is disclosed herein that is particularly adapted for use with a crane trolley in a hot cell environment which is exposed to airborne and liquidborne radioactive contaminants. The rail assembly is generally comprised of a support wall having an elongated, rail-housing recess having a floor, side wall and ceiling. The floor of the recess is defined at least in part by the load-bearing surface of a rail, and is substantially flat, level and crevice-free to facilitate the drainage of liquids out of the recess. The ceiling of the recess overhangs and thereby captures trolley wheels within the recess to prevent them from becoming dislodged from the recess during a seismic disturbance. Finally, the interior of the recess includes a power track having a slot for receiving a sliding electrical connector from the crane trolley. The power track is mounted in an upper corner of the recess with its connector-receiving groove oriented downwardly to facilitate the drainage of liquidborne contaminants and to discourage the collection of airborne contaminants within the track.

  5. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  6. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  7. Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Cooling Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Cooled Buildings","Cooling Equipment (more than one may apply)" ,,,"Residential-Type Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged Air Conditioning Units","Swamp Coolers","Other" "All

  8. Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Cooling Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Cooled Buildings","Cooling Equipment (more than one may apply)" ,,,"Residential-Type Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged Air Conditioning Units","Swamp Coolers","Other" "All

  9. Towards a unified picture of the water self-ions at the air-water interface: a density functional theory perspective

    SciTech Connect (OSTI)

    Baer, Marcel D.; Kuo, I-F W.; Tobias, Douglas J.; Mundy, Christopher J.

    2014-07-17

    The propensities of the water self ions, H3O+ and OH- , for the air-water interface has implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O+ and/or OH- prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs. interfacial behavior of H3O+ and OH- that employs forces derived from density functional theory with a generalized gradient approximation exchangecorrelation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O+ as a function of the position of the ion in a 215-molecule water slab. The PMF is flat, suggesting that H3O+ has equal propensity for the air-water interface and the bulk. We compare the PMF for H3O+ to our previously computed PMF for OH- adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs. the bulk are connected with interfacial propensity. We find that the solvation shell of H3O+ is only slightly dependent on its position in the water slab, while OH- partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions. DJT was supported by National Science Foundation grant CHE-0909227. CJM was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. The potential of mean force required resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC05-00OR22725. The remaining simulations and analysis used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. at at Lawrence Berkeley National Laboratory. MDB is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.

  10. Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers

    SciTech Connect (OSTI)

    Howard-Reed, C.; Corsi, R.L.; Moya, J.

    1999-07-01

    Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

  11. Dual-circuit segmented rail phased induction motor

    DOE Patents [OSTI]

    Marder, Barry M. (Albuquerque, NM); Cowan, Jr., Maynard (Albuquerque, NM)

    2002-01-01

    An improved linear motor utilizes two circuits, rather that one circuit and an opposed plate, to gain efficiency. The powered circuit is a flat conductive coil. The opposed segmented rail circuit is either a plurality of similar conductive coils that are shorted, or a plurality of ladders formed of opposed conductive bars connected by a plurality of spaced conductors. In each embodiment, the conductors are preferably cables formed from a plurality of intertwined insulated wires to carry current evenly.

  12. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

  13. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    SciTech Connect (OSTI)

    Buelow, S.J.; Allen, D.; Anderson, G.K.

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  14. ISSUANCE 2015-06-30: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

  15. Rail transport of western coal: the history of rail deregulation and its influence on western coal resource development; prospects for legislative change

    SciTech Connect (OSTI)

    Smith, J.N.; Rose, R.R.

    1985-04-01

    The one major cloud on the horizon for the future of western coal outside the region is the high cost of transportation. With rail transportation costs running as much as 75% of the delivered price to some of the Gulf States, the ability to keep rail costs in check becomes critical to the future of western coal. Four years of experience with deregulation of the railroads and the performance of the Interstate Commerce Commission (ICC) under the new regulatory environment have led many shippers and buyers of rail transported commodities to the belief that national legislation is needed to give better protection to shippers in monopoly service areas. A tentative legislative effort began in the last Congress. Proposals for rail rate relief for captive shippers are taking more formidable shape in the 99th Congress with the organization of a well-financed and staffed coalition of coal and utility companies. They are seeking amendments to the Staggers Act which more explicitly define the protections and procedures available to captive shippers in advancing complaints through the ICC. Industrial shippers have formed a coalition of their own for fair rail service practices. Finally, another group has emerged in recent months seeking a bolder strategy for rail rate relief. This group asserts that unfair rail practices violate the antitrust laws. At the same time, the railroads are building their defenses and developing alliances with interests in the shipping community that would resist a return to greater rail regulation. While the outcome of this controversy is uncertain, the issue of rail rate equity and reregulation promises to become one of the more active and hotly debated issues in the 99th Congress. However it comes out, the results will have a lasting impact on many western states, their present economy and future development.

  16. Process for analyzing CO[sub 2] in air and in water

    DOE Patents [OSTI]

    Atwater, J.E.; Akse, J.R.; DeHart, J.

    1999-06-08

    The process of this invention comprises providing a membrane for separating CO[sub 2] into a first CO[sub 2] sample phase and a second CO[sub 2] analyte phase. CO[sub 2] is then transported through the membrane thereby separating the CO[sub 2] with the membrane into a first CO[sub 2] sample phase and a second CO[sub 2] analyte liquid phase including an ionized, conductive, dissociated CO[sub 2] species. Next, the concentration of the ionized, conductive, dissociated CO[sub 2] species in the second CO[sub 2] analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO[sub 2] to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO[sub 2] in the first CO[sub 2] sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO[sub 2] species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO[sub 2] species are detected using the conductivity measuring instrument. 43 figs.

  17. Process for analyzing CO.sub.2 in air and in water

    DOE Patents [OSTI]

    Atwater, James E. (Eugene, OR); Akse, James R. (Roseburg, OR); DeHart, Jeffrey (Yoncalla, OR)

    1999-01-01

    The process of this invention comprises providing a membrane for separating CO.sub.2 into a first CO.sub.2 sample phase and a second CO.sub.2 analyte phase. CO.sub.2 is then transported through the membrane thereby separating the CO.sub.2 with the membrane into a first CO.sub.2 sample phase and a second CO.sub.2 analyte liquid phase including an ionized, conductive, dissociated CO.sub.2 species. Next, the concentration of the ionized, conductive, dissociated CO.sub.2 species in the second CO.sub.2 analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO.sub.2 to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO.sub.2 in the first CO.sub.2 sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO.sub.2 species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO.sub.2 species are detected using the conductivity measuring instrument.

  18. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  19. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  20. Practical ways to abate air and water pollution worldwide including a unique way to significantly curb global warming

    SciTech Connect (OSTI)

    Snell, J.R.

    1998-07-01

    This paper points out that in the next 50 years it will largely be the developing countries of the world which will continue to industrialize rapidly and hence pollute the water and air of not only their countries but that this pollution is becoming global (80% of the World's population.) From the author's 25 years of consulting experience in the developing countries, their greatest need is to have available to them low cost, innovative processes for pollution abatement will be neglected and the whole world will suffer immensely. The paper discusses in some detail the type of innovative low cost methods which have successfully been used in the categories of wastewater and solid wastes and names 6 other categories where many others exist. All these innovative methods need to be discovered, listed, and tested for quality and dependability, and then made widely available. Large Environmental Engineering Universities and International Consulting Engineering firms need to be organized to undertake these important tasks. The paper also points out the connection between Global Warming and the Solid waste industry and shows how it can be controlled inexpensively by employing a new, unique, and rapid method of converting municipal refuse into methane and then using that to make electricity. Information given in this paper could lead to a vast reduction in future pollution, with the resulting better global health and at the same time save trillions of dollars.

  1. Distribution of air-water mixtures in parallel vertical channels as an effect of the header geometry

    SciTech Connect (OSTI)

    Marchitto, Annalisa; Fossa, Marco; Guglielmini, Giovanni

    2009-07-15

    Uneven phase distribution in heat exchangers is a cause of severe reductions in thermal performances of refrigeration equipment. To date, no general design rules are available to avoid phase separation in manifolds with several outlet channels, and even predicting the phase and mass distribution in parallel channels is a demanding task. In the present paper, measurements of two-phase air-water distributions are reported with reference to a horizontal header supplying 16 vertical upward channels. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2-1.2 and 1.5-16.5 m/s, respectively. Among the fitting devices used, the insertion of a co-axial, multi-hole distributor inside the header confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of parallel channels connected to the header. (author)

  2. AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA

    SciTech Connect (OSTI)

    Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

    2010-07-01

    In June 2009 Romania successfully completed the worlds first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

  3. Reducing the environmental impact of road and rail vehicles

    SciTech Connect (OSTI)

    Mayer, R.M.; Poulikakos, L.D.; Lees, A.R.; Heutschi, K.; Kalivoda, M.T.

    2012-01-15

    Methods have been developed to measure in situ the dynamic impact of both road and rail vehicles on the infrastructure and the environment. The resulting data sets have been analysed to quantify the environmental impacts in a transparent manner across both modes. A primary concern is that a small number of vehicles are being operated outside safe or regulatory limits which can have a disproportionate large impact. The analysis enables the various impacts to be ranked across both modes so enabling one to discern the benefits of intermodal transport. The impact of various policy options is considered and how to identify vehicles which can be classified as environmentally friendly. This would require European agreement as many heavy goods vehicle operate across country borders.

  4. Steering system for a train of rail-less vehicles

    DOE Patents [OSTI]

    Voight, Edward T.

    1983-01-01

    A steering system for use with a multiple vehicle train permits tracking without rails of one vehicle after another. This system is particularly useful for moving conveyor systems into and out of curved paths of room and pillar underground mine installations. The steering system features an elongated steering bar pivotally connected to each of adjacent vehicles at end portions of the bar permitting angular orientation of each vehicle in respect to the steering bar and other vehicles. Each end portion of the steering bar is linked to the near pair of vehicle wheels through wheel yoke pivot arms about king pin type pivots. Movement of the steering bar about its pivotal connection provides proportional turning of the wheels to effect steering and tracking of one vehicle following another in both forward and reverse directions.

  5. Air Cooling | Open Energy Information

    Open Energy Info (EERE)

    Air cooling is limited on ambient temperatures and typically require a larger footprint than Water Cooling, but when water restrictions are great enough to prevent the...

  6. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Rail

  7. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  8. Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems

    Broader source: Energy.gov [DOE]

    According to the 2007 National Transit Databases, the energy intensity of light transit rail systems in the U.S. ranges from about 2,000 Btu per passenger-mile to about 31,000 Btu per passenger...

  9. DOE to Transport Moab Mill Tailings by Rail | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the U.S. Highway 191 transportation corridor that would be used to haul the material. ... The substantial rail infrastructure work is anticipated to begin in fall 2008 and is ...

  10. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    DOE Patents [OSTI]

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  11. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    SciTech Connect (OSTI)

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01

    Romania successfully completed the worlds first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  12. 2015 EIA Energy Conference Crude Shipments and Rail Prioritization: A Shipper Perspective

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Conference Crude Shipments and Rail Prioritization: A Shipper Perspective Presented by: Jamie Heller Hellerworx, Inc. 301-654-1980 jamie@hellerworx.com Washington, DC, June 16, 2015 Presentation to: 2 * 2 Everyone Wants Flexibility! * Pipeline cheaper than rail, but ... * Shippers follow favorable basis differentials * Railroads redeploy assets as traffic shifts * Excess capacity costs money - no one wants to pay * Planning helps, but this is oil trading 3 Barge Movements of Crude 4

  13. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 2, Work plan: Phase 1, Task 4, Field Investigation: Draft

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  14. Air Handler Condensate Recovery at the Environmental Protection Agencys Science and Ecosystem Support Division: Best Management Practice Case Study #14: Alternate Water Sources, Federal Energy Management Program (FEMP) (Fact Sheet)

    Energy Savers [EERE]

    Severe drought in the southeastern United States caused the U.S. Environmental Protection Agency (EPA) to address the need for water conservation and develop a water management plan for their Science and Ecosystem Support Division (SESD). The water management plan aimed to reduce SESD's potable water usage (more than 2.4 million gallons in fiscal year 2008) through an air handler condensate recovery project. The EPA SESD encompasses 12 acres in Athens, Georgia. A single laboratory building was

  15. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  16. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland

    SciTech Connect (OSTI)

    Wan, Shiqiang [Chinese Academy of Sciences; Norby, Richard J [ORNL; Childs, Joanne [ORNL; Weltzin, Jake [University of Tennessee, Knoxville (UTK)

    2007-01-01

    Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global C cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, rising temperature, and changing precipitation in a constructed old-field grassland in eastern Tennessee, USA. Model ecosystems of seven old-field species in 12 open-top chambers (4 m in diameter) were treated with two CO2 (ambient and ambient plus 300 ppm) and two temperature (ambient and ambient plus 3 C) levels. Two split plots with each chamber were assigned with high and low soil moisture levels. During the 19-month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of testing time period. Temperature sensitivity of soil respiration was reduced by air warming, lower in the wet than the dry side, and not affected by CO2 treatment. Variations of soil respiration responses with soil temperature and soil moisture ranges could be primarily attributable to the seasonal dynamics of plant growth and its responses to the three treatments. Using a conceptual model to interpret the significant relationships of treatment-induced changes in soil respiration with changes in soil temperature and moisture observed in this study, we conclude that elevated CO2, air warming, and changing soil water availability had both direct and indirect effects on soil respiration via changes in the three controlling factors: soil temperature, soil moisture, and C substrate. Our results demonstrate that the response of soil respiration to climatic warming should not be represented in models as a simple temperature response function. A more mechanistic understanding of the direct and indirect impacts of concurrent global change drivers on soil respiration is needed to facilitate the interpretation and projection of ecosystem and global C cycling in response to atmospheric and climate change.

  17. Reorientation of the free OH group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    SciTech Connect (OSTI)

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called free O-H group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the free O-H group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations. The polarization dependent SFG-VS results show that the average tilt angle of the free O-H changes from about 35.3 degrees 0.5 degrees to 43.4 degrees 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.

  18. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. March 17, 2015 Real-time data monitoring ...

  19. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Air-to-Water Heat Pumps With Radiant Delivery in Low Load Homes Tucson, Arizona and Chico, California PROJECT INFORMATION Project Name: Field testing of air-to-water heat pump Location: Tucson, AZ and Chico, CA Partners: La Mirada Homes www.lamiradahomes.net Chico Green Builders Daikin www.daikinac.com ARBI http://arbi.davisenergy.com/ Building Component: HVAC, domestic hot water Application: New, single family Year Tested: 2011-2012 Applicable Climate Zones: Hot-dry, cold PERFORMANCE DATA Cost

  20. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Sampling and analysis plan (SAP): Phase 1, Task 4, Field Investigation: Draft

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  1. Technology Solutions Case Study: Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California

    SciTech Connect (OSTI)

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  2. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  3. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  4. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and mediumhigh (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  5. Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air, Update Number 2 to October 1996

    SciTech Connect (OSTI)

    Blake, D.M.

    1997-01-01

    The Solar Industrial Program has developed processes that destroy hazardous substances in or remove them from water and air. The processes of interest in this report are based on the application of heterogeneous photocatalysts, principally titanium dioxide or modifications thereof, but work on other heterogeneous catalysts is included in this compilation. This report continues bibliographies that were published in May, 1994, and October, 1995. The previous reports included 663 and 574 citations, respectively. This update contains an additional 518 references. These were published during the period from June 1995 to October 1996, or are references from prior years that were not included in the previous reports. The work generally focuses on removing hazardous contaminants from air or water to meet environmental or health regulations. This report also references work on properties of semiconductor photocatalysts and applications of photocatalytic chemistry in organic synthesis. This report follows the same organization as the previous publications. The first part provides citations for work done in a few broad categories that are generic to the process. Three tables provide references to work on specific substances. The first table lists organic compounds that are included in various lists of hazardous substances identified by the US Environmental Protection Agency (EPA). The second table lists compounds not included in those categories, but which have been treated in a photocatalytic process. The third table covers inorganic compounds that are on EPA lists of hazardous materials or that have been treated by a photocatalytic process. A short update on companies that are active in providing products or services based on photocatalytic processes is provided.

  6. ESPC Success Story - Dyess Air Force Base

    Energy Savers [EERE]

    DYESS AIR FORCE BASE DYESS, TEXAS Water Conservation and Green Energy ESPC SUCCESS STORY Dyess Air Force Base and surrounding west Texas has been under extreme-drought water ...

  7. Algorithm and simulation development in support of response strategies for contamination events in air and water systems.

    SciTech Connect (OSTI)

    Waanders, Bart Van Bloemen

    2006-01-01

    Chemical/Biological/Radiological (CBR) contamination events pose a considerable threat to our nation's infrastructure, especially in large internal facilities, external flows, and water distribution systems. Because physical security can only be enforced to a limited degree, deployment of early warning systems is being considered. However to achieve reliable and efficient functionality, several complex questions must be answered: (1) where should sensors be placed, (2) how can sparse sensor information be efficiently used to determine the location of the original intrusion, (3) what are the model and data uncertainties, (4) how should these uncertainties be handled, and (5) how can our algorithms and forward simulations be sufficiently improved to achieve real time performance? This report presents the results of a three year algorithmic and application development to support the identification, mitigation, and risk assessment of CBR contamination events. The main thrust of this investigation was to develop (1) computationally efficient algorithms for strategically placing sensors, (2) identification process of contamination events by using sparse observations, (3) characterization of uncertainty through developing accurate demands forecasts and through investigating uncertain simulation model parameters, (4) risk assessment capabilities, and (5) reduced order modeling methods. The development effort was focused on water distribution systems, large internal facilities, and outdoor areas.

  8. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    SciTech Connect (OSTI)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R.

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  9. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  10. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  11. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  12. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely that the next step will be accomplished through a combination of joint venture partnering and licensing of the technology.

  13. Hybrid and Advanced Air Cooling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. This project will identify and analyze advanced air cooling strategies thatallow air-cooled geothermal power plants to maintain a high electric power output during periods of high air dry bulb temperatures while minimizing water consumption.

  14. Air Sealing

    SciTech Connect (OSTI)

    2000-02-01

    This fact sheet describes ventilation and the importance of sealing air leaks and providing controlled ventilation.

  15. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    SciTech Connect (OSTI)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  16. Parametric study of radiation dose rates from rail and truck spent fuel transport casks

    SciTech Connect (OSTI)

    Parks, C.V.; Hermann, O.W.; Knight, J.R.

    1985-08-01

    Neutron and gamma dose rates from typical rail and truck spent fuel transport casks are reported for a variety of spent PWR fuel sources and cask conditions. The IF 300 rail cask and NLI 1/2 truck cask were selected for use as appropriate cask models. All calculations (cross section preparation, generation of spent fuel source terms, radiation transport calculations, and dose evaluation) were performed using various modules of the SCALE computational system. Conditions or parameters for which there were variations between cases include: detector distance from cask, spent fuel cooling time, the setting of fuel or neutron shielding cavities to either wet or dry, the cobalt content of assembly materials, normal fuel assemblies and consolidated cannisters, the geometry mesh interval size, and the order of the angular quadrature set. 13 refs., 6 figs., 9 tabs.

  17. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  18. Air Handler Condensate Recovery at the Environmental Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Handler Condensate Recovery at the Environmental Protection Agency's Science and ... The plan aimed to reduce potable water usage through an air handler condensate recovery ...

  19. Air filter

    SciTech Connect (OSTI)

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  20. Surface Environmental Surveillance Project: Locations Manual Volume 1 – Air and Water Volume 2 – Farm Products, Soil & Vegetation, and Wildlife

    SciTech Connect (OSTI)

    Fritz, Brad G.; Patton, Gregory W.; Stegen, Amanda; Poston, Ted M.

    2009-01-01

    This report describes all environmental monitoring locations associated with the Surface Environmental Surveillance Project. Environmental surveillance of the Hanford site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, Environmental Protection Program, and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The environmental surveillance sampling design is described in the Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operation Office (DOE/RL-91-50). This document contains the locations of sites used to collect samples for the Surface Environmental Surveillance Project (SESP). Each section includes directions, maps, and pictures of the locations. A general knowledge of roads and highways on and around the Hanford Site is necessary to successfully use this manual. Supplemental information (Maps, Gazetteer, etc.) may be necessary if user is unfamiliar with local routes. The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media to demonstrate compliance with applicable environmental quality standards and public exposure limits, and assessing environmental impacts. Project personnel annually collect selected samples of ambient air, surface water, agricultural products, fish, wildlife, and sediments. Soil and vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, volatile organic compounds, and total organic carbon.

  1. High-speed rail transportation. Hearing before the Subcommittee on Transportation and Hazardous Materials of the Committee on Energy and Commerce, US House of Representatives, One Hundred Second Congress, First Session, October 16, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    H.R. 1087 would authorize a high speed rail transportation development and commercialization program, establish a national high speed rail transportation policy, and promote development and commercialization of high speed rail transportation by providing Federal guarantees of certain investments in high speed rail transportation facilities. Testimony was heard from representatives of MAGLEV USA, Federal Railroad Administration, National Railroad Passenger Corporation (Amtrak), the Office of Technology Assessment, MAGLEV, Inc., National Maglev Initiative, High Speed Rail Association, and the Texas High-Speed Rail Association. Additional information was supplied by the Coalition of Northeastern Governors, Republic Locomotive, Washington State High Speed Ground Transportation, and the Texas High Speed Authority.

  2. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    2012-11-30

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  3. Hill Air Force Base | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy savings performance contracting at Hill Air Force Base generated much interest ... There was a need to reduce energy and water use at Hill Air Force Base, which is subjected ...

  4. air force

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  5. Fact #636: August 16, 2010 Transportation Energy Use by Mode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Use by Mode, 2008 Bar graph showing the transportation energy use by mode (buses, rail, pipeline, water, air, mediumheavy trucks, and light vehicles) for ...

  6. MHK Technologies/Ocean Powered Compressed Air Stations | Open...

    Open Energy Info (EERE)

    Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and...

  7. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    SciTech Connect (OSTI)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  8. Truck and rail charges for shipping spent fuel and nuclear waste

    SciTech Connect (OSTI)

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

  9. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  10. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    SciTech Connect (OSTI)

    Halstead, R. J.; Dilger, F.

    2003-02-25

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million.

  11. Air conditioning apparatus

    SciTech Connect (OSTI)

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  12. Improving Air Quality with Solar Energy; U.S. DOE Clean Energy and Air Quality Integration Initiative Fact Sheet Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality with Solar Energy Many states are seeking additional air pollution control strategies. Zero-emission solar technologies, such as solar electricity and solar water heating, can help air quality and energy offcials in cities, states, and federal agencies improve air quality, achieve Clean Air Act goals, and reduce pollution control costs for both industry and taxpayers. Solar technologies provide energy for heating, cooling, and lighting homes and heating water without any direct

  13. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  14. Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509

    SciTech Connect (OSTI)

    Boyle, J.D.; Fort, E. Joseph; Lorenz, William; Mills, Andy

    2013-07-01

    Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

  15. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  16. Fire tests and analyses of a rail cask-sized calorimeter.

    SciTech Connect (OSTI)

    Figueroa, Victor G.; Lopez, Carlos; Suo-Anttila, Ahti Jorma; Greiner, Miles

    2010-10-01

    Three large open pool fire experiments involving a calorimeter the size of a spent fuel rail cask were conducted at Sandia National Laboratories Lurance Canyon Burn Site. These experiments were performed to study the heat transfer between a very large fire and a large cask-like object. In all of the tests, the calorimeter was located at the center of a 7.93-meter diameter fuel pan, elevated 1 meter above the fuel pool. The relative pool size and positioning of the calorimeter conformed to the required positioning of a package undergoing certification fire testing. Approximately 2000 gallons of JP-8 aviation fuel were used in each test. The first two tests had relatively light winds and lasted 40 minutes, while the third had stronger winds and consumed the fuel in 25 minutes. Wind speed and direction, calorimeter temperature, fire envelop temperature, vertical gas plume speed, and radiant heat flux near the calorimeter were measured at several locations in all tests. Fuel regression rate data was also acquired. The experimental setup and certain fire characteristics that were observed during the test are described in this paper. Results from three-dimensional fire simulations performed with the Cask Analysis Fire Environment (CAFE) fire code are also presented. Comparisons of the thermal response of the calorimeter as measured in each test to the results obtained from the CAFE simulations are presented and discussed.

  17. Long-Term Oxidation of Candidate Cast Iron and Advanced Austenitic Stainless Steel Exhaust System Alloys from 650-800 C in Air with Water Vapor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Michael P; Muralidharan, Govindarajan; Leonard, Donovan N; Haynes, James A

    2014-01-01

    The oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 C in air with 10% H2O. At 650 C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 C and higher, whereas the oxide scales formed on SiMo cast iron remained adherentmore » from 700-800 C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 C compared to 650-700 C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  18. Long-Term Oxidation of Candidate Cast Iron and Advanced Austenitic Stainless Steel Exhaust System Alloys from 650-800 C in Air with Water Vapor

    SciTech Connect (OSTI)

    Brady, Michael P; Muralidharan, Govindarajan; Leonard, Donovan N; Haynes, James A

    2014-01-01

    The oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 C in air with 10% H2O. At 650 C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 C and higher, whereas the oxide scales formed on SiMo cast iron remained adherent from 700-800 C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 C compared to 650-700 C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.

  19. Rapid microwave hydrothermal synthesis of ZnGa{sub 2}O{sub 4} with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water

    SciTech Connect (OSTI)

    Sun Meng; Li Danzhen; Zhang Wenjuan; Chen Zhixin; Huang Hanjie; Li Wenjuan; He Yunhui; Fu Xianzhi

    2012-06-15

    ZnGa{sub 2}O{sub 4} was synthesized from Ga(NO{sub 3}){sub 3} and ZnCl{sub 2} via a rapid and facile microwave-assisted hydrothermal method. The photocatalytic properties of the as-prepared ZnGa{sub 2}O{sub 4} were evaluated by the degradation of pollutants in air and aqueous solution under ultraviolet (UV) light illumination. The results demonstrated that ZnGa{sub 2}O{sub 4} had exhibited efficient photocatalytic activities higher than that of commercial P25 (Degussa Co.) in the degradation of benzene, toluene, and ethylbenzene, respectively. In the liquid phase degradation of dyes (methyl orange, Rhodamine B, and methylene blue), ZnGa{sub 2}O{sub 4} has also exhibited remarkable activities higher than that of P25. After 32 min of UV light irradiation, the decomposition ratio of methyl orange (10 ppm, 150 mL) over ZnGa{sub 2}O{sub 4} (0.06 g) was up to 99%. The TOC tests revealed that the mineralization ratio of MO (10 ppm, 150 mL) was 88.1% after 90 min of reaction. A possible mechanism of the photocatalysis over ZnGa{sub 2}O{sub 4} was also proposed. - Graphical abstract: In the degradation of RhB under UV light irradiation, ZnGa{sub 2}O{sub 4} had exhibited efficient photo-activity, and after only 24 min of irradiation the decomposition ratio was up to 99.8%. Highlights: Black-Right-Pointing-Pointer A rapid and facile M-H method to synthesize ZnGa{sub 2}O{sub 4} photocatalyst. Black-Right-Pointing-Pointer The photocatalyst exhibits high activity toward benzene and dyes. Black-Right-Pointing-Pointer The catalyst possesses more surface hydroxyl sites than TiO{sub 2} (P25). Black-Right-Pointing-Pointer Deep oxidation of different aromatic compounds and dyes over catalyst.

  20. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  1. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    SciTech Connect (OSTI)

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  2. Tips: Sealing Air Leaks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seal air leaks around fireplace chimneys, furnaces, and gas-fired water heater vents with fire-resistant materials such as sheet metal or sheetrock and furnace cement caulk. ...

  3. ARM - Field Campaign - AIRS validation IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the purpose of providing in situ validation data for development and testing of AIRS water vapor retrievals. This was a user support activity with funding provided by the user...

  4. ARM - Field Campaign - AIRS Validation Sonde Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the purpose of providing in situ validation data for development and testing of AIRS water vapor retrievals. This is a user support activity with funding provided by the user....

  5. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    SciTech Connect (OSTI)

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.

    2004-10-15

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of JxB propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (T{sub e}) of hundreds of eV in the arc as revealed by the simulation. Hence T{sub e} of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90 eV, which is confirmed by Langmuir electric probe measurements. Density n{sub e} of this metal plasma is shown to be in the range 4x10{sup 21}-6x10{sup 21} m{sup -3} and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2x10{sup 6} cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  6. Researching power plant water recovery

    SciTech Connect (OSTI)

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  7. FSM 2500 Watershed and Air Management | Open Energy Information

    Open Energy Info (EERE)

    FSM 2500 Watershed and Air ManagementLegal Abstract Forest Service manual setting forth policy for protection and development of soil and water resources shall be components...

  8. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  9. 2013 Federal Energy and Water Management Award Winner David Morin

    Broader source: Energy.gov [DOE]

    Poster features 2013 Federal Energy and Water Management Award winner David Morin of the U.S. Air Force's Laughlin Air Force Base in Texas.

  10. Hickam Air Force Base

    Broader source: Energy.gov [DOE]

    Hickam Air Force Base spans 2,850 acres in Honolulu, Hawaii. The military base is home to the 15th Airlift Wing, the Hawaii Air National Guard, and the Pacific Air Forces headquarters.

  11. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  12. UV water disinfector

    DOE Patents [OSTI]

    Gadgil, A.; Garud, V.

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system and an air-suspended bare UV lamp are disclosed. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir. 7 figs.

  13. UV water disinfector

    DOE Patents [OSTI]

    Gadgil, Ashok; Garud, Vikas

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system, and an air-suspended bare UV lamp. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir.

  14. Cromer Cycle Air Conditioner

    Broader source: Energy.gov [DOE]

    New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity

  15. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  16. Determining the Right Air Quality for Your Compressed Air System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Right Air Quality for Your Compressed Air System Determining the Right Air Quality for Your Compressed Air System This tip sheet outlines the main factors for determining the right air quality for compressed air systems. COMPRESSED AIR TIP SHEET #5 PDF icon Determining the Right Air Quality for Your Compressed Air System (August 2004) More Documents & Publications Effect of Intake on Compressor Performance Improving Compressed Air System Performance: A Sourcebook

  17. Isokinetic air sampler

    DOE Patents [OSTI]

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  18. Guidance manual for the identification of hazardous wastes delivered to publicly owned treatment works by truck, rail, or dedicated pipe

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    The manual is directed towards two types of facilities: First, guidance is to POTWs that wish to preclude the entry of hazardous wastes into their facilities and avoid regulation and liability under RCRA. Administrative/technical recommendations for control of such wastes is provided, many of which are already in use by POTWs. Second, the responsibilities of POTWs that choose to accept hazardous wastes from truck, rail, or dedicated pipeline are discussed, including relevant regulatory provisions, strict liability and corrective action requirements for releases, and recommended procedures for waste acceptance/management. The manual describes the RCRA regulatory status of wastes that POTW operators typically may encounter. The manual includes a Waste Monitoring Plan. Appendices give the following: RCRA lists; RCRA listed hazardous wastes; examples of POTW sewer use ordinance language, waste hauler permit; waste tracking form, notification of hazardous waste activity; uniform hazardous waste manifest; biennial hazardous waste report; and state hazardous waste contacts.

  19. Verification Test Suite (VERTS) For Rail Gun Applications using ALE3D: 2-D Hydrodynamics & Thermal Cases

    SciTech Connect (OSTI)

    Najjar, F M; Solberg, J; White, D

    2008-04-17

    A verification test suite has been assessed with primary focus on low reynolds number flow of liquid metals. This is representative of the interface between the armature and rail in gun applications. The computational multiphysics framework, ALE3D, is used. The main objective of the current study is to provide guidance and gain confidence in the results obtained with ALE3D. A verification test suite based on 2-D cases is proposed and includes the lid-driven cavity and the Couette flow are investigated. The hydro and thermal fields are assumed to be steady and laminar in nature. Results are compared with analytical solutions and previously published data. Mesh resolution studies are performed along with various models for the equation of state.

  20. Molded polymer solar water heater

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  1. Detecting Air Leaks

    Broader source: Energy.gov [DOE]

    You may already know where some air leakage occurs in your home, such as an under-the-door draft, but you'll need to find the less obvious gaps to properly air seal your home.

  2. Determining the Right Air Quality for Your Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    coating, climate control Process Air Food and pharmaceutical process air, ... Contaminants can enter a compressed air system at the compressor intake, or can be ...

  3. Simple Interactive Models for better air quality (SIM-air) |...

    Open Energy Info (EERE)

    Interactive Models for better air quality (SIM-air) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Interactive Models (SIM-air) AgencyCompany Organization:...

  4. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS

    SciTech Connect (OSTI)

    Chang H Oh; Eung S Kim

    2011-09-01

    Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  5. Distribution Category: Water R

    Office of Scientific and Technical Information (OSTI)

    Distribution Category: Water R e a c t o r Safety- R e s e a r c h - - A n a l y s i s ... 8 10 I TOTAL VOLUMETRIC FLUX, ms Fig. 9. Fully Developed Air-Water Flow Data.30 ANL Neg. ...

  6. Air Sparging Decision Tool

    Energy Science and Technology Software Center (OSTI)

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  7. Water-Heating Dehumidifier - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Water-Heating Dehumidifier Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA small appliance developed at ORNL dehumidifies air and then recycles heat to warm water in a water heater. The device circulates cool, dry air in summer and warm air in winter. In addition, the invention can cut the energy required to run

  8. Federal Energy and Water Management Awards 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Kansas City Air Route Traffic Control Center Olathe, Kansas In FY 2013 ... amount of water being expelled from the cooling towers into the sewer discharge system. ...

  9. Fact #896: October 26, 2015 More than 80% of Transportation Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residual fuel oil is heavier oil which can be used in vessel bunkering. Fact 896 Dataset ... Type, 2013 Fuel Type Light Vehicles MedHeavy Trucks & Buses Air Water Rail Pipeline ...

  10. Promising Technology: Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    A heat pump water heater uses electricity to transfer heat from the ambient air to stored water, as opposed to an electric resistance water heater, which uses electricity to generate the heat directly. This enables the heat pump water heater to be 2 to 3 times as efficient as an electric resistance water heater.

  11. Determining the Right Air Quality for Your Compressed Air System - Compressed Air Tip Sheet #5

    SciTech Connect (OSTI)

    2004-08-01

    BestPractices Program tip sheet discussing how to determine the right air quality for compressed air systems.

  12. Personal continuous air monitor

    DOE Patents [OSTI]

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  13. Adsorption air conditioner

    DOE Patents [OSTI]

    Rousseau, Jean L. I.

    1979-01-01

    A solar powered air conditioner using the adsorption process is constructed with its components in a nested cylindrical array for compactness and ease of operation.

  14. Fact Sheet: Isothermal Compressed Air Energy Storage (August 2013) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Isothermal Compressed Air Energy Storage (August 2013) Fact Sheet: Isothermal Compressed Air Energy Storage (August 2013) SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. The system captures the heat from compression in water and stores the captured heat until it is needed again for expansion. Storing the captured heat eliminates the need for a gas combustion turbine and improves efficiency. For more information about how OE performs

  15. History of Air Conditioning

    Broader source: Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  16. AIR RADIOACTIVITY MONITOR

    DOE Patents [OSTI]

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  17. Portable oven air circulator

    DOE Patents [OSTI]

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  18. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  19. Protective air lock

    DOE Patents [OSTI]

    Evans, Herbert W.

    1976-03-30

    A device suitable for preventing escape and subsequent circulation of toxic gases comprising an enclosure which is sealed by a surrounding air lock, automatic means for partially evacuating said enclosure and said air lock and for ventilating said enclosure and means for disconnecting said enclosure ventilating means, whereby a relatively undisturbed atmosphere is created in said enclosure.

  20. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  1. Hot air drum evaporator. [Patent application

    DOE Patents [OSTI]

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  2. Air Handler Condensate Recovery at the Environmental Protection Agency's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science and Ecosystem Support Division | Department of Energy Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division Air Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division Case study details EPA's decision to address water conservation and management for its Science and Ecosystem Support Division due to a severe drought. The plan aimed to reduce potable water usage through an air

  3. Water augmented indirectly-fired gas turbine systems and method

    DOE Patents [OSTI]

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  4. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  5. Air Shower Simulations

    SciTech Connect (OSTI)

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  6. Air heating system

    DOE Patents [OSTI]

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  7. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  8. Recent Progress in Retrieving Air Temperature Profiles and Air...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scanning Radiometer Data D. Cimini University of L'Aquila ...

  9. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  10. Building America Case Study: Air Leakage and Air Transfer Between...

    Energy Savers [EERE]

    Air Leakage and Air Transfer Between Garage and Living Space Waldorf, Maryland PROJECT INFORMATION Project Name: Ventilation Effectiveness Location: Waldorf, MD Partners: Building ...

  11. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  12. Agenda of critical issues: coal price and availability. Final report. [Includes effect of legislation, sulfur content and rail transport costs

    SciTech Connect (OSTI)

    Tennican, M.L.; Wayland, R.E.; Weinstein, D.M.

    1984-10-01

    Temple, Barker, and Sloane, Inc. developed an agenda of critical issues regarding future coal prices and coal availability for EPRI. TBS interviewed nearly 50 utility, coal company, and railroad officials, academic experts, and coal consultants; held a one-day participatory workshop; and conducted a literature review and follow-up interviews with selected utilities. TBS found four causes of uncertainty in the utility industry over future coal prices. First, the acid deposition proposals in Congress vary in terms of the structure of the legislation, the costs of compliance, and the impact on coal prices; in turn these uncertainties impede utility fuel planning and decision making. Second, powerplant-specific factors will have a major impact on whether utilities switch or scrub in response to acid deposition legislation; existing analyses do not capture these factors. The most important powerplant-specific factors are matching unit characteristics with coal specifications, retrofit scrubber costs, and differing state regulatory environments. Third, TBS found that utility fuel managers have great uncertainty over the availability and future cost of compliance coal. TBS estimated that the existing production capacity of eastern compliance coal is at least twice as high as current production. Fourth, TBS concluded that uncertainty over future coal transportation rates was a major reason for utilities' uncertainty over future delivered prices of coal. Critical transportation-related issues are the strategic and tactical response of eastern coal producers to the Staggers Act; the impact on rail rates of the sale of Conrail, of possible transcontinental mergers, and of multi-modal mergers; and the future pricing policies that eastern railroads will adopt in response to imports of Colombian coal. 21 references.

  13. A Fully Automated Method for CT-on-Rails-Guided Online Adaptive Planning for Prostate Cancer Intensity Modulated Radiation Therapy

    SciTech Connect (OSTI)

    Li, Xiaoqiang; Quan, Enzhuo M.; Li, Yupeng; Pan, Xiaoning; Zhou, Yin; Wang, Xiaochun; Du, Weiliang; Kudchadker, Rajat J.; Johnson, Jennifer L.; Kuban, Deborah A.; Lee, Andrew K.; Zhang, Xiaodong

    2013-08-01

    Purpose: This study was designed to validate a fully automated adaptive planning (AAP) method which integrates automated recontouring and automated replanning to account for interfractional anatomical changes in prostate cancer patients receiving adaptive intensity modulated radiation therapy (IMRT) based on daily repeated computed tomography (CT)-on-rails images. Methods and Materials: Nine prostate cancer patients treated at our institution were randomly selected. For the AAP method, contours on each repeat CT image were automatically generated by mapping the contours from the simulation CT image using deformable image registration. An in-house automated planning tool incorporated into the Pinnacle treatment planning system was used to generate the original and the adapted IMRT plans. The cumulative dosevolume histograms (DVHs) of the target and critical structures were calculated based on the manual contours for all plans and compared with those of plans generated by the conventional method, that is, shifting the isocenters by aligning the images based on the center of the volume (COV) of prostate (prostate COV-aligned). Results: The target coverage from our AAP method for every patient was acceptable, while 1 of the 9 patients showed target underdosing from prostate COV-aligned plans. The normalized volume receiving at least 70 Gy (V{sub 70}), and the mean dose of the rectum and bladder were reduced by 8.9%, 6.4 Gy and 4.3%, 5.3 Gy, respectively, for the AAP method compared with the values obtained from prostate COV-aligned plans. Conclusions: The AAP method, which is fully automated, is effective for online replanning to compensate for target dose deficits and critical organ overdosing caused by interfractional anatomical changes in prostate cancer.

  14. Guide to Air Sealing

    SciTech Connect (OSTI)

    2011-02-01

    Air sealing is one of the most cost-effective ways to improve the comfort and energy efficiency of your home. Hire a certified professional contractor for best results.

  15. Air bag restraint device

    DOE Patents [OSTI]

    Marts, Donna J.; Richardson, John G.

    1995-01-01

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle's rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump.

  16. Air bag restraint device

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.

    1995-10-17

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

  17. Air Sealing Windows

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet addresses windows and may also be applied to doors and other pre-assembled elements installed in building enclosures that also perform an air barrier function.

  18. Compressed Air Systems

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load compressors, cycling refrigerated dryers (up to 200 CFM capacity), no-loss...

  19. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  20. Breathing zone air sampler

    DOE Patents [OSTI]

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  1. Air Products & Chemicals, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Air Products is partnering with Denbury Green Pipeline – Texas, LLC to capture and sequester one million tons of carbon dioxide per year from two existing steam-methane reformers at Air Products’ hydrogen-production facility in Port Arthur, Texas. The captured CO2 is transported by pipeline to oil fields in eastern Texas for enhanced oil recovery. The total award value of the project is $431 million, with $284 million comprising DOE’s 66 percent share.

  2. Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Air Station Oceana | Department of Energy Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Case study details Naval Air Station Oceana findings that its heating needs could be met more efficiently by replacing its central plant with a

  3. Air Quality | Open Energy Information

    Open Energy Info (EERE)

    Air Quality Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAirQuality&oldid612070" Feedback Contact needs updating Image needs updating...

  4. ARM - Lesson Plans: Air Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Pressure Objective The objective of this ... Important Points to Understand Air has weight and exerts pressure on everything with which ...

  5. Distribution System Audits, Leak Detection, and Repair: Kirtland Air Force Base Leak Detection and Repair Program

    SciTech Connect (OSTI)

    2009-01-14

    Water Best Management Practice #3 Fact Seet: Outlines how a leak detection and repair program helped Kirtland Air Force Base perform distribution system audits, leak detection, and repair to conserve water site-wide.

  6. DOE Technical Targets for Fuel Cell System Humidifiers and Air...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    side) kPa 3.5 Water transfer at full flowa g s-1 5 Durabilityb h 5,000 Maximum air ... kPa 75 Water transfer flux at full flowa g min-1cm-2 0.025 Durabilityb h 5,000 Costc ...

  7. Arsenic removal from water

    DOE Patents [OSTI]

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  8. AIR COOLED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  9. Environmental Assessment for the Transfer of 1100 AREA, Southern Rail Connection and Rolling Stock, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    N /A

    1998-08-01

    This environmental assessment (EA) has been prepared to assess potential environmental impacts associated with the U.S. Department of Energy's proposed action: the transfer of the 1100 Area, southern rail connection and rolling stock to a non-federal entity. Impact information contained herein will be used by the U.S. Department of Energy, Richland Operations Office Manager, to determine if the proposed action is a major federal action significantly affecting the quality of the human environment. If the proposed action is determined to be major and significant, an environmental impact statement will be prepared. If the proposed action is determined not to be major and significant, a Finding of No Significant Impact (FONSI) will be issued and the action can proceed. Criteria used to evaluate significance can be found in Title 40, Code of Federal Regulations (CFR) 1508.27. This EA was prepared in compliance with the ''National Environmental Policy Act'' (NEPA) of 1969, as amended, the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR 1500-1508), and the U.S. Department of Energy Implementing Procedures for NEPA (10 CFR 1021). The following is a description of each section of the EA. (1) Purpose and Need for Action. This provides a brief statement concerning the problem or opportunity the U.S. Department of Energy is addressing with the proposed action. As necessary, background information is provided. (2) Description of the Proposed Action. A description with sufficient detail to identify potential environmental impacts is provided. (3) Alternatives to the Proposed Action. Reasonable alternative actions, which would address the Purpose and Need, are described. A no action alternative, as required by 10 CFR 1021, also is described. (4) Affected Environment. This provides a brief description of the locale in which the proposed action takes place, and which may be environmentally impacted. (5) Environmental Impacts. The range of environmental impacts, beneficial and adverse, are described for the proposed action. Impacts of alternatives briefly are discussed. (6) Permits and Regulatory Requirements. A brief description of permits and regulatory requirements for the proposed action is provided. (7) Organizations Consulted. Any outside agencies, groups, or individuals contacted as part of environmental assessment documentation preparation are listed. (8) References. Documents used to provide information or data are listed. The appendices contain additional information necessary to support an understanding of the proposed action, alternatives, and potential impacts is provided. Comments resulting from review of the environmental assessment by states and tribes or other stakeholders and the response to those comments will be included in the appendices.

  10. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  11. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  12. Minimize Compressed Air Leaks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Air Leaks Minimize Compressed Air Leaks This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations. COMPRESSED AIR TIP SHEET #3 PDF icon Minimize Compressed Air Leaks (August 2004) More Documents & Publications Eliminate Inappropriate Uses of Compressed Air Determine the Cost of Compressed Air for Your Plant Analyzing Your Compressed Air System

  13. Air Proportional Counter

    DOE Patents [OSTI]

    Simpson, J.A. Jr.

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  14. AIR M A IL

    Office of Legacy Management (LM)

    MEMORlAL DRIVE AIR M A IL . AtFxb.-zf .7.-i- M r. s. .II. Gown - Gentlemen: Re: A.E.C. Contract No. We assume the weight of the 9-l2" biscuits will:be 107'poutids ...

  15. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recurring Reserves Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud Data For: 2001 Next Release Date: October 2003 U. S. Coal-Producing Districts...

  16. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Previous Data Years Year: 2013 2011 2010 2008 2002 Go Background and Methodology The data ... The initial report on coal transportation rates covered the years 2001 through 2008, ...

  17. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data, much of the information had to be withheld for confidentiality...

  18. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    EIA uses the confidential version of the STB Waybill data, which includes actual revenue for shipments that originate and terminate at specific locations. The STB Waybill...

  19. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    on research by the U.S. Department of Energy and was only incorporated into the GIS analysis below; it is not in any other elements of this report. See Methodology for greater...

  20. Federal Energy and Water Management Awards 2014

    Energy Savers [EERE]

    Davis-Monthan Air Force Base U.S. Air Force Davis-Monthan Air Force Base, Arizona Davis-Monthan Air Force Base's Energy Team worked with local utilities, military construction design teams, other Air Force agencies, and the Department of Energy to implement projects and programs that saved 11.6 billion Btu and $235,000 in FY 2013 from the prior year. Central plant base cooling projects included installation of energy efficient chillers in a new central plant with a chilled water distribution

  1. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  2. New Report Outlines Potential of Future Water Resource Recovery...

    Energy Savers [EERE]

    Such a shift offers the potential to reduce the financial burdens on municipalities, decrease stress on energy systems, cut air and water pollution, improve system resiliency to ...

  3. 2011 Federal Energy and Water Management Award Winners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... into real policy and infrastructure change to tailor energy saving concepts to the ... Additionally in FY 2010 a systematic steam, water, and air waste reduction program was ...

  4. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  5. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  6. Air cathode structure manufacture

    DOE Patents [OSTI]

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  7. Fresh air indoors

    SciTech Connect (OSTI)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  8. ARM - Field Campaign - AIRS Validation Soundings Phase III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : AIRS Validation Soundings Phase III 2004.04.01 - 2004.09.29 Lead Scientist : Jimmy Voyles For data sets, see below. Abstract Radiosonde launches from NSA were timed to coincide with overpasses of the Aqua satellite carrying the AIRS sensor for the purpose of providing in situ validation data for development and testing of AIRS water vapor retrievals

  9. Fundamentals of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

  10. ARM - Instrument - ccn-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsccn-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "ccn-air" does not exist.

  11. ARM - Instrument - cpc-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscpc-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "cpc-air" does not exist.

  12. ARM - Instrument - hk-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentshk-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "hk-air" does not exist.

  13. Combustion air preheating

    SciTech Connect (OSTI)

    Wells, T.A.; Petterson, W.C.

    1986-10-14

    This patent describes a process for steam cracking hydrocarbons to cracked gases in a tubular furnace heated by burning a mixture of fuel and combustion air and subsequently quenching the cracked gases. Waste heat is recovered in the form of high pressure steam and the combustion air is preheated prior to introduction into the furnace. The improvement described here comprises: (a) superheating the high pressure steam and expanding at least a portion of the superheated high pressure steam through a first turbine to produce shaft work and superheated medium pressure steam at a temperature between 260/sup 0/ and 465/sup 0/ C.; (b) expanding at least a portion of the superheated medium pressure steam through a second turbine to produce shaft work and low pressure steam at a temperature between 120/sup 0/ and 325/sup 0/ C.; and (c) preheating the combustion air by indirect heat exchange with at least a portion of the superheated medium pressure stream and at least a portion of the low pressure steam.

  14. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  15. Air quality committee

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Committees on air quality, coal, forest resources, and public lands and land use report on legislative, judicial, and administrative developments in 1979. There was no new significant air quality legislation, but a number of lawsuits raised questions about State Implementation Plans, prevention of significant deterioration, the Clean Air Act Amendments, new source performance standards, and motor vehicle emissions. Efforts to increase coal utilization emphasized implementation of the Power Plant and Industrial Fuel Use Act of 1978 and the Surface Mining Program. New legislation protects certain forest products from exploitation and exportation. Forest-related lawsuits focused on the RARE II process. Land-use legislation modified credit assistance to coastal zones and the language of interstate land sales, established a new agency to consolidate flood-insurance programs, and added protection to archaeological resources. Land-use-related lawsuits covered coastal zone management, interstate land sales, Indian reservations, and land-use planning in the context of civil rights, antitrust action, exclusionary zoning, comprehensive planning, and regional general welfare. Other suits addressed grants, leasing, claims, grazing rights, surveys, and other matters of public lands concern. Administrative actions centered on implementing the Coastal Zone Management Act, establishing the Council of Energy Resource Tribes, and developing guidelines for energy development. 147 references. (DCK)

  16. Maintaining System Air Quality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintaining System Air Quality Maintaining System Air Quality This tip sheet discusses how to maintain air quality in compressed air systems through proper use of equipment. COMPRESSED AIR TIP SHEET #12 PDF icon Maintaining System Air Quality (August 2004) More Documents & Publications Remove Condensate with Minimal Air Loss Engineer End Uses for Maximum Efficiency Stabilizing System Pressure

  17. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  18. Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Air Station Oceana | Department of Energy Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana January 7, 2015 - 4:52pm Addthis Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Addthis Related Articles Building Science Corporation worked with Transformations, Inc., on a subdivision of

  19. Air-Source Integrated Heat Pump with Lennox

    Broader source: Energy.gov [DOE]

    The ultimate goal of this project is to collaborate with Lennox under a Cooperative Research and Development Agreement (CRADA) to develop efficiency-doubling residential space conditioning and water heating technology based on the air-source integrated heat pump (AS-IHP) concept developed by ORNL for the Department of Energy (DOE)/Building Technologies Office (BTO). The CRADA collaboration with Lennox has resulted in a two-compressor (or two box) prototype design; a VS air-source heat pump coupled with a separate water heating-dehumidification (WH/DH) module.

  20. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    Aire Valley Environmental Jump to: navigation, search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire...

  1. Common Air Conditioner Problems | Department of Energy

    Office of Environmental Management (EM)

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of iStockphotoBanksPhotos. A...

  2. Analyzing Your Compressed Air System; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Training * Fundamentals of Compressed Air ... Compressed air needs are defned by the air quality and ... Plants with a fatter load profle can use simpler control ...

  3. ARM - Field Campaign - AIRS Validation Sonde Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The AIRS instrument was intended to make highly accurate measurements of air temperature, humidity, clouds, and surface temperature. The data collected by AIRS was...

  4. ARM - Field Campaign - AIRS Validation Sonde Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The AIRS instrument is intended to make highly accurate measurements of air temperature, humidity, clouds, and surface temperature. The data collected by AIRS will be...

  5. California Air Resources Board | Open Energy Information

    Open Energy Info (EERE)

    Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name: California Air Resources Board Place: Sacramento, California Website: www.arb.ca.gov...

  6. Tips: Air Conditioners | Department of Energy

    Energy Savers [EERE]

    Air Conditioners Tips: Air Conditioners Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ...

  7. Federal Energy and Water Management Awards 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CAPT Christopher Chope, Tonnie Harrison, David Hayden, Forrest Honderich, Andrew Porter U.S. Navy Naval Air Station Oceana Virginia Beach, Virginia During FY 2013, Naval Air Station Oceana energy program initiatives saved 18 billion Btu and 39 million gallons of water from the prior year. Naval Air Station Oceana's energy program sought to incorporate strategies that would limit financial stress on an already tight budget. They focused on energy awareness, new technologies to improve existing

  8. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    SciTech Connect (OSTI)

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature rise monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.

  9. Air Risk Information Support Center

    SciTech Connect (OSTI)

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  10. Simplified air change effectiveness modeling

    SciTech Connect (OSTI)

    Rock, B.A.; Anderson, R.; Brandemuehl, M.J.

    1992-06-01

    This paper describes recent progress in developing practical air change effectiveness modeling techniques for the design and analysis of air diffusion in occupied rooms. The ultimate goal of this continuing work is to develop a simple and reliable method for determining heating, ventilating, and air-conditioning (HVAC) system compliance with ventilation standards. In the current work, simplified two-region models of rooms are used with six occupancy patterns to find the air change effectiveness. A new measure, the apparent ACH effectiveness, yields the relative ventilation performance of an air diffusion system. This measure can be used for the prediction or evaluation of outside air delivery to the occupants. The required outside air can be greater or less than that specified by ventilation standards such as ASHRAE Standard 62-89.

  11. Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel

    Office of Environmental Management (EM)

    | Department of Energy Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin The purpose of this paper is to provide the public and policy makers accurate estimates of energy efficiencies, water requirements, water availability, and CO2 emissions associated with the development of the 60 percent portion of the Piceance Basin where economic potential is the greatest, and where environmental

  12. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  13. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  14. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, J.E.; Williams, D.W.

    1995-01-01

    A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  15. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, Joao E.; Williams, Daniel W.

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  16. Water injected fuel cell system compressor

    DOE Patents [OSTI]

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  17. Central Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioning Central Air Conditioning Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls, floors, or ceilings covered by

  18. Tritium gettering from air with hydrogen uranyl phosphate

    SciTech Connect (OSTI)

    Souers, P.C.; Uribe, F.S.; Stevens, C.G.; Tsugawa, R.T.

    1985-01-01

    Hydrogen uranyl phosphate (HUP), a solid proton electrolyte, getters tritium gas and water vapor from air by DC electrical action. We have reduced the formation of residual tritiated water to less than 2%, and demonstrated that HUP can clean a 5.5 m/sup 3/ working glove box. Data are presented to illustrate the parameters of the gettering and a model is derived. Two other tritium gettering electrolytes have been discovered. 9 refs., 5 figs., 3 tabs.

  19. Reactive Air Aluminization

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  20. Air Force Renewable Energy Programs

    Broader source: Energy.gov [DOE]

    Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  1. Cold air systems: Sleeping giant

    SciTech Connect (OSTI)

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  2. Air bearing vacuum seal assembly

    DOE Patents [OSTI]

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  3. Clean Air Act, Section 309

    Energy Savers [EERE]

    CLEAN AIR ACT 309* 7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and ...

  4. Federal Energy and Water Management Awards 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jeffrey DeVore, Stephen Grimes, Gerry Mitchell, Alfonso Sanchez U.S. Air Force Wright-Patterson Air Force Base, Ohio In FY 2013 a team of architects and engineers from Wright-Patterson's 88 Air Base Wing Civil Engineering Division successfully salvaged and renovated an underused, historic 53,000 square foot hangar built in 1934, increasing usable laboratory space by 60% while reducing water use by 45% and energy use by about 30%. The new energy efficient building allowed the Air Force Research

  5. SustainX Inc Isothermal Compressed Air Energy Storage Project Description

    Energy Savers [EERE]

    SustainX Inc Isothermal Compressed Air Energy Storage Project Description SustainX is developing and demonstrating a modular, market-ready energy storage system that uses compressed air as the storage medium. SustainX uses a crankshaft-based drivetrain to convert electrical energy into potential energy stored as compressed air. SustainX's ICAES system captures the heat from compression in water and stores the captured heat until it is needed again for expansion. Storing the captured heat

  6. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Water Security HomeTag:Water Security Electricity use by water service sector and county. Shown are electricity use by (a) ...

  7. EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor

    Broader source: Energy.gov [DOE]

    This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

  8. water scarcity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  9. water savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  10. water infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  11. Water Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  12. drinking water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  13. Water Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership ...ate.mcmordie@pnnl.gov * Francis Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com ...

  14. Kosciusko REMC- Residential Geothermal and Air-source Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Kosciusko REMC offers rebates (as bill credits) to residential members for the purchase and installation of high efficiency air-source heat pumps, geothermal heat pumps, and electric water heaters....

  15. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  16. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of air quality monitors within an exhaust stack. Nuclear facilities have three additional air sampling systems. LANL samples and analyzes air to assess effects on workers, the public, animals, and plants. As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. How we do it

  17. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  18. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  19. Protective supplied breathing air garment

    DOE Patents [OSTI]

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  20. Protective supplied breathing air garment

    DOE Patents [OSTI]

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  1. ARM - Instrument - co-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsco-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Carbon Monoxide- Airborne (CO-AIR) Instrument Categories Airborne Observations, Atmospheric Carbon Contact(s) Stephen Springston Brookhaven National Laboratory (631) 344-4477 srs@bnl.gov

  2. ARM - Instrument - gustprobe-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgustprobe-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Aircraft Gust Probe (GUSTPROBE-AIR) Instrument Categories Airborne Observations Contact(s) Annette Koontz Pacific Northwest National Laboratory Developer (509) 375-3609 annette.koontz@pnnl

  3. AIR FORCE SPECIAL WEAPONS CENTER

    Office of Legacy Management (LM)

    HEADQUARTERS aII?y 9 AIR FORCE SPECIAL WEAPONS CENTER 1 AIR FORCE SYSTEMS COMMAND . - KlRTlAND AIR FORCE BASE, NEW MEXICO - k FINAL REPORT O N AIR FORCE PARTICIPATION PROJECT RULISON .1 O c t o b e r 1969 P r e p a r e d by : CONT INENTAL TEST D I V I S ION DIRECTORATE OF NUCLEAR FIELD OPERATIONS This page intentionally left blank INDEX AIR FORCE PARTICIPATION I N PROJECT RULISON FINAL REPORT PARAGRAPH BASIC REPORT SUBJECT R e f e r e n c e s PAGE 2 G e n e r a l 1 3 P l a n n i n g 3 4 Command

  4. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  5. Femtosecond laser ablation of brass in air and liquid media

    SciTech Connect (OSTI)

    Shaheen, M. E.; Department of Physics, Faculty of Sciences, Tanta University, Tanta ; Gagnon, J. E.; Fryer, B. J.; Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4

    2013-06-07

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  6. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  7. Microsoft PowerPoint - Air Soil Water rev3 - Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SALT PILE SAMPLING RESULTS (dpmg) (Bqg) South Face of Salt Pile 3132014 Below MDC Below MDC East Face of Salt Pile 3132014 Below MDC Below MDC West Face of Salt Pile 313...

  8. ARM - Field Campaign - AIRS Water Vapor Experiment - Ground ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Raman Lidar Yes Schmidlin Balloon-borne sounding system(s) Yes Hagan Laser Hygrometer Sonde Yes Lesht Surface Temperature and Relative Humidity Reference System Yes Turner Raman ...

  9. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect (OSTI)

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model of a room in which whole-field supply air mixing maps of two vertical planes were measured using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent dye was used to simulate the supply airflow; and the resulting concentrations within the water filled model show how the supply air mixes with the room air and are an analog for temperature (for thermal loads) or fresh air (for ventilation). In addition to performing experiments over a range of flow rates, we also changed register locations and examined the effects for both heating and cooling operation by changing the water density (simulating air density changes due to temperature changes) using dissolved salt.

  10. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface water, storm water and springs. April 12, 2012 Quarterly Groundwater monitoring attended by LANL managers and the Northern New Mexico Citizens Advisory Board LANL scientists brief the Northern New Mexico Citizens Advisory Board during quarterly groundwater monitoring of the well network around Area G. Contact

  11. Water Summit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advisory: White House to host Water Summit March 21, 2016 Los Alamos watershed research among featured projects LOS ALAMOS, N.M., March 21, 2016-On Tuesday, March 22, 2016-World Water Day-the Administration will host a White House Water Summit to raise awareness of the national importance of water and to highlight new commitments and announcements that the Administration and non-Federal institutions are making to build a sustainable water future. A project from Los Alamos National Laboratory

  12. Federal Energy and Water Management Awards 2014

    Energy Savers [EERE]

    1st Special Operations Civil Engineer Squadron U.S. Air Force Hurlburt Field, Florida In FY 2013 Hurlburt Field Air Force Base modified its water reuse system to improve capacity, resulting in savings of 13 million gallons of water in only four months-a 9% reduction from the previous year. The $4.9 million project added more than 40,000 linear feet of piping and a 500,000 gallon storage tank to the existing distribution system, increasing the amount of water available for reuse. Previously the

  13. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect (OSTI)

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  14. High Performance Cathodes for Li-Air Batteries

    SciTech Connect (OSTI)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  15. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  16. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ºC and achieve energy conversion efficiencies greater than 50%.

  17. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  18. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  19. Dynamic and other secondary benefits of compressed air energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.

    1984-05-01

    Dynamic benefits of compressed air energy storage include load following, voltage regulation, provision for emergency power, and spinning reserve. Other secondary benefits include environmental acceptability and economic feasibility within the spectrum of potential energy storage methods. Geologic reservoir candidates are salt cavities, hard rock caverns and water-bearing permeable formations occurring as structural traps; the compatibility of solution-mined salt cavities with desired dynamic benefits is illustrated by positive results at Huntorf, West Germany. Air injection into and withdrawal from an aquifer has been conducted successfully at Pittsfield, Illinois. Environmental impacts are believed to be less important than corresponding impacts in rival storage technologies.

  20. Synthetic fuel concept to steal CO2 from air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthetic fuel concept Synthetic fuel concept to steal CO2 from air Lab has developed a low-risk, transformational concept, called Green Freedom(tm), for large-scale production of carbon-neutral, sulfur-free fuels and organic chemicals from air and water. February 12, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources,

  1. EPA Air Pollution and the Clean Air Act Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Pollution and the Clean Air Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Air Pollution and the Clean Air Act Webpage Abstract...

  2. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, Armin

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  3. Materials that Improve the Cost-Effectiveness of Air Barrier Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Materials that Improve the Cost-Effectiveness of Air Barrier Systems Materials that Improve the Cost-Effectiveness of Air Barrier Systems Addthis 1 of 3 3M has developed a primer-less self-adhered membrane that serves as an air, liquid water, and water vapor barrier. This technology installs in up to half the time of asphalt-based membranes, which will lead to installed costs that are similar or lower than that of asphalt-based membranes. Image: 3M 2 of 3 3M has

  4. Materials that Improve the Cost-Effectiveness of Air Barrier Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Materials that Improve the Cost-Effectiveness of Air Barrier Systems Materials that Improve the Cost-Effectiveness of Air Barrier Systems 1 of 3 3M has developed a primer-less self-adhered membrane that serves as an air, liquid water, and water vapor barrier. This technology installs in up to half the time of asphalt-based membranes, which will lead to installed costs that are similar or lower than that of asphalt-based membranes. Image: 3M 2 of 3 3M has developed a

  5. Assessment of Small Modular Reactor Suitability for Use On or Near Air

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Force Space Command Installations SAND 2016-2600 | Department of Energy Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600 Assessment of Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600 This report assesses the suitability of using US-developed light water SMR technology to provide energy for Schriever Air Force Base, CO and Clear Air Force Station, AK, as well as broader SMR

  6. DunoAir | Open Energy Information

    Open Energy Info (EERE)

    DunoAir Jump to: navigation, search Name: DunoAir Place: Hessen, Germany Zip: 6865 VX Sector: Wind energy Product: Doorwerth-based wind project developer. References: DunoAir1...

  7. Is there something in the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control the Present Is there something in the air? Is there something in the air? LANL implements a conscientious program of sampling to ensure air quality. August 1, 2013 ...

  8. Metal-Air Battery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Metal-Air Battery Battelle Memorial Institute Contact ... The open electrochemical cells may function as metal-air batteries.Benefits Metal-air ...

  9. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of ...

  10. Heating, Ventilation and Air Conditioning Efficiency

    Energy Savers [EERE]

    Functions of HVAC Systems The purpose of a Heating, Ventilation and Air Conditioning ... energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. ...

  11. Commercial Compressed Air Systems Program

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load screw and vane compressors, cycling refrigerated thermal mass dryers (up to 30...

  12. ARM - Instrument - inletcvi-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsinletcvi-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "inletcvi

  13. ARM - Instrument - inletisok-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsinletisok-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "inletisok

  14. Clean Air Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Environment » Environmental Policy and Assistance » Clean Air Act Clean Air Act The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation's air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources. The CAA contains titles

  15. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior

  16. The Clean Air Interstate Rule

    SciTech Connect (OSTI)

    Debra Jezouit; Frank Rambo

    2005-07-01

    On May 12, 2005, EPA promulgated the Clean Air Interstate Rule, which overhauls and expands the scope of air emissions trading programs in the eastern United States. The rule imposes statewide caps on emissions of nitrogen oxides and sulfur dioxide to be introduced in two phases, beginning in 2009. This article briefly explains the background leading up to the rule and summarizes its key findings and requirements. 2 refs., 1 fig., 1 tab.

  17. Ductless Mini-Split Air Conditioners

    Broader source: Energy.gov [DOE]

    Ductless mini-split air conditioners are a good choice if you want a zoned air conditioning system but have no ducts in your house.

  18. Preheated Combustion Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preheated Combustion Air This tip sheet describes how to improve process heating efficiency by preheating combustion air for burners. PROCESS HEATING TIP SHEET 1 PDF icon ...

  19. Compressed Air Storage Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Compressed Air Storage Strategies (August 2004) More Documents & Publications Compressed Air System Control Strategies Stabilizing System Pressure Effect of Intake on ...

  20. Save the World Air | Open Energy Information

    Open Energy Info (EERE)

    the World Air Jump to: navigation, search Name: Save the World Air Place: Santa Barbara, California Zip: 93101 Product: California-based, device manufacturer for better fuel...

  1. Room Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    frequently. Based on size alone, an air conditioner generally needs 20 Btu for each square foot of living space. Other important factors to consider when selecting an air...

  2. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  3. Maintaining System Air Quality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintaining System Air Quality (August 2004) More Documents & Publications Remove Condensate with Minimal Air Loss Engineer End Uses for Maximum Efficiency Stabilizing System...

  4. Property:AirMeasurement | Open Energy Information

    Open Energy Info (EERE)

    String Description MHK Axial Load Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Barometric Pressure (Air);Precipitation (Air);Relative...

  5. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and ...

  6. Reactive Air Aluminizing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Reactive Air Aluminizing Pacific Northwest National Laboratory Contact PNNL About This Technology Reactive Air Aluminizing process diagram ...

  7. Heating Ventilation and Air Conditioning Efficiency | Department...

    Energy Savers [EERE]

    Heating Ventilation and Air Conditioning Efficiency Heating Ventilation and Air Conditioning Efficiency This presentation covers common pitfalls that lead to wasted energy in ...

  8. ARM - Lesson Plans: Air Density and Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. ...

  9. Lithium Air Electrodes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Air Electrodes Pacific Northwest National Laboratory Contact PNNL About This Technology A comparison chart illustrates that Li-Air electrodes offer the highest energy ...

  10. Hopi Tribe Clean Air Partnership Project

    Energy Savers [EERE]

    HOPI TRIBE CLEAN AIR PARTNERSHIP PROJECT Roger Tungovia, Project Manager Ken Lomayestewa, ... Change the name from Hopi Clean Air Partnership Project to Hopi Renewable Energy Office ...

  11. Air Liquide Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name: Air Liquide Hydrogen Energy Address: 6, Rue Cognacq-Jay Place: Paris, France Zip: 75321 Sector:...

  12. Analytical modeling of a hydraulically-compensated compressed-air energy-storage system

    SciTech Connect (OSTI)

    McMonagle, C.A.; Rowe, D.S.

    1982-12-01

    A computer program was developed to calculate the dynamic response of a hydraulically-compensated compressed air energy storage (CAES) system, including the compressor, air pipe, cavern, and hydraulic compensation pipe. The model is theoretically based on the two-fluid model in which the dynamics of each phase are presented by its set of conservation equations for mass and momentum. The conservation equations define the space and time distribution of pressure, void fraction, air saturation, and phase velocities. The phases are coupled by two interface equations. The first defines the rate of generation (or dissolution) of gaseous air in water and can include the effects of supersaturation. The second defines the frictional shear coupling (drag) between the gaseous air and water as they move relative to each other. The relative motion of the air and water is, therefore, calculated and not specified by a slip or drift-velocity correlation. The total CASE system is represented by a nodal arrangement. The conservation equations are written for each nodal volume and are solved numerically. System boundary conditions include the air flow rate, atmospheric pressure at the top of the compensation pipe, and air saturation in the reservoir. Initial conditions are selected for velocity and air saturation. Uniform and constant temperature (60/sup 0/F) is assumed. The analytical model was used to investigate the dynamic response of a proposed system.Investigative calculations considered high and low water levels, and a variety of charging and operating conditions. For all cases investigated, the cavern response to air-charging, was a damped oscillation of pressure and flow. Detailed results are presented. These calculations indicate that the Champagne Effect is unlikely to cause blowout for a properly designed CAES system.

  13. Remove Condensate with Minimal Air Loss | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remove Condensate with Minimal Air Loss This tip sheet outlines several condensate removal methods as part of maintaining compressed air system air quality. COMPRESSED AIR TIP ...

  14. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into...

  15. U.S. Marine Corps Stand at Forefront of Energy and Water Savings

    Broader source: Energy.gov [DOE]

    This fact sheet is an overview of the U.S. Marine Corps Beaufort Air Station's energy and water savings accomplishments.

  16. U.S. Marine Corps Stand at Forefront of Energy and Water Savings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This fact sheet is an overview of the U.S. Marine Corps Beaufort Air Station's energy and water savings accomplishments.

  17. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic technology communities.

    Water Power Information Resources Water Power Information Resources How Hydropower Works How Hydropower Works See a detailed view of the inside of a hydropower energy generation system. Read more Marine and Hydrokinetic Technology Database on OpenEI Marine and Hydrokinetic Technology Database

  18. Evaluate fundamental approaches to longwall dust control: Subprogram H, Air canopies for longwalls

    SciTech Connect (OSTI)

    Rajan, S.; Ruggieri, S.K.

    1990-05-01

    This report describes the laboratory development and evaluation of an air canopy concept for longwall faces. The objective in an underground application would be to create a clean air zone along the face walkway by equipping the shields with water-powered scrubbers or other devices. Contaminated air would be extracted, cleaned and reinjected into the breathing zone of face personnel. The concept was evaluated in a full scale longwall test facility by equipping alternate shields with simulated air canopies. A variety of canopy configurations and airflow capacities were tested under different face ventilation situations to determine the quality and extent of the clean air zone developed by the canopy. The results revealed that even the most optimum configurations were unable to create a suitable clean air zone. Low effectiveness, coupled with high projected costs for underground application, showed the concept to be unfeasible and further development effort was cancelled. 21 figs.

  19. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    SciTech Connect (OSTI)

    None

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.

  20. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOE Patents [OSTI]

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  1. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  2. Eielson Air Force Base Operable Unit 2 baseline risk assessment

    SciTech Connect (OSTI)

    Lewis, R.E.; Jarvis, T.T.; Jarvis, M.R.; Whelan, G.

    1994-10-01

    Operable Unit 2 at Eielson Air Force Base (AFB) near Fairbanks, is one of several operable units characterized by petroleum, oil, and lubricant contamination, and by the presence of organic products floating at the water table, as a result of Air Force operations since the 1940s. The base is approximately 19,270 acres in size, and comprises the areas for military operations and a residential neighborhood for military dependents. Within Operable Unit 2, there are seven source areas. These source areas were grouped together primarily because of the contaminants released and hence are not necessarily in geographical proximity. Source area ST10 includes a surface water body (Hardfill Lake) next to a fuel spill area. The primary constituents of concern for human health include benzene, toluene, ethylbenzene, and xylenes (BTEX). Monitored data showed these volatile constituents to be present in groundwater wells. The data also showed an elevated level of trace metals in groundwater.

  3. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect (OSTI)

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  4. High Performance OLEDs with Air-stable Nanostructured Electrodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search High Performance OLEDs with Air-stable Nanostructured Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have modified the cathode-organic layer of an OLED device to significantly enhance electron injection efficiency and reduce the sensitivity of the cathode to environmental degradation by water

  5. Effect of Title V air permitting on pipeline operations

    SciTech Connect (OSTI)

    Bost, R.C.; Donnan, G.T.

    1995-12-31

    Pursuant to the passage of the Clean Air Act Amendments of 1990, the US Environmental Protection Agency has promulgated what are known as Title V permitting requirements for major sources of air pollutants, including pipeline operations. In contrast to most existing air permitting programs, the new Title V regulations will require periodic certification of compliance with applicable air regulations. In the same way that water dischargers report their own discharge violations to regulatory agencies pursuant to the NPDES permitting system, Title V permittees must implement an acceptable monitoring program and similarly report violations of permit conditions or applicable air regulations. Only those facilities whose potential emissions are less than or can be controlled to be less than certain regulatory limits will be exempt from standard Title V permitting. If a facility`s throughput or the concentration levels of certain volatile toxic levels in a particular crude or natural gas were to exceed corresponding regulatory limits, then the facility could be in violation. If an operator were to expand a field, then the changes in the gathering system and emission levels could constitute a violation. Constraints on operations can be avoided by careful strategizing of an operator`s Title V permit application.

  6. Tips: Air Ducts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tips: Air Ducts Tips: Air Ducts Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Your air ducts are one of the most important systems in your home, and if the ducts are poorly sealed or insulated they are likely contributing to

  7. Fuel cell stack with passive air supply

    DOE Patents [OSTI]

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  8. Precombustion control of air toxics

    SciTech Connect (OSTI)

    Akers, D.J.; Harrison, C.; Nowak, M.; Toole-O`Neil, B.

    1996-12-31

    If regulation of hazardous air pollutant emissions from utility boilers occurs in the next few years, the least-cost, lowest-risk control method for many utilities is likely to be some form of coal cleaning. Approximately 75 percent of coal mined east of the Mississippi River is already cleaned before it is used by the electric utility industry. Current methods of coal cleaning reduce ash and sulfur content by removing ash-forming and sulfur-bearing minerals; these same methods have the capability to remove large amounts of most of the 14 elements named as hazardous air pollutants (HAPs) in Title III of the 1990 Amendments to the Clean Air Act.

  9. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  10. Chapter 22: Compressed Air Evaluation Protocol

    SciTech Connect (OSTI)

    Benton, N.

    2014-11-01

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  11. Water, law, science

    SciTech Connect (OSTI)

    Narasimhan, T.N.

    2007-10-17

    In a world with water resources severely impacted bytechnology, science must actively contribute to water law. To this end,this paper is an earth scientist s attempt to comprehend essentialelements of water law, and to examine their connections to science.Science and law share a common logical framework of starting with apriori prescribed tenets, and drawing consistent inferences. In science,observationally established physical laws constitute the tenets, while inlaw, they stem from social values. The foundations of modern water law inEurope and the New World were formulated nearly two thousand years ago byRoman jurists who were inspired by Greek philosophy of reason.Recognizing that vital natural elements such as water, air, and the seawere governed by immutable natural laws, they reasoned that theseelements belonged to all humans, and therefore cannot be owned as privateproperty. Legally, such public property was to be governed by jusgentium, the law of all people or the law of all nations. In contrast,jus civile or civil law governed private property. Remarkably, jusgentium continues to be relevant in our contemporary society in whichscience plays a pivotal role in exploiting vital resources common to all.This paper examines the historical roots of modern water law, followstheir evolution through the centuries, and examines how the spirit ofscience inherent in jus gentium is profoundly influencing evolving waterand environmental laws in Europe, the United States and elsewhere. In atechnological world, scientific knowledge has to lie at the core of waterlaw. Yet, science cannot formulate law. It is hoped that a philosophicalunderstanding of the relationships between science and law willcontribute to their constructively coming together in the service ofsociety.

  12. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Water Power Water PowerTara Camacho-Lopez2016-04-18T19:53:50+00:00 Enabling a successful water power industry. Hydropower Optimization Developing tools for optimizing the U.S. hydropower fleet's performance with minimal environmental impact. Technology Development Improving the power performance and reliability of marine hydrokinetic technologies. Market Acceleration & Deployment Addressing barriers to development, deployment, and evaluation of

  13. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into the environment. April 12, 2012 Water from cooling the supercomputer is release to maintain a healthy wetland. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We reuse the same water up to six times before releasing it back into the environment

  14. Strong interactions in air showers

    SciTech Connect (OSTI)

    Dietrich, Dennis D.

    2015-03-02

    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.

  15. Vibrational spectroscopy of water interfaces

    SciTech Connect (OSTI)

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  16. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

  17. Water Wars

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    Sandia National Laboratories and Intel Corporation are cooperating on a project aimed at developing serious games to assist in resource planners in conducting open and participatory projects. Water Wars serves as a prototype game focused on water issues. Water Wars is a multi-player, online role-playing "serious game" combining large-scale simulation (e.g. SimCity), with strategy and interpersonal interaction (e.g. Diplomacy). The game is about water use set in present-day New Mexico. Players enact various stakeholder rolesmore » and compete for water while simultaneously cooperating to prevent environmental collapse. The gamespace utilizes immersive 3D graphics to bring the problem alive. The game integrates Intel's OpenSim visualization engine with Sandia developed agent-based and system dynamics models.« less

  18. DOE Requires Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties

    Broader source: Energy.gov [DOE]

    The Department has issued a Notice of Noncompliance Determination and Proposed Civil Penalty to Air-Con, International, requiring Air-Con to cease the sale of certain air-conditioning systems in...

  19. SU-E-J-214: Comparative Assessment On IGRT On Partial Bladder Cancer Treatment Between CT-On-Rails (CTOR) and KV Cone Beam CT (CBCT)

    SciTech Connect (OSTI)

    Lin, T; Ma, C

    2014-06-01

    Purpose: Image-Guided radiation therapy(IGRT) depends on reliable online patient-specific anatomy information to address random and progressive anatomy changes. Large margins have been suggested to bladder cancer treatment due to large daily bladder anatomy variation. KV Cone beam CT(CBCT) has been used in IGRT localization prevalently; however, its lack of soft tissue contrast makes clinicians hesitate to perform daily soft tissue alignment with CBCT for partial bladder cancer treatment. This study compares the localization uncertainties of bladder cancer IGRT using CTon- Rails(CTOR) and CBCT. Methods: Three T2N0M0 bladder cancer patients (total of 66 Gy to partial bladder alone) were localized daily with either CTOR or CBCT for their entire treatment course. A total of 71 sets of CTOR and 22 sets of CBCT images were acquired and registered with original planning CT scans by radiation therapists and approved by radiation oncologists for the daily treatment. CTOR scanning entailed 2mm slice thickness, 0.98mm axial voxel size, 120kVp and 240mAs. CBCT used a half fan pelvis protocol from Varian OBI system with 2mm slice thickness, 0.98axial voxel size, 125kVp, and 680mAs. Daily localization distribution was compared. Accuracy of CTOR and CBCT on partial bladder alignment was also evaluated by comparing bladder PTV coverage. Results: 1cm all around PTV margins were used in every patient except target superior limit margin to 0mm due to bowel constraint. Daily shifts on CTOR averaged to 0.48, 0.24, 0.19 mms(SI,Lat,AP directions); CBCT averaged to 0.43, 0.09, 0.19 mms(SI,Lat,AP directions). The CTOR daily localization showed superior results of V100% of PTV(102% CTOR vs. 89% CBCT) and bowel(Dmax 69.5Gy vs. 78Gy CBCT). CTOR images showed much higher contrast on bladder PTV alignment. Conclusion: CTOR daily localization for IGRT is more dosimetrically beneficial for partial bladder cancer treatment than kV CBCT localization and provided better soft tissue PTV identification.

  20. History of Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Air Conditioning History of Air Conditioning July 20, 2015 - 3:15pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs MORE ON AIR CONDITIONING Check out our Energy Saver 101 infographic to learn how air conditioners work. Go to Energy Saver for more tips and advice on home cooling. Stay up-to-date on how the Energy Department is working to improve air conditioning technology. We take the air conditioner for granted, but imagine what life would be

  1. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners A room air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. A room air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. Room or window air conditioners cool rooms rather than the entire home or business. If they provide cooling only where they're needed, room air conditioners are less expensive to operate than central units, even though their

  2. Integrated main rail, feed rail, and current collector

    DOE Patents [OSTI]

    Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

    1994-11-08

    A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

  3. Integrated main rail, feed rail, and current collector

    DOE Patents [OSTI]

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1994-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  4. Air-breathing fuel cell stacks for portable power applications

    SciTech Connect (OSTI)

    Wilson, M.S.; DeCaro, D.; Neutzler, J.K.; Zawodzinski, C.; Gottesfeld, S.

    1996-10-01

    Increasing attention is being directed towards polymer electrolyte fuel cells as battery replacements because of their potentially superior energy densities and the possibility of `mechanical` refueling. On the low end of the power requirement scale (ca. 10 W), fuel cells can compete with primary and secondary batteries only if the fuel cell systems are simple, inexpensive, and reliable. Considerations of cost and simplicity (and minimal parasitic power) discourage the use of conventional performance enhancing subsystems (e.g., humidification, cooling, or forced-reactant flow). We are developing a stack design that is inherently self-regulating to allow effective operation without the benefit of such auxiliary components. The air cathode does not use forced flow to replenish the depleted oxygen. Instead, the oxygen in the air must diffuse into the stack from the periphery of the unit cells. For this reason the stack is described as `air-breathing.` This configuration limits the ability of water to escape which prevents the polymer electrolyte membranes from drying out, even at relatively high continuous operation temperatures (+60 degrees C). This results in stacks with reliable and stable performance. This air-breathing configuration assumes a unique stack geometry that utilizes circular flow-field plates with an annular hydrogen feed manifold and the single tie-bolt extending up through the central axis of the stack. With this geometry, the hydrogen supply to the unit cells is radially outward, and the air supply is from the periphery inward. This configuration has several advantages. The entire periphery is free to air access and allows greater heat conduction to enhance cooling. Furthermore, all of the components in the stack (e.g., the flow-fields, seals and membrane/electrode assemblies), are radially symmetrical, so part fabrication is simple and the entire system is potentially low-cost. Lastly, this configuration is compact and lightweight.

  5. ENHANCEMENT OF ENVIRONMENTAL SAMPLING THROUGH AN IMPROVED AIR MONITORING TECHNIQUE

    SciTech Connect (OSTI)

    Hanks, D.

    2010-06-07

    Environmental sampling (ES) is a key component of International Atomic Energy Agency (IAEA) safeguarding approaches throughout the world. Performance of ES (e.g. air, water, vegetation, sediments, soil and biota) supports the IAEAs mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a State and has been available since the introduction of safeguards strengthening measures approved by the IAEA Board of Governors (1992-1997). A recent step-change improvement in the gathering and analysis of air samples at uranium/plutonium bulk handling facilities is an important addition to the international nuclear safeguards inspector's toolkit. Utilizing commonly used equipment throughout the IAEA network of analytical laboratories for particle analysis, researchers are developing the next generation of ES equipment for air grab and constant samples. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) silicon substrate has been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. The new collection equipment will allow IAEA nuclear safeguards inspectors to develop enhanced safeguarding approaches for complicated facilities. This paper will explore the use of air monitoring to establish a baseline environmental signature of a particular facility that could be used for comparison of consistencies in declared operations. The implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Technical aspects of the air monitoring device and the analysis of its environmental samples will demonstrate the essential parameters required for successful application of the system.

  6. Air sampling in the workplace. Final report

    SciTech Connect (OSTI)

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

  7. Water Management Guide - Building America Top Innovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Water Management Guide - Building America Top Innovation Water Management Guide - Building America Top Innovation Cover of the EEBA Water Management Guide. As energy codes and voluntary programs such as ENERGY STAR for Homes and the DOE Zero Energy Ready Home (formerly Challenge Home) continue transforming the housing industry to high performance, better insulated and air-sealed assemblies now have substantially reduced tolerance for drying. As a result, managing bulk water flow has

  8. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper,

  9. Generic air sampler probe tests

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Ligotke, M.W.

    1995-11-01

    Tests were conducted to determine the best nozzle and probe designs for new air sampling systems to be installed in the ventilation systems of some of the waste tanks at the Hanford Site in Richland, Washington. Isokinetic nozzle probes and shrouded probes were tested. The test aerosol was sodium-fluorescein-tagged oleic acid. The test parameters involved particle sizes from 1 to 15 {mu}m, air velocities from 3 to 15 m/s. The results of the tests show that shrouded probes can deliver samples with significantly less particle-size bias then the isokinetic nozzle probes tested. Tests were also conducted on two sample flow splitters to determine particle loss as a function of aerodynamic particle size. The particle size range covered in these tests was 5 to 15 {mu}m. The results showed little particle loss, but did show a bias in particle concentration between the two outlets of each splitter for the larger particle sizes.

  10. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    SciTech Connect (OSTI)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  11. High-throughput liquid-absorption air-sampling apparatus and methods

    DOE Patents [OSTI]

    Zaromb, Solomon

    2000-01-01

    A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.

  12. Clean Air Act. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-02-15

    This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

  13. Fermilab | Tritium at Fermilab | Tritium released into the air and disposed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of as solid waste Tritium released into the air and disposed of as solid waste Fermilab produces tritium as an expected byproduct of accelerator operations. The lab actively manages tritium, using and disposing of it in ways that pose no health or environmental threat. One of the ways that tritium is discharged from the Fermilab site is by releasing it into the air. This release occurs in various ways. Tritium in the form of water vapor is emitted into the air through ventilation systems

  14. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications, April 2005 | Department of Energy Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 The objective of this paper is to summarize the development status of air-cooled lithium bromide (LiBr)-water absorption chillers to guide future efforts to develop chillers for combined heat and power (CHP) applications in light-commercial buildings. The key

  15. ARM - Campaign Instrument - sp2-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -air Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Single Particle Soot Photometer - Airborne (SP2-AIR)...

  16. ARM - Campaign Instrument - mmcr94-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -air Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : 94 GHz, W-band Airborne Cloud Radar (MMCR94-AIR)...

  17. Protective supplied-breathing-air garment

    DOE Patents [OSTI]

    Childers, E.L.; von Hortenau, E.F.

    1982-05-28

    A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

  18. Advanced Management of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This training is designed to help end users as well as industry solution providers learn...

  19. Is there something in the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there something in the air? LANL implements a conscientious program of sampling to ensure air quality. August 1, 2013 Clouds over Los Alamos Clouds over Los Alamos Why does LANL...

  20. SolarAire LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Folsom, California Sector: Solar Product: Developing a solar thermal air conditioning unit. References: SolarAire LLC1 This article is a stub. You can help OpenEI by...

  1. Air Traffic Operations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the Air Traffic Cloud Click to email this to a friend (Opens in new window) Share on ... In the Air Traffic Cloud Researchers Mike Durling and Liling Ren discuss new technology to ...

  2. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid ...

  3. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power DOE Wind & Waterpower Technologies Office Director, Jose Zayas, addresses crowd at Waterpower Week [photo courtesy of the National Hydro Association] Permalink Gallery Sandia Labs participates in DOE's annual Waterpower Week News, News & Events, Renewable Energy, Uncategorized, Water Power Sandia Labs participates in DOE's annual Waterpower Week During the last week of April, Sandia National Laboratories participated in the National Hydropower Association Waterpower Week in

  4. Hill Air Force Base | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hill Air Force Base Hill Air Force Base Hill Air Force Base Overview Energy savings performance contracting at Hill Air Force Base generated much interest during a recent training session on energy management that downlinked 12 Department of Defense sites. Energy systems in 940 buildings on the Base will be upgraded under an 18-year ESPC between the Government and the energy service company, CES/Way. Improvements are distributed over five task orders that will be completed in five years, with

  5. Preventive Maintenance Strategies for Compressed Air Systems

    Broader source: Energy.gov [DOE]

    This tip sheet discusses preventive maintenance strategies for compressed air systems to avoid high equipment repair and replacement costs.

  6. Compressed Air Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Compressed Air Systems Compressed Air Systems Applying best energy management practices and purchasing energy-efficient equipment can lead to significant savings in compressed air systems. Use the software tools, training, and publications listed below to improve performance and save energy. Compressed Air Tools Tools to Assess Your Energy System AIRMaster+ Tool AIRMaster+ LogTool Qualified Specialists Qualified Specialists have passed a rigorous competency examination on

  7. FAA Air Traffic Organization Safety Management

    Broader source: Energy.gov [DOE]

    Presenter: Mark DeNicuolo, Manager Performance and Analyses Air Traffic Organization Safety and Technical Training Federal Aviation Administration

  8. Biological Air Emissions Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Air Emissions Control Biological Air Emissions Control Innovative Technology Enables Low-Cost, Energy-Efficient Treatment of Industrial Exhaust Streams Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol, formaldehyde, acetylaldehyde, and acrolein) during production of wood products must be tightly controlled. Conventional VOCs and HAPs emission

  9. Agenda: Rail, Barge, Truck Transportation

    Broader source: Energy.gov [DOE]

    Members of the general public and interested stakeholders who wish to make a public comment for the Quadrennial Energy Review record may sign up to speak at the meeting on a first-come-first-served...

  10. Systemic effects of urban form on air pollution and environmental quality

    SciTech Connect (OSTI)

    Okamoto, P.C.

    1997-12-31

    The form and design of cities and towns have a direct impact on the quality of the natural environment, particularly air and water quality. This paper illustrates some of the dynamic relationships between the form of urban environments and air and water pollution. Recent research suggests how urban form affects environmental quality in at least three ways: (a) how suburban development and its dependency on the private motor vehicle increases air pollution, (b) how exterior building materials help to generate urban heat islands and ozone precursors, and (c) how conventional stormwater drainage systems transport polluted urban runoff into waterways. Today`s aging urban infrastructure provides an important and timely opportunity to re-examine the design of cities and towns with a goal of enhancing overall environmental quality. Many miles of roads, freeways, bridges, and stormwater culverts and pipes are in poor condition and need to be repaired or replaced, while many cities are now failing to meet air and water quality standards designed to protect human and environmental health. This paper also explores seven urban planning and design concepts that could reduce the magnitude of air and water pollution in urban environments and help to improve the health of both cities and their residents.

  11. Air breathing direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM)

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  12. Workshop on indoor air quality research needs

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  13. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect (OSTI)

    2009-12-21

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the batterys main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASUs new battery system could be both cheaper and safer than todays Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  14. High-Performance Sorbents for Carbon Dioxide Capture from Air

    SciTech Connect (OSTI)

    Sholl, David; Jones, Christopher

    2013-03-13

    This project has focused on capture of CO{sub 2} from ambient air (air capture). If this process is technically and economically feasible, it could potentially contribute to net reduction of CO{sub 2} emissions in ways that are complementary to better developed techniques for CO{sub 2} from concentrated point sources. We focused on cyclic adsorption processes for CO{sub 2} capture from air in which the entire cycle is performed at moderate temperatures. The project involved both experimental studies of sorbent materials and process level modeling of cyclic air capture processes. In our experimental work, a series of amine-functionalized silica adsorbents were prepared and characterized to determine the impact of molecular architecture on CO{sub 2} capture. Some key findings were: Amine functionalized silicas can be prepared with high enough CO{sub 2} capacities under ambient conditions to merit consideration for use in air capture processes. Primary amines are better candidates for CO{sub 2} capture than secondary or tertiary amines, both in terms of amine efficiency for CO{sub 2} adsorption and enhanced water affinity. Mechanistic understanding of degradation of these materials can enable control of molecular architecture to significantly improve material stability. Our process modeling work provided the first publically available cost and energy estimates for cyclic adsorption processes for air capture of CO{sub 2}. Some key findings were: Cycles based on diurnal ambient heating and cooling cannot yield useful purities or amounts of captured CO{sub 2}. Cycles based on steam desorption at 110 oC can yield CO{sub 2} purities of ~88%. The energy requirements for cycles using steam desorption are dominated by needs for thermal input, which results in lower costs than energy input in the form of electricity. Cyclic processes with operational costs of less than $100 tCO{sub 2}-net were described, and these results point to process and material improvements that could substantially reduce these costs. The most critical conclusions from our work are that (i) CO{sub 2} capture from ambient air using moderate temperature cyclic adsorption processes is technically feasible and (ii) the operational costs of realistic versions of these processes are moderate enough to encourage future development of this technology. Because of the very modest net investment that has been made in R&D associated with this approach from all sources worldwide (relative to the massive public and private investment that has been made in technologies for CO{sub 2} from concentrated point sources), our results strongly suggest that continued development of air capture is justified.

  15. Multi-Applications Small Light Water Reactor - NERI Final Report

    SciTech Connect (OSTI)

    S. Michale Modro; James E. Fisher; Kevan D. Weaver; Jose N. Reyes, Jr.; John T. Groome; Pierre Babka; Thomas M. Carlson

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle.

  16. Assessment of the Market for Compressed Air Efficiency Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14 Characteristics of Compressed Air Systems 14 Compressed Air System Management 17 Customer Knowledge of Compressed Air System Energy Use and Efficiency Opportunities 18 ...

  17. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  18. Reduce Air Infiltration in Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Infiltration in Furnaces Reduce Air Infiltration in Furnaces This tip sheet describes ... PROCESS HEATING TIP SHEET 5 PDF icon Reduce Air Infiltration in Furnaces (January 2006) ...

  19. ARM - Field Campaign - AIRS Validation Soundings Phase IV and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The AIRS instrument was intended to make highly accurate measurements of air temperature, humidity, clouds, and surface temperature. The data collected by AIRS was...

  20. 2011 Air Quality Regulations Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Quality Regulations Report 2011 Air Quality Regulations Report PDF icon 2011 Air Quality Regulations Report120111.pdf More Documents & Publications 2011:...

  1. 2011: Air Quality Regulations Report | Department of Energy

    Office of Environmental Management (EM)

    : Air Quality Regulations Report 2011: Air Quality Regulations Report PDF icon 2011 Air Quality Regulations ReportA120911.pdf More Documents & Publications 2011...

  2. RAPID/Geothermal/Air Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalAir QualityAlaska < RAPID | Geothermal | Air Quality(Redirected from RAPIDOverviewGeothermalAir QualityAlaska) Jump to: navigation, search RAPID...

  3. Attic Air Sealing Guide - Building America Top Innovation | Department...

    Energy Savers [EERE]

    Attic Air Sealing Guide - Building America Top Innovation Attic Air Sealing Guide - Building America Top Innovation Image showing step-by-step instructions for air sealing. One of ...

  4. Improving Compressed Air System Performance Third Edition | Department...

    Energy Savers [EERE]

    Compressed Air System Performance Third Edition Improving Compressed Air System Performance Third Edition PDF icon Improving Compressed Air Sourcebook version 3.pdf More Documents ...

  5. Energy Savings with Acceptable Indoor Air Quality Through Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Flow Control in Residential Retrofit Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow Control in Residential Retrofit Sealed duct penetrations. ...

  6. Study of a water-to-water heat pump using hydrocarbon and hydrofluorocarbon zeotropic mixtures

    SciTech Connect (OSTI)

    Payne, W.V.; Domanski, P.A.; Muller, J.

    1999-05-01

    This investigation compared the performance of R22 to the performance of propane (R290) and zeotropic mixtures of HFC's and hydrocarbons in a water-to-water heat pump. Baseline testing began with R22 and proceeded to R290, R32/290, R32/152a, and R290/600a. The use of brazed plate heat exchangers arranged in counterflow for both heating and cooling allowed glide matching using the zeotropic refrigerant mixtures. The performance of the system was characterized by air-side capacity, air-side Coefficient of Performance (COP), compressor RPM, and refrigerant conditions.

  7. National Emission Standards for Hazardous Air Pollutants submittal -- 1997

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1998-06-01

    Each potential source of Nevada Test Site (NTS) emissions was characterized by one of the following methods: (1) monitoring methods and procedures previously developed at the NTS; (2) a yearly radionuclide inventory of the source, assuming that volatile radionuclide are released to the environment; (3) the measurement of tritiated water (as HTO or T{sub 2}O) concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) using a combination of environmental measurements and CAP88-PC to calculate emissions. The emissions for National Emission Standards for Hazardous Air Pollutants (NESHAPs) reporting are listed. They are very conservative and are used in Section 3 to calculate the EDE to the maximally exposed individual offsite. Offsite environmental surveillance data, where available, are used to confirm that calculated emissions are, indeed, conservative.

  8. Encapsulated graphene field-effect transistors for air stable operation

    SciTech Connect (OSTI)

    Alexandrou, Konstantinos Kymissis, Ioannis; Petrone, Nicholas; Hone, James

    2015-03-16

    In this work, we report the fabrication of encapsulated graphene field effects transistors (GFETs) with excellent air stability operation in ambient environment. Graphene's 2D nature makes its electronics properties very sensitive to the surrounding environment, and thus, non-encapsulated graphene devices show extensive vulnerability due to unintentional hole doping from the presence of water molecules and oxygen limiting their performance and use in real world applications. Encapsulating GFETs with a thin layer of parylene-C and aluminum deposited on top of the exposed graphene channel area resulted in devices with excellent electrical performance stability for an extended period of time. Moisture penetration is reduced significantly and carrier mobility degraded substantially less when compared to non-encapsulated control devices. Our CMOS compatible encapsulation method minimizes the problems of environmental doping and lifetime performance degradation, enabling the operation of air stable devices for next generation graphene-based electronics.

  9. Air Sealing Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Home Air Sealing Your Home Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing

  10. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect (OSTI)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  11. Alpha-environmental continuous air monitor inlet

    DOE Patents [OSTI]

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  12. System for removal of arsenic from water

    DOE Patents [OSTI]

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  13. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Violate Federal Energy Efficiency Appliance Standards | Department of Energy Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards September 23, 2010 - 12:00am Addthis Washington, DC - The Department of Energy announced today that it has taken action against Air-Con, International, requiring

  14. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installed CAES plant cost estimate of approximately $2,300/KW for the 210MW CAES 1A and 2 cycles. The capital cost for the 136 MW CAES 1 cycle was even higher due to the lower generating capacity of the cycle. Notably, the large equipment could have generated additional capacity (up to 270MW) which would have improved the cost per KW; however, the output was limited by the night time transmission system capability. The research herein, therefore, is particular to the site-specific factors that influenced the design and the current and forecasted generation mix and energy prices in Upstate New York and may not necessarily indicate that CAES plants cannot be economically constructed in other places in New York State or the world.

  15. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  16. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air is heated prior to entering the diffusion tower. Further analytical analysis is required to predict the thermal and mass transport with the air heating configuration.

  17. WATER CONSERVATION PLAN

    National Nuclear Security Administration (NNSA)

    ... Average water consumers can save thousands of gallons of water per year by being aware of ... program on the water distribution systems to include water saving replacement parts. ...

  18. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect (OSTI)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

  19. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source...

  20. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Todays EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  1. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect (OSTI)

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  2. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  3. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  4. Air Sampling System Evaluation Template

    Energy Science and Technology Software Center (OSTI)

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  5. Enclosed rotary disc air pulser

    DOE Patents [OSTI]

    Olson, A. L.; Batcheller, Tom A.; Rindfleisch, J. A.; Morgan, John M.

    1989-01-01

    An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.

  6. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those

  9. Fluid-bed air-supply system

    DOE Patents [OSTI]

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  10. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the Air Force Research Laboratory in Albuquerque utilized the site at the National Solar Thermal Test Facility to evaluate seismic and optical activity from explosives set...

  11. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Air Force Research Laboratory (AFRL) in Albuquerque utilized the site at the National Solar Thermal Test Facility (NSTTF) to evaluate seismic and optical activity from...

  12. air force | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range WASHINGTON - The National Nuclear Security Administration (NNSA) and ...

  13. PNNL: About: Air Emissions (Radioactive) Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from unacceptable risks resulting from its operations. These reports document PNNL Campus and Marine Science Laboratory (MSL) radionuclide air emissions that result in the...

  14. Liquid phase thermal swing chemical air separation

    DOE Patents [OSTI]

    Erickson, D.C.

    1988-05-24

    A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite. 2 figs.

  15. Training: Compressed Air Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This training includes classroom instruction, a practical exam testing hands-on ... previously completed the CAC Advanced Management of Compressed Air Systems course as a ...

  16. Heating, Ventilation, and Air Conditioning Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Lead Performer: Mechanical Solutions Inc. - Whippany, NJ Partners: Lennox International Inc. - Richardson, Membrane Based Air Conditioning Lead Performer: Dais Analytic Corporation ...

  17. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning

    Broader source: Energy.gov [DOE]

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way — with heat.

  18. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect (OSTI)

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel waywith heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  19. International Air Transport Association (IATA) | Open Energy...

    Open Energy Info (EERE)

    Name: International Air Transport Association (IATA) Address: 800 Place Victoria PO Box 113 Place: Montreal, Quebec Phone Number: 1 514 874 0202 Website: www.iata.org...

  20. Washington Environmental Permit Handbook - Air Operating Permit...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Washington Environmental Permit Handbook - Air Operating PermitPermitting...

  1. Compressed Air System Control Strategies; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using controls, storage, and demand management to ... at part-load is key to a high performance compressed air system. ... A STRONG ENERGY PORTFOLIO FOR A STRONG AMERICA ...

  2. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  3. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    that the newly installed air conditioner has the exact refrigerant charge and airflow rate specified by the manufacturer Locates the thermostat away from heat sources, such as...

  4. Covered Product Category: Room Air Conditioners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This calculator allows the user to input a location, cooling capacity of the room air conditioners, efficiency (i.e., EER) and rate for electricity. The output section ...

  5. History of Air Conditioning | Department of Energy

    Energy Savers [EERE]

    Efficiency Standards Drive Improvements As air conditioning use soared in the 1970s, the energy crisis hit. In response, lawmakers passed laws to reduce energy consumption across...

  6. Sabdia's Radial Flow Air Bearing Heat Exchanger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia's Radial Flow ir Bearing Heat Exchanger 2014 Building Technologies Office Peer Review Sandia's TRL 5 Air Bearing Heat exchanger technology (a. k. a. The Sandia Cooler) ...

  7. Liquid phase thermal swing chemical air separation

    DOE Patents [OSTI]

    Erickson, Donald C.

    1988-01-01

    A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite.

  8. Air Liquide Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Air Liquide Group Place: Paris, France Zip: 75321 Sector: Hydro, Hydrogen Product: Paris-based manufacturer of industrial and medical gases. The company is...

  9. Air Products Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Air Products & Chemicals Inc Place: Allentown, Pennsylvania Zip: 18195 Sector: Hydro, Hydrogen, Services Product: A global supplier of merchant hydrogen with a portfolio of...

  10. Air Conditioning Heating and Refrigeration Institute Comment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon DOE Reg Burden RFI 7-18-14 More Documents & Publications Regulatory Burden RFI from AHRI Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute ...

  11. Yosemite Waters Vehicle Evaluation Report: Final Results (Brochure)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Results Prepared for South Coast Air Quality Management District by the National Renewable Energy Laboratory CRD-01-098 Fischer-Tropsch Synthetic Fuel Demonstration in a Southern California Vehicle Fleet Yosemite Waters Vehicle Evaluation Report Yosemite Waters Vehicle Evaluation Report i Alternative Fuel Trucks YOSEMITE WATERS VEHICLE EVALUATION REPORT Authors Leslie Eudy, National Renewable Energy Laboratory (NREL) Robb Barnitt, NREL Teresa L. Alleman, NREL August 2005 Acknowledgements This

  12. 2013 Federal Energy and Water Management Award Winner David Morin |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy David Morin 2013 Federal Energy and Water Management Award Winner David Morin PDF icon fewm13_morin_highres.pdf PDF icon fewm13_morin.pdf More Documents & Publications 2013 Federal Energy and Water Management Award Winner David Morin Comprehensive Energy Program at Patrick Air Force Base Set to Exceed Energy Goals 2013 Federal Energy and Water Management Award Winners Chris Manis, Randy Monohan, Laura Nelson, Mark Rodriguez, and Mick Wasco

  13. National Emission Standards for Hazardous Air Pollutants submittal -- 1994

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1995-06-01

    This report focuses on air quality at the Nevada Test Site (NTS) for 1994. A general description of the effluent sources are presented. Each potential source of NTS emissions was characterized by one of the following: (1) by monitoring methods and procedures previously developed at NTS; (2) by a yearly radionuclide inventory of the source, assuming that volatile radionuclides are released to the environment; (3) by the measurement of tritiated water concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) by using a combination of environmental measurements and CAP88-PC to calculate emissions. Appendices A through J describe the methods used to determine the emissions from the sources. These National Emission Standards for Hazardous Air Pollutants (NESHAP) emissions are very conservative, are used to calculate the effective dose equivalent to the Maximally Exposed Individual offsite, and exceed, in some cases, those reported in DOE`s Effluent Information System (EIS). The NESHAP`s worst-case emissions that exceed the EIS reported emissions are noted. Offsite environmental surveillance data are used to confirm that calculated emissions are, indeed, conservative.

  14. STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST

    SciTech Connect (OSTI)

    BENECKE MW

    2010-09-08

    This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is expected that Tc-99 and nitrate will remain with the water residual that is not removed, or remain as a salt bound to the soil particles. In addition, the SDPT will be conducted at lower extraction velocities to preclude pore water entrainment and thus, the extracted air effluent should be free of the contaminant residual present in the targeted moist zone. However, to conservatively bound the planned activity for potential radionuclide air emissions, it is assumed, hypothetically, that the Tc-99 does not remain in the zone of interest, but that it instead travels with the evaporated moisture to the extraction well and to the test equipment at the land surface. Thus, a release potential would exist from the planned point source (powered exhaust) for Tc-99 in the extracted moist air. In this hypothetical bounding case there would also be a potential for very minor fugitive emissions to occur due to nitrogen injection into the soil. The maximum value for Tc-99, measured in the contaminated moist zone, is used in calculating the release potential described in Section 2.3. The desiccation mechanism will be evaporation. Nitrate is neither a criteria pollutant nor a toxic air pollutant. It would remain nitrate as a salt adhered to sand and silt grains or as nitrate dissolved in the pore water. Nitrogen, an inert gas, will be injected into the ground during the test. Tracer gasses will also be injected near the beginning, middle, and the end of the test. The tracer gasses are sulfur hexafluoride, trichlorofluoromethane, and difluoromethane.

  15. HVAC Cabinet Air Leakage Test Method - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cabinet Air Leakage Test Method - Building America Top Innovation HVAC Cabinet Air Leakage Test Method - Building America Top Innovation While HVAC installers have improved their air sealing practices to reduce the amount of air leaking at ducts and duct boots, testing showed that distribution systems still leaked at air handlers and furnace HVAC Air Leakage Fig 1 Air handler furnace cabinet with pressure taps.jpg cabinets. This has hampered the ability of HVAC

  16. Comparison of Water-Hydrogen Catalytic Exchange Processes Versus Water

    Office of Environmental Management (EM)

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  17. Computational Study of the Hydrodynamic Behavior during Air Discharge through a Sparger Submerged in the Condensation Pool

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Bang, Young-Seok; Kim, In-Goo; Kim, Hho-Jung; Lee, Byeong-Eun; Kwon, Soon-Bum

    2002-07-01

    The In-containment Refueling Water Storage Tank (IRWST) has the function of heat sink when steam is released from the pressurizer. The hydrodynamic behaviors occurring at the sparger are very complex because of the wide variety of operating conditions and the complex geometry. Hydrodynamic behavior when air is discharged through a sparger in a condensation pool is investigated using CFD techniques in the present study. The effect of pressure acting on the sparger header during both water and air discharge through the sparger is studied. In addition, pressure oscillation occurring during air discharge through the sparger is studied for a better understanding of mechanisms of air discharge and a better design of the IRWST, including sparger. (authors)

  18. Efficient Water Use & Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy...

  19. Forecasting Water Quality & Biodiversity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability ... that measure feedstock production, water quality, water quantity, and biodiversity. ...

  20. Waste heat from kitchen cuts hot water electricity 23%

    SciTech Connect (OSTI)

    Barber, J.

    1984-05-21

    Heat recovered from the Hamburger Hamlet's kitchen in Bethesada, Maryland and used to pre-heat the million gallons of hot water used annually reduced hot water costs 23% and paid off the investment in 1.5 years. Potomac Electric initiated the installation of an air-to-water heat pump in the restaurant kitchen above the dishwasher at a cost of about $5300, with the restaurant obliged to reimburse the utility if performance was satisfactory. Outside water recirculates through storage tanks and the ceiling heat pump until it reaches the required 140/sup 0/F. The amount of electricity needed to bring the preheated water to that temperature was $3770 lower after the installation. Cooled air exhausted from the heat pump circulates throughout the kitchen.