National Library of Energy BETA

Sample records for raft rural elec

  1. Raft River Rural Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Raft River Rural Elec Coop Inc Place: Idaho Service Territory: Idaho, Utah, Nevada Phone Number: 208-645-2211 Website: rrelectric.com Facebook: https:www.facebook.compages...

  2. Intermountain Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    Rural Elec Assn Place: Colorado Website: www.irea.coop Twitter: @IREAColorado Facebook: https:www.facebook.comIntermountainREA Outage Hotline: 1-800-332-9540 References:...

  3. Brown County Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    Rural Elec Assn Jump to: navigation, search Name: Brown County Rural Elec Assn Place: Minnesota Phone Number: 1-800-658-2368 Website: www.browncountyrea.coop Outage Hotline:...

  4. Harrison Rural Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Harrison Rural Elec Assn, Inc Jump to: navigation, search Name: Harrison Rural Elec Assn, Inc Place: West Virginia Phone Number: 304.624.6365 Website: www.harrisonrea.com...

  5. Cavalier Rural Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Rural Elec Coop, Inc Jump to: navigation, search Name: Cavalier Rural Elec Coop, Inc Place: North Dakota Phone Number: 701-256-5511 Facebook: https:www.facebook.compages...

  6. Tipmont Rural Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    search Name: Tipmont Rural Elec Member Corp Abbreviation: Tipmont REMC Address: 403 S Main St Place: Linden, Indiana Zip: 47955 Phone Number: 800-726-3953 Website:...

  7. Morgan County Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: Morgan County Rural Elec Assn Place: Colorado Website: www.mcrea.org Twitter: @MorganCountyREA Facebook: https:www.facebook.compagesMorgan-County-Rural-Ele...

  8. Buckeye Rural Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Buckeye Rural Elec Coop, Inc Place: Ohio Website: www.buckeyerec.commain Facebook: https:www.facebook.combuckeyerec Outage Hotline: 1-800-282-7204 References: EIA Form EIA-861...

  9. Steuben Rural Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Steuben Rural Elec Coop, Inc Place: New York Phone Number: 607-776-4161 or 800-843-3414 or 716-296-5651 or 800-883-8236 Website: www.steubenrec.coop Outage Hotline: 1-866-430-4293...

  10. Heartland Rural Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Elec Coop, Inc Place: Kansas Phone Number: (800) 835-9586 Website: www.heartland-rec.com Twitter: @HeartlandREC Facebook: https:www.facebook.comHeartlandREC Outage Hotline:...

  11. Grundy County Rural Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Elec Coop Place: Iowa Phone Number: 319-824-5251 Website: www.grundycountyrecia.com Outage Hotline: 1-800-390-7605 Outage Map: www.iowarec.orgoutages References: EIA Form...

  12. Choctawhatche Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Choctawhatche Elec Coop, Inc Jump to: navigation, search Name: Choctawhatche Elec Coop, Inc Place: Florida Phone Number: (850) 892-2111 Website: www.chelco.com Twitter: https:...

  13. Withlacoochee River Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Withlacoochee River Elec Coop Jump to: navigation, search Name: Withlacoochee River Elec Coop Place: Florida Phone Number: 352-567-5133 Website: www.wrec.net Twitter: https:...

  14. Washington Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Washington Elec Member Corp Jump to: navigation, search Name: Washington Elec Member Corp Place: Georgia Phone Number: 478-552-2577; 1-800-552-2577 Website: washingtonemc.com...

  15. Public Service Elec & Gas Co | Open Energy Information

    Open Energy Info (EERE)

    Elec & Gas Co (Redirected from PSEG) Jump to: navigation, search Name: Public Service Elec & Gas Co Abbreviation: PSEG Place: New Jersey Year Founded: 1903 Phone Number:...

  16. Mountrail-Williams Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Mountrail-Williams Elec Coop Jump to: navigation, search Name: Mountrail-Williams Elec Coop Place: North Dakota Phone Number: Williston Office- 701-577-3765 -- Stanley Office-...

  17. Hess Retail Natural Gas and Elec. Acctg. (Delaware) | Open Energy...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (Delaware) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Delaware References: EIA Form EIA-861 Final...

  18. Hess Retail Natural Gas and Elec. Acctg. (Connecticut) | Open...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (Connecticut) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Connecticut Phone Number: 212-997-8500...

  19. Hess Retail Natural Gas and Elec. Acctg. (District of Columbia...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (District of Columbia) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: District of Columbia References:...

  20. Northern Virginia Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    NOVEC) Jump to: navigation, search Name: Northern Virginia Elec Coop Place: Manassas, Virginia References: EIA Form EIA-861 Final Data File for 2010 - File1a1 SGIC2 EIA Form...

  1. Northern Virginia Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Northern Virginia Elec Coop Place: Manassas, Virginia References: EIA Form EIA-861 Final Data File for 2010 - File1a1 SGIC2 EIA Form 861 Data Utility Id 13640 Utility Location...

  2. Upson Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Name: Upson Elec Member Corp Place: Georgia Website: www.upsonemc.comUpson%20EMC%2 Facebook: https:www.facebook.comupson.emc Outage Hotline: 706-647-5475 References: EIA...

  3. Copper Valley Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Valley Elec Assn, Inc Jump to: navigation, search Name: Copper Valley Elec Assn, Inc Place: Alaska Phone Number: Copper Basin: 907-822-3211 or Valdez: 907-835-4301 Website:...

  4. Public Service Elec & Gas Co | Open Energy Information

    Open Energy Info (EERE)

    Elec & Gas Co Jump to: navigation, search Name: Public Service Elec & Gas Co Abbreviation: PSEG Place: New Jersey Year Founded: 1903 Phone Number: 1-800-436-7734 Website:...

  5. Central Hudson Gas & Elec Corp | Open Energy Information

    Open Energy Info (EERE)

    Gas & Elec Corp Jump to: navigation, search Name: Central Hudson Gas & Elec Corp Place: New York Phone Number: 845-452-2700 or 1-800-527-2714 Website: www.centralhudson.com...

  6. New England Hydro-Tran Elec Co | Open Energy Information

    Open Energy Info (EERE)

    New England Hydro-Tran Elec Co Jump to: navigation, search Name: New England Hydro-Tran Elec Co Place: Massachusetts Phone Number: 860 729 9767 Website: www.nehydropower.com...

  7. Big Horn County Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    County Elec Coop, Inc Jump to: navigation, search Name: Big Horn County Elec Coop, Inc Place: Montana Phone Number: (406) 665-2830 Website: www.bhcec.com Outage Hotline: (406)...

  8. Wayne-White Counties Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Wayne-White Counties Elec Coop Jump to: navigation, search Name: Wayne-White Counties Elec Coop Place: Illinois Phone Number: (618) 842-2196 Website: waynewhitecoop.com Facebook:...

  9. Deep East Texas Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Deep East Texas Elec Coop Inc Jump to: navigation, search Name: Deep East Texas Elec Coop Inc Place: Texas Phone Number: 1-800-392-5986 Website: www.deepeast.com Facebook: https:...

  10. Virginia Mun Elec Assn No 1 | Open Energy Information

    Open Energy Info (EERE)

    Elec Assn No 1 Jump to: navigation, search Name: Virginia Mun Elec Assn No 1 Place: Virginia Website: www.mepav.org References: EIA Form EIA-861 Final Data File for 2010 -...

  11. Joe Wheeler Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Joe Wheeler Elec Member Corp Jump to: navigation, search Name: Joe Wheeler Elec Member Corp Place: Alabama Phone Number: (256) 552-2300 Website: www.jwemc.org Twitter: @jwemc...

  12. Mora-San Miguel Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Mora-San Miguel Elec Coop, Inc Jump to: navigation, search Name: Mora-San Miguel Elec Coop, Inc Place: New Mexico Phone Number: 575-387-2205 (Mora) -- 505-757-6490 (Pecos) Website:...

  13. HHH FEC Cooperation Mach Elec Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    HHH FEC Cooperation Mach Elec Co Ltd Jump to: navigation, search Name: HHH-FEC Cooperation Mach.&Elec. Co., Ltd Place: Weihai, Shanghai Municipality, China Zip: 264209 Sector:...

  14. East End Mutual Elec Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    End Mutual Elec Co Ltd Jump to: navigation, search Name: East End Mutual Elec Co Ltd Place: Idaho Phone Number: (208) 436-9357 Website: www.electricunion.orgcompany- Outage...

  15. Harrison County Rrl Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Harrison County Rrl Elec Coop Jump to: navigation, search Name: Harrison County Rrl Elec Coop Place: Iowa Phone Number: 712-647-2727 Website: www.hcrec.coop Outage Hotline:...

  16. Panola-Harrison Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Panola-Harrison Elec Coop, Inc Jump to: navigation, search Name: Panola-Harrison Elec Coop, Inc Place: Texas Phone Number: (903) 935-7936 Website: www.phec.us Facebook: https:...

  17. Clearwater-Polk Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Clearwater-Polk Elec Coop Inc Jump to: navigation, search Name: Clearwater-Polk Elec Coop Inc Place: Minnesota Phone Number: 218-694-6241 Website: www.clearwater-polk.com Outage...

  18. Barrow Utils & Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Utils & Elec Coop, Inc Jump to: navigation, search Name: Barrow Utils & Elec Coop, Inc Place: Alaska Phone Number: 907-852-6166 Website: www.bueci.org Outage Hotline: After Hours:...

  19. Nelson Lagoon Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Lagoon Elec Coop Inc Jump to: navigation, search Name: Nelson Lagoon Elec Coop Inc Place: Alaska Phone Number: (907) 989-2204 Website: www.swamc.orghtmlsouthwest-a Outage...

  20. Red River Valley Rrl Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    Elec Assn Jump to: navigation, search Name: Red River Valley Rrl Elec Assn Place: Oklahoma Phone Number: 1-800-749-3364 or 580-564-1800 Website: www.rrvrea.com Twitter:...

  1. South River Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    River Elec Member Corp Jump to: navigation, search Name: South River Elec Member Corp Place: North Carolina Phone Number: (910) 892-8071 Website: www.sremc.com Twitter: https:...

  2. Hess Retail Natural Gas and Elec. Acctg. (Maine) | Open Energy...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (Maine) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Maine Phone Number: 1-800-437-7645 Website:...

  3. Sioux Valley SW Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    SW Elec Coop Jump to: navigation, search Name: Sioux Valley SW Elec Coop Place: Colman, South Dakota References: EIA Form EIA-861 Final Data File for 2010 - File1a1 SGIC2 EIA...

  4. Rich Mountain Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Rich Mountain Elec Coop, Inc Jump to: navigation, search Name: Rich Mountain Elec Coop, Inc Place: Arkansas Phone Number: 1-877-828-4074 Website: www.rmec.com Outage Hotline:...

  5. Denton County Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    County Elec Coop, Inc Place: Texas Service Territory: Texas Website: www.coserv.com Outage Hotline: (800) 274-4014 Outage Map: outagemap.coserv.comexternal References: EIA...

  6. Hess Retail Natural Gas and Elec. Acctg. (Pennsylvania) | Open...

    Open Energy Info (EERE)

    Pennsylvania) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Pennsylvania References: EIA Form EIA-861 Final Data File for 2010 - File220101...

  7. Southern Pine Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Southern Pine Elec Coop, Inc Place: Alabama Phone Number: Atmore Office: 251.368.4842; Brewton Office: 251.867.5415; Evergreen Office: 251.578.3460; Frisco...

  8. East Mississippi Elec Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: East Mississippi Elec Pwr Assn Place: Mississippi Phone Number: Meridian Office: 601-581-8600 -- Quitman Office: 601-776-6271 -- DeKalb Office: 601-743-2641 --...

  9. South Louisiana Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: South Louisiana Elec Coop Assn Place: Louisiana Phone Number: Houma Office: (985) 876-6880 or Amelia Office: (985) 631-3605 Website: www.sleca.com Facebook:...

  10. New England Elec Transm'n Corp | Open Energy Information

    Open Energy Info (EERE)

    Transm'n Corp Jump to: navigation, search Name: New England Elec Transm'n Corp Place: New Hampshire References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861...

  11. North Central Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Central Elec Coop, Inc Place: Ohio Website: www.ncelec.org Twitter: @NorthCentralEC Facebook: https:www.facebook.comNorthCentralElectric Outage Hotline: 419-426-3072 ...

  12. Bailey County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    Elec Coop Assn Place: Texas Phone Number: (806) 272-4504 Website: www.bcecoop.com Facebook: https:www.facebook.combcecoop Outage Hotline: (806) 272-4504 References: EIA Form...

  13. Comanche County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    Comanche County Elec Coop Assn Place: Texas Website: www.ceca.coophome.aspx Facebook: https:www.facebook.comCECA.coop Outage Hotline: 1-800-915-2533 References: EIA Form...

  14. Delaware County Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Delaware County Elec Coop Inc Place: New York Phone Number: (607) 746-9283 or Toll Free at (866) 436-1223 Website: www.dce.coop Facebook: https:www.facebook.compages...

  15. Elec District No. 5 Maricopa C | Open Energy Information

    Open Energy Info (EERE)

    District No. 5 Maricopa C Jump to: navigation, search Name: Elec District No. 5 Maricopa C Place: Arizona Phone Number: (480) 610-8741 Outage Hotline: (480) 610-8741 References:...

  16. Panola-Harrison Elec Coop, Inc (Louisiana) | Open Energy Information

    Open Energy Info (EERE)

    Louisiana) Jump to: navigation, search Name: Panola-Harrison Elec Coop, Inc Place: Louisiana Phone Number: (318) 933-5096 Outage Hotline: (318) 933-5096 References: EIA Form...

  17. Blue Ridge Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Blue Ridge Elec Member Corp Place: North Carolina Phone Number: 1-800-448-2383 Website: www.blueridgeemc.com Twitter: @blueridgeemc Facebook: https:www.facebook.comBlueRidgeEMC...

  18. French Broad Elec Member Corp (Tennessee) | Open Energy Information

    Open Energy Info (EERE)

    French Broad Elec Member Corp Place: Tennessee Phone Number: (828)649-2051 or (828)688-4815 or (800)222-6190 or (828)682-6121 Website: www.frenchbroademc.com Twitter:...

  19. French Broad Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    French Broad Elec Member Corp Place: North Carolina Phone Number: (828)649-2051 or (828)688-4815 or (800)222-6190 or (828)682-6121 Website: www.frenchbroademc.com Twitter:...

  20. Central Valley Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Coop, Inc Jump to: navigation, search Name: Central Valley Elec Coop, Inc Place: New Mexico Phone Number: (575) 746-3571 Website: cvecoop.org Outage Hotline: (575) 746-3571...

  1. North Georgia Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: North Georgia Elec Member Corp Place: Georgia Phone Number: Dalton: (706) 259-9441; Fort Oglethorpe: (706) 866-2231; Calhoun: (706) 629-3160; Trion:...

  2. Oliver-Mercer Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Oliver-Mercer Elec Coop Inc Place: North Dakota References: Energy Information Administration.1 EIA Form 861 Data Utility Id 14088 This article is a stub. You can help OpenEI...

  3. Hess Retail Natural Gas and Elec. Acctg. (Maryland) | Open Energy...

    Open Energy Info (EERE)

    Maryland) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Maryland References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form...

  4. Hess Retail Natural Gas and Elec. Acctg. (Massachusetts) | Open...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. Place: Massachusetts Phone Number: 212-997-8500 Website: www.hess.com Twitter: @HessCorporation Facebook: https:www.facebook.com...

  5. Hess Retail Natural Gas and Elec. Acctg. (Rhode Island) | Open...

    Open Energy Info (EERE)

    Rhode Island) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Rhode Island References: EIA Form EIA-861 Final Data File for 2010 - File220101...

  6. Hess Retail Natural Gas and Elec. Acctg. (New Hampshire) | Open...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. Place: New Hampshire Phone Number: 1-800-437-7645 Website: www.hess.com Twitter: @HessCorporation Facebook: https:www.facebook.com...

  7. Paulding-Putman Elec Coop, Inc (Indiana) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Paulding-Putman Elec Coop, Inc Address: 401 McDonald Pike Place: Paulding, Ohio Zip: 45879-9270 Service Territory: Indiana, Ohio Phone Number:...

  8. Rich Mountain Elec Coop, Inc (Oklahoma) | Open Energy Information

    Open Energy Info (EERE)

    Inc (Oklahoma) Jump to: navigation, search Name: Rich Mountain Elec Coop, Inc Place: Oklahoma Phone Number: 1-877-828-4074 Website: www.rmec.com Outage Hotline: 1-877-828-4074...

  9. Raft River Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River...

  10. A Resource assessment protocol for GEO-ELEC | Open Energy Information

    Open Energy Info (EERE)

    Resource assessment protocol for GEO-ELEC Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: A Resource assessment protocol for GEO-ELEC Authors...

  11. Sam Rayburn G&T Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Sam Rayburn G&T Elec Coop Inc Jump to: navigation, search Name: Sam Rayburn G&T Elec Coop Inc Place: Texas Phone Number: (936) 560-9532 Outage Hotline: (936) 560-9532 References:...

  12. Schlumberger soundings in the Upper Raft River and Raft River...

    Open Energy Info (EERE)

    soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Schlumberger soundings in the...

  13. Pioneer Rural Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 15054 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  14. Upshur Rural Elec Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 19579 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  15. Southwest Iowa Rural Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    888-220-4869 Website: www.swiarec.coop Facebook: https:www.facebook.comswiarec?refhl Outage Hotline: (888) 220-4869 Outage Map: www.iowarec.orgoutages References: EIA...

  16. Big Sandy Rural Elec Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    www.bigsandyrecc.com Twitter: @bigsandycoop Facebook: https:www.facebook.compagesBig-Sandy-RECC142216049157162 Outage Hotline: 888-789-7322 Outage Map:...

  17. Claverack Rural Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Outage Hotline: 1-800-326-9799 or 570-265-2167 Outage Map: ebill.claverack.comomsoutage References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861...

  18. Plumas-Sierra Rural Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    PlumasSierraREC Outage Hotline: (800) 555-2207 Outage Map: www.psrec.coopservice-area.ph References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

  19. Fall River Rural Elec Coop Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Website: www.fallriverelectric.com Facebook: https:www.facebook.comFallRiverREC Outage Hotline: 1.866.887.8442 (After Hours) Outage Map: outage.fallriverelectric.como...

  20. Butler County Rural Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Iowa Phone Number: 888-267-2726 Website: www.butlerrec.coop Twitter: @ButlerCountyREC Facebook: https:www.facebook.combcrec Outage Hotline: 888-267-2726 Outage Map:...

  1. MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information

    Open Energy Info (EERE)

    Homeowner Tidal Power Elec Gen < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","typ...

  2. Raft River Idaho Magnetotelluric Data

    SciTech Connect (OSTI)

    Gregory Nash

    2015-05-13

    Raw magnetotelluric (MT) data covering the geothermal system at Raft River, Idaho. The data was acquired by Quantec Geoscience. This is a zipped file containing .edi raw MT data files.

  3. RAFT Regional Algal Feedstock Testbed

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy RAFT Regional Algal Feedstock Testbed Kimberly Ogden, Professor, University of Arizona, Engineering Technical Lead, National Alliance for Advanced Biofuels and Bioproducts

  4. Conceptual Model At Raft River Geothermal Area (1988) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1988) Exploration Activity Details Location Raft River...

  5. Conceptual Model At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  6. Field Mapping At Raft River Geothermal Area (1977) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  7. Geophysical Method At Raft River Geothermal Area (1975) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River...

  8. Field Mapping At Raft River Geothermal Area (1980) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River...

  9. Core Analysis At Raft River Geothermal Area (1981) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River...

  10. Field Mapping At Raft River Geothermal Area (1990) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River...

  11. Conceptual Model At Raft River Geothermal Area (1987) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1987) Exploration Activity Details Location Raft River...

  12. Conceptual Model At Raft River Geothermal Area (1990) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River...

  13. Conceptual Model At Raft River Geothermal Area (1983) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River...

  14. Aeromagnetic Survey At Raft River Geothermal Area (1981) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River...

  15. Core Analysis At Raft River Geothermal Area (1976) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1976) Exploration Activity Details Location Raft River...

  16. Geophysical Method At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  17. Exploratory Well At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  18. Exploratory Well At Raft River Geothermal Area (1975) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River...

  19. Tracer Testing At Raft River Geothermal Area (1983) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River...

  20. Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River...

  1. Hess Retail Natural Gas and Elec. Acctg. (New York) | Open Energy...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. Place: New York References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility Id 22509 This article is a...

  2. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling...

  3. Raft River geoscience case study

    SciTech Connect (OSTI)

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (d) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  4. Ground Magnetics At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Raft River Geothermal Area (1979)...

  5. Numerical Modeling At Raft River Geothermal Area (1983) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983)...

  6. Micro-Earthquake At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River...

  7. Fluid Inclusion Analysis At Raft River Geothermal Area (2011...

    Open Energy Info (EERE)

    Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Raft River Geothermal Area (2011)...

  8. Cuttings Analysis At Raft River Geothermal Area (1976) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Raft River Geothermal Area (1976)...

  9. Update on the Raft River Geothermal Reservoir | Open Energy Informatio...

    Open Energy Info (EERE)

    the Raft River Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Update on the Raft River Geothermal Reservoir...

  10. Groundwater Sampling At Raft River Geothermal Area (1974-1982...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (1974-1982) Exploration Activity Details Location Raft River...

  11. Micro-Earthquake At Raft River Geothermal Area (2011) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River...

  12. Electromagnetic Soundings At Raft River Geothermal Area (1977...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Raft River Geothermal Area (1977)...

  13. Thermochronometry At Raft River Geothermal Area (1993) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Raft River Geothermal Area (1993)...

  14. Isotopic Analysis-Fluid At Raft River Geothermal Area (1982)...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River...

  15. Telluric Survey At Raft River Geothermal Area (1978) | Open Energy...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Raft River Geothermal Area (1978)...

  16. Ground Gravity Survey At Raft River Geothermal Area (1978) |...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River...

  17. Direct-Current Resistivity Survey At Raft River Geothermal Area...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Raft River Geothermal Area...

  18. DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River...

  19. Development Wells At Raft River Geothermal Area (2004) | Open...

    Open Energy Info (EERE)

    Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal...

  20. Self Potential Measurements At Raft River Geothermal Area (1983...

    Open Energy Info (EERE)

    Measurements At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential Measurements At Raft River...

  1. Audio-Magnetotellurics At Raft River Geothermal Area (1978) ...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Audio-Magnetotellurics At Raft River Geothermal Area (1978)...

  2. Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River...

  3. Petrography Analysis At Raft River Geothermal Area (1980) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Raft River Geothermal Area (1980)...

  4. Core Analysis At Raft River Geothermal Area (1979) | Open Energy...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1979) Exploration...

  5. Geology and alteration of the Raft River geothermal system, Idaho...

    Open Energy Info (EERE)

    Raft River geothermal system, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geology and alteration of the Raft River geothermal...

  6. Airborne Electromagnetic Survey At Raft River Geothermal Area...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Airborne Electromagnetic Survey At Raft River Geothermal Area...

  7. Compound and Elemental Analysis At Raft River Geothermal Area...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Raft River Geothermal Area...

  8. Isotopic Analysis-Fluid At Raft River Geothermal Area (1977)...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  9. Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River...

  10. Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River...

  11. Chemical Logging At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Chemical Logging At Raft River Geothermal Area (1979)...

  12. Acoustic Logs At Raft River Geothermal Area (1979) | Open Energy...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Acoustic Logs At Raft River Geothermal Area (1979) Exploration...

  13. Fault Mapping At Raft River Geothermal Area (1993) | Open Energy...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration...

  14. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    TESTS AT THE RAFT RIVER GEOTHERMAL SITE Citation Details In-Document Search Title: COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE Three conservative ...

  15. Injectivity Test At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River...

  16. Flow Test At Raft River Geothermal Area (1979) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River...

  17. Flow Test At Raft River Geothermal Area (2008) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2008) Exploration Activity Details Location Raft River...

  18. Flow Test At Raft River Geothermal Area (2004) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River...

  19. Flow Test At Raft River Geothermal Area (2006) | Open Energy...

    Open Energy Info (EERE)

    Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006)...

  20. Raft River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and later the US Department of Energy (DOE) which was formed by joining the Federal Energy Administration and ERDA in 1977.3 The Raft River site was identified as an area...

  1. Seismic refraction study of the Raft River geothermal area, Idaho...

    Open Energy Info (EERE)

    refraction study of the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic refraction study of the Raft...

  2. Deep drilling data Raft River geothermal area, Idaho | Open Energy...

    Open Energy Info (EERE)

    data Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data Raft River geothermal area, Idaho Abstract...

  3. Subsurface geology of the Raft River geothermal area, Idaho ...

    Open Energy Info (EERE)

    geology of the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Subsurface geology of the Raft River...

  4. Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion...

    Open Energy Info (EERE)

    report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Abstract The Raft...

  5. Direct-Current Resistivity Survey At Raft River Geothermal Area...

    Open Energy Info (EERE)

    surveys were undertaken at the Raft River geothermal area. References Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. (12 October 1975) Exploring the Raft River geothermal area,...

  6. Raft River III Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Raft River III Geothermal Project Project Location Information Coordinates...

  7. Modeling-Computer Simulations At Raft River Geothermal Area ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1980) Exploration Activity Details...

  8. Modeling-Computer Simulations At Raft River Geothermal Area ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1979) Exploration Activity Details...

  9. Modeling-Computer Simulations At Raft River Geothermal Area ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1977) Exploration Activity Details...

  10. Modeling-Computer Simulations At Raft River Geothermal Area ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1983) Exploration Activity Details...

  11. The RenewElec Project: Variable Renewable Energy and the Power System

    SciTech Connect (OSTI)

    Apt, Jay

    2014-02-14

    Variable energy resources, such as wind power, now produce about 4% of U.S. electricity. They can play a significantly expanded role if the U.S. adopts a systems approach that considers affordability, security and reliability. Reaching a 20-30% renewable portfolio standard goal is possible, but not without changes in the management and regulation of the power system, including accurately assessing and preparing for the operational effects of renewable generation. The RenewElec project will help the nation make the transition to the use of significant amounts of electric generation from variable and intermittent sources of renewable power.

  12. Hydrochemistry of selected parameters at the Raft River KGRA...

    Open Energy Info (EERE)

    Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Hydrochemistry of...

  13. The investigation of anomalous magnetization in the Raft River...

    Open Energy Info (EERE)

    investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: The...

  14. Final Technical Resource Confirmation Testing at the Raft River...

    Open Energy Info (EERE)

    Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final...

  15. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Reconnaissance...

  16. Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion...

    Open Energy Info (EERE)

    report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Abstract GEOTHERMAL...

  17. Petrography of late cenozoic sediments, Raft River geothermal...

    Open Energy Info (EERE)

    of late cenozoic sediments, Raft River geothermal field, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Petrography of late...

  18. Raft River II Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Raft River II Geothermal Project Project Location Information Coordinates 42.605555555556,...

  19. Interpretation of electromagnetic soundings in the Raft River...

    Open Energy Info (EERE)

    electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Interpretation of electromagnetic...

  20. Tracer Testing At Raft River Geothermal Area (1984) | Open Energy...

    Open Energy Info (EERE)

    undertaken at Raft River geothermal area. References Kroneman, R. L.; Yorgason, K. R.; Moore, J. N. (1 December 1984) Preferred methods of analysis for chemical tracers in...

  1. Petrography Analysis At Raft River Geothermal Area (2011) | Open...

    Open Energy Info (EERE)

    flows, tuffaceous siltstone, greywacke, and sandstone. References Clay Jones, Joseph Moore, William Teplow, Seth Craig (2011) Geology and Hydrothermal Alteration of the Raft...

  2. Concept Testing and Development at the Raft River Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. raftriverpeer2013.pdf More Documents &...

  3. Micro-Earthquake At Raft River Geothermal Area (1982) | Open...

    Open Energy Info (EERE)

    Zandt, G.; Mcpherson, L.; Schaff, S.; Olsen, S. (1 May 1982) Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Additional References...

  4. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon egsmooreraftriver.pdf More Documents & Publications Concept Testing and Development at the Raft River Geothermal Field, Idaho The Role of Geochemistry and Stress on ...

  5. Responsible Asia Forest Trade (RAFT) Program | Open Energy Information

    Open Energy Info (EERE)

    Regional Development Mission for Asia (USAID RDMA) in Bangkok. RAFT is managed by The Nature Conservancy (TNC) in partnership with International Union for Conservation of Nature...

  6. Two-dimensional simulation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    of the Raft River geothermal reservoir and wells. (SINDA-3G program) Abstract Computer models describing both the transient reservoir pressure behavior and the time...

  7. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon ...

  8. Surface Water Sampling At Raft River Geothermal Area (1973) ...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Raft River Geothermal Area (1973) Exploration Activity Details Location...

  9. FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO | Open Energy Information

    Open Energy Info (EERE)

    leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary...

  10. Thermal And-Or Near Infrared At Raft River Geothermal Area (1997...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Exploration Activity Details Location Raft River...

  11. Ground Gravity Survey At Raft River Geothermal Area (1957-1961...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Exploration Activity Details Location Raft River...

  12. Thermal And-Or Near Infrared At Raft River Geothermal Area (1974...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River...

  13. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon raft_river_peer2013.pdf More Documents & Publications Concept Testing and Development at the Raft River Geothermal Field, Idaho track 4: enhanced geothermal

  14. Preservation of an extreme transient geotherm in the Raft River...

    Open Energy Info (EERE)

    of an extreme transient geotherm in the Raft River detachment shear zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Preservation of an...

  15. Simulation analysis of the unconfined aquifer, Raft River Geothermal...

    Open Energy Info (EERE)

    analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Simulation analysis of the...

  16. Geophysical logging case history of the Raft River geothermal...

    Open Energy Info (EERE)

    logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical logging case history of the...

  17. Total field aeromagnetic map of the Raft River known Geothermal...

    Open Energy Info (EERE)

    field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  18. Raft River monitor well potentiometric head responses and water...

    Open Energy Info (EERE)

    flow system Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Raft River monitor well potentiometric head responses and water quality as related to the...

  19. Groundwater Sampling At Raft River Geothermal Area (2004-2011...

    Open Energy Info (EERE)

    limited the degree of mixing between them. References Ayling, B.; Molling, P.; Nye, R.; Moore, J. (1 January 2011) FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW...

  20. Conceptual Model At Raft River Geothermal Area (1981) | Open...

    Open Energy Info (EERE)

    Dolenc, M. R.; Hull, L. C.; Mizell, S. A.; Russell, B. F.; Skiba, P. A.; Strawn, J. A.; Tullis, J. A. (1 November 1981) Raft River geoscience case study Dolenc, M. R.;...

  1. Exploratory Well At Raft River Geothermal Area (1976) | Open...

    Open Energy Info (EERE)

    well production was tested. Down-hole data was obtained from RRGE-3. References Speake, J.L. (1 August 1976) Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion...

  2. Rheological control on the initial geometry of the Raft River...

    Open Energy Info (EERE)

    Rheological control on the initial geometry of the Raft River detachment fault and shear zone, western United States Jump to: navigation, search OpenEI Reference LibraryAdd to...

  3. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  4. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  5. An early history of pure shear in the upper plate of the raft...

    Open Energy Info (EERE)

    early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Jump to: navigation, search OpenEI Reference...

  6. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...

    Open Energy Info (EERE)

    evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Reservoir evaluation tests on...

  7. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  8. Lakes_Elec_You

    Office of Environmental Management (EM)

    ... Florida Jim Woodruff Preference Customers 115 Lincoln Drive Chattahoochee, FL 32324 850663-4475 Georgia Municipal Electric Authority of Georgia Atlanta, GA 30328-4640 770952-5445 ...

  9. Integrated rural energy planning

    SciTech Connect (OSTI)

    El Mahgary, Y.; Biswas, A.K.

    1985-01-01

    This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.

  10. Creep of CMSX-4 superalloy single crystals: Effects of rafting at high temperature

    SciTech Connect (OSTI)

    Reed, R.C.; Matan, N.; Cox, D.C.; Rist, M.A.; Rae, C.M.F.

    1999-09-29

    The creep performance of (001)-orientated CMSX-4 superalloy single crystals at temperatures beyond 1000 C is analyzed. Rafting of the {gamma}{prime} structure occurs rapidly, e.g., for the 1150 C/100 MPa tests rafting is completed within the first 10 h. At this stage and for a considerable time thereafter the creep strain rate decreases with increasing strain, implying a creep hardening effect which is absent at lower temperatures when the kinetics of rafting is less rapid. Once a critical strain {epsilon}* of (0.7 {+-} 0.3)% is reached, the creep strain increases dramatically and failure occurs within a few tens of hours. It is demonstrated that methods of interpretation which, assume a proportionality between the creep strain rate and creep strain, are unable to account for creep hardening which occurs as a consequence of rafting. A modification is proposed which accounts for the blocking of the glide/climb of {l{underscore}brace}111{r{underscore}brace}{l{underscore}angle}1{bar 1}0{r{underscore}angle} creep dislocations which occurs as the number of vertical {gamma} channels is reduced and cellular dislocation networks become stabilized. Consequently, failure must be taken to be associated with creep cavitation, which occurs predominantly around casting porosity. It is emphasized that more work is required to quantify the interaction between the various creep damage mechanisms.

  11. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  12. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  13. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    SciTech Connect (OSTI)

    Kosicek, Marko; Malnar, Martina; Goate, Alison; Hecimovic, Silva

    2010-03-12

    It has been suggested that cholesterol may modulate amyloid-{beta} (A{beta}) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD ({beta}-amyloid precursor protein (APP), {beta}-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/A{beta} formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1{sup -/-} cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, {gamma}-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards A{beta} occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  14. WINDExchange: Rural Communities

    Wind Powering America (EERE)

    Rural Communities Printable Version Bookmark and Share Wind for Homeowners, Farmers, & Businesses Resources & Tools Rural Communities Agricultural lands in the United States are...

  15. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  16. Preparation of transition metal nanoparticles and surfaces modified with (CO) polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-10-25

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surface modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a collidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as fuctionalization with a variety of different chemical groups, expanding their utility and application.

  17. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  18. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    SciTech Connect (OSTI)

    Thayanithy, Venugopal; Babatunde, Victor; Dickson, Elizabeth L.; Wong, Phillip; Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy; Moreira, Andr L.; Downey, Robert J.; Steer, Clifford J.; Subramanian, Subbaya; Manova-Todorova, Katia; Moore, Malcolm A.S.; Lou, Emil

    2014-04-15

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 2448 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.31.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. Our findings suggest causal and potentially synergistic association of exosomes and tunneling nanotubes in cancer.

  19. Rural Energy for America Program

    Broader source: Energy.gov [DOE]

    The Rural Energy for America Program (REAP) provides financial assistance to agricultural producers and rural small businesses in rural America to purchase, install, and construct renewable energy...

  20. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    SciTech Connect (OSTI)

    Eum, Sung Yong Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP2A/MMP-2 induced PCB153-induced dysfunction of occludin. • Disrupted lipid rafts modulated PCB153-induced increase of permeability. • Lipid rafts act as a signaling platform for PCB153-induced dysfunction of occludin.

  1. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for Alaska's remote communities.

  2. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    SciTech Connect (OSTI)

    Adebiyi, Adebowale Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. Lipid raft disruption attenuates cell surface AGTR1 protein expression. Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  3. Rural Alaska Maintenance Partnership

    Office of Environmental Management (EM)

    Rural Alaska Community Action Program, Inc. Ellen Kazary, Community Development Manager (907) 865-7358, ekazary@ruralcap.com GOALS: * Create jobs for rural Alaskans * Lower residential energy burden in tribal communities Additional Goals - Demonstrate that education and simple efficiency improvements can make an important difference in lowering residential energy costs - Provide a model component for energy plans - important to incorporate Energy Wise strategies in holistic energy plans Energy

  4. Alaska Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiatives, the Alaska Rural Small Business Conference is a three-day conference to bring together rural businesses and leaders and provide them with networking opportunities, training, and technical information.

  5. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    SciTech Connect (OSTI)

    Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

    2011-02-01

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

  6. The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells

    SciTech Connect (OSTI)

    De Gregorio, Francesca; Pellegrino, Mario; Picchietti, Simona; Belardinelli, Maria C.; Taddei, Anna Rita; Fausto, Anna Maria; Rossi, Mario; Maggio, Roberto; Giorgi, Franco

    2011-06-01

    DDT is a highly lipophilic molecule known to deplete membrane rafts of their phosphoglycolipid and cholesterol contents. However, we have recently shown that DDT can also alter the thyroid homeostasis by inhibiting TSH receptor (TSHr) internalization. The present study was undertaken to verify whether DDT goitrogenic effects are due to the insecticide acting directly on TSHr or via alteration of the membrane rafts hosting the receptor itself. Our results demonstrate that, in CHO-TSHr transfected cells, TSHr is activated in the presence of TSH, while it is inhibited following DDT exposure. DDT can also reduce the endocytic vesicular traffic, alter the extension of multi-branched microvilli along their plasma membranes and induce TSHr shedding in vesicular forms. To verify whether TSHr displacement might depend on DDT altering the raft constitution of CHO-TSHr cell membranes the extent of TSHr and lipid raft co-localization was examined by confocal microscopy. Evidence shows that receptor/raft co-localization increased significantly upon exposure to TSH, while receptors and lipid rafts become dislodged on opposite cell poles in DDT-exposed CHO-TSHr cells. As a control, under similar culturing conditions, diphenylethylene, which is known to be a lipophilic substance that is structurally related to DDT, did not affect the extent of TSHr and lipid raft co-localization in CHO-TSHr cells treated with TSH. These findings corroborate and extend our view that, in CHO cells, the DDT disrupting action on TSHr is primarily due to the insecticide acting on membranes to deplete their raft cholesterol content, and that the resulting inhibition on TSHr internalization is due to receptor dislodgement from altered raft microdomains of the plasma membrane. - Highlights: >DDT is a pesticide with a severe environmental impact >Epidemiologic correlation exists between exposition to DDT and thyroid dysfunction >DDT is a lipophilic molecule that has been shown to inhibit TSH receptor function >DDT depletes membrane raft cholesterol content and by this way inhibits TSH receptor

  7. Rural Energy Conference Project

    SciTech Connect (OSTI)

    Dennis Witmer; Shannon Watson

    2008-12-31

    Alaska remains, even at the beginning of the 21st century, a place with many widely scattered, small, remote communities, well beyond the end of both the road system and the power grid. These communities have the highest energy costs of any place in the United States, despite the best efforts of the utilities that service them. This is due to the widespread dependence on diesel electric generators, which require small capital investments, but recent increases in crude oil prices have resulted in dramatic increases in the cost of power. In the enabling legislation for the Arctic Energy Office in 2001, specific inclusion was made for the study of ways of reducing the cost of electrical power in these remote communities. As part of this mandate, the University of Alaska has, in conjunction with the US Department of Energy, the Denali Commission and the Alaska Energy Authority, organized a series of rural energy conferences, held approximately every 18 months. The goal of these meeting was to bring together rural utility operators, rural community leaders, government agency representatives, equipment suppliers, and researchers from universities and national laboratories to discuss the current state of the art in rural power generation, to discuss current projects, including successes as well as near successes. Many of the conference presenters were from industry and not accustomed to writing technical papers, so the typical method of organizing a conference by requesting abstracts and publishing proceedings was not considered viable. Instead, the organizing committee solicited presentations from appropriate individuals, and requested that (if they were comfortable with computers) prepare Power point presentations that were collected and posted on the web. This has become a repository of many presentations, and may be the best single source of information about current projects in the state of Alaska.

  8. ARM - SGP Rural Driving Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rural Driving Hazards SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on

  9. Rural Utilities Service Electric Program

    Broader source: Energy.gov [DOE]

    The Rural Utilities Service Electric Program’s loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

  10. Property:EIA/861/NercMro | Open Energy Information

    Open Energy Info (EERE)

    + true + Brainerd Public Utilities + true + Brodhead Water & Lighting Comm + true + Brown County Rural Elec Assn + true + Burke-Divide Electric Coop Inc + true + Butler County...

  11. Whitewater Valley Rural EMC | Open Energy Information

    Open Energy Info (EERE)

    Valley Rural EMC Jump to: navigation, search Name: Whitewater Valley Rural EMC Address: P.O. Box 349 Place: Liberty, Indiana Zip: 47353 Sector: Transmission Phone Number: (765)...

  12. Alliance for Rural Electrification | Open Energy Information

    Open Energy Info (EERE)

    Alliance for Rural Electrification1 The Alliance for Rural Electrification is the only international business association in the world focusing on the promotion and the...

  13. WINDExchange: Agricultural and Rural Resources and Tools

    Wind Powering America (EERE)

    Rural Communities Printable Version Bookmark and Share Wind for Homeowners, Farmers, & Businesses Resources & Tools Agricultural and Rural Resources and Tools This page lists...

  14. Alaska Village Initiatives Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    The Alaska Rural Business Conference brings together rural businesses and leaders to provide them with networking opportunities, trainings, and technical information.

  15. USDA Rural Development Energy Programs

    Office of Environmental Management (EM)

    rural small businesses in purchasing renewable energy systems and making energy efficiency ... New Farm Bill was passed and signed into law on 2- 7- 14. Changes to funding levels ...

  16. 2016 Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The 2016 Alaska Rural Energy Conference is a three-day event that offers a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for Alaska's remote communities.

  17. China-NREL Rural Electrification Projects | Open Energy Information

    Open Energy Info (EERE)

    Rural Electrification Projects Jump to: navigation, search Logo: China Rural Electrification Name China Rural Electrification AgencyCompany Organization National Renewable Energy...

  18. USDA- Rural Energy for America Program (REAP) Loan Guarantees

    Broader source: Energy.gov [DOE]

    The Rural Energy for America Program (REAP) provides financial assistance to agricultural producers and rural small businesses in rural America to purchase, install, and construct renewable energ...

  19. Korea Rural Community Corp KRC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Korea Rural Community Corp (KRC) Place: Korea (Republic) Product: South Korea-based rural development company. References: Korea Rural Community Corp...

  20. Northern Virginia Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 13640 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO PJM Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes This...

  1. Central Wisconsin Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    https:www.facebook.compagesCentral-Wisconsin-Electric-Cooperative268841143249085?refaymthomepagepanel Outage Hotline: 800-377-2932 References: EIA Form EIA-861 Final...

  2. 2005 Elec. Safety-rev1.pmd

    Energy Savers [EERE]

    Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 21-25, 2005 Chicago, Illinois The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Technical Session 4: Emission Control Technologies, Part 1 Technical Session 1: Advanced Combustion Technologies Part 1 Poster Session 2: Light-Duty Diesels and Emission

  3. Northwestern Wisconsin Elec Co | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  4. Western Massachusetts Elec Co | Open Energy Information

    Open Energy Info (EERE)

    Green Button Access: Implemented Green Button Landing Page: www.wmeco.comResidential Green Button Reference Page: www.wmeco.comResidential References: EIA Form EIA-861 Final...

  5. Illinois Municipal Elec Agency | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  6. Cumberland Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information Administration Form 8262 EIA Form 861 Data Utility Id 4624 Utility Location Yes Ownership C...

  7. Cumberland Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Schedules Grid-background.png Average Rates Residential: 0.1060kWh Commercial: 0.1120kWh Industrial: 0.0733kWh The following table contains monthly sales and revenue data...

  8. 2005 Elec. Safety-rev1.pmd

    Energy Savers [EERE]

    Positioning System KCP Kansas City Plant LLNL Lawrence Livermore National ... Equipment SC Office of Science SRS Savannah River Site FOREWORD Since 1984, the Office of ...

  9. Rutherford Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    1-800-521-0920 or 1-800-228-9756 or 1-800-228-5331 Outage Map: www.remc.comstorm-centerouta References: EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy...

  10. Lyon Rural Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Lyon Rural Electric Coop Jump to: navigation, search Name: Lyon Rural Electric Coop Place: Iowa Phone Number: 712-472-2506 Website: www.lyonrec.coop Outage Hotline: 1-800-292-8989...

  11. Alaska Village Initiatives Rural Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

  12. USDA Rural Business Enterprise Grant (RBEG) Program

    Broader source: Energy.gov [DOE]

    Request for Proposals for funding to support the development of small and emerging private business enterprises in rural Alaska

  13. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    SciTech Connect (OSTI)

    Eum, Sung Yong Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-10-15

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  14. Viet Nam Rural Electrification | Open Energy Information

    Open Energy Info (EERE)

    Rural Electrification Location of project Vietnam Energy Services Lighting, Cooking and water heating, Space heating, Cooling Year initiated 2009 Organization Asian Development...

  15. Rural Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesRural-Electric-Cooperative-Inc116401145072740?refts Outage Hotline: 855-399-2683 References: EIA Form EIA-861 Final Data File for 2010 -...

  16. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of Chinas total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on Chinas success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  17. Rural Innovations Network | Open Energy Information

    Open Energy Info (EERE)

    Network Jump to: navigation, search Name: Rural Innovations Network Place: India Sector: Services Product: General Financial & Legal Services ( Charity Non-profit Association...

  18. Modular Biomass Systems Could Boost Rural Areas

    Broader source: Energy.gov [DOE]

    Increased ethanol production will help revitalize the rural economy and decrease America's dependence on foreign oil, but there are other ways to create opportunities in the farmlands.

  19. Club for Rural Electrification | Open Energy Information

    Open Energy Info (EERE)

    Electrification Jump to: navigation, search Name: Club for Rural Electrification Place: Freiburg, Germany Zip: 79114 Sector: Solar Product: An industry association of German...

  20. Linn County Rural Electric Cooperative - Agricultural Energy...

    Broader source: Energy.gov (indexed) [DOE]

    water heater installed, additional 25 bonus if electric dryer installed Energy Star Television: 50 Summary Linn County Rural Electric Cooperative Association (Linn County RECA)...

  1. USDA Rural Development Washington State Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture is hosting a Washington Rural Development Workshop. Speakers will cover local and regional broadband initiatives program and broadband success stories,...

  2. Renewable Energy Technologies for Rural Electrification - The...

    Open Energy Info (EERE)

    Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technologies for Rural Electrification - The Role of the Private Sector AgencyCompany...

  3. Comments of the National Rural Electric Cooperative Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Rural Electric Cooperative Association, Request for Information Addressing Policy and Logistical Challenges to Smart Grid Implementation Comments of the National Rural ...

  4. Modified Microgrid Concept for Rural Electrification in Africa...

    Open Energy Info (EERE)

    Modified Microgrid Concept for Rural Electrification in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Modified Microgrid Concept for Rural Electrification in...

  5. Electric Cooperatives Channel Solar Resources to Rural American...

    Office of Environmental Management (EM)

    Electric Cooperatives Channel Solar Resources to Rural American Communities Electric Cooperatives Channel Solar Resources to Rural American Communities February 4, 2016 - 12:07pm ...

  6. Rural Development Multi-Family Housing Energy Efficiency Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rural Development Multi-Family Housing Energy Efficiency Initiative Rural Development Multi-Family Housing Energy Efficiency Initiative In order to help create a more energy ...

  7. 2014 HAC Rural Housing Conference: Retool, Rebuild, Renew

    Broader source: Energy.gov [DOE]

    The biennial HAC Rural Housing Conference brings together stakeholders in the field of rural affordable housing from local nonprofits, federal agencies, Congress, state and local governments, and...

  8. Climate Change: building the resilience of poor rural communities...

    Open Energy Info (EERE)

    of poor rural communities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: building the resilience of poor rural communities AgencyCompany...

  9. Mozambique-Biofuels, Land Access and Rural Livelihoods | Open...

    Open Energy Info (EERE)

    Biofuels, Land Access and Rural Livelihoods Jump to: navigation, search Name Mozambique-Biofuels, Land Access and Rural Livelihoods AgencyCompany Organization International...

  10. Tanzania-Biofuels, Land Access and Rural Livelihoods | Open Energy...

    Open Energy Info (EERE)

    Tanzania-Biofuels, Land Access and Rural Livelihoods Jump to: navigation, search Name Tanzania-Biofuels, Land Access and Rural Livelihoods AgencyCompany Organization...

  11. Farmers Rural Electric Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    Rural Electric Coop Corp Jump to: navigation, search Name: Farmers Rural Electric Coop Corp Place: Kentucky Website: farmersrecc.com Facebook: https:www.facebook.comFarmersRECC...

  12. USDA- Rural Energy for America Program (REAP) Grants

    Broader source: Energy.gov [DOE]

    The Rural Energy for America Program (REAP) provides financial assistance to agricultural producers and rural small businesses in America to purchase, install, and construct renewable energy syst...

  13. Jianghe Rural Electricity Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jianghe Rural Electricity Development Co Ltd Jump to: navigation, search Name: Jianghe Rural Electricity Development Co Ltd Place: Fuzhou, Fujian Province, China Product:...

  14. Rural Electrification Act of 1936 | Open Energy Information

    Open Energy Info (EERE)

    901 et seq. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Rural Electrification Act of 1936 Citation Rural Electrification Act of...

  15. Alaska Rural Manager Panelists Call for Nominations

    Broader source: Energy.gov [DOE]

    The Alaska Rural Managers are seeking nominations for city, tribal, and utility managers to participate in several Anchorage focus group/workshops this April. Selected panelists will represent their profession and will help develop guidelines for the training and education of Alaska's Rural Managers.

  16. Rural electric cooperatives IRP survey

    SciTech Connect (OSTI)

    Garrick, C.

    1995-11-01

    This report summarizes the integrated resource planning (IRP) practices of US rural electric cooperatives and the IRP policies which influence these practices. It was prepared by the National Renewable Energy Laboratory (NREL) and its subcontractor Garrick and Associates to assist the US Department of Energy (DOE) in satisfying the reporting requirements of Title 1, Subtitle B, Section 111(e)(3) of the Energy Policy Act of 1992 (EPAct), which states: (e) Report--Not later than 2 years after the date of the enactment of this Act, the Secretary (of the US Department of Energy) shall transmit a report to the President and to the Congress containing--(the findings from several surveys and evaluations, including:); (3) a survey of practices and policies under which electric cooperatives prepare IRPs, submit such plans to REA, and the extent to which such integrated resource planning is reflected in rates charged to customers.

  17. Sustainable Energy Solutions for Rural Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Energy Solutions for Rural Alaska Sustainable Energy Solutions for Rural Alaska Photo of the Sustainable Energy Solutions for Rural Alaska report. The report, "Sustainable Energy Solutions for Rural Alaska," provides recommendations from a study conducted over the course of 18 months that involved in-person interviews with utility staff and community members from more than 30 Alaska rural communities. The purpose of the study was to understand the current challenges and

  18. USDA Rural Small Business Connection Event

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture (USDA) will host Rural Small Business Connections, providing small businesses with networking sessions and opportunities to build capacity and do business with USDA and other Federal agencies.

  19. Alaska Rural Energy Conference- Federal Energy Track

    Broader source: Energy.gov [DOE]

    On the first day of the Alaska Rural Energy Conference, the U.S. Department of Energy (DOE) Office of Indian Energy is hosting a federal energy track to cover federal programs and opportunities for Alaska Native villages.

  20. Category:Elkins, WV | Open Energy Information

    Open Energy Info (EERE)

    16 files are in this category, out of 16 total. SVFullServiceRestaurant Elkins WV Harrison Rural Elec Assn Inc.png SVFullServiceRestauran... 59 KB SVQuickServiceRestaurant...

  1. Flint Hills Rural E C A, Inc | Open Energy Information

    Open Energy Info (EERE)

    Rural E C A, Inc Jump to: navigation, search Name: Flint Hills Rural E C A, Inc Place: Kansas Phone Number: 620-767-5144 Website: www.flinthillsrec.com Facebook: https:...

  2. Guthrie County Rural E C A | Open Energy Information

    Open Energy Info (EERE)

    Guthrie County Rural E C A Jump to: navigation, search Name: Guthrie County Rural E C A Place: Iowa Phone Number: 641.747.2206 Website: www.guthrie-rec.coop Outage Hotline:...

  3. Ninnescah Rural E C A Inc | Open Energy Information

    Open Energy Info (EERE)

    Ninnescah Rural E C A Inc Jump to: navigation, search Name: Ninnescah Rural E C A Inc Place: Kansas Phone Number: (620) 672-5538 Website: www.ninnescah.com Outage Hotline: (800)...

  4. Meade County Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    County Rural E C C Jump to: navigation, search Name: Meade County Rural E C C Place: Kentucky Phone Number: 1.877.276.5353 or Brandenburg: 270.422.2162, Hardinsburg: 270.756.5172...

  5. Linn County Rural E C A | Open Energy Information

    Open Energy Info (EERE)

    Linn County Rural E C A Jump to: navigation, search Name: Linn County Rural E C A Place: Iowa Phone Number: 319-377-1587 or 1-800-332-5420 Website: linncountyrec.com Outage...

  6. Cumberland Valley Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    Valley Rural E C C Jump to: navigation, search Name: Cumberland Valley Rural E C C Place: Kentucky Phone Number: 1-800-513-2677 Website: www.cumberlandvalley.coop Twitter:...

  7. West Kentucky Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    West Kentucky Rural E C C Jump to: navigation, search Name: West Kentucky Rural E C C Place: Kentucky Phone Number: 270-247-1321 or 1-877-495-7322 Website: www.wkrecc.com Twitter:...

  8. Woodbury County Rural E C A | Open Energy Information

    Open Energy Info (EERE)

    County Rural E C A Jump to: navigation, search Name: Woodbury County Rural E C A Place: Iowa Phone Number: 712.873.3125 Website: www.woodburyrec.com Outage Hotline: 1.800.469.3125...

  9. Panhandle Rural El Member Assn | Open Energy Information

    Open Energy Info (EERE)

    Rural El Member Assn Jump to: navigation, search Name: Panhandle Rural El Member Assn Place: Nebraska Phone Number: 308-762-1311 Website: www.prema.coop Facebook: https:...

  10. Dubois Rural Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Dubois Rural Electric Coop Inc Jump to: navigation, search Name: Dubois Rural Electric Coop Inc Place: Indiana Phone Number: 812.482.5454 Website: www.duboisrec.com Facebook:...

  11. Butler Rural Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Butler Rural Electric Coop Inc Place: Ohio Website: www.butlerrural.coop Facebook: https:www.facebook.comButlerRuralElectricCooperative Outage Hotline: 800-255-2732 Outage Map:...

  12. Howard Greeley Rural P P D | Open Energy Information

    Open Energy Info (EERE)

    Rural P P D Jump to: navigation, search Name: Howard Greeley Rural P P D Place: Nebraska Phone Number: 308.754.4457 Website: www.howardgreeleyrppd.com Facebook: https:...

  13. Taylor County Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    Taylor County Rural E C C Jump to: navigation, search Name: Taylor County Rural E C C Place: Kentucky Phone Number: 1-800-931-4551 Website: www.tcrecc.com Outage Hotline: (800)...

  14. Jackson County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Jackson County Rural E M C Jump to: navigation, search Name: Jackson County Rural E M C Place: Indiana Phone Number: 1.800.288.4458 Website: www.jacksonremc.com Twitter:...

  15. Harrison County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Harrison County Rural E M C Jump to: navigation, search Name: Harrison County Rural E M C Place: Indiana Phone Number: 712-647-2727 or 800-822-5591 Website: www.hcrec.coop Outage...

  16. Polk County Rural Pub Pwr Dist | Open Energy Information

    Open Energy Info (EERE)

    Polk County Rural Pub Pwr Dist Jump to: navigation, search Name: Polk County Rural Pub Pwr Dist Place: Nebraska Phone Number: (888) 242-5265 Website: www.pcrppd.com Outage...

  17. Marshall County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Marshall County Rural E M C Jump to: navigation, search Name: Marshall County Rural E M C Place: Indiana Phone Number: (866) 936-3161 Website: www.marshallremc.com Twitter:...

  18. Lagrange County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Lagrange County Rural E M C Jump to: navigation, search Name: Lagrange County Rural E M C Place: Indiana Phone Number: (877)463-7165 Website: www.lagrangeremc.com Twitter:...

  19. Newton County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Newton County Rural E M C Jump to: navigation, search Name: Newton County Rural E M C Place: Indiana Phone Number: 219.474.6224 or (219) 297-3118 Website: www.newtoncountyremc.com...

  20. Hendricks County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Hendricks County Rural E M C Jump to: navigation, search Name: Hendricks County Rural E M C Place: Indiana Phone Number: (317) 745-5473 or (800) 876-5473 Website:...

  1. Jasper County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Jasper County Rural E M C Jump to: navigation, search Name: Jasper County Rural E M C Place: Indiana Phone Number: 1-888-866-7362 or 219-866-4601 Website: www.jasperremc.com...

  2. Fulton County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Fulton County Rural E M C Jump to: navigation, search Name: Fulton County Rural E M C Place: Indiana Phone Number: 574-223-3156 or 1-800-286-2265 Website: www.fultoncountyremc.com...

  3. Decatur County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Decatur County Rural E M C Jump to: navigation, search Name: Decatur County Rural E M C Place: Indiana Phone Number: (812) 663-3391 or 800-844-7362 Website: www.dcremc.com Outage...

  4. Kankakee Valley Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Kankakee Valley Rural E M C Jump to: navigation, search Name: Kankakee Valley Rural E M C Place: Indiana Phone Number: 219.733.2511 or 800.552.2622 Website: www.kvremc.com Outage...

  5. Wabash County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Wabash County Rural E M C Jump to: navigation, search Name: Heartland Rural E M C Address: 350 Wedcor Avenue Place: Wabash, Indiana Phone Number: (260) 563-2146 Website:...

  6. Johnson County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Johnson County Rural E M C Jump to: navigation, search Name: Johnson County Rural E M C Place: Indiana Phone Number: 317.736.6174 Website: jcremc.com Facebook: https:...

  7. Jay County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Jay County Rural E M C Jump to: navigation, search Name: Jay County Rural E M C Place: Indiana Phone Number: 260-726-7121 or 1-800-TEL-REMC Website: www.jayremc.com Outage...

  8. Bartholomew County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Bartholomew County Rural E M C Jump to: navigation, search Name: Bartholomew County Rural E M C Address: 1697 W. Deaver Road Place: Columbus, Indiana Zip: 47201 Phone Number: (812)...

  9. Kosciusko County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Kosciusko County Rural E M C Jump to: navigation, search Name: Kosciusko County Rural E M C Place: Indiana Phone Number: 574.267.6331 or 1.800.790.7362 Website: kremc.com Twitter:...

  10. Clark County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    County Rural E M C Jump to: navigation, search Name: Clark County Rural E M C Place: Indiana Phone Number: (812) 246-3316 Website: www.theremc.com Facebook: https:...

  11. Henry County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    County Rural E M C Jump to: navigation, search Name: Henry County Rural E M C Place: Indiana Phone Number: 1-800-248-8413 Website: www.henrycountyremc.com Twitter:...

  12. Warren County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    County Rural E M C Jump to: navigation, search Name: Warren County Rural E M C Address: 15 Midway St Place: Williamsport, Indiana Zip: 47993 Service Territory: Indiana Phone...

  13. Hancock County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Rural E M C Jump to: navigation, search Name: Hancock County Rural E M C Place: Indiana Phone Number: (800) 248-8413 Website: www.henrycountyremc.com Twitter: @henrycountyremc...

  14. Parke County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Parke County Rural E M C Jump to: navigation, search Name: Parke County Rural E M C Place: Indiana Phone Number: 765-569-3133 or 800-537-3913 Website: www.pcremc.com Outage...

  15. Lewis County Rural E C A | Open Energy Information

    Open Energy Info (EERE)

    County Rural E C A Jump to: navigation, search Name: Lewis County Rural E C A Place: Missouri Phone Number: 573-215-4000 Website: lewiscountyrec.org Outage Hotline: 888-454-4485...

  16. T I P Rural Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    I P Rural Electric Coop Jump to: navigation, search Name: T I P Rural Electric Coop Abbreviation: TIPR Place: Iowa Phone Number: 641-522-9223 Website: www.tiprec.com Outage...

  17. Rural Communities Benefit from Wind Energy's Continued Success

    Broader source: Energy.gov [DOE]

    John Stulp, Colorado Interbasin Compact Committee chairman, discusses how wind energy benefits rural communities, farms, and ranches.

  18. Rural Development Multi-Family Housing Energy Efficiency Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rural Development Multi-Family Housing Energy Efficiency Initiative Rural Development Multi-Family Housing Energy Efficiency Initiative In order to help create a more energy independent rural America for the next century, the USDA Rural Development Multi-Family Housing Energy Efficiency Initiative enables applicants to several USDA housing programs to increase their program funding eligibility by incorporating green building practices into project designs, construction,

  19. Linn County Rural Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    County Rural Electric Cooperative Association Website http:www.linncountyrec.comenergy-efficiencyincentivescurrent-incent... State Iowa Program Type Rebate Program Rebate...

  20. Resources and Opportunities: 2015 Rural Utilities Study Under Way

    Broader source: Energy.gov [DOE]

    Featured article in the Alaska Energy Pioneer Summer 2015 newsletter on the 2015 DOE Rural Utilities Study (RUS).

  1. Comments of the National Rural Electric Cooperative Association, Request

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Information Addressing Policy and Logistical Challenges to Smart Grid Implementation | Department of Energy National Rural Electric Cooperative Association, Request for Information Addressing Policy and Logistical Challenges to Smart Grid Implementation Comments of the National Rural Electric Cooperative Association, Request for Information Addressing Policy and Logistical Challenges to Smart Grid Implementation The National Rural Electric Cooperative Association (-NRECA‖) is the

  2. Rural Cooperative Geothermal Development Electric & Agriculture |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy DOE 2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects PDF icon low_silveria_rural_electric_coop.pdf More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy Conversion Equipment for Low Temperature Geothermal Resources

  3. Paulding-Putman Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 14599 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  4. Northeast Texas Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 13670 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying...

  5. Northern Neck Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 13762 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  6. Cookson Hills Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 4296 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  7. Western Farmers Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 20447 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  8. Jefferson Davis Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 9682 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  9. East River Elec Pwr Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesEd-the-Energy-Expert431620883566287?refts&frefts Outage Hotline: (605) 256-8057 or (605) 256-8056 or (605) 256-8059...

  10. Central Texas Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    https:www.facebook.compagesCentral-Texas-Electric-Cooperative520773011297941?reftntnmn Outage Hotline: 1-800-900-2832 References: EIA Form EIA-861 Final Data File for...

  11. Four County Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    www.facebook.compagesFour-County-Electric-Membership-Corporation188316197857616?reftntnmn Outage Hotline: (888)368-7289 Outage Map: gis.fourcty.orgpubmap.html...

  12. Wright-Hennepin Coop Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    3,398.952 34,434.725 40,549 1,975.209 23,239.907 4,920 388.083 5,035.346 51 5,762.244 62,709.978 45,520 2008-04 3,544.862 38,665.009 40,564 1,688.916 21,647.519 4,965 376.604...

  13. Arkansas Valley Elec Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    3,460 776 15,071 13 7,532 101,140 52,031 2009-01 5,376 71,871 48,524 794 11,779 3,462 709 14,853 13 6,879 98,503 51,999 2008-12 4,441 59,651 48,487 736 11,437 3,460 541 15,069...

  14. Osage Valley Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    Outage Hotline: 660-679-3131 or 800-889-6832 Outage Map: ebill.osagevalley.comomsouta References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861...

  15. Canadian Valley Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    anadianValleyElectric Outage Hotline: (855)875-7166 Outage Map: ebill.canadianvalley.orgomso References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

  16. Monroe County Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Hours (618) 939-7171 or (800) 757-7433 or (866) 567-2759 Outage Map: ebill.mcec.orgomsoutageMap References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  17. Maquoketa Valley Rrl Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Place: Iowa Phone Number: 319-462-3542 or 800-927-6068 Website: mvec.com Twitter: @mvecia Facebook: https:www.facebook.comMaquoketaValleyElectricCooperative Outage Hotline:...

  18. RegIntlElecTrade_Eng_final.PDF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and at CRE's web site: www.cre.gob.mxEnglishpublicationsbookletsfollet o%207... and at CRE's web site: www.cre.gob.mxEnglishpublicationsbookletsfolle to%207...

  19. Golden Valley Elec Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    36,891 1,877.823 13,175.914 6,327 8,171.591 69,159.555 448 14,556.482 111,832.096 43,666 2009-01 5,677.62 38,170.143 36,902 2,140.742 15,217.149 6,337 8,864.82 76,857.948 449...

  20. New York State Elec & Gas Corp | Open Energy Information

    Open Energy Info (EERE)

    76,528 8,823 123,751 1,276 219 2,550 4 97,366 787,691 737,183 2008-01 71,181 538,900 666,439 24,517 211,875 77,744 4,058 66,989 1,321 204 2,341 4 99,960 820,105 745,508...

  1. Calhoun County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesCalhoun-County-REC173498466069004?skwall Outage Hotline: 800-821-4879 Outage Map: www.iowarec.orgoutages References: EIA Form...

  2. Dakota Valley Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    1,101.081 16,334.085 5,106 390.564 6,162.524 588 1,168.972 25,110.935 332 2,660.617 47,607.544 6,026 2008-12 1,130.851 17,821.033 5,108 429.98 6,905.622 589 861.853 26,018.826...

  3. Verdigris Valley Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    ) TOT SALES (MWH) TOT CONS 2009-03 3,334 39,732 29,287 620 6,280 4,308 487 5,668 607 4,441 51,680 34,202 2009-02 3,065 36,726 29,285 456 4,469 4,299 405 4,606 607 3,926...

  4. Southern Indiana Gas & Elec Co | Open Energy Information

    Open Energy Info (EERE)

    104,006.182 18,545 11,514.897 200,402.234 101 33,244.465 421,608.6 146,543 2008-02 12,607.003 129,571.861 128,066 9,445.235 104,704.602 18,561 11,374.157 198,519.29 100...

  5. Jones-Onslow Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    56,736 2,076 24,111 4,679 10,879 107,097 61,415 2008-07 8,471 79,614 56,654 1,971 22,607 4,668 10,442 102,221 61,322 2008-06 6,356 61,755 56,244 1,774 20,036 4,651 8,130 81,791...

  6. Southern Indiana Gas & Elec Co | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information Administration Form 8262 EIA Form 861 Data Utility Id 17633 Utility Location Yes Ownership I...

  7. Roosevelt County Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    3,749 3,650 146 1,178 965 1,478 13,978 1,594 2,017 18,905 6,209 2008-06 357 3,560 3,638 132 1,092 961 1,347 13,188 1,579 1,836 17,840 6,178 2008-05 292 2,856 3,639 128 1,070 964...

  8. Southern Pine Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    87,734 60,157 3,222 30,360 4,536 5,087 63,820 24 18,195 181,914 64,717 2008-05 6,897 62,132 60,058 2,887 27,862 4,522 4,430 56,228 24 14,214 146,222 64,604 2008-04 6,581 59,423...

  9. Singing River Elec Pwr Assn (Mississippi) | Open Energy Information

    Open Energy Info (EERE)

    9,647.445 93,322.028 60,225 3,117.42 30,825.248 8,207 692.763 8,259.846 11 13,457.628 132,407.122 68,443 2008-06 9,059.584 86,892.462 60,106 3,046.146 30,089.083 8,193 709.428...

  10. Duck River Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    10,355 1,290 21,368 18 13,312 170,739 70,025 2008-01 8,728 110,789 59,691 2,848 31,132 10,373 1,150 18,079 18 12,726 160,000 70,082 References "EIA Form EIA-861 Final...

  11. Navasota Valley Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Website: www.navasotavalley.com Facebook: https:www.facebook.comnavasotavalley Outage Hotline: 1-800-443-9462 Outage Map: outages.navasotavalley.com:85 References: EIA...

  12. Central Florida Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Florida Phone Number: 1-800-227-1302 or 352-493-2511 Website: www.cfec.com Outage Hotline: 1-800-227-1302 or 352-493-2511 Outage Map: www.cfec.comoutage-mapsite...

  13. Mountain View Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Colorado Website: www.mvea.coop Facebook: https:www.facebook.comMVEAInc Outage Hotline: (800) 388-9881 Outage Map: outage.mvea.org References: EIA Form EIA-861...

  14. Columbia Basin Elec Cooperative, Inc | Open Energy Information

    Open Energy Info (EERE)

    EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id 4005 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes...

  15. Guadalupe Valley Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    2010 - File1a1 EIA Form 861 Data Utility Id 7752 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes...

  16. Houston County Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    2010 - File1a1 EIA Form 861 Data Utility Id 8898 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Distribution Yes Activity...

  17. The Other 15%: Expanding Energy Efficiency to Rural Populations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Other 15%: Expanding Energy Efficiency to Rural Populations The Other 15%: Expanding Energy Efficiency to Rural Populations Better Buildings Residential Network Peer Exchange Call Series: The Other 15%: Expanding Energy Efficiency to Rural Populations, call slides and discussion summary. PDF icon Call Slides and Discussion Summary More Documents & Publications Staged Upgrades - Homeowner-focused Strategies for Encouraging Energy Upgrades over Time Strengthening

  18. Loan Guarantees Can Play a Role in Rural Opportunity Investment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Guarantees Can Play a Role in Rural Opportunity Investment Loan Guarantees Can Play a Role in Rural Opportunity Investment July 24, 2014 - 3:52pm Addthis In September 2011, the Department of Energy issued a $1.2 billion loan guarantee to support the construction of California Valley Solar Ranch (CVSR), a 250 MWac photovoltaic (PV) solar generating facility in rural San Luis Obispo County, California. The project reached commercial operation in October 2013. In September

  19. New light on rural electrification: the evidence from Bolivia

    SciTech Connect (OSTI)

    Tendler, J.

    1980-09-01

    In 1973-74, A.I.D. financed a project to expand existing municipal electrical systems in Bolivia to seven outlying rural areas with the aim of servicing an additional 81,000 rural customers within 10 years. This report evaluates the project's impact on the rural poor in terms of three project objectives: improving the quality of life; stimulating economic production; and creating viable electric utilities.

  20. 2016 Kawerak/Rural Providers' Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kawerak/Rural Providers' Conference 2016 Kawerak/Rural Providers' Conference August 2, 2016 8:00AM AKDT to August 5, 2016 5:00PM AKDT Nome, Alaska Kawerak, Inc. 500 & 504 Seppala Dr. Nome, AK 99762 The Kawerak/Rural Providers' Conference is an annual gathering and cultural celebration featuring heads-on cultural events, moderated discussions, workshops, and keynote speakers. There will be more than 35 workshops

  1. Rural Energy for America Program Loan Guarantee and Grant Program

    Energy Savers [EERE]

    Topics  Introduction  Rural Energy For America Program (REAP) Loan Guarantee and Grant program  Questions California Energy Coordinator Steven Scott Nicholls 530-792-5805 Davis, CA Regional Coordinator Regional Energy Coordinator State Distribution West Region Rob Fry Brian Buch Mid-West Region Robin Templeton Lisa Noty South Region Valarie Flanders Will Dodson Rural Energy For America Program (REAP) Eligible Applicants: 1. Agricultural producers 2. Rural small businesses 3.

  2. Power to the people: rural electrification sector. Summary report

    SciTech Connect (OSTI)

    Wasserman, G.; Davenport, A.

    1983-12-01

    Results of studies of the impact of rural electrification (RE) programs in Bolivia, Costa Rica, Ecuador, and the Philippines are summarized.

  3. QER - Comment of National Rural Electric Cooperative Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    QER - Comment of National Rural Electric Cooperative Association 3 From: Silberstein, Pam ... Thank you. -p ... From: Silberstein, Pam M. Sent: Friday, ...

  4. Best Practices of the Alliance for Rural Electrification: what...

    Open Energy Info (EERE)

    of the Alliance for Rural Electrification: what renewable energy can achieve in developing countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Best Practices of...

  5. Illinois Institute for Rural Affairs | Open Energy Information

    Open Energy Info (EERE)

    include rural economic and community development (including value-added agriculture), health care, education, public transportation, public management policies, housing, and...

  6. Promotion of Rural Renewable Energy in Western China | Open Energy...

    Open Energy Info (EERE)

    Energy in Western China Place: Beijing Municipality, China Zip: 100026 Sector: Bioenergy Product: A programme launched by China Association of Rural Energy Industry (CAREI)...

  7. Grayson Rural Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Grayson Rural Electric Cooperative provides rebates to its customers for increasing their energy efficiency. Members who make improvements based on recommendations by the utility's energy advisor...

  8. Ghana-NREL Rural Electrification | Open Energy Information

    Open Energy Info (EERE)

    electrification project in Ghana in cooperation with UNDP and GEF. NREL also piloted a business model for providing energy services in rural areas of Ghana.1 References ...

  9. German Club for Rural Electrification CLE | Open Energy Information

    Open Energy Info (EERE)

    Electrification CLE Jump to: navigation, search Name: German Club for Rural Electrification (CLE) Place: Freiburg, Germany Zip: 79114 Sector: Renewable Energy Product: German...

  10. Community-Driven Development Decision Tools for Rural Development...

    Open Energy Info (EERE)

    (CDD) investment programmes as a way to further enabling rural poor people to overcome poverty in WCA." References "Community-Driven Development Decision Tools" Retrieved from...

  11. Wind Energy for Rural Electric Cooperatives | Open Energy Information

    Open Energy Info (EERE)

    cooperatives, many rural electric utilities have been initially reluctant to embrace wind energy. Reasons for this include: Some REAs in the western Great Plains have lost...

  12. Missouri Rural Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Missouri Rural Electric Cooperative (MREC) offers a number of rebates to residential customers for the purchase and installation of energy efficient equipment. Eligible equipment includes room air...

  13. Illinois Rural Electric Cooperative Wind Farm | Open Energy Informatio...

    Open Energy Info (EERE)

    Electric Cooperative Energy Purchaser Illinois Rural Electric Cooperative Location Pike County IL Coordinates 39.6189, -90.9627 Show Map Loading map......

  14. Reducing the High Energy Costs of Alaska's Rural Water Systems

    Energy Savers [EERE]

    Renewable Energy Systems Monitor Energy Usage Evaluate Retrofit Effectiveness Energy ... and 33% drop in electricity * Combined annual savings of 11,090 ANTHC Rural Energy ...

  15. Incubating Innovation for Rural Electrification. Executive Summary

    SciTech Connect (OSTI)

    2013-07-01

    In June, the team held a workshop on ''Low Carbon Sustainable Rural Electrification'' in Salima, Malawi. Co-organized with the Government of Malawi's Department of Energy, this event gathered participants from the energy, telecom, non-profit, banking sectors as well as from governmental and international agencies to discuss the potential development of private led off-grid electrification in Malawi where only 9% of the population has currently access to electricity. A very active participation provided us with insightful feedback and valuable recommendations.

  16. Northwestern Rural E C A, Inc | Open Energy Information

    Open Energy Info (EERE)

    E C A, Inc Jump to: navigation, search Name: Northwestern Rural E C A, Inc Place: Pennsylvania Phone Number: 1-800-474-1710 Website: www.northwesternrec.com Twitter: @NWRECA...

  17. Okefenoke Rural El Member Corp (Florida) | Open Energy Information

    Open Energy Info (EERE)

    Florida) Jump to: navigation, search Name: Okefenoke Rural El Member Corp Place: Florida Phone Number: 1-800-432-4770 Website: www.oremc.com Outage Hotline: 1.800.262.5131 Outage...

  18. Okefenoke Rural El Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Okefenoke Rural El Member Corp Place: Georgia Phone Number: 1-800-262-5131 Website: www.oremc.com Outage Hotline: 1-800-262-5131 References: EIA Form EIA-861 Final Data File for...

  19. Big Horn Rural Electric Co | Open Energy Information

    Open Energy Info (EERE)

    307-568-2419 Website: www.bighornrea.com Facebook: https:www.facebook.compagesBig-Horn-Rural-Electric Outage Hotline: 1-800-564-2419 References: EIA Form EIA-861 Final...

  20. Orange County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    search Name: Orange County Rural E M C Place: Indiana Phone Number: 1-812-865-2229 Toll Free: 1-888-337-5900 Website: www.orangecountyremc.org Facebook: https:www.facebook.com...

  1. Valley Rural Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Valley Rural Electric Coop Inc Place: Pennsylvania Phone Number: 814643-2650 or toll-free 800432-0680 Website: www.valleyrec.com Facebook: https:www.facebook.compages...

  2. Fact #759: December 24, 2012 Rural vs. Urban Driving Differences

    Broader source: Energy.gov [DOE]

    According to the National Household Travel Survey, those living in rural areas drive ten more miles in a day than those who live in cities. People living in the suburbs drive only about three to...

  3. Steuben County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Steuben County Rural E M C Address: 1212 S. Wayne Street Place: Angola, Indiana Zip: 46703 Phone Number: 260.665.3563 Website: www.remcsteuben.com Twitter: @steubencoremc...

  4. Chile-NREL Rural Electrification Activities | Open Energy Information

    Open Energy Info (EERE)

    early 2000 and was inaugurated by President Lagos in October of that year and the San Pedro and the small rural school of Aqua Fresca, all to demonstrate the use of wind...

  5. Electric Cooperatives Channel Solar Resources to Rural American Communities

    Broader source: Energy.gov [DOE]

    Some of the most remote areas in the United States were also some of the last places to get access to electricity, with as many as nine out of ten rural homes without electricity in the mid-1930s....

  6. White County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    White County Rural E M C Address: 302 North Sixth Street Place: Monticello, IN Zip: 47960 Service Territory: Indiana Phone Number: (574) 583-7161 Website: www.cwremc.com Facebook:...

  7. White House Rural Council: Creating New Business Opportunities

    Broader source: Energy.gov [DOE]

    The Council provides a new mechanism to ensure that our work creating new business opportunities and jobs in rural America is well-coordinated between agencies and that no important opportunity is missed.

  8. Butler Rural El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Coop Assn, Inc Jump to: navigation, search Name: Butler Rural El Coop Assn, Inc Place: Kansas Phone Number: 316.321.9600 Website: www.butler.coop Facebook: https:...

  9. QER- Comment of National Rural Electric Cooperative Association 2

    Broader source: Energy.gov [DOE]

    Please find attached additional comments from the National Rural Electric Cooperative Association (NRECA). Thank you for the opportunity to participate. If you have questions or need additional information, please do not hesitate to contact me.

  10. USDA Offers Renewable Energy Feasibility Studies for Rural Businesses

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture (USDA) announced on September 7 the availability of grants of up to $50,000 for agricultural producers and rural small businesses to conduct feasibility studies for installing renewable energy systems.

  11. Making Biofuel From Corncobs and Switchgrass in Rural America | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Biofuel From Corncobs and Switchgrass in Rural America Making Biofuel From Corncobs and Switchgrass in Rural America June 11, 2010 - 4:48pm Addthis DuPont Danisco Cellulosic Ethanol (DDCE) opened a new biorefinery in Vonore, Tenn., last year. | Photo courtesy of DDCE DuPont Danisco Cellulosic Ethanol (DDCE) opened a new biorefinery in Vonore, Tenn., last year. | Photo courtesy of DDCE Lindsay Gsell Energy crops and agricultural residue, like corncobs and stover, are becoming part

  12. The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity

    Office of Scientific and Technical Information (OSTI)

    Patterns, and Ecological Processes (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity Patterns, and Ecological Processes Citation Details In-Document Search Title: The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity Patterns, and Ecological Processes Comparisons between the fecal microbiota of humans from industrialized and non-industrialized communities indicate a

  13. USDA Rural Development: Sustaining Relationships in Indian Country

    Energy Savers [EERE]

    Development Sustaining Relationships in Indian Country USDA Rural Development Organizational Structure National Office State Directors Program Directors Specialists Architects Engineers Technicians Area Directors Native American Coordinators General Field Representatives Rur al Utilities Ser vice Rur al Housing & Community Facilities Rur al Business Cooper ative Ser vice Rural Development Program Areas Progr am Areas Business & Industr y Guar anteed Loans Rur al Business Enter pr ise Gr

  14. Smart Meter Investments Support Rural Economy in Arkansas

    Energy Savers [EERE]

    Smart Meter Investments Support Rural Economy in Arkansas Woodruff Electric Cooperative (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. As a member-owned rural electric cooperative, Woodruff is connected to its customers and engaged in economic development efforts to bring more jobs and higher incomes to local communities. In order to bring the capital investment and its

  15. D S & O Rural E C A, Inc | Open Energy Information

    Open Energy Info (EERE)

    & O Rural E C A, Inc Jump to: navigation, search Name: D S & O Rural E C A, Inc Place: Kansas Phone Number: 785-655-2011 Website: dsoelectric.com Twitter: @DSOElectricCoop Outage...

  16. Strategies for Adapting to Climate Change in Rural Sub-Saharan...

    Open Energy Info (EERE)

    for Adapting to Climate Change in Rural Sub-Saharan Africa Jump to: navigation, search Name Strategies for Adapting to Climate Change in Rural Sub-Saharan Africa AgencyCompany...

  17. Bolivia: rural electrification. Project impact evaluation report No. 16

    SciTech Connect (OSTI)

    Butler, E.; Poe, K.M.; Tendler, J.

    1980-12-01

    Two rural electrification systems initiated in Bolivia in 1973 and 1974 are the subject of this report. By 1979, all distribution networks were completed, except in the La Paz region. Power was supplied to 42,000 consumers and was used primarily for residential lighting. Although demand outpaced supply, consumption per household was lower than projected, and irrigation and industrial use was negligible. The preponderant positive impact of the projects was social. Household lighting improved the physical quality of life for 7% of Bolivia's rural population.

  18. Human alteration of the rural landscape: Variations in visual perception

    SciTech Connect (OSTI)

    Cloquell-Ballester, Vicente-Agustin Carmen Torres-Sibille, Ana del; Cloquell-Ballester, Victor-Andres; Santamarina-Siurana, Maria Cristina

    2012-01-15

    The objective of this investigation is to evaluate how visual perception varies as the rural landscape is altered by human interventions of varying character. An experiment is carried out using Semantic Differential Analysis to analyse the effect of the character and the type of the intervention on perception. Interventions are divided into elements of 'permanent industrial character', 'elements of permanent rural character' and 'elements of temporary character', and these categories are sub-divided into smaller groups according to the type of development. To increase the reliability of the results, the Intraclass Correlation Coefficient tool, is applied to validate the semantic space of the perceptual responses and to determine the number of subjects required for a reliable evaluation of the scenes.

  19. Buckland Students Explore Ways to Address Rural Alaska Energy Challenges

    Broader source: Energy.gov [DOE]

    Last month, with support from the U.S. Department of Energy (DOE) Office of Indian Energy, I had the privilege of taking my students from the Buckland School to the Alaska Rural Energy Conference in Fairbanks. Students presented to conference attendees and watched presentations from national, regional, state, and local energy experts that tied into the clean energy issues they are studying as part of the Alaska Humanities Forum Sister School Exchange program.

  20. FROM: Keith Dennis, National Rural Electric Cooperative Association (NRECA

    Energy Savers [EERE]

    TO: Ex parte communications, U.S. Department of Energy FROM: Keith Dennis, National Rural Electric Cooperative Association (NRECA DATE: September 6, 2013 RE: NRECA's Ex Parte Communication with DOE on June 11, 2013 Teleconference summary Attendees: John Cymbalsky - DOE Jay Morrison - NRECA Keith Dennis - NRECA Julie Barkemeyer - NRECA Issues Discussed: The attendees identified above met via teleconference on July 10, 2013, to discuss DOE's proposed rulemaking to allow waivers from energy

  1. Building America Whole-House Solutions for New Homes: Rural Development,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc., Greenfield, Massachusetts | Department of Energy Rural Development, Inc., Greenfield, Massachusetts Building America Whole-House Solutions for New Homes: Rural Development, Inc., Greenfield, Massachusetts Case study of Rural Development Inc. who worked with Building America research partner CARB to design affordable HERS-8 homes (60 w/o PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV. PDF icon

  2. Illinois Rural Electric Cooperative Wins DOE Wind Cooperative of the Year

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award | Department of Energy Illinois Rural Electric Cooperative Wins DOE Wind Cooperative of the Year Award Illinois Rural Electric Cooperative Wins DOE Wind Cooperative of the Year Award February 17, 2006 - 12:02pm Addthis WASHINGTON , DC - The U.S. Department of Energy (DOE) today announced that Illinois Rural Electric Cooperative (IREC) will receive the 2005 Wind Cooperative of the Year Award. The utility was cited for its leadership, demonstrated success, and innovation in its wind

  3. Building America Whole-House Solutions for New Homes: Rural Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development, Inc., Greenfield, Massachusetts Case study of Rural Development Inc. who worked with Building America research partner CARB to design affordable HERS-8 homes (60 ...

  4. USDA Seeks Applications for Grants to Assist Rural Communities with Extremely High Energy Costs

    Broader source: Energy.gov [DOE]

    Applications are due July 30, 2012, for USDA Rural Development grants to assist communities where expenditures for home energy exceed 275% of the national average.

  5. USDA- Rural Energy for America Program (REAP) Energy Audit and Renewable Energy Development Assistance (EA/REDA) Program

    Broader source: Energy.gov [DOE]

    Note: The U.S. Department of Agriculture's Rural Development periodically issues Notices of Solicitation of Applications for the Rural Energy for America Program (REAP) in the Federal Register. The...

  6. Sustainable fuelwood use in rural Mexico. Volume 1: Current patterns of resource use

    SciTech Connect (OSTI)

    Masera, O.

    1993-04-01

    The present report summarizes the results of the first phase of a project of cooperation between the Mexican National Commission for Energy Conservation (CONAE) and the United States Environmental Protection Agency (U.S. EPA) on sustainable biofuel use in rural Mexico. This first phase has been devoted to (i) conducting an in-depth review of the status of fuelwood use in rural and peri-urban areas of Mexico, (ii) providing improved estimates of biomass energy use, (iii) assessing the socioeconomic and environmental impacts of fuelwood use, and (iv) identifying preliminary potential lines of action to improve the patterns of biomass energy use in Mexico; in particular, identifying those interventions that, by improving living conditions for rural inhabitants, can result in global benefits (such as the reduction in greenhouse gas emissions). A comprehensive review of the existing documentation of biofuel use in rural and peri-urban Mexico was conducted. Reports from official, academic, and non-governmental organizations were gathered and analyzed. A computerized rural energy database was created by re-processing a national rural energy survey. Because of the paucity of information about biofuel use in small rural industries, most of the analysis is devoted to the household sector.

  7. Economic evaluation of rural woodlots in a developing country: Tanzania

    SciTech Connect (OSTI)

    Kihiyo, V.B.M.S.

    1996-03-01

    Rural areas in developing countries use wood as their main source of energy. Previously, wood has been obtained free from natural forests and woodlands. The pressure of increased demand through population growth, and the fact that natural trees take longer to grow, has made this resource scarce. Thus, raising trees in woodlots has been adopted as the solution to its shortage in the wild. However, growing trees in woodlots will inevitably require resources in terms of capital, land and manpower. Economic evaluation becomes necessary to ascertain that these resources are used economically. This paper dwells on some of the salient features of the economic evaluation of woodlots, such as interest rates, shadow prices of factors of production, social opportunity, cost of capital and sensitivity analysis of such woodlots in a developing country such as Tanzania. 19 refs., 5 tabs.

  8. Table HC1-8a. Housing Unit Characteristics by Urban/Rural Location,

    U.S. Energy Information Administration (EIA) Indexed Site

    8a. Housing Unit Characteristics by Urban/Rural Location, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.3 1.3 1.4 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.2 Census Region and Division Northeast ..................................................... 20.3 7.7 4.5 4.7 3.4 7.4 New England .............................................

  9. Table HC7-8a. Home Office Equipment by Urban/Rural Location,

    U.S. Energy Information Administration (EIA) Indexed Site

    8a. Home Office Equipment by Urban/Rural Location, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.9 1.3 1.2 1.4 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.1 Households Using Office Equipment ......................................... 96.2 43.9 16.0 20.2 16.1 4.1 Personal Computers 2 ................................. 60.0 25.6 9.3 15.0 10.1 4.7

  10. Builders Challenge High Performance Builder Spotlight - Rural Development Inc., Turner Falls, Massachusetts

    SciTech Connect (OSTI)

    2008-01-01

    Building America/Builders Challenge fact sheet on Rural Development Inc, an energy-efficient home builder in cold climate using radiant floor heat, solar hot water, and PV. Examines cost impacts.

  11. Laying the Foundation for a More Energy-Secure Future in Rural...

    Broader source: Energy.gov (indexed) [DOE]

    to seek follow-on support through DOE technical assistance, funding, and other related future opportunities. In rural Alaska, energy is just one of a host of challenges Native...

  12. Miami-Cass County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Name: Miami-Cass County Rural E M C Place: Indiana Phone Number: 765-473-6668 or toll free 800-844-6668 Website: www.mcremc.coop Twitter: @MiamiCassREMC Outage Hotline:...

  13. Energy Department and USDA Partner to Support Energy Efficiency in Rural Communities

    Broader source: Energy.gov [DOE]

    Partnering with USDA, the Energy Department has created the State Energy Extension Partnership to equip America’s farm families and rural small businesses with the efficiency tools, resources and training needed to reduce energy costs.

  14. Rural Alaska Community Action Program Inc.'s Energy Wise Program

    Energy Savers [EERE]

    Rural Alaska Community Action Program, Inc. Ellen Kazary, Community Development Manager (907) 865-7358, ekazary@ruralcap.com GOALS: * Create jobs for rural Alaskans * Lower residential energy burden in tribal communities Additional Goals - Demonstrate that education and simple efficiency improvements can make an important difference in lowering residential energy costs - Provide a model component for energy plans - important to incorporate Energy Wise strategies in holistic energy plans Energy

  15. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  16. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect (OSTI)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  17. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    SciTech Connect (OSTI)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

  18. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    SciTech Connect (OSTI)

    Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers’ attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A “multi-method” or “mixed method” research methodology was employed for each case study.

  19. Commercial Ethanol Turns Dross to Dollars for Rural Iowans | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Commercial Ethanol Turns Dross to Dollars for Rural Iowans Commercial Ethanol Turns Dross to Dollars for Rural Iowans September 28, 2011 - 3:23pm Addthis American farmers harvest 80 million acres of corn each autumn. The corn stover usually left on a hewn field can be processed into a renewable transportation fuel called bioethanol. | Image courtesy of POET American farmers harvest 80 million acres of corn each autumn. The corn stover usually left on a hewn field can be processed into

  20. EERE Success Story-Electric Cooperatives Channel Solar Resources to Rural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Communities | Department of Energy Electric Cooperatives Channel Solar Resources to Rural American Communities EERE Success Story-Electric Cooperatives Channel Solar Resources to Rural American Communities February 4, 2016 - 12:07pm Addthis The CoServ Solar Station in Krugerville, Texas. Photo: KEN OLTMANN/CoServ The CoServ Solar Station in Krugerville, Texas. Photo: KEN OLTMANN/CoServ Some of the most remote areas in the United States were also some of the last places to get access

  1. Reducing Infant Mortality Rate With Ultrasound in Rural India | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Reducing Infant Mortality Rate With Ultrasound in Rural India Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Reducing Infant Mortality Rate With Ultrasound in Rural India Kajoli Krishnan 2011.07.28 The United Nations is committed to reducing global infant mortality rate (IMR) and maternal mortality ratio

  2. Nutritional significance and acceptance of solar-dried foods of rural Leyte Philippines

    SciTech Connect (OSTI)

    Swanson, M.A.

    1987-01-01

    Training in solar dryer construction and food preservation was provided to villagers in three barangays in rural Leyte, Philippines. A 24 hour dietary recall assessed dietary status of the women prior to the solar dried food intervention. Nutrients of greatest dietary concern were thiamine, vitamin A, riboflavin, iron and energy.

  3. "Table HC8.10 Home Appliances Usage Indicators by Urban/Rural Location, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Appliances Usage Indicators",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,3.7,1.6,1.4,1.5 "2

  4. "Table HC8.12 Home Electronics Usage Indicators by Urban/Rural Location, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Home Electronics Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Electronics Usage Indicators",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Personal Computers" "Do Not Use a Personal Computer",35.5,16.9,6.5,4.6,7.6 "Use a Personal

  5. "Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating Usage Indicators",,"City","Town","Suburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Do Not Have Heating Equipment",1.2,0.7,"Q",0.2,"Q" "Have Space Heating

  6. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of Colorado","Investor-owned",28671219,9008526,12886370,6712282,64041 2,"City of Colorado Springs - (CO)","Public",4477715,1425423,1097160,1955132,0 3,"Intermountain Rural Elec

  7. ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh--Merging Technology with Sustainable Implementation

    SciTech Connect (OSTI)

    Addy, Susan E.A.; Gadgil, Ashok J.; Kowolik, Kristin; Kostecki, Robert

    2009-12-01

    Today, 35-77 million Bangladeshis drink arsenic-contaminated groundwater from shallow tube wells. Arsenic remediation efforts have focused on the development and dissemination of household filters that frequently fall into disuse due to the amount of attention and maintenance that they require. A community scale clean water center has many advantages over household filters and allows for both chemical and electricity-based technologies to be beneficial to rural areas. Full cost recovery would enable the treatment center to be sustainable over time. ElectroChemical Arsenic Remediation (ECAR) is compatible with community scale water treatment for rural Bangladesh. We demonstrate the ability of ECAR to reduce arsenic levels> 500 ppb to less than 10 ppb in synthetic and real Bangladesh groundwater samples and examine the influence of several operating parameters on arsenic removal effectiveness. Operating cost and waste estimates are provided. Policy implication recommendations that encourage sustainable community treatment centers are discussed.

  8. Non-Economic Determinants of Energy Use in Rural Areas of South Africa

    SciTech Connect (OSTI)

    Annecke, W.

    1999-03-29

    This project will begin to determine the forces and dimensions in rural energy-use patterns and begin to address policy and implementation needs for the future. This entails: Forecasting the social and economic benefits that electrification is assumed to deliver regarding education and women's lives; Assessing negative perceptions of users, which have been established through the slow uptake of electricity; Making recommendations as to how these perceptions could be addressed in policy development and in the continuing electrification program; Making recommendations to policy makers on how to support and make optimal use of current energy-use practices where these are socio-economically sound; Identifying misinformation and wasteful practices; and Other recommendations, which will significantly improve the success of the rural electrification program in a socio-economically sound manner, as identified in the course of the work.

  9. Biomass power for rural development. Quarterly report, September 23, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Cooper, J.T.

    1997-02-01

    Goals for the biomass power for rural development include: expanded feedstock research and demonstration activities to provide soil-specific production costs and yield data, as well as better methods for harvest and transport; four thousand acres of feedstock available for fueling a commercial venture; comparison of the feasibility of gasification and cocombustion; designs for on-site switchgrass handling and feeding system; a detailed assessment of utilizing switchgrass for gasification and cocombustion to generate electricity using turbines and fuel cells.

  10. Rural electric cooperatives and the cost structure of the electric power industry: A multiproduct analysis

    SciTech Connect (OSTI)

    Berry, D.M.

    1992-01-01

    Since 1935, the federal government of the United States has administered a program designed to make electricity available to rural Americans. This dissertation traces the history of the rural electrification program, as well as its costs. While the Congress intended to simply provide help in building the capital structure of rural electric distribution systems, the program continues to flourish some 35 years after these systems first fully covered the countryside. Once the rural distribution systems were built, the government began to provide cooperatives with billions of dollars in subsidized loans for the generation of electric power. Although this program costs the taxpayers nearly $1 billion per year, no one has ever tested its efficacy. The coops' owner/members do not have the right to trade their individual ownership shares. The RECs do not fully exploit the scale and scope economies observed in the investor-owned sector of this industry. This dissertation compares the relative productive efficiencies of the RECs and the investor-owned electric utilities (IOUs) in the United States. Using multiproduct translog cost functions, the estimated costs of cooperatives are compared to those of IOUs in providing identical output bundles. Three separate products are considered as outputs: (1) wholesale power; (2) power sold to large industrial customers; and (3) power sold to residential and commercial customers. It is estimated that, were the RECs forced to pay market prices for their inputs, their costs would exceed those incurred by the IOUs by about 24 percent. Several policy recommendations are made: (1) the RECs should be converted to stockholder-owned, tax-paying corporations; (2) the government should discontinue its subsidized loan program; (3) the government should sell its hydroelectric power at market prices, nullifying the current preference given to cooperatives and municipal distributors in the purchase of this currently underpriced power.

  11. Case Study - National Rural Electric Cooperative Association Smart Grid Investment Grant

    Energy Savers [EERE]

    National Rural Electric Cooperative Association Smart Grid Investment Grant 1 Helping America's Electric Cooperatives Build a Smarter Grid to Streamline Operations and Improve Service Electric cooperatives play an important role in the U.S. energy infrastructure, delivering electricity to 44 million consumers across over 70% of the geography of the country every day. Implementing smart grid technology is seen by co-ops as a cost-effective way to improve reliability, streamline the restoration of

  12. Increases in electric rates in rural areas. Hearing before the Committee on Agriculture, House of Representatives, Ninety-Sixth Congress, Second Session, June 4, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Seven witnesses representing rural electric utilities and cooperatives spoke at a June 4, 1980 hearing to discuss which inflationary factors are increasing rural electric rates. The Committee recognized that the problem is not unique to rural systems. In their testimony, the witnesses noted increasing urbanization of rural areas; the cost of generating plant construction, fuel, and operating expenses; general economic factors of inflation and high interest rates; and regulations as major contributing factors to utility requests for rate increases. The hearing record includes their testimony, additional material submitted for the record, and responses to questions from the subcommittee. (DCK)

  13. Fossil and Contemporary Fine Carbon Fractions at 12 Rural and Urban Sites in the United States

    SciTech Connect (OSTI)

    Schichtel, B; Malm, W; Bench, G; Fallon, S; McDade, C; Chow, J

    2007-03-01

    Fine particulate matter collected at two urban, four near-urban, and six remote sites throughout the United States were analyzed for total carbon (TC) and radiocarbon ({sup 14}C). Samples were collected at most sites for both a summer and winter season. The radiocarbon was used to partition the TC into fossil and contemporary fractions. On average, contemporary carbon composed about half of the carbon at the urban, {approx}70-97% at near-urban, and 82-100% at remote sites. At Phoenix, Arizona, and Seattle, Washington, one monitor was located within the urban center and one outside to assess the urban excess over background concentrations. During the summer the urban and rural sites had similar contemporary carbon concentrations. However, during the winter the urban sites had more than twice the contemporary carbon measured at the neighboring sites, indicating anthropogenic contributions to the contemporary carbon. The urban fossil carbon was 4-20 times larger than the neighboring rural sites for both seasons. Organic (OC) and elemental carbon (EC) from TOR analysis were available. These and the radiocarbon data were used to estimate characteristic fossil and contemporary EC/TC ratios for the winter and summer seasons. These ratios were applied to carbon data from the Interagency Monitoring of Protected Visual Environments network to estimate the fraction of contemporary carbon at mostly rural sites throughout the United States. In addition, the ratios were used to develop a semiquantitative, lower bound estimate of secondary organic carbon (SOC) contribution to fossil and contemporary carbon. SOC accounted for more than one-third of the fossil and contemporary carbon.

  14. Conceptual Model At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    is concentrated near the upwelling in the Crook well vicinity. References Overton, H. L.; Chaney, R. E.; Mcatee, R. E.; Graham, D. L. (1 November 1979) Geochemical modeling of...

  15. Geothermal Modeling of the Raft River Geothermal Field | Open...

    Open Energy Info (EERE)

    and additional work needed to refine the overall reservoir model. Authors Overton, H. L.; Chaney, R. E.; Mcatee, D. L.; Graham and D. L. Published DOE Information Bridge, 111...

  16. Geochemical modeling of the Raft River geothermal field | Open...

    Open Energy Info (EERE)

    and additional work needed to refine the overall reservoir model. Authors Overton, H. L.; Chaney, R. E.; Mcatee, R. E.; Graham and D. L. Published DOE Information Bridge, 111...

  17. Fault and joint geometry at Raft River geothermal area, Idaho...

    Open Energy Info (EERE)

    may be useful for locating the surface traces of faults in the reservoir. Authors Guth, L. R.; Bruhn, R. L.; Beck and S. L. Published DOE Information Bridge, 711981 DOI...

  18. Field Mapping At Raft River Geothermal Area (1993) | Open Energy...

    Open Energy Info (EERE)

    extension over broad areas of the northern Basin and Range. References Dumitru, T.; Miller, E.; Savage, C.; Gans, P.; Brown, R. (1 April 1993) Fission track evidence for...

  19. Conceptual Model At Raft River Geothermal Area (2011) | Open...

    Open Energy Info (EERE)

    temperatures in other deep wells range from 133 to 149 0C. References Jones, C.; Moore, J.; Teplow, W.; Craig, S. (1 January 2011) GEOLOGY AND HYDROTHERMAL ALTERATION OF THE...

  20. Core Analysis At Raft River Geothermal Area (2011) | Open Energy...

    Open Energy Info (EERE)

    that were conducted on the core sample are presented. References Jones, C.; Moore, J.; Teplow, W.; Craig, S. (1 January 2011) GEOLOGY AND HYDROTHERMAL ALTERATION OF THE...

  1. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...

    Open Energy Info (EERE)

    measurements that were conducted on the core sample are presented. Authors Jones, C.; Moore, J.; Teplow, W.; Craig and S. Published PROCEEDINGS, Thirty-Sixth Workshop on...

  2. Raft River geoscience case study | Open Energy Information

    Open Energy Info (EERE)

    Authors Dolenc, M. R.; Hull, L. C.; Mizell, S. A.; Russell, B. F.; Skiba, P. A.; Strawn, J. A.; Tullis and J. A. Published DOE Information Bridge, 1111981 DOI 10.21726098820...

  3. Borehole geophysics evaluation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Authors Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace and T.L. Published Journal Geophysics, 21...

  4. Raft River geoscience case study- appendixes | Open Energy Information

    Open Energy Info (EERE)

    Authors Dolenc, M. R.; Hull, L. C.; Mizell, S. A.; Russell, B. F.; Skiba, P. A.; Strawn, J. A.; Tullis and J. A. Published DOE Information Bridge, 1111981 DOI 10.21725988071...

  5. Exploratory Well At Raft River Geothermal Area (1950) | Open...

    Open Energy Info (EERE)

    and Crank wells, encountered boiling water. References Diek, A.; White, L.; Roegiers, J.-C.; Moore, J.; McLennan, J. D. (1 January 2012) BOREHOLE PRECONDITIONING OF GEOTHERMAL...

  6. Well Log Techniques At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    the rock using well log data. Notes Information is given on the following logs: dual-induction focused log, including resistivity, sp, and conductivity; acoustic log; compensated...

  7. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Authors Zohdy, A.A.R.; Jackson, D.B.; Bisdorf and R.J. Published Journal Geophysics, 10121975 DOI Not Provided...

  8. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE 2010 Geothermal Technologies Program Peer Review PDF icon egs007moore.pdf More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest ...

  9. Conceptual Model At Raft River Geothermal Area (1976) | Open...

    Open Energy Info (EERE)

    water 1450C reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. References Applegate, J.K.; Donaldson, P.R.; Kinkley,...

  10. Conceptual Model At Raft River Geothermal Area (1980) | Open...

    Open Energy Info (EERE)

    a determination of rock types and an analysis of the degree of alteration and the density of fractures. References Applegate, J. K.; Moens, T. A. (1 April 1980) Geophysical...

  11. Borehole geophysics evaluation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    sup 0C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot...

  12. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Geologic Stetting: Petrologic Studies Plan view Vertical view Elba Quartzite Quartz Monzonite 7 | US DOE Geothermal Office eere.energy.gov Geologic Setting: Water ...

  13. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...

    Open Energy Info (EERE)

    the fluid geochemistry in the field is spatially variable and complex, with two distinct deep geothermal fluid types (high vs. low K, Na, Cl, Ca, Li, F concentrations) and two...

  14. Magnetotellurics At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    and at some sites than 1 ohm-m. References Stanley, W.D.; Boehl, J.E.; Bostick, F.X.; Smith, H.W. (10 June 1977) Geothermal significance of magnetotelluric sounding in the...

  15. Geothermometry At Raft River Geothermal Area (1980) | Open Energy...

    Open Energy Info (EERE)

    River geothermal system, Cassia County, Idaho Urban, T.C.; Diment, W.H.; Nathenson, M.; Smith, E.P.; Ziagos, J.P.; Shaeffer, M.H. (1 January 1986) Temperature,...

  16. Raft River Geothermal Field Well Head Brine Sample

    SciTech Connect (OSTI)

    Tim Lanyk

    2015-12-18

    Raw data and data workup of assay for real-world brine sample. Brine sample was taken at the well head.

  17. Social and economic aspects of the introduction of gasification technology in rural areas of developing countries (Tanzania)

    SciTech Connect (OSTI)

    Groeneveld, M.J.; Westerterp, K.R.

    1980-01-01

    The development of third world rural areas depends largely on the availability of energy and for an improvement in agricultural production; an increase in energy consumption is required. It seems attractive to replace the fossil liquid fuels needed for machinery by locally produced fuels. The thermal gasification of agricultural waste which produces gas that can be used directly to drive engines is suggested. A study to identify the social and economic advantages of this process and its applicability in rural areas of Tanzania has been made.

  18. Basic needs, rural financial markets, and appropriate technology: Toward a solution of analytical and policy issues

    SciTech Connect (OSTI)

    Farooq, M.O.

    1988-01-01

    The failure of the standard Growth Approach to economic development to solve the problems of underdevelopment in LDCs has caused an alternative approach, Basic Needs Approach (BNA), to attain prominence in development thought. BNA emphasizes poverty-minimizing growth. Its strategy of direct attack on poverty has better potential for LDCs' development and fulfillment of their populations' basic needs than the trickle-down mechanism of the Growth Approach. BNA requires, among other things, (a) suitable rural financial markets (RFMs) as parts of the overall financial system, and (b) indigenous technological capabilities. The financial system, if it functions as a central element in an institutionalized technology policy, can link technology-related institutions that generate, evaluate, and promote appropriate technologies (ATs) with RFMs that can support adoption and diffusion of ATs in the agro-rural sector. The above argument uses Bangladesh as a case for illustration. In the light of an institutional framework presented, examined, and extended in this dissertation, it is found that Bangladesh currently does not have an institutionalized technology policy. The current organizational framework and policies related to technological development are not conducive to BNA.

  19. Released: June 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,"Elec- tricity","Natural Gas","District Chilled Water",,,"Elec- tricity","Natural Gas","District Chilled Water" "All Buildings* ......",4645,3625,3589,17,33,6478...

  20. Kotzebue Wind Project I | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Elec. Assoc. Location Kotzebue AK Coordinates 66.836485,...

  1. Alaska Village Cooperative Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Alaska Village Elec Coop Developer Kotzebue Electric Association Energy Purchaser Alaska Village Elec Coop Location Toksook Bay AK Coordinates 60.5315,...

  2. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Energy Sources (more than one may apply) Elec- tricity Natural Gas District Chilled Water Elec- tricity Natural Gas District Chilled Water All Buildings* ......

  3. Disaster incubation, cumulative impacts and the urban/ex-urban/rural dynamic

    SciTech Connect (OSTI)

    Mulvihill, Peter R. . E-mail: prm@yorku.ca; Ali, S. Harris . E-mail: hali@yorku.ca

    2007-05-15

    This article explores environmental impacts and risks that can accumulate in rural and ex-urban areas and regions and their relation to urban and global development forces. Two Southern Ontario cases are examined: an area level water disaster and cumulative change at the regional level. The role of disaster incubation analysis and advanced environmental assessment tools are discussed in terms of their potential to contribute to more enlightened and effective assessment and planning processes. It is concluded that conventional approaches to EA and planning are characteristically deficient in addressing the full range of impacts and risks, and particularly those originating from pathogens, dispersed and insidious sources. Rigorous application of disaster incubation analysis and more advanced forms of EA has considerable potential to influence a different pattern of planning and decision making.

  4. Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

    2009-09-14

    Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  5. Biomass power for rural development. Technical progress report, May 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Neuhauser, E.

    1996-02-01

    Developing commercial energy crops for power generation by the year 2000 is the focus of the DOE/USDA sponsored Biomass Power for Rural Development project. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Facette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG). Phase-II of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. There will be testing of the energy crop as part of the gasification trials expected to occur at BED`s McNeill power station and potentially at one of GPU`s facilities. Phase-III will represent full-scale commercialization of the energy crop and power generation on a sustainable basis. Willow has been selected as the energy crop of choice for many reasons. Willow is well suited to the climate of the Northeastern United States, and initial field trials have demonstrated that the yields required for the success of the project are obtainable. Like other energy crops, willow has rural development benefits and could serve to diversify local crop production, provide new sources of income for participating growers, and create new jobs. Willow could be used to put a large base of idle acreage back into crop production. Additionally, the willow coppicing system integrates well with current farm operations and utilizes agricultural practices that are already familiar to farmers.

  6. Social and economic aspects of the introduction of gasification technology in rural areas of developing countries (Tanzania)

    SciTech Connect (OSTI)

    Groeneveld, M.J.; Westerterp, K.R.

    1980-01-01

    According to the evaluation criteria presented, the gasification of corn cobs is acceptable from the economical and agricultural point of view in the rural areas around Arusha (Tanzania). The gasification system is of relatively simple construction and local maintenance is possible. If the system is connected to the already existing corn mills in the villages, it is appropriate to the existing socio-cultural system. The economic calculations made clear that the use of gasification is attractive for both the owners of the corn mill and the government. The advantages for the government are the savings on imported oil and the extra income created for the users of the corn mill (inhabitants of the rural villages). The government loses income from taxes and from the production and transport of diesel oil. Evaluation methods presented can and should be used for gasification projects in other areas.

  7. Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters

    SciTech Connect (OSTI)

    Denise Baclawski

    2010-03-08

    The University of Nevada, Reno Fire Science Academy (FSA) applied for grant funding to develop and deliver programs for municipal, rural, and volunteer firefighters. The FSA specializes in preparing responders for a variety of emergency events, including flammable liquid fires resulting from accidents, intentional acts, or natural disasters. Live fire training on full scale burnable props is the hallmark of FSA training, allowing responders to practice critical skills in a realistic, yet safe environment. Unfortunately, flammable liquid live fire training is often not accessible to municipal, rural, or volunteer firefighters due to limited department training budgets, even though most department personnel will be exposed to flammable liquid fire incidents during the course of their careers. In response to this training need, the FSA developed a course during the first year of the grant (Year One), Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters. During the three years of the grant, a total of 2,029 emergency responders received this training. In Year Three, two new courses, a train-the-trainer for Responding to Terrorist Incidents in Your Community and Management of Large-Scale Disasters for Public Officials were developed and pilot tested during the Real-World Disaster Management Conference held at the FSA in June of 2007. Two research projects were conducted during Years Two and Three. The first, conducted over a two year period, evaluated student surveys regarding the value of the flammable liquids training received. The second was a needs assessment conducted for rural Nevada. Both projects provided important feedback and a basis for curricula development and improvements.

  8. Assessment of particulate concentrations from domestic biomass combustion in rural Mexico

    SciTech Connect (OSTI)

    Brauer, M.; Bartlett, K.; Regalado-Pineda, J.; Perez-Padilla, R.

    1996-01-01

    Recent evidence has suggested that woodsmoke exposure in developed countries is associated with acute and chronic health impacts. Particulate concentrations were measured in rural Mexican kitchens using biomass combustion for cooking. To investigate differences in indoor particle concentrations between kitchens using different fuels and stove types, measurements were made in eight kitchens using only biomass, six using only liquefied petroleum gas (LPG), six using a combination of biomass and LPG, and three using biomass in ventilated stoves. Outdoor samples were collected at the same time as the indoor samples. PM{sub 10} and PM{sub 2.5} measurements were made with inertial impactors, and particle light scattering was measured continuously with an integrating nephelometer. PM{sub 10} and PM{sub 2.5} concentrations (mean concentrations of 768 and 555 {mu}g m{sup -3}, respectively) in the kitchens burning only biomass were greater than in all other types (biomass > biomass + LPG > ventilated > LPG > outdoor). A similar trend was evident for the indoor/outdoor concentration ratio. Based on the short-term measurements estimated from the nephelometer data, PM{sub 10} and PM{sub 2.5} cooking period average and 5-min peak concentrations were significantly higher (p < 0.05) in kitchens using only biomass than in those using LPG, a combination of LPG and biomass, or a ventilated biomass stove. 20 refs., 3 figs., 3 tabs.

  9. Biomass power for rural development. Technical progress report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Neuhauser, E.

    1997-08-01

    Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-II of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.

  10. Biomass power for rural development. Technical progress report, Phase 2, July 1--September 30, 1998

    SciTech Connect (OSTI)

    Neuhauser, E.

    1999-01-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boiler for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase 1 requirements, the Consortium has already successfully demonstrated cofiring at Greenidge Station and has initiated development of the required nursery capacity for acreage scale-up. In Phase 2 every aspect of willow production and power generation from willow biomass will be demonstrated. The ultimate objective of Phase 2 is to transition the work performed under the Biomass Power for Rural Development project into a thriving, self-supported energy crop enterprise.

  11. Biomass power for rural development. Technical progress report, April 1, 1997--June 30, 1997

    SciTech Connect (OSTI)

    Neuhauser, E.

    1997-08-01

    Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-H of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.

  12. Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998

    SciTech Connect (OSTI)

    Neuhauser, E.

    1998-11-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.

  13. Biomass power for rural development. Technical progress report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    Neuhauser, E.

    1998-05-01

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill Power Station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the fourth quarter of 1997 the Consortium submitted a Phase-2 proposal. A few of the other more important milestones are outlined below. The first quarter of 1998 will be dominated by pre-planting activity in the spring.

  14. Five-years of microenvironment data along an urban-rural transect; temperature and CO2 concentrations in urban area at levels expected globally with climate change.

    SciTech Connect (OSTI)

    George, Kate; Ziska, Lewis H; Bunce, James A; Quebedeaux, Bruno

    2007-11-01

    The heat island effect and the high use of fossil fuels in large city centers is well documented, but by how much fossil fuel consumption is elevating atmospheric CO2 concentrations and whether elevations in both atmospheric CO2 and air temperature are consistent from year to year are less well known. Our aim was to record atmospheric CO2 concentrations, air temperature and other environmental variables in an urban area and compare it to suburban and rural sites to see if urban sites are experiencing climates expected globally in the future with climate change. A transect was established from Baltimore city center (Urban site), to the outer suburbs of Baltimore (suburban site) and out to an organic farm (rural site). At each site a weather station was set-up to monitor environmental variables annually for five years. Atmospheric CO2 was significantly increased on average by 66 ppm from the rural to the urban site over the five years of the study. Air temperature was significantly higher at the urban site (14.8 oC) compared to the suburban (13.6 oC) and rural (12.7 oC) sites. Relative humidity was not different between sites but vapor pressure deficit (VPD) was significantly higher at the urban site compared to the suburban and rural sites. During wet years relative humidity was significantly increased and VPD significantly reduced. Increased nitrogen deposition at the rural site (2.1 % compared to 1.8 and 1.2 % at the suburban and urban sites) was small enough not to affect soil nitrogen content. Dense urban areas with large populations and high vehicular traffic have significantly different microclimates compared to outlying suburban and rural areas. The increases in atmospheric CO2 and air temperature are similar to changes predicted in the short term with global climate change, therefore providing an environment suitable for studying future effects of climate change on terrestrial ecosystems.

  15. Design of a rural water provision system to decrease arsenic exposure in Bangladesh

    SciTech Connect (OSTI)

    Mathieu, Johanna

    2009-01-07

    Researchers at the Lawrence Berkeley National Laboratory have invented ARUBA (Arsenic Removal Using Bottom Ash) a material that effectively and affordably removes high concentrations of arsenic from contaminated groundwater. The technology is cost-effective because the substrate?bottom ash from coal fired power plants?is a waste material readily available in South Asia. During fieldwork in four sub-districts ofBangladesh, ARUBA reduced groundwater arsenic concentrations as high as 680 ppb to below the Bangladesh standard of 50 ppb. Key results from three trips in Bangladesh and one trip to Cambodia include (1) ARUBA removes more than half of the arsenic from contaminated water within the first five minutes of contact, andcontinues removing arsenic for 2-3 days; (2) ARUBA?s arsenic removal efficiency can be improved through fractionated dosing (adding a given amount of ARUBA in fractions versus all at once); (3) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic concentrations ten times lower than treating water directly out of the well; and (4) the amount of arsenic removed per gram of ARUBA is linearly related to the initial arsenic concentrationof the water. Through analysis of existing studies, observations, and informal interviews in Bangladesh, eight design strategies have been developed and used in the design of a low-cost, community-scale water treatment system that uses ARUBA to remove arsenic from drinking water. We have constructed, tested, and analyzed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below 50 ppb, while remaining affordable to people living on less than $2 per day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  16. Regional analysis of non-methane hydrocarbons and meteorology of the rural southeast United States

    SciTech Connect (OSTI)

    Hagerman, L.M.

    1996-11-01

    Measurements of non-methane hydrocarbons, as well as ozone, meteorological and trace gas data, were made at four rural sites located within the southeastern United States as a part of the Southern Oxidants Study. Fifty-six C2-C10 hydrocarbons were collected from 1200-1300 local time, once every six days from September 1992 through October 1993. The measurements were made in an effort to enhance the understanding of the behavior and trends of ozone and other photochemical oxidants in this region. The light molecular weight alkanes (ethane, propane, n-butane, iso-butane), ethene and acetylene display a seasonal variation with a winter maximum and summer minimum. Isoprene was virtually non-existent during the winter at all sites, and averaged from 9.8 ppbC (Yorkville, GA) to 21.15 ppbC (Centreville, AL) during the summer. The terpene concentration was greatest in the summer with averages ranging between 3.19 ppbC (Centreville, AL) to 6.38 ppbC (Oak Grove, MS), but was also emitted during the winter months, with a range of 1.25 to 1.9 ppbC for all sites. Propylene-equivalent concentrations were calculated to account for differences in reaction rates between the hydroxyl radical and individual hydrocarbons, and to thereby estimate their relative contribution to ozone, especially in regards to the highly reactive biogenic compounds such as isoprene. It was calculated that biogenics represent at least 65% of the total non-methane hydrocarbon sum at these four sites during the summer season when considering propylene-equivalent concentrations. An ozone episode which occurred from July 20 to July 24 1993 was used as an example to show ozone profiles at each of the sites, and to show the effect of synoptic meteorology on high ozone by examining NOAA daily weather maps and climatic data.

  17. Biomass power for rural development. Technical progress report, July 1--September 30, 1997

    SciTech Connect (OSTI)

    Neuhauser, E.

    1998-03-01

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the third quarter of 1997, much of the Consortium`s effort has focused on outreach activities, continued feedstock development, fuel supply planning, and fuel contract development, and preparation for 1998 scale-up activities. The Consortium also submitted a Phase-1 extension proposal during this period. A few of the more important milestones are outlined below. The fourth quarter of 1997 is expected to be dominated by Phase-II proposal efforts and planning for 1998 activities.

  18. Air pollution and childhood respiratory health: Exposure to sulfate and ozone in 10 Canadian Rural Communities

    SciTech Connect (OSTI)

    Stern, B.R.; Raizenne, M.E.; Burnett, R.T.; Jones, L.; Kearney, J.; Franklin, C.A. )

    1994-08-01

    This study was designed to examine differences in the respiratory health status of preadolescent school children, aged 7-11 years, who resided in 10 rural Canadian communities in areas of moderate and low exposure to regional sulfate and ozone pollution. Five of the communities were located in central Saskatchewan, a low-exposure region, and five were located in southwestern Ontario, an area with moderately elevated exposures resulting from long-range atmospheric transport of polluted air masses. In this cross-sectional study, the child's respiratory symptoms and illness history were evaluated using a parent-completed questionnaire, administered in September 1985. Respiratory function was assessed once for each child in the schools between October 1985 and March 1986, by the measurement of pulmonary function for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1.0]), peak expiratory flow rate (PEFR), mean forced expiratory flow rate during the middle half of the FVC curve (FEF[sub 25-75]), and maximal expiratory flow at 50% of the expired vital capacity (V[sub 50]max). After controlling for the effects of age, sex, parental smoking, parental education and gas cooking, no significant regional differences were observed in rates of chronic cough or phlegm, persistent wheeze, current asthma, bronchitis in the past year, or any chest illness that kept the child at home for 3 or more consecutive days during the previous year. Children living in southwestern Ontario had statistically significant (P < 0.01) mean decrements of 1.7% in FVC and 1.3% in FEV[sub 1.0] compared with Saskatchewan children, after adjusting for age, sex, weight, standing height, parental smoking, and gas cooking. There were no statistically significant regional differences in the pulmonary flow parameters (P > 0.05). 54 refs., 1 fig., 7 tabs.

  19. The method of solid fermentation of biogas in Chinese rural areas

    SciTech Connect (OSTI)

    Zou, Y.; Zhao, Z.

    1983-12-01

    This report describes laboratory experimental results of solid method of biogas fermentation by using farm stalks and livestock manure as raw materials but without hydraulic pressure. Under natural conditions of ordinary temperature, the average rate of biogas production for 100 days has increased from 0.13 m/sup 3//m/sup 3/ of materials per day by using hydraulic pressure to 0.37 m/sup 3//m/sup 3/ of materials per day with dry method. The amount of gas produced per kg by the volatile solid material increases about 14% and there is little change in the methane content of the biogas. At present the biogas fermentation by means of hydraulic pressure in Chinese rural areas has certain special features, but there are disadvantages of low rate of biogas production and difficulty in filling and taking off materials. It requires about 100 dans (50 kg = 1 dan) of water to fill a digester. Hence a lot of labour is required. And, without stirring, it may easily result in separation of material and liquid in two layers and the formation of scum of the floating materials. It is thus unfavorable for microbial activities. According to our previous experiments and the reports of other workers, one of the important reasons for the low rate of biogas production is due to insufficient total solid (TS) content of the fermentation material. In this experiment, the authors used the method of solid fermentation instead of hydraulic pressure and obtained nearly double the rate of biogas production using smaller digesters which did not require as much labor to fill and remove materials.

  20. Exploratory Well | Open Energy Information

    Open Energy Info (EERE)

    Area (1977) Raft River Geothermal Area 1977 1977 Update on the Raft River Geothermal Reservoir Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal...

  1. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    SciTech Connect (OSTI)

    Dutta, Anindita; Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 ; Ray, Manas Ranjan; Banerjee, Anirban

    2012-06-15

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-?) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 ?m (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-? and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ? Effect of chronic biomass smoke exposure on cardiovascular health was investigated. ? Serum markers of systemic inflammation and oxidative stress were studied. ? Biomass using women had increased systemic inflammation and oxidative stress. ? Indoor air pollution and observed changes were positively associated.

  2. Assessment of PM[sub 10] concentrations from domestic biomass fuel combustion in two rural Bolivian highland villages

    SciTech Connect (OSTI)

    Albalak, R.; Haber, M. . Rollins School of Public Health); Keeler, G.J.; Frisancho, A.R. )

    1999-08-01

    PM[sub 10] concentrations were measured in two contrasting rural Bolivian villages that cook with biomass fuels. In one of the villages, cooking was done exclusively indoors, and in the other, it was done primarily outdoors. Concentrations in all potential microenvironments of exposure (i.e., home, kitchen, and outdoors) were measured for a total of 621 samples. Geometric mean kitchen PM[sub 10] concentrations were 1830 and 280 [micro]g/m[sup 3] and geometric mean home concentrations were 280 and 440 [micro]g/m[sup 3] for the indoor and outdoor cooking villages, respectively. An analysis of pollutant concentrations using generalized estimating equation techniques showed significant effects of village location, and interaction of village and location on log-transformed PM[sub 10] concentrations. Pollutant concentrations and activity pattern data were used to estimate total exposure using the indirect method of exposure assessment. Daily exposure for women during the nonwork season was 15 120 and 6240 [micro]g h[sup [minus]1]m[sup [minus]3] for the indoor and outdoor cooking villages, respectively. Differences in exposure to pollution between the villages were not as great as might be expected based on kitchen concentration alone. This study underscores the importance of measuring pollutant concentrations in all microenvironments where people spend time and of shifting the focus of air pollution studies to include rural populations in developing countries.

  3. Guidelines to assist rural electric cooperatives to fulfill the requirements of Sections 201 and 210 of PURPA for cogeneration and small power production

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    These guidelines were designed to assist National Rural Electric Cooperative Association staff and consultants involved in the implementation of Sections 201 and 210 of the Public Utilities Regulatory Policies Act (PURPA). The guidelines were structured to meet anticipated use as: a self-contained legal, technical and economic reference manual helpful in dealing with small power producers and cogenerators; a roadmap through some of the less obvious obstacles encountered by utilities interacting with small power producers and cogenerators; a starting point for those utilities who have not yet formulated specific policies and procedures, nor developed rates for purchasing power from small power producers and cogenerators; a discussion vehicle to highlight key issues and increase understanding in workshop presentations to rural electric cooperatives; and an evolutionary tool which can be updated to reflect changes in the law as they occur. The chapters in these Guidelines contain both summary information, such as compliance checklists, and detailed information, such as cost rate calculations, on regulatory requirements, operational considerations, and rate considerations. The appendices contain more specific material, e.g. rural electric cooperative sample policy statements. (LCL)

  4. Rural Development: Rural Energy for America Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... located in the 100 year flood plain (without a mitigation plan); * RES or EEI for MarijuanaIndustrial Hemp based business; 14 Project eligibility...Project Costs Eligible ...

  5. Increasing biogas yield of rural biogas digester by addition of NH/sub 4/HCO/sub 3/

    SciTech Connect (OSTI)

    Sun, G.C.; Chen, G.Q.; Chen, M.; Liu, K.X.; Zhou, S.Y.

    1983-12-01

    By addition of 0.3% NH/sub 4/HCO/sub 3/ instead of animal manure into rural biogas digester in which the rotted rice straw was the major feedstock, the biogas yield doubled in comparison with the check digester (0.1 m/sup 3//m/sup 3//d) and the fertility of NH/sub 4/HCO/sub 3/ did not decrease because of biogas fermentation. Many digesters have been built in China. But, owing to the problems of improper management, unsuitable influent mixing, etc., neither digesters nor feedstock were fully utilized. In order to solve these problems, adding NH/sub 4/HCO/sub 3/ into digester instead of animal manure was tried. Its results showed that the suitable C/N ratio of influent mixing was obtained, the fertility of effluent went up, and biogas producing rate increased. The concentration of NH/sub 4/HCO/sub 3/ is 0.2-0.6%, but the optimal is 0.3%.

  6. Strategic Plan for Coordinating Rural Intelligent Transportation System (ITS) Transit Development in the Great Smoky Mountains National Park

    SciTech Connect (OSTI)

    Truett, L.F.

    2002-12-19

    The Great Smoky Mountains National Park, located along the border between North Carolina and Tennessee, is the most visited national park in the United States. This rugged, mountainous area presents many transportation challenges. The immense popularity of the Smokies and the fact that the primary mode of transportation within the park is the personal vehicle have resulted in congestion, damage to the environment, impacts on safety, and a degraded visitor experience. Access to some of the Smokies historical, cultural, and recreational attractions via a mass transit system could alleviate many of the transportation issues. Although quite a few organizations are proponents of a mass transit system for the Smokies, there is a lack of coordination among all parties. In addition, many local residents are not completely comfortable with the idea of transit in the Smokies. This document provides a brief overview of the current transportation needs and limitations in the Great Smoky Mountains National Park, identifies agencies and groups with particular interests in the Smokies, and offers insights into the benefits of using Intelligent Transportation Systems (ITS) technologies in the Smokies. Recommendations for the use of rural ITS transit to solve two major transportation issues are presented.

  7. United States

    Office of Legacy Management (LM)

    ... ---- Sobtotalr Policy and aanaderent......,..... ---... TOTAL, ENERGY SUFPLY RESEARCH AND ... III...... 83-N-401 Ref. of elec, circuit breaker Gas dif. ...

  8. Temperature, thermal-conductivity, and heat-flux data,Raft River...

    Open Energy Info (EERE)

    conductivity; United States; USGS Authors Urban, T.C.; Diment, W.H.; Nathenson, M.; Smith, E.P.; Ziagos, J.P.; Shaeffer and M.H. Published Open-File Report - U. S. Geological...

  9. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Broader source: Energy.gov (indexed) [DOE]

    Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use of relatively inexpensive materials such as plastic lenses and metal housings to capture the solar energy shining on a fairly large area and focus that energy onto a smaller area-the solar cell. One measure of the effectiveness of this approach is the concentration ratio-in other words, how much

  10. Flow Test | Open Energy Information

    Open Energy Info (EERE)

    borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Flow Test At Raft River Geothermal Area (2004) Raft River Geothermal Area...

  11. Application of satellite and GIS technologies for land-cover and land-use mapping at the rural-urban fringe - A case study

    SciTech Connect (OSTI)

    Treitz, P.M.; Howarth, P.J.; Gong, Peng )

    1992-04-01

    SPOT HRV multispectral and panchromatic data were recorded and coregistered for a portion of the rural-urban fringe of Toronto, Canada. A two-stage digital analysis algorithm incorporating a spectral-class frequency-based contextual classification of eight land-cover and land-use classes resulted in an overall Kappa coefficient of 82.2 percent for training-area data and a Kappa coefficient of 70.3 percent for test-area data. A matrix-overlay analysis was then performed within the geographic information system (GIS) to combine the land-cover and land-use classes generated from the SPOT digital classification with zoning information for the area. The map that was produced has an estimated interpretation accuracy of 78 percent. Global Positioning System (GPS) data provided a positional reference for new road networks. These networks, in addition to the new land-cover and land-use map derived from the SPOT HRV data, provide an up-to-date synthesis of change conditions in the area. 51 refs.

  12. Establishment and persistence of common ragweed (Ambrosia artemisiifolia L.) in disturbed soil as a function of an urban-rural macro-enviornment.

    SciTech Connect (OSTI)

    Lewis H. Ziska, Kate George, David A. Frenz

    2007-01-01

    No data are available on whether rising carbon dioxide concentration [CO2] or increased air temperature can alter the establishment and persistence of common ragweed (Ambrosia artemisiifolia L.) within a plant community following soil disturbance. To determine ragweed longevity, we exposed disturbed soil with a common seed bank population to an in situ temperature and [CO2] gradient along an urban-rural transect beginning in early 2002. No other consistent differences in meteorological variables (e.g. wind speed, humidity, PAR, tropospheric ozone) as a function of urbanization were documented over the course of the study (2002-2005). Above-ground measurements of biomass over this period demonstrated that ragweed along the transect responded to urban induced increases in [CO2]/temperature with peak biomass being observed at this location by the end of 2003. However, by the Fall of 2004, and continuing through 2005, urban ragweed populations had dwindled to a few plants. The temporal decline in ragweed populations was not associated with increased disease, herbivory or auto-allelopathy, but was part of a demographic reduction in the total number of annual plant species observed for the urban location. In a separate experiment, we showed that such a demographic shift is consistent with CO2/temperature induced increases in biomass and litter accumulation, with a subsequent reduction in germination / survival of annual plant species. Overall, these data indicate that [CO2]/temperature differences associated with urbanization may increase initial ragweed productivity and pollen production, but suggest that long-term, multi-year persistence of ragweed in the urban macro-environment may be dependent on other factors.

  13. USDA Rural Development Energy Program

    Energy Savers [EERE]

    Helps Reduce High Energy Costs in Tribal Lands USDA Helps Reduce High Energy Costs in Tribal Lands September 17, 2015 - 3:08pm Addthis On Sept. 16, 2015, the U.S. Department of Agriculture (USDA) announced five grants to help reduce energy costs for tribes in Alaska, Arizona, and South Dakota where the cost of producing electricity is extremely high. Through the High Energy Cost Grant program, the USDA will provide $7.9 million to nine grantees to help improve the environment by reducing carbon

  14. PSERC Webinar March 20, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of renewable generation technologies coupled to the grid through power elec- tronic interfaces, and the potential for future growth of electrical storage similarly coupled through ...

  15. Cimarron Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Twitter: @CimarronElec Facebook: https:www.facebook.comprofile.php?refname&id100000678310273 Outage Hotline: (800) 375-4121 References: EIA Form EIA-861...

  16. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Coke Net Imports Natural Gas b Petroleum Retail Elec- tricity g Total h Distillate ... and miscellaneous petroleum products. g Emissions from energy consumption (for ...

  17. Effects of Feedback on Residential Electricity Consumption: A...

    Office of Scientific and Technical Information (OSTI)

    none of which were elec- trically heated; each had an electric stove, dryer, dishwasher, and water heater. The researchers installed 24-h chart recorders in each residence...

  18. Awardee AwardeeHeadquarters RecoveryFunding TotalValue Tech Inc...

    Open Energy Info (EERE)

    City South Dakota Black Hills Colorado Elec Utility Co LP Pueblo Colorado City of Burbank Water and Power California Utility Company Burbank California Center for the...

  19. Callaway Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Place: Missouri Phone Number: (573) 642-3326 Website: www.callawayelectric.com Twitter: @CallawayElec Facebook: http:www.facebook.comCallawayElectric Outage Hotline:...

  20. District of Columbia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (District of Columbia) Glacial Energy Holdings (District of Columbia) Hess Retail Natural Gas and Elec. Acctg. (District of Columbia) Integrys Energy Services, Inc. (District...

  1. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices'' ... National Fire Protection Association (NFPA) 70, ''National Elec- trical Codes''. ...

  2. Kotzebue Wind Project III | Open Energy Information

    Open Energy Info (EERE)

    Kotzebue Wind Project III Facility Kotzebue Wind Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue...

  3. Colman, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc. Smart Grid Project Utility Companies in Colman, South Dakota Sioux Valley SW Elec Coop References US Census Bureau Incorporated place and minor civil division...

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    (B20 and above) CNG Compressed Natural Gas E85 Ethanol (E85) ELEC Electric HY Hydrogen LNG Liquefied Natural Gas LPG Liquefied Petroleum Gas (Propane) stationname Type:...

  5. Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area (1979) Raft River Geothermal Area 1979 1979 Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Injectivity Test...

  6. Geophysical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area 1977 1977 Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Raft River Geothermal Area Document Analysis Type Applicant Geothermal...

  7. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Info (EERE)

    Geothermal Exploration Activities Activities (1) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Areas (1) Raft River Geothermal Area Regions (0)...

  8. Kinematic model for postorogenic Basin and Range extension |...

    Open Energy Info (EERE)

    Article: Kinematic model for postorogenic Basin and Range extension Abstract The Raft River extensional shear zone is exposed in the Albion-Raft River-Grouse Creek...

  9. Remote Sensing- Principles And Interpretation | Open Energy Informatio...

    Open Energy Info (EERE)

    Geothermal Exploration Activities Activities (1) Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Areas (1) Raft River Geothermal Area Regions (0) Retrieved...

  10. Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    of earth tide response of three deep, confined aquifers Earth Tidal Analysis At Raft River Geothermal Area (1980) Raft River Geothermal Area 1980 1980 Reservoir response to...

  11. 2013 Annual Report -- Geothermal Technologies Office | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Raft River Geothermal Plant in Idaho represents both a conventional hydrothermal setting and an EGS demonstration project. Raft River Geothermal Plant in Idaho represents both a...

  12. Electrochemical arsenic remediation for rural Bangladesh

    SciTech Connect (OSTI)

    Addy, Susan Amrose

    2009-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

  13. Kansas wind program stimulates rural economy

    Broader source: Energy.gov [DOE]

    Students in the Wind for Schools’ projects will get a leg-up on the competition when competing for green jobs when they graduate.

  14. Rural Utilities Service | Open Energy Information

    Open Energy Info (EERE)

    Directory Contacts.png http:www.rd.usda.govcontact-usstate-offices Cite error: tags exist, but no tag was found Retrieved from "http:en.openei.orgw...

  15. Rural Electric Conven Coop | Open Energy Information

    Open Energy Info (EERE)

    www.recc.coop Twitter: @RECCAuburnIL Facebook: https:www.facebook.comRECC.Auburn?refsearch&sid100000351831275.1405275847..1 Outage Hotline: (217) 438-6197 Outage Map:...

  16. Case Study - National Rural Electric Cooperative Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the next five years," says Mark Stallons, President and CEO of Owen Electric Cooperative in Owenton, KY. "These upgrades should help delay those decisions by reducing demand." ...

  17. Sustainable Energy Solutions for Rural Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Kerry serving in that role from 2015 until 2017. Among ... interaction among local, state, and federal government officials. Alaska Native Regional Corporations and ...

  18. Rural Minnesota Energy Board PACE Program

    Broader source: Energy.gov [DOE]

    Note:  In 2010, the Federal Housing Finance Agency (FHFA), which has authority over mortgage underwriters Fannie Mae and Freddie Mac, directed these enterprises against purchasing mortgages of...

  19. Rural Cooperative Geothermal Development Electric & Agriculture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy Conversion ...

  20. Agriculture Rural Energy Enterprise Development (AREED) | Open...

    Open Energy Info (EERE)

    Biomass, Economic Development, Energy Efficiency Topics Co-benefits assessment, - Energy Access, - Environmental and Biodiversity, - Health, Finance Website http:...