Powered by Deep Web Technologies
Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Schlumberger soundings in the Upper Raft River and Raft River Valleys,  

Open Energy Info (EERE)

soundings in the Upper Raft River and Raft River Valleys, soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Details Activities (1) Areas (1) Regions (0) Abstract: In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the seventy-nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location, number, and azimuth of all 149 Schlumberger sounding stations are presented. The location of the new

2

The investigation of anomalous magnetization in the Raft River valley,  

Open Energy Info (EERE)

investigation of anomalous magnetization in the Raft River valley, investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous magnetization in the Raft River valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; clastic sediments; economic geology; exploration; geophysical methods; geophysical surveys; geothermal energy; gravel; ground methods; Idaho; isothermal remanent magnetization; magnetic anomalies; magnetic methods; magnetic properties; magnetic susceptibility; magnetization; paleomagnetism; Raft River basin; remanent magnetization; sediments; surveys; United States Author(s): Anderson, L.A.; Mabey, D.R. Published: Abstracts - Society of Exploration Geophysicists International

3

Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah  

DOE Green Energy (OSTI)

In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the seventy-nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location, number, and azimuth of all 149 Schlumberger sounding stations are presented. The location of the new stations is shown with solid circles, whereas the location of the previous stations is shown with open circles. The new stations are numbered from 201 to 270. The data and interpretation of the new soundings are presented.

Zohdy, A.A.R.; Bisdorf, R.J.

1976-01-01T23:59:59.000Z

4

Schlumberger soundings in the Upper Raft River and Raft River...  

Open Energy Info (EERE)

soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings in the Upper...

5

The investigation of anomalous magnetization in the Raft River...  

Open Energy Info (EERE)

anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous...

6

Geophysical Method At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

Method At Raft River Geothermal Area (1975) Method At Raft River Geothermal Area (1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1975 Usefulness not indicated DOE-funding Unknown Notes Geologic and geophysics studies were completed at the Raft River valley. References Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover, D.B. (1 May 1975) Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1975)&oldid=59434

7

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

8

Geophysical Method At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Geophysical Method At Raft River Geothermal Area (1977) Geophysical Method At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Borehole geophysics were completed at the Raft River valley, Idaho. References Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. (1 February 1977) Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1977)&oldid=594349" Category: Exploration Activities

9

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area  

Open Energy Info (EERE)

Area Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1974 - 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis Hydrogeologic study of the area Notes In 1975, the U.S. Geological Survey made 70 Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the 79 soundings made previously in the Raft River Valley and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location,

10

Petrography of late cenozoic sediments, Raft River geothermal field, Idaho  

Open Energy Info (EERE)

of late cenozoic sediments, Raft River geothermal field, Idaho of late cenozoic sediments, Raft River geothermal field, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Petrography of late cenozoic sediments, Raft River geothermal field, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; RAFT RIVER VALLEY; GEOTHERMAL FIELDS; PETROGRAPHY; BIOTITE; CALCITE; CLAYS; LIMESTONE; PYRITE; SANDSTONES; SEDIMENTS; SHALES; VOLCANIC ROCKS; ZEOLITES; ALKALINE EARTH METAL COMPOUNDS; CALCIUM CARBONATES; CALCIUM COMPOUNDS; CARBON COMPOUNDS; CARBONATE ROCKS; CARBONATES; CHALCOGENIDES; IDAHO; IGNEOUS ROCKS; INORGANIC ION EXCHANGERS; ION EXCHANGE MATERIALS; IRON COMPOUNDS; IRON SULFIDES; MICA; MINERALS; NORTH AMERICA; ORES; OXYGEN COMPOUNDS; PACIFIC NORTHWEST REGION; PYRITES; ROCKS; SEDIMENTARY ROCKS; SULFIDES; SULFUR COMPOUNDS;

11

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

12

Raft River Geothermal Exploratory Hole No. 3  

DOE Green Energy (OSTI)

Raft River Geothermal Exploratory Hole No. 3 (RRGE-3) is an exploratory hole with three directional legs, drilled to depths ranging from approximately 5,500 to 6,000 feet into intruded quartz monzonite basement rock of the Raft River valley of southeastern Idaho. The goal of the Raft River Geothermal R and D program is to determine the feasibility of developing and utilizing medium temperature (300/sup 0/F) geothermal resources for power generation and nonelectrical applications. This well was drilled to provide data to further investigate and evaluate the geothermal reservoir, as well as to optimize the location of possible future resource and/or injection wells and to develop methods to reduce the cost of geothermal wells. The drilling and completion of RRGE-3 is described and the daily drilling reports, drill bit records, descriptions of the casing, cementing, logging and coring programs, and the containment techniques employed on RRGE-3 are included.

Shoopman, H.H. (comp.)

1977-06-01T23:59:59.000Z

13

Telluric Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1978) Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Telluric Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis Infer the structure and the general lithology underlying the valley Notes The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for lower values in the area of the geothermal system. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho

14

Deep drilling data, Raft River geothermal area, Idaho-Raft River...  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep...

15

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; data; geophysical surveys; Idaho; Raft River geothermal area; surveys; United States; USGS; Well No. 3; well-logging Author(s): Covington, H.R. Published: Open-File Report - U. S. Geological Survey, 1/1/1978 Document Number: Unavailable DOI: Unavailable Exploratory Well At Raft River Geothermal Area (1977) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Deep_drilling_data,_Raft_River_geothermal_area,_Idaho-Raft_River_geothermal_exploration_well_sidetrack-C&oldid=473365"

16

Raft River 5MW Geothermal Pilot Plant  

SciTech Connect

Elements of design of the 5 MW(e) binary cycle plant to be built in the Raft River Valley in Idaho are discussed. Advantages of the dual boiling cycle for use with moderate temperature (250 to 350/sup 0/F) resources are discussed. A breakdown of the heat loads and power requirements is presented. Various components, including pumps, heat exchangers, cooling tower, turbine-generators, and production and injection systems, are described. (JGB)

Whitbeck, J.F.; Piscitella, R.R.

1978-01-01T23:59:59.000Z

17

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Details Activities (3) Areas (1) Regions (0) Abstract: The Raft River geothermal system is located in southern Idaho, near the Utah-Idaho state boarder in the Raft River Valley. The field, which is owned and operated by U.S. Geothermal, has been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes ongoing geologic and petrologic investigations being conducted in support of this project. The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase

18

Hydrochemistry of selected parameters at the Raft River KGRA, Cassia  

Open Energy Info (EERE)

Hydrochemistry of selected parameters at the Raft River KGRA, Cassia Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Low to moderate temperature (< 150 0C) geothermal fluids are being developed in the southern Raft River Valley of Idaho. Five deep geothermal wells ranging in depth from 4911 feet to 6543 feet (1490 to 1980 meters) and two intermediate depth (3858 feet or 1170 meters) injection wells have been drilled within the Raft River KGRA. Several shallower (1423-500 feet or 430-150 meters) wells have also been constructed to monitor the environmental effects of geothermal development of the

19

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Details Activities (1) Areas (1) Regions (0) Abstract: This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1200 feet squared per day (110

20

Field Mapping At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1980) Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Delineate the subsurface geology Notes The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. The Raft River geothermal system is a hot water convective system relying on deep circulation of meteoric water in a region of high geothermal gradients and open fractures near the base of the Tertiary basin fill. References Covington, H. R. (1 September 1980) Subsurface geology of the

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geochemical modeling at Raft River  

DOE Green Energy (OSTI)

Chemical analysis of water from three depth regimes at the Raft River KGRA indicate the presence of at least two distinct hydrothermal fluids. One fluid predominates in the fracture system on the west side of the valley, known as the Bridge Fault. This fluid is characterized by low conductivity (2,000 to 3,000 ..mu..s) and 6 to 9 ..mu..g/ml F/sup -/. The second fluid, encountered in the center of the valley, appears to be associated with the Narrows Structure and is characterized by a conductivity of 6,000 to 11,000 ..mu..s and F/sup -/ of 3 to 6 ..mu..g/ml. Contour mapping of conductivity and Cl/sup -//F/sup -/ ratios indicates upwelling of both deep geothermal fluids into the shallow system. This recharge into the intermediate and shallow zones produces high-conductivity water which is used for irrigation. Application of a simple mixing model shows that all the water sampled in intermediate and deep zones can be described by mixtures of two nearly pure fluids. One mechanism, consistent with the known data, is deep upwelling of a highly mineralized fluid which is heated by the basement rock and then penetrates sediment layers through fractures. The second fluid is relatively recent meteoric water conductively heated by the basement rock.

Allen, C.A.; Chaney, R.E.; McAtee, R.E.

1979-01-01T23:59:59.000Z

22

Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Area (1978) Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes The aeromagnetic data indicate the extent of the major Cenozoic volcanic units. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Raft_River_Geothermal_Area_(1978)&oldid=473817"

23

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

24

Interpretation of electromagnetic soundings in the Raft River geothermal  

Open Energy Info (EERE)

Interpretation of electromagnetic soundings in the Raft River geothermal Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: An electromagnetic (EM) controlled source survey was conducted in the Raft River Valley, near Malta, Idaho. The purpose of the survey was: to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); to present an example of the EM sounding data and interpretations using a previously developed inversion program; and (3) to

25

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

26

Raft River Geothermal Aquaculture Experiment. Phase II  

DOE Green Energy (OSTI)

Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

1979-08-01T23:59:59.000Z

27

Raft River geoscience case study: appendixes  

DOE Green Energy (OSTI)

The following are included in these appendices: lithology, x-ray analysis, and cores; well construction data; borehole geophysical logs; chemical analyses from wells at the Raft River geothermal site; and bibliography. (MHR)

Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

1981-11-01T23:59:59.000Z

28

Raft River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Raft River Geothermal Area Raft River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Raft River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 DOE Involvement 4 Timeline 5 Regulatory and Environmental Issues 6 Future Plans 7 Raft River Unit II (26 MW) and Raft River Unit III (32 MW) 8 Enhanced Geothermal System Demonstration 9 Exploration History 10 Well Field Description 11 Technical Problems and Solutions 12 Geology of the Area 12.1 Regional Setting 12.2 Structure 12.3 Stratigraphy 12.3.1 Raft River Formation 12.3.2 Salt Lake Formation 12.3.3 Precambrian Rocks 13 Hydrothermal System 14 Heat Source 15 Geofluid Geochemistry 16 NEPA-Related Analyses (1) 17 Exploration Activities (77) 18 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.10166667,"lon":-113.38,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

30

Exploratory Well At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

7) 7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Raft River Geothermal Exploratory Hole No. 4, RRGE-4 drilled. During this time Raft River geothermal exploration well sidetrack-C also completed. References Kunze, J. F.; Stoker, R. C.; Allen, C. A. (14 December 1977) Update on the Raft River Geothermal Reservoir Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1977)&oldid=473847"

31

Reconnaissance geothermal exploration at Raft River, Idaho from...  

Open Energy Info (EERE)

Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

32

Raft River Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River Sector Geothermal energy Location Information Location Cassia County, Idaho Coordinates 42.358036°, -113.5728501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358036,"lon":-113.5728501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Raft River monitor well potentiometric head responses and water...  

Open Energy Info (EERE)

River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This...

34

Raft River condenser-tube examination  

DOE Green Energy (OSTI)

In the program of development of a water treatment for the 5 MW Raft River power plants' carbon steel heat rejection system, four carbon steel tubes were analyzed in this batch. The results of visual and scanning electron microscope examination of the tubes are presented. (MHR)

Suciu, D.F.

1981-04-03T23:59:59.000Z

35

Geophysical logging case history of the Raft River geothermal system, Idaho  

Open Energy Info (EERE)

Geophysical logging case history of the Raft River geothermal system, Idaho Geophysical logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geophysical logging case history of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation

36

Modeling-Computer Simulations At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To evaluate the hydrodynamics of the unconfined aquifer. Notes This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically. Computed and estimated transmissivity values range from 1200 ft2 per day

37

Subsurface geology of the Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

geology of the Raft River geothermal area, Idaho geology of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Subsurface geology of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. Hydrothermal alteration products in the form of clays and zeolites, and deposition of secondary calcite and silica increase with depth. The abundance of near-vertical open fractures also increases with depth, allowing greater movement of hydrothermal fluids near the base of the Cenozoic basin fill.

38

Exploring the Raft River geothermal area, Idaho, with the dc resistivity  

Open Energy Info (EERE)

Exploring the Raft River geothermal area, Idaho, with the dc resistivity Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Author(s): Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. Published: Geophysics, 10/12/1975 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article

39

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data

40

Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Numerical Modeling Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The numerical modeling of the resistivity data is marginal for changes as small as those observed but the results suggest that changes of a few percent could be expected from a fracture zone extending from depth to within 100 m of the surface. References Sill, W. R. (1 September 1983) Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modeling_At_Raft_River_Geothermal_Area_(1983)&oldid=47387

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Final Technical Resource Confirmation Testing at the Raft River Geothermal  

Open Energy Info (EERE)

Final Technical Resource Confirmation Testing at the Raft River Geothermal Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield. Author(s): Glaspey, Douglas J. Published: DOE Information Bridge, 1/30/2008 Document Number: Unavailable DOI: 10.2172/922630 Source: View Original Report Flow Test At Raft River Geothermal Area (2008) Raft River Geothermal Area Retrieved from

42

Ground Gravity Survey At Raft River Geothermal Area (1978) |...  

Open Energy Info (EERE)

Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration...

43

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) edit Details Activities (1) Areas (1) Regions (0)...

44

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Jump...

45

Simulation analysis of the unconfined aquifer, Raft River Geothermal...  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of...

46

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND...

47

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...  

Open Energy Info (EERE)

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

48

Hydrochemistry of selected parameters at the Raft River KGRA...  

Open Energy Info (EERE)

Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrochemistry of selected...

49

Final Technical Resource Confirmation Testing at the Raft River...  

Open Energy Info (EERE)

Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical...

50

Total field aeromagnetic map of the Raft River known Geothermal...  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report:...

51

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details...

52

Rheological control on the initial geometry of the Raft River...  

Open Energy Info (EERE)

Rheological control on the initial geometry of the Raft River detachment fault and shear zone, western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

53

Preservation of an extreme transient geotherm in the Raft River...  

Open Energy Info (EERE)

transient geotherm in the Raft River detachment shear zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Preservation of an extreme transient...

54

Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Raft River Geothermal Area (1977) Magnetotellurics At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Magnetotellurics Activity Date 1977 Usefulness useful DOE-funding Unknown Notes Magnetotelluric soundings along a profile extending from the Raft River geothermal area in southern Idaho in Yellowstone National Park in Wyoming reveal a highly anomalous crustal structure involving a conductive zone at depths that range from 18 km in the central part of the eastern Snake River Plain to 7 km beneath the Raft River thermal area and as little as 5 km in Yellowstone. Resistivities in this conductive zone are less than 10 ohm-m and at some sites than 1 ohm-m. References Stanley, W.D.; Boehl, J.E.; Bostick, F.X.; Smith, H.W. (10 June

55

Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report  

DOE Green Energy (OSTI)

The Raft River Geothermal Exploratory Hole No. 2 (RRGE-2) is the second exploratory hole drilled in the Raft River Valley location of the Idaho Geothermal R and D Project for the purpose of determining the existence of hot water in quantities suitable for commercial power generation and nonelectric applications. This well was drilled to a depth of 6,543 feet below ground level to obtain additional geological information for evaluation of the deep geothermal reservoir system. The drilling and completion of RRGE-2 are described. The daily drilling reports, drill bit records, casing records, and descriptions of the cementing, logging, coring and containment techniques employed during the drilling operation are included.

Speake, J.L. (comp.)

1976-08-01T23:59:59.000Z

56

Exploratory Well At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis First exploratory well Notes Raft River Geothermal Exploratory Hole No. 1 (RRGE-1) is drilled. References Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) (1 October 1975) Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Kunze, J.F. (1 May 1977) Geothermal R and D project report, October 1, 1976--March 31, 1977 Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. (1 January 1978) Deep drilling data Raft River geothermal

57

Raft River geoscience case study- appendixes | Open Energy Information  

Open Energy Info (EERE)

geoscience case study- appendixes geoscience case study- appendixes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River geoscience case study- appendixes Details Activities (1) Areas (1) Regions (0) Abstract: The following are included in these appendices: lithology, x-ray analysis, and cores; well construction data; borehole geophysical logs; chemical analyses from wells at the Raft River geothermal site; and bibliography. Author(s): Dolenc, M. R.; Hull, L. C.; Mizell, S. A.; Russell, B. F.; Skiba, P. A.; Strawn, J. A.; Tullis, J. A. Published: DOE Information Bridge, 11/1/1981 Document Number: Unavailable DOI: 10.2172/5988071 Source: View Original Report Conceptual Model At Raft River Geothermal Area (1981) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Raft_River_geoscience_case_study-_appendixes&oldid=473481

58

Raft River Rural Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Rural Elec Coop Inc Rural Elec Coop Inc Place Idaho Website www.rrelectric.com/index- Utility Id 22814 Utility Location Yes Ownership Cooperative NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RAFT RIVER DIV: Small General, 60 AMPS and over, Single Phase Commercial RAFT RIVER DIV: Small General, 60 AMPS and over, Three Phase Commercial RAFT RIVER DIV: Large General 50KVA or greater, 60 AMPS or over Commercial RAFT RIVER DIV: Small General, Less than 60 AMPS, Single Phase Commercial RAFT RIVER DIV: Small General, Less than 60 AMPS, Three Phase Commercial

59

Development Wells At Raft River Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Development Wells At Raft River Geothermal Area (2004) Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Development Wells Activity Date 2004 Usefulness not indicated DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

60

Self Potential Measurements At Raft River Geothermal Area (1983) | Open  

Open Energy Info (EERE)

Measurements At Raft River Geothermal Area (1983) Measurements At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential Measurements At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Self Potential Measurements Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Self-potential measurements before and during injection tests at Raft River KGRA, Idaho indicate a small negative change. The magnitude of the change (5 to 10 mV) is near the noise level (5 mV) but they extend over a fairly broad area. The presence of a cathodic protection system clouds the issue of the validity of the changes, however the form of the observed changes cannot be explained by any simple change in the current strength of the

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Acoustic Logs At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1979) Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Acoustic Logs Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To permit the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Televiewer logs permitted the location and orientation of numerous fractures and several features that may be faults. References Keys, W. S.; Sullivan, J. K. (1 June 1979) Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Acoustic_Logs_At_Raft_River_Geothermal_Area_(1979)&oldid=473816"

62

Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Audio-Magnetotellurics At Raft River Geothermal Area Audio-Magnetotellurics At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes An area of low apparent resistivity values defined by the audiomagnetotelluric (AMT) survey appears to outline the extent of the geothermal reservoir even though the reservoir is deeper than the penetration of the survey. Self-potential anomalies relate to near surface hydrology. Upward leakage from the reservoir produces shallower effects that were measured by the AMT survey. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1

63

Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report |  

Open Energy Info (EERE)

Hole No. 2, RRGE-2. Completion report Hole No. 2, RRGE-2. Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Geothermal Exploratory Hole No. 2 (RRGE-2) is the second exploratory hole drilled in the Raft River Valley location of the Idaho Geothermal R and D Project for the purpose of determining the existence of hot water in quantities suitable for commercial power generation and nonelectric applications. This well was drilled to a depth of 6,543 feet below ground level to obtain additional geological information for evaluation of the deep geothermal reservoir system. The drilling and completion of RRGE-2 are described. The daily drilling

64

Injectivity Test At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Injectivity Test At Raft River Geothermal Area (1979) Injectivity Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Injectivity Test Activity Date 1979 Usefulness useful DOE-funding Unknown Notes Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. References Allman, D. W.; Goldman, D.; Niemi, W. L. (1 January 1979) Evaluation of testing and reservoir parameters in geothermal wells at Raft

65

Tracer Testing At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Exploration Basis To develop chemical tracing procedures for geothermal areas. Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the well bore. Increased mixing during quiescent periods, between injection and

66

Conceptual Model At Raft River Geothermal Area (1988) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Conceptual Model At Raft River Geothermal Area (1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1988) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1988 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geophysical logs to determine the reservoir transmissivity Notes Seven fracture orientation sets are recognized in the sedimentary and metamorphic rock units. Although the conventional geophysical logs showed

67

Geoscience interpretations of the Raft River Resource | Open Energy  

Open Energy Info (EERE)

Geoscience interpretations of the Raft River Resource Geoscience interpretations of the Raft River Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geoscience interpretations of the Raft River Resource Details Activities (1) Areas (1) Regions (0) Abstract: A discussion of the geology and the wellfield development at Raft River is presented. The geothermal resource is located in a downdropped and downwarped basin bordered on east, west, and south by mountain ranges that vary in both stratigraphy and structure. It is inferred that the geothermal resource occurs where hydrothermal water rises at the intersection of and along the Narrows Zone and the Bridge Fault. Three exploration wells, two development wells, and two injection wells were drilled. The basic strategy of field development was to drill deep production wells on the faulted

68

Fault Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Fault Mapping At Raft River Geothermal Area (1993) Fault Mapping At Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fault Mapping Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis Geologic mapping, strain and kinematic analysis Notes The mountains expose a detachment fault that separates a hanging wall of Paleozoic rocks from Proterozoic and Archean rocks of the footwall. Beneath the detachment lies a 100 to 300m-thick top-to-the-east extensional shear zone. Geologic mapping, strain and kinematic analysis, and 40Ar/39Ar thermochronology suggest that the shear zone and detachment fault had an

69

Conceptual Model At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

Conceptual Model At Raft River Geothermal Area (1981) Conceptual Model At Raft River Geothermal Area (1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geoscience data to develop a conceptual model of the reservoir. Notes The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic

70

FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO | Open Energy Information  

Open Energy Info (EERE)

FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO Details Activities (1) Areas (1) Regions (0) Abstract: A quantitative evaluation of borehole-impeller flowmeter data leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary and trolling calibrations of the flowmeter were made in the well. Methods were developed to adjust for variations in hole diameter, impeller speed, and trolling speed. These methods were applied to evaluate water losses into the formation as a function of depth. Application of the techniques is restricted to aquifers below the water

71

Exploratory Well At Raft River Geothermal Area (1950) | Open Energy  

Open Energy Info (EERE)

50) 50) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1950) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1950 Usefulness not indicated DOE-funding Unknown Exploration Basis Agricultural Wells Notes The geothermal resource at Raft River was discovered sometime prior to 1950 when two shallow agricultural wells, the Bridge and Crank wells, encountered boiling water. References Diek, A.; White, L.; Roegiers, J.-C.; Moore, J.; McLennan, J. D. (1 January 2012) BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1950)&oldid=473844

72

Exploratory Well At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

76) 76) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Second and third exploratory wells drilled Notes Raft River Geothermal Exploratory Hole No. 2, RRGE-2 drilled. During this period, a third well, RRGE-3 was also drilled and well production was tested. Down-hole data was obtained from RRGE-3. References Speake, J.L. (1 August 1976) Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Kunze, J.F. (1 October 1976) Geothermal R and D Project report for period April 1, 1976 to June 30, 1976

73

Field Mapping At Raft River Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Raft River Geothermal Area (1990) Field Mapping At Raft River Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes Together, field and 40Ar/39Ar results suggest that Late Cretaceous extension occurred in the Sevier belt hinterland at the same time as shortening in the eastern foreland and at depth in the hinterland. Sufficient topography must have been present to drive upper-crustal extension in the eastern hinterland. References Wells, M.L.; Allmendinger, R.W.; Dallmeyer, R.D. (1 October 1990) Late Cretaceous extension in the hinterland of the Sevier thrust belt,

74

Electromagnetic Soundings At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Electromagnetic Soundings At Raft River Geothermal Area (1977) Electromagnetic Soundings At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Electromagnetic Sounding Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis The purpose of the survey was: (1) to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); (2) to present an example of the EM sounding data and interpretations using a

75

Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Electromagnetic Survey At Raft River Electromagnetic Survey At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Airborne Electromagnetic Survey Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis To show that AEM methods can be useful in exploration for and defining geothermal systems Notes Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. References Christopherson, K.R.; Long, C.L.; Hoover, D.B. (1 September 1980) Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Retrieved from "http://en.openei.org/w/index.php?title=Airborne_Electromagnetic_Survey_At_Raft_River_Geothermal_Area_(1979)&oldid=510231

76

Chemical Logging At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Logging At Raft River Geothermal Area (1979) Logging At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Chemical Logging At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Chemical Logging Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To use new methods to assist geothermal well drilling. Notes Chemical logging resulted in the development of a technique to assist in geothermal well drilling and resource development. Calcium-alkalinity ratios plotted versus drill depth assisted in defining warm and hot water aquifers. Correlations between the calcium-alkalinity log and lithologic logs were used to determine aquifer types and detection of hot water zones

77

Geothermal Modeling of the Raft River Geothermal Field | Open Energy  

Open Energy Info (EERE)

Geothermal Modeling of the Raft River Geothermal Field Geothermal Modeling of the Raft River Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Modeling of the Raft River Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This interim report presents the results to date of chemical modeling of the Raft River KGRA. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. Recommendations

78

Conceptual Model At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine productive zones in the reservoir Notes Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water 1450C reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. References Applegate, J.K.; Donaldson, P.R.; Kinkley, D.L.; Wallace, T.L. (1 January 1976) Borehole geophysics evaluation of the Raft River geothermal reservoir Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Raft_River_Geothermal_Area_(1976)&oldid=473821

79

Petrography Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Petrography Analysis At Raft River Geothermal Area (2011) Petrography Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Petrography Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes X-ray diffraction and thin section analyses are being conducted on samples from 5 deep wells, RRG- 1, 2, 3, 7 and 9, to determine the characteristics of the rock types and hydrothermal alteration within the geothermal system. Thin section analyses of samples from RRG-9 document the presence of strong alteration and brecciation at the contact between the Tertiary and basement

80

Raft River Rural Elec Coop Inc (Nevada) | Open Energy Information  

Open Energy Info (EERE)

Inc (Nevada) Jump to: navigation, search Name Raft River Rural Elec Coop Inc Place Nevada Utility Id 22814 References EIA Form EIA-861 Final Data File for 2010 - File220101...

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Conceptual Model At Raft River Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Conceptual Model At Raft River Geothermal Area (1990) Conceptual Model At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a conceptual model to explain the exposed rocks. Notes Although commonly obscured by simple shear, pure shear fabrics occur locally within many metamorphic core complexes. The cover rocks of the Raft River metamorphic core complex exposed within the Black Pine Mountains display an early coaxial strain history which developed prior to the formation of low-angle fault-bounded allochthons. At higher structural levels this is documented by pressure shadows with straight sutures, and oppositely-rotated antitaxial calcite veins.

82

Completion report: Raft River Geothermal Production Well Five (RRGP-5)  

DOE Green Energy (OSTI)

The Raft River Geothermal Production Well Five (RRGP-5) is a production well in the Raft River KGRA (Known Geothermal Resource Area). The plan for this well included three barefoot legs. Due to technical and funding problems, two legs were drilled; only one leg is a producing leg. This report describes the entire drilling operation and includes daily drilling reports, drill bit records, casing records, and descriptions of cementing, logging, coring, and containment techniques.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

83

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho  

DOE Green Energy (OSTI)

Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the sun and the moon. Overall, the results of the tests indicate that the geothermal reservoir in southern Raft River valley is fairly extensive and significantly permeable and merits further exploration.

Narasimhan, T.N.; Witherspoon, P.A.

1977-05-01T23:59:59.000Z

84

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant  

DOE Green Energy (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

1981-11-17T23:59:59.000Z

85

Summary and results of the comprehensive environmental monitoring program at the INEL's Raft River geothermal site  

DOE Green Energy (OSTI)

The Raft River Geothermal Program was designed to demonstrate that moderate temperature (approx. 150/sup 0/C) geothermal fluids could be used to generate electricity and provide an alternate energy source for direct-use applications. The environmental program was initiated soon after drilling began. The major elements of the monitoring program were continued during the construction and experimental testing of the 5-MW(e) power plant. The monitoring studies established pre-development baseline conditions of and assessed changes in the physical, biological, and human environment. The Physical Environmental Monitoring Program collected baseline data on geology, subsidence, seismicity, meteorology and air quality. The Biological Environmental Monitoring Program collected baseline data on the flora and fauna of the terrestrial ecosystem, studied raptor disturbances, and surveyed the aquatic communities of the Raft River. The Human Environmental Monitoring Program surveyed historic and archaeological sites, considered the socioeconomic environment, and documented incidences of fluorosis in the Raft River Valley. In addition to the environmental monitoring programs, research on biological direct applications using geothermal water was conducted at Raft River. Areas of research included biomass production of wetland and tree species, aquaculture, agricultural irrigation, and the use of wetlands as a treatment or pretreatment system for geothermal effluents.

Mayes, R.A.; Thurow, T.L.; Cahn, L.S.

1982-01-01T23:59:59.000Z

86

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant  

DOE Green Energy (OSTI)

The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

1980-05-30T23:59:59.000Z

87

Core Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes Core was obtained from RRG-3C. The sample is a brecciated and altered siltstone from the base of the Tertiary sequence and is similar to rocks at the base of the Tertiary deposits in RRG-9. The results of thermal and quasi-static mechanical property measurements that were conducted on the core sample are presented. References Jones, C.; Moore, J.; Teplow, W.; Craig, S. (1 January 2011) GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(2011)&oldid=473834

88

Conceptual Model At Raft River Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

Exploration Activity Details Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis To model the kinematics of compressional and extensional ductile shearing deformation Notes Analysis of shear criteria enables the kinematics of two main ductile-shearing events (D1 and D2) to be established in the Raft River, Grouse Creek and Albion 'metamorphic core complex'. The first event (D1) is a NNE-thrusting and corresponds to Mesozoic shortening. A well developed non-coaxial ductile deformation (D2), of Cenozoic age, is marked by the occurrence of opposing eastward (in Raft River) and westward shear criteria (in Albion-Grouse Creek). These characterize an arch structure

89

Thermochronometry At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermochronometry Activity Date 1993 Usefulness not indicated DOE-funding Unknown Notes Constraints on the initial orientation and crustal position of the shear zone have been derived from 40Ar/39Ar thermochronology of mineral suites (hornblende, muscovite, biotite, and k-feldspar) collected within and beneath the shear zone along a 27 km transect parallel to the transport direction. References Wells, M.L.; Snee, L.W. (1 April 1993) Geologic and thermochronologic constraints on the initial orientation of the Raft River detachment and footwall shear zone

90

Geothermometry At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Raft River Geothermal Area (1980) Geothermometry At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geothermometry Activity Date 1980 Usefulness not indicated DOE-funding Unknown Notes Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

91

Geochemical modeling of the Raft River geothermal field | Open Energy  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geochemical modeling of the Raft River geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geochemical modeling of the Raft River geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: The results to date of chemical modeling of the Raft River KGRA are presented. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well

92

Update on the Raft River Geothermal Reservoir | Open Energy Information  

Open Energy Info (EERE)

on the Raft River Geothermal Reservoir on the Raft River Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Update on the Raft River Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Since the last conference, a fourth well has been drilled to an intermediate depth and tested as a production well, with plans to use this well in the long term for injection of fluids into the strata above the production strata. The third, triple legged well has been fully pump tested, and the recovery of the second well from an injection well back to production status has revealed very interesting data on the reservoir conditions around that well. Both interference testing and geochemistry analysis shows that the third well is producing from a different aquifer

93

Field Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1993 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the importance of Early to Middle Miocene period in the northern Basin and Range region. Notes New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Reconnaissance apatite ages from the Toiyabe

94

Raft River geoscience case study | Open Energy Information  

Open Energy Info (EERE)

study study Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River geoscience case study Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically

95

Field Mapping At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Raft River Geothermal Area (1977) Field Mapping At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1977 Usefulness useful DOE-funding Unknown Exploration Basis To estimate the permeability and storage parameters of the geothermal reservoir, and the possible existence of barrier boundaries. Notes Production and interference tests were conducted on the geothermal wells RRGE 1 and RRGE 2 during September--November, 1975. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the

96

Core Analysis At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(1976)&oldid=47383

97

Raft River well stimulation experiments: geothermal reservoir well stimulation program  

DOE Green Energy (OSTI)

The Geothermal Reservoir Well Stimulation Program (GRWSP) performed two field experiments at the Raft River KGRA in 1979. Wells RRGP-4 and RRGP-5 were selected for the hydraulic fracture stimulation treatments. The well selection process, fracture treatment design, field execution, stimulation results, and pre- and post-job evaluations are presented.

Not Available

1980-08-01T23:59:59.000Z

98

Geology and alteration of the Raft River geothermal system, Idaho | Open  

Open Energy Info (EERE)

alteration of the Raft River geothermal system, Idaho alteration of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology and alteration of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: analcime; Cassia County Idaho; Cenozoic; chlorite; chlorite group; clay minerals; economic geology; exploration; framework silicates; geothermal energy; Idaho; illite; kaolinite; laumontite; montmorillonite; Neogene; Precambrian; Raft Formation; Raft River KGRA; Salt Lake Formation; sheet silicates; silicates; Tertiary; United States; wairakite; wells; zeolite group Author(s): Blackett, R.E.; Kolesar, P.T. Published: Geothermal Resource Council Transactions 1983, 1/1/1983 Document Number: Unavailable DOI: Unavailable

99

Well Log Techniques At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Well Log Techniques At Raft River Geothermal Area Well Log Techniques At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Well Log Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Characterize the rock using well log data. Notes Information is given on the following logs: dual-induction focused log, including resistivity, sp, and conductivity; acoustic log; compensated neutron; compensated densilog; and caliper. Lithologic breaks for a drill core to a depth of 2840 ft are illustrated. References Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho Raft River geothermal exploration well No. 4 Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Raft_River_Geothermal_Area_(1977)&oldid=6004

100

Groundwater Sampling At Raft River Geothermal Area (1974-1982) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (1974-1982) Groundwater Sampling At Raft River Geothermal Area (1974-1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (1974-1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1974 - 1982 Usefulness useful DOE-funding Unknown Exploration Basis Collect baseline chemical data Notes Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Flow Test At Raft River Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2008) Flow Test At Raft River Geothermal Area (2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2008) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis To confirm resource using flow tests Notes Both production and injection wells were flow tested. Aslo includes interference testing across the well field. References Glaspey, Douglas J. (30 January 2008) Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Raft_River_Geothermal_Area_(2008)&oldid=473856

102

Conceptual Model At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

79) 79) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Recommendations are made concerning field expansion and additional work needed to refine the overall reservoir model. Notes Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. References Overton, H. L.; Chaney, R. E.; Mcatee, R. E.; Graham, D. L. (1 November 1979) Geochemical modeling of the Raft River geothermal field Overton, H. L.; Chaney, R. E.; Mcatee, D. L.; Graham, D. L. (1

103

Conceptual Model At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

) ) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine time to cool the geothermal field with reinjection Notes If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. References Kasameyer, P. W.; Schroeder, R. C. (1 January 1977) Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Raft_River_Geothermal_Area_(1977)&oldid=473822

104

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

105

Core Analysis At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

81) 81) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine fault and joint geometry Notes Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 500 and 70 0. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults dips 100 to 200 and may parallel part of the basal decollement or reflect the presence of listric normal faults in the upper plate. References Guth, L. R.; Bruhn, R. L.; Beck, S. L. (1 July 1981) Fault and

106

Raft River II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Raft River II Geothermal Project Raft River II Geothermal Project Project Location Information Coordinates 42.605555555556°, -113.24055555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.605555555556,"lon":-113.24055555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Raft River Rural Elec Coop Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Inc (Utah) Inc (Utah) Jump to: navigation, search Name Raft River Rural Elec Coop Inc Place Utah Utility Id 22814 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0830/kWh Commercial: $0.0629/kWh Industrial: $0.0474/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Raft_River_Rural_Elec_Coop_Inc_(Utah)&oldid=412776" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

108

Raft River 5-MW(e) geothermal pilot plant project  

SciTech Connect

The Raft River 5-MW(e) Pilot Plant Project was started in 1976. Construction is scheduled for completion in July 1980, with three years of engineering and operational testing to follow. The plant utilized a 280/sup 0/F geothermal fluid energy source and a dual boiling isobutane cycle. Developmental efforts are in progress in the areas of down hole pumps and chemical treatment of geothermal fluid for cooling tower makeup.

Rasmussen, T.L.; Whitbeck, J.F.

1980-01-01T23:59:59.000Z

109

Modeling-Computer Simulations At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Raft River Geothermal Area (1977) Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Simulate reservoir performance Notes Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each

110

Temperature, thermal-conductivity, and heat-flux data,Raft River...  

Open Energy Info (EERE)

Temperature, thermal-conductivity, and heat-flux data,Raft River area, Cassia County, Idaho (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report:...

111

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE...

112

Smoky Hill and River Valleys  

E-Print Network (OSTI)

.............................................................................3 - 13 Wind Energy and the Meridian Way Wind Farm County. This location is the site of a new wind farm development by Westar Energy, Horizon Wind EnergySmoky Hill and Republican River Valleys Water, Wind, and Economic Development 2008 Field Conference

Peterson, Blake R.

113

Two-dimensional simulation of the Raft River geothermal reservoir and  

Open Energy Info (EERE)

dimensional simulation of the Raft River geothermal reservoir and dimensional simulation of the Raft River geothermal reservoir and wells. (SINDA-3G program) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Two-dimensional simulation of the Raft River geothermal reservoir and wells. (SINDA-3G program) Details Activities (1) Areas (1) Regions (0) Abstract: Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each of the three existing wells at Raft River were also constructed to describe the

114

Fluid Inclusion Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Notes Hydrogen isotope values of muscovite (δDMs ∼-100‰) and fluid inclusions in quartz (δDFluid ∼-85‰) indicate the presence of meteoric fluids during detachment dynamics. Recrystallized grain-shape fabrics and quartz c-axis fabric patterns reveal a large component of coaxial strain (pure shear), consistent with thinning of the detachment section. Therefore, the high thermal gradient preserved in the Raft River

115

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2004) Flow Test At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2004 Usefulness useful DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

116

Rheological control on the initial geometry of the Raft River detachment  

Open Energy Info (EERE)

Rheological control on the initial geometry of the Raft River detachment Rheological control on the initial geometry of the Raft River detachment fault and shear zone, western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rheological control on the initial geometry of the Raft River detachment fault and shear zone, western United States Details Activities (1) Areas (1) Regions (0) Abstract: The strain, exhumation history, and field orientation of a well-exposed shear zone and detachment fault in the Raft River Mountains of northwestern Utah, a Cordilleran metamorphic core complex, have been studied to determine the kinematics of ductile shearing and initial orientations of the shear zone and detachment fault. Mapping and strain and kinematic analysis indicate that the top-to-the-east Raft River shear zone

117

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1974 - 1976 Usefulness useful DOE-funding Unknown Exploration Basis Reconnaissance geothermal exploration Notes A TIR survey of the Raft River geothermal area prospect in Idaho where thermal waters move laterally in an alluvial plain and have no visible surface manifestations was undertaken as part of geothermal exploration. References K. Watson (1974) Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery

118

Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) | Open  

Open Energy Info (EERE)

Raft River Geothermal Area (1997) Raft River Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1997 Usefulness not indicated DOE-funding Unknown Exploration Basis Locate geothermal surface manifestations Notes Several examples of the use of TIR to locate geothermal surface manifestations and notes that TIR is more useful in remote areas. The analysis of three TIR images acquired during a diurnal cycle at Raft River is presented. The purpose of these images was to minimize the masking of temperature variations by vegetation and topography. References

119

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2006) Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine field hydraulic conductivity using borehole impeller flowmeter data Notes A quantitative evaluation of borehole-impeller flowmeter data leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary and trolling calibrations of the flowmeter were made in the well. Methods were developed to adjust for variations in hole

120

Completion report: Raft River Geothermal Injection Well Six (RRGI-6)  

DOE Green Energy (OSTI)

Raft River Geothermal Injection Well Six (RRGI-6) is an intermediate-depth injection well designed to accept injection water in the 600 to 1000 m (2000 to 3500 ft) depth range. It has one barefoot leg, and it was drilled so that additional legs can be added later; if there are problems with intermediate-depth injection, one or more additional legs could be directionally drilled from the current well bore. Included are the reports of daily drilling records of drill bits, casings, and loggings, and descriptions of cementing, coring, and containment.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Completion report: Raft River Geothermal Production Well Four (RRGP-4)  

DOE Green Energy (OSTI)

The fourth Raft River well was originally drilled to 866 m (2840 ft), for use as a test injection well. This well allowed the injection of geothermal fluids into the intermediate zone--above the geothermal production zone and below the shallow groundwater aquifers. After this testing, the well was deepened and cased for use as a production well. The well's designation was changed from RRGI-4 to RRGP-4. This report describes the drilling and completion of both drilling projects. Results of well tests are also included.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

122

Asbestos--cement pipeline experience at the Raft River Geothermal Project  

DOE Green Energy (OSTI)

The first buried asbestos-cement (Transite) pipeline used in high temperature (approximately 300/sup 0/F) service for transport of geothermal fluids was installed in the fall of 1975, and has seen 1/sup 1///sub 2/ years of service. The line is 4000 ft long, between the deep geothermal wells No. 1 and No. 2, in the Raft River Valley of Idaho. The experience in using this pipeline has been satisfactory, and methods have been developed for minimizing the thermal expansion/thermal shock breakage problems. Recommendations on improved design and construction practices for future pipelines are given. The substantially reduced cost (factor of 2) of an asbestos-cement pipeline compared to the conventional steel pipeline, plus the esthetically desirable effect of a buried pipeline dictate adoption of this type as standard practice for moderate temperature geothermal developments. The Raft River Geothermal Project intends to connect all future wells with pipelines of asbestos-cement, insulated with 1 to 2-inches of urethane, and buried between 2 and 3 ft. Total cost will be approximately $110,000/mile for 10-inch diameter pipe, $125,000/mile for 12-inch diameter.

Miller, L.G.; Kunze, J.F.; Sanders, R.D.

1977-04-01T23:59:59.000Z

123

Micro-Earthquake At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a background seismicity before power production begins Notes Local seismic networks were established to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down to the level of approximately magnitude one. References Zandt, G.; Mcpherson, L.; Schaff, S.; Olsen, S. (1 May 1982) Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and

124

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

125

Conceptual Model At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

0) 0) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the relevant data necessary to assess a geothermal reservoir in similar rock types and use cross plots to potentially define the producing zones. Notes A conceptual model was developed that uses all geophysical data that has been collected on the area to determine the rock types and reasonable values of the parameters of interest. Emphasis has been on developing a simple interpretation scheme from a minimum of data sets. However, the cross plotting of various parameters has allowed a determination of rock types and an analysis of the degree of alteration and the density of

126

Raft River III Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Raft River III Geothermal Project Project Location Information Coordinates 42.099444444444°, -113.38222222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.099444444444,"lon":-113.38222222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Core Analysis At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Permitted the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes 1) Microcracks were observed in core samples. A set of observable characteristics of microcracks were discovered in racks from geothermal regions that appears to be unique and to have considerable potential for exploration for geothermal regions. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. 2) Laboratory analyses of cores

128

Internal Technical Report, Raft River Pump Selection Analysis  

DOE Green Energy (OSTI)

The following is an analysis investigating the relation between well pumping rates and overall plant power at the 5 MW Raft River geothermal plant No.1. Information is generated to allow selection of well pumping rates, pump setting depths, and required characteristics of supply and injection pumps. The analysis proceeds with a simple analysis of plant power--flow split relationships from which the conclusion is drawn that the plant power, within certain limits, is insensitive to the flow split between wells. A more complex analysis is then performed which examines flow split sensitivity with all four wells operating and sensitivity of plant power to supply flow increases. This analysis is summarized by tentative field flow rate selections and a data table. Tentative supply and injection pump selections are made and contingency pumps are discussed.

Jacoby, J.K.; Bliem, C.J.

1979-06-01T23:59:59.000Z

129

Conceptual Model At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase intrusions. The basement complex was deformed during the mid Tertiary and covered by approximately 5000 ft of late Tertiary sedimentary and volcanic deposits. Listric normal faults of Cenozoic age disrupt the Tertiary deposits but do not offset the basement rocks. RRG-9, the target well, was drilled southwest of the main well field to a measured depth (MD) of 6089 ft. The well is deviated to the west and cased to a depth of 2316 ft MD. It

130

Monitor well responses at the Raft River, Idaho, Geothermal Site  

DOE Green Energy (OSTI)

Effects of geothermal fluid production and injection on overlying ground-water aquifers have been studied at the Raft River Geothermal Site in southcentral Idaho. Data collected from 13 monitor wells indicate a complex fractured and porous media controlled ground-water flow system affected by natural recharge and discharge, irrigation withdrawal, and geothermal withdrawal and injection. The monitor wells are completed in aquifers and aquitards overlying the principal geothermal aquifers. Potentiometric heads and water quality are significantly affected by natural upward geothermal leakage via faults and matrix seepage. No significant change in water quality data has been observed, but potentiometric head changes resulted due to geothermal resource testing and utilization. Long-term hydrographs for the wells exhibit three distinct patterns, with superimposed responses due to geothermal pumping and injection. Well hydrographs typical of the Shallow aquifer exhibit effects of natural recharge and irrigation withdrawals. For selected wells, pressure declines due to injection and pressure buildup associated with pumping are observed. The latter effect is presumably due to the elastic deformation of geologic material overlying the stressed aquifers. A second distinct pattern occurs in two wells believed to be hydraulically connected to the underlying Intermediate aquifer via faults. These wells exhibit marked buildup effects due to injection as well as responses typical of the Shallow aquifer. The third pattern is demonstrated by three monitor wells near the principal production wells. This group of wells exhibits no seasonal potentiometric head fluctuations. Fluctuations which do occur are due to injection and pumpage. The three distinct hydrograph patterns are composites of the potentiometric head responses occurring in the various aquifers underlying the Raft River Site.

Skiba, P.A.; Allman, D.W.

1984-05-01T23:59:59.000Z

131

Preservation of an extreme transient geotherm in the Raft River detachment  

Open Energy Info (EERE)

Preservation of an extreme transient geotherm in the Raft River detachment Preservation of an extreme transient geotherm in the Raft River detachment shear zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Preservation of an extreme transient geotherm in the Raft River detachment shear zone Details Activities (1) Areas (1) Regions (0) Abstract: Extensional detachment systems separate hot footwalls from cool hanging walls, but the degree to which this thermal gradient is the product of ductile or brittle deformation or a preserved original transient geotherm is unclear. Oxygen isotope thermometry using recrystallized quartz-muscovite pairs indicates a smooth thermal gradient (140 °C/100 m) across the gently dipping, quartzite-dominated detachment zone that bounds the Raft River core complex in northwest Utah (United States). Hydrogen

132

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (1979) Flow Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Temperature and flowmeter logs provide evidence that these fractures and faults are conduits that conduct hot water to the wells. One of the intermediate depth core holes penetrated a hydrothermally altered zone that includes several fractures producing hot water. This altered production

133

An early history of pure shear in the upper plate of the raft river  

Open Energy Info (EERE)

early history of pure shear in the upper plate of the raft river early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Although commonly obscured by simple shear, pure shear fabrics occur locally within many metamorphic core complexes. The cover rocks to the Raft River metamorphic core complex exposed within the Black Pine Mountains display an early coaxial strain history which developed prior to the formation of low-angle fault-bounded allochthons. At higher structural levels this is documented by pressure shadows with straight sutures, and

134

Resistivity measurements before and after injection Test 5 at Raft River  

Open Energy Info (EERE)

measurements before and after injection Test 5 at Raft River measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Details Activities (2) Areas (1) Regions (0) Abstract: Resistivity measurements were made prior to, and after an injection test at Raft River KGRA, Idaho. The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the

135

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and  

Open Energy Info (EERE)

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Details Activities (3) Areas (3) Regions (0) Abstract: Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, R,sub>a; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and

136

Fault and joint geometry at Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

and joint geometry at Raft River geothermal area, Idaho and joint geometry at Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Fault and joint geometry at Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene Salt Lake Formation. The fracturing is most intense at the base of the Salt Lake Formation, along a decollement that dips eastward at less than 5 0 on top of metamorphosed Precambrian and Lower Paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 50 0 and 70 0. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults

137

Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) |  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the northeast which is similar to the

138

Modeling-Computer Simulations At Raft River Geothermal Area (1983) | Open  

Open Energy Info (EERE)

Modeling-Computer Simulations At Raft River Geothermal Area (1983) Modeling-Computer Simulations At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1983 Usefulness useful DOE-funding Unknown Exploration Basis Predict flow rate and porosity Notes The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate

139

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND  

Open Energy Info (EERE)

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Details Activities (1) Areas (1) Regions (0) Abstract: Following a period of exploration and development in the mid-late 1970's, there was little activity at the Raft River geothermal field for the next ~20 years. US Geothermal Inc. acquired the project in 2002, and began commercial power generation in January 2008. From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the

140

Seismic refraction study of the Raft River geothermal area, Idaho | Open  

Open Energy Info (EERE)

refraction study of the Raft River geothermal area, Idaho refraction study of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic refraction study of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River geothermal system in southeastern Idaho is a convective hot water system, presently being developed to demonstrate the production of electricity from low-temperature (approx. 150 0C) water. Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Groundwater Sampling At Raft River Geothermal Area (2004-2011) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (2004-2011) Groundwater Sampling At Raft River Geothermal Area (2004-2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (2004-2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 2004 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Collect new water chemistry data on geothermal field Notes From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the area. An additional sampling program was completed in July 2010 to measure a wider range of trace elements and key water isotopes (δ18O, δD, and 3H (Tritium)) in the field. The data indicate that the

142

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1957 - 1961 Usefulness not indicated DOE-funding Unknown Notes From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged

143

Surface Water Sampling At Raft River Geothermal Area (1973) | Open Energy  

Open Energy Info (EERE)

Surface Water Sampling At Raft River Geothermal Area (1973) Surface Water Sampling At Raft River Geothermal Area (1973) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Raft River Geothermal Area (1973) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Surface Water Sampling Activity Date 1973 Usefulness not indicated DOE-funding Unknown Exploration Basis At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. Notes One hundred twenty-four of 380 hot springs and wells in the central and southern parts of Idaho were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of

144

Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho  

Science Conference Proceedings (OSTI)

Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

Glaspey, Douglas J.

2008-01-30T23:59:59.000Z

145

Temperature, thermal-conductivity, and heat-flux data,Raft River area,  

Open Energy Info (EERE)

Temperature, thermal-conductivity, and heat-flux data,Raft River area, Temperature, thermal-conductivity, and heat-flux data,Raft River area, Cassia County, Idaho (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperature, thermal-conductivity, and heat-flux data,Raft River area, Cassia County, Idaho (1974-1976) Details Activities (1) Areas (1) Regions (0) Abstract: Basin and Range Province; Cassia County Idaho; economic geology; exploration; geophysical surveys; geothermal energy; heat flow; heat flux; Idaho; North America; Raft River basin; south-central Idaho; surveys; temperature; thermal conductivity; United States; USGS Author(s): Urban, T.C.; Diment, W.H.; Nathenson, M.; Smith, E.P.; Ziagos, J.P.; Shaeffer, M.H. Published: Open-File Report - U. S. Geological Survey, 1/1/1986 Document Number: Unavailable

146

Gamma Log At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Gamma Log At Raft River Geothermal Area (1979) Gamma Log At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gamma Log At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Gamma Log Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Borehole gamma spectrometry can be used to identify anomalous concentration of uranium, thorium, and potassium which are probably due to transportation by hydrothermal solutions. Computer crossplotting was used as an aid to the identification of such rock types as quartzite, quartz monzonite, and

147

Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis-Fluid At Raft River Geothermal Area Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not useful DOE-funding Unknown Exploration Basis Determine which reservoir model best matches the isotope data. Notes 1) Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and nearby. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. 2) Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic

148

Heating and cooling the Raft River geothermal transite pipe line  

SciTech Connect

A preliminary transient heat transfer analysis to aid in defining operating limits for the 4000-foot-long transite pipe line at the Raft River geothermal test site was completed. The heat transfer problem was to determine the time required to cool down the line from a 285/sup 0/F operating temperature to 50/sup 0/F and the time to heat up the line from 50/sup 0/F to 285/sup 0/F such that the temperature differential across the pipe wall will not exceed 25/sup 0/F. The pipe and the surrounding soil was modeled with a two-dimensional heat transfer computer code assuming constant convective heat transfer at the soil-atmosphere interface. The results are sensitive to the soil thermal conductivity used in the calculation and imply that measurement of soil thermal conductivity used in the calculation and imply that measurement of soil thermal properties should be made in order to refine the calculations. Also, the effect of variable convective heat transfer at the soil surface should be investigated. However, the results reported here indicate the order of magnitude to be expected for cool-down and heat-up times when operating the transite pipe at the stated condition.

Shaffer, C.J.

1977-06-01T23:59:59.000Z

149

Raft River monitor well potentiometric head responses and water quality as  

Open Energy Info (EERE)

monitor well potentiometric head responses and water quality as monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system Details Activities (1) Areas (1) Regions (0) Abstract: Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is limited to the irrigation season (April through September). All the wells

150

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Tidal Analysis At Raft River Geothermal Area Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis To estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. Notes A new practical method has been developed. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of

151

Micro-Earthquake At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Micro-Earthquake At Raft River Geothermal Area (2011) Micro-Earthquake At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing of seismic methods for understanding the performance of the EGS systems, as well as aid in developing induced seismicity mitigation techniques that can be used for a variety of EGS

152

Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report |  

Open Energy Info (EERE)

Exploratory Hole No. 1 (RRGE-1). Completion report Exploratory Hole No. 1 (RRGE-1). Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; BOREHOLES; WELL DRILLING; GEOTHERMAL EXPLORATION; GEOTHERMAL WELLS; IDAHO; EQUIPMENT; GEOLOGICAL SURVEYS; WELL CASINGS; WELL LOGGING; CAVITIES; DRILLING; EXPLORATION; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA; WELLS Author(s): Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) Published: DOE Information Bridge, 10/1/1975 Document Number: Unavailable DOI: 10.2172/5091938 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Raft River Geothermal Area Retrieved from

153

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Area Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. In the present work, change in external stress is estimated from

154

Modeling-Computer Simulations At Raft River Geothermal Area (1980) | Open  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis From refined estimates of reservoir coefficients better predictions of interference effects and long-term drawdown in the wells can be made. Notes Analytic methods have been used during reservoir testing to calculate reservoir coefficients. However, anisotropy of the reservoir due to fractures has not been taken into account in these calculations and estimates of these coefficients need to be refined. In conjunction with the

155

Micro-Earthquake At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Refraction Survey Notes Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests that zones of higher velocities may correspond to zones where sediments are

156

Results of short-term corrosion evaluation tests at Raft River  

DOE Green Energy (OSTI)

Four categories of short-term materials evaluation tests were conducted in geothermal fluid from Raft River Geothermal Experiment, Well No. 1, to obtain corrosion data relevant to the design of the Raft River Thermal Loop Facility. Test programs are described and the testing philosophies are discussed. All materials and configurations which were tested are identified and details of posttest visual examinations are presented. The materials are then assigned to appropriate performance categories on the basis of test behavior, and the possible service limitations are appraised.

Miller, R.L.

1977-10-01T23:59:59.000Z

157

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

New River Geothermal Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal...

158

Pearl River Valley Electric Power Association - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pearl River Valley Electric Power Association - Residential Energy Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount New Homes Heat Pump: $150 - $500 Geothermal Heat Pump: $500 Electric Water Heater: $150 Existing Homes Heat Pump: $200 Gas to Electric Water Heater Conversion: $150 Provider Pearl River Valley Electric Power Association Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the

159

Internal Technical Report, Management Plan for Fluid Supply and Injection System for the Raft River 5 MW(e) Pilot Power Plant  

DOE Green Energy (OSTI)

This report details a plan for developing a fluid supply system for the First 5 MW(e) Pilot Power Plant at Raft River. The pilot plant has been specifically designed to use the medium-temperature geothermal water so common throughout the West. EG and G Idaho, Inc., the Department of Energy Raft River Rural Electric Co-op, the US Geological Survey (USGS) and the State of Idaho have worked together to develop a facility that will use an organic liquid as the working fluid. Four wells have been drilled in the Raft River Valley, about ten miles South of Malta, in southern Idaho. The completed well system will consist of seven wells: two conventional injection wells, three production wells, and a standby reserve well of each type. The additional three wells are to be drilled in FY-1978, in order to complete a coordinated test program before the First Pilot Power Plant is ready for operation. The system has been designed to meet the test-loop pilot plant's basic requirement: a 2450 gpm supply of geothermal fluid, at a nominal temperature of 290 F and with salinity of less than 5000 ppm. Injection of cooled geothermal fluid into the Raft River reservoir will also require a network of monitor wells. The Idaho Department of Water Resources (IDWR), USGS, EG and G Idaho, and the Department of Energy will jointly select sites for two 1500-foot and five 500-foot monitoring wells. This plan considers the work required to complete construction of the fluid supply system and obtain a preliminary check of its performance capability; the plan will discuss project management, costs, schedules, drilling, testing, environmental monitoring, and safety.

None

1978-01-09T23:59:59.000Z

160

Environmental assessment: Raft River geothermal project pilot plant, Cassia County, Idaho  

DOE Green Energy (OSTI)

The action assessed here is the construction and operation of a 5- to 6-MW(e) (gross) geothermal pilot plant in the Raft River Valley of southern Idaho. This project was originally planned as a thermal test loop using a turbine simulator valve. The test loop facility (without the simulator valve) is now under construction. The current environmental assessment addresses the complete system including the addition of a turbine-generator and its associated switching gear in place of the simulator valve. The addition of the turbine-generator will result in a net production of 2.5 to 3.5 MW(e) with a commensurate reduction in waste heat to the cooling tower and will require the upgrading of existing transmission lines for offsite delivery of generated power. Construction of the facility will require disturbance of approximately 20 ha (50 acres) for the facility itself and approximately 22.5 ha (57 acres) for construction of drilling pads and ponds, pipelines, and roads. Existing transmission lines will be upgraded for the utility system interface. Interference with alternate land uses will be minimal. Loss of wildlife habitat will be acceptable, and US Fish and Wildlife Service recommendations for protection of raptor nesting sites, riparian vegetation, and other important habitats will be observed. During construction, noise levels may reach 100 dBA at 15 m (50 ft) from well sites, but wildlife and local residents should not be significantly affected if extended construction is not carried out within 0.5 km (0.3 miles) of residences or sensitive wildlife habitat. Water use during construction will not be large and impacts on competing uses are unlikely.

Not Available

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Compound and Elemental Analysis At Raft River Geothermal Area (1981) | Open  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the validity of data from multiple sources to develop a better conceptual model Notes Five analytical laboratories have conducted analyses on waters from the KGRA. Charge-balance error calculations conducted on the data produced from these laboratories indicated that data from three laboratories were reliable while two were not. A method of equating all data was established by using linear regression analyses on sets of paired data from various

162

Two-dimensional simulation of the Raft River geothermal reservoir and wells. [SINDA-3G program  

DOE Green Energy (OSTI)

Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each of the three existing wells at Raft River were also constructed to describe the transient temperature and hydraulic behavior in the vicinity of the wells. All modeling was done with the use of the thermal hydraulics computer program SINDA-3G. The models are solved simultaneously with one input deck so that reservoir-well interaction may occur. The model predicted results agree favorably with the test data.

Kettenacker, W.C.

1977-03-01T23:59:59.000Z

163

Effects of irrigation on crops and soils with Raft River geothermal water  

DOE Green Energy (OSTI)

The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

Stanley, N.E.; Schmitt, R.C.

1980-01-01T23:59:59.000Z

164

Corrosion engineering in the utilization of the Raft River geothermal resource  

DOE Green Energy (OSTI)

The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

Miller, R.L.

1976-08-01T23:59:59.000Z

165

Injection in basin and range-type reservoirs: the Raft River experience  

DOE Green Energy (OSTI)

Injection testing at the Raft River KGRA has yielded some interesting results which can be useful in planning injection systems in Basin and Range type reservoirs. Because of inhomogeneities and possible fracturing in basin fill sediment, rapid pressure response to injection has been observed in one shallow monitor well, but not others. In some monitor wells in the injection field, pressure drops are observed during injection suggesting plastic deformation of the sediments. Seismicity, however, has not accompanied these observed water level changes.

Petty, S.; Spencer, S.

1981-01-01T23:59:59.000Z

166

Ohio River Valley Water Sanitation Commission (Multiple States)  

Energy.gov (U.S. Department of Energy (DOE))

The Ohio River Valley Water Sanitation Commission (ORSANCO), was established on June 30, 1948 to control and abate pollution in the Ohio River Basin. ORSANCO is an interstate commission...

167

Red River Valley REA- Heat Pump Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

168

Incidence of human dental fluorosis in the Raft River geothermal area in southern Idaho. Final report  

DOE Green Energy (OSTI)

A total of 270 school aged individuals representing 151 families living in the vicinity of the Raft River Geothermal area of Idaho were examined for evidence of dental fluorosis. Of these 132 had some dental anomaly. Fifty-two individuals from 45 families had lesions classified as typical dental fluorosis. Eleven of these, some of which had severe dental fluorosis recently moved into the area from other locations. Samples of the drinking waters that were likely consumed by the individuals with dental fluorosis were collected for analyses. In most instances the fluoride content of the waters were low and would not account for the tooth lesions. Possible reasons for lack of correlation are changing of the composition of the water, other sources of fluoride in the diet, and possibly analytical errors.

Shupe, J.L.; Olson, A.E.; Peterson, H.B.

1978-09-01T23:59:59.000Z

169

Fluidized-bed potato waste drying experiments at the Raft River Geothermal Test Site  

SciTech Connect

A fluidized-bed dryer was built and operated at the Raft River Geothermal Test Site in south central Idaho to test the feasibility of using low-temperature (145/sup 0/C or lower) geothermal fluids as an energy source for drying operations. The dryer performed successfully on two potato industry waste products that had a solid content of 5 to 13%. The dried product was removed as a sand-like granular material or as fines with a flour-like texture. Test results, observations, and design recommendations are presented. Also presented is an economic evaluation for commercial-scale drying plants using either geothermal low-temperature water or oil as a heat source.

Cole, L.T.; Schmitt, R.C.

1980-06-01T23:59:59.000Z

170

NETL: Ambient Monitoring - Upper Ohio River Valley Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Upper Ohio River Valley Project Upper Ohio River Valley Project In cooperation with key stakeholders including EPA, local and state environmental agencies, industry, and academia, the U.S. Department of Energy (DOE) has established the Upper Ohio River Valley Project (UORVP), a network for monitoring and characterizing PM2.5 in the Upper Ohio River Valley. This region was chosen because it has a high density of coal-fired electric utilities, heavy industries (e.g. coke and steel making), light industry, and transportation emission sources. It is also ideally situated to serve as a platform for the study of interstate pollution transport issues. This region, with its unique topography (hills and river valleys) as well as a good mix of urban and rural areas, has a high population of elderly who are susceptible to health impacts of fine particulate as well as other related environmental issues (e.g., acid rain, Hg deposition, ozone). A world-class medical research/university system is also located in the region, which will facilitate the subsequent use of the air quality data in studies of PM2.5 health effects.

171

White River Valley Electric Cooperative - Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White River Valley Electric Cooperative - Energy Efficiency Rebate White River Valley Electric Cooperative - Energy Efficiency Rebate Program White River Valley Electric Cooperative - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pump: 10 tons for Residential, 50 tons for Commercial Dual Fuel Heat Pump: 10 tons for Residential, 50 tons for Commercial Air Source Heat Pump: 10 tons Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Residential Sector Only: Refrigerator: $75 Electric Water Heater: $50 Room AC: $50 Both Commercial and Residential: Ground Source Heat Pump (New Installation): $750/ton Ground Source Heat Pump (Replacement) : $150/ton

172

Raft River monitor well potentiometric head responses and water quality as related to the conceptual ground-water flow system  

DOE Green Energy (OSTI)

Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is limited to the irrigation season (April through September). All the wells are not continuously pumped; thus, some wells that are sampled one season cannot be sampled the next. In addition, information on well construction, completion, and production is often unreliable or not available. These data are to be supplemented by establishing a series of monitor wells in the proposed geothermal withdrawal and injection area. These wells were to be located and designed to provide data necessary for evaluating and predicting the impact of geothermal development on the Shallow Aquifer system.

Allman, D.W.; Tullis, J.A.; Dolenc, M.R.; Thurow, T.L.; Skiba, P.A.

1982-09-01T23:59:59.000Z

173

Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant  

DOE Green Energy (OSTI)

A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

Bamberger, J.A.; Allemann, R.T.

1982-07-01T23:59:59.000Z

174

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

175

Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho  

DOE Green Energy (OSTI)

Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests require information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge tests plotted as linear trends on semilogarithmic plots of borehole pressure versus time since pumping or injection began. Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. Replicate instrumentation for pressure, temperature, and flow rates is necessary to ensure quality data. Water quality and monitor well data are also collected.

Allman, D.W.; Goldman, D.; Niemi, W.L.

1979-01-01T23:59:59.000Z

176

Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho  

DOE Green Energy (OSTI)

Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests requires information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge tests plotted as linear trends on semilogarithmic plots of borehole pressure versus time since pumping or injection began. Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. Replicate instrumentation for pressure, temperature, and flow rates are necessary to ensure quality data. Water quality and monitor well data are also collected.

Allman, D.W.; Goldman, D.; Niemi, W.L.

1979-01-01T23:59:59.000Z

177

COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE  

DOE Green Energy (OSTI)

Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

2011-02-01T23:59:59.000Z

178

Internal Technical Report, 1981 Annual Report, An Analysis of the Response of the Raft River Geothermal Site Monitor Wells  

Science Conference Proceedings (OSTI)

A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect on the water quality of the shallow aquifers.

Thurow, T.L.; Large, R.M.; Allman, D.W.; Tullis, J.A.; Skiba, P.A.

1982-04-01T23:59:59.000Z

179

Beneficial uses of geothermal energy description and preliminary results for phase 1 of the Raft River irrigation experiment  

DOE Green Energy (OSTI)

The first phase of an experiment using geothermal water for irrigation is described and preliminary results are discussed. The water was from a moderate temperature well, having salinity of about 2000 ppM, and is considered characteristic of the types of geothermal fluids that will be obtained from the young volcanic/young sediment formations of the northern intermountain west. The activity was completed at a location adjacent to ERDA's Raft River Geothermal Project in southern Idaho. About 12.5 acres, of which part had no previous cultivation, were subdivided by crops and irrigation practices for investigation with the geothermal water and a control comparison water from the relatively pure Raft River. Flood and sprinkler application techniques were used and wheat, barley, oats, grasses, alfalfa, potatoes, and garden vegetables were successfully grown. An accompanying experiment evaluated the behavior of an established alfalfa crop located nearby, when most of the irrigation water was geothermal. The experiment addressed heavy metal uptake in plants, plant fluoride retention and damage, plant tolerances to salts, soil alterations and other behavior as a result of the geothermal fluids, all of which were largely believed to eliminate geothermal water from contention for crop growing utilization. Not all analyses and results are complete in this reporting, but first results indicate no apparent difference between the geothermal watered crops and those obtained using the fresh water control. Extensive chemical analyses, neutron activation analyses, and other evaluations of crop samples are discussed, and some of the findings are presented. Although evaluation of crop yields was not an objective, extrapolations from samples indicate that yield results were comparable to those commonly found in the area, and the yield varied little between water sources. (JGB)

Schmitt, R.C.; Spencer, S.G.

1977-01-01T23:59:59.000Z

180

Red River Valley Rrl Elec Assn | Open Energy Information  

Open Energy Info (EERE)

Rrl Elec Assn Rrl Elec Assn Jump to: navigation, search Name Red River Valley Rrl Elec Assn Place Oklahoma Utility Id 15746 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Experimental Residential TOU Residential General Purpose Single Phase Commercial General Purpose Three Phase Commercial Irrigation - Water pumping Commercial Large Power 1 Industrial Large Power 2 Industrial Low-Use General Purpose Residential Optional General Purpose TOU Industrial Outdoor Lighting 1000w Metal Halide - Metered Lighting

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Pearl River Valley El Pwr Assn | Open Energy Information  

Open Energy Info (EERE)

El Pwr Assn El Pwr Assn Jump to: navigation, search Name Pearl River Valley El Pwr Assn Place Mississippi Utility Id 14563 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1 GS General Service 10 LGS-6 Large General Service 2 GS-DG General Service Distributed Generation 20 LP-6 Large Power 21 LP-AE-2 Large Power All Electric 22 LP-PM-6 Large Power Primary Meter 23 LP-PM-AE-2 Large Power Primary Metering All Electric 3 GS-TWH General Service Tankless Water Heater 3 TGS-1 Temporary General Service

182

Red River Valley Coop Pwr Assn | Open Energy Information  

Open Energy Info (EERE)

Assn Assn Jump to: navigation, search Name Red River Valley Coop Pwr Assn Place Minnesota Utility Id 26939 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Decorative Post Light Lighting General - Three Phase Industrial Post Light Lighting Residential - Off-Peak Residential Residential - Single Phase Residential Security Parking Light Lighting Yard Light Lighting Average Rates Residential: $0.0892/kWh Commercial: $0.0883/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

183

White River Valley El Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name White River Valley El Coop Inc Place Missouri Utility Id 20574 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Multi-Phase Commercial Commercial Single-Phase Commercial Large Power Service Industrial Residential Residential Residential Security Lighting Lighting Average Rates Residential: $0.1110/kWh Commercial: $0.0951/kWh Industrial: $0.0799/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

184

Assessment of Spatial Rainfall Variability over the Lower Mississippi River Alluvial Valley  

Science Conference Proceedings (OSTI)

A large portion of the lower Mississippi River alluvial valley (LMRAV) relies on irrigation from the regional alluvial aquifer for crop sustainability, which is expensive both in terms of water resources and farmer expenditures due to the large ...

Jamie Dyer; Andrew Mercer

185

Storage of CO2 in Geologic Formations in the Ohio River Valley...  

NLE Websites -- All DOE Office Websites (Extended Search)

OH 43201 614-424-3820 gupta@battelle.org Storage of Co 2 in geologiC formationS in the ohio river valley region Background The storage of carbon dioxide (CO 2 ) in a dense,...

186

Ohio River Valley Winter Moisture Conditions Associated with the PacificNorth American Teleconnection Pattern  

Science Conference Proceedings (OSTI)

The relationship between the PacificNorth American (PNA) teleconnection pattern and Ohio River Valley (ORV) winter precipitation and hydrology is described. The PNA is significantly linked to moisture variability in an area extending from ...

Jill S. M. Coleman; Jeffrey C. Rogers

2003-03-01T23:59:59.000Z

187

Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range  

DOE Green Energy (OSTI)

The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

Berri, Dulcy A.; Korosec, Michael A.

1983-01-01T23:59:59.000Z

188

Geological and geothermal investigation of the lower Wind River valley, southwestern Washington Cascade Range  

DOE Green Energy (OSTI)

The detailed geology of the lower Wind River valley is presented with emphasis on those factors that bear significantly on development of a geothermal resource. The lower Wind River drainage consists primarily of the Ohanapecosh Formation, an Oligocene unit that is recognized across the entire southern Washington Cascade Range. The formation is at least 300 m thick in the Wind River valley area. It consists largely of volcaniclastic sediments, with minor massive pyroclastic flows, volcanic breccias and lava flows. Low grade zeolite facies metamorphism during the Miocene led to formation of hydrothermal minerals in Ohanapecosh strata. Metamorphism probably occurred at less than 180{sup 0}C.

Berri, D.A.; Korosec, M.A.

1983-01-01T23:59:59.000Z

189

Surface-to-Atmosphere Exchange in a River Valley Environment  

Science Conference Proceedings (OSTI)

Observations of the turbulent exchange between a river surface and the atmosphere in a mountainous area in southern Brazil are presented and discussed. A micrometeorological tower was installed directly above the surface of a 60-m-wide river. ...

Otvio C. Acevedo; Osvaldo L. L. Moraes; Rodrigo da Silva; Vagner Anabor; Daniel P. Bittencourt; Hans R. Zimmermann; Roberto O. Magnago; Gervsio A. Degrazia

2007-08-01T23:59:59.000Z

190

Serious pitting hazard in the raft river 5MW(e) Geothermal Power Plant isobutane cooling loop  

DOE Green Energy (OSTI)

The 5MW(e) Dual Boiling Cycle Geothermal Power Plant, hence referred to as the Raft River plant, is being developed for DOE by EG and G, Inc., Idaho Falls, Idaho. This pilot power plant is of the binary concept and utilizes isobutane as the working second fluid. The plant will demonstrate the feasibility of power generation from an intermediate temperature ({approx} 290 F) resource. The plant is schematically diagrammed in Figure 1. During the final design phase and after the major components were specified to be made of carbon steel, and ordered, various conditions forced the power plant design to switch from surface water to geothermal fluid for the condenser cooling loop make-up water. Because the geothermal fluid contains significant concentrations of chlorides and sulfates, about 1000 ppm and 65 ppm respectively, aeration in the cooling tower causes this water to become extremely aggressive, especially in the pitting of carbon steel components. Although essentially all of the condenser cooling loop materials are carbon steel, the isobutane condenser and turbine lube oil cooler are the most vulnerable. These components are tubed with carbon steel tubes of 0.085 and 0.075 inch wall thickness. These two components are extremely leak critical heat exchangers. For example, even a single pit perforation in the isobutane condenser can cause plant shutdown through loss of isobutane. Such a leak also poses an explosion or fire hazard. As isobutane pressure falls, the incursion of cooling water into the isobutane loop could occur, causing damage to anhydrous service seals. Under a DOE contract for geothermal failure analysis, Radian Corporation has made a preliminary investigation of the pitting hazard presented by the aggressive cooling fluid and the corrosion inhibition treatment that has thus far been proposed. This report documents Radian's understanding of the present situation and the results of its investigation on possible mitigation of this hazard. Finally, various conclusions and recommendations are made that may, if pursued, lead to a satisfactory solution that will avert a certain early prolonged plant shutdown due to failure of the thin walled isobutane and turbine lube oil cooler tubes.

Ellis, Peter F.

1980-02-25T23:59:59.000Z

191

Wintertime Surface Wind Patterns in the Colorado River Valley  

Science Conference Proceedings (OSTI)

The diurnal variation of regional wind patterns in the complex terrain of the Grand Canyon area was investigated for wintertime fair weather days using a network of wind sensors on 10-m towers. Thermally driven along-slope and along-valley ...

C. David Whiteman; Xindi Bian; Joe L. Sutherland

1999-08-01T23:59:59.000Z

192

Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site  

DOE Green Energy (OSTI)

A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

Murphy, R.W.

1983-04-01T23:59:59.000Z

193

Determination of the 5 MW gross nominal design case binary cycle for power generation at Raft River, Idaho. [Using GEOSYS program  

DOE Green Energy (OSTI)

A series of Rankine cycle studies for power generation utilizing geothermal fluid as the heat source and isobutane as the working fluid are reported. To find the plant configuration which would most effectively utilize the available energy, a parametric study was performed. The desirability of supercritical, single boiler or double boiler cycles, and the relative boiler temperatures and percentage isobutane flow split between the boilers in the double cycles for geothermal fluid temperatures of 260/sup 0/F to 360/sup 0/F were considered. This study was designed to discover thermodynamic trends which would point to an optimum isobutane cycle for geothermal fluid temperatures in this temperature range. The results of the parametric study were applied to derive a Nominal Design Case for a demonstration plant at Raft River, with a geothermal fluid resource at 290/sup 0/F. In addition, plant variations due to tolerances applied to thermodynamic properties and other key factors are included.

Ingvarsson, I.J.; Madsen, W.W. (eds.)

1976-12-01T23:59:59.000Z

194

Relationships between Cloud Type and Amount, Precipitation, and Surface Temperature in the Mackenzie River Valley-Beaufort Sea Area  

Science Conference Proceedings (OSTI)

Hourly data from climatological stations in the Mackenzie River valley-Beaufort Sea area of northern Canada have been examined to determine the relationships between cloud type and amount, precipitation, and surface temperatures. During all ...

G. A. Isaac; R. A. Stuart

1996-08-01T23:59:59.000Z

195

Interdecadal Connection between Arctic Temperature and Summer Precipitation over the Yangtze River Valley in the CMIP5 Historical Simulations  

Science Conference Proceedings (OSTI)

This study assesses the ability of the Phase 5 Coupled Model Intercomparison Project (CMIP5) simulations in capturing the interdecadal precipitation enhancement over the Yangtze River valley (YRV) and investigates the contributions of Arctic ...

Yuefeng Li; L. Ruby Leung; Ziniu Xiao; Min Wei; Qingquan Li

196

Native American prehistory of the middle Savannah River Valley  

Science Conference Proceedings (OSTI)

Archaeological investigations on the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina span 17 years and continue today through a cooperative agreement between DOE and the South Carolina Institute of Archaeology and Anthropology (SCIAA), University of South Carolina. The Savannah River Archaeological Research Program (SRARP) of SCIAA has been and continues to be the sole archaeological consultant for DOE-SRS. This report documents technical aspects of all prehistoric archaeological research conducted by the SRARP between 1973 and 1987. Further, this report provides interpretative contexts for archaeological resources as a basis for an archaeological resource plan reported elsewhere (SRARP 1989), and as a comprehensive statement of our current understanding of Native American prehistory. 400 refs., 130 figs., 39 tabs.

Sassaman, K.E.; Brooks, M.J.; Hanson, G.T.; Anderson, D.G.

1990-01-01T23:59:59.000Z

197

Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.  

DOE Green Energy (OSTI)

This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

United States. Bonneville Power Administration.

1995-03-01T23:59:59.000Z

198

The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia  

Science Conference Proceedings (OSTI)

This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

Neeraj Gupta

2009-01-07T23:59:59.000Z

199

An early history of pure shear in the upper plate of the raft...  

Open Energy Info (EERE)

early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Jump to: navigation, search GEOTHERMAL...

200

Snake River Sockeye Salmon, Sawtooth Valley Project : 1992 Juvenile and Adult Trapping Program : Final Environmental Assessment.  

DOE Green Energy (OSTI)

Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ``endangered`` (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973.

United States. Bonneville Power Administration.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Subsynoptic-Scale Kinetic Energy Analysis of the Red River Valley Tornado Outbreak (AVE-SESAME I)  

Science Conference Proceedings (OSTI)

The kinetic energy balance during the Red River Valley tornado outbreak (1011 April 1979) is examined using mesa a-scale rawinsonde data from the first regional-scale day of AVE-SESAME 1979. Computational procedures account for non-simultaneous ...

Henry E. Fuelberg; Gary J. Jedlovec

1982-12-01T23:59:59.000Z

202

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

203

Preliminary report on the geology of the Red River Valley drilling project, eastern North Dakota and northwestern Minnesota  

SciTech Connect

Thirty-two wells, 26 of which penetrated the Precambrian, were drilled along the eastern edge of the Williston Basin in the eastern tier of counties in North Dakota and in nearby counties in northwestern Minnesota. These tests, along the Red River Valley of the North, were drilled to study the stratigraphy and uranium potential of this area. The drilling program was unsuccessful in finding either significant amounts of uranium or apparently important shows of uranium. It did, however, demonstrate the occurrence of thick elastic sections in the Ordovician, Jurassic and Cretaceous Systems, within the Red River Valley, along the eastern margins of the Williston Basin which could serve as host rocks for uranium ore bodies.

Moore, W.L.

1979-01-01T23:59:59.000Z

204

Observational Study of Wind Channeling within the St. Lawrence River Valley  

Science Conference Proceedings (OSTI)

The presence of orography can lead to thermally and dynamically induced mesoscale wind fields. The phenomenon of channeling refers to the tendency for the winds within a valley to blow more or less parallel to the valley axis for a variety of ...

Marco L. Carrera; John R. Gyakum; Charles A. Lin

2009-11-01T23:59:59.000Z

205

The Influence of Agriculture on Aboriginal Socio-Political Organization in the Lower Colorado River Valley  

E-Print Network (OSTI)

sistence on the Lower Colorado and Gila Rivers. Albuquerque:D. 1965 Warriors of the Colorado: The Yumas of the QuechanA Brief Survey of the Lower Colorado River from Davis Dam to

Hicks, Frederic

1974-01-01T23:59:59.000Z

206

THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS  

SciTech Connect

This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

2003-08-01T23:59:59.000Z

207

Water quality trends in the Blackwater River watershed Canaan Valley, West Virginia.  

E-Print Network (OSTI)

??The Blackwater River, historically an excellent brook trout (Salvelinus fontinalis) fishery, has been affected by logging, fires, coal mining, acid rain, and land development. Trends (more)

Smith, Jessica M., M.S.

2004-01-01T23:59:59.000Z

208

Conjunctive management of groundwater and surface water resources in the Upper Ovens River Valley.  

E-Print Network (OSTI)

??Regression analysis produced equations for relating Ovens River levels to groundwater levels with a high correlation. These equations can relate stream flow objectives to corresponding (more)

Lovell, Daniel Martin

2009-01-01T23:59:59.000Z

209

A Regional Model Simulation of the 1991 Severe Precipitation Event over the YangtzeHuai River Valley. Part II: Model Bias  

Science Conference Proceedings (OSTI)

This is the second part of a study investigating the 1991 severe precipitation event over the YangtzeHuai River valley (YHRV) in China using both observations and regional model simulations. While Part I reported on the Mei-yu front and its ...

Wei Gong; Wei-Chyung Wang

2000-01-01T23:59:59.000Z

210

Temperatures, heat flow, and water chemistry from drill holes in the Raft  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150 0C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 mucal/cm 2 sec or slightly higher and that temperature gradients range from 50 0 to 60

211

Chemical and light-stable isotope characteristics of waters from the raft  

Open Energy Info (EERE)

light-stable isotope characteristics of waters from the raft light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Details Activities (1) Areas (1) Regions (0) Abstract: Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and environs. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed

212

Evaluation of testing and reservoir parameters in geothermal wells at Raft  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests require information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge

213

White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume I..  

DOE Green Energy (OSTI)

Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developed to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost ratio of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. 28 figs., 23 tabs.

Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

1985-06-01T23:59:59.000Z

214

Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah  

DOE Green Energy (OSTI)

Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

Budding, K.E.; Sommer, S.N.

1986-01-01T23:59:59.000Z

215

Geothermal resource analysis in the Big Wood River Valley, Blaine County, Idaho  

DOE Green Energy (OSTI)

A geochemical investigation of both thermal and nonthermal springs in the Wood River area was conducted to determine possible flowpaths, ages of the waters, and environmental implications. Seven thermal springs and five cold springs were sampled for major cations and anions along with arsenic, lithium, boron, deuterium and oxygen-18. Eight rocks, representative of outcrops at or near the thermal occurrences were sampled and analyzed for major and trace elements. The Wood River area hydrothermal springs are dilute Na-HCO{sub 3}-SiO{sub 2} type waters. Calculated reservoir temperatures do not exceed 100{degree}C, except for Magic Hot Springs Landing well (108{degree}C with Mg correction). The isotope data suggest that the thermal water is not derived from present-day precipitation, but from precipitation when the climate was much colder and wetter. Intrusive igneous rocks of the Idaho batholith have reacted with the hydrothermal fluids at depth. The co-location of the thermal springs and mining districts suggests that the structures acting as conduits for the present-day hydrothermal fluids were also active during the emplacement of the ore bodies.

Street, L.V.

1990-10-01T23:59:59.000Z

216

Paleoseismology study of the Cache River Valley, southern Illinois, and New Madrid seismic zone, southeast Missouri and northeast Kansas  

E-Print Network (OSTI)

Our understanding of earthquake hazard in the mid-continent region of the United States has benefited greatly from paleoseismology studies. Numerous earthquake-induced features have been documented throughout the region, though the timing and location of prehistoric earthquakes needs to be better constrained. Some areas of the mid-continent, such as the Cache River Valley (CRV) of southern Illinois, have not been studied in the detail of the New Madrid seismic zone, thus the earthquake hazard is poorly understood. l have conducted a paleoseismology study of the CRV and the New Madrid seismic zone to add to the earthquake chronology of the mid-continent region. Field reconnaissance in the CRV during the summer and fall of 1998 yielded no new evidence of recent faulting or liquefaction. It is important to note, however, that this time period was characterized by abnormally high river levels that significantly reduced cutback and ditch exposures. One previously discovered liquefaction feature, that was exposed, was excavated and logged in detail. Organic matter from this site indicates that the maximum age of this feature is 3421-2861 BC. The lack of soil development and weathering in the dike, however, suggests that it is probably less than 2000 years old. Given the probable age of this feature and the current paleoearthquake chronology, the source for this feature is most likely the New Madrid Seismic Zone. Additional work, concentrating along the balks of the lower Cache River and its larger tributaries is needed during low water periods to further determine the distribution and age of earthquake-induced deformation of this region. Data from several trenches at the Sigman site, northeast Arkansas, suggest that the liquefaction at this site likely occurred during the 1811-1812 New Madrid earthquake sequence. Organic matter from several stratigraphic horizons associated with two stacked sand blows at the Braggadocio site, southeastern Missouri, yielded modern dates. In contrast, the degree of soil development on the sand blows suggests that these features are several hundred years old. This discrepancy suggests that the dated samples were actually modern roots growing through the section. As a result, additional trenching and dating are needed at this site.

Noonan, Brian James

1999-01-01T23:59:59.000Z

217

Hudson Valley Fog Environments  

Science Conference Proceedings (OSTI)

Observations of 14 cases of radiation fog in the Hudson River valley in New York State are presented. Our emphasis is to connect the fog prediction problem to mechanisms in the nocturnal boundary layer that influence heat and moisture balances. ...

David R. Fitzjarrald; G. Garland Lala

1989-12-01T23:59:59.000Z

218

Wake Low Severe Wind Events in the Mississippi River Valley: A Case Study of Two Contrasting Events  

Science Conference Proceedings (OSTI)

Severe winds, in excess of 50 kt (25 m s?1), brought widespread damage across the midMississippi Valley on the mornings of 11 April 1995 and 28 April 1996. These severe winds were unusual and unexpected as they trailed behind stratiform ...

David M. Gaffin

1999-10-01T23:59:59.000Z

219

Evaluation of the Emission, Transport, and Deposition of Mercury, Arsenic, and Fine Particulate Matter From Coal-Based Power Plants in the Ohio River Valley  

NLE Websites -- All DOE Office Websites (Extended Search)

Kevin crist Kevin crist Principal Investigator Ohio University Research and Technology Center Athens, OH 45701 740-593-4751 cristk@ohiou.edu Environmental and Water Resources Evaluation of thE Emission, transport, and dEposition of mErcury, arsEnic, and finE particulatE mattEr from coal-BasEd powEr plants in thE ohio rivEr vallEy rEgion Background The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has established an aggressive research initiative to address the technical and scientific issues surrounding the impact of coal-based power systems on ambient levels of fine particulate matter (PM 2.5 ), nitrogen oxides (NO X ), mercury/air toxics, and acid gases. Regulatory drivers such as the 1990 Clean Air Act Amendments, the 1997 revised National Ambient Air Quality Standards, and the 2005 Clean Air

220

"1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900 "3. Milton R Young","Coal","Minnkota Power Coop, Inc",697 "4. Leland Olds","Coal","Basin Electric Power Coop",670 "5. Garrison","Hydroelectric","USCE-Missouri River District",508 "6. Coyote","Coal","Otter Tail Power Co",427 "7. Stanton","Coal","Great River Energy",202 "8. Tatanka Wind Power LLC","Other Renewables","Acciona Wind Energy USA LLC",180 "9. Langdon Wind LLC","Other Renewables","FPL Energy Langdon Wind LLC",159

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY  

Science Conference Proceedings (OSTI)

Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day.

Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

2004-10-15T23:59:59.000Z

222

Why Nocturnal Long-Duration Rainfall Presents an Eastward-Delayed Diurnal Phase of Rainfall down the Yangtze River Valley  

Science Conference Proceedings (OSTI)

Hourly observational records and 6-hourly reanalysis data were used to investigate the influences of large-scale forcings on the diurnal variation of summer rainfall along the Yangtze River (YR). The results show that long-duration (more than six ...

Haoming Chen; Rucong Yu; Jian Li; Weihua Yuan; Tianjun Zhou

2010-02-01T23:59:59.000Z

223

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley Region.

Kevin Crist

2003-10-02T23:59:59.000Z

224

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-04-02T23:59:59.000Z

225

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-10-02T23:59:59.000Z

226

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-10-02T23:59:59.000Z

227

Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region  

Science Conference Proceedings (OSTI)

As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratorys monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2008-12-31T23:59:59.000Z

228

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

Science Conference Proceedings (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technology Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-04-02T23:59:59.000Z

229

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

Science Conference Proceedings (OSTI)

As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2006-04-02T23:59:59.000Z

230

COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY  

SciTech Connect

Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This Final Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 1998 through December 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

2004-12-27T23:59:59.000Z

231

COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY  

Science Conference Proceedings (OSTI)

Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This semi-annual Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 2003 through March 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

2004-04-15T23:59:59.000Z

232

COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5)DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY  

Science Conference Proceedings (OSTI)

Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Analysis of data collected to date show that: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites, and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Data analysis focusing on relating the aerometric measurements to local and regional scale emissions of sources of primary and secondary fine particles using receptor-based air quality models will follow.

Robinson P. Khosah; John P. Shimshock

2003-04-30T23:59:59.000Z

233

COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY  

Science Conference Proceedings (OSTI)

Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Previous Semi-Annual Technical Progress Reports presented the following: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Analyses of data conducted during the period from April 1, 2003 through September 30, 2003 are presented in this Semi-Annual Technical Progress Report. Report Revision No. 1 includes the additions or removals of text presented in the previous version of this report.

Robinson P. Khosah; John P. Shimshock

2004-03-02T23:59:59.000Z

234

Responsible Asia Forest Trade (RAFT) Program | Open Energy Information  

Open Energy Info (EERE)

Responsible Asia Forest Trade (RAFT) Program Responsible Asia Forest Trade (RAFT) Program Jump to: navigation, search Name Responsible Asia Forest Trade (RAFT) Program Agency/Company /Organization U.S. Agency for International Development Sector Land Focus Area Forestry Topics Policies/deployment programs Resource Type Lessons learned/best practices Website http://www.responsibleasia.org Country Cambodia, China, Indonesia, Laos, Malaysia, Papua New Guinea, Thailand, Vietnam UN Region Central Asia, Eastern Asia, South-Eastern Asia References Responsible Asia Forest Trade (RAFT) Program[1] "The Responsible Asia Forestry and Trade (RAFT) is a five-year program funded by the U.S. Agency for International Development Regional Development Mission for Asia (USAID RDMA) in Bangkok. RAFT is managed by

235

Geophysical logging case history of the Raft River geothermal...  

Open Energy Info (EERE)

variety of rock types, the presence of alteration products, and the variability of fracturing make reliable interpretations difficult. However, the cross plotting of various...

236

Tracer Testing At Raft River Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

L.; Yorgason, K. R.; Moore, J. N. (1 December 1984) Preferred methods of analysis for chemical tracers in moderate- and high-temperature geothermal environments Retrieved from...

237

Two-dimensional simulation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

and wells. (SINDA-3G program) Details Activities (1) Areas (1) Regions (0) Abstract: Computer models describing both the transient reservoir pressure behavior and the time...

238

Interpretation of electromagnetic soundings in the Raft River...  

Open Energy Info (EERE)

superimposed over the nearest DC layer solution. Author(s): Anderson, W. L. Published: DOE Information Bridge, 111977 Document Number: Unavailable DOI: 10.21726804958 Source:...

239

Reconnaissance geophysical studies of the geothermal system in...  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance...

240

Uranium favorability of tertiary sedimentary rocks of the Pend Oreille River valley, Washington. [Measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water logs  

SciTech Connect

Tertiary sedimentary rocks in the Pend Oreille River valley were investigated in a regional study to determine the favorability for potential uranium resources of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water well logs. The Box Canyon Dam area north of Ione is judged to have very high favorability. Thick-bedded conglomerates interbedded with sandstones and silty sandstones compose the Tiger Formation in this area, and high radioactivity levels are found near the base of the formation. Uranophane is found along fracture surfaces or in veins. Carbonaceous material is present throughout the Tiger Formation in the area. Part of the broad Pend Oreille valley surrounding Cusick, Washington, is an area of high favorability. Potential host rocks in the Tiger Formation, consisting of arkosic sandstones interbedded with radioactive shales, probably extend throughout the subsurface part of this area. Carbonaceous material is present and some samples contain high concentrations of uranium. In addition, several other possible chemical indicators were found. The Tiger-Lost Creek area is rated as having medium favorability. The Tiger Formation contains very hard, poorly sorted granite conglomerate with some beds of arkosic sandstone and silty sandstone. The granite conglomerate was apparently derived from source rocks having relatively high uranium content. The lower part of the formation is more favorable than the upper part because of the presence of carbonaceous material, anomalously high concentrations of uranium, and other possible chemical indicators. The area west of Ione is judged to have low favorability, because of the very low permeability of the rocks and the very low uranium content. (auth)

Marjaniemi, D.K.; Robins, J.W.

1975-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Efficiency Technology Assessment for the Tennessee Valley Region  

Science Conference Proceedings (OSTI)

As America's largest public power provider and steward of the nation's fifth largest river system, Tennessee Valley Authority (TVA) must seek ways to achieve sustainable power production, quality distribution, environmental stewardship, and economic growth within the Tennessee Valley. To help meet the growing energy needs of the Valley and the nation and in support of TVA goals and critical success factors, cost effective energy-efficiency and load leveling alternatives that support the wise use of elect...

2003-01-10T23:59:59.000Z

242

Observations and Numerical Simulations of Winds within a Broad Forested Valley  

Science Conference Proceedings (OSTI)

The Tennessee River Valley in the eastern part of Tennessee is a broad valley with a moist climate and extensive forest cover. A series of 50100-m-high parallel ridges forms corrugations along the floor of the valley. Tower measurements and ...

Richard M. Eckman

1998-02-01T23:59:59.000Z

243

West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

244

West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

245

CHESTNUT RIDGE RD VALLEY ROAD  

E-Print Network (OSTI)

.1 Miles 0.20 N Miles 0.20 TO MELTON VALLEY DRIVE HFIR PARKING WALK-IN ENTRY 7900 7964K - HFIR USER OFFICE RM 18 7972 HFIR High Flux Isotope Reactor 7962 HFIR User Office: 865-574-4523 BETHEL VALLEY RD BETHEL VALLEY RD BETHEL VALLEY RD RAMSEY DRIVE EGERACCESSROAD MELTON VALLEY DRIVE MELTON VALLEY ACCESS ROAD HFIR

246

ARM - Field Campaign - Ganges Valley Aerosol Experiment (GVAX)  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsGanges Valley Aerosol Experiment (GVAX) govCampaignsGanges Valley Aerosol Experiment (GVAX) Campaign Links Science Plan AMF India Deployment Website Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ganges Valley Aerosol Experiment (GVAX) 2011.06.13 - 2012.03.31 Website : http://www.arm.gov/sites/amf/pgh/ Lead Scientist : V. Rao Kotamarthi Description The Ganges valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoon. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers could be immense. Recent satellite-based measurements have indicated that

247

Resistivity studies of the Imperial Valley geothermal area, California |  

Open Energy Info (EERE)

Resistivity studies of the Imperial Valley geothermal area, California Resistivity studies of the Imperial Valley geothermal area, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Resistivity studies of the Imperial Valley geothermal area, California Abstract Electrical resistivity has been employed for mapping thehnperial Valley of California as part of a multi-disciplinaryapproach to assess its geothermal potential. Vertical and lateralresistivity changes were determined from Schlumherger deptilsoundings with effective probing depths up to 8000 ft.Chie/ conclusions were: (1) Known geothermal anomaliesappear as residual resistivity lows superimposed on the regionalgradient which decreases northwest.ward from the southeastcorner of the Imperial Valley, near the Colorado River, tovalues about two orders of magnitude lower at the Salton

248

The Des Plaines River -- Part Two  

NLE Websites -- All DOE Office Websites (Extended Search)

a canal through the Chicago Portage, down the Des Plaines valley, and thence to LaSalle-Peru where the Illinois River became navigable in all seasons. The Northwest Territory...

249

Ganges valley aerosol experiment.  

Science Conference Proceedings (OSTI)

In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

Kotamarthi, V.R.; Satheesh, S.K. (Environmental Science Division); (Indian Institute of Science, Bangalore, India)

2011-08-01T23:59:59.000Z

250

Microearthquake surveys of Snake River plain and Northwest Basin and Range  

Open Energy Info (EERE)

surveys of Snake River plain and Northwest Basin and Range surveys of Snake River plain and Northwest Basin and Range geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microearthquake surveys of Snake River plain and Northwest Basin and Range geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: applications; Basin and Range Province; Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture zones; geophysical methods; geophysical surveys; geothermal energy; Humboldt County Nevada; Idaho; microearthquakes; Nevada; North America; passive systems; Pershing County Nevada; Raft River; reservoir rocks; seismic methods; seismicity; seismology; Snake River plain; surveys; United States; Western U.S. Author(s): Kumamoto, L.H.

251

Nighttime Valley Waves  

Science Conference Proceedings (OSTI)

This paper describes a regular oscillation observed in nighttime drainage airflow in a valley under relatively light upper-level wind conditions. The period of these oscillations is about 20 minutes with at least one harmonic at about 10 minutes. ...

William M. Porch; William E. Clements; Richard L. Coulter

1991-02-01T23:59:59.000Z

252

Copper Valley Elec Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Copper Valley Elec Assn, Inc Copper Valley Elec Assn, Inc Place Alaska Utility Id 4329 Utility Location Yes Ownership C NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Copper River Basin large commercial Commercial Copper River Basin small commercial Commercial Copper River Basin Residential Residential Valdez Residential Residential Valdez large commercial Commercial Valdez small commercial Commercial Average Rates Residential: $0.2520/kWh Commercial: $0.2150/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

253

Geological and geophysical studies of a geothermal area in the southern  

Open Energy Info (EERE)

Geological and geophysical studies of a geothermal area in the southern Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: areal geology; Cassia County Idaho; Cenozoic; clastic rocks; clasts; composition; conglomerate; economic geology; electrical methods; evolution; exploration; faults; folds; geophysical methods; geophysical surveys; geothermal energy; gravity methods; Idaho; igneous rocks; lithostratigraphy; magnetic methods; pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks

254

Public works for water and power development and energy research appropriations for fiscal year 1978. Part I. Corps of Engineers: Lower Mississippi Valley Division; Missouri River Division; North Central Division; Pacific Ocean Division; South Pacific Division; Southwestern Division. Hearings before a Committee on Appropriations, United States Senate, Ninety-Fifth Congress, H. R. 7553  

SciTech Connect

Hearings on Public Works appropriations for fiscal year 1978 were conducted. On February 21, 1977, statements were heard from representatives of the Army Corps of Engineers in support of funds requested for water resources development projects in the Lower Mississippi Valley. On that same date, representatives from the North Central Division of the Corps of Engineers spoke in behalf of their request for funds for 1978. The area covers the north central U.S., from Montana to the St. Lawrence River, and from Canada to within 50 miles of St. Louis. On February 23, 1977, statements were heard from representatives of the South Pacific Division. This area encompasses the states of California, Nevada, Utah, Arizona, and portions of the five adjoining states. The Pacific Ocean Division representatives appeared on that same date before the Senate subcommittee. That area extends over the Pacific Ocean from Hawaii to territories of American Samoa and Guam and the Division is responsible for certain regulatory functions in the navigable waters of the Trust Territory of the Pacific Islands. On February 24, 1977, the subcommittee of the Committee on Appropriations heard representatives of the Southwestern Division covering portions of 8 states. Also on that date, representatives of the Missouri River Division (Nebraska and parts of 9 other states) presented statements concerning the operation of that system in order to justify that request for funds. (MCW)

1977-01-01T23:59:59.000Z

255

River Thames River Thames  

E-Print Network (OSTI)

C BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Oaks South Croydon East Croydon Streatham Common West Norwood Gipsy Hill Crystal Palace Birkbeck Penge

Delmotte, Nausicaa

256

Independent Oversight Review, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

257

Session: Long Valley Exploratory Well  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

1992-01-01T23:59:59.000Z

258

Tennessee Valley Smart Grid Roadmap  

Science Conference Proceedings (OSTI)

This document is the final report resulting from a Smart Grid road-mapping process conducted collaboratively by the power distributors of the Tennessee Valley in coordination with the Tennessee Valley Authority. The project spanned twelve months and was facilitated through a series of topical workshops in which domain experts from throughout the Valley met to develop the plan. The roadmap takes a ten-year look at Smart Grid developments and plans for the Valley, identifying key focus areas, specific goal...

2011-12-05T23:59:59.000Z

259

White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume III, Appendix B, Fisheries Report; Appendix C, Engineering Alternative Evaluation; Appendix D, Benefit/Cost Analysis.  

DOE Green Energy (OSTI)

Studies were conducted to describe current habitat conditions in the White River basin above White River Falls and to evaluate the potential to produce anadromous fish. An inventory of spawning and rearing habitats, irrigation diversions, and enhancement opportunities for anadromous fish in the White River drainage was conducted. Survival of juvenile fish at White River Falls was estimated by releasing juvenile chinook and steelhead above the falls during high and low flow periods and recapturing them below the falls in 1983 and 1984. Four alternatives to provide upstream passage for adult salmon and steelhead were developd to a predesign level. The cost of adult passage and the estimated run size of anadromous fish were used to determine the benefit/cost of the preferred alternative. Possible effects of the introduction of anadromous fish on resident fish and on nearby Oak Springs Hatchery were evaluated. This included an inventory of resident species, a genetic study of native rainbow, and the identification of fish diseases in the basin. This volume contains appendices of habitat survey data, potential production, resident fish population data, upstream passage designs, and benefit/cost calculations. (ACR)

Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

1985-06-01T23:59:59.000Z

260

Raft Rural Elec Coop Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Utah Utah Utility Id 22814 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Raft Rural Elec Coop Inc (Utah). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 26 442 337 7 139 40 101 5 254 134 586 631 2009-02 26 447 337 7 148 43 15 5 254 48 600 634

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

West Valley Demonstration Project High-Level Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT_19507_1 DRAFT_19507_1 High-Level Waste Management Bryan Bower, DOE Director - WVDP DOE High-Level Waste Corporate Board Meeting Savannah River Site April 1, 2008 West Valley Demonstration Project West Valley Demonstration Project DRAFT_19507_2 West Valley High-Level Waste To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed. To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed.

262

MONUMENT VALLEY, ARIZONA  

Office of Legacy Management (LM)

VALLEY, ARIZONA VALLEY, ARIZONA Sampled August 1997 DATA PACKAGE CONTENTS This data package includes the following information: Item No. Descriotion of Contents 1. Site Sampling Lead Summary 2. Data Package Assessment, which includes the following: a. Field procedures verification checklist b. Confirmation that chain-of-custody was maintained. c. Confirmation that holding time requirements were met. d. Evaluation of the adequacy of the QC sample results. Data Assessment Summary, which describes problems identified in the data validation process and summarizes the validator's findings. Suspected Anomalies Reports generated by the UMTRA database system. This report compares the new data $et with historical data and designates "suspected anomalies" based on the many criteria listed as footnotes on each page. In

263

monument valley.cdr  

Office of Legacy Management (LM)

The Monument Valley processing site is located on the The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore-processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site.

264

Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska  

Open Energy Info (EERE)

Waters In The Valley Of Ten Thousand Smokes Region, Alaska Waters In The Valley Of Ten Thousand Smokes Region, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska Details Activities (3) Areas (1) Regions (0) Abstract: Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8°C in early summer and from 15 to 17°C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the

265

LVOC - Livermore Valley Open Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

LVOC - Livermore Valley Open Campus LVOC - Livermore Valley Open Campus ↓ Case Studies | ↓ About LVOC Get to market faster Making the impossible possible Lawrence Livermore and Sandia National Laboratories are home to some of the world's most unique state-of-the art facilities and resources. For decades, we have been using our combined capabilities, including a workforce of over 7000 employees to solve complex problems for the nation. Visit the science and technology epicenter - the Livermore Valley Open Campus - just east of San Francisco in the Tri-Valley's innovation ecosystem to find out what problems we can solve for you. LVOC Flyer We Keep Industry on the Cutting Edge of Innovative Technology About the Livermore Valley Open Campus LVOC Rendering Open for Business: The Livermore Valley Open Campus is located at the

266

Pennsylvania Nuclear Profile - Beaver Valley  

U.S. Energy Information Administration (EIA) Indexed Site

Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

267

Raft Rural Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Place Idaho Utility Id 22814 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Raft Rural Elec Coop Inc (Idaho). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 142 2,285 1,240 126 3,114 290 313 75 879 581 5,474 2,409 2009-02 136 2,201 1,240 135 3,097 290 104 47 878 375 5,345 2,408

268

Raft Rural Elec Coop Inc (Nevada) | Open Energy Information  

Open Energy Info (EERE)

Nevada Nevada Utility Id 22814 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Raft Rural Elec Coop Inc (Nevada). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 131 1,650 1,442 176 2,833 248 17 49 45 324 4,532 1,735 2009-02 151 1,899 1,441 201 3,370 248 2 5 45 354 5,274 1,734

269

Shock driven jamming and periodic fracture of particulate rafts  

E-Print Network (OSTI)

A tenuous monolayer of hydrophobic particles at the air-water interface often forms a scum or raft. When such a monolayer is disturbed by the localized introduction of a surfactant droplet, a radially divergent surfactant shock front emanates from the surfactant origin and packs the particles into a jammed, compact, annular band with a packing fraction that saturates at a peak packing fraction $\\phi^*$. As the resulting two-dimensional, disordered elastic band grows with time and is driven radially outwards by the surfactant, it fractures to form periodic triangular cracks with robust geometrical features. We find the number of cracks $N$ and the compaction band radius $R^*$ at fracture onset vary monotonically with the initial packing fraction ($\\phi_{init}$). However, its width $W^*$ is constant for all $\\phi_{init}$. A simple geometric theory that treats the compaction band as an elastic annulus, and accounts for mass conservation allows us to deduce that $N \\simeq 2\\pi R^*/W^* \\simeq 4\\pi \\phi_{RCP}/\\phi_{init}$, a result we verify both experimentally and numerically. We show the essential ingredients for this phenomenon are an initially low enough particulate packing fraction that allows surfactant driven advection to cause passive jamming and eventual fracture of the hydrophobic particulate interface.

M. M. Bandi; T. Tallinen; L. Mahadevan

2010-10-29T23:59:59.000Z

270

VALDRIFTA Valley Atmospheric Dispersion Model  

Science Conference Proceedings (OSTI)

VALDRIFT (valley drift) is a valley atmospheric transport, diffusion, and deposition model. The model is phenomenologicalthat is, the dominant meteorological processes governing the behavior of the valley atmosphere are formulated explicitly in ...

K. Jerry Allwine; Xindi Bian; C. David Whiteman; Harold W. Thistle

1997-08-01T23:59:59.000Z

271

Caney River | Open Energy Information  

Open Energy Info (EERE)

River River Jump to: navigation, search Name Caney River Facility Caney River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel Green Power North America Inc. Developer Tradewind Energy LLC Energy Purchaser Tennessee Valley Authority Location Elk County KS Coordinates 37.448424°, -96.425027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.448424,"lon":-96.425027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Raft River binary-cycle geothermal pilot power plant final report  

DOE Green Energy (OSTI)

The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

Bliem, C.J.; Walrath, L.F.

1983-04-01T23:59:59.000Z

273

Study of private enterprise development on the Raft River KGRA. Final progress report  

DOE Green Energy (OSTI)

Information, analysis, and conclusions based on the small for-profit venture business model are presented. The necessary tasks are described and progress is reviewed. Water availability and business analysis problems are described. Included in the appendix are materials on land availability, characterization of geothermal resources under Idaho law, and greenhouse analysis and geothermal applications. (MHR)

Green, S.J.; Brown, W.S.; Meldrum, P.D.

1977-07-01T23:59:59.000Z

274

Chuckawalla Valley State Prison | Open Energy Information  

Open Energy Info (EERE)

Prison Jump to: navigation, search Name Chuckawalla Valley State Prison Place Blythe, California Zip 92226 Sector Solar Product Prison located in Chuckawalla Valley,...

275

Aire Valley Environmental | Open Energy Information  

Open Energy Info (EERE)

search Name Aire Valley Environmental Place United Kingdom Product Leeds-based waste-to-energy project developer. References Aire Valley Environmental1 LinkedIn...

276

Tees Valley Biofuels | Open Energy Information  

Open Energy Info (EERE)

Tees Valley Biofuels Jump to: navigation, search Name Tees Valley Biofuels Place United Kingdom Sector Biofuels Product Company set up by North East Biofuels to establish an...

277

Platte Valley Fuel Ethanol | Open Energy Information  

Open Energy Info (EERE)

search Name Platte Valley Fuel Ethanol Place Central City, Nebraska Product Bioethanol producer using corn as feedstock References Platte Valley Fuel Ethanol1 LinkedIn...

278

Non-equilibrium raft-like membrane domains under continuous recycling  

E-Print Network (OSTI)

We present a model for the kinetics of spontaneous membrane domain (raft) assembly that includes the effect of membrane recycling ubiquitous in living cells. We show that the domains have a broad power-law distribution with an average radius that scales with the 1/4 power of the domain lifetime when the line tension at the domain edges is large. For biologically reasonable recycling and diffusion rates the average domain radius is in the tens of nm range, consistent with observations. This represents one possible link between signaling (involving rafts) and traffic (recycling) in cells. Finally, we present evidence that suggests that the average raft size may be the same for all scale-free recycling schemes.

Matthew S. Turner; Pierre Sens; Nicholas D. Socci

2005-03-30T23:59:59.000Z

279

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

Science Conference Proceedings (OSTI)

This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

280

Valley Forge Corporate Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

55 Jefferson Ave. 55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and Review of Infrastructure Projects. Request for Information ("RFI") 78 Fed. Reg. 53436 (August 29, 2013) Dear Ms. Smith: Please accept the following comments submitted on behalf of PJM Interconnection, L.L.C. ("PJM") in response to the RFI issued in the above captioned matter. This letter responds

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

monument valley.cdr  

Office of Legacy Management (LM)

The The Monument Valley Processing Site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site. These source materials and other site-related contamination were removed during surface remediation at the

282

Diurnal Winds in the Himalayan Kali Gandaki Valley. Part II: Modeling  

Science Conference Proceedings (OSTI)

The Penn StateNCAR mesoscale model MM5 is used to simulate and better understand the wind observations in the Kali Gandaki Valley reported in the first part of this paper. The Kali Gandaki River originates in Nepal near Tibet, flows southward ...

Gnther Zngl; Joseph Egger; Volkmar Wirth

2001-05-01T23:59:59.000Z

283

Enhancement of Afternoon Thunderstorm Activity by Urbanization in a Valley: Taipei  

Science Conference Proceedings (OSTI)

Located in northern Taiwan, Taipei is a metropolis surrounded by hills and mountains that form a basin in which two river valleys funnel the surface airflow of this basin to the open sea. Because of the southwest monsoon, summer is a dry season ...

Tsing-Chang Chen; Shih-Yu Wang; Ming-Cheng Yen

2007-09-01T23:59:59.000Z

284

Spring Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Spring Valley Facility Spring Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy Developer Pattern Energy Energy Purchaser NV Energy Location Ely NV Coordinates 39.10555447°, -114.4940186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.10555447,"lon":-114.4940186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Magic Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Magic Valley Facility Magic Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate & Renewables North America Developer E.ON Climate & Renewables North America Location Raymondville TX Coordinates 26.46534829°, -97.6725769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.46534829,"lon":-97.6725769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Swauk Valley | Open Energy Information  

Open Energy Info (EERE)

Swauk Valley Swauk Valley Jump to: navigation, search Name Swauk Valley Facility Swauk Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner McKinstry Developer McKinstry Location Ellensburg WA Coordinates 47.14163°, -120.754376° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.14163,"lon":-120.754376,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

South Valley Compliance Agreement Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Valley South Valley Agreement Name South Valley Superfund Site Interagency Agreement State New Mexico Agreement Type Compliance Agreement Legal Driver(s) CERCLA Scope Summary Interagency Agreement with the U.S. Air Force for payment of costs associated with the remediation of two operable units (the facility and San Jose 6) at the South Valley Superfund Site. Parties DOE; U.S. Air Force Date 9/26/1990 SCOPE * Set forth the actions required of the USAF and DOE to fulfill their respective responsibilities pursuant to the Settlement Agreement between DOE, USAF, and General Electric Company (8/29/1990). * Establish mechanism by which DOE will transfer, to a fund managed by the USAF, its share of the costs set forth in the Settlement Agreement. * Set forth each party's responsibilities and respective share of costs.

288

Retrofitting the Tennessee Valley Authority  

E-Print Network (OSTI)

As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

Zeiber, Kristen (Kristen Ann)

2013-01-01T23:59:59.000Z

289

Valley Electric Association- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

290

Along-Valley Structure of Daytime Thermally Driven Flows in the Wipp Valley  

Science Conference Proceedings (OSTI)

High-resolution Doppler lidar observations obtained during the Mesoscale Alpine Program (MAP) 1999 field campaign are used to investigate the along-valley structure of daytime valley flows in the Wipp Valley, Austria. The observations show that ...

Magdalena Rucker; Robert M. Banta; Douw G. Steyn

2008-03-01T23:59:59.000Z

291

Evaluation of Water Temperatures at Which Ohio River Fishes have been Collected, 1991-2011  

Science Conference Proceedings (OSTI)

This EPRI-Ohio River Ecological Research Program (ORERP) Technical Brief can be used to identify the temperatures preferred, tolerated, and avoided by Ohio River fishes. These data result from long-term 19912011 ORERP electrofishing upstream and downstream of participating power plants as well as data collected by the Ohio River Valley Sanitation Commission from Ohio River navigation pools during the same period. A description of ORERP is provided in EPRI Technical Brief 1023292.

2013-04-19T23:59:59.000Z

292

Case Study - Sioux Valley Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sioux Valley Energy Sioux Valley Energy SVE's smart meters report consumption levels every 30 minutes, which enables SVE to bill customers for critical peak events that occur on particular days and during particular time periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) is an electric cooperative serving approximately 21,000 customers in seven counties in South Dakota and Minnesota. SVE's Smart Grid Investment Grant (SGIG) Advanced Metering Infrastructure Project is a customer-focused initiative to assist customers with better managing their electricity consumption and associated costs, and to help SVE realize operational efficiencies and

293

Golden Valley Electric Association - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program for Builders Golden Valley Electric Association - Residential Energy Efficiency Rebate Program for Builders < Back Eligibility Construction Savings Category...

294

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program Eligibility Commercial Savings For Appliances &...

295

Minnesota Valley Electric Cooperative -Residential Energy Resource...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Eligibility Residential Savings...

296

West Valley Demonstration Project Transportation Emergency Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Transportation Emergency Management Program Independent Oversight Review of the Office of Independent Oversight and Performance Assurance...

297

City extensions : the revitalization of Denver Colorado's Platte River Valley  

E-Print Network (OSTI)

This thesis examines a process for future city growth in Denver, Colorado. Its objective is to develop a model by which future expansion of the city might build qualities of continuity and identity between adjacent sections ...

Sobey, James A

1982-01-01T23:59:59.000Z

298

Pearl River Valley Electric Power Association - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the home owner can receive rebates up to 500 for new, energy efficient heat pumps (SEER of 15 or higher) or geothermal heat pumps. These Comfort Advantage incentives are paid...

299

Pennsylvania Nuclear Profile - Beaver Valley  

U.S. Energy Information Administration (EIA)

snpt3pa6040 892 7,119 91.1 PWR 885 7,874 101.6 1,777 14,994 96.3 Beaver Valley Unit Type Data for 2010 PWR = Pressurized Light Water Reactor. Note: ...

300

Hydrologic and Water-Quality Conditions During Restoration of the Wood River Wetland,  

E-Print Network (OSTI)

.S. Geological Survey #12;Front Cover: Aerial view of the lower Wood River Valley showing the Wood River Wetland.S. Geological Survey, January 2003. #12;Hydrologic and Water-Quality Conditions During Restoration of the Wood­5004 U.S. Department of the Interior U.S. Geological Survey #12;U.S. Department of the Interior KEN

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Verdigris Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Verdigris Valley Electric Cooperative - Residential Energy Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Room Air Conditioner: $50 Electric Water Heaters: $50 - $199 Geothermal Heat Pumps (new): $300/ton Geothermal Heat Pumps (replacement): $150/ton Air-source/Dual Fuel Heat Pumps: $150/ton Provider Verdigris Valley Electric Cooperative Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are

302

Independent Oversight Review, West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, West Valley Demonstration Project Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 Transportation Emergency Management Review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Secretary of Energy's Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) in September 2000.

303

INEL geothermal environmental program. 1980 annual report  

DOE Green Energy (OSTI)

An overview of continuing environmental research and monitoring programs conducted at the Raft River Geothermal Site is provided. The monitoring programs are designed to collect data on the physical, biological and human environments of the development area. Primary research during 1980 emphasized completing baseline studies on terrestrial fauna, establishing an air quality monitoring network, investigating potential sources of fluoride in the Raft River Valley, and studying water level changes in the shallow monitor wells in response to development of the geothermal resource.

Cahn, L.S.; Thurow, T.L.; Martinez, J.A.

1981-04-01T23:59:59.000Z

304

Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.  

DOE Green Energy (OSTI)

This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

Konopacky, Richard C.

1985-06-01T23:59:59.000Z

305

Monument Valley Phytoremediation Pilot Study:  

Office of Legacy Management (LM)

1.8 1.8 U.S. Department of Energy UMTRA Ground Water Project Monument Valley Ground Water Remediation Work Plan: Native Plant Farming and Phytoremediation Pilot Study August 1998 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Prepared by MACTEC Environmental Restoration Services, LLC Grand Junction, Colorado Project Number UGW-511-0015-10-000 Document Number U0029501 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Note: Some of the section page numbers in the Table of Contents may not correspond to the page on which the section appears when viewing them in Adobe Acrobat. Document Number U0029501 Contents DOE/Grand Junction Office Monument Valley Ground Water Remediation Work Plan August 1998 Page v Contents Page Acronyms .

306

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Snake River Plain Geothermal Region Snake River Plain Geothermal Region (Redirected from Snake River Plain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high

307

Categorical Exclusion Determinations: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Demonstration Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2013 CX-010718: Categorical Exclusion Determination Replacement Ventilation System for the Main Plant Process Building CX(s) Applied: B6.3 Date: 07/11/2013 Location(s): New York Offices(s): West Valley Demonstration Project December 20, 2012 CX-009527: Categorical Exclusion Determination WVDP-2012-02 Routine Maintenance CX(s) Applied: B1.3 Date: 12/20/2012 Location(s): New York Offices(s): West Valley Demonstration Project August 2, 2012 CX-009528: Categorical Exclusion Determination WVDP-2012-01 WVDP Reservoir Interconnecting Canal Maintenance Activities

308

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Facility Dixie Valley Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Facility General Information Name Dixie Valley Geothermal Facility Facility Dixie Valley Sector Geothermal energy Location Information Location Dixie Valley, Nevada Coordinates 39.966973991529°, -117.85519123077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966973991529,"lon":-117.85519123077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Upper Scioto Valley School | Open Energy Information  

Open Energy Info (EERE)

Valley School Valley School Jump to: navigation, search Name Upper Scioto Valley School Facility Upper Scioto Valley School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Upper Scioto Valley Schools Energy Purchaser Upper Scioto Valley Schools Location McGuffey OH Coordinates 40.691542°, -83.786353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.691542,"lon":-83.786353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rogue Valley Clean Cities Coalition Rogue Valley Clean Cities Coalition The Rogue Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Rogue Valley Clean Cities coalition Contact Information Mike Quilty 541-621-4853 mikeq@roguevalleycleancities.org Coalition Website Clean Cities Coordinator Mike Quilty Mike Quilty served on the Rogue Valley Clean Cities Coalition (RVCCC) Board for three years prior to becoming RVCCC's Fleet Outreach Coordinator in late 2010. He was appointed RVCCC's Coordinator in March of 2013. Quilty is active in Oregon transportation policy issues. He is currently Chair of the Rogue Valley Metropolitan Planning Organization Policy Committee (2005 to Present), and is a member of the: Oregon Rail Leadership

311

Tippecanoe Valley School Corp | Open Energy Information  

Open Energy Info (EERE)

Valley School Corp Valley School Corp Jump to: navigation, search Name Tippecanoe Valley School Corp Facility Tippecanoe Valley School Corp Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Tippecanoe Valley School Corp Developer Performance Services Energy Purchaser Tippecanoe Valley School Corp Location Akron IN Coordinates 41.11098144°, -86.04468584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.11098144,"lon":-86.04468584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Modeling of Mountain-Valley Wind Fields in the Southern San Joaquin Valley, California  

Science Conference Proceedings (OSTI)

A dry three-dimensional mesoscale model was used to study the diurnal cycle of mountain-valley winds in the southern San Joaquin Valley during a summer day. A scheme for interpolating potential temperature was developed to provide hourly ...

Gary E. Moore; Christopher Daly; Mei-Kao Liu; Shi-Jian Huang

1987-09-01T23:59:59.000Z

313

Minnesota Valley Electric Cooperative -Residential Energy Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative -Residential Energy Resource Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Loan Program Rebate Amount Heat Pump Installation: up to $5,000 Electric Water Heater and Installation: up to $5,000 Electric Heating Equipment: up to $5,000 Heat Pump Installation: up to $5,000 Weatherization: up to $1,500 Provider Minnesota Valley Electric Cooperative

314

Dixie Valley Geothermal Field | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley Geothermal Field Citation Online Nevada Encyclopedia. Dixie...

315

Valley Forge Composite Technologies, Lawrence Livermore ...  

... high-security buildings and border entry points. More information about Valley Forge Composite Technologies, Inc. can be found at www.vlyf.com. ...

316

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program (Alaska) This is the approved revision of this page, as well...

317

Independent Activity Report, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project - July 2012 Independent Activity Report, New Brunswick Laboratory - November 2011 Orientation Visit to the Paducah Gaseous Diffusion Plant,...

318

CITY OF MORENO VALLEY ADOPTION OF THE CITY OF MORENO VALLEY RENEWABLE ENERGY  

E-Print Network (OSTI)

CITY OF MORENO VALLEY ADOPTION OF THE CITY OF MORENO VALLEY RENEWABLE ENERGY ENFORCEMENT PROGRAM of the City of Moreno Valley Electric Renewable Energy Resources Enforcement Program pursuant California, a publicly owned utility. SB 1X-2 establishes minimum quantities of renewable energy resources that load

319

Our River  

NLE Websites -- All DOE Office Websites (Extended Search)

River River Nature Bulletin No. 22 July 7, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation OUR RIVER The people of Cook County are missing a bet. They are not using their DesPlaines River. The other day we took a boat trip down that river from Lake County to Lawndale Avenue in Summit. It being a week day, we saw few people other than an occasional fisherman or pairs of strolling boys. Except for a bridge now and then, there were no signs or sounds of civilization. Chicago might have been a thousand miles away. We rested. There was isolation. There was peace. Once in a while a heron flew ahead of us; or a squirrel scampered up a tree; once we saw a family of young muskrats playing around the entrance to their den in the bank; twice we saw and heard a wood duck; again and again big fish plowed ripples surging ahead of us. It was shady and cool and still beneath the arching trees. We thought of the centuries this river had traveled. We were babes nuzzling again at the breast of Mother Nature.

320

Climatology of High Wind Events in the Owens Valley, California  

Science Conference Proceedings (OSTI)

The climatology of high wind events in the Owens Valley, California, a deep valley located just east of the southern Sierra Nevada, is described using data from six automated weather stations distributed along the valley axis in combination with ...

Shiyuan Zhong; Ju Li; C. David Whiteman; Xindi Bian; Wenqing Yao

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Dynamics of Katabatic Winds in Colorado' Brush Creek Valley  

Science Conference Proceedings (OSTI)

A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down- valley wind and valley width fields ...

I. Vergeiner; E. Dreiseitl; C. David Whiteman

1987-01-01T23:59:59.000Z

322

Savannah River Site  

NLE Websites -- All DOE Office Websites (Extended Search)

River Site Savannah River Site Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of...

323

Direct-Current Resistivity At Dixie Valley Geothermal Field Area...  

Open Energy Info (EERE)

Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field...

324

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

In Dixie Valley, Nevada Retrieved from "http:en.openei.orgwindex.php?titleGroundGravitySurveyAtDixieValleyGeothermalFieldArea(Blackwell,EtAl.,2009)&oldid38834...

325

Antelope Valley Water Storage, LLC RFP - DEADLINE: March 31,...  

NLE Websites -- All DOE Office Websites (Extended Search)

-Renewable-Energy.doc REQUEST FOR PROPOSALS RENEWABLE ENERGY SUPPLY FOR ANTELOPE VALLEY WATER BANKING PROJECT ANTELOPE VALLEY WATER STORAGE, LLC. Filing Deadline: March 31, 2008 -...

326

Green Valley LFGTE Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Valley LFGTE Biomass Facility Jump to: navigation, search Name Green Valley LFGTE...

327

Pages that link to "Arbon Valley, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Arbon Valley, Idaho" Arbon Valley, Idaho Jump to: navigation, search What links here Page: Arbon...

328

Situation Reports: Ohio Valley and Mid-Atlantic Storm 2012 |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Situation Reports: Ohio Valley and Mid-Atlantic Storm 2012 Situation Reports: Ohio Valley and Mid-Atlantic Storm 2012 The Office of Electricity Delivery and Energy Reliability...

329

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

330

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

331

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

332

Clean Cities: Valley of the Sun Clean Cities (Phoenix) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Valley of the Sun Clean Cities (Phoenix) Coalition The Valley of the Sun Clean Cities (Phoenix) coalition works with vehicle fleets, fuel providers, community leaders, and other...

333

Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...  

Open Energy Info (EERE)

Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Water Sampling Activity Date Usefulness not...

334

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

335

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Thermochronometry At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area...

336

Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Gabbs Valley Area (DOE GTP) Exploration...

337

Multiple Ruptures For Long Valley Microearthquakes- A Link To...  

Open Energy Info (EERE)

Number: Unavailable DOI: Unavailable Source: View Original Journal Article Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) Long Valley Caldera...

338

Technical Services Contract Awarded for West Valley Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Services Contract Awarded for West Valley Demonstration Project Support Services Technical Services Contract Awarded for West Valley Demonstration Project Support...

339

The Climate of Death Valley, California  

Science Conference Proceedings (OSTI)

Death Valley, California, is one of the most extreme environments in the world. The floor of the valley, which is below sea level, is one of the hottest and driest places on Earth. This article and associated data files compile and describe the ...

Steven Roof; Charlie Callagan

2003-12-01T23:59:59.000Z

340

Reconnaissance geophysical studies of the geothermal system in southern  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Gravity, aeromagnetic, and telluric current surveys in the southern Raft River have been used to infer the structure and the general lithology underlying the valley. The gravity data indicate the approximate thickness of the Cenozoic rocks and location of the larger normal faults, and the aeromagnetic data indicate the extent of the major Cenozoic volcanic units. The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

River Steamboats  

NLE Websites -- All DOE Office Websites (Extended Search)

River Steamboats River Steamboats Nature Bulletin No. 628-A February 12, 1977 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation RIVER STEAMBOATS The westward migration of the pioneer settlers and the rapid growth of agriculture, commerce and industry in the Middle West is in large part the story of water transportation on our inland waterways. The two main water routes were the chain of Great Lakes on the north and the Ohio River on the south. Sailing vessels carrying hundreds of tons were able to navigate on the Great Lakes almost as freely as on the ocean. Also, on the Ohio and Mississippi rivers heavy loads could be floated downstream from Pittsburgh to New Orleans -- almost 2000 miles. But boats had to be hauled back upstream by manpower -- grueling labor, stretching over weeks or months to move a few tons a few hundred miles. The coming of the steamboat a century and a half ago changed all this.

342

Clean Cities: Treasure Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Treasure Valley Clean Cities Coalition Treasure Valley Clean Cities Coalition The Treasure Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Treasure Valley Clean Cities coalition Contact Information Beth Baird 208-384-3984 bbaird@cityofboise.org Coalition Website Clean Cities Coordinator Beth Baird Photo of Beth Baird Beth Baird was involved in the development of the Treasure Valley Clean Cities coalition (TVCCC) and has been the coalition's coordinator since its designation in 2006. Baird has been employed at the city of Boise Public Works Department for 14 years. During that time, she developed the air quality program for the city of Boise. Most recently, she has taken on responsibilities for the Climate

343

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

344

Minnesota Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative - Residential Energy Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Maximum Rebate Ground-Source Heat Pump: 5 ton maximum Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $25 Freezer/Refrigerator: $25 Dishwasher: $25 Air-Source Heat Pump: $500 Ground-Source Heat Pump: $200 per ton Electric Resistant Heating Products: $10 per kW Mini-Split Heat Pumps: $75 Central A/C or Heat Pump Tune-Up: $25 Provider Minnesota Valley Electric Cooperative Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to

345

NPP Tropical Forest: Magdalena Valley, Colombia  

NLE Websites -- All DOE Office Websites (Extended Search)

Magdalena Valley, Colombia, 1970-1971 Magdalena Valley, Colombia, 1970-1971 Data Citation Cite this data set as follows: Folster, H. 1999. NPP Tropical Forest: Magdalena Valley, Colombia, 1970-1971. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Biomass, litterfall, and nutrient content of above-ground vegetation and soil were determined for a tropical seasonal evergreen forest at Magdalena Valley, Colombia, during an 18-month period in 1970 and 1971. The study was sponsored by the German Research Foundation. Of primary interest were biomass and nutrient dynamics of a forest stand that had developed atop a perched water table on a typical valley terrace. Perched water tables give rise to pseudogley soils with low pH, prolonged

346

Bolton Valley Resort | Open Energy Information  

Open Energy Info (EERE)

Bolton Valley Resort Bolton Valley Resort Jump to: navigation, search Name Bolton Valley Resort Facility Bolton Valley Resort Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Bolton Valley VT Coordinates 44.4144038°, -72.83469647° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4144038,"lon":-72.83469647,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Clean Cities: Antelope Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Antelope Valley Clean Cities Coalition Antelope Valley Clean Cities Coalition The Antelope Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Antelope Valley Clean Cities coalition Contact Information Curtis Martin 661-492-5916 visioncc@verizon.net Coalition Website Clean Cities Coordinator Curtis Martin Photo of Curtis Martin Curtis Martin has been the coordinator for the Antelope Valley Clean Cities coalition since 2008. In addition to his Clean Cities functions, he is also the alternative fuels manager for Robertson's Palmdale Honda in Palmdale, California. As the alternative fuels manager, he is responsible for the sales and marketing of the Civic GX to retail and fleet customers. Martin has been involved in alternative fuels for the past 12 years and has

348

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,  

Open Energy Info (EERE)

Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Citation Gabriel L. Plank. 1995. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada. Geothermal Resources Council Transactions. 19: (!) . Retrieved from "http://en.openei.org/w/index.php?title=Structure,_Stratigraphy,_and_Tectonics_of_the_Dixie_Valley_Geothermal_Site,_Dixie_Valley,_Nevada&oldid=682622"

349

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

350

INEL Geothermal Environmental Program. 1979 annual report  

DOE Green Energy (OSTI)

The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

Thurow, T.L.; Sullivan, J.F.

1980-04-01T23:59:59.000Z

351

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

352

Dakota Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Dakota Valley Wind Project Dakota Valley Wind Project Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355°, -96.524841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.548355,"lon":-96.524841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Unalakleet Valley Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Unalakleet Valley Elec Coop Unalakleet Valley Elec Coop Jump to: navigation, search Name Unalakleet Valley Elec Coop Place Alaska Utility Id 40548 Utility Location Yes Ownership C NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Power Service Commercial Residential Service Residential Average Rates Residential: $0.3920/kWh Commercial: $0.3680/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Unalakleet_Valley_Elec_Coop&oldid=41190

354

Harquahala Valley Pwr District | Open Energy Information  

Open Energy Info (EERE)

Harquahala Valley Pwr District Harquahala Valley Pwr District Jump to: navigation, search Name Harquahala Valley Pwr District Place Arizona Utility Id 8139 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Gin Commercial Irrigation Pumping Commercial Non-Irrigation Agriculture Commercial Average Rates Industrial: $0.0565/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Harquahala_Valley_Pwr_District&oldid=410799

355

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV: $8,000 Solar Water Heaters: $1,000 Solar Water Wells: $750 Wind-electric: $6,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount PV: $2.00/watt Solar Water Heaters: $1,000/unit Solar Water Wells: $750/unit Wind-electric: $1.00/watt Provider Guadalupe Valley Electric Cooperative '''''The $1.5 million budget cap for PV rebates in 2013 has been met. No additional applications for PV rebates will be accepted. '''''

356

Sheep Valley Ranch | Open Energy Information  

Open Energy Info (EERE)

Sheep Valley Ranch Sheep Valley Ranch Jump to: navigation, search Name Sheep Valley Ranch Facility Sheep Valley Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two Dot Wind LLC Location Wheatland MT Coordinates 46.45°, -110.07° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.45,"lon":-110.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Lighthouse Solar Indian Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Indian Valley Name Lighthouse Solar Indian Valley Address 5062 McLean Station Road Place Green Lane, PA Zip 18054 Sector Solar Phone number (215) 541-5464 Website http://www.lighthousesolar.com Coordinates 40.350689°, -75.475961° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.350689,"lon":-75.475961,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Lighthouse Solar Central Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Central Valley Name Lighthouse Solar Central Valley Address 2135 McCall Ave. Place Selma, CA Zip 93662 Sector Solar Phone number (559) 260-0796 Website http://www.lighthousesolar.com Coordinates 36.564699°, -119.611283° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.564699,"lon":-119.611283,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

City of Sunset Valley- PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

360

Tributary Fluxes into Brush Creek Valley  

Science Conference Proceedings (OSTI)

Measurements in a tributary to Brush Creek Valley during the September and October 1984 ASCOT campaign with laser anemometers, tethersondes, a minisodar, and smoke release were used to calculate the contribution by tributaries to nocturnal ...

R. L. Coulter; Monte Orgill; William Porch

1989-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Contemporary Climate Change in the Jordan Valley  

Science Conference Proceedings (OSTI)

This study examines the climate changes that have occurred in the 40 years since the publication of Jehuda Neumann's classic climatological studies of the energy and water balance of the natural water bodies of the Jordan Valley. The measurements ...

Shabtai Cohen; Gerald Stanhill

1996-07-01T23:59:59.000Z

362

Lighthouse Solar Diablo Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Diablo Valley Name Lighthouse Solar Diablo Valley Address 2420 Sand Creek Road - C1308 Place Brentwood, CA Zip 94513 Sector Solar Phone number (925) 420-5121 Website http://www.lighthousesolar.com Coordinates 37.9434593°, -121.738203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9434593,"lon":-121.738203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Tennessee Valley Smart Grid Roadmap Workshops  

Science Conference Proceedings (OSTI)

The power distributors of the Tennessee Valley are developing a smart grid roadmap in coordination with the Tennessee Valley Authority. The road-mapping process included the identification of a set of key applications, each of which served as the topic of a dedicated workshop. This report provides a compilation of the reports that resulted from these workshops. The report was produced to ensure that the meeting minutes are maintained and available for future reference. The overall smart grid roadmap is d...

2011-10-11T23:59:59.000Z

364

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

DOE Green Energy (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

365

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high angle to the central and eastern Snake River Plains. Its morphology is

366

Atmospheric Mass Transport by Along-Valley Wind Systems in a Deep Colorado Valley  

Science Conference Proceedings (OSTI)

Hourly tethered-balloon wind soundings from the 650-m deep, narrow, Brush Creek Valley of Colorado are analyzed to determine the nocturnal atmospheric mass (or volume) budget of the valley. Under the assumption that the volume flux on an entire ...

C. David Whiteman; Sumner Barr

1986-09-01T23:59:59.000Z

367

The coupling of synoptic and valley winds in the Tennessee Valley  

DOE Green Energy (OSTI)

The interaction of winds in a valley with the winds above the valley is of interest for both practical and theoretical reasons. For example, the forecasting of conditions affecting air quality,, emergency preparedness, or aerial spraying of pesticides requires the ability to relate local valley circulations to ambient synoptic conditions. While empirically derived relationships may be useful, it is also desirable to develop an understanding of the mechanisms responsible for the observed behavior. In this paper we combine results from analyses of measurements and model-generated data to provide insight into factors affecting the climatology of the winds in the Tennessee Valley. We discuss four mechanisms that can determine the behavior of winds in a valley. The conditions can be illustrated in terms of the expected joint frequency distributions of the surface and geostrophic winds.

Doran, J.C.; Whiteman, C.D.

1992-09-01T23:59:59.000Z

368

Red River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

369

Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume I  

DOE Green Energy (OSTI)

Environmental baseline data for the Snake River Plain known geothermal resource areas (KGRAs) are evaluated for geothermal development. The objective is to achieve a sound data base prior to geothermal development. These KGRAs are: Vulcan Hot Springs, Crane Creek, Castle Creek, Bruneau, Mountain Home, Raft River, Island Park, and Yellowstone. Air quality, meteorology, hydrology, water quality, soils, land use, geology, subsidence, seismicity, terrestrial and aquatic ecology, demography, socioeconomics, and heritage resources are analyzed. This program includes a summary of environmental concerns related to geothermal development in each of the KGRAs, an annotated bibliography of reference materials (Volume II), detailed reports on the various program elements for each of the KGRAs, a program plan identifying future research needs, and a comprehensive data file.

Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

1979-09-01T23:59:59.000Z

370

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

371

Maine Rivers Policy (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as outstanding...

372

West Valley Site History, Cleanup Status, and Role of the West...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Site History, Cleanup Status, and Role of the West Valley Citizen Task Force West Valley Site History, Cleanup Status, and Role of the West Valley Citizen Task Force...

373

Salmon River Habitat Enhancement, 1984 Annual Report.  

DOE Green Energy (OSTI)

This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

Konopacky, Richard C.

1986-04-01T23:59:59.000Z

374

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

375

Sequachee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Sequachee Valley Electric Coop Sequachee Valley Electric Coop Jump to: navigation, search Name Sequachee Valley Electric Coop Place Tennessee Utility Id 16930 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA1 Commercial Green Power Switch Residential Industrial GSA1 Industrial Light- 100w High Pressure Sodium Lighting Light- 250w High Pressure Sodium Lighting Light- 250w Metal Halide Lighting Light- 400w Metal Halide Lighting Residential Residential Average Rates Residential: $0.0962/kWh Commercial: $0.1020/kWh

376

Valley View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Valley View Wind Farm Facility Valley View Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind Developer Valley View Transmission Energy Purchaser Xcel Energy Location Outside Chandler MN Coordinates 43.905808°, -96.020508° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.905808,"lon":-96.020508,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Ohio Valley Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Ohio Valley Electric Corp Ohio Valley Electric Corp Place Ohio Utility Id 14015 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0450/kWh The following table contains monthly sales and revenue data for Ohio Valley Electric Corp (Ohio). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

378

Clayton Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Clayton Valley Geothermal Project Clayton Valley Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Clayton Valley Geothermal Project Project Location Information Coordinates 37.755°, -117.63472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.755,"lon":-117.63472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

Penoyer Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Penoyer Valley Electric Coop Penoyer Valley Electric Coop Jump to: navigation, search Name Penoyer Valley Electric Coop Place Nevada Utility Id 40497 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agriculture Rate Commercial Lincoln County Residential Residential Residential Rate Residential Residential Rate- Lower Colorado Residence Residential Average Rates Residential: $0.0787/kWh Commercial: $0.0722/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

380

Tennessee Valley Authority (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Tennessee Valley Authority Tennessee Valley Authority Place Kentucky Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0455/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Kentucky). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 68,976 1,670,768 22 68,976 1,670,768 22

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

382

Blue Valley Energy | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Energy Blue Valley Energy Name Blue Valley Energy Address 3075 75th Street Place Boulder, Colorado Zip 80301 Sector Efficiency Product Geothermal heating and cooling systems Website http://www.bluevalleyenergy.co Coordinates 40.030298°, -105.179643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.030298,"lon":-105.179643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Great Valley Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Valley Ethanol LLC Valley Ethanol LLC Jump to: navigation, search Name Great Valley Ethanol LLC Place Bakersfield, California Product Developing a 63m gallon ethanol plant in Hanford, CA Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Smoky Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Smoky Valley Wind Project Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766°, -97.683563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.578766,"lon":-97.683563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

All Valley Solar | Open Energy Information  

Open Energy Info (EERE)

All Valley Solar All Valley Solar Name All Valley Solar Address 6851 Cahuenga Park Trail Place Los Angeles, California Year founded 1986 Phone number (661) 257-7780 Coordinates 34.1235069°, -118.345082° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1235069,"lon":-118.345082,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Sierra Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sierra Valley Geothermal Area Sierra Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Sierra Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.71166667,"lon":-120.3216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Whitewater Valley Rural EMC | Open Energy Information  

Open Energy Info (EERE)

Valley Rural EMC Valley Rural EMC Jump to: navigation, search Name Whitewater Valley Rural EMC Place Indiana Utility Id 20216 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule GS - General Service Multi Phase Commercial Schedule GS - General Service Single Phase Commercial Schedule GS TOU - General Service Time-of-Use Commercial Schedule IP - Industrial Power Service Industrial Schedule LP - Large Power Service Multi Phase Industrial Schedule LP - Large Power Service Single Phase Industrial

388

Golden Valley Wind Park | Open Energy Information  

Open Energy Info (EERE)

Golden Valley Wind Park Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.379924°, -113.876892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.379924,"lon":-113.876892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Powell Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Powell Valley Electric Coop Powell Valley Electric Coop Jump to: navigation, search Name Powell Valley Electric Coop Place Tennessee Utility Id 15293 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Industrial 1001 - 5000 KW Industrial General Power Industrial 51 - 1000 KW Industrial General Power Commercial 1001 - 5000 KW Commercial General Power Commercial 51 - 1000 KW Commercial General Power Commercial Less than 50 KW Commercial General Power Industrial Less than 50 KW Industrial

390

Capturing the Green River -- Multispectral airborne videography to evaluate the environmental impacts of hydropower operations  

DOE Green Energy (OSTI)

The 500-mile long Green River is the largest tributary of the Colorado River. From its origin in the Wind River Range mountains of western Wyoming to its confluence with the Colorado River in southeastern Utah, the Green River is vital to the arid region through which it flows. Large portions of the area remain near-wilderness with the river providing a source of recreation in the form of fishing and rafting, irrigation for farming and ranching, and hydroelectric power. In the late 1950`s and early 1960`s hydroelectric facilities were built on the river. One of these, Flaming Gorge Dam, is located just south of the Utah-Wyoming border near the town of Dutch John, Utah. Hydropower operations result in hourly and daily fluctuations in the releases of water from the dam that alter the natural stream flow below the dam and affect natural resources in and along the river corridor. In the present study, the authors were interested in evaluating the potential impacts of hydropower operations at Flaming Gorge Dam on the downstream natural resources. Considering the size of the area affected by the daily pattern of water release at the dam as well as the difficult terrain and limited accessibility of many reaches of the river, evaluating these impacts using standard field study methods was virtually impossible. Instead an approach was developed that used multispectral aerial videography to determine changes in the affected parameters at different flows, hydrologic modeling to predict flow conditions for various hydropower operating scenarios, and ecological information on the biological resources of concern to assign impacts.

Snider, M.A.; Hayse, J.W.; Hlohowskyj, I.; LaGory, K.E.

1996-02-01T23:59:59.000Z

391

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY DEMONSTRATION PROJECT WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FINAL SUMMARY December 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY DOE/EIS - 0337F For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE 10282 Rock Springs Road WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National

392

Loup Valleys Rural P P D | Open Energy Information  

Open Energy Info (EERE)

Valleys Rural P P D Jump to: navigation, search Name Loup Valleys Rural P P D Place Nebraska Utility Id 11250 Utility Location Yes Ownership P NERC Location MRO NERC SPP Yes RTO...

393

Modeling Bulk Atmospheric Drainage Flow in a Valley  

Science Conference Proceedings (OSTI)

Most simulations of bulk valley-drainage flows depend heavily on parameterizations. The 1984 Atmospheric Studies in Complex Terrain (ASCOT) field experiment in Brush Creek Valley, Colorado, provided an unprecedented density of measurements in a ...

Ronald J. Dobosy

1989-09-01T23:59:59.000Z

394

Summer Wind Flow Regimes over the Sacramento Valley  

Science Conference Proceedings (OSTI)

This study utilized conditional sampling to identify three frequent wind regimes in the lower Sacramento Valley. The major flow features of the mean diurnal wind patterns in the southern Sacramento Valley and surrounding areas were analyzed for ...

Laura L. Zaremba; John J. Carroll

1999-10-01T23:59:59.000Z

395

Silicon Valley Solar Inc SV Solar | Open Energy Information  

Open Energy Info (EERE)

Silicon Valley Solar Inc SV Solar Jump to: navigation, search Name Silicon Valley Solar Inc (SV Solar) Place Santa Clara, California Zip 95051 Sector Solar Product A US-based...

396

Clean Cities Award Winning Coalition: Coachella Valley  

DOE Green Energy (OSTI)

Southern California's Coachella Valley became a Clean Cities region in 1996. Since then, they've made great strides. SunLine Transit, the regional public transit provider, was the first transit provider to replace its entire fleet with compressed natural gas buses. They've also built the foundation for a nationally recognized model in the clean air movement, by partnering with Southern California Gas Company to install a refueling station and developing a curriculum for AFV maintenance with the College of the Desert. Today the valley is home to more than 275 AFVs and 15 refueling stations.

ICF Kaiser

1999-05-20T23:59:59.000Z

397

Non-Double-Couple Microearthquakes At Long Valley Caldera, California...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

398

Advanced Metering Infrastructure (AMI) Roadmap for the Tennessee Valley  

Science Conference Proceedings (OSTI)

This report summarizes the findings of an advanced metering infrastructure (AMI) roadmap project that was conducted for the distributors of the Tennessee Valley. These distributors, collectively represented by the Tennessee Valley Public Power Association (TVPPA), along with the Tennessee Valley Authority, are developing a long-term Smart Grid vision for the Valley and believe that the diversity of AMI systems in the region can form a foundation for advanced applications.

2009-08-17T23:59:59.000Z

399

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Wisian & Blackwell, 2004)...

400

Thermally Driven Flows at an Asymmetric Valley Exit: Observations and Model Studies at the Lech Valley Exit  

Science Conference Proceedings (OSTI)

The summertime thermal circulation in the region of an asymmetric valley exit is investigated by means of observations and high-resolution model simulations. The northeastward-oriented Alpine Lech Valley opening into the Bavarian Alpine foreland ...

Thomas Spengler; Jan H. Schween; Markus Ablinger; Gnther Zngl; Joseph Egger

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geothermal resource investigations, Imperial Valley, California. Status report  

DOE Green Energy (OSTI)

The discussion is presented under the following chapter titles: geothermal resource investigations, Imperial Valley, California; the source of geothermal heat; status of geothermal resources (worldwide); geothermal aspects of Imperial Valley, California; potential geothermal development in Imperial Valley; environmental considerations; and proposed plan for development. (JGB)

Not Available

1971-04-01T23:59:59.000Z

402

Experimental data developed to support the selection of a treatment process for West Valley alkaline supernatant  

Science Conference Proceedings (OSTI)

At the request of West Valley Nuclear Services Co., Inc., the Pacific Northwest Laboratory (PNL) has studied alternative treatment processes for the alkaline PUREX waste presently being stored in Tank 8D2 at West Valley, New York. Five tasks were completed during FY 1983: (1) simulation and characterization of the alkaline supernatant and sludge from the tank. The radiochemical and chemical distributions between the aqueous and solid phase were determined, and the efficiency of washing sludge with water to remove ions such as Na/sup +/ and SO/sub 4//sup 2 -/ was investigated; (2) evaluation of a sodium tetraphenylboron (Na-TPB) precipitation process to recover cesium (Cs) and a sodium titanate (Na-TiA) sorption process to recover strontium (Sr) and plutonium (Pu) from the West Valley Alkaline supernatant. These processes were previously developed and tested at the US Department of Energy's Savannah River Plant; (3) evaluation of an organic cation-exchange resin (Duolite CS-100) to recover Cs and Pu from the alkaline supernatant followed by an organic macroreticular cation exchange resin (Amberlite IRC-718) to recover Sr; (4) evaluation of an inorganic ion exchanger (Linde Ionsiv IE-95) to recover Cs, Sr, and Pu from the alkaline supernatant; and (5) evaluation of Dowex-1,X8 organic anion exchange resin to recover technetium (Tc) from alkaline supernatant. The findings of these tasks are reported. 21 references, 36 figures, 34 tables.

Bray, L.A.; Holton, L.K.; Myers, T.R.; Richardson, G.M.; Wise, B.M.

1984-01-01T23:59:59.000Z

403

Tributary, Valley and Sidewall Air Flow Interactions in a Deep Valley  

Science Conference Proceedings (OSTI)

Field experiments measuring nocturnal tributary flows have shown complex internal structure. Variations in the flow range from short-term (816 min) oscillations (related to tributary/valley flow interactions) to long-term flow changes throughout ...

William M. Porch; Richard B. Fritz; Richard L. Coulter; Paul H. Gudiksen

1989-07-01T23:59:59.000Z

404

Mesoscale Influences on Nocturnal Valley Drainage Winds in Western Colorado Valleys  

Science Conference Proceedings (OSTI)

The mesoalpha-scale upper-level sounding network data collected during the 1984 ASCOT meteorological and tracer experiments provided a unique opportunity to analyze the nocturnal drainage wind in four different valleys in western Colorado, and to ...

Montie M. Orgill; John D. Kincheloe; Robert A. Sutherland

1992-02-01T23:59:59.000Z

405

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area (Redirected from Dixie Valley Geothermal Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area (Redirected from Grass Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01T23:59:59.000Z

408

Potential hydrologic characterization wells in Amargosa Valley  

SciTech Connect

More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

Lyles, B.; Mihevc, T.

1994-09-01T23:59:59.000Z

409

On the Problem of Violent Valley Winds  

Science Conference Proceedings (OSTI)

observational results of a one-month mesoscale experiment in a valley are used to emphasize the prominent part played by an inversion layer in air flow dynamics. A model based on the analogy between shallow water flow and air flow beneath an ...

Paul Pettre

1982-03-01T23:59:59.000Z

410

Salmon River Habitat Enhancement, Part 1 of 2, 1986 Annual Report.  

DOE Green Energy (OSTI)

The tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved fish inventories in Bear Valley Creek, Idaho, that will be used in conjunction with 1984 and 1985 fish and habitat pre-treatment (baseline) data to evaluate effects of habitat enhancement on the habitat and fish community in Bear Valley Creek overtime. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur in the upper-Salmon River basin. Subproject III involved fish inventories (pre-treatment) in the Yankee Fork drainage of the Salmon River, and habitat problem identification on Fivemile and Ramey Creek. Subproject IV involved baseline habitat and fish inventories on the East Fork of the Salmon River, Herd Creek and Big-Boulder Creek. Individual abstracts have been prepared for the four subproject reports. 20 refs., 37 figs., 22 tabs.

Richards, Carl

1987-03-01T23:59:59.000Z

411

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

412

West Valley Demonstration Project Phase I Decommissioning - Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

413

Lower Valley Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Water Heating Windows, Doors, & Skylights Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Audit: Discounted Cost Weatherization Measures: Varies Marathon Water Heater: $25 Water Heater: $15 - $25 Clothes Washer: $25 - $50 Refrigerator: $15 Refrigerator Recycling: $75 Energy Star Manufactured Home: $1,000 Geothermal Heat Pumps: Up to $2,100 Provider Lower Valley Energy Lower Valley Energy offers numerous rebates for residential customers who

414

Site Programs & Cooperative Agreements: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration West Valley Demonstration Project Site Programs & Cooperative Agreements: West Valley Demonstration Project West Valley Demonstration Project The Seneca Nation of Indians has interests and concerns regarding the West Valley Demonstration Project Site. Like at Hanford, DOE environmental cleanup activities have the potential to impact natural and cultural resources and to interfere with American Indian religious practices. Through a cooperative agreement, tribal staff is engaged on a frequent basis with DOE and its contractors. The principle activities engaged by tribes include reviewing and commenting on plans and documents, participating in meetings at the request of DOE, monitoring cultural resource sites, participating in site surveys, and identifying issues that

415

Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Magic Valley Electric Cooperative - ENERGY STAR Builders Program Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home: $150-$600 ENERGY STAR Home with Version 3.0 Checklist: $200 Marathon Water Heater Installation: $150 ENERGY STAR Heat Pump Water Heater: $250 Provider Magic Valley Electric Cooperative Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes

416

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

417

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

418

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE West Valley Area Office

419

Valley Center Municipal Water District | Open Energy Information  

Open Energy Info (EERE)

Municipal Water District Municipal Water District Jump to: navigation, search Name Valley Center Municipal Water District Place Valley Center, California Zip 92082 Product VCMWD is the second largest water provider in San Diego County behind the City of San Diego. References Valley Center Municipal Water District[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Valley Center Municipal Water District is a company located in Valley Center, California . References ↑ "Valley Center Municipal Water District" Retrieved from "http://en.openei.org/w/index.php?title=Valley_Center_Municipal_Water_District&oldid=352717" Categories: Clean Energy Organizations Companies Organizations

420

Missouri Valley Renewable Energy MOVRE | Open Energy Information  

Open Energy Info (EERE)

Valley Renewable Energy MOVRE Valley Renewable Energy MOVRE Jump to: navigation, search Name Missouri Valley Renewable Energy (MOVRE) Place Saint Louis, Missouri Zip 63105 Sector Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product An energy efficiency solutions company focused on renewable DP for farms, including wind, solar and hydro power. The company was absorbed by Farmergy Inc. in January 2007. References Missouri Valley Renewable Energy (MOVRE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Missouri Valley Renewable Energy (MOVRE) is a company located in Saint Louis, Missouri . References ↑ "Missouri Valley Renewable Energy (MOVRE)" Retrieved from "http://en.openei.org/w/index.php?title=Missouri_Valley_Renewable_Energy_MOVRE&oldid=348873"

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE-WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE-West Valley Area Office

422

DOE/EIS-0183 Record of Decision for the Electrical Interconnection of the Kittitas Valley Wind Project (09/04/09)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kittitas Valley Wind Project Kittitas Valley Wind Project September 2009 B o n n e v i l l e P o w e r A d m i n i s t r a t i o n 1 INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of up to 108 megawatts (MW) of power to be generated by the proposed Kittitas Valley Wind Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Sagebrush Power Partners, LLC (Sagebrush) has received authorization from the Washington Energy Facility Site Evaluation Council (EFSEC) to construct and operate the proposed Wind Project in Kittitas County, Washington, and has requested interconnection to the FCRTS on BPA's Columbia-Covington 230-kV transmission line in the vicinity of Ellensburg, Washington. BPA will construct a new substation to accommodate this additional power into the

423

Whirlwind Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Whirlwind Valley Geothermal Project Whirlwind Valley Geothermal Project Project Location Information Coordinates 39.4375°, -113.87583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4375,"lon":-113.87583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Tennessee Valley Authority (Mississippi) | Open Energy Information  

Open Energy Info (EERE)

Mississippi) Mississippi) Jump to: navigation, search Name Tennessee Valley Authority Place Mississippi Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0448/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Mississippi). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14,903 268,562 8 14,903 268,562 8

425

High Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

High Valley Geothermal Project High Valley Geothermal Project Project Location Information Coordinates 38.863611111111°, -122.80138888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.863611111111,"lon":-122.80138888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Tennessee Valley Authority (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Authority (Alabama) Authority (Alabama) Jump to: navigation, search Name Tennessee Valley Authority Place Alabama Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0487/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Alabama). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 19,875 343,154 24 19,875 343,154 24

427

Dixie Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Project Dixie Valley Geothermal Project Project Location Information Coordinates 39.7223036°, -118.0616895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7223036,"lon":-118.0616895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Chippewa Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Chippewa Valley Electric Coop Chippewa Valley Electric Coop Place Wisconsin Utility Id 3498 Utility Location Yes Ownership C NERC Location MRO ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CONTROLLED CENTRAL AC CREDIT - RATE CODE AC Commercial DISTRIBUTED GENERATION RATE DG Commercial DUSK/DAWN LIGHTING RATE CODE L Lighting INDUSTRIAL TIME OF DAY RATE CODE I Industrial LARGE SINGLE PHASE/MEDIUM-LARGE THREE PHASE RATE CODE X Industrial MEDIUM SINGLE PHASE/SMALL THREE PHASE - RATE CODE W Commercial OFF-PEAK ELECTRIC SPACE HEATING RATE CODE H Commercial

429

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

North Valley Geothermal Project North Valley Geothermal Project Project Location Information Coordinates 39.830833333333°, -119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.830833333333,"lon":-119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

431

Minnesota Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Minnesota Valley Electric Coop Minnesota Valley Electric Coop Place Minnesota Utility Id 12651 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule A- Single Phase Service Schedule B- 3 phase service 25 kW and greater Commercial Schedule B- 3 phase service less than 25 kW Schedule DH: Dual Heat Service Schedule EH: Electric Heat Service Schedule I: Single-Phase Irrigation Service Schedule I: Three-Phase Irrigation Service Schedule SL: 150 Watt HPS Lighting Schedule SL: 175 Watt MV Lighting Schedule SL: 400 Watt MV Lighting

432

Pecos River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

433

Elk Valley coal implements smartcell flotation technology  

Science Conference Proceedings (OSTI)

In anticipation of future raw coal containing higher fines content, Elk Valley Coal Corp.'s Greenhills Operations upgraded their fines circuit to include Wemco SmartCells in March 2007. Positive results were immediately achieved increasing the average flotation tailings ash by 16%. With this increase in yield the SmartCells project paid for itself in less than eight months. 2 figs., 1 tab., 1 photo.

Stirling, J.C. [Elk Valley Coal Corporation, Elkford, BC (Canada)

2008-06-15T23:59:59.000Z

434

Savannah River National Laboratory  

At a glance Remote Electrical Throw Device Engineers at the Savannah River National Laboratory ... sufficient manufacturing capacity, established dist ...

435

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Little Valley Geothermal Area (Redirected from Little Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Little Valley Geothermal Area Little Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Imperial Valley environmental project: air quality assessment  

DOE Green Energy (OSTI)

The potential impact on air quality of geothermal development in California's Imperial Valley is assessed. The assessment is based on the predictions of numerical atmospheric transport models. Emission rates derived from analyses of the composition of geothermal fluids in the region and meteorological data taken at six locations in the valley over a 1-yr period were used as input to the models. Scenarios based on 3000 MW, 2000 MW, 500 MW, and 100 MW of power production are considered. Hydrogen sulfide is the emission of major concern. Our calculations predict that at the 3000-MW level (with no abatement), the California 1-h standard for H{sub 2}S(42 {mu}g/m{sup 3}) would be violated at least 1% of the time over an area of approximately 1500 km{sup 2} (about 1/3 of the valley area). The calculations indicate that an H{sub 2}S emission rate below 0.8 g/s per 100-MW unit is needed to avoid violations of the standard beyond a distance of 1 km from the source. Emissions of ammonia, carbon dioxide, mercury, and radon are not expected to produce significant ground level concentrations, nor is the atmospheric conversion of hydrogen sulfide to sulfur dioxide expected to result in significant SO{sub 2} levels.

Ermak, D.L.; Nyholm, R.A.; Gudiksen, P.H.

1979-04-04T23:59:59.000Z

440

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network (OSTI)

of a tracer test at Dixie Valley, Nevada, Proc. 22 ndand footwall faulting at Dixie Valley, Nevada, Geothermalthe shallow thermal regime at Dixie Valley geothermal field,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "raft river valley" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Crustal Structure and tectonics of the Imperial Valley Region California |  

Open Energy Info (EERE)

Crustal Structure and tectonics of the Imperial Valley Region California Crustal Structure and tectonics of the Imperial Valley Region California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Crustal Structure and tectonics of the Imperial Valley Region California Abstract N/A Authors Gary S. Fruis and William M. Kohler Published Journal U. S. GEOLOGICAL SURVEY, 1984 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Crustal Structure and tectonics of the Imperial Valley Region California Citation Gary S. Fruis,William M. Kohler. 1984. Crustal Structure and tectonics of the Imperial Valley Region California. U. S. GEOLOGICAL SURVEY. N/A(N/A):285-297. Retrieved from "http://en.openei.org/w/index.php?title=Crustal_Structure_and_tectonics_of_the_Imperial_Valley_Region_California&oldid=682730"

442

West Valley Demolition Marks Important Accomplishment for EM | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM June 13, 2013 - 12:00pm Addthis Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Demolition work is shown in February 2013. Demolition work is shown in February 2013. Demolition continues in April 2013 with removal of internal components and concrete cell walls. Demolition continues in April 2013 with removal of internal components and concrete cell walls. Debris is removed following demolition. Debris is removed following demolition. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility.

443

Enforcement Letter, West Valley Nuclear Services - March 30, 1998 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Nuclear Services - March 30, 1998 West Valley Nuclear Services - March 30, 1998 Enforcement Letter, West Valley Nuclear Services - March 30, 1998 March 30, 1998 Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project This letter refers to the Department of Energy's (DOE) evaluation of West Valley Nuclear Services Company's (WVNS) report of a potential noncompliance with the requirements of 10 CFR 830.120 (Quality Assurance) and 10 CFR 835 (Occupational Radiation Protection). This potential noncompliance, which involved inadequate hazards analysis, design review, and implementation of work controls during decontamination activities for a high-level waste tank mobilization pump, was identified by WVNS on

444

Independent Activity Report, West Valley Demonstration Project - July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project - West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project [HIAR WVDP-2012-07-30] The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). In the fall of 2011, a new contractor, CH2M Hill-B&W West Valley (CHBWV), was selected to perform site operations for Phase 1 decommissioning and facility disposition, including the Main Plant Process Building, the Low-Level Waste Treatment Facility, and other facilities.

445

Clean Cities: Coachella Valley Region Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coachella Valley Region Clean Cities Coalition Coachella Valley Region Clean Cities Coalition The Coachella Valley Region Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Coachella Valley Region Clean Cities coalition Contact Information Richard Cromwell III 760-329-6462 rcromwell@cromwellandassociates.com Georgia Seivright 760-340-1575 georgias@c3vr.org Coalition Website Clean Cities Coordinators Coord Richard Cromwell III Coord Coord Georgia Seivright Coord Photo of Richard Cromwell III Clean fuels consultant Richard Cromwell III is a founding member of the Coachella Valley Region Clean Cities coalition. When the Coachella Valley Region coalition was founded, on Earth Day in 1996, Cromwell was the general manager and CEO of SunLine Transit Agency, the lead agency for the

446

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

447

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

448

Poudre Valley REA - Photovoltaic Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poudre Valley REA - Photovoltaic Rebate Program Poudre Valley REA - Photovoltaic Rebate Program Poudre Valley REA - Photovoltaic Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $4,500 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount $1.50 per watt Provider Poudre Valley REA Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's Energy Office's (GEO) state-wide rebate program, and Poudre Valley REC customers are permitted to receive both rebates. Before receiving a rebate, applicants must have an energy audit of their home that includes a blower door test. The audit must

449

Independent Activity Report, West Valley Demonstration Project - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, West Valley Demonstration Project - Activity Report, West Valley Demonstration Project - November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit [HIAR-WVDP-2011-11-07] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE West Valley Demonstration Project (WVDP) Office and the nuclear facility at West Valley, NY, on November 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and identify specific activities that HSS can perform to carry out its independent oversight

450

West Valley Demonstration Project 10282 Rock Springs Road  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 Mr. Daniel W. Coyne President & General Manager CH2M HILL B&W West Valley, LLC West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 ATTENTION: J. D. Rendall, Regulatory Strategy, AC-EA SUBJECT: Environmental Checklist WVDP-20 12-0 1, " WVDP Reservoir Interconnecting Canal Maintenance Activities" REFERENCE: Letter WD:2012:0409 (357953), D. W. Coyne to R. W. Reffner, "CONTRACT NO. DE-EM000 1529, Section 5-3, Item 105, NEPA Documentation (Transmittal of Environmental Checklist WVDP-20 12-0 1, WVDP Reservoir Interconnecting Canal Maintenance Activities), Revision 1 ," dated July 24, 20 12 Dear Mr. Coyne:

451

Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open  

Open Energy Info (EERE)

Grass Valley Area (Morrison, Et Al., 1979) Grass Valley Area (Morrison, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) Exploration Activity Details Location Grass Valley Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes The attempt to carry out a detailed interpretation of a magnetotelluric survey has demonstrated some fundamental problems that must be addressed in future surveys and in future research. (see paper conclusions) References H. Frank Morrison, K i Ha Lee, Gary Oppliger, Abhi jit De (1979) Magnetotelluric Studies In Grass Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Grass_Valley_Area_(Morrison,_Et_Al.,_1979)&oldid=387832"

452

INEL Geothermal Environmental Program. Final environmental report  

DOE Green Energy (OSTI)

An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs are summarized.

Thurow, T.L.; Cahn, L.S.

1982-09-01T23:59:59.000Z

453

Salmon Supplementation Studies in Idaho Rivers, 1999-2000 Progress Report.  

SciTech Connect

As part of the Idaho Supplementation Studies, fisheries crews from the Shoshone-Bannock Tribes have been snorkeling tributaries of the Salmon River to estimate chinook salmon (Oncorhynchus tshawytscha) parr abundance; conducting surveys of spawning adult chinook salmon to determine the number of redds constructed and collect carcass information; operating a rotary screw trap on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag emigrating juvenile chinook salmon; and collecting and PIT-tagging juvenile chinook salmon on tributaries of the Salmon River. The Tribes work in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork Salmon River. Snorkeling was used to obtain parr population estimates for ISS streams from 1992 to 1997. However, using the relatively vigorous methods described in the ISS experimental design to estimate summer chinook parr populations, results on a project-wide basis showed extraordinarily large confidence intervals and coefficients of variation. ISS cooperators modified their sampling design over a few years to reduce the variation around parr population estimates without success. Consequently, in 1998 snorkeling to obtain parr population estimates was discontinued and only General Parr Monitoring (GPM) sites are snorkeled. The number of redds observed in SBT-ISS streams has continued to decline as determined by five year cycles. Relatively weak strongholds continue to occur in the South Fork Salmon River and Bear Valley Creek. A rotary screw trap was operated on the West Fork Yankee Fork during the spring and fall of 1999 and the spring of 2000 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997 and 1999 (fall only) to 2000. Significant supplementation treatments have occurred in the South Fork Salmon River (IDFG). The East Fork Salmon River received supplementation treatments yearly through 1995. There have been no treatments since 1995, and no significant future treatments from local broodstock are conceivable due to extremely poor escapement. The West Fork Yankee Fork received a single presmolt treatment in 1994. Similarly, no significant future treatments are planned for the WFYF due to extremely poor escapement. However, small scale experimental captive rearing and broodstock techniques are currently being tested with populations from the EFSR and WFYF. Captive rearing/broodstock techniques could potentially provide feedback for evaluation of supplementation. The other three SBT-ISS streams are control streams and do not receive hatchery treatments.

Kohler, Andy; Taki, Doug; Teton, Angelo

2001-11-01T23:59:59.000Z

454

West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation for the Concentrator Feed Makeup Tank and the Melter Feed Hold Tank February 2013 Prepared by the U.S. Department of Energy West Valley, New York This page is intentionally blank. WASTE-INCIDENTAL-TO-REPROCESSING EVALUATION FOR THE WVDP CFMT AND MFHT CONTENTS Revision 0 i NOTATION (Acronyms, Abbreviations, and Units).................................................. v 1.0 INTRODUCTION ...................................................................................................... 1 1.1 Purpose. ................................................................................................................. 2

455

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

456

Armored scale insecticide resistance challenges San Joaquin Valley citrus growers  

E-Print Network (OSTI)

registered to control armored scale. As a result. outbreaksand carbamate-resistant armored scale in San Joaquin ValleyEE. 1994. Chlorpyrifos effect on armored scale (Homoptera:

Grafton-Cardwell, Elizabeth E.; Ouyang, Yuling; Striggow, Rebecka; Vehrs, Stacy

2001-01-01T23:59:59.000Z

457

Compound and Elemental Analysis At Long Valley Caldera Area ...  

Open Energy Info (EERE)

The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Retrieved from...