Sample records for raft river metamorphic

  1. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

  2. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...

    Open Energy Info (EERE)

    RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER...

  3. The investigation of anomalous magnetization in the Raft River...

    Open Energy Info (EERE)

    River valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: The investigation of anomalous magnetization in the Raft River...

  4. Two-dimensional simulation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    of the Raft River geothermal reservoir and wells. (SINDA-3G program) Abstract Computer models describing both the transient reservoir pressure behavior and the time...

  5. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Reconnaissance geothermal...

  6. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...

    Open Energy Info (EERE)

    HYDROGEOLOGICAL IMPLICATIONS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD,...

  7. Interpretation of electromagnetic soundings in the Raft River...

    Open Energy Info (EERE)

    (EM) controlled source survey was conducted in the Raft River Valley, near Malta, Idaho. The purpose of the survey was: to field test U.S. Geological Survey...

  8. Raft River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometricsRaft River

  9. Rheological control on the initial geometry of the Raft River...

    Open Energy Info (EERE)

    Rheological control on the initial geometry of the Raft River detachment fault and shear zone, western United States Jump to: navigation, search OpenEI Reference LibraryAdd to...

  10. Simulation analysis of the unconfined aquifer, Raft River Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Abstract This study...

  11. Raft River Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometricsRaft

  12. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  13. Raft River Rural Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGSRadium Hot SpringsOpenRaft River

  14. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30T23:59:59.000Z

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  15. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30T23:59:59.000Z

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  16. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17T23:59:59.000Z

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  17. Raft River geoscience case study | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGSRadium Hot SpringsOpenRaft

  18. Raft River III Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometricsRaftIII

  19. Geophysical Method At Raft River Geothermal Area (1975) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | Open Energy(Blackwell, EtRaftArea,

  20. Geophysical Method At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | Open Energy(Blackwell, EtRaftArea,Information

  1. Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho

    SciTech Connect (OSTI)

    Graham, D.L.; Ralston, D.R.; Allman, D.W.

    1981-01-01T23:59:59.000Z

    Low to moderate temperature (< 150/sup 0/C) geothermal fluids are being developed in the southern Raft River Valley of Idaho. Five deep geothermal wells ranging in depth from 4911 feet to 6543 feet (1490 to 1980 meters) and two intermediate depth (3858 feet or 1170 meters) injection wells have been drilled within the Raft River KGRA. Several shallower (1423-500 feet or 430-150 meters) wells have also been constructed to monitor the environmental effects of geothermal development of the shallower aquifer systems. Sampling of water from wells within the KGRA has been conducted since the onset of the project in 1974. Five analytical laboratories have conducted analyses on waters from the KGRA. Charge-balance error calculations conducted on the data produced from these laboratories indicated that data from three laboratories were reliable while two were not. A method of equating all data was established by using linear regression analyses on sets of paired data from various laboratories. The chemical data collected from the deep geothermal wells indicates that a two reservoir system exists within the Raft River KGRA. Each reservoir is associated with a major structural feature. These features are known as the Bridge Fault System (BFS) and the Narrows Structure (NS).

  2. assessment raft river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were below detection limits. Overall, zones of potential biological impact 36 NATURAL RESOURCE DAMAGE ASSESSMENT PLAN PREPARED BY THE HUDSON RIVER TRUSTEES CiteSeer Summary:...

  3. The effect of raft removal and dam construction on the lower Colorado River, Texas

    E-Print Network [OSTI]

    Hartopo

    1991-01-01T23:59:59.000Z

    THE EFFECT OF RAFT REMOVAL AND DAM CONSTRUCTION ON THE LOWER COLORADO RIVER, TEXAS A Thesis by HARTOPO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for degree of MASTER... OF SCIENCE May 1991 Major Subject: Geology TIIE EFFECT OI RAII' REMOVAL AND DAM CONSTRUCTION ON TI-IE LOWER COLORADO RIVER, TEXAS A Thesis by I IARTOPO Approved as to styic and content by: Christ her C. Mathewson (Chair of Committee) John R...

  4. Overview of engineering and agricultural design considerations of the Raft River soil-warming and heat-dissipation experiment

    SciTech Connect (OSTI)

    Stanley, N.E.; Engen, I.A.; Yrene, C.S.

    1982-04-01T23:59:59.000Z

    The engineering and agricultural considerations of the Raft River soil-warming and heat-dissipation experiment are presented. The experiment is designed to investigate the thermal characteristics of a subsurface pipe network for cooling power-plant condenser effluent, and crop responses to soil warming in an open-field plot. The subsurface soil-warming system is designed to dissipate approximately 100 kW of heat from circulating, 38/sup 0/C geothermal water. Summer operating conditions in the Raft River area, located on the Intermountain Plateau are emphasized. Design is based on the thermal characteristics of the local soil, the climate of the Raft River Valley, management practices for normal agriculture, and the need for an unheated control plot. The resultant design calls for 38-mm polyvinyl chloride (PVC) pipe in a grid composed of parallel loops, for dissipating heat into a 0.8-hectare experimental plot.

  5. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    SciTech Connect (OSTI)

    Black, B.A.

    1980-09-01T23:59:59.000Z

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leads to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.

  6. Internal Technical Report, Summary of Raft River Supply and Injection System Operational History

    SciTech Connect (OSTI)

    Walrath, L.F.

    1980-01-01T23:59:59.000Z

    Asbestos-cement (Transite) pipe was installed at the Raft River Geothermal Area in the fall of 1975 and has been used extensively since. The pipe is used to transfer water from the well sites to the testing areas, reserve pits, and reinjection wells. The pipeline was designed to transport approximately 300 F water at 150 psi over a period of time for the present testing program and later, for the 5 MW(e) Raft River Pilot Plant. Numerous line failures have occurred since the original lines were installed. Due to the various causes of the line failures and the extensive downtime which has occurred because of them, further examination of Transite pipe is necessary to determine its future use as completion of the 5 MW(e) pilot plant approaches. The Conversion Technology and Engineering Branch has completed a preliminary study of the effects of S&I system transients on Transite pipe (re: OJD-7-79). Recommendations are proposed to conduct further studies and tests; however, no funding is presently available due to limitations in the budget for the 5 MW(e) pilot plant project. The Mechanical Design Branch is continuing design analysis in an effort to gather information to determine maximum warmup rates for the S&I system.

  7. Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant

    SciTech Connect (OSTI)

    Bamberger, J.A.; Allemann, R.T.

    1982-07-01T23:59:59.000Z

    A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

  8. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    SciTech Connect (OSTI)

    Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

    2011-02-01T23:59:59.000Z

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

  9. Internal Technical Report, 1981 Annual Report, An Analysis of the Response of the Raft River Geothermal Site Monitor Wells

    SciTech Connect (OSTI)

    Thurow, T.L.; Large, R.M.; Allman, D.W.; Tullis, J.A.; Skiba, P.A.

    1982-04-01T23:59:59.000Z

    A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect on the water quality of the shallow aquifers.

  10. Flow Test At Raft River Geothermal Area (2008) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro Inc IosilEnergyEnergyOpenUsefulnessfieldRaft

  11. Groundwater Sampling At Raft River Geothermal Area (1974-1982) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergy Information Groundwater Sampling At Raft

  12. Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma: EnergyEnergyInformation Raft

  13. Raft River monitor well potentiometric head responses and water quality as

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometricsRaftIIIrelated

  14. Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho

    SciTech Connect (OSTI)

    Nathenson, M.; Urban, T.C.; Diment, W.H.; Nehring, N.L.

    1980-01-01T23:59:59.000Z

    The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150/sup 0/C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 ..mu..cal/cm/sup 2/ sec or slightly higher and that temperature gradients range from 50/sup 0/ to 60/sup 0/C/km in the sediments, tuffs, and volcanic debris that fill the valley. Within and close to the geothermal system, temperature gradients in intermediate-depth drill holes (100 to 350 m) range from 120/sup 0/ to more than 600/sup 0/C/km, the latter value found close to an artesian hot well that was once a hot spring. Temperatures measured in three deep wells (1 to 2 km) within the geothermal area indicate that two wells are in or near an active upflow zone, whereas one well shows a temperature reversal. Assuming that the upflow is fault controlled, the flow is estimated to be 6 liter/sec per kilometer of fault length. From shut-in pressure data and the estimated flow, the permeability times thickness of the fault is calculated to be 2.4 darcy m. Chemical analyses of water samples from old flowing wells, recently completed intermediate-depth drill holes, and deep wells show a confused pattern. Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

  15. Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site

    SciTech Connect (OSTI)

    Murphy, R.W.

    1983-04-01T23:59:59.000Z

    A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

  16. Idaho_RaftRiver301

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude:Peak1 Site

  17. Idaho_RaftRiver302

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude:Peak1 Site2

  18. Idaho_RaftRiver303

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude:Peak1

  19. RAFT Regional Algal Feedstock Testbed

    Broader source: Energy.gov [DOE]

    Breakout Session 3BIntegration of Supply Chains III: Algal Biofuels Strategy RAFT Regional Algal Feedstock Testbed Kimberly Ogden, Professor, University of Arizona, Engineering Technical Lead, National Alliance for Advanced Biofuels and Bioproducts

  20. Sandia National Laboratories: inverted metamorphic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inverted metamorphic Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership,...

  1. Schlumberger soundings in the Upper Raft River and Raft River Valleys,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir Jump to: navigation,Delta Jump

  2. Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeaf Smith830603°,(Smartexploration well

  3. Lipid raft: A floating island of death or survival

    SciTech Connect (OSTI)

    George, Kimberly S. [Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701 (United States) [Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701 (United States); Department of Chemistry, Marietta College, Marietta, OH 45750 (United States); Wu, Shiyong, E-mail: wus1@ohio.edu [Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701 (United States)] [Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701 (United States)

    2012-03-15T23:59:59.000Z

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid raft microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid raft disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. -- Highlights: ? The role of lipid rafts in apoptosis ? The pro- and anti-apoptotic effects of lipid raft disruption ? Cancer treatments targeting lipid rafts.

  4. The Structure of Cholesterol in Lipid Rafts

    E-Print Network [OSTI]

    Laura Toppozini; Sebastian Meinhardt; Clare L. Armstrong; Zahra Yamani; Norbert Kucerka; Friederike Schmid; Maikel C. Rheinstaedter

    2014-12-16T23:59:59.000Z

    Rafts, or functional domains, are transient nano- or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking and lipid/protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short-lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules we observe raft-like structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raft-like structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  5. Preservation of an extreme transient geotherm in the Raft River...

    Open Energy Info (EERE)

    (DFluid -85) indicate the presence of meteoric fluids during detachment dynamics. Recrystallized grain-shape fabrics and quartz c-axis fabric patterns reveal a large...

  6. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    techniques required to form and sustain EGS reservoirs including combined thermal and hydraulic stimulation and numerical modeling and Improve the performance and output of the...

  7. Raft River monitor well potentiometric head responses and water...

    Open Energy Info (EERE)

    wells that are sampled one season cannot be sampled the next. In addition, information on well construction, completion, and production is often unreliable or not available. These...

  8. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Authors Zohdy, A.A.R.; Jackson, D.B.; Bisdorf and R.J. Published Journal...

  9. Borehole geophysics evaluation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Authors Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace and T.L. Published...

  10. Total field aeromagnetic map of the Raft River known Geothermal...

    Open Energy Info (EERE)

    IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Authors Geological Survey, Denver and CO (USA) Published DOE Information Bridge, 11...

  11. Field Mapping At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BVEnergy Information Shevenell, Et

  12. Field Mapping At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BVEnergy Information Shevenell, EtInformation

  13. Field Mapping At Raft River Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BVEnergy Information Shevenell,

  14. Field Mapping At Raft River Geothermal Area (1993) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BVEnergy Information Shevenell,Information the

  15. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG2 Energy Jump to:GEE

  16. Geochemical modeling of the Raft River geothermal field | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations In The

  17. Geothermal Modeling of the Raft River Geothermal Field | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd to libraryOpen EnergyInformation Field

  18. Geothermometry At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell2008) | Open Energy Information

  19. Ground Magnetics At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:InformationGrotonOpenGround| Open2004)

  20. Geophysical logging case history of the Raft River geothermal...

    Open Energy Info (EERE)

    degree of alteration and the density of fractures. Thus, one can determine the relevant data necessary to assess a geothermal reservoir in similar rock types and use cross plots...

  1. Hydrochemistry of selected parameters at the Raft River KGRA...

    Open Energy Info (EERE)

    linear regression analyses on sets of paired data from various laboratories. The chemical data collected from the deep geothermal wells indicates that a two reservoir system exists...

  2. Acoustic Logs At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00AboutAchille,Acme,Information permit

  3. Aeromagnetic Survey At Raft River Geothermal Area (1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | OpenInformation Zablocki,

  4. Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) |Agawam,Ahmeek,Wisconsin: EnergyAirAirShares

  5. Chemical Logging At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County, Washington:

  6. Exploratory Well At Raft River Geothermal Area (1950) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to:Analogs For1991)

  7. Exploratory Well At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to:Analogs For1991)Information

  8. Exploratory Well At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to:Analogs

  9. Update on the Raft River Geothermal Reservoir | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy) Redirect page JumpCorpUniversityLP

  10. Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc. Place: Potsdam,OpenAl., 1984)

  11. Hydrochemistry of selected parameters at the Raft River KGRA, Cassia

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project JumpHyEnergyHydrocarbon

  12. Injectivity Test At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida:InerjyIngham

  13. Interpretation of electromagnetic soundings in the Raft River geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP JumpInformationwells

  14. Petrography of late cenozoic sediments, Raft River geothermal field, Idaho

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformation USPerseus LLCPeru:| Open Energy

  15. Petrography Analysis At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources Jump to:PersonalPetroSun Biofuels

  16. Petrography Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources Jump to:PersonalPetroSun BiofuelsInformation

  17. Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy|

  18. Raft River II Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGSRadium Hot SpringsOpen

  19. Raft River geoscience case study- appendixes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGSRadium Hot

  20. Self Potential Measurements At Raft River Geothermal Area (1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir JumpCalifornia | OpenSelawik| Open

  1. Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPowerSilcio SA JumpProjectProblem

  2. Electromagnetic Soundings At Raft River Geothermal Area (1977) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldorado IvanpahGasProject)2001) | OpenEnergy

  3. Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence Seed LLCShores,ActivityNufcorEnergy2003)

  4. Telluric Survey At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement Inc Place:InformationTelluric Survey

  5. The investigation of anomalous magnetization in the Raft River valley,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCityGreenElectricityOpen|OpenEIIdaho

  6. Tracer Testing At Raft River Geothermal Area (1983) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePtyTown HallInformation develop

  7. Tracer Testing At Raft River Geothermal Area (1984) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePtyTown HallInformation

  8. Core Analysis At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis At Geysers Area (Boitnott,

  9. Core Analysis At Raft River Geothermal Area (1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis At Geysers Area (Boitnott,Information

  10. DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing,DA (Distribution

  11. Development Wells At Raft River Geothermal Area (2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas:DetroitOpen Energy1987) |Jump

  12. Thermochronometry At Raft River Geothermal Area (1993) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyo Jump to: navigation,Information

  13. Conceptual Model At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use of Solar Resourceboiling zones

  14. Conceptual Model At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use of Solar Resourceboiling

  15. Conceptual Model At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use of Solar

  16. Conceptual Model At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use of SolarInformation relevant

  17. Conceptual Model At Raft River Geothermal Area (1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use of SolarInformation

  18. Conceptual Model At Raft River Geothermal Area (1983) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use of

  19. Conceptual Model At Raft River Geothermal Area (1987) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use ofInformation kinematics of

  20. Conceptual Model At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use ofInformation kinematics

  1. Core Analysis At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump| OpenInformation Permitted

  2. Core Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump| OpenInformation

  3. Cuttings Analysis At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and HeatOpenInformation 2)| OpenCuttings

  4. Borehole geophysics evaluation of the Raft River geothermal reservoir |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022Illinois: Energy Resources JumpBoone,Biofuels

  5. Borehole geophysics evaluation of the Raft River geothermal reservoir,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022Illinois: Energy Resources JumpBoone,BiofuelsIdaho |

  6. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometrics

  7. Reconnaissance geothermal exploration at Raft River, Idaho from thermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,Open EnergyRecent content in|infrared

  8. Final Technical Resource Confirmation Testing at the Raft River Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County, Minnesota: Energy ResourcesJump

  9. Conceptual Model At Raft River Geothermal Area (1988) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Open Energy InformationJerseyOpen2003)

  10. Conceptual Model At Raft River Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Open Energy

  11. Deep drilling data Raft River geothermal area, Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b NoCounty, Nevada | Open

  12. Exploratory Well At Raft River Geothermal Area (1975) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to: navigation,Information 7 -

  13. FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FAS Technologies LLC

  14. Fault Mapping At Raft River Geothermal Area (1993) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFREDJump

  15. Hierarchical organization of chiral rafts in colloidal membranes

    E-Print Network [OSTI]

    Prerna Sharma; Andrew Ward; T. Gibaud; Michael F. Hagan; Zvonimir Dogic

    2014-09-09T23:59:59.000Z

    Liquid-liquid phase separation is ubiquitous in suspensions of nanoparticles, proteins and colloids. With a few notable exceptions, surface-tension-minimizing liquid droplets in bulk suspensions continuously coalesce, increasing in size without bound until achieving macroscale phase separation. In comparison, the phase behavior of colloids, nanoparticles or proteins confined to interfaces, surfaces or membranes is significantly more complex. Inclusions distort the local interface structure leading to interactions that are fundamentally different from the well-studied interactions mediated by isotropic solvents. Here, we investigate liquid-liquid phase separation in monolayer membranes composed of dissimilar chiral colloidal rods. We demonstrate that colloidal rafts are a ubiquitous feature of binary colloidal membranes. We measure the raft free energy landscape by visualizing its assembly kinetics. Subsequently, we quantify repulsive raft-raft interactions and relate them to directly imaged raft-induced membrane distortions, demonstrating that particle chirality plays a key role in this microphase separation. At high densities, rafts assemble into cluster crystals which constantly exchange monomeric rods with the background reservoir to maintain a self-limited size. Lastly, we demonstrate that rafts can form bonds to assemble into higher-order supra-structures. Our work demonstrates that membrane-mediated liquid-liquid phase separation can be fundamentally different from the well-characterized behavior of bulk liquids. It outlines a robust membrane-based pathway for assembly of monodisperse liquid clusters which is complementary to existing methods which take place in bulk suspensions. Finally, it reveals that chiral inclusions in membranes acquire long-ranged repulsive interactions, which might play a role in stabilizing assemblages of finite size.

  16. Lipid Rafts Are Enriched in Arachidonic Acid and Plasmenylethanolamine and Their Composition Is Independent of Caveolin-1 Expression: A Quantitative

    E-Print Network [OSTI]

    Pike, Linda J.

    Lipid Rafts Are Enriched in Arachidonic Acid and Plasmenylethanolamine and Their CompositionVised Manuscript ReceiVed December 11, 2001 ABSTRACT: Lipid rafts are specialized cholesterol-enriched membrane and nondetergent lipid rafts from caveolin-1-expressing and nonexpressing cells. Lipid rafts are enriched

  17. GEOL 2520 IGNEOUS AND METAMORPHIC PETROLOGY COURSE OUTLINE

    E-Print Network [OSTI]

    Chakhmouradian, Anton

    GEOL 2520 IGNEOUS AND METAMORPHIC PETROLOGY COURSE OUTLINE Instructor: Dr. Anton Chakhmouradian (Rm text: Winter, J.D. (2009): "Principles of Igneous and Metamorphic Petrology", 2nd Edition. Prentice of the Earth's mantle and crust. The origin of igneous and metamorphic rocks. IGNEOUS PETROLOGY The origin

  18. Sedimentary processes of the Red River between Denison Dam, TX and Alexandria, LA

    E-Print Network [OSTI]

    Weirich, Thomas Moody - Kenyon

    1990-01-01T23:59:59.000Z

    Figure 1. Location map of study area along the Red River. . . . . . . . . . . . . 2 Figure 2. Location map of reach blocked by the natural raft. . . . . . . . . 12 Figure 3. Suspended sediment concentration and volumetric flow diagram. Figure 4... and sinuosity values between Temple, AR and Alexandria, LA. Table 3. Sinuosity values of the Red River course 1892, 1938, 1983. . 62 Table 4. Sieve analysis of alluvial flood plain samples. . . . . . . . . . . . . . . 76 INTRODUCTION The Red River...

  19. age metamorphic history: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TRFs) shorten predictably with age in a particular tissue Vleck, Carol 11 Thermal and Impact History of the H Chondrite Parent Asteroid during Metamorphism: Constraints from...

  20. The Virtual Raft Project: A Mobile Interface for Interacting with Communities of Autonomous Characters

    E-Print Network [OSTI]

    Tomlinson, Bill

    Dimensional Graphics and Realism: Animation INTRODUCTION The Virtual Raft Project is a multidisciplinary a virtual environment inhabited by a small community of animated characters. These characters exhibit simple this by means of a virtual "raft" a Tablet PC that can be moved in physical space by a human interactor. When

  1. argentina geothermobarometry metamorphic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    argentina geothermobarometry metamorphic First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 J. metamorphic...

  2. Impact of boundaries on velocity profiles in bubble rafts

    E-Print Network [OSTI]

    Yuhong Wang; Kapilanjan Krishan; Michael Dennin

    2006-01-31T23:59:59.000Z

    Under conditions of sufficiently slow flow, foams, colloids, granular matter, and various pastes have been observed to exhibit shear localization, i.e. regions of flow coexisting with regions of solid-like behavior. The details of such shear localization can vary depending on the system being studied. A number of the systems of interest are confined so as to be quasi-two dimensional, and an important issue in these systems is the role of the confining boundaries. For foams, three basic systems have been studied with very different boundary conditions: Hele-Shaw cells (bubbles confined between two solid plates); bubble rafts (a single layer of bubbles freely floating on a surface of water); and confined bubble rafts (bubbles confined between the surface of water below and a glass plate on top). Often, it is assumed that the impact of the boundaries is not significant in the ``quasi-static limit'', i.e. when externally imposed rates of strain are sufficiently smaller than internal kinematic relaxation times. In this paper, we directly test this assumption for rates of strain ranging from $10^{-3}$ to $10^{-2} {\\rm s^{-1}}$. This corresponds to the quoted quasi-static limit in a number of previous experiments. It is found that the top plate dramatically alters both the velocity profile and the distribution of nonlinear rearrangements, even at these slow rates of strain.

  3. asteroidal thermal metamorphism: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Thermal and Impact History of the H Chondrite Parent Asteroid during Metamorphism: Constraints from Metallic...

  4. ORIGINAL PAPER Titanium-and water-rich metamorphic olivine in high-pressure

    E-Print Network [OSTI]

    Jung, Haemyeong

    ORIGINAL PAPER Titanium- and water-rich metamorphic olivine in high-pressure serpentinites from 2013 Springer-Verlag Berlin Heidelberg 2014 Abstract Titanium- and water-rich metamorphic olivine (Fo

  5. Optimized Triple-Junction Solar Cells Using Inverted Metamorphic Approach (Presentation)

    SciTech Connect (OSTI)

    Geisz, J. F.

    2008-11-01T23:59:59.000Z

    Record efficiencies with triple-junction inverted metamorphic designs, modeling useful to optimize, and consider operating conditions before choosing design.

  6. Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: A case study

    E-Print Network [OSTI]

    Mcdonough, William F.

    Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites-zone metamorphism far removed from the pluton to partially melted rocks adjacent to the pluton. Lithium on the aureole scale. Published by Elsevier B.V. Keywords: Lithium; Isotope fractionation; Metamorphic

  7. Degassing of metamorphic carbon dioxide from the Nepal Himalaya

    E-Print Network [OSTI]

    Derry, Louis A.

    Degassing of metamorphic carbon dioxide from the Nepal Himalaya Matthew J. Evans Chemistry at the foot of the Higher Himalaya near the Main Central Thrust (MCT), Nepal Himalaya. We have sampled hot the Nepal Himalaya, Geochem. Geophys. Geosyst., 9, Q04021, doi:10.1029/2007GC001796. 1. Introduction [2

  8. The effect of raft removal and dam construction on the lower Colorado River, Texas

    E-Print Network [OSTI]

    Hartopo

    1991-01-01T23:59:59.000Z

    dredged a channel around it in November 1853. As a result, steamers could, for the first time, ply directly from Indianola to Columbus and La Grange through a relatively safe channel in March, 1854 (Clay, 1949). The most active period of navigation...

  9. Temperature, thermal-conductivity, and heat-flux data,Raft River...

    Open Energy Info (EERE)

    conductivity; United States; USGS Authors Urban, T.C.; Diment, W.H.; Nathenson, M.; Smith, E.P.; Ziagos, J.P.; Shaeffer and M.H. Published Open-File Report - U. S. Geological...

  10. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.Space DataEnergyCompressed

  11. Flow Test At Raft River Geothermal Area (1979) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro Inc IosilEnergyEnergyOpenUsefulness useful

  12. Flow Test At Raft River Geothermal Area (2004) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro Inc IosilEnergyEnergyOpenUsefulness

  13. Flow Test At Raft River Geothermal Area (2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro Inc IosilEnergyEnergyOpenUsefulnessfield

  14. Geology and alteration of the Raft River geothermal system, Idaho | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations2002)| Open

  15. Geophysical logging case history of the Raft River geothermal system, Idaho

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,JumpValley near| Open Energy

  16. Ground Gravity Survey At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:InformationGroton Jump2004)Information

  17. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...

    Open Energy Info (EERE)

    to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data...

  18. Seismic refraction study of the Raft River geothermal area, Idaho | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, NewSeeger Engineering

  19. Well Log Techniques At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002)

  20. 10 Million U.S. Department of Energy Grant Program Begins at Raft River |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource HistorykV remote controlOpen Energy

  1. Preservation of an extreme transient geotherm in the Raft River detachment

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-| Open Energyshear zone |

  2. Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIremNot2007) ||Al.,(WoldeGabriel

  3. Concept Testing and Development at the Raft River Geothermal Field, Idaho

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAs theFebruary 24,ofOctober 2013 Peer Review

  4. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAs theFebruary 24,ofOctober 2013 Peer

  5. Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategyHayesHelio MicroHeliotronics Jump

  6. Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen EnergyAl.,Open

  7. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptember 3,Bringing youProgram 2013

  8. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptember 3,Bringing youProgram

  9. Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGSRadium Hot SpringsOpen Energy

  10. Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGSRadium Hot SpringsOpen EnergyOpen

  11. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewable EnergyobtainedRentricitySocialProject,

  12. Resistivity measurements before and after injection Test 5 at Raft River

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal FieldKGRA, Idaho. Final report

  13. Rheological control on the initial geometry of the Raft River detachment

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal FieldKGRA,Reykjavík

  14. Ground Gravity Survey At Raft River Geothermal Area (1957-1961) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000) ExplorationAl.,

  15. Groundwater Sampling At Raft River Geothermal Area (2004-2011) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) |1978) |

  16. Micro-Earthquake At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc Jump to:Michigan/WindOpen Energy2010)Information

  17. Micro-Earthquake At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc Jump to:Michigan/WindOpen

  18. Micro-Earthquake At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc Jump to:Michigan/WindOpenInformation seismicity

  19. Modeling-Computer Simulations At Raft River Geothermal Area (1977) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel, Et Al., 2011) |

  20. Modeling-Computer Simulations At Raft River Geothermal Area (1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel, Et Al., 2011) |Energy

  1. Modeling-Computer Simulations At Raft River Geothermal Area (1980) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel, Et Al., 2011)

  2. Surface Water Sampling At Raft River Geothermal Area (1973) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place:Mclaren, 2010) | Open|Open

  3. Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma: EnergyEnergy

  4. Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma: EnergyEnergyInformation

  5. An early history of pure shear in the upper plate of the raft river

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo,TransmissionOperations atmetamorphic

  6. Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide |Aubrey,

  7. Subsurface geology of the Raft River geothermal area, Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault Propagation And InteractionInformation geology

  8. Temperature, thermal-conductivity, and heat-flux data,Raft River area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement Inc

  9. Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe year open (energy) data wentOpen Energy

  10. Total field aeromagnetic map of the Raft River known Geothermal Resource

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpenHabitatandWindTorayArea, Idaho

  11. Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources(Richards, Et Al., 2010)

  12. Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC JumpWoodlands,Energy Information Thermal

  13. Modeling-Computer Simulations At Raft River Geothermal Area (1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin,| OpenEnergy

  14. Fluid Inclusion Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOEARRAInformation

  15. Two-dimensional simulation of the Raft River geothermal reservoir and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships Jump to:TwiggsJemezwells. (SINDA-3G program)

  16. Compound and Elemental Analysis At Raft River Geothermal Area (1981) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:GovernorCommons(Grigsby, Et|(Evans, Et Al.,1990)

  17. Direct-Current Resistivity Survey At Raft River Geothermal Area (1975) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Energy Information At1986) | Open

  18. Exploring the Raft River geothermal area, Idaho, with the dc resistivity

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to: navigation,Information 7 -Open

  19. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FAS Technologies LLCHYDROGEOLOGICAL

  20. Fault and joint geometry at Raft River geothermal area, Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFREDJumpInformation joint

  1. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    SciTech Connect (OSTI)

    Kosicek, Marko, E-mail: marko.kosicek@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)] [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Malnar, Martina, E-mail: martina.malnar@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)] [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Goate, Alison, E-mail: goate@icarus.wustl.edu [Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 (United States)] [Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 (United States); Hecimovic, Silva, E-mail: silva.hecimovic@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)] [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)

    2010-03-12T23:59:59.000Z

    It has been suggested that cholesterol may modulate amyloid-{beta} (A{beta}) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD ({beta}-amyloid precursor protein (APP), {beta}-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/A{beta} formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1{sup -/-} cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, {gamma}-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards A{beta} occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  2. Impact of boundaries on velocity profiles in bubble rafts Yuhong Wang, Kapilanjan Krishan, and Michael Dennin

    E-Print Network [OSTI]

    Dennin, Michael

    92697-4575 (Dated: November 7, 2005) Under conditions of sufficiently slow flow, foams, colloids, and an important issue in these systems is the role of the confining boundaries. For foams, three basic systems); and confined bubble rafts (bubbles confined between the surface of water below and a glass plate on top). Often

  3. Provenance study and environments of deposition of the Pennslyvanian-Permian Wood River Formation, south-central Idaho, and the paleotectonic character of the Wood River basin

    E-Print Network [OSTI]

    Dean, Christopher William

    1982-01-01T23:59:59.000Z

    and provenance of the conglomerates in the Big Wood River and Fish Creek Reservoir regions of south-central Idaho is needed. Distinguishing between marine and non-marine strata and determining source terranes will aid in reconstructing Wood River basin... paleogeography and paleo- tectonics. Three source areas have been postulated in recent years: 1, The Antler highland to the west, containing volcanics and low grade metamorphic rocks (Bissell, 1960; Churkin, 1962; Roberts and Thomasson, 1964). 2. The stable...

  4. Effects of sublethal methoprene dosages on egg rafts and reproductive tracts of female Culex quinquefasciatus say (Diptera: Culicidae)

    E-Print Network [OSTI]

    Hausser, Nicole Lynne

    1995-01-01T23:59:59.000Z

    together by an extrachorionic secretion located between the tubercles and by mechanical interdigitation of tubercles. Mosquitoes exposed to sublethal doses of the insect growth regulator, methoprene, laid egg rafts that were less organized and more loosely...

  5. Coal metamorphism in the upper portion of the Pennsylvanian Sturgis Formation in Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.

    1983-12-01T23:59:59.000Z

    Coals from the Pennsylvanian upper Sturgis Formation (Mississippian and Virginian) were sampled from a borehole in Union County, western Kentucky. The coals exhibited two discrete levels of metamorphism. The lower rank coals of high-volatile C bituminous rank were assumed to represent the normal level of metamorphism. A second set of coals of high-volatile A bituminous rank was found to be associated with sphalerite, chlorite, and twinned calcite. The latter mineral assemblages indicate that hydrothermal metamorphism was responsible for the anomalous high rank. Consideration of the sphalerite fluid-inclusion temperatures from nearby ores and coals and the time - temperature aspects of the coal metamorphism suggests that the hydrothermal metamorphic event was in the 150 to 200 C range for a brief time (10/sup 5/-10/sup 5/and yr), as opposed to the longer term (25-50m yr) 60 to 75 C ambient metamorphism.

  6. Preparation of transition metal nanoparticles and surfaces modified with (CO) polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III, Charles L. (Hattiesburg, MS); Lowe, Andrew B. (Hattiesburg, MS); Sumerlin, Brent S. (Pittsburgh, PA)

    2006-10-25T23:59:59.000Z

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surface modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a collidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as fuctionalization with a variety of different chemical groups, expanding their utility and application.

  7. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21T23:59:59.000Z

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  8. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III, Charles L. (Hattiesburg, MS); Lowe, Andrew B. (Hattiesburg, MS); Sumerlin, Brent S. (Pittsburgh, PA)

    2011-12-27T23:59:59.000Z

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  9. Petrologic constraints on the unroofing history of the Funeral Mountain Metamorphic Core Complex, California

    E-Print Network [OSTI]

    Hodges, K. V.; Walker, J. Douglas

    1990-06-10T23:59:59.000Z

    metamorphic core, thermobarometry and thermodynamic modeling of garnet zonation define a P-T trajectory showing: (1) attainment of peak metamorphic conditions at 800850 K and 8001000 MPa (3037 km depths); followed by (2) 400 to 600 MPa of decompression...

  10. Electrical Degradation of InAlAs/InGaAs Metamorphic

    E-Print Network [OSTI]

    del Alamo, Jess A.

    Electrical Degradation of InAlAs/InGaAs Metamorphic High-Electron Mobility Transistors S. D Introduction Electrical Degradation of mHEMTs Degradation of TLMs Degradation Mechanisms #12;Metamorphic Degradation of InAlAs/InGaAs mHEMTs Little known about reliability of mHEMTs Observations in InP HEMTs

  11. On the importance of minding ones Ps and Ts: metamorphic processes and quantitative petrology

    E-Print Network [OSTI]

    Sandiford, Mike

    On the importance of minding ones Ps and Ts: metamorphic processes and quantitative petrology M. BROWN,1 R. W. WHITE2 AND M. SANDIFORD3 1 Laboratory for Crustal Petrology, Department of Geology phase equilibria studies. However, Rogers contributions to metamorphic petrology go well beyond

  12. Late miocene/pliocene origin of the inverted metamorphism of the Central Himalaya

    SciTech Connect (OSTI)

    Harrison, T.M.; Ryerson, F.J.; LeFort, P.; Yin, A. Lovera, O.M.

    1997-01-01T23:59:59.000Z

    The spatial association of intracontinental thrusting and inverted metamorphism, recognized in the Himalaya more than a century ago, has inspired continuing efforts to identify their causal relationship. Perhaps the best known sequence of inverted metamorphism is that found immediately beneath the Himalayan Main Central Thrust (MCT), generally thought to have been active during the Early Miocene. It has been widely assumed that the pattern of inverted metamorphism also developed at that time. Using a new approach, in situ Th-Pb dating of monazite included in garnet, we have discovered that the peak metamorphic recrystallization recorded in the footwall of the MCT fault occurred at ca. 5 Ma. The apparent inverted metamorphism resulted from activation of a broad shear zone beneath the MCT zone which juxtaposed two right-way-up metamorphic sequences. Recognition of this remarkably youthful phase of metamorphism resolves outstanding problems in Himalayan tectonics, such as why the MCT (and not the more recently initiated thrusts) marks the break in slope of the present day mountain range, and transcends others, such as the need for exceptional conditions to explain Himalayan anatexis.

  13. A key extensional metamorphic complex reviewed and restored: The Menderes Massif of western Turkey

    E-Print Network [OSTI]

    Utrecht, Universiteit

    A key extensional metamorphic complex reviewed and restored: The Menderes Massif of western Turkey of the Menderes Massif in western Turkey, and subsequently a map-view restoration of its Neogene unroofing history

  14. Inverted Metamorphic Cell Development: Cooperative Research and Development Final Report, CRADA Number CRD-05-156

    SciTech Connect (OSTI)

    Wanlass, M.

    2012-05-01T23:59:59.000Z

    This CRADA targeted technology transfer of the inverted metamorphic multi-junction (IMM) solar cell innovation from NREL to Emcore Photovoltaics. The technology transfer was successfully completed. Additionally, NREL provided materials characterization of solar cell structures produced at Emcore.

  15. Tectono-metamorphic evolution of the Wadi Hafafit Culmination (central Eastern Desert, Egypt). Implication for Neoproterozoic

    E-Print Network [OSTI]

    Siebel, Wolfgang

    Tectono-metamorphic evolution of the Wadi Hafafit Culmination (central Eastern Desert, Egypt.O. 530 El-Maadi, Cairo, Egypt Institut fr Geowissenschaften, Universitt Tbingen Sigwartstr. 10, D

  16. Pennsylvania Scenic Rivers Program

    Broader source: Energy.gov [DOE]

    Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the...

  17. Geochronology of the Sikombe Granite, Transkei, Natal Metamorphic Province, South Africa

    E-Print Network [OSTI]

    Patterson, William P.

    Geochronology of the Sikombe Granite, Transkei, Natal Metamorphic Province, South Africa Robert J of the syntectonic, gneissose Sikombe Granite from northeastern Transkei (Eastern Cape Province). The outcrops form of three samples of the Sikombe Granite give consistent, positive Nd values (+4 at t = 1180 Ma) showing

  18. Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite

    E-Print Network [OSTI]

    Gibson, Dan

    thermal ionisation mass spectrometry (ID-TIMS) UPb age data commonly recorded from a single rock sample from the Himalaya of Pakistan are examined. Each sample exhibits an age dispersion of between 1; Zoning; Metamorphism; Laser ablation; Plasma-source mass spectrometry 1. Introductio

  19. Nitrogen isotopic evolution of carbonaceous matter during metamorphism: Methodology and preliminary results

    E-Print Network [OSTI]

    Cartigny, Pierre

    their extraction from the rock. In view of that, a preliminary sealed-tube investigation of the organic nitrogen). However, with kerogen maturation and following carbonaceous matter (CM) metamorphism, a significant; Sucha et al., 1994). 15 N of this neo-formed mineral nitrogen can be different from its organic source

  20. Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material

    E-Print Network [OSTI]

    Avouac, Jean-Philippe

    Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of central and far-western Nepal, including data from near the MCT zone, where a comparison with conventional on the thermal evolution of the Himalaya in Nepal using the RSCM method. This emblematic geological setting

  1. Red River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

  2. The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells

    SciTech Connect (OSTI)

    De Gregorio, Francesca; Pellegrino, Mario [Department of Physiological Sciences, University of Pisa (Italy); Picchietti, Simona; Belardinelli, Maria C. [Department of Environmental Sciences, Tuscia University, Viterbo (Italy); Taddei, Anna Rita [Interdepartmental Centre for Electron Microscopy, Tuscia University, Viterbo (Italy); Fausto, Anna Maria [Department of Environmental Sciences, Tuscia University, Viterbo (Italy); Rossi, Mario [Department of Experimental Medicine, University of L'Aquila, L'Aquila (Italy); Maggio, Roberto, E-mail: roberto.maggio@univaq.it [Department of Experimental Medicine, University of L'Aquila, L'Aquila (Italy); Giorgi, Franco [Department of Neuroscience, University of Pisa, Pisa (Italy)

    2011-06-01T23:59:59.000Z

    DDT is a highly lipophilic molecule known to deplete membrane rafts of their phosphoglycolipid and cholesterol contents. However, we have recently shown that DDT can also alter the thyroid homeostasis by inhibiting TSH receptor (TSHr) internalization. The present study was undertaken to verify whether DDT goitrogenic effects are due to the insecticide acting directly on TSHr or via alteration of the membrane rafts hosting the receptor itself. Our results demonstrate that, in CHO-TSHr transfected cells, TSHr is activated in the presence of TSH, while it is inhibited following DDT exposure. DDT can also reduce the endocytic vesicular traffic, alter the extension of multi-branched microvilli along their plasma membranes and induce TSHr shedding in vesicular forms. To verify whether TSHr displacement might depend on DDT altering the raft constitution of CHO-TSHr cell membranes the extent of TSHr and lipid raft co-localization was examined by confocal microscopy. Evidence shows that receptor/raft co-localization increased significantly upon exposure to TSH, while receptors and lipid rafts become dislodged on opposite cell poles in DDT-exposed CHO-TSHr cells. As a control, under similar culturing conditions, diphenylethylene, which is known to be a lipophilic substance that is structurally related to DDT, did not affect the extent of TSHr and lipid raft co-localization in CHO-TSHr cells treated with TSH. These findings corroborate and extend our view that, in CHO cells, the DDT disrupting action on TSHr is primarily due to the insecticide acting on membranes to deplete their raft cholesterol content, and that the resulting inhibition on TSHr internalization is due to receptor dislodgement from altered raft microdomains of the plasma membrane. - Highlights: >DDT is a pesticide with a severe environmental impact >Epidemiologic correlation exists between exposition to DDT and thyroid dysfunction >DDT is a lipophilic molecule that has been shown to inhibit TSH receptor function >DDT depletes membrane raft cholesterol content and by this way inhibits TSH receptor

  3. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  4. Maine Rivers Policy (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as outstanding...

  5. Wabash River Heritage Corridor (Indiana)

    Broader source: Energy.gov [DOE]

    The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee River, is considered a protected area, where...

  6. Hydrothermal metamorphism and low-temperature alteration on the Mid-Atlantic ridge

    E-Print Network [OSTI]

    Peron, Philippe Raymond

    1978-01-01T23:59:59.000Z

    occur to form hydrated rocks. Oxygen isotopic data from hydrothermally metamorphosed rocks show that hydrothermal fluids are derived from a low g 0 source such as sea- 18 water rather than the higher $0 source typical for mantle-derived water... inferred hydrothermal fluid vent sites. The style of alteration of these rocks ranges from weathering at ambient ocean floor temperatures to metamorphism at greenshist facies conditions, The alteration products associated with the weathered ba- salts...

  7. Chemical and light-stable isotope characteristics of waters from the raft

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford, Massachusetts:fluids:river

  8. Pecos River Compact (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

  9. Canadian River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by the member states, the Compact was subsequently...

  10. Platte River Cooperative Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY, CO, DOE...

  11. 56 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 1, JANUARY 2012 Metamorphic GaAsP and InGaP Solar Cells on GaAs

    E-Print Network [OSTI]

    Haller, Gary L.

    56 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 1, JANUARY 2012 Metamorphic GaAsP and InGaP Solar bandgap range. Index Terms--Epitaxy, GaAsP, InGaP, metamorphic. I. INTRODUCTION TODAY'S highest efficiency

  12. Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion

    E-Print Network [OSTI]

    Brandstaetter, Hemma; Kishi-Itakura, Chieko; Tumbarello, David A.; Manstein, Dietmar J.; Buss, Folma

    2015-01-28T23:59:59.000Z

    trafficking, disrupts autophagosome-lysosome fusion Hemma Brandstaetter a , Chieko Kishi-Itakura a , David A Tumbarello ac , Dietmar J Manstein b & Folma Buss a a Cambridge Institute for Medical Research; University of Cambridge; Cambridge, UK b Institute... this article: Hemma Brandstaetter, Chieko Kishi-Itakura, David A Tumbarello, Dietmar J Manstein & Folma Buss (2014) Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion, Autophagy, 10...

  13. PII S0016-7037(98)00266-X Evidence of fluid inclusions in metamorphic microdiamonds from the Kokchetav massif,

    E-Print Network [OSTI]

    Cartigny, Pierre

    the Kokchetav massif, northern Kazakhstan K. DE CORTE,*1,2 P. CARTIGNY,3 V. S. SHATSKY,4 N. V. SOBOLEV,4 and M) Abstract--Microdiamonds from garnet clinopyroxenites of the Kokchetav massif (northern Kazakhstan in ultra-high pressure metamorphic (UHPM) rocks from the Kokchetav massif, northern Kazakhstan (Sobolev

  14. A lithium isotopic study of sub-greenschist to greenschist facies metamorphism in an accretionary prism, New Zealand

    E-Print Network [OSTI]

    Mcdonough, William F.

    A lithium isotopic study of sub-greenschist to greenschist facies metamorphism in an accretionary November 2010 Editor: R.W. Carlson Keywords: lithium slab-derived fluids accretionary prism quartz veins. Introduction The fluid-mobile element lithium increasingly receives attention because of the large isotopic

  15. The paragenesis chemistry of alteration associated with the P2and fault in metamorphic rocks underlying the Athabasca Basin

    E-Print Network [OSTI]

    The paragenesis chemistry of alteration associated with the P2and fault in metamorphic rocks underlying the Athabasca Basin The paragenesis chemistry of alteration associated with the P2and fault's largest high-grade uranium deposit. This deposit is classified as unconformity-type because it is located

  16. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    SciTech Connect (OSTI)

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Garca, Ivn [National Renewable Energy Laboratory, Golden, CO 80401 USA and Instituto de Energa Solar, Universidad Politcnica de Madrid, Avda Complutense s/n, 28040 Madrid (Spain)

    2014-09-26T23:59:59.000Z

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  17. Saving a Dwindling River

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    information on this research is available by downloading TWRI Technical Report 291, ?Reconnaissance Survey of Salt Sources and Loading into the Pecos River,? at http://twri.tamu.edu/reports.php. The research team has also compared flow and salinity data from... Water Act, Section 319 from the U.S. Environmental Protection Agency. ?The river?s importance?historically, biologically, hydrologically and economically?to the future of the entire Pecos River Basin and the Rio Grande is huge,? said Will Hatler, project...

  18. Sabine River Compact (Multiple States)

    Broader source: Energy.gov [DOE]

    The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the Sabine River and its tributaries as apportioned...

  19. River Edge Redevelopment Zone (Illinois)

    Broader source: Energy.gov [DOE]

    The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

  20. High quality metamorphic graded buffers with lattice-constants intermediate to GaAs an InP for device applications

    E-Print Network [OSTI]

    Lee, Kenneth Eng Kian

    2009-01-01T23:59:59.000Z

    We have investigated the use of a continuous, linear grading scheme for compositionally-graded metamorphic InxGal-As buffers on GaAs, which can be used as virtual substrates for optical emitters operating at wavelengths > ...

  1. Radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico with annotated bibliography. [Over 600 citations

    SciTech Connect (OSTI)

    McLemore, V. T.

    1982-01-01T23:59:59.000Z

    From an extensive literature search and field examination of 96 nonsandstone radioactive occurrences, the author compiled an annotated bibliography of over 600 citations and a list of 327 radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico. The citations are indexed by individual radioactive occurrence, geographic area, county, fluorspar deposits and occurrences, geochemical analyses, and geologic maps. In addition, the geology, mineralization, and uranium and thorium potential of 41 geographic areas in New Mexico containing known radioactive occurrences in veins and igneous and metamorphic rocks or that contain host rocks considered favorable for uranium or thorium mineralization are summarized. A list of aerial-radiometric, magnetic, hydrogeochemical, and stream-sediment survey reports is included.

  2. 1.8.2001 31.12.2004 SOIL-FROST AND SNOW METAMORPHISM SIMULATIONS FOR THE BALTEX-

    E-Print Network [OSTI]

    Moelders, Nicole

    in freezing or thawing and a release of latent heat or consumption of energy, again altering soil temperature- REGION WITH A COMPLEX HYDRO-THERMODYNAMIC SOIL-VEGETATION SCHEME N. Mlders1 , H. Elbern2 , I. Majhi1 , A://www.gi.alaska.edu/~molders/deklim.htm; http://www.uni-koeln.de/math-nat-fak/geomet/eurad.html Key words: soil-frost, snow metamorphism, data

  3. Temperature-Dependent Measurements of an Inverted Metamorphic Multijunction (IMM) Solar Cell: Preprint

    SciTech Connect (OSTI)

    Steiner, M. A.; Geisz, J. F.; Friedman, D. J.; Olavarria, W. J.; Duda, A.; Moriarty, T. E.

    2011-07-01T23:59:59.000Z

    The inverted metamorphic multijunction (IMM) solar cell has demonstrated efficiencies as high as 40.8% at 25 degrees C and 326 suns concentration. The actual operating temperature in a commercial module, however, is likely to be as much as 50-70 degrees C hotter, reaching as high as 100 degrees C. In order to be able to evaluate the cell performance under these real-world operating conditions, we have measured the open-circuit voltage, short-circuit current density and efficiency at temperatures up to 125 degrees C and concentrations up to 1000 suns, as well as the temperature coefficients of these parameters. Spectral response and one-sun current-voltage characteristics were measured by carefully adjusting the incident spectrum to selectively current-limit the different subcells. Concentrator measurements were taken on a pulsed solar simulator to minimize any additional heating due to the high intensity illumination. We compare our measured values to predictions based on detailed models of various triple junction solar cells. By choosing the optimum bandgaps for high temperature operation, the IMM can potentially result in greater energy production and lower temperature sensitivity under real operating conditions than a Ge-based solar cell.

  4. On tropospheric rivers

    E-Print Network [OSTI]

    Hu, Yuanlong, 1964-

    2002-01-01T23:59:59.000Z

    In this thesis, we investigate atmospheric water vapor transport through a distinct synoptic phenomenon, namely, the Tropospheric River (TR), which is a local filamentary structure on a daily map of vertically integrated ...

  5. Association of coal metamorphism and hydrothermal mineralization in Rough Creek fault zone and Fluorspar District, Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Fiene, F.L.; Trinkle, E.J.

    1983-09-01T23:59:59.000Z

    The ambient coal rank (metamorphism) of the Carboniferous coals in the Western Kentucky coalfield ranges from high volatile A bituminous (vitrinite maximum reflectance up to 0.75% R/sub max/) in the Webster syncline (Webster and southern Union Counties) to high volatile C bituminous (0.45 to 0.60% R/sub max/) over most of the remainder of the area. Anomalous patterns of metamorphism, however, have been noted in coals recovered from cores and mines in fault blocks of the Rough Creek fault zone and Fluorspar District. Coals in Gil-30 borehole (Rough Creek faults, Bordley Quadrangle, Union County) vary with no regard for vertical position, from high volatile C(0.55% R/sub max/) to high volatile A (0.89%R/sub max) bituminous. Examination of the upper Sturgis Formation (Missourian/Virgilian) coals revealed that the higher rank (generally above 0.75% R/sub max/) coals had vein mineral assemblages of sphalerite, twinned calcite, and ferroan dolomite. Lower rank coals had only untwinned calcite. Several sites in Webster County contain various coals (Well (No. 8) to Coiltwon (No. 14)) with vitrinite reflectances up to 0.83% R/sub max/ and associated sphalerite mineralization. Mississippian and Lower Pennsylvanian (Caseyville Formation Gentry coal) coals in the mineralized Fluorspar District have ranks to nearly medium volatile bituminous (1.03% R/sub max/). The regional rank trend exhibited by the fualt zones is generally higher rank than the surrounding areas. Sphalerite mineralization in itself is not unique within Illinois basin coals, but if it was partly responsible for the metamorphism of these coals, then the fluid temperature must have been higher within the above mentioned fault complexes.

  6. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  7. Yellowstone River Compact (North Dakota)

    Broader source: Energy.gov [DOE]

    The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as...

  8. P. Julien S. Ikeda River Engineering and

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 P. Julien S. Ikeda River Engineering and Stream Restoration Pierre Y. Julien Hong Kong - December 2004 River Engineering and Stream Restoration I - Stream Restoration Objectives Brief overview of River Engineering and Stream Restoration with focus on : 1. River Equilibrium; 2. River Dynamics; 3. River

  9. Pecos River Ecosystem Monitoring Project

    E-Print Network [OSTI]

    McDonald, A.; Hart, C.

    2004-01-01T23:59:59.000Z

    TR- 272 2004 Pecos River Ecosystem Monitoring Project C. Hart A. McDonald Texas Water Resources Institute Texas A&M University - 146 - 2003 Pecos River Ecosystem Monitoring Project... Charles R. Hart, Extension Range Specialist, Fort Stockton Alyson McDonald, Extension Assistant Hydrology, Fort Stockton SUMMARY The Pecos River Ecosystem Project is attempting to minimize the negative impacts of saltcedar on the river ecosystem...

  10. Rio Grande River 4

    E-Print Network [OSTI]

    Hills Photo Shop

    2011-09-05T23:59:59.000Z

    FORKS BIRDBEAR-NISKU JEFFERSON GROUP DUPEROW O (IJ o BEAVER HILL LAKE GR UP ELK POINT GROUP SOURIS RIVER Ist. RED BED DAWSON BAY 2ll(IRED BED PRAIRIE EVAP WI NI ASHERN INTERLAKE STONY MOUNTAIN RED RIVER WINN IP EG Figure 3... and is bounded by the Sioux Arch, the Black Hills Uplift, the Miles City Arch, and the Bowdoin Dome. The structural trends within the basin parallel the major structural trends of the Rocky Mountain Belt. The Williston Basin is characterized by gently...

  11. Inverted GaInP/(In)GaAs/InGaAs Triple-Junction Solar Cells with Low-Stress Metamorphic Bottom Junctions: Preprint

    SciTech Connect (OSTI)

    Geisz, J. F.; Kurtz, S. R.; Wanlass, M. W.; Ward, J. S.; Duda, A.; Friedman, D. J.; Olson, J. M.; McMahon, W. E.; Moriarty, T. E.; Kiehl, J. T.; Romero, M. J.; Norman, A. G.; Jones, K. M.

    2008-05-01T23:59:59.000Z

    We demonstrate high efficiency performance in two ultra-thin, Ge-free III-V semiconductor triple-junction solar cell device designs grown in an inverted configuration. Low-stress metamorphic junctions were engineered to achieve excellent photovoltaic performance with less than 3 x 106 cm-2 threading dislocations. The first design with band gaps of 1.83/1.40/1.00 eV, containing a single metamorphic junction, achieved 33.8% and 39.2% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 131 suns, respectively. The second design with band gaps of 1.83/1.34/0.89 eV, containing two metamorphic junctions achieved 33.2% and 40.1% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 143 suns, respectively.

  12. Muddy River Restoration Project Begins

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

  13. FLOOD WARNING SYSTEM JOHNSTONE RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    Warning Centre in Brisbane. The system provides early warning of heavy rainfall and river risesFLOOD WARNING SYSTEM for the JOHNSTONE RIVER This brochure describes the flood warning system ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings and River Height Bulletins Flood

  14. FLOOD WARNING SYSTEM NERANG RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    ALERT System The Nerang River ALERT flood warning system was completed in the early 1990's as a coFLOOD WARNING SYSTEM for the NERANG RIVER This brochure describes the flood warning system operated Nerang ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings and River Height Bulletins

  15. Influence of the degree of metamorphism and reduction of the anthracites of the Donbas on the properties of the products of their thermal treatment

    SciTech Connect (OSTI)

    Eremin, I.V.; Ivanov, V.P.; Maloletnev, A.S.; Danilova, R.A.

    1981-01-01T23:59:59.000Z

    In the reported experiments, the influence of high-temperature treatment on the structure and properties of anthracites of the Donbas of different degrees of metamorphism and reduction has been studied. It has been shown that on thermal treatment up to 1250/degree/C feebly metamorphosed anthracites achieve structural orderedness to a considerable degree and their use in the electrode industry is possible. The predominating influence of the degree of metamorphism of the initial anthracites on the physicochemical properties of the products of their thermal treatment, as compared with that of the degree of reduction, has been established. 5 refs.

  16. Savannah River Site Robotics

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  17. Savannah River Site Robotics

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  18. Rainfall-River Forecasting

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

  19. Source and tectono-metamorphic evolution of mafic and pelitic metasedimentary rocks from the central Quetico metasedimentary belt, Archean Superior Province

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Source and tectono-metamorphic evolution of mafic and pelitic metasedimentary rocks from, was conducted in order to evaluate the origin, source and evolution of sedimentary rocks, including mafic rocks previously mapped as ultramafics rocks. Bulk chemical compositions of these rocks show a mixing with two end

  20. Compositionally-graded InGaAsInGaP alloys and GaAsSb alloys for metamorphic InP on GaAs

    E-Print Network [OSTI]

    Compositionally-graded InGaAsInGaP alloys and GaAsSb alloys for metamorphic InP on GaAs Li Yang a of tandem graded layers of InGaAs and InGaP with compositional grading of the In concentration. This tandem

  1. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  2. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  3. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  5. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  6. South Carolina Scenic Rivers Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The goal of the Scenic Rivers Act is to protect selected rivers or river segments of the State with outstanding scenic, recreational, geologic, botanical, fish, wildlife, historic, or cultural...

  7. Ohio River Greenway Development Commission (Indiana)

    Broader source: Energy.gov [DOE]

    The Ohio River Greenway Development Commission administers the Ohio River Greenway Project, which is a park along a 7-mile stretch of the Ohio River. The Commission developed a master plan for the...

  8. Savannah River National Laboratory (SRNL) Environmental Sciences...

    Office of Environmental Management (EM)

    Savannah River National Laboratory (SRNL) Environmental Sciences and Biotechnology Support of Waste Isolation Pilot Plant (WIPP) Savannah River National Laboratory (SRNL)...

  9. Independent Activity Report, Washington River Protection Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington River Protection Solutions, LLC - October 2011 October 2011 Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene...

  10. Enforcement Letter, Westinghouse Savannah River Company - November...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Site On November 14, 2003, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Westinghouse Savannah River Company related to...

  11. Independent Oversight Activity Report, Savannah River Site -...

    Office of Environmental Management (EM)

    Activity Report, Savannah River Site - February 2014 February 2014 Operational Awareness Visit of the Savannah River Site HIAR-SRS-2014-02-25 This Independent Activity...

  12. Independent Oversight Inspection, Savannah River Site - January...

    Energy Savers [EERE]

    2010 More Documents & Publications Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 Enterprise Assessments Review, Savannah River Site 2014...

  13. Great River (1973)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite Reactor 'In the- EnergyGreat-River

  14. FLOOD WARNING SYSTEM HAUGHTON RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfall and river rises in the catchment and enables moreFLOOD WARNING SYSTEM for the HAUGHTON RIVER This brochure describes the flood warning system Flooding Flood Forecasting Local Information Haughton ALERT System Flood Warnings and Bulletins

  15. FLOOD WARNING SYSTEM BURDEKIN RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfall and river rises in the catchment below the DamFLOOD WARNING SYSTEM for the BURDEKIN RIVER This brochure describes the flood warning system Local Information Burdekin ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings

  16. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  17. A 77 GHz Transceiver for Automotive Radar System Using a120nm In AlAs/In GaAs Metamorphic HEMTs

    E-Print Network [OSTI]

    Kwon, Youngwoo

    A 77 GHz Transceiver for Automotive Radar System Using a120nm 0.4 0.35 In AlAs/In GaAs Metamorphic-mail:ykwon@snu.ac.kr) Abstract -- In this work, we demonstrate a compact 77GHz single-chip transceiver for an automotive radar at the transmitter and a 5dB conversion gain at the receiver. Index Terms -- Automotive radar, 77GHz, MHEMT, MMIC

  18. SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY

    E-Print Network [OSTI]

    Georgia, University of

    OF THE SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY NATIONAL of the Savannah River Site National Environmental Research Park Program Publication number: SRO-NERP-2S Printed OF THE SAVANNAH RIVER SITE BY CHARLES E. DAVIS AND LAURA L. JANECEK A PUBLICATION OF THE SAVANNAH RIVER SITE

  19. The Pecos River Ecosystem Project Progress Report

    E-Print Network [OSTI]

    Hart, C.

    planting saltcedar for stream bank erosion control along such rivers as the Pecos River in New Mexico. The plant has spread down the Pecos River into Texas and is now known to occur along the river south of Interstate 10. More recently the plant has become...

  20. Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter

    SciTech Connect (OSTI)

    Dubler, J., E-mail: juergen.daeubler@iaf.fraunhofer.de; Passow, T.; Aidam, R.; Khler, K.; Kirste, L.; Kunzer, M.; Wagner, J. [Fraunhofer-Institut fr Angewandte Festkrperphysik, Tullastrasse 72, 79108 Freiburg (Germany)

    2014-09-15T23:59:59.000Z

    Metamorphic (i.e., linear composition graded) GaInN buffer layers with an increased in-plane lattice parameter, grown by plasma-assisted molecular beam epitaxy, were used as templates for metal organic vapor phase epitaxy (MOVPE) grown GaInN/GaInN quantum wells (QWs), emitting in the green to red spectral region. A composition pulling effect was observed allowing considerable higher growth temperatures for the QWs for a given In composition. The internal quantum efficiency (IQE) of the QWs was determined by temperature and excitation power density dependent photoluminescence (PL) spectroscopy. An increase in IQE by a factor of two was found for green emitting QWs grown on metamorphic GaInN buffer compared to reference samples grown on standard GaN buffer layers. The ratio of room temperature to low temperature intensity PL of the red emitting QWs were found to be comparable to the PL efficiency of green emitting QWs, both grown on metamorphic GaInN buffers. The excitation density and well width dependence of the IQE indicate a reduction of the quantum confined Stark effect upon growth on GaInN buffer layers with increased in-plane lattice parameter.

  1. Aquatic Supplement Hood River Subbasin

    E-Print Network [OSTI]

    of Oregon and Washington stream temperature data Figure 4 and 5. Herman Creek (Oxbow Hatchery): 7-Day Moving.7 (10 cfs) 50 powerhouse discharge river mile 4.51 (20 cfs) Upper Lenz or Odell cr no info Davis water

  2. Massachusetts Rivers Protection Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    The law creates a 200-foot riverfront area that extends on both sides of rivers and streams. The riverfront area is 25 feet in the following municipalities: Boston, Brockton, Cambridge, Chelsea,...

  3. Case Studies in River Management

    E-Print Network [OSTI]

    Julien, Pierre Y.

    of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Site Description and Background --History of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Aggradation of Abandoned Channels Cheongmi Stream and Mangyeong River Cheongmi Stream South Korea In Collaboration

  4. Niobrara Scenic River Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act establishes the Niobrara Council, to assist in all aspects of the management of the Niobrara scenic river corridor and promulgate rules and regulations related to the preservation of the...

  5. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  6. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  7. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    SciTech Connect (OSTI)

    Du, Yijun [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States) [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan (China); Pattnaik, Asit K. [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States)] [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States); Song, Cheng [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States)] [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States)] [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Li, Gang, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States) [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing (China)

    2012-03-01T23:59:59.000Z

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 ({omega} - 2, where {omega} is the GPI moiety at E160), P159 ({omega} - 1), and M162 ({omega} + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide-anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  8. Sediment transport and topographic evolution of a coupled river and river plume system

    E-Print Network [OSTI]

    Sediment transport and topographic evolution of a coupled river and river plume system inundation from storms, hurricanes, and tsunamis [Tornqvist et al., 2007; Blum and Roberts, 2009; Jerolmack

  9. Enterprise Assessments Review, Savannah River Site 2014 Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Independent Oversight Inspection, Savannah River Site - January 2010 Independent Oversight Review, Savannah River Site Tritium Facilities - December...

  10. Elm Fork of the Trinity River Floodplain Management Study

    E-Print Network [OSTI]

    Tickle, Greg; Clary, Melinda

    2001-01-01T23:59:59.000Z

    ELM FORK OF THE TRINITY RIVER FLOODPLAIN MANAGEMENT STUDYof the Elm Fork of the Trinity River, Dallas County, Dallas,

  11. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    March 19, 2002 Issued to Westinghouse Savannah River Company related to Safety Basis and Radiation Protection Violations at the Savannah River Site, On March 19, 2002, the U.S....

  12. Lakes and Rivers Improvement Act (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Lakes and Rivers Improvement Act proscribes the management, protection, preservation and use of the waters of the lakes and rivers of Ontario and the land under them. The Act also details...

  13. An Inside Look at River Corridor

    Broader source: Energy.gov [DOE]

    In the seventh chapter ofThe Handford Story, the Energy Department takes a look at the River Corridor -- a 50-mile stretch of the Columbia River that flows through the Hanford site in southeast...

  14. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    December 5, 1997 Issued to Westinghouse Savannah River Company, related to an Unplanned Radioactive Material Intake at the Savannah River Site, (EA-97-12) On December 5, 1997, the...

  15. Belle Fourche River Compact (South Dakota)

    Broader source: Energy.gov [DOE]

    The Belle Fourche River Compact, agreed to by South Dakota and Wyoming, seeks to provide for the most efficient use of the waters of the Belle Fourche River Basin for multiple purposes, and to...

  16. Youghiogheny Wild and Scenic River (Maryland)

    Broader source: Energy.gov [DOE]

    Portions of the Youghiogheny River are protected under the Scenic and Wild Rivers Act, and development on or near these areas is restricted. COMAR section 08.15.02 addresses permitted uses and...

  17. River System Hydrology in Texas

    E-Print Network [OSTI]

    Wurbs, R.; Zhang, Y.

    2014-01-01T23:59:59.000Z

    ,700 86,700 Proctor Leon River USACE 1963 59,400 54,702 310,100 Belton Leon River USACE 1954 457,600 432,978 640,000 Stillhouse Hollow Lampasas River USACE 1968 235,700 224,279 390,660 Georgetown San Gabriel R USACE 1980 37,100 36,980 87,600 Granger... San Gabriel R USACE 1980 65,500 50,540 162,200 Somerville Yequa Creek USACE 1967 160,110 154,254 337,700 Hubbard Creek Hubbard Creek WCTMWD 1962 317,750 317,750 Post NF Double Mt WRMWD proposed 57,420 Alan Henry SF Double Mt Lubbock 1993 115...

  18. Grays River Watershed Geomorphic Analysis

    SciTech Connect (OSTI)

    Geist, David R.

    2005-04-30T23:59:59.000Z

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

  19. South Platte River Compact and U.S. Supreme Court Decree for North Platte River

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    1 South Platte River Compact and U.S. Supreme Court Decree for North Platte River J. Michael Jess Platte, and Arkansas rivers, for example, have been resolved through litigation brought before the U and Kansas are examples. In the Platte River watershed the State of Nebraska has experience allocating water

  20. Prepared in cooperation with the Platte River Recovery Implementation Program River Channel Topographic Surveys Collected Prior

    E-Print Network [OSTI]

    Prepared in cooperation with the Platte River Recovery Implementation Program River Channel Topographic Surveys Collected Prior to and Following Elevated Flows in the Central Platte River, Spring 2008 Flows in the Central Platte River, Nebraska, Spring 2008 By Paul J. Kinzel Prepared in cooperation

  1. Effect of spill on adult salmon passage delay at Columbia River and Snake River dams

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Effect of spill on adult salmon passage delay at Columbia River and Snake River dams W. Nicholas dams in the Columbia/Snake River hydrosystem may delay the upstream passage of the adults. To evaluate-to-day variations of spill and upstream fish passage at the eight dams of the Columbia/Snake river hydrosystem

  2. Historical Ecology of the lower santa clara river, Ventura river, and oxnard Plain

    E-Print Network [OSTI]

    Historical Ecology of the lower santa clara river, Ventura river, and oxnard Plain: an analysis. Historical ecology of the lower Santa Clara River,Ventura River, and Oxnard Plain: an analysis of terrestrial layers are available on SFEI's website, at www.sfei.org/projects/VenturaHE. Permissions rights for images

  3. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  4. The river model of black holes

    E-Print Network [OSTI]

    Andrew J. S. Hamilton; Jason P. Lisle

    2006-08-31T23:59:59.000Z

    This paper presents an under-appreciated way to conceptualize stationary black holes, which we call the river model. The river model is mathematically sound, yet simple enough that the basic picture can be understood by non-experts. %that can by understood by non-experts. In the river model, space itself flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the black hole at the Newtonian escape velocity, hitting the speed of light at the horizon. Inside the horizon, the river flows inward faster than light, carrying everything with it. We show that the river model works also for rotating (Kerr-Newman) black holes, though with a surprising twist. As in the spherical case, the river of space can be regarded as moving through a flat background. However, the river does not spiral inward, as one might have anticipated, but rather falls inward with no azimuthal swirl at all. Instead, the river has at each point not only a velocity but also a rotation, or twist. That is, the river has a Lorentz structure, characterized by six numbers (velocity and rotation), not just three (velocity). As an object moves through the river, it changes its velocity and rotation in response to tidal changes in the velocity and twist of the river along its path. An explicit expression is given for the river field, a six-component bivector field that encodes the velocity and twist of the river at each point, and that encapsulates all the properties of a stationary rotating black hole.

  5. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02T23:59:59.000Z

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  6. The Columbia River Estuary the Columbia River Basin

    E-Print Network [OSTI]

    River estuary was a high-energy environment dominated by physical forces, with extensive sand Riddell November 28, 2000 ISAB 2000-5 #12;ISAB 2000-5 Estuary Report i EXECUTIVE SUMMARY The Northwest to an informed response to the Council. Consequently, this report has been prepared as a preliminary reply

  7. FLOOD WARNING SYSTEM LOGAN & ALBERT RIVERS

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfalls and river rises throughout the catchment and enablesFLOOD WARNING SYSTEM for the LOGAN & ALBERT RIVERS This brochure describes the flood warning system of Meteorology operates a flood warning system for the Logan and Albert River catchments based on a rainfall

  8. SRO -NERP-1 THE SAVANNAH RIVER PLANT

    E-Print Network [OSTI]

    Georgia, University of

    AND TREATMENT by Whit Gibbons Savannah River Ecology Laboratory Aiken , South Carolina A PUBLICATION OF EROA 'S SAVANNAH RIVER NATIONAL ENVIRONMENTAL RESEARCH PARK -SEPTEMBER 1977 COPIES MAY BE OBTAINEO FROM SAVANNAHSRO -NERP-1 SNAKES OF THE SAVANNAH RIVER PLANT WITH INFORMATION ABOUT SNAKEBITE PREVENTION

  9. Deep level defects in proton radiated GaAs grown on metamorphic SiGe/Si substrates

    SciTech Connect (OSTI)

    Gonzalez, M.; Andre, C. L.; Walters, R. J.; Messenger, S. R.; Warner, J. H.; Lorentzen, J. R.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); U.S. Naval Research Laboratory, Code 6818, Washington, DC 20375 (United States); Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

    2006-08-01T23:59:59.000Z

    The effect of 2 MeV proton radiation on the introduction of deep levels in GaAs grown on compositionally graded SiGe/Si substrates was investigated using deep level transient spectroscopy (DLTS). Systematic comparisons were made with identical layers grown on both GaAs and Ge substrates to directly assess the influence of threading dislocations on radiation-related deep levels for both n-type and p-type GaAs. DLTS revealed that for p{sup +}n structures, proton irradiation generates electron traps at E{sub c}-0.14 eV, E{sub c}-0.25 eV, E{sub c}-0.54 eV, and E{sub c}-0.72 eV in the n-GaAs base, and, for n{sup +}p structures, radiation-induced hole traps appear at E{sub v}+0.18 eV, E{sub v}+0.23 eV, E{sub v}+0.27 eV, and E{sub v}+0.77 eV in the p-type GaAs base, irrespective of substrate choice for both polarities. The primary influence of substituting SiGe/Si substrates for conventional GaAs and Ge substrates is on the introduction rates of the individual traps as a function of proton radiation fluence. Substantially reduced concentrations are found for each radiation-induced hole trap observed in p-type GaAs, as well as for the E{sub c}-0.54 eV trap in n-GaAs for samples on SiGe/Si, as a function of proton fluence. Calculated trap introduction rates reveal reductions by as much as {approx}40% for certain hole traps in p-GaAs grown on SiGe/Si. This increased radiation tolerance for GaAs grown on SiGe/Si is attributed to interactions between the low density ({approx}10{sup 6} cm{sup -2}) of residual dislocations within the metamorphic GaAs/SiGe/Si structure and the radiation-induced point defects. Nevertheless, the fact that the impact of dislocations on radiation tolerance is far more dramatic for n{sup +}p GaAs structures compared to p{sup +}n structures, may have implications on future III-V/Si space solar cell design optimization, since end-of-life versus beginning-of-life differences are critical factors for power profiling in high radiation environments.

  10. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.

    2006-02-01T23:59:59.000Z

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  11. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect (OSTI)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01T23:59:59.000Z

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  12. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.)

    1989-01-01T23:59:59.000Z

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  13. The River Runs Dry: Examining Water Shortages in the Yellow River Basin

    E-Print Network [OSTI]

    Zusman, Eric

    2000-01-01T23:59:59.000Z

    Runs Dry: Examining Water Shortages in the Yellow Riverof the severity of water shortages in the rivers basin. Ina median level of runoff water shortages in the basin would

  14. New Columbia River Estuary purchases benefit salmon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the mouth of the Columbia River to permanently protect riverside habitat for Northwest fish and wildlife, including threatened and endangered salmon and steelhead. The...

  15. Project Management Institute Highlights Savannah River Nuclear...

    Office of Environmental Management (EM)

    employee Matthew Gay uses critical electronic rounds to take a reading at the Savannah River National Laboratory. In one Continuous Improvement initiative, SRNS switched to...

  16. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  17. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  18. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Energy Savers [EERE]

    System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) More Documents & Publications PIA - 10th International Nuclear Graphite...

  19. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

  20. The Columbia River System Inside Story

    SciTech Connect (OSTI)

    none,

    2001-04-01T23:59:59.000Z

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwestfrom fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the regions electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  1. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  2. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  3. South River EMC- Energy Efficient Rebate Program

    Broader source: Energy.gov [DOE]

    South River EMC offers a variety of rebates encouragings its members to invest in energy efficient appliances, equipment, and home upgrades. Incentives are available for clothes washers,...

  4. Wild and Scenic Rivers Act (Maryland)

    Broader source: Energy.gov [DOE]

    It is state policy to protect the outstanding scenic, geologic, ecologic, historic, recreational, agricultural, fish, wildlife, cultural, and other similar values of certain rivers and adjacent...

  5. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  6. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  7. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Violation, Westinghouse Savannah River Company - EA-2000-08 Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

  8. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Westinghouse Savannah River Company - EA-2000-08 More Documents & Publications Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

  9. Sandia National Laboratories: river current energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  10. Comparative Evaluation of Generalized River/Reservoir System Models

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

  11. Lesson Learned by Savannah River Site Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

  12. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  13. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Savannah River Field Office Savannah River Field Office FY15 Semi Annual Report...

  14. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  15. alligator rivers region: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  16. aliakmon river greece: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  17. allegheny river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  18. almendares river havana: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  19. amu dar river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  20. amazon river system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land Use in indigenous and Colonist Communities of the Palcazu Basin, Peruvian Amazon McClain, Michael 159 Charlotte, Manatee River, Sarasota, Hardee, and Peace River Soil Biology...

  1. Ventilation System to Improve Savannah River Site's Liquid Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System to Improve Savannah River Site's Liquid Waste Operations Ventilation System to Improve Savannah River Site's Liquid Waste Operations August 28, 2014 - 12:00pm...

  2. Preliminary Notice of Violation,Savannah River Nuclear Solutions...

    Office of Environmental Management (EM)

    Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2012-04 Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2010-05...

  3. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site...

  4. John C. Barnes of Savannah River Operations named 2012 Facility...

    Office of Environmental Management (EM)

    right, discusses a transuranic (TRU) waste container with Charles Fairburn of Savannah River Nuclear Solutions. The TRU waste container was repackaged in the Savannah River Site...

  5. PIA - Savannah River Nuclear Solution SRNS ProRad Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management...

  6. Independent Oversight Review, Savannah River Field Office Tritium...

    Broader source: Energy.gov (indexed) [DOE]

    River Site (SRS) tritium facilities implemented at the activity-level by Savannah River Nuclear Solutions, LLC and its subcontractors. The review was performed by the...

  7. Enterprise Assessments Review of the Savannah River Site Salt...

    Energy Savers [EERE]

    the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste...

  8. PIA - Savannah River Nuclear Solutions Training Records and Informatio...

    Office of Environmental Management (EM)

    Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River...

  9. Savannah River Remediation Donates $10,000 to South Carolina...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

  10. Letter from Commonwealth to Mirant Potomac River Concerning Serious...

    Energy Savers [EERE]

    to Mirant Potomac River Concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide Letter from Commonwealth to Mirant Potomac River Concerning...

  11. Savannah River National Laboratory Meets with Historically Black...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River National Laboratory Meets with Historically Black Colleges and Universities Savannah River National Laboratory Meets with Historically Black Colleges and...

  12. Independent Oversight Follow-up Review, Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of...

  13. assessment columbia river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and disturbances may be ineffective are being spent in the United States on river and stream restoration projects. In the Columbia River basin Montgomery, David R. 311 A...

  14. Savannah River Site's Liquid Waste Operations Adds Multi-Functional...

    Office of Environmental Management (EM)

    Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory January 28, 2015 -...

  15. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - June 2012 June 2012 Review of the Savannah River Site Tritium Facilities Implementation...

  16. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Energy Savers [EERE]

    Savannah River Site Tritium Facilities - December 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 December 2012 Review of Site...

  17. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Office of Environmental Management (EM)

    Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear...

  18. Ecotoxicology | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community -- hostedEconomicSavannah River

  19. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0InputYear Jan FebtotalRiver

  20. Caney River | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaney River Jump to: navigation,

  1. The State of the Columbia River Basin

    E-Print Network [OSTI]

    the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish and wildlife issues and involve Energy, Fish, Wildlife: The State of the Columbia River Basin, 2013

  2. FLOOD WARNING SYSTEM BREMER RIVER TO IPSWICH

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfalls and river rises throughout the catchment and enables. Flood ALERT System The initial Ipswich Creeks ALERT flood warning system was completed in the earlyFLOOD WARNING SYSTEM for the BREMER RIVER TO IPSWICH This brochure describes the flood warning

  3. The Kootenai Tribe's Kootenai River Ecosystem

    E-Print Network [OSTI]

    The Kootenai Tribe's Kootenai River Ecosystem Restoration Project 1994-2012 Project # 199404900 PURPOSE: TO ADDRESS FISHERIES RELATED PROBLEMS AT AN ECOSYSTEM LEVEL AND PROVIDE RESTORATION SOLUTIONS Kootenai River OBJ-2: Restore Ecosystem Productivity OBJ-3: Restore Ecosystem Productivity to Kootenay Lake

  4. RiverFalls,Wisconsin SolarinSmall

    E-Print Network [OSTI]

    ), which services approximately 5,800 customers, the largest being UW-RF.ii Together, the utility are solar (most are biogas and wind), the program has helped to raise awareness and interest in renewable energy within the community.v Bringing Solar to River Falls The success of the River Falls Renewable

  5. Pecos River Watershed Protection Plan Update

    E-Print Network [OSTI]

    Gregory, L.; Hauck, L.; Blumenthal, B.; Brown, M.; Porter, A.

    2013-01-01T23:59:59.000Z

    Implementation of the Pecos River Watershed Protection Plan (WPP) began in November 2009 upon acceptance of the WPP by EPA. The primary goals of implementing the plan are to improve the health of the Pecos River watershed and instream water quality...

  6. Restoring our Rivers By Bridget Avila

    E-Print Network [OSTI]

    Palmer, Margaret A.

    , the first-ever comprehensive database of more than 37,000 stream and restoration projects nationwideRestoring our Rivers By Bridget Avila Maryland has the largest number of river restoration projects restoration and conservation. On a sweltering July afternoon, an assortment of men and women clad in T

  7. California's Russian River: A Conservation Partnership

    E-Print Network [OSTI]

    . Improve weather and river flow forecasting to maximize water captured for reservoirs and fisheries support forecast-based reservoir operations and allow for improved water management. It may also provide's Russian River Habitat Blueprint #12;Restore floodplain habitat through reclamation of abandoned gravel

  8. Prospective Climate Change Impact on Large Rivers

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 Prospective Climate Change Impact on Large Rivers in the US and South Korea Pierre Y. Julien Dept. of Civil and Environ. Eng. Colorado State University Seoul, South Korea August 11, 2009 Climate Change and Large Rivers 1. Climatic changes have been on-going for some time; 2. Climate changes usually predict

  9. Savannah River Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09T23:59:59.000Z

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  10. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    SciTech Connect (OSTI)

    Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-03-26T23:59:59.000Z

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  11. Annual Tour Ready to Explore New Mexico's Lower Pecos River

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Annual Tour Ready to Explore New Mexico's Lower Pecos River By Steve Ress The itinerary is set and the seats have been filled for an early June bus tour to New Mexico's lower Pecos River basin compacts on Nebraska's Republican River and New Mexico's Pecos River to see what can be learned from

  12. Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

  13. River Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2006-08-01T23:59:59.000Z

    This data package documents the technical basis for selecting physical and hydraulic parameters and input values that will be used in river modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. and revised as part of the Characterization of Systems Project managed by PNNL for DOE. The river data package provides calculations of flow and transport in the Columbia River system. The module is based on the legacy code for the Modular Aquatic Simulation System II (MASS2), which is a two-dimensional, depth-averaged model that provides the capability to simulate the lateral (bank-to-bank) variation of flow and contaminants. It simulates river hydrodynamics (water velocities and surface elevations), sediment transport, contaminant transport, biotic transport, and sediment-contaminant interaction, including both suspended sediments and bed sediments. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River. MASS2 requires data on the river flow rate, downstream water surface elevation, groundwater influx and contaminants flux, background concentrations of contaminants, channel bathymetry, and the bed and suspended sediment properties. Stochastic variability for some input parameters such as partition coefficient (kd) values and background radionuclide concentrations is generated by the Environmental Stochastic Preprocessor. River flow is randomized on a yearly basis. At this time, the conceptual model does not incorporate extreme flooding (for example, 50 to 100 years) or dam removal scenarios.

  14. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  15. Electrical and structural characteristics of metamorphic In{sub 0.38}Al{sub 0.62}As/In{sub 0.37}Ga{sub 0.63}As/In{sub 0.38}Al{sub 0.62}As HEMT nanoheterostructures

    SciTech Connect (OSTI)

    Galiev, G. B., E-mail: s_s_e_r_p@mail.ru; Klimov, E. A.; Klochkov, A. N.; Maltsev, P. P.; Pushkarev, S. S. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation)] [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Zhigalina, O. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Imamov, R. M., E-mail: imamov@ns.crys.ras.ru [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Kuskova, A. N.; Khmelenin, D. N. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15T23:59:59.000Z

    The influence of the metamorphic buffer design and epitaxial growth conditions on the electrical and structural characteristics of metamorphic In{sub 0.38}Al{sub 0.62}As/In{sub 0.37}Ga{sub 0.63}As/In{sub 0.38}Al{sub 0.62}As high electron mobility transistor (MHEMT) nanoheterostructures has been investigated. The samples were grown on GaAs(100) substrates by molecular beam epitaxy. The active regions of the nanoheterostructures are identical, while the metamorphic buffer In{sub x}Al{sub 1-x}As is formed with a linear or stepwise (by {Delta}{sub x} = 0.05) increase in the indium content over depth. It is found that MHEMT nanoheterostructures with a step metamorphic buffer have fewer defects and possess higher values of two-dimensional electron gas mobility at T = 77 K. The structures of the active region and metamorphic buffer have been thoroughly studied by transmission electron microscopy. It is shown that the relaxation of metamorphic buffer in the heterostructures under consideration is accompanied by the formation of structural defects of the following types: dislocations, microtwins, stacking faults, and wurtzite phase inclusions several nanometers in size.

  16. River Data Package for the 2004 Composite Analysis

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2004-08-01T23:59:59.000Z

    Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

  17. Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota)

    Broader source: Energy.gov [DOE]

    The State aims to preserve and protect Minnesota rivers and adjacent lands with outstanding scenic, recreational, natural, historical, scientific and similar values. Chapter 103F defines...

  18. Helium isotopes in geothermal systems- Iceland, The Geysers,...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs...

  19. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Development at the Raft River Geothermal Field, Idaho Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation Desert Peak EGS Project...

  20. Seismic baseline and induction studies- Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho...

  1. The Ecology of the Navasota River, Texas

    E-Print Network [OSTI]

    Clark, W. J.

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-44 1973 The Ecology of the Navasota River, Texas By: William J. Clark Texas Water Resources Institute Technical Report No. 44 Texas A&M University System...

  2. Math 360 Sample Project: River Crossing

    E-Print Network [OSTI]

    Linner, Anders

    corresponding to the east-west difference between the entry and the exit points at the river. Assume the crossing is from north to south, so g is positive if the exit point is east of the entry point

  3. Think water : reconditioning the Malden River

    E-Print Network [OSTI]

    Oda, Kazuyo, 1969-

    2003-01-01T23:59:59.000Z

    The purpose of this thesis is to link water, history and culture through architectural and urban design by researching the potential for the rejuvenation of a neglected industrial site at the edge of a river. The Malden ...

  4. The Ecohydrology of South American Rivers

    E-Print Network [OSTI]

    McClain, Michael

    The Ecohydrology of South American Rivers and Wetlands edited by Michael E. McClain Department research integrating the physical processes of hydrology with the biological processes of ecology. Together

  5. Savannah River Site Environmental Report for 1997

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.R. [eds.

    1998-08-01T23:59:59.000Z

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  6. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  7. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  8. River Falls Municipal Utilities- Distributed Solar Tariff

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special...

  9. Microsoft Word - CX_Okanogan_River.docx

    Broader source: Energy.gov (indexed) [DOE]

    Confederated Tribes for the purchase of two parcels of land along the Okanogan River. Fish and Wildlife Project No.: 2007-224-00 Categorical Exclusion Applied (from Subpart D, 10...

  10. Lower Columbia River Estuary Partnership. The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of land on the north side of the Columbia River in Cowlitz County, Wash., to protect fish habitat. An additional 75 acres of land will be donated by the Port of Longview. BPA...

  11. Clinch River MRS Task Force Recommendations

    Broader source: Energy.gov [DOE]

    The Clinch River HRS Task Force was appointed in July 1985 by the Roane County Executive and the Oak Ridge City Council to evaluate the Monitored Retrievable Storage (MRS) facility proposed by the...

  12. Radionuclide transport in the Yenisei River

    E-Print Network [OSTI]

    S. M. Vakulovsky; E. G. Tertyshnik; A. I. Kabanov

    2012-11-15T23:59:59.000Z

    Data characterizing the pollution of the Yenisei River (water and bottom sediment) by radionuclide resulting from the use of the river water for cooling industrial reactors in the Mining-Chemical Complex are presented. Studies have been made of the contamination of the river during the period when reactors with direct flow cooling were used and after these were shut down. Distinctive features of the migration of radionuclide in the Yenisei are noted, in particular, their distribution between the solid and liquid phases. The amounts of 137Cs, 65Zn, 60Co, 54Mn, and 152Eu in the channel are determined from the effluent discharge site to Dudinka port. The rate of continuous self removal of 137Cs is estimated to be 0.19 1/year, corresponding to a half purification time of 3.6 years for a 600 km long segment of the river bed.

  13. Savannah River Site environmental data for 1995

    SciTech Connect (OSTI)

    Arnett, M.W. [ed.

    1995-12-31T23:59:59.000Z

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs.

  14. Flint River Drought Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The purpose of the Flint River Drought Protection Act is to maintain in-stream flow in times of drought by providing incentives for farmers to take acres out of irrigation. It allows Environmental...

  15. Lumbee River EMC- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help its residential members increase the energy efficiency of their homes. Loans up to $10,000 are available for...

  16. Seismic interpretation of the Wind River Mountains

    E-Print Network [OSTI]

    Van Voorhis, David

    1982-01-01T23:59:59.000Z

    SEISMIC INTERPBETATICN OF THE BIND RIVER MOUNTAINS A Thesis DAVID VAN VOORHIS Submitted to the Graduate College of Texas ACM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Auqust 'l982 Majcr Subject...: Geophysics SEISNIC INTERFRETATION OF THE HIND RIVER NOUNTAINS A Thes is by DAVID VAN VOORBIS Approved as to style and content by: (Chairman cf. Committee) (N em ber } m (Head of Department) August l 982 ABSTRACT Seismic Interpretation of the Wind...

  17. Salmon River Habitat Enhancement, 1990 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1991-12-01T23:59:59.000Z

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  18. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23T23:59:59.000Z

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  19. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  20. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

  1. E.2. Electronic Appendix -Food Web Elements of the Fraser River Upper River (above rkm 210)

    E-Print Network [OSTI]

    1 E.2. Electronic Appendix - Food Web Elements of the Fraser River Basin Upper River (above rkm 210) Food webs: Microbenthic algae (periphyton), detritus from riparian vegetation and littoral insects tributaries. Collector-gatherers (invertebrates feeding on fine particulate organic material) are the most

  2. Hydropower production and river rehabilitation: A case study on an alpine river

    E-Print Network [OSTI]

    Hydropower production and river rehabilitation: A case study on an alpine river M. Fette & C. Weber # Springer Science + Business Media B.V. 2006 Abstract Despite the numerous benefits of hydropower production. Hydropeaks, caused by short-term changes in hydropower operation, result in a negative impact on both habitat

  3. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    SciTech Connect (OSTI)

    Paller, M.

    1990-11-01T23:59:59.000Z

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.

  4. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    SciTech Connect (OSTI)

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01T23:59:59.000Z

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  5. Coho Salmon Master Plan, Clearwater River Basin.

    SciTech Connect (OSTI)

    Nez Perce Tribe; FishPro

    2004-10-01T23:59:59.000Z

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation facilities. This increase in survival is expected to provide the opportunity for the establishm

  6. Hydrologic assessment, Eastern Coal Province, Area 23, Alabama: Black Warrior River; Buttahatchee River; Cahaba River; Sipsey River

    SciTech Connect (OSTI)

    Harkins, J.R.

    1980-06-01T23:59:59.000Z

    Area 23 is located at the southern end of the Eastern Coal Province, in the Mobile River basin, includes the Warrior, Cahaba, and edges of the Plateau coal fields in Alabama, and covers an area of 4716 square miles. This report is designed to be useful to mine owners and operators and consulting engineers by presenting information about existing hydrologic conditions and identification of sources of hydrologic information. General hydrologic information is presented in a brief text and illustrations on a single water-resources related topic. Area 23 is underlain by the Coker and Pottsville Formations and the pre-Pennsylvanian rocks. Area 23 has a moist temperate climate with an annual average rainfall of 54 inches and the majority of the area is covered by forest. The soils have a high erosion potential when the vegetative cover is removed. Use of water is primarily from surface-water sources as ground-water supplies generally are not sufficient for public supplies. The US Geological Survey operates a network of hydrologic data collection stations to monitor the streamflow and ground-water conditions. This network includes data for 180 surface-water stations and 49 ground-water observation wells. These data include rate of flow, water levels, and water-quality parameters. Hydrologic problems relating to surface mining are (1) erosion and sedimentation, (2) decline in ground-water levels, and (3) degradation of water quality. Decline in ground-water levels can occur in and near surface-mining areas when excavation extends below the static water level in the aquifer. This can cause nearby wells and springs to go dry. Acid mine drainage is a problem only adjacent to the mined area.

  7. Columbia River impact evaluation plan

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    As a result of past practices, four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980. To accomplish the timely cleanup of the past-practice units, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), was signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE). To support the Tri-Party Agreement, milestones were adopted. These milestones represent the actions needed to ensure acceptable progress toward Hanford Site compliance with CERCLA, RCRA, and the Washington State Hazardous Waste Management Act of 1976. This report was prepared to fulfill the requirement of Tri-Party Agreement Milestone M-30-02, which requires a plan to determine cumulative health and environmental impacts to the Columbia River. This plan supplements the CERCLA remedial investigations/feasibility studies (RI/FS) and RCRA facility investigations/corrective measures studies (RFI/CMSs) that will be undertaken in the 100 Area. To support the plan development process, existing information was reviewed and a preliminary impact evaluation based on this information was performed. The purpose of the preliminary impact evaluation was to assess the adequacy of existing data and proposed data collection activities. Based on the results of the evaluation, a plan is proposed to collect additional data or make changes to existing or proposed data collection activities.

  8. New River Geothermal Exploration (Ram Power Inc.)

    SciTech Connect (OSTI)

    Miller, Clay

    2013-11-15T23:59:59.000Z

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  9. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  10. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    SciTech Connect (OSTI)

    Cochnauer, Tim; Claire, Christopher [Idaho Department of Fish and Game

    2009-05-07T23:59:59.000Z

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

  11. Savannah River Ecology Laboratory FY2006 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2006-10-23T23:59:59.000Z

    FY2006 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of the University of Georgia operating on the Savannah River Site in Aiken, County, SC.

  12. RETURN OF THE RIVER -2000 Chapter 5 Freshwater Habitats131

    E-Print Network [OSTI]

    rivers of the world and also one of the most developed with ten major hydroelectric dams on the main the major hydroelectric projects and the owner-operator of each project. #12;RETURN OF THE RIVER - 2000

  13. Preliminary Notice of Violation, Savannah River Nuclear Solutions...

    Office of Environmental Management (EM)

    River Nuclear Solutions (SRNS), LLC, related to a Worker Fall from a Scaffold in the K-Area Complex at the Savannah River Site On November 9, 2012, the U.S. Department of...

  14. Savannah River Ecology Laboratory 2004 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2004-07-29T23:59:59.000Z

    2004 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site in Aiken, South Carolina

  15. Savannah River Ecology Laboratory 2005 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2005-07-19T23:59:59.000Z

    2005 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site, Aiken, South Carolina

  16. african ephemeral rivers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this course, we have seen that certain aspects of the morphological behaviour of sand and gravel bed rivers, especially of the river bed in the main channel, can be...

  17. Ohio River Valley Water Sanitation Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Ohio River Valley Water Sanitation Commission (ORSANCO), was established on June 30, 1948 to control and abate pollution in the Ohio River Basin. ORSANCO is an interstate commission...

  18. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Broader source: Energy.gov (indexed) [DOE]

    Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2...

  19. Interstate Commission on the Potomac River Basin (Multiple States)

    Broader source: Energy.gov [DOE]

    The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through...

  20. Power benefits of the lower Snake River dams - FACT SHEET

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I n the 1960s and early 1970s, the federal government built four large dams on the Snake River. This is the last set of major dams to have been built in the Federal Columbia River...

  1. Fact Sheet - Myths & Facts about the lower Snake River dams ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Myths and facts about the lower Snake River dams MYTH: The four lower Snake River dams are low value. FACT: It costs about 5 per megawatt-hour to produce power at the dams. The...

  2. Type B Accident Investigation Board Report of the Savannah River...

    Office of Environmental Management (EM)

    Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009 Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the...

  3. Wild and Scenic River Acts (Lower St. Croix Riverway)

    Broader source: Energy.gov [DOE]

    The lower portion of the St. Croix River in Minnesota and Wisconsin is regulated under the National Wild and Scenic Rivers Program. Most new residential, commercial, and industrial uses are...

  4. Floodplain River Foodwebs in the Lower Mekong Basin

    E-Print Network [OSTI]

    Ou, Chouly

    2013-11-15T23:59:59.000Z

    dynamics in tropical rivers undergo significant seasonal shifts and emphasizes that river food webs are altered by dams and flow regulation. Seston and benthic algae were the most important production sources supporting fish biomass during the dry season...

  5. Wekiva River and Wekiva Parkway Protection Acts (Florida)

    Broader source: Energy.gov [DOE]

    The Wekiva River Protection Act directs the Orange, Lake, and Seminole Counties to emphasize the Wekiva River Protection Area in their planning efforts and regulations. Each countys local...

  6. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1999-06-21T23:59:59.000Z

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  7. Little Big Horn River Water Quality Project

    SciTech Connect (OSTI)

    Bad Bear, D.J.; Hooker, D. [Little Big Horn Coll., Crow Agency, MT (United States)

    1995-10-01T23:59:59.000Z

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  8. Historical river flow rates for dose calculations

    SciTech Connect (OSTI)

    Carlton, W.H.

    1991-06-10T23:59:59.000Z

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  9. Snake and Columbia Rivers Sediment Sampling Project

    SciTech Connect (OSTI)

    Pinza, M. R.; Word, J. Q.; Barrows, E. S.; Mayhew, H. L.; Clark, D. R. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1992-12-01T23:59:59.000Z

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  10. River Protection Project (RPP) Dangerous Waste Training Plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-09-28T23:59:59.000Z

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units.

  11. Independent Oversight Review, Savannah River Site- August 2011

    Broader source: Energy.gov [DOE]

    Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project

  12. Terrestrial Carbon Inventory at the Savannah River Site, 1951 2001.

    SciTech Connect (OSTI)

    US Forest Service - Annonymous,

    2012-02-01T23:59:59.000Z

    A Power Point slide presentation/report on the terestrial carbon inventory at the Savannah River Site.

  13. DOE Selects Savannah River Remediation, LLC for Liquid Waste...

    Broader source: Energy.gov (indexed) [DOE]

    awarded SRS management and operating contract includes operation of the Savannah River National Laboratory (SRNL), National Nuclear Security Administration (NNSA)...

  14. Lynnhaven River Basin Ecosystem Restoration Project Virginia Beach, Virginia

    E-Print Network [OSTI]

    US Army Corps of Engineers

    150 miles of shoreline and hundreds of acres of marsh, mudflat, and shallow water habitats. The river

  15. Independent Oversight Review, Savannah River Site- July 2011

    Broader source: Energy.gov [DOE]

    Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project

  16. Washington Gas meets Patuxent River construction challenges

    SciTech Connect (OSTI)

    Myers, C.A. (Washington Gas Light Co., Springfield, VA (United States))

    1993-12-01T23:59:59.000Z

    This paper describes the installation of a new natural gas pipeline under the Patuxent River in Maryland. The installation process required the use of directional drilling technology to minimize environmental concerns. The paper describes the processes involved in selecting a crossing site, performing background archaeological and other environmental studies, and easement acquisition procedures. With regards to the actual construction, the paper discusses the welding and staging methods, design methods for the actual drilling, drilling equipment involved, and methods for pulling the pipelines back under the river.

  17. Linking ecosystem services, rehabilitation, and river hydrogeomorphology

    E-Print Network [OSTI]

    Thorp, James H.

    2010-01-01T23:59:59.000Z

    of all services for all FPZs combined. Table 1 includes only 5 of the 14 to 15 variables used to delineate FPZs in our river-typing methods, but these are sufficient to illustrate why ecosystem services should vary among FPZs. The first three.... Ecological Applications 13: 17621772. Loomis J, Kent P, Strange L, Fausch K, Covich A. 2000. Measuring the total economic value of restoring ecosystem services in an impaired river basin: Results from contingent valuation survey. Ecological Economics 33: 103...

  18. Radioiodine in the Savannah River Site environment

    SciTech Connect (OSTI)

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-15T23:59:59.000Z

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s.

  19. Ecological Responses to Hydrogeomorphic Fluctuations in a Sand Bed Prairie River: River Complexity, Habitat Availability, and Benthic Invertebrates

    E-Print Network [OSTI]

    O'Neill, Brian James

    2010-04-02T23:59:59.000Z

    Rivers with stochastic precipitation have fauna that overcome unique challenges. Organisms surmount these challenges by using refugia. Research was conducted on the sand bed Kansas River (Kaw). I (a) quantified how the hydrology affects the Kaw...

  20. CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER,

    E-Print Network [OSTI]

    CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological Laboratory JUN16 1954 WOODS HOLE, MASS MAP CREEL CENSUS SUN RIVER MONTANA DRAWN i*^ ^ TRACED- _2£jLt:l SUBMITTED . 1 V N 01 1 VN ei

  1. Platte River Basin Flow Information Web-based Resources

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Platte River Basin Flow Information Web-based Resources Gary Stone, Extension Educator, University://www.wrds.uwyo.edu/wrds/nrcs/snowprec/snowprec.html - the University of Wyoming Water Resources Data System - scroll down to the Upper and Lower North Platte River. Seminoe is the first reservoir on the North Platte River in central Wyoming. Glendo is the second

  2. Fraser River Hydro and Fisheries Research Project fonds

    E-Print Network [OSTI]

    Handy, Todd C.

    Fraser River Hydro and Fisheries Research Project fonds Revised by Erwin Wodarczak (1998 Fraser River Hydro and Fisheries Research Project fonds. ­ 19561961. 13 cm of textual records. Administrative History The Fraser River Hydro and Fisheries Research Project was established in 1956, financed

  3. EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY

    E-Print Network [OSTI]

    EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY Marine Biological Laboratory t, T "B and Wildlife Service, John L. Farley, Director EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY of Medicine, Univ. of Puerto Rico. #12;#12;EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY

  4. Trinity River Initiative Building partnerships for cooperative conservation

    E-Print Network [OSTI]

    Trinity River Initiative Building partnerships for cooperative conservation More people in Texas use the water, wildlife and recreational resources from the Trinity River Basin than from any other in the Trinity River Basin--the ecological resources along much of the Trinity are in poor condition. Despite

  5. A study of Texas rivers with attention to river access and recreational fisheries

    E-Print Network [OSTI]

    Baker, Troy L

    2013-02-22T23:59:59.000Z

    Any angler can legally use a navigable Texas river or stream for recreational fishing. Often, however, the very definition of what navigability means is in question and private property boundaries are unclear. Over 98% of property adjacent to Texas...

  6. Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River

    E-Print Network [OSTI]

    Hansen, James E.

    Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River Mountain. We need Dickens to describe the local situation, but you can glean the practice of mountaintop removal. Vernon Haltom vernoncrmw@gmail.com, head of Coal River Mountain Watch

  7. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    until 1981 when it was closed due to declining boat traffic. Since the failure of Green River Dam 4 by the dams and the impacts if the pool were to be lost, either by demolition or failure of the lock andGreen River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16

  8. EIS-0351: Operation of Flaming Gorge Dam, Colorado River Storage Project, Colorado River, UT

    Broader source: Energy.gov [DOE]

    The Secretary of the United States Department of the Interior (Secretary), acting through the Bureau of Reclamation (Reclamation), is considering whether to implement a proposed action under which Flaming Gorge Dam would be operated to achieve the flow and temperature regimes recommended in the September 2000 report Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam (2000 Flow and Temperature Recommendations), published by the Upper Colorado River Endangered Fish Recovery Program (Recovery Program).

  9. Savannah River Technology Center. Monthly report

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: thermal cycling absorption process, development of new alloys, ion exchange, oxalate precipitation, calcination, environmental research, remedial action, ecological risk assessments, chemical analysis of salt cakes, natural phenomena hazards assessment, and sampling of soils and groundwater.

  10. How We Got Started Sheyenne River

    E-Print Network [OSTI]

    for Riparian Ecosystems · Field Tours · Rancher Meetings · Educational Materials #12;Project Collaborators Source Program #12;· The goals of this project is to improve and strengthen the ability of resource Project #12;· 6 New Riparian ESDs · MLRA 54 · Knife River · Spring Creek · MLRA 55B · Baldhill Creek

  11. Carolina bays of the Savannah River Plant

    SciTech Connect (OSTI)

    Schalles, J.F. (Creighton Univ., Omaha, NE (USA)); Sharitz, R.R.; Gibbons, J.W.; Leversee, G.J.; Knox, J.N. (Savannah River Ecology Lab., Aiken, SC (USA))

    1989-01-01T23:59:59.000Z

    Much of the research to date on the Carolina bays of the Savannah River Plant and elsewhere has focused on certain species or on environmental features. Different levels of detail exist for different groups of organisms and reflect the diverse interests of previous investigators. This report summarizes aspects of research to date and presents data from numerous studies. 70 refs., 14 figs., 12 tabs.

  12. Environmental concerns in Kern River Project

    SciTech Connect (OSTI)

    Hargis, D. (Dames and Moore, Los Angeles, CA (US))

    1991-10-01T23:59:59.000Z

    This paper reports that the US natural gas transmission network will soon gain an important and much-needed link---the Kern River Pipeline. The project is the culmination of a massive 6-year planning, permitting and design effort of kern River Gas Transmission Co., a joint venture of Tenneco Inc. and Williams Western Pipeline Co. The Kern River Pipeline will have an initial capacity of 700 MMcfd. Total construction costs are estimated at $925 million, with completion set by the end of the year. The pipeline extends 904 miles from Opal, Wyo., to oil fields in the San Joaquin Valley, Kern Country, Calif. A 230-mile segment from Daggett, Calif., to its terminus at Kern County is shared with, and being built by, Mojave Pipeline Co. Extending across four states -- Wyoming, Utah, Nevada and California -- the Kern River Pipeline is the largest gas pipeline to be built in the US for more than 10 years. it will link the high energy demand areas of Southern California with the natural gas-rich territories of the Rocky Mountains.

  13. Fast Facts About the Columbia River Basin

    E-Print Network [OSTI]

    Administration, the federal agency that markets the electricity generated at federal dams in the Columbia River Energy Regulatory Commission; electric utilities; and state energy regulatory agencies. State, tribal directs more than $220 million annually in federal electricity revenues to implement more than 400

  14. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-10-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  15. Powder River 0 20 40 KILOMETERS

    E-Print Network [OSTI]

    .S. coal basins. The Powder River Basin (PRB) in northeastern Wyoming and southeastern Montana (fig. 1 tons (MST), some 42 percent of the total coal pro- duction in the United States, making the PRB the single most important coal-producing basin in the Nation. About 426 MST (92 percent of total PRB coal

  16. 2008 Peconic River Monitoring Report Highlights

    E-Print Network [OSTI]

    Homes, Christopher C.

    ?? Fish Identification (Area - Age (years)) Mercury(mg/kg) Largemouth bass tissue mercury (mg/kg) EPA Criterion (0.3 mg/kg) Average largemouth bass tissue mercury (0.41 mg/kg) ?? Fish large for age 5 #12;6 2008 Pickerel Largemouth Bass Pumpkinseed 6 #12;8 Fish 2008 Peconic River Average Fish Tissue Mercury by Area 0

  17. Council's Columbia River Fish and Wildlife Program

    E-Print Network [OSTI]

    Walleye Smallmouth bass Northern pike Others 5 Native and Non-native Fish Predators #12; At dams#12;#12;#12;#12;#12;#12;#12;Council's Columbia River Fish and Wildlife Program Summary of Predation Event Center #12;Council's 2009 Fish and Wildlife Program Piscivorous Predator Control Implement

  18. Peconic River Update Environmental Protection Division

    E-Print Network [OSTI]

    Homes, Christopher C.

    largemouth bass from Donahue's Pond Fish age and Hg content 5-year old brown bullhead from Area C had 0 Fish 5-Year Review update and recommendations for changes to the Peconic River monitoring program Sediment Water Fish 2 #12;Refresher - The Clean-up ROD Goals Mercury in Sediment Onsite Average

  19. 3. Hydrogeomorphic Variability and River Restoration

    E-Print Network [OSTI]

    Montgomery, David R.

    . It is difficult to design effective stream and channel restoration measures, or evaluate project performance expansion of efforts in and expenditures for stream restoration. Increasingly, resto- ration efforts focus39 3. Hydrogeomorphic Variability and River Restoration D. R. MONTGOMERY1 AND S. M. BOLTON2

  20. BITTERROOT RIVER SUBBASIN INVENTORY FOR FISH AND

    E-Print Network [OSTI]

    BITTERROOT RIVER SUBBASIN INVENTORY FOR FISH AND WILDLIFE CONSERVATION AUGUST 2009 A report prepared for the Northwest Power and Conservation Council #12;#12;Bitterroot Subbasin Inventory for Fish (Inventory Volume), and Part III (Management Plan Volume), its appendices, and electronically linked

  1. OkanoganRiver SpringChinookSalmon

    E-Print Network [OSTI]

    : Species or Hatchery Stock: Agency/Operator: Watershed and Region: Date Submitted: Date Last Updated: NOTE Chinook Above Wells Dam Table 3. Tribal Incidental Take Thresholds for ESA-Listed 44 Upper Columbia River Steelhead Table 4. Tribal & Recreational Incidental Take Thresholds 45 for Unmarked Spring Chinook Table 5

  2. Land Use Baseline Report Savannah River Site

    SciTech Connect (OSTI)

    Noah, J.C.

    1995-06-29T23:59:59.000Z

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  3. Savannah River Technology Center. Monthly report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    This is a monthly progress report from the Savannah River Laboratory for the month of January 1993. It has sections with work in the areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

  4. Salmon River Habitat Enhancement, 1989 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1989-04-01T23:59:59.000Z

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  5. Savannah River Technology Center monthly report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: Acorn Cleaning Study, tritium, separation processes, bioremediation programs, environmental remediation, environmental sampling, waste management, statistical design, phase I array experiments, and, Monte Carlo Neutron Photon input files.

  6. Mathematical formulations for contaminant partitioning in rivers

    SciTech Connect (OSTI)

    Fowler, K.M.; Whelan, G.; Onishi, Y.

    1997-09-01T23:59:59.000Z

    This mathematical model for contaminant transport in rivers provides a preliminary assessment of the contaminant mass and concentration using environmental partitioning. First, the model uses the advection-dispersion equation to model the river flow and contaminant transport in the water. Second, the model uses compartment modeling to partition the contaminant mass into water, sediment, bed sediment, air, fish, vegetation and free product environmental compartments. Finally, the model calculates contaminant concentration in each environmental compartment. As long as this approach is applied with an understanding of its assumptions and limitations, it can be very useful as a preliminary assessment model for contaminant transport in rivers. The purpose of developing this approach was to provide a simple mathematical model that accounts for the time-varying partitioning of contaminant concentration at a given location along the river. This approach is intended to be used as part of the Multimedia Environmental Pollutant Assessment System (MEPAS). Currently MEPAS, and other multimedia contaminant environmental transport and exposure risk assessment methodologies, assumes that once the contaminant enters the water, it is instantaneously and completely dissolved. This assumption, that the contaminant is only present in the dissolved phase tends to over predict water contaminant levels. This approach is intended to address the partitioning of contaminants into environmental compartments in addition to the water column.

  7. Navasota river crossings in a selected area

    E-Print Network [OSTI]

    Andrews, George Thomas

    1994-01-01T23:59:59.000Z

    disappears with the passing of each generation of the population. The need for study in areas of historical and cultural information is primary. This is a study of crossings on the Navasota River between Brazos County, Texas and the adjacent counties...

  8. Flathead River Creel Report, 1992-1993. Final Report.

    SciTech Connect (OSTI)

    Hanzel, Delano

    1995-09-01T23:59:59.000Z

    A roving creel survey was conducted on the Flathead River system, May 1992 through May 1993, as part of Hungry Horse Dam Fisheries Mitigation, funded by Bonneville Power Administration. The Flathead River system is a tributary to the Clarks Fork of the Columbia River originating in northwest Montana and southern British Columbia. The river creel survey was conducted in conjunction with a Flathead Lake creel survey. This document summarizes the creel survey on the river system. The purpose of these creel surveys was to quantify fishery status prior to mitigation efforts and provide replicative survey methodology to measure success of future mitigation activities. 4 figs., 21 tabs.

  9. Wind River Watershed Restoration: 1999 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J.

    2001-09-01T23:59:59.000Z

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education--Objective 8: Promote watershed stewardship among students, the community, private landowners, and local governments. Progress towards six of eight of these objectives is described within nine separate reports included in a four-volume document.

  10. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

  11. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  12. Mercury in shallow Savannah River Plant soil

    SciTech Connect (OSTI)

    Carlton, W.H.; Price, V.; Cook, J.R.

    1988-10-01T23:59:59.000Z

    Soil concentrations of adsorbed mercury at 999 sites at the Savannah River Plant (SRP) were determined by Microseeps Limited of Indianola, PA. The sites were in and around the 643-C Burial Ground, at the Savannah River Swamp adjacent to TNX Area, and at a background area. The Burial Ground was chosen as a test site because of a history of disposal of radioactive mercury there prior to 1968. Extremely low traces of mercury have been detected in the water table beneath the Burial Ground. Although the mercury concentrations at the majority of these sites are at background levels, several areas appear to be anomalously high. In particular, an area of large magnitude anomaly was found in the northwest part of the Burial Ground. Three other single point anomalies and several other areas of more subtle but consistently high values were also found. Several sites with anomalous mercury levels were found in an area of the Savannah River flood plain adjacent to TNX Area.

  13. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report

    SciTech Connect (OSTI)

    Paller, M. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-03-26T23:59:59.000Z

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  14. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30T23:59:59.000Z

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  15. River Protection Project (RPP) Dangerous Waste Training Plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-12-28T23:59:59.000Z

    This supporting document contains the training plan for dangerous waste management at River Protection Project treatment, storage or disposal facility (TSD) Units.

  16. Independent Activity Report, Savannah River Site- June 2011

    Broader source: Energy.gov [DOE]

    Defense Nuclear Facilities Safety Board Public Meeting in Augusta, Ga, Regarding the Savannah River Site [HIAR-SRS-2011-06-16

  17. Independent Oversight Activity Report, Savannah River Site Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Safety and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions...

  18. Colorado River Storage Project Management Center Customer Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Storage Project Management Center Customer Meeting May 21, 2015 TABLE OF CONTENTS RATES 1 RATES PRESENTATION HANDOUTS 2 REPAYMENT MILESTONE AND STATUS OF REPAYMENT 3 CURRENT...

  19. Department of Energy Cites Savannah River Nuclear Solutions for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions for Worker Safety and Health Violations October 8, 2010 - 12:00am...

  20. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS)...

  1. Sandia National Laboratories: ensure we have a living river

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ensure we have a living river Sandia, the Atlantic Council, and NM Water Resource Research Institute Sponsor Roundtable on Western Water Scarcity On October 4, 2013, in Climate,...

  2. Salt River Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

  3. River Falls Municipal Utilities- Business Energy Efficiency Rebate Program (Wisconsin)

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utility (RFMU) offers a variety of rebates to business customers for implementing energy efficient equipment upgrades. Rebates are available for commercial lighting, central...

  4. Savannah River Site's H Canyon Work Ensures Future Missions for...

    Office of Environmental Management (EM)

    process at MOX, which is now under construction, will eventually create fuel pellets for U.S. commercial reactor fuel assemblies. Savannah River Site's H Canyon Begins...

  5. acushnet river estuary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of metal pollution recorded in the sediments of the Culiacan River Estuary, Northwestern Mexico Geosciences Websites Summary: Historical trends of metal pollution recorded in the...

  6. PIA - Savannah River Site Management and Operating Contractor...

    Energy Savers [EERE]

    Management and Operating Contractor (HRMS) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) Integrated Safety...

  7. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and...

    Energy Savers [EERE]

    includes three key mission areas: environmental cleanup, operation of the Savannah River National Laboratory (SRNL), and National Nuclear Security Administration (NNSA)...

  8. American Society of Mechanical Engineers/Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary American Society of Mechanical EngineersSavannah River National Laboratory (ASMESRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop...

  9. American Society of Mechanical Engineers/Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Attendee List American Society of Mechanical EngineersSavannah River National Laboratory (ASMESRNL) Materials and Components for Hydrogen Infrastructure Codes and...

  10. American Society of Mechanical Engineers/Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda American Society of Mechanical EngineersSavannah River National Laboratory (ASMESRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and...

  11. Independent Activity Report, Office of River Protection Waste...

    Broader source: Energy.gov (indexed) [DOE]

    and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms...

  12. River Falls Municipal Utilities- Energy Star Appliance Rebates

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utility (RFMU), in conjuction with the Wisconsin Focus on Energy program, offers a variety of rebates to residential electric customers for upgrading to energy efficient...

  13. Elk River Municipal Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Elk River Municipal Utilities offers a variety of rebates to commercial, industrial, and agricultural customers for the installation of specific energy efficient equipment. Rebates are available...

  14. Elk River Municipal Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.elkriverutilities.com/index.php Elk River Municipal Utilities] provides rebates to their residential electric customers who purchase and install Energy Star rated appliances and HVAC...

  15. Enterprise Assessments Review of the Savannah River Site Salt...

    Office of Environmental Management (EM)

    Assurance Plan QC Quality Control QCIR Quality Control Inspection Report SDG Standby Diesel Generator SOT System Operational Test SRS Savannah River Site SS Safety Significant...

  16. Office of River Protection Women-Owned Small Business Contractor...

    Office of Environmental Management (EM)

    Energy Department's Office of River Protection announced the contract for Advanced Technologies and Laboratories International Inc. (ATL) has been extended for a second one-year...

  17. Independent Oversight Review, Savannah River Site Salt Waste...

    Broader source: Energy.gov (indexed) [DOE]

    August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight...

  18. Microsoft Word - CX_Priest_River_Acquistiont.doc

    Broader source: Energy.gov (indexed) [DOE]

    Kalispel Tribe of Indians (Kalispell) for purchase of Priest River (Flesher) property. Fish and Wildlife Project No.: 1992-061-00, Contract BPA-004991 Categorical Exclusion...

  19. Voluntary Protection Program Onsite Review, Savannah River Site- May 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Savannah River Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  20. Species for the screening assessment. Columbia River Comprehensive Impact Assessment

    SciTech Connect (OSTI)

    Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O`Neil, T.K.

    1996-03-01T23:59:59.000Z

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Comprehensive Impact Assessment was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of the risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to the environment. The objective of the ecological risk assessment is to determine whether contaminants from the Columbia River pose a significant threat to selected receptor species that exist in the river and riparian communities of the study area. This report (1) identifies the receptor species selected for the screening assessment of ecological risk and (2) describes the selection process. The species selection process consisted of two tiers. In Tier 1, a master species list was developed that included many plant and animal species known to occur in the aquatic and riparian systems of the Columbia River between Priest Rapids Dam and the Columbia River estuary. This master list was reduced to 368 species that occur in the study area (Priest Rapids Dam to McNary Dam). In Tier 2, the 181 Tier 1 species were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area.

  1. Jocko River Watershed conservation easement protects trout habitat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6.25 acre habitat acquisition in Montana's Jocko River Watershed for fish habitat mitigation (see map). Located in Lake County in northwestern Montana, this property was selected...

  2. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  3. PIA - Savannah River Nuclear Solution SRNS Electronic Document...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) MOX Services Unclassified Information System PIA, National Nuclear Services Administration...

  4. Savannah River Technology Center monthly report, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This is the monthly progress report for the Savannah River Technology Center, which covers the following areas of interest, Tritium, Separation processes, Environmental Issues, and Waste Management.

  5. PIA - Savannah River Nuclear Solutions (SRNS) Human Resource...

    Energy Savers [EERE]

    Contractor (HRMS) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)...

  6. PIA - Savannah River Nuclear Solution (SRNS) Energy Employees...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS)...

  7. PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle...

    Office of Environmental Management (EM)

    System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)...

  8. EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary...

    Energy Savers [EERE]

    Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho Summary Bonneville Power Administration (BPA) is preparing an EA to assess the potential environmental impacts...

  9. Lumbee River EMC- Residential and Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

  10. Interagency Wild and Scenic Rivers Coordinating Council's WSRA...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Instructions: Interagency Wild and Scenic Rivers Coordinating Council's WSRA Section 7(a) FlowchartsPermitting...

  11. Re: Potomac River Generating Station Department of Energy Case...

    Energy Savers [EERE]

    PEPCO is providing you with information regarding the planned transmission maintenance outage Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: PEPCO is...

  12. Seepage flow-stability analysis of the riverbank of Saigon river due to river water level fluctuation

    E-Print Network [OSTI]

    Oya, A; Hiraoka, N; Fujimoto, M; Fukagawa, R

    2015-01-01T23:59:59.000Z

    The Saigon River, which flows through the center of Ho Chi Minh City, is of critical importance for the development of the city as forms as the main water supply and drainage channel for the city. In recent years, riverbank erosion and failures have become more frequent along the Saigon River, causing flooding and damage to infrastructures near the river. A field investigation and numerical study has been undertaken by our research group to identify factors affecting the riverbank failure. In this paper, field investigation results obtained from multiple investigation points on the Saigon River are presented, followed by a comprehensive coupled finite element analysis of riverbank stability when subjected to river water level fluctuations. The river water level fluctuation has been identified as one of the main factors affecting the riverbank failure, i.e. removal of the balancing hydraulic forces acting on the riverbank during water drawdown.

  13. Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to

    E-Print Network [OSTI]

    Hansen, James E.

    Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to keep our eye on the ball. Coal River Mountain is the site of an absurdity. I learned about Coal River Mountain from students at Virginia Tech last fall. They were concerned

  14. Field container as a regional strategy for revitalizing the Los Angeles River

    E-Print Network [OSTI]

    Ghole, Saba (Saba Ashfaq)

    2007-01-01T23:59:59.000Z

    This thesis is the study of the Los Angeles River as a multi-layered field with urban condensers that revitalize the river, connect and revitalize the municipal districts bordering the river, and restructure the region to ...

  15. A Publication of the Savannah River Ecology Laboratory National Environmental Research Park Program

    E-Print Network [OSTI]

    Georgia, University of

    , ".' .-.' .; . " c. ':-, A Publication of the Savannah River Ecology Laboratory National Laboratory A Publication of the Savannah River National Environmental Research Park 1988 , Present Address, 1988 Copies my be obtained from Savannah River Ecology Laboratory #12;#12;SEASONAL DYNAMICS OFBENTHIC

  16. Impact of Water Resource Development on Coastal Erosion, Brazos River, Texas

    E-Print Network [OSTI]

    Mathewson, C. C.; Minter, L. L.

    Major dam and reservoir development within the Brazos River Basin is correlative with a significant decrease in the suspended sediment load of the river and with increased coastal erosion rates near the delta. A hydrologic analysis of the river...

  17. Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)

    SciTech Connect (OSTI)

    Matthews, R. A.

    1982-04-01T23:59:59.000Z

    In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

  18. Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts in the Central Savannah River Area

    E-Print Network [OSTI]

    Georgia, University of

    Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts...................................................................................................... 3 Summary Conclusions to DOE Regarding CAB Recommendation 317........................... 4............................................................................................................ 8 Standards

  19. Evaluating Cumulative Ecosystem Evaluating Cumulative Ecosystem Response of the Columbia River Response of the Columbia River

    E-Print Network [OSTI]

    and Implemented by a Collaboration of CREST,and Implemented by a Collaboration of CREST, NMFS, PNNL, UWNMFS, PNNL in the Columbia River estuary. #12;8 Gary Johnson, PNNL Management Curtis Roegner, NOAA Mikah Russell, CREST Fish StudiesHeida Diefenderfer, PNNL Modeling Ron Thom, PNNL Scaling Catherine Corbett, LCREP Meta Analysis

  20. Potential impacts of global climate change on Tijuana River Watershed hydrology - An initial analysis

    E-Print Network [OSTI]

    Das, Tapash; Dettinger, Michael D; Cayan, Daniel R

    2010-01-01T23:59:59.000Z

    on Tijuana River Watershed hydrology - An initial analysis Achanges may impact the hydrology of the Tijuana Riverclimate changes might impact hydrology in the Tijuana River