National Library of Energy BETA

Sample records for radiometer avhrr measurements

  1. ARM - Datastreams - avhrr16

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2000.12.09 - 2007.04.01 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  2. ARM - Datastreams - avhrr15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998.11.10 - 2007.10.07 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  3. ARM - Datastreams - avhrr17

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2002.06.27 - 2007.10.07 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  4. ARM - Datastreams - avhrr10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.09.15 - 1999.10.09 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  5. ARM - Datastreams - avhrr12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.07.22 - 2007.08.09 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  6. ARM - Datastreams - avhrr9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.09.15 - 1995.08.02 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  7. ARM - Datastreams - avhrr18

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2005.09.25 - 2007.04.01 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  8. ARM - Datastreams - avhrr14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1995.01.18 - 2007.03.12 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  9. ARM - Datastreams - avhrr11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.07.21 - 1998.10.13 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  10. ARM - Datastreams - avhrr16rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2000.12.09 - 2007.04.01 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  11. ARM - Datastreams - avhrr17rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2002.06.27 - 2007.10.07 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  12. ARM - Datastreams - avhrr12rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.07.22 - 2007.08.09 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  13. ARM - Datastreams - avhrr14rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1995.01.18 - 2007.03.12 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  14. ARM - Datastreams - avhrr15rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998.11.10 - 2007.10.07 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  15. ARM - Datastreams - avhrr11rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.07.21 - 1998.10.13 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  16. ARM - Datastreams - avhrr9rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.09.15 - 1995.08.02 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  17. ARM - Datastreams - avhrr10rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.09.15 - 1999.10.09 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  18. ARM - Datastreams - avhrr18rad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2005.09.25 - 2007.04.01 Measurement Categories Radiometric Originating Instrument Advanced Very High Resolution Radiometer (AVHRR) Measurements The measurements below provided...

  19. Ground-Based Microwave Radiometer Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment D. Cimini University of L'Aquila L'Aquil, Italy E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Y. Han Science System Applications National Aeronautics Space Administration Goddard Space Flight Center Greenbelt, Maryland S. Keihm

  20. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  1. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  2. Experimental measurements and noise analysis of a cryogenic radiometer

    SciTech Connect (OSTI)

    Carr, S. M.; Woods, S. I.; Jung, T. M.; Carter, A. C.; Datla, R. U.

    2014-07-15

    A cryogenic radiometer device, intended for use as part of an electrical-substitution radiometer, was measured at low temperature. The device consists of a receiver cavity mechanically and thermally connected to a temperature-controlled stage through a thin-walled polyimide tube which serves as a weak thermal link. With the temperature difference between the receiver and the stage measured in millikelvin and the electrical power measured in picowatts, the measured responsivity was 4700 K/mW and the measured thermal time constant was 14 s at a stage temperature of 1.885 K. Noise analysis in terms of Noise Equivalent Power (NEP) was used to quantify the various fundamental and technical noise contributions, including phonon noise and Johnson-Nyquist noise. The noise analysis clarifies the path toward a cryogenic radiometer with a noise floor limited by fundamental phonon noise, where the magnitude of the phonon NEP is 6.5 fW/?(Hz) for the measured experimental parameters.

  3. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect (OSTI)

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  4. MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE ARCTIC MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN THE ARCTIC Cadeddu, Maria Argonne National Laboratory Category: Instruments A new G-band (183 GHz) vapor radiometer (GVR), developed and built by Prosensing Inc. (http://www.prosensing.com), was deployed in Barrow, Alaska, in April 2005. The radiometer was deployed as part of the ongoing Atmospheric Radiation Measurement (ARM) program's effort to improve water vapor retrievals in the cold, dry Arctic

  5. Using a cold radiometer to measure heat loads and survey heat leaks

    SciTech Connect (OSTI)

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P.

    2014-01-29

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  6. Radiometer Calibration and Characterization

    Energy Science and Technology Software Center (OSTI)

    1994-12-31

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating solar radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer’s response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument’s responsivity.

  7. Antarctic sea ice mapping using the AVHRR

    SciTech Connect (OSTI)

    Zibordi, G. ); Van Woert, M.L. . SeaSpace, Inc.)

    1993-08-01

    A sea ice mapping scheme based on Advanced Very High Resolution Radiometer (AVHRR) data from the National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites has been developed and applied to daylight images taken between November 1989 to January 1990 and November 1990 to January 1991 over the Weddell and the Ross Seas. After masking the continent and ice shelves, sea ice is discriminated from clouds and open sea using thresholds applied to the multidimensional space formed by AVHRR Channel 2, 3, and 4 radiances. Sea ice concentrations in cloud-free regions are then computed using the tie-point method. Results based on the analysis of more than 70 images show that the proposed scheme is capable of properly discriminating between sea ice, open sea, and clouds, under most conditions, thus allowing high resolution sea ice maps to be produced during the austral summer season.

  8. ARM - Instrument - avhrr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsavhrr Documentation AVHRR : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at...

  9. Broadband radiometer

    DOE Patents [OSTI]

    Cannon, Theodore W.

    1994-01-01

    A broadband radiometer including (a) an optical integrating sphere having a enerally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample.

  10. Broadband radiometer

    DOE Patents [OSTI]

    Cannon, T.W.

    1994-07-26

    A broadband radiometer is disclosed including (a) an optical integrating sphere having generally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample. 8 figs.

  11. Solar Irradiances Measured using SPN1 Radiometers: Uncertainties and Clues for Development

    SciTech Connect (OSTI)

    Badosa, Jordi; Wood, John; Blanc, Philippe; Long, Charles N.; Vuilleumier, Laurent; Demengel, Dominique; Haeffelin, Martial

    2014-12-08

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping capital, maintenance and operating costs to a minimum. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the-art measurements.

  12. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    SciTech Connect (OSTI)

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.; Lenshow, D.H.; Mayer, S.D.

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  13. Measurement of Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Exp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Experiment and WVIOP 2000 V. Y. Leuski and E. R. Westwater Cooperative Institute for Research in the Environmental Sciences National Oceanic and Atmospheric Administration Environmental Technology Laboratory University of Colorado Boulder, Colorado Introduction A scanning 5-mm-wavelength radiometer was deployed during two Intensive Operational Periods (IOPs) at the Atmospheric Radiation

  14. Informal Preliminary Report on Comparisons of Prototype SPN-1 Radiometer to PARSL Measurements

    SciTech Connect (OSTI)

    Long, Charles N.

    2014-06-17

    The prototype SPN-1 has been taking measurements for several months collocated with our PNNL Atmospheric Remote Sensing Laboratory (PARSL) solar tracker mounted instruments at the Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, USA. The PARSL radiometers used in the following comparisons consist of an Eppley Normal Incident Pyrheliometer (NIP) and a shaded Eppley model 8-48 “Black and White” pyrgeometer (B&W) to measure the direct and diffuse shortwave irradiance (SW), respectively. These instruments were calibrated in mid-September by comparison to an absolute cavity radiometer directly traceable to the world standard group in Davos, Switzerland. The NIP calibration was determined by direct comparison, while the B&W was calibrated using the shade/unshade technique. All PARSL data prior to mid-September have been reprocessed using the new calibration factors. The PARSL data are logged as 1-minute averages from 1-second samples. Data used in this report span the time period from June 22 through December 1, 2006. All data have been processed through the QCRad code (Long and Shi, 2006), which itself is a more elaborately developed methodology along the lines of that applied by the Baseline Surface Radiation Network (BSRN) Archive (Long and Dutton, 2004), for quality control. The SPN-1 data are the standard total and diffuse SW values obtained from the analog data port of the instrument. The comparisons use only times when both the PARSL and SPN-1 data passed all QC testing. The data were further processed and analyzed by application of the SW Flux Analysis methodology (Long and Ackerman, 2000; Long and Gaustad, 2004, Long et al., 2006) to detect periods of clear skies, calculate continuous estimates of clear-sky SW irradiance and the effect of clouds on the downwelling SW, and estimate fractional sky cover.

  15. Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance using Thermopile and Semiconductor Solar Radiometers

    SciTech Connect (OSTI)

    Reda, I.

    2011-07-01

    The uncertainty of measuring solar irradiance is fundamentally important for solar energy and atmospheric science applications. Without an uncertainty statement, the quality of a result, model, or testing method cannot be quantified, the chain of traceability is broken, and confidence cannot be maintained in the measurement. Measurement results are incomplete and meaningless without a statement of the estimated uncertainty with traceability to the International System of Units (SI) or to another internationally recognized standard. This report explains how to use International Guidelines of Uncertainty in Measurement (GUM) to calculate such uncertainty. The report also shows that without appropriate corrections to solar measuring instruments (solar radiometers), the uncertainty of measuring shortwave solar irradiance can exceed 4% using present state-of-the-art pyranometers and 2.7% using present state-of-the-art pyrheliometers. Finally, the report demonstrates that by applying the appropriate corrections, uncertainties may be reduced by at least 50%. The uncertainties, with or without the appropriate corrections might not be compatible with the needs of solar energy and atmospheric science applications; yet, this report may shed some light on the sources of uncertainties and the means to reduce overall uncertainty in measuring solar irradiance.

  16. Narrowband filter radiometer for ground-based measurements of global ultraviolet solar irradiance and total ozone

    SciTech Connect (OSTI)

    Petkov, Boyan; Vitale, Vito; Tomasi, Claudio; Bonafe, Ubaldo; Scaglione, Salvatore; Flori, Daniele; Santaguida, Riccardo; Gausa, Michael; Hansen, Georg; Colombo, Tiziano

    2006-06-20

    The ultraviolet narrowband filter radiometer (UV-RAD) designed by the authors to take ground-based measurements of UV solar irradiance, total ozone, and biological dose rate is described, together with the main characteristics of the seven blocked filters mounted on it, all of which have full widths at half maxima that range 0.67 to 0.98 nm. We have analyzed the causes of cosine response and calibration errors carefully to define the corresponding correction terms, paying particular attention to those that are due to the spectral displacements of the filter transmittance peaks from the integer wavelength values. The influence of the ozone profile on the retrieved ozone at large solar zenith angles has also been examined by means of field measurements. The opportunity of carrying out nearly monochromatic irradiance measurements offered by the UV-RAD allowed us to improve the procedure usually followed to reconstruct the solar spectrum at the surface by fitting the computed results, using radiative transfer models with field measurements of irradiance. Two long-term comparison campaigns took place, showing that a mean discrepancy of+0.3% exists between the UV-RAD total ozone values and those given by the Brewer no. 63 spectroradiometer and that mean differences of+0.3% and-0.9% exist between the erythemal dose rates determined with the UV-RAD and those obtained with the Brewer no. 63 and the Brewer no. 104 spectroradiometers, respectively.

  17. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Dooraghi, Michael

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  18. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  19. ARM - Datastreams - avhrr14lacman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lacman Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR14LACMAN AVHRR (NOAA 14), 1-km res., local area coverage of Manus

  20. ARM - Datastreams - avhrr14lacnau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lacnau Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR14LACNAU AVHRR (NOAA 14), 1-km res., local area coverage of Nauru

  1. ARM - Datastreams - avhrr16lacman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lacman Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR16LACMAN AVHRR (NOAA 16), 1-km res., local area coverage of Manus

  2. ARM - Datastreams - avhrr16lacnau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lacnau Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR16LACNAU AVHRR (NOAA 16), 1-km res., local area coverage of Nauru

  3. ARM - Datastreams - avhrr17lacman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lacman Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR17LACMAN AVHRR (NOAA 17), 1-km res., local area coverage of Manus from Kwajalein, provided by Aeromet Active Dates 2002.09.16

  4. ARM - Datastreams - avhrr17lacnau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lacnau Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR17LACNAU AVHRR (NOAA 17), 1-km res., local area coverage of Nauru from Kwajalein, provided by Aeromet Active Dates 2002.09.15

  5. Inter-Comparison and Synergy Between the Two Long-Term Gloval Aerosol Products Derived from AVHRR and TOMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inter-Comparison and Synergy Between the Two Long-Term Global Aerosol Products Derived from AVHRR and TOMS M.-J. Jeong and Z. Li Department of Meteorology University of Maryland College Park, Maryland D. A. Chu and S.-C. Tsay National Aeronautics and Space Administration Goddard Flight Center Greenbelt, Maryland Introduction Eighteen years of satellite-based monthly aerosol products have been derived from the advanced very high resolution radiometer (AVHRR) and total ozone mapping experiment

  6. ARM - Datastreams - avhrr12lacman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lacman Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR12LACMAN AVHRR (NOAA 12), 1-km res., local area coverage of Manus from Kwajalein, provided by Aeromet Active Dates 2002.04.19 - 2002.09.07

  7. ARM - Datastreams - avhrr12lacnau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lacnau Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR12LACNAU AVHRR (NOAA 12),1-km res., local area coverage of Nauru from Kwajalein, provided by Aeromet Active Dates 2002.04.16 - 2002.09.10

  8. SRRL: Broadband Outdoor Radiometer CALibrations (BORCAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Outdoor Radiometer Calibrations Accurate measurements of solar radiation require regular recalibration of the radiometers used to make the irradiance measurement. NREL has developed the Broadband Outdoor Radiometer Calibration (BORCAL) approach for the annual calibration of pyranometers, pyrheliometers, and pyrgeometers used by the Department of Energy. BORCALs are conducted at the Solar Radiation Research Laboratory (SRRL) and at the Atmospheric Radiation Measurement (ARM) Program's

  9. Improved Rotating Shadowband Radiometer Measurement Performance: Cooperative Research and Development Final Report, CRADA Number CRD-08-294

    SciTech Connect (OSTI)

    Andreas, A. M.

    2015-02-01

    Under this Agreement, NREL will work with Participant to improve rotating shadowband radiometer (RSR) performance characterizations. This work includes, but is not limited to, research and development for making the RSR a more accurate and fully characterized instrument for solar power technology development and commercial solar power project site assessment. Cooperative R&D is proposed in three areas: instrument calibration, instrument field configuration and operation, and measurement extrapolation and interpolation using satellite images. This work will be conducted at NREL and Participant facilities.

  10. ARM - Datastreams - avhrr14gacman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gacman Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR14GACMAN Global Area Coverage 4-km resolution files for Manus

  11. ARM - Datastreams - avhrr14gacnau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gacnau Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR14GACNAU Global Area Coverage 4-km resolution files for Nauru

  12. ARM - Datastreams - avhrr15gacman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gacman Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR15GACMAN Global Area Coverage 4-km resolution files for Manus

  13. ARM - Datastreams - avhrr15gacnau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gacnau Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR15GACNAU Global Area Coverage 4-km resolution files for Nauru

  14. ARM - Datastreams - avhrr16gacman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gacman Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR16GACMAN Global Area Coverage 4-km resolution files for Manus

  15. ARM - Datastreams - avhrr16gacnau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gacnau Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRR16GACNAU Global Area Coverage 4-km resolution files for Nauru

  16. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMicrowave Radiometer Profiler Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Microwave Radiometer Profiler Evaluation 2000.09.01 - 2001.03.31 Lead Scientist : James Liljegren For data sets, see below. Abstract The microwave radiometer profiler (MWRP) is a new 12-channel radiometer developed by Radiometrics Corporation for measuring vertical profiles of temperature, water vapor, and

  17. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMicrowave Radiometer Profiler Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Microwave Radiometer Profiler Evaluation 2000.02.25 - 2000.08.22 Lead Scientist : James Liljegren For data sets, see below. Abstract The microwave radiometer profiler (MWRP) is a new 12-channel radiometer developed by Radiometrics Corporation for measuring vertical profiles of temperature, water vapor, and

  18. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    SciTech Connect (OSTI)

    Michalsky, J.; Harrison, L.

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  19. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  20. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2006-01-04

    The project is concerned with the characterization of cloud macrophysical and microphysical properties by combining radar, lidar, and radiometer measurements available from the U.S. Department of Energy's ARM Climate Research Facility (ACRF). To facilitate the production of integrated cloud product by applying different algorithms to the ARM data streams, an advanced cloud classification algorithm was developed to classified clouds into eight types at the SGP site based on ground-based active and passive measurements. Cloud type then can be used as a guidance to select an optimal retrieval algorithm for cloud microphysical property retrieval. The ultimate goal of the effort is to develop an operational cloud classification algorithm for ARM data streams. The vision 1 IDL code of the cloud classification algorithm based on the SGP ACRF site observations was delivered to the ARM cloud translator during 2004 ARM science team meeting. Another goal of the project is to study midlevel clouds, especially mixed-phase clouds, by developing new retrieval algorithms using integrated observations at the ACRF sites. Mixed-phase clouds play a particular role in the Arctic climate system. A multiple remote sensor based algorithm, which can provide ice water content and effective size profiles, liquid water path, and layer-mean effective radius of water droplet, was developed to study arctic mixed-phase clouds. The algorithm is applied to long-term ARM observations at the NSA ACRF site. Based on these retrieval results, we are studying seasonal and interannual variations of arctic mixed-phase cloud macro- and micro-physical properties.

  1. Failure and Redemption of Multifilter Rotating Shadowband Radiometer

    Office of Scientific and Technical Information (OSTI)

    (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites (Journal Article) | SciTech Connect Journal Article: Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North

  2. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The

  3. A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahn, M. H.; Han, D.; Won, H. Y.; Morris, Victor R.

    2015-02-03

    For better utilization of the ground-based microwave radiometer, it is important to detect the cloud presence in the measured data. Here, we introduce a simple and fast cloud detection algorithm by using the optical characteristics of the clouds in the infrared atmospheric window region. The new algorithm utilizes the brightness temperature (Tb) measured by an infrared radiometer installed on top of a microwave radiometer. The two-step algorithm consists of a spectral test followed by a temporal test. The measured Tb is first compared with a predicted clear-sky Tb obtained by an empirical formula as a function of surface air temperaturemore » and water vapor pressure. For the temporal test, the temporal variability of the measured Tb during one minute compares with a dynamic threshold value, representing the variability of clear-sky conditions. It is designated as cloud-free data only when both the spectral and temporal tests confirm cloud-free data. Overall, most of the thick and uniform clouds are successfully detected by the spectral test, while the broken and fast-varying clouds are detected by the temporal test. The algorithm is validated by comparison with the collocated ceilometer data for six months, from January to June 2013. The overall proportion of correctness is about 88.3% and the probability of detection is 90.8%, which are comparable with or better than those of previous similar approaches. Two thirds of discrepancies occur when the new algorithm detects clouds while the ceilometer does not, resulting in different values of the probability of detection with different cloud-base altitude, 93.8, 90.3, and 82.8% for low, mid, and high clouds, respectively. Finally, due to the characteristics of the spectral range, the new algorithm is found to be insensitive to the presence of inversion layers.« less

  4. A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer

    SciTech Connect (OSTI)

    Ahn, M. H.; Han, D.; Won, H. Y.; Morris, Victor R.

    2015-02-03

    For better utilization of the ground-based microwave radiometer, it is important to detect the cloud presence in the measured data. Here, we introduce a simple and fast cloud detection algorithm by using the optical characteristics of the clouds in the infrared atmospheric window region. The new algorithm utilizes the brightness temperature (Tb) measured by an infrared radiometer installed on top of a microwave radiometer. The two-step algorithm consists of a spectral test followed by a temporal test. The measured Tb is first compared with a predicted clear-sky Tb obtained by an empirical formula as a function of surface air temperature and water vapor pressure. For the temporal test, the temporal variability of the measured Tb during one minute compares with a dynamic threshold value, representing the variability of clear-sky conditions. It is designated as cloud-free data only when both the spectral and temporal tests confirm cloud-free data. Overall, most of the thick and uniform clouds are successfully detected by the spectral test, while the broken and fast-varying clouds are detected by the temporal test. The algorithm is validated by comparison with the collocated ceilometer data for six months, from January to June 2013. The overall proportion of correctness is about 88.3% and the probability of detection is 90.8%, which are comparable with or better than those of previous similar approaches. Two thirds of discrepancies occur when the new algorithm detects clouds while the ceilometer does not, resulting in different values of the probability of detection with different cloud-base altitude, 93.8, 90.3, and 82.8% for low, mid, and high clouds, respectively. Finally, due to the characteristics of the spectral range, the new algorithm is found to be insensitive to the presence of inversion layers.

  5. Microwave Radiometer-High Frequency (MWRHF) Handbook

    SciTech Connect (OSTI)

    Caddedu, MP

    2011-03-17

    The 90/150-GHz Vapor Radiometer provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two channels are sensitive to the presence of liquid water and precipitable water vapor.

  6. A large scanning radiometer for characterizing fenestration systems

    SciTech Connect (OSTI)

    Papamichael, K.; Klems, J.; Selkowitz, S.

    1987-11-01

    A large scanning radiometer for measuring the bidirectional transmittance and reflectance of fenestration systems and components is described. Examples of measured data obtained for simple non-specular samples using the radiometer are presented. A method of obtaining the overall bidirectional properties of systems by calculation from scanning radiometer measurements of components is suggested. Advantages and limitations of the method are discussed. The method appears promising.

  7. Cloud Optical Properties from the Multifilter Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Min and Harrison (1996) developed an inversion method to infer the optical depth of liquid ... Multifilter Rotating Shadowband Radiometer (MFRSR) measurements (Harrison et al. 1994). ...

  8. Maturation and Hardening of the Stabilized Radiometer Platforms...

    Office of Scientific and Technical Information (OSTI)

    Title: Maturation and Hardening of the Stabilized Radiometer Platforms (STRAPS) Field Campaign Report Measurements of solar and infrared irradiance by instruments rigidly mounted ...

  9. A new radiometer for earth radiation budget studies

    SciTech Connect (OSTI)

    Weber, P.G.

    1992-05-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  10. A new radiometer for earth radiation budget studies

    SciTech Connect (OSTI)

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  11. Stable radiometal antibody immunoconjugates

    DOE Patents [OSTI]

    Mease, R.C.; Srivastava, S.C.; Gestin, J.F.

    1994-08-02

    The present invention relates to new rigid chelating structures, to methods for preparing these materials, and to their use in preparing radiometal labeled immunoconjugates. These new chelates include cyclohexyl EDTA monohydride, the trans forms of cyclohexyl DTPA and TTHA, and derivatives of these cyclohexyl polyaminocarboxylate materials. No Drawings

  12. Stable radiometal antibody immunoconjugates

    DOE Patents [OSTI]

    Mease, Ronnie C.; Srivastava, Suresh C.; Gestin, Jean-Francois

    1994-01-01

    The present invention relates to new rigid chelating structures, to methods for preparing these materials, and to their use in preparing radiometal labeled immunoconjugates. These new chelates include cyclohexyl EDTA monohydride, the trans forms of cyclohexyl DTPA and TTHA, and derivatives of these cyclohexyl polyaminocarboxylate materials.

  13. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect (OSTI)

    Habte, A.; Wilcox, S.; Stoffel, T.

    2014-02-01

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  14. Broadband Outdoor Radiometer Calibration Process for the Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program (Technical Report) | SciTech Connect Technical Report: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program Citation Details In-Document Search Title: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related

  15. Nighttime Cloud Detection Over the Arctic Using AVHRR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table 3. SHEBA domain cloud statistics from the polar cloud mask for January-March 1998. ... Earth Radiation Budget Experiment (ERBE) and NOAA-9 AVHRR data from 1986 were matched to ...

  16. ARM: GRAMS: data from the total solar broadband radiometer (TBBR...

    Office of Scientific and Technical Information (OSTI)

    solar broadband radiometer (TBBR) Title: ARM: GRAMS: data from the total solar broadband radiometer (TBBR) GRAMS: data from the total solar broadband radiometer (TBBR) Authors: ...

  17. ARM: Multi-Filter Radiometer (MFR): upwelling irradiance at 3...

    Office of Scientific and Technical Information (OSTI)

    Multi-Filter Radiometer (MFR): upwelling irradiance at 3-meter height Title: ARM: Multi-Filter Radiometer (MFR): upwelling irradiance at 3-meter height Multi-Filter Radiometer ...

  18. ARM: GRAMS: data from the total direct diffuse radiometer (TDDR...

    Office of Scientific and Technical Information (OSTI)

    direct diffuse radiometer (TDDR) Title: ARM: GRAMS: data from the total direct diffuse radiometer (TDDR) GRAMS: data from the total direct diffuse radiometer (TDDR) Authors: ...

  19. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak

    SciTech Connect (OSTI)

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S. K. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2014-05-15

    An 8-channel E-band heterodyne radiometer system (7486 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 10{sup 9} V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  20. Microwave Radiometer – 3 Channel (MWR3C) Handbook

    SciTech Connect (OSTI)

    Cadeddu, MP

    2012-05-04

    The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to the presence of liquid water and precipitable water vapor.

  1. Observations of tropical cirrus properties in the pilot radiation observation experiment using lidar and the CSIRO ARM filter radiometer

    SciTech Connect (OSTI)

    Platt, C.M.R.; Young, S.A.; Manson, P.J.; Patterson, G.R.

    1995-04-01

    A narrow beam fast filter radiometer has been developed for the Atmospheric Radiation Measurement (ARM) Program. The radiometer is intended to operate alongside a lidar at ARM sites in a lidar/radiometer (LIRAD) configuration. The radiometer detects in three narrow bands at 8.62-, 10.86-, and 12.04-m central wavelengths in the atmospheric window. In addition, it has a variable field aperture that varies the radiance incident on the detector and also allows the field of view to be tailored to that of a lidar used in the LIRAD technique. The radiometer was deployed in the ARM Pilot Radiation Observation Experiment (PROBE) at Kavieng, Papua New Guinea in January-February 1993. The radiometer worked satisfactorily and appeared to be very stable. The radiometer was compared with a previous CSIRO radiometer and the improved performance of the ARM instrument was very evident. The ARM radiometer was also compared with a National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratories (ETL) interferometer and gave closely equivalent radiances. The LIRAD method was used at Kavieng to obtain the optical properties of cirrus clouds. Continuous observations of water vapor path obtained by the NOAA ETL microwave radiometer were employed to allow for the strong tropical water vapor absorption and emission. Cirrus cells that developed on one morning, independent of other clouds, had measured infrared emittances varying from <0.1 to 1.0.

  2. Radiometer Calibration and Characterization (RCC) User's Manual...

    Office of Scientific and Technical Information (OSTI)

    (RCC) User's Manual: Windows Version 4.0 Citation Details In-Document Search Title: Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0 ...

  3. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook

    SciTech Connect (OSTI)

    Hodges, GB; Michalsky, JJ

    2011-02-07

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  4. Rotating shadowband radiometer development and analysis of spectral shortwave data

    SciTech Connect (OSTI)

    Michalsky, J.; Harrison, L.; Min, Q.

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  5. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  6. ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid...

    Office of Scientific and Technical Information (OSTI)

    Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and Precipitable Water Vapor Title: ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and ...

  7. ARM: Microwave Radiometer: High Frequency, calibration data for...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Microwave Radiometer: High Frequency, calibration data for 150GHz channel Microwave Radiometer: High Frequency, calibration data for 150GHz channel Authors: Maria ...

  8. ARM: Microwave Radiometer: High Frequency, calibration data for...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Microwave Radiometer: High Frequency, calibration data for 90GHz channel Microwave Radiometer: High Frequency, calibration data for 90GHz channel Authors: Maria Cadeddu ...

  9. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    1993-07-04

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  10. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  11. The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives

    SciTech Connect (OSTI)

    Stamnes, K.; Leontieva, E.

    1996-04-01

    The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

  12. Narrow Field of View Zenith Radiometer (NFOV) Handbook

    SciTech Connect (OSTI)

    Chiu, C; Marshak, A; Hodges, G; Barnard, JC; Schmelzer, J

    2008-11-01

    The two-channel narrow field-of-view radiometer (NFOV2) is a ground-based radiometer that looks straight up and measures radiance directly above the instrument at wavelengths of 673 and 870 nm. The field-of-view of the instrument is 1.2 degrees, and the sampling time resolution is one second. Measurements of the NFOV2 have been used to retrieve optical properties for overhead clouds that range from patchy to overcast. With a one-second sampling rate of the NFOV2, faster than almost any other ARM Climate Research Facility (ACRF) instrument, we are able, for the first time, to capture changes in cloud optical properties at the natural time scale of cloud evolution.

  13. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    SciTech Connect (OSTI)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

  14. Development of two-band infrared radiometer for irradiance calibration of target simulators

    SciTech Connect (OSTI)

    Yang, Sen; Li, Chengwei

    2015-07-15

    A detector-based spectral radiometer has been developed for the calibration of target simulator. Unlike the conventional spectral irradiance calibration method based on radiance and irradiance, the new radiometer is calibrated using image-space temperature based method. The image-space temperature based method improves the reproducibility in the calibration of radiometer and reduces the uncertainties existing in the conventional calibration methods. The calibrated radiometer is then used to establish the irradiance transfer standard for the target simulator. With the designed radiometer in this paper, a highly accurate irradiance calibration for target simulators of wavelength from 2.05 to 2.55 μm and from 3.7 to 4.8 μm can be performed with an expanded uncertainty (k = 2) of calibration of 2.18%. Last but not least, the infrared radiation of the target simulator was measured by the infrared radiometer, the effectiveness and capability of which are verified through measurement of temperature and irradiance and a comparison with the thermal imaging camera.

  15. Novel Cyclotron-Based Radiometal Production

    SciTech Connect (OSTI)

    DeGrado, Timothy R.

    2013-10-31

    Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volume to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started.

  16. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value...

    Office of Scientific and Technical Information (OSTI)

    G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product Citation Details In-Document Search Title: G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) ...

  17. ARM: Microwave Water Radiometer (MWR): water liq. and vapor along...

    Office of Scientific and Technical Information (OSTI)

    Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) path Title: ARM: Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) ...

  18. NREL: MIDC/ARM Radiometer Characterization System (36.606 N, 97.486 W, 320

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m, GMT-6) ARM Radiometer Characterization System

  19. New shortwave solar radiometer with information-based sparse sampling

    SciTech Connect (OSTI)

    Simpson, M.L.; Carnal, C.L.; Ericson, M.N.; Falter, D.D.; Falter, K.G.; Jellison, G.E. Jr.; Kryter, R.C.; Maddox, S.R.; Munro, J.K.; Rochelle, J.M.; Spratlin, T.L.

    1991-01-01

    A new concept for a real-time shortwave solar radiometer is presented, based on the premise that high resolution measurements of the shortwave solar spectrum are needed only in wavelength regions where the atmospheric physics are changing rapidly with respect to {Lambda}. The design features holographic optical elements (HOEs) for nonuniform sampling of the spectrum, customized photocells, and temperature-compensated monolithic wide dynamic range amplifiers. Preliminary results show full spectrum reconstruction accuracies to < 3% with a 10:1 reduction in the number of photocells required. 9 refs.

  20. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product

    SciTech Connect (OSTI)

    Koontz, A; Cadeddu, M

    2012-12-05

    The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

  1. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for retrieving cloud liquid water content and drizzle characteristics using a K -band Doppler radar (Kropfli et al. 1990) and microwave radiometer (Hogg et al. 1983). The...

  2. ARM: Portable Radiation Package: Broadband Radiometers, 1 second...

    Office of Scientific and Technical Information (OSTI)

    Portable Radiation Package: Broadband Radiometers, 1 second resolution Authors: Annette Koontz ; R. Reynolds Publication Date: 2012-11-02 OSTI Identifier: 1095574 DOE Contract ...

  3. ARM: Portable Radiation Package: Fast Rotating Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Portable Radiation Package: Fast Rotating Shadowband Radiometer full resolution 6-s sampling Authors: Annette Koontz ; R. Reynolds Publication Date: 2012-11-02 OSTI Identifier: ...

  4. Microfluidic Radiometal Labeling Systems for Biomolecules

    SciTech Connect (OSTI)

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 â?? 300 ?¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  5. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Measurements associated with the Aerosol Observing System UAV-MET-OTTER : Meteorology from UAV-Twin Otter MWRP : Microwave Radiometer Profiler LBTM-MINNIS : Minnis ...

  6. ARM - Measurement - Atmospheric pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Measurements associated with the Aerosol Observing System UAV-MET-OTTER : Meteorology from UAV-Twin Otter MWRP : Microwave Radiometer Profiler VISST : Minnis Cloud ...

  7. Multi-Filter Rotating Shadowband Radiometers Mentor Report and Baseline Surface Radiation Network Submission Status

    SciTech Connect (OSTI)

    Hodges, G.

    2005-03-18

    There are currently twenty-four Multi-Filter Rotating Shadowband Radiometers (MFRSR) operating within Atmospheric Radiation Measurement (ARM). Eighteen are located within the Southern Great Plains (SGP) region, there is one at each of the North Slope of Alaska (NSA) and Tropical Western Pacific (TWP) sites, and one is part of the instrumentation of the ARM Mobile Facility. At this time there are four sites, all extended facilities within the SGP, that are equipped for a MFRSR but do not have one due to instrument failure and a lack of spare instruments. In addition to the MFRSRs, there are three other MFRSR derived instruments that ARM operates. They are the Multi-Filter Radiometer (MFR), the Normal Incidence Multi-Filter Radiometer (NIMFR) and the Narrow Field of View (NFOV) radiometer. All are essentially just the head of a MFRSR used in innovative ways. The MFR is mounted on a tower and pointed at the surface. At the SGP Central Facility there is one at ten meters and one at twenty-five meters. The NSA has a MFR at each station, both at the ten meter level. ARM operates three NIMFRs; one is at the SGP Central Facility and one at each of the NSA stations. There are two NFOVs, both at the SGP Central Facility. One is a single channel (870) and the other utilizes two channels (673 and 870).

  8. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  9. ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Laura Riihimaki

    1993-09-01

    Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

  10. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  11. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  12. ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Laura Riihimaki

    Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

  13. ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Cloud Rotating Shadowband Radiometer 2008.01.08 - 2008.07.18 Lead Scientist : Mary Jane Bartholomew For data sets, see below. Abstract The Thin-Cloud Rotating Shadowband...

  14. ARM - Field Campaign - Long-Term Microwave Radiometer Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsLong-Term Microwave Radiometer Intercomparison ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Long-Term Microwave Radiometer Intercomparison 2001.04.01 - 2001.09.30 Lead Scientist : Richard Cederwall For data sets, see below. Summary Make the spare MWR operational. Ingest data from the spare MWR. Input the output data of the spare MWR and ingest to VAP. Provide data to IOP participants.

  15. Experimental characterization of edge force on the Crookes radiometer

    SciTech Connect (OSTI)

    Ventura, Austin L.; Ketsdever, Andrew D.; Gimelshein, Natalia E.; Gimelshein, Sergey F.

    2014-12-09

    The contribution of edge force on the Crookes radiometer is experimentally investigated with three vane geometries. This work examines increasing the force per unit weight of a radiometer vane for applications such as near-space propulsion by increasing the vanes perimeter while decreasing the total surface area of the vane by means of machined holes in the vanes. Experimental results are given for three vane geometries. These results indicate that although force to vane weight ratios can be improved, the maximum force is achieved by a vane geometry that contains no hole features.

  16. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers

    SciTech Connect (OSTI)

    Myers, D.; Wilcox, S. M.

    2009-01-01

    We evaluated the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer. One minute averages of 3-second data for 12 months from the test instrument measurements were compared with the computed reference data set. Combined uncertainty in the computed reference irradiance is 1.8% {+-} 0.5%. Total uncertainty in the pyranometer comparisons is {+-}2.5%. We show mean percent difference between reference global irradiance and test pyranometer 1 minute data as a function of zenith angle, and percent differences between daily totals for the reference and test irradiances as a function of day number. We offer no explicit conclusion about the performance of instrument models, as a general array of applications with a wide range of instrumentation and accuracy requirements could be addressed with any of the radiometers.

  17. Multi Spectral Pushbroom Imaging Radiometer (MPIR) for remote sensing cloud studies

    SciTech Connect (OSTI)

    Phipps, G.S.; Grotbeck, C.L.

    1995-10-01

    A Multi Spectral Pushbroom Imaging Radiometer (MPIR) has been developed as are relatively inexpensive ({approximately}$IM/copy), well-calibrated,imaging radiometer for aircraft studies of cloud properties. The instrument is designed to fly on an Unmanned Aerospace Vehicle (UAV) platform at altitudes from the surface up to 20 km. MPIR is being developed to support the Unmanned Aerospace Vehicle portion of the Department of Energy`s Atmospheric Radiation Measurements program (ARM/UAV). Radiation-cloud interactions are the dominant uncertainty in the current General Circulation Models used for atmospheric climate studies. Reduction of this uncertainty is a top scientific priority of the US Global Change Research Program and the ARM program. While the DOE`s ARM program measures a num-ber of parameters from the ground-based Clouds and Radiation Testbed sites, it was recognized from the outset that other key parameters are best measured by sustained airborne data taking. These measurements are critical in our understanding of global change issues as well as for improved atmospheric and near space weather forecasting applications.

  18. Distribution and Validation of Cloud Cover Derived from AVHRR Data Over the Arctic Ocean During the SHEBA Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Validation of Cloud Cover Derived from AVHRR Data Over the Arctic Ocean During the SHEBA Year P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. A. Spangenberg and V. Chakrapani Analytical Services and Materials, Inc. Hampton, Virginia Introduction Determination of cloud radiation interactions over large areas of the Arctic is possible only with the use of data from polar orbiting satellites. Cloud detection using satellite data is difficult

  19. Cloud Microphysical and Radiative Properties Derived from MODIS, VIRS, AVHRR, and GMS Data Over the Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical and Radiative Properties Derived from MODIS, VIRS, AVHRR, and GMS Data Over the Tropical Western Pacific G. D. Nowicki, M. L. Nordeen, P. W. Heck, D. R. Doelling, and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Atmospheric Sciences Division Langley Research Center Hampton, Virginia S. Sun-Mack Science Applications International Corporation Hampton, Virginia Introduction Utilization of the

  20. Cloud Optical Properties from the Multifilter Shadowband Radiometer (MFRSRCLDOD). An ARM Value-Added Product

    SciTech Connect (OSTI)

    Turner, D. D.; McFarlane, S. A.; Riihimaki, L.; Shi, Y.; Lo, C.; Min, Q.

    2014-02-01

    The microphysical properties of clouds play an important role in studies of global climate change. Observations from satellites and surface-based systems have been used to infer cloud optical depth and effective radius. Min and Harrison (1996) developed an inversion method to infer the optical depth of liquid water clouds from narrow band spectral Multifilter Rotating Shadowband Radiometer (MFRSR) measurements (Harrison et al. 1994). Their retrieval also uses the total liquid water path (LWP) measured by a microwave radiometer (MWR) to obtain the effective radius of the warm cloud droplets. Their results were compared with Geostationary Operational Environmental Satellite (GOES) retrieved values at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site (Min and Harrison 1996). Min et al. (2003) also validated the retrieved cloud optical properties against in situ observations, showing that the retrieved cloud effective radius agreed well with the in situ forward scattering spectrometer probe observations. The retrieved cloud optical properties from Min et al. (2003) were used also as inputs to an atmospheric shortwave model, and the computed fluxes were compared with surface pyranometer observations.

  1. Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site C. M. R. Platt and R. T. Austin Department of Atmospheric Science Colorado State University Fort Collins, Colorado C. M. R. Platt and J. A. Bennett Commonwealth Scientific and Industrial Research Organization Atmospheric Research Aspendale, Victoria, Australia Abstract The Commonwealth Scientific and Industrial Research Organization/Atmospheric Radiation Measurement

  2. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers

    SciTech Connect (OSTI)

    Myers, D. R.

    2011-01-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  3. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  4. Working Group Reports A Short-Wave Radiometer Array Across

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Reports A Short-Wave Radiometer Array Across the Tropical Pacific Ocean as a Component of the TOGA-TAO Buoy Array R. M. Reynolds Brookhaven National Laboratory Upton, New York Introduction The purpose of this document is to bring together pertinent information concerning the NOAA TOGA-TAO buoy array so that a decision can be made for the following questions: 1. Are the scientific gains from an array of short-wave radiation sensors in the equatorial Pacific Ocean sufficiently

  5. Results of First Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Grobner, J.; Wacker, S.; Stoffel, T.

    2013-03-01

    The ACP and IRIS are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are unwindowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The first outdoor comparison between the two designs was held from January 28 to February 8, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of IRIS was within 1 W/m2. A difference of 5 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG).

  6. ARM - Measurement - Microwave narrowband brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometer - ETL MWRP : Microwave Radiometer Profiler MMWR : Millimeter Wave Radiometer MIR : Millimeter-wave Imaging Radiometer NOAA-P3 : NOAA P-3 Aircraft PARSL : PNNL's...

  7. A reactionless, bearingless linear shutter mechanism for the multispectral pushbroom imaging radiometer

    SciTech Connect (OSTI)

    Krumel, L.J.

    1996-12-31

    The Atmospheric Radiation Measurement Program is a multi-laboratory, interagency program as part of DOE`s principal entry into the US Global Change Research Program. Two issues addressed are the radiation budget and its spectral dependence, and radiative and other properties of clouds. Measures of solar flux divergence and energy exchanges between clouds, the earth, its oceans, and the atmosphere through various altitudes are sought. Additionally, the program seeks to provide measurements to calibrate satellite radiance products and validate their associated flux retrieval algorithms. Unmanned Aerospace Vehicles fly long, extended missions. MPIR is one of the primary instruments on the ARM-UAV campaigns. A shutter mechanism has been developed and flown as part of an airborne imaging radiometer having application to spacecraft or other applications requiring low vibration, high reliability, and long life. The device could be employed in other cases where a reciprocating platform is needed. Typical shutters and choppers utilize a spinning disc, or in very small instruments, a vibrating vane to continually interrupt incident light or radiation that enters the system. A spinning disk requires some sort of bearings that usually have limited life, and at a minimum introduce issues of reliability. Friction, lubrication and contamination always remain critical areas of concern, as well as the need for power to operate. Dual vibrating vanes may be dynamically well balanced as a set and are frictionless. However, these are limited by size in a practical sense. In addition, multiples of these devices are difficult to synchronize.

  8. Results of Second Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Grobner, J.; Wacker, S.

    2014-01-01

    The Absolute Cavity Pyrgeometer (ACP) and InfraRed Integrating Sphere radiometer (IRIS) are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are un-windowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The second outdoor comparison between the two designs was held from September 30 to October 11, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of the IRIS was within 1 W/m2 (3 IRISs: PMOD + Australia + Germany). From the first and second comparisons, a difference of 4-6 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG). This presentation includes results from the first and second comparison in an effort to establish the world reference for pyrgeometer calibrations, a key deliverable for the World Meteorological Organization (WMO), and the DOE-ASR.

  9. Improved Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer J. C. Liljegren Environmental Research Division Argonne National Laboratory Argonne, Illinois Introduction Radiometrics Corporation has developed a twelve-channel microwave radiometer capable of providing continuous, real-time vertical profiles of temperature, water vapor, and limited-resolution cloud liquid water from the surface to 10 km in nearly all weather conditions (Solheim et al. 1998a). Since

  10. Broadband Outdoor Radiometer Calibration Process for the Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full ...

  11. Failure and Redemption of Multifilter Rotating Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great ... Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great ...

  12. A comparison of irradiance responsivity and thermodynamic temperature measurement between PTB and NIM

    SciTech Connect (OSTI)

    Lu, X.; Yuan, Z.; Anhalt, K.; Taubert, R. D.

    2013-09-11

    This paper describes a comparison between PTB and NIM in the field of absolute spectral-band radiometry and thermodynamic temperature measurement. For the comparison a NIM made interference filter radiometer with a centre wavelength of 633 nm was taken to PTB. The filter radiometer was calibrated at NIM and PTB with respect to spectral irradiance responsivity. For the integral value in the band-pass range an agreement of 0.1% was observed in both calibrations. In a next step, the 633 nm filter radiometer was used to measure the temperature of a high-temperature blackbody in comparison to an 800 nm filter radiometer of PTB in the temperature range between 1400 K and 2750 K. The thermodynamic temperature measured by the two filter radiometers agreed to within 0.2 K to 0.5 K with an estimated measurement uncertainty ranging between 0.1 K and 0.4 K (k=1)

  13. A precise narrow-beam filter infrared radiometer and its use with lidar in the ARM Program

    SciTech Connect (OSTI)

    Platt, C.M.R.

    1992-05-01

    The first six months of the grant (December 1991--May 1992) have been taken up with the design and specification for the new narrow-beam radiometer. The radiometer will be built and tested at the Division of Atmospheric Research over the next three months. Improved algorithms for obtaining cloud extinction have also been developed. It is proposed during 1993 to use the radiometer in conjunction with a new CSIRO 3-wavelength lidar in the ARM PROBE experiment at Kavieng, New Guinea, which is a test mission under tropical conditions for the ARM CART Tropical West Pacific site, and is part of the TOGA COARE experiment. During the latter part of 1992, the radiometer will be tested thoroughly and tested at the Division of Atmospheric Research, Aspendale.

  14. Validation of Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers M. M. Khaiyer and J. Huang Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis, B. Lin, and W. L. Smith, Jr. National Aeronautics and Space Administration Langley Research Center Hampton, Virginia A. Fan Science Applications International Corporation Hampton, Virginia A. Rapp Colorado State University Fort Collins, Colorado Introduction Satellites are useful for monitoring climatological parameters over

  15. DOE/SC-ARM/TR-122 G-Band Vapor Radiometer Precipitable Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product A Koontz M Cadeddu December 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  16. Accurate, practical simulation of satellite infrared radiometer spectral data

    SciTech Connect (OSTI)

    Sullivan, T.J.

    1982-09-01

    This study's purpose is to determine whether a relatively simple random band model formulation of atmospheric radiation transfer in the infrared region can provide valid simulations of narrow interval satellite-borne infrared sounder system data. Detailed ozonesondes provide the pertinent atmospheric information and sets of calibrated satellite measurements provide the validation. High resolution line-by-line model calculations are included to complete the evaluation.

  17. GVR (G-Band Vapor Radiometer) M.P. Cadeddu and J.C. Liljegren Argonne Natl. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MWR status M.P. Cadeddu New radiometers New radiometers ECO-00664 (MWR procurement) open Specifications have been written and submitted Draft of specifications sent to vendors last month A few changes were incorporated after vendors feedback. Final specification document will be sent next week. ECO-00664 (MWR procurement) open Specifications have been written and submitted Draft of specifications sent to vendors last month A few changes were incorporated after vendors feedback. Final

  18. ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike

    2012-02-01

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  19. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.; Wilcox, S. M.

    2009-03-01

    This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

  20. ARM: G-band (183 GHz) Vapor Radiometer profiler: 15 microwave brightness temperatures from 170.0 to 183.3 GHz

    SciTech Connect (OSTI)

    Maria Cadeddu

    2008-04-01

    G-band (183 GHz) Vapor Radiometer profiler: 15 microwave brightness temperatures from 170.0 to 183.3 GHz

  1. Macrocyclic polyaminocarboxylates for stable radiometal antibody conjugates for therapy, spect and pet imaging

    DOE Patents [OSTI]

    Mease, Ronnie C.; Mausner, Leonard F.; Srivastava, Suresh C.

    1997-06-17

    A simple method for the synthesis of 1,4,7, 10-tetraazacyclododecane N,N'N",N'"-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N',N",N'"-tetraacetic acid involves cyanomethylating 1,4,7, 10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy.

  2. Macrocyclic polyaminocarboxylates for stable radiometal antibody conjugates for therapy, SPECT and PET imaging

    DOE Patents [OSTI]

    Mease, R.C.; Mausner, L.F.; Srivastava, S.C.

    1997-06-17

    A simple method for the synthesis of 1,4,7, 10-tetraazacyclododecane N,N{prime}N{double_prime},N{prime}{double_prime}-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N{prime},N{double_prime},N{prime}{double_prime}-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy. 4 figs.

  3. Low Frequency Measurement of the Spectrum of the Cosmic Background Radiation

    DOE R&D Accomplishments [OSTI]

    Smoot, G. F.; De Amici, G.; Friedman, S. D.; Witebsky, C.; Mandolesi, N.; Partridge, R. B.; Sironi, G.; Danese, L.; De Zotti, G.

    1983-06-01

    We have made measurements of the cosmic background radiation spectrum at 5 wavelengths (0.33, 0.9, 3, 6.3, and 12 cm) using radiometers with wavelength-scaled corrugated horn antennas having very low sidelobes. A single large-mouth (0.7 m diameter) liquid-helium-cooled absolute reference load was used for all five radiometers. The results of the observations are consistent with previous measurements and represent a significant improvement in accuracy.

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... of Space and Defense Power Systems NNSA Kansas City ... NY (United States) Next-Generation Ecosystem Experiments - ... Radiometer (AVHRR) thermal infrared data, modelling ...

  5. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect (OSTI)

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.310{sup ?3} at 633 nm and 900 nm, respectively.

  6. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic fluctuation-induced particle flux "invited... a... W. X. Ding, D. L. Brower, and T. Y. Yates Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA ͑Presented 13 May 2008; received 12 May 2008; accepted 16 May 2008; published online 31 October 2008͒ Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial

  7. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Induced, Charged Current, Charged Pion Production by Michael Joseph Wilking B.Ch.E., University of Minnesota, 2001 M.S., University of Colorado, 2007 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2009 This thesis entitled: Measurement of Neutrino Induced, Charged Current, Charged Pion Production written by Michael Joseph Wilking has been

  8. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core velocity fluctuations and the dynamo in a reversed-field pinch * D. J. Den Hartog, †,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 16 November 1998; accepted 20 January 1999͒ Plasma flow velocity fluctuations have been directly measured in the high-temperature magnetically confined plasma in the Madison Symmetric Torus ͑MST͒

  9. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 H( 7 Be, 8 B)γ cross section by Ryan P. Fitzgerald A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics & Astronomy. Chapel Hill 2005 Approved: A. E. Champagne, Advisor J. C. Blackmon, Reader C. Iliadis, Reader ABSTRACT Ryan P. Fitzgerald: Measurement of the 1 H( 7 Be, 8 B)γ cross section (Under the Direction of A. E. Champagne) The fusion

  10. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interpretation of micro benchmark and application energy use on the Cray XC30 Brian Austin, and Nicholas J. Wright ⇤ August 29, 2014 Abstract Understanding patterns of application energy use is key to reaching future HPC e ciency goals. We have measured the sensitivity of en- ergy use to CPU frequency for several microbenchmarks and applications on a Cray XC30. First order fits to the performance and power data are su cient to describe the energy used by these applications. Exam- ination of

  11. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronegative Contaminants and Drift Electron Lifetime in the MicroBooNE Experiment The MicroBooNE Collaboration May 19, 2016 Abstract High-purity liquid argon is critical for the operation of a liquid argon time projec- tion chamber (LArTPC). At MicroBooNE, we have achieved an electron drift lifetime of at least 6 ms without evacuation of the detector vessel. Measurements of the elec- tronegative contaminants oxygen and water are described and shown as the gas and liquid argon stages of

  12. A precise narrow-beam filter infrared radiometer and its use with lidar in the ARM Program. Progress report, 1 December 1991--31 May 1992

    SciTech Connect (OSTI)

    Platt, C.M.R.

    1992-05-01

    The first six months of the grant (December 1991--May 1992) have been taken up with the design and specification for the new narrow-beam radiometer. The radiometer will be built and tested at the Division of Atmospheric Research over the next three months. Improved algorithms for obtaining cloud extinction have also been developed. It is proposed during 1993 to use the radiometer in conjunction with a new CSIRO 3-wavelength lidar in the ARM PROBE experiment at Kavieng, New Guinea, which is a test mission under tropical conditions for the ARM CART Tropical West Pacific site, and is part of the TOGA COARE experiment. During the latter part of 1992, the radiometer will be tested thoroughly and tested at the Division of Atmospheric Research, Aspendale.

  13. Correlation function analysis of the COBE differential microwave radiometer sky maps

    SciTech Connect (OSTI)

    Lineweaver, C.H.

    1994-08-01

    The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than {approximately}20{degree} is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9{sigma}, > 10{sigma} and > 18{sigma} above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60{degree} due to the 60{degree} separation of the DMR horns. The mean covariance of 60{degree} is 0.45%{sub {minus}0.14}{sup +0.18} of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.

  14. Synthesis of macrocyclic polyaminocarboxylates and their use for preparing stable radiometal antibody immunoconjugates for therapy, spect and pet imaging

    DOE Patents [OSTI]

    Mease, Ronnie C.; Mausner, Leonard F.; Srivastava, Suresh C.

    1995-06-27

    A simple method for the synthesis of 1,4,7,10-tetraazacyclododecane N,N'N",N'"-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N',N",N'"-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy.

  15. Synthesis of macrocyclic polyaminocarboxylates and their use for preparing stable radiometal antibody immunoconjugates for therapy, SPECT and PET imaging

    DOE Patents [OSTI]

    Mease, R.C.; Mausner, L.F.; Srivastava, S.C.

    1995-06-27

    A simple method for the synthesis of 1,4,7,10-tetraazacyclododecane N,N{prime}N{double_prime},N{prime}{double_prime}-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N{prime},N{double_prime},N{prime}{double_prime}-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy. 4 figs.

  16. A precise passive narrow-beam filter infrared radiometer and its use with LIDAR in the ARM program. Progress report, 1 June 1992--31 May 1993

    SciTech Connect (OSTI)

    Platt, C.M.R.

    1993-05-01

    The work done divides conveniently into two parts. First, the completion of the design and manufacture of the new narrow-beam radiometer, which occupied the period of July to December, 1992. The second part of the report concerns participation of the CSIRO Division of Atmospheric Research (DAR) Lidar/radiometer team in the ARM PROBE experiment at Kavieng, New Ireland, Papua New Guinea as part of the international TOGA COARE experiment. The DAR team participated for about one month from mid-January. The PROBE experiment allowed the new radiometer to be tested under field conditions, a test which was very successful, with very few teething problems. It is proposed during the rest of 1993 and during 1994 to make further tests with the radiometer and particularly to look at using a stirling cycle liquid nitrogen detector to obviate the need for supplies of liquid nitrogen. It is proposed further during 1994 to carry out a thorough analysis of the PROBE data and collaborate with other US PROBE participants in studying and interpreting the observations as a whole. Some further work with the new ARM radiometer will be done during the CSIRO SOCEX experiment.

  17. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentation)

    SciTech Connect (OSTI)

    Reda, I.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and are calibrated with traceability to consensus reference, yet are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degrees to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  18. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    SciTech Connect (OSTI)

    Reda, I.; Konings, J.; Xie, Y.; Dooraghi, M.; Sengupta, M.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  19. On Correction of Diffuse Radiation Measured by MFRSR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Correction of Diffuse Radiation Measured by MFRSR T. B. Zhuravleva Institute of Atmospheric Optics, SB RAS Tomsk, Russia M. A. Sviridenkov and P. P. Anikin A. M. Obukhov Institute of Atmospheric Physics, RAS Moscow, Russia Introduction The multi-filter rotated shadowband radiometer (MFRSR) provides spectral direct, diffuse, and total horizontal solar irradiance measurements. Because the MFRSR's receiver has a non-Lambertian response, for a correct interpretation of measured radiation an

  20. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect (OSTI)

    Janet Intrieri; Mathhew Shupe

    2005-01-01

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two

  1. Oak Ridge National Laboratory (ORNL); Rotating Shadowband Radiometer (RSR); Oak Ridge, Tennessee (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maxey, C.; Andreas, A.

    2007-09-12

    This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  2. Oak Ridge National Laboratory (ORNL); Rotating Shadowband Radiometer (RSR); Oak Ridge, Tennessee (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maxey, C.; Andreas, A.

    This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  3. NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lustbader, J.; Andreas, A.

    2012-04-01

    This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

  4. NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lustbader, J.; Andreas, A.

    This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

  5. A Method to Estimate Uncertainty in Radiometric Measurement Using the Guide to the Expression of Uncertainty in Measurement (GUM) Method; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Reda, I.

    2015-03-01

    Radiometric data with known and traceable uncertainty is essential for climate change studies to better understand cloud radiation interactions and the earth radiation budget. Further, adopting a known and traceable method of estimating uncertainty with respect to SI ensures that the uncertainty quoted for radiometric measurements can be compared based on documented methods of derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM). derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM).

  6. Sacramento Municipal Utility District (SMUD): Rotating Shadowband Radiometer (RSR); Anatolia - Rancho Cordova, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maxey, C.; Andreas, A.

    2009-02-03

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  7. Sacramento Municipal Utility District (SMUD): Rotating Shadowband Radiometer (RSR); Anatolia - Rancho Cordova, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maxey, C.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  8. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  9. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  11. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  12. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  13. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2010-04-26

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  14. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-03-16

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  15. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2009-07-22

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  16. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-07-14

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  17. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-07-13

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. GVR (G-Band Vapor Radiometer) M.P. Cadeddu and J.C. Liljegren...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mod-meas (K) Number of tip cal What level of measurement uncertainty can we afford? LWP (gm 2 ) TB(cloudy) - TB(clear), K 90 GHz: DTb 1K DLWP 5 gm 2 150 GHz: DTb 1K DLWP ...

  19. On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar

    SciTech Connect (OSTI)

    Feingold, G.; Frisch, A.S.; Cotton, W.R.

    1999-09-01

    Cloud radar, microwave radiometer, and lidar remote sensing data acquired during the Atlantic Stratocumulus Transition Experiment (ASTEX) are analyzed to address the relationship between (1) drop number concentration and cloud turbulence as represented by vertical velocity and vertical velocity variance and (2) drizzle formation and cloud turbulence. Six cases, each of about 12 hours duration, are examined; three of these cases are characteristic of nondrizzling boundary layers and three of drizzling boundary layers. In all cases, microphysical retrievals are only performed when drizzle is negligible (radar reflectivity{lt}{minus}17dBZ). It is shown that for the cases examined, there is, in general, no correlation between drop concentration and cloud base updraft strength, although for two of the nondrizzling cases exhibiting more classical stratocumulus features, these two parameters are correlated. On drizzling days, drop concentration and cloud-base vertical velocity were either not correlated or negatively correlated. There is a significant positive correlation between drop concentration and mean in-cloud vertical velocity variance for both nondrizzling boundary layers (correlation coefficient r=0.45) and boundary layers that have experienced drizzle (r=0.38). In general, there is a high correlation (r{gt}0.5) between radar reflectivity and in-cloud vertical velocity variance, although one of the boundary layers that experienced drizzle exhibited a negative correlation between these parameters. However, in the subcloud region, all boundary layers that experienced drizzle exhibit a negative correlation between radar reflectivity and vertical velocity variance. {copyright} 1999 American Geophysical Union

  20. Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Reda, I.; Andreas, A.; Konings, J.

    2014-11-01

    Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.

  1. MWRRET (Microwave Radiometer Retrievals)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plus Plus Andy Vogelmann, Dave Turner Andy Vogelmann, Dave Turner & Jennifer Comstock & Jennifer Comstock Min Min Susanne Crewell Susanne Crewell Ulrich L Ulrich L ö ö rnard rnard Jim Liljegren Jim Liljegren John Ogre John Ogre . Y. Matrosov . Y. Matrosov Sally McFarlane Sally McFarlane Warren Wiscombe, Christine Chiu, Sasha Marshak, Maria Warren Wiscombe, Christine Chiu, Sasha Marshak, Maria Cadeddu, Qilong Min, Susanne Crewell, Ulrich L Cadeddu, Qilong Min, Susanne Crewell, Ulrich L

  2. Radiometer Calibration Trends

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) Programs / Nonproliferation / Global Material Security / Radiological Security Radiological Security Partnership Radiological Security Partnership Secure Your Business, Your Community, and Your Country. Sign Up Today for Services Provided by the Radiological Security Partnership. RSP Logo Initiative of the Global Material Security Program Formerly the Global Threat Reduction Initiative RSP Registration RSP More Info Learn More Radiological Security Partnership

  3. Radiometer Characterization System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Contact: James C. Liljegren Phone: 630-252-9540 Email: jcliljegren@anl.gov ... the Earth Observing System (EOS) Aqua satellite. (See June 2002 ARM Facility Newsletter ...

  4. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  5. ARM - Datastreams - avhrr11ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  6. ARM - Datastreams - avhrr16ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  7. ARM - Datastreams - avhrr17ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  8. ARM - Datastreams - avhrr10ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  9. ARM - Datastreams - avhrr17ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  10. ARM - Datastreams - avhrr14ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  11. ARM - Datastreams - avhrr16ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  12. ARM - Datastreams - avhrr14ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  13. ARM - Datastreams - avhrr15ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  14. ARM - Datastreams - avhrr15ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  15. ARM - Datastreams - avhrr12ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch4 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  16. ARM - Datastreams - avhrr12ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  17. ARM - Datastreams - avhrr10ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  18. ARM - Datastreams - avhrr11ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ch2 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  19. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    SciTech Connect (OSTI)

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  20. Measurement of bidirectional optical properties of complex shading devices

    SciTech Connect (OSTI)

    Klems, J.H.; Warner, J.L.

    1995-01-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. This paper describes the method of measuring the spatially averaged bidirectional optical properties using an automated, large-sample gonioradiometer/photometer, termed a ``Scanning Radiometer.`` Property measurements are presented for one of the most optically complex systems in common use, a venetian blind. These measurements will form the basis for optical system calculations used to test the method of determining performance.

  1. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect (OSTI)

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  2. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2012-11-03

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  3. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  4. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsAerosols

  5. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiometric

  6. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect (OSTI)

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  7. A Method of Correcting for Tilt From Horizontal in Downwelling Shortwave Irradiance Measurements on Moving Platforms

    SciTech Connect (OSTI)

    Long, Charles N.; Bucholtz, Anthony; Jonsson, Haf; Schmid, Beat; Vogelmann, A. M.; Wood, John

    2010-04-14

    Significant errors occur in downwelling shortwave irradiance measurements made on moving platforms due to tilt from horizontal because, when the sun is not completely blocked by overhead cloud, the downwelling shortwave irradiance has a prominent directional component from the direct sun. A-priori knowledge of the partitioning between the direct and diffuse components of the total shortwave irradiance is needed to properly apply a correction for tilt. This partitioning information can be adequately provided using a newly available commercial radiometer that produces reasonable measurements of the total and diffuse shortwave irradiance, and by subtraction the direct shortwave irradiance, with no moving parts and regardless of azimuthal orientation. We have developed methodologies for determining the constant pitch and roll offsets of the radiometers for aircraft applications, and for applying a tilt correction to the total shortwave irradiance data. Results suggest that the methodology is for tilt up to +/-10°, with 90% of the data corrected to within 10 Wm-2 at least for clear-sky data. Without a proper tilt correction, even data limited to 5° of tilt as is typical current practice still exhibits large errors, greater than 100 Wm-2 in some cases. Given the low cost, low weight, and low power consumption of the SPN1 total and diffuse radiometer, opportunities previously excluded for moving platform measurements such as small Unmanned Aerial Vehicles and solar powered buoys now become feasible using our methodology. The increase in measurement accuracy is important, given current concerns over long-term climate variability and change especially over the 70% of the Earth’s surface covered by ocean where long-term records of these measurements are sorely needed and must be made on ships and buoys.

  8. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsCloud Properties

  9. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsSurface Properties

  10. DRAFT Microwave Radiometer Profiler Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Figure 4. Data availability and quality. Most gaps are due to power outages. ...... 18 Figure 5. Monthly mean noise injection temperatures T nd derived from ...

  11. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Troyan, D

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  12. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  13. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    1981-07-15

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  14. Search for: "atmospheric radiation measurement" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    velocity (162) radar doppler (150) general circulation models (149) atmospheric chemistry (146) remote sensing (143) water vapor (134) earth atmosphere (133) radiometers (130) ...

  15. TCP Final Report: Measuring the Effects of Stand Age and Soil Drainage on Boreal Forest

    SciTech Connect (OSTI)

    Michael L. Goulden

    2007-05-02

    This was a 6-year research project in the Canadian boreal forest that focused on using field observations to understand how boreal forest carbon balance changes during recovery from catastrophic forest fire. The project began with two overarching goals: (1) to develop techniques that would all the year round operation of 7 eddy covariance sites in a harsh environment at a much lower cost than had previously been possible, and (2) to use these measurements to determine how carbon balance changes during secondary succession. The project ended in 2006, having accomplished its primary objectives. Key contributions to DOE during the study were: (1) Design, test, and demonstrate a lightweight, fully portable eddy flux system that exploits several economies of scale to allow AmeriFlux-quality measurements of CO{sub 2} exchange at many sites for a large reduction in cost (Goulden et al. 2006). (2) Added seven year-round sites to AmeriFlux, at a relatively low per site cost using the Eddy Covariance Mesonet approach (Goulden et al. 2006). These data are freely available on the AmeriFlux web site. (3) Tested and rejected the conventional wisdom that forests lose large amounts of carbon during the first decade after disturbance, then accumulate large amounts of carbon for {approx}several decades, and then return to steady state in old age. Rather, we found that boreal forests recovers quickly from fire and begins to accumulate carbon within {approx}5 years after disturbance. Additionally, we found no evidence that carbon accumulation declines in old stands (Goulden et al. 2006, Goulden et al. in prep). (4) Tested and rejected claims based on remote sensing observations (for example, Myneni et al 1996 using AVHRR) that regions of boreal forest have changed markedly in the last 20 years. Rather, we assembled a much richer data set than had been used in the past (eddy covariance observations, tree rings, biomass, NPP, AVHRR, and LandSat), which we used to establish that the

  16. High temperature millimeter wave radiometric and interferometric measurements of slag-refractory interaction for application to coal gasifiers

    SciTech Connect (OSTI)

    McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Slaugh, Ryan W.; Woskov, Paul P.

    2011-09-17

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments) such as in slagging coal gasifiers, where sensors have been identified as a key enabling technology need for process optimization. We present a state-of-the-art dual-channel MMW heterodyne radiometer with active interferometric capability that allows simultaneous radiometric measurements of sample temperature, emissivity, and flow dynamics to over 1873 K. Interferometric capability is supplied via a probe signal originating from the 137 GHz radiometer local oscillator (LO). The interferometric 'video' channels allow measurement of additional parameters simultaneously, such as volume expansion, thickness change, and slag viscosity along with temperature or emissivity. This capability has been used to demonstrate measurement of temperature and simulated coal slag infiltration into a chromia refractory brick sample as well as slag flow down a vertically placed refractory brick. Observed phenomena include slag melting and slumping, slag reboil and foam with oxygen evolution, and eventual failure of the alumina crucible through corrosion by the molten slag. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters from operating slagging coal gasifiers, providing valuable information for process efficiency, control, and increased productivity.

  17. ARCADE 2 MEASUREMENT OF THE ABSOLUTE SKY BRIGHTNESS AT 3-90 GHz

    SciTech Connect (OSTI)

    Fixsen, D. J.; Levin, S.; Seiffert, M.; Limon, M.; Lubin, P.; Mirel, P.; Singal, J.; Villela, T.; Wuensche, C. A.

    2011-06-10

    The ARCADE 2 instrument has measured the absolute temperature of the sky at frequencies 3, 8, 10, 30, and 90 GHz, using an open-aperture cryogenic instrument observing at balloon altitudes with no emissive windows between the beam-forming optics and the sky. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the cosmic microwave background (CMB) temperature. A linear model is used to compare the output of each radiometer to a set of thermometers on the instrument. Small corrections are made for the residual emission from the flight train, balloon, atmosphere, and foreground Galactic emission. The ARCADE 2 data alone show an excess radio rise of 54 {+-} 6 mK at 3.3 GHz in addition to a CMB temperature of 2.731 {+-} 0.004 K. Combining the ARCADE 2 data with data from the literature shows an excess power-law spectrum of T = 24.1 {+-} 2.1 (K) ({nu}/{nu}{sub 0}){sup -2.599{+-}0.036} from 22 MHz to 10 GHz ({nu}{sub 0} = 310 MHz) in addition to a CMB temperature of 2.725 {+-} 0.001 K.

  18. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-09-27

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  19. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  20. Measurement of $\

    SciTech Connect (OSTI)

    Acciarri, R.; et al.

    2015-11-03

    The ArgoNeuT collaboration reports the first measurement of neutral current $\\pi^{0}$ production in $\

  1. ARM - Measurement -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurements ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Categories Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments UV-MFRSR : Ultraviolet

  2. Measuring circuit

    DOE Patents [OSTI]

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  3. Measurement of the large-scale anisotropy of the cosmic background radiation at 3mm

    SciTech Connect (OSTI)

    Epstein, G.L.

    1983-12-01

    A balloon-borne differential radiometer has measured the large-scale anisotropy of the cosmic background radiation (CBR) with high sensitivity. The antenna temperature dipole anistropy at 90 GHz (3 mm wavelength) is 2.82 +- 0.19 mK, corresponding to a thermodynamic anistropy of 3.48 +- mK for a 2.7 K blackbody CBR. The dipole direction, 11.3 +- 0.1 hours right ascension and -5.7/sup 0/ +- 1.8/sup 0/ declination, agrees well with measurements at other frequencies. Calibration error dominates magnitude uncertainty, with statistical errors on dipole terms being under 0.1 mK. No significant quadrupole power is found, placing a 90% confidence-level upper limit of 0.27 mK on the RMS thermodynamic quadrupolar anistropy. 22 figures, 17 tables.

  4. Equipment Only - Solar Resources Measurements at the University of Texas at Austin, TX: Cooperative Research and Development Final Report, CRADA Number CRD-07-222

    SciTech Connect (OSTI)

    Stoffel, T.

    2013-01-01

    Faculty and staff at the University of Texas at Austin collected solar resource measurements at their campus using equipment on loan from the National Renewable Energy Laboratory. The equipment was used to train students on the operation and maintenance of solar radiometers and was returned to NREL's Solar Radiation Research Laboratory upon completion of the CRADA. The resulting data augment the solar resource climatology information required for solar resource characterizations in the U.S. The cooperative agreement was also consistent with NREL's goal of developing an educated workforce to advance renewable energy technologies.

  5. Development of rotating shadowband spectral radiometers and GCM radiation code test data sets in support of ARM. Technical progress report, September 15, 1990--September 14, 1991

    SciTech Connect (OSTI)

    Harrison, L.; Michalsky, J.

    1991-03-13

    Three separate tasks are included in the first year of the project. Two involve assembling data sets useful for testing radiation models in global climate modeling (GCM) codes, and the third is concerned with the development of advance instrumentation for performing accurate spectral radiation measurements. Task 1: Three existing data sets have been merged for two locations, one in the wet northeastern US and a second in the dry western US. The data sets are meteorological data from the WBAN network, upper air data from the NCDC, and high quality solar radiation measurements from Albany, New York and Golden, Colorado. These represent test data sets for those modelers developing radiation codes for the GCM models. Task 2: Existing data are not quite adequate from a modeler`s perspective without downwelling infrared data and surface albedo, or reflectance, data. Before the deployment of the first CART site in ARM the authors are establishing this more complete set of radiation measurements at the Albany site to be operational only until CART is operational. The authors will have the site running by April 1991, which will provide about one year`s data from this location. They will coordinate their measurements with satellite overpasses, and, to the extent possible, with radiosonde releases, in order that the data set be coincident in time. Task 3: Work has concentrated on the multiple filter instrument. The mechanical, optical, and software engineering for this instrument is complete, and the first field prototype is running at the Rattlesnake Mountain Observatory (RMO) test site. This instrument is performing well, and is already delivering reliable and useful information.

  6. Shaw-JA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Radiometer Measurements of Air-Sea Temperature Difference in the Tropical ... The AC- coupled radiometer output voltage generates air-sea temperature differences from ...

  7. Surface Energy Balance System (SEBS) Handbook (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS ...

  8. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  9. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Measurements Ground-based Instruments Category

  10. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links SPARTICUS Home AAF Home Deployment Operations Measurements SGP Data Plots NASA Data Plots ARM Data Discovery Browse Data Experiment Planning SPARTICUS Proposal Abstract Science Questions Science and Operations (PDF, 1.01M) SPARTICUS Wiki News News & Press Backgrounder (PDF, 269K) Contacts Gerald Mace, Lead Scientist Measurements The SPARTICUS field campaign seeks to collect a substantial series of data sets-profiling cirrus ice crystal size and distribution-during

  11. MEASURING PROJECTOR

    DOE Patents [OSTI]

    Franck, J.V.; Broadhead, P.S.; Skiff, E.W.

    1959-07-14

    A semiautomatic measuring projector particularly adapted for measurement of the coordinates of photographic images of particle tracks as prcduced in a bubble or cloud chamber is presented. A viewing screen aids the operator in selecting a particle track for measurement. After approximate manual alignment, an image scanning system coupled to a servo control provides automatic exact alignment of a track image with a reference point. The apparatus can follow along a track with a continuous motion while recording coordinate data at various selected points along the track. The coordinate data is recorded on punched cards for subsequent computer calculation of particle trajectory, momentum, etc.

  12. MEASURING CIRCUIT

    DOE Patents [OSTI]

    Mahoney, J.R.

    1963-01-29

    A measuring and balancing arrangement for mass spectrometers permits the ready determination of isotopic ratios and mole and weight percentages by employing a selection of amplifier input resistors to vary sensitivity in a bridge arrangement. (AEC)

  13. Measuring Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Measurement Activity: How Much Is Present? The size or weight of a container or shipment does not indicate how much radioactivity is in it. The amount of radioactivity in a quantity of material can be determined by noting how many curies of the material are present. This information should be found on labels and/or shipping

  14. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (BBOP)Measurements Related Links BBOP Home Outreach News & Press Backgrounder (PDF, 2.1MB) Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Airborne Measurements Science Plan (PDF, 2.2MB) BBOP wiki Login Required Data Sets Experiment Planning Proposal Abstract and Related Campaigns BBOP Breakout Session, ASR Science Team Meeting, March 2014 BBOP Breakout Session, ASR Science Team Meeting, March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist

  15. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links RACORO Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Data Guide (PDF, 1.4MB) Campaign Journal Flight Details Images ARM flickr site Deployment Operations Measurements Science & Operations Plan (PDF, 640K) SGP Data Plots RACORO wiki Login Required Experiment Planning Steering Committee Science Questions RACORO Proposal Abstract Full Proposal (PDF, 886K) Collaborations Meetings CLOWD Working Group News Discovery Channel Earth Live Blog News

  16. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links TCAP Home Outreach News & Press WCAI Interview with Dr. Berg (YouTube) Frequently Asked Questions Brochure Backgrounder (PDF, 1.5MB) AMF Poster, 2012 Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Data Sets Baseline Instruments and Data Plots at the Archive Airborne Measurements Airborne Data Sets Science Plan (PDF, 1.6 MB) G-1 Cabin Layout TCAP wiki Login Required Experiment Planning Proposal Abstract and Related Campaigns Poster at

  17. wilcox-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Radiometer Calibrations at the ARM Southern Great Plains Radiometer Calibration Facility S. M. Wilcox and T. L. Stoffel National Renewable Energy Laboratory Golden, Colorado Introduction The Atmospheric Radiation Measurement (ARM) Program needs the most accurate broadband shortwave solar irradiance measurements possible. Precise radiometer calibrations are critical for producing accurate and comparable measurements. The Radiometer Calibration Facility (RCF) at the ARM Southern Great Plains

  18. Measurement of $\

    SciTech Connect (OSTI)

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Columbia U.

    2010-10-01

    MiniBooNE reports the first absolute cross sections for neutral current single {pi}{sup 0} production on CH{sub 2} induced by neutrino and antineutrino interactions measured from the largest sets of NC {pi}{sup 0} events collected to date. The principal result consists of differential cross sections measured as functions of {pi}{sup 0} momentum and {pi}{sup 0} angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 {+-} 0.05{sub stat} {+-} 0.76{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of E{sub {nu}} = 808 MeV and (1.48 {+-} 0.05{sub stat} {+-} 0.23{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of E{sub {nu}} = 664 MeV for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} induced production, respectively. In addition, we have included measurements of the neutrino and antineutrino total cross sections for incoherent exclusive NC 1{pi}{sup 0} production corrected for the effects of final state interactions to compare to prior results.

  19. ARM - Midlatitude Continental Convective Clouds Microwave Radiometer...

    Office of Scientific and Technical Information (OSTI)

    of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. ...

  20. Radiometer Calibration and Characterization (RCC) User's Manual...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... RH Relative humidity RLY Relay (for data logger) RS Responsivity SHD Shaded test ... SPA Solar position algorithm STD Standard (control) instrument SW Shortwave THM Thermistor ...

  1. Radiometer Calibration and Characterization (RCC) User's Manual...

    Office of Scientific and Technical Information (OSTI)

    RCC provides a unique method of calibrating broadband atmospheric longwave and solar ... Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar ...

  2. ARM: Portable Radiation Package: Broadband Radiometers (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Authors: Annette Koontz ; R. Reynolds Publication Date: 2012-11-02 OSTI Identifier: 1150256 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data ...

  3. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective measures process

  4. Measurements of the cosmic microwave background temperature at 1.47 GHz

    SciTech Connect (OSTI)

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus_minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus_minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus_minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus_minus} 0.02,K global average CMB temperature.

  5. Measurements of the cosmic microwave background temperature at 1. 47 GHz

    SciTech Connect (OSTI)

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus minus} 0.02,K global average CMB temperature.

  6. Aether Drift and the isotropy of the universe: a measurement of anisotropes in the primordial black-body radiation. Final report, 1 November 1978-31 October 1980

    SciTech Connect (OSTI)

    Smoot, G.F.

    1981-07-01

    Large-angular-scale anisotropies in the 3 K primordial black-body radiation were detected and mapped with a sensitivity of 2 x to the minus 4 power K and an angular resolution of about 10 deg. The motion of the Earth with respect to the distant matter of the Universe ( Aether Drift ) was measured and the homogeneity and isotropy of the Universe (the Cosmological Principle ) was probed. The experiment uses two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth survey aircraft (U-2), and operated successfully in a series of flights in both the Northern and Southern Hemispheres. Data taking and analysis to measure the anisotropy were successful.

  7. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective...

  8. NREL: Measurements and Characterization - Measurement Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Process For devices that come to the National Renewable Energy Laboratory (NREL) for performance measurement, we typically follow a procedure that ensures quality measurement and follow-up. After logging in the device based on information from a cover letter or request form, we measure its area, which is crucial for determining its efficiency. We then obtain its spectral responsivity. For cells, we measure the spectral responsivity with one of two systems. For modules, however,

  9. ARM - Measurement - Snow depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Snow depth Snow depth measured at the surface Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  10. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry

    SciTech Connect (OSTI)

    McCloy, J. S.; Sundaram, S. K.; Matyas, J.; Woskov, P. P.

    2011-01-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. Finally, these results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  11. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  12. Phasor Measurement Units

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate & Earth Systems Climate Measurement & Modeling Arctic Climate Measurements Global ... feedback analysis, operational statistics and reporting, real-time network ...

  13. A study of the Oklahoma City urban heat island using ground measurements and remote sensing

    SciTech Connect (OSTI)

    Brown, M. J.; Ivey, A.; McPherson, T. N.; Boswell, D.; Pardyjak, E. R.

    2004-01-01

    Measurements of temperature and position were collected during the night from an instrumented van on routes through Oklahoma City and the rural outskirts. The measurements were taken as part of the Joint URBAN 2003 Tracer Field Experiment conducted in Oklahoma City from June 29, 2003 to July 30, 2003 (Allwine et al., 2004). The instrumented van was driven over four primary routes that included legs from the downtown core to four different 'rural' areas. Each route went through residential areas and most often went by a line of permanently fixed temperature probes (Allwine et al., 2004) for cross-checking purposes. Each route took from 20 to 40 minutes to complete. Based on seven nights of data, initial analyses indicate that there was a temperature difference of 0.5-6.5 C between the urban core and nearby 'rural' areas. Analyses also suggest that there were significant fine scale temperature differences over distances of tens of meters within the city and in the nearby rural areas. The temperature measurements that were collected are intended to supplement the meteorological measurements taken during the Joint URBAN 2003 Field Experiment, to assess the importance of the urban heat island phenomenon in Oklahoma City, and to test new urban canopy parameterizations that have been developed for regional scale meteorological codes (e.g., Chin et al., 2000; Holt and Shi, 2004). In addition to the ground measurements, skin temperature measurements were also analyzed from remotely sensed images taken from the Earth Observing System's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). A surface kinetic temperature thermal infrared image captured by the ASTER of the Oklahoma City area on July 21, 2001 was analyzed within ESRI's ArcGIS 8.3 to correlate variations in temperature with land use type. Analysis of this imagery suggests distinct variations in temperature across different land use categories. Through the use of remotely sensed imagery we hope to

  14. Comparisons of cloud ice mass content retrieved from the radar-infrared radiometer method with aircraft data during the second international satellite cloud climatology project regional experiment (FIRE-II)

    SciTech Connect (OSTI)

    Matrosov, S.Y. |; Heymsfield, A.J.; Kropfli, R.A.; Snider, J.B.

    1996-04-01

    Comparisons of remotely sensed meteorological parameters with in situ direct measurements always present a challenge. Matching sampling volumes is one of the main problems for such comparisons. Aircraft usually collect data when flying along a horizontal leg at a speed of about 100 m/sec (or even greater). The usual sampling time of 5 seconds provides an average horizontal resolution of the order of 500 m. Estimations of vertical profiles of cloud microphysical parameters from aircraft measurements are hampered by sampling a cloud at various altitudes at different times. This paper describes the accuracy of aircraft horizontal and vertical coordinates relative to the location of the ground-based instruments.

  15. ARM - Datastreams - avhrrdar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a note below or call us at 1-888-ARM-DATA. Send Datastream : AVHRRDAR AVHRR images for Darwin from BOM Active Dates 2003.05.01 - 2009.06.05 Measurement Categories Cloud Properties...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud and Radiative Properties Derived Over the ARM NSA Domain From AVHRR Data Heck, P.W., ... polar sites on the North Slope of Alaska (NSA) measure time series of various ...

  17. ARM - Measurement - Ozone Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Ozone Concentration The atmospheric concentration or volume mixing ratio (mole fraction) of Ozone Categories Atmospheric State Instruments The above measurement is...

  18. ARM - Measurement - Cloud size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements as cloud thickness, cloud area, and cloud aspect ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  19. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  20. NREL: Measurements and Characterization - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements & Characterization Home About Measurements & Characterization Analytical Microscopy Device Performance Measurement Electro-Optical Characterization Surface...

  1. Comparison of absolute spectral irradiance responsivity measurement techniques using wavelength-tunable lasers

    SciTech Connect (OSTI)

    Ahtee, Ville; Brown, Steven W.; Larason, Thomas C.; Lykke, Keith R.; Ikonen, Erkki; Noorma, Mart

    2007-07-10

    Independent methods for measuring the absolute spectral irradiance responsivity of detectors have been compared between the calibration facilities at two national metrology institutes, the Helsinki University of Technology (TKK), Finland, and the National Institute of Standards and Technology (NIST). The emphasis is on the comparison of two different techniques for generating a uniform irradiance at a reference plane using wavelength-tunable lasers. At TKK's Laser Scanning Facility (LSF) the irradiance is generated by raster scanning a single collimated laser beam, while at the NIST facility for Spectral Irradiance and Radiance Responsivity Calibrations with Uniform Sources (SIRCUS), lasers are introduced into integrating spheres to generate a uniform irradiance at a reference plane. The laser-based irradiance responsivity results are compared to a traditional lamp-monochromator-based irradiance responsivity calibration obtained at the NIST Spectral Comparator Facility (SCF). A narrowband filter radiometer with a24 nm bandwidth and an effective band-center wavelength of 801 nm was used as the artifact. The results of the comparison between the different facilities, reported for the first time in the near-infrared wavelength range, demonstrate agreement at the uncertainty level of less than 0.1%. This result has significant implications in radiation thermometry and in photometry as well as in radiometry.

  2. Measurements of net radiation, ground heat flux and surface temperature in an urban canyon

    SciTech Connect (OSTI)

    Gouveia, F J; Leach, M J; Shinn, J H

    2003-11-06

    The Joint Urban 2003 (JU2003) field study was conducted in Oklahoma City in July 2003 to collect data to increase our knowledge of dispersion in urban areas. Air motions in and around urban areas are very complicated due to the influence of urban structures on both mechanical and thermal forcing. During JU2003, meteorological instruments were deployed at various locations throughout the urban area to characterize the processes that influence dispersion. Some of the instruments were deployed to characterize urban phenomena, such as boundary layer development. In addition, particular sites were chosen for more concentrated measurements to investigate physical processes in more detail. One such site was an urban street canyon on Park Avenue between Broadway and Robinson Avenues in downtown Oklahoma City. The urban canyon study was designed to examine the processes that control dispersion within, into and out of the urban canyon. Several towers were deployed in the Park Avenue block, with multiple levels on each tower for observing the wind using sonic anemometers. Infrared thermometers, net radiometers and ground heat flux plates were deployed on two of the towers midway in the canyon to study the thermodynamic effects and to estimate the surface energy balance. We present results from the surface energy balance observations.

  3. ARM - Measurement - Hydrometeor size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor size The size of a hydrometeor, measured directly or derived from other measurements. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  4. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect (OSTI)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  5. Measurements of plutonium

    SciTech Connect (OSTI)

    Larsen, R.P. )

    1989-11-01

    Based on reviews of the early and recent literature concerning comparative measurements of plutonium, sources of measurement error are discussed. This paper focuses on those related to mass spectrometric isotope dilution.

  6. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  7. ARM - Measurement - Hygroscopic growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsHygroscopic growth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hygroscopic growth The rate that aerosol particles grow at relative humidity values less than 100 percent. Sometimes supersaturation conditions are used in making this measurement. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the

  8. ARM - Measurement - Isotope ratio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric State, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  9. ARM - Measurement - Lightning stroke

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsLightning stroke ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Lightning stroke Lightning stroke location, type, and intensity Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  10. ARM - Measurement - Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNitrogen ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Nitrogen All gaseous compounds of nitrogen including N2, N2O, and NOx. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  11. Impedance Measurement Box

    Energy Science and Technology Software Center (OSTI)

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  12. Arctic Climate Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Arctic Climate Measurements Global Climate Models Software Sustainable Subsurface ...

  13. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan -

  14. Electrolyte measurement device and measurement procedure

    DOE Patents [OSTI]

    Cooper, Kevin R.; Scribner, Louie L.

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  15. Coordinate measuring system

    DOE Patents [OSTI]

    Carlisle, Keith

    2003-04-08

    An apparatus and method is utilized to measure relative rigid body motion between two bodies by measuring linear motion in the principal axis and linear motion in an orthogonal axis. From such measurements it is possible to obtain displacement, departure from straightness, and angular displacement from the principal axis of a rigid body.

  16. Current measurement apparatus

    DOE Patents [OSTI]

    Umans, Stephen D.

    2008-11-11

    Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2009 [Facility News] Climate Models Need Closure Too Bookmark and Share These radiometers at the Southern Great Plains site match those on the aircraft for the RACORO field campaign. The radiometers will take measurements continuously throughout the campaign, allowing scientists to compare measurements from the aircraft against those collected routinely by radiometers at the site. These radiometers at the Southern Great Plains site match those on the aircraft for the RACORO field campaign.

  18. Evaluation of accountability measurements

    SciTech Connect (OSTI)

    Cacic, C.G.

    1988-01-01

    The New Brunswick Laboratory (NBL) is programmatically responsible to the U.S. Department of Energy (DOE) Office of Safeguards and Security (OSS) for providing independent review and evaluation of accountability measurement technology in DOE nuclear facilities. This function is addressed in part through the NBL Safegaurds Measurement Evaluation (SME) Program. The SME Program utilizes both on-site review of measurement methods along with material-specific measurement evaluation studies to provide information concerning the adequacy of subject accountability measurements. This paper reviews SME Program activities for the 1986-87 time period, with emphasis on noted improvements in measurement capabilities. Continued evolution of the SME Program to respond to changing safeguards concerns is discussed.

  19. ARM - Measurement - Convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsConvection ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Convection Vertical motion within the atmosphere due to thermal instability, with important impacts on the type cloud systems that can develop. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  20. ARM - Measurement - Horizontal wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsHorizontal wind ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal wind in terms of either speed and direction, or the zonal (u) and meridional (v) components. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  1. ARM - Measurement - Hydrometeor Geometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geometry ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor Geometry Measurements describing the geometry of hydrometeors, e.g. oblateness, diameters along different axes, volume, etc. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  2. ARM - Measurement - Hydrometeor image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor image Images of hydrometeors from which one can derive characteristics such as size and shape. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  3. ARM - Measurement - Methane concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  4. ARM - Measurement - Methane flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories Surface Properties, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  5. ARM - Measurement - Precipitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPrecipitation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitation All liquid or solid phase aqueous particles that originate in the atmosphere and fall to the earth's surface. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  6. ARM - Measurement - Soil moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture The moisture of the soil measured near the surface. This includes soil wetness and soil water potential. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  7. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  8. Measuring Arithmetic Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Arithmetic Intensity Measuring Arithmetic Intensity Arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte ratio (F/B). This application note provides a methodology for determining arithmetic intensity using Intel's Software Development Emulator Toolkit (SDE) and VTune Amplifier (VTune)

  9. Current measuring system

    DOE Patents [OSTI]

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  10. Current measuring system

    DOE Patents [OSTI]

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  11. Aerial Measuring System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20

    To establish policy for the Department of Energy's (DOE) Aerial Measuring System (AMS) Program. This directive does not cancel another directive. Canceled by DOE O 153.1.

  12. ARM - Measurement - Ozone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsOzone ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Ozone measurements are given in Dobson units and are integers with 3 significant figures. A Dobson Unit represents the physical thickness of the ozone layer if it were brought to the Earth's surface. A value of 300 Dobson units equals three millimeters. Categories Atmospheric State Instruments The above measurement is considered

  13. Guidelines for Performance Measurement

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-06-30

    Federal agencies, states, businesses, and foreign governments are increasingly relying on performance measurement information to help chart progress in increasingly frugal times. No cancellations.

  14. Sandia Motion Measurement Processor

    Energy Science and Technology Software Center (OSTI)

    2003-03-01

    SANDIA-MMP is used to estimate the motion of the belly and wing pods of an aircraft given various indirect in-flight measurements.

  15. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  16. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  17. ARM - Measurement - Cloud location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point in space and time, typically expressed as a binary cloud mask. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  18. ARM - Measurement - Ice nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Ice nuclei Small particles around which ice particles form. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  19. ARM - Measurement - Hydrometeor types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into such microphysical classes as rain, snow, graupel, and hail. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  20. ARM - Measurement - Hydrometeor phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Hydrometeor phase Hydrometeor phase such as liquid ice or mixed phase Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  1. ARM - Measurement - Cloud phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that involves property descriptors such as stratus, cumulus, and cirrus. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  2. ARM - Measurement - Radar reflectivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upon the size, shape, aspect, and dielectric properties of that target. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  3. Wake Imaging Measurement System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Measurement System - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear ...

  4. The attribute measurement technique

    SciTech Connect (OSTI)

    Macarthur, Duncan W; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  5. Viscosity measuring using microcantilevers

    DOE Patents [OSTI]

    Oden, Patrick Ian

    2001-01-01

    A method for the measurement of the viscosity of a fluid uses a micromachined cantilever mounted on a moveable base. As the base is rastered while in contact with the fluid, the deflection of the cantilever is measured and the viscosity determined by comparison with standards.

  6. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  7. Solar Resource Measurements in Cocoa, Florida (FSEC) - Equipment Loaned to NREL: Cooperative Research and Development Final Report, CRADA Number CRD-08-318

    SciTech Connect (OSTI)

    Stoffel, T.; Afshin, A.

    2014-01-01

    Site-specific measurements of global and diffuse solar irradiance components, passively separated by alternate shading and unshading of a pyranometer mounted under a shading band with alternating opaque and open panels (for a site other than NREL) are needed to verify the underlying theory and mathematical techniques for developing direct, global and diffuse renewable resource data from such a system. These data are used for several research and development activities consistent with the NREL mission: Establish a national 30-year climatological database of measured solar irradiances; Support development of radiative transfer models for estimating solar irradiance from available meteorological observations; Provide solar resource information needed for technology deployment and operations. NREL will provide the supporting equipment (Shadow Bank Stand) for the specially designed shading band. FSEC will provide the calibrated pyranometer and perform data acquisition of the radiometer signal. Data acquired under this agreement will be shared with the NREL Principle Investigator for the purposes of validating techniques for estimating direct radiation from global and diffuse components measured with the ZEBRA system.

  8. Performance testing accountability measurements

    SciTech Connect (OSTI)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  9. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to

  10. ARM - Measurement - Visibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVisibility ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Visibility The greatest horizontal distance in a given direction at which it is just possible to see and identify with the unaided eye (a) in the daytime, a prominent dark object against the sky at the horizon, and (b) at night, a moderately intense light source. Categories Atmospheric State Instruments The above measurement is

  11. CIRCUITS FOR CURRENT MEASUREMENTS

    DOE Patents [OSTI]

    Cox, R.J.

    1958-11-01

    Circuits are presented for measurement of a logarithmic scale of current flowing in a high impedance. In one form of the invention the disclosed circuit is in combination with an ionization chamber to measure lonization current. The particular circuit arrangement lncludes a vacuum tube having at least one grid, an ionization chamber connected in series with a high voltage source and the grid of the vacuum tube, and a d-c amplifier feedback circuit. As the ionization chamber current passes between the grid and cathode of the tube, the feedback circuit acts to stabilize the anode current, and the feedback voltage is a measure of the logaritbm of the ionization current.

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2007 [Facility News] Microwave Radiometers Put to the Test in Germany Bookmark and Share A 2-channel microwave radiometer (left) and a 12-channel microwave radiometer profiler (right) are part of a larger collection of instruments deployed at the ARM Mobile Facility site in Heselbach, Germany, in 2007. Microwave radiometers (MWRs) are instruments used to measure emissions of water vapor and liquid water molecules in the atmosphere at specific microwave frequencies. Different MWRs are used to

  13. wilcox-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traceability and Verification of Radiometer Calibrations at the Southern Great Plains Radiometer Calibration Facility S. M. Wilcox and I. Reda National Renewable Energy Laboratory Golden, Colorado D. A. Nelson and C. Webb Southern Great Plains Central Facility Introduction The Radiometer Calibration Facility at the Southern Great Plains (SGP) central facility annually calibrates more than 100 radiometers deployed for routine operations at the 22 SGP measurement sites. Among the factors that

  14. Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Posters Observations of Tropical Cirrus Properties in the Pilot Radiation Observation Experiment Using Lidar and the CSIRO ARM Filter Radiometer C.M.R. Platt, S. A. Young, P. J. Manson, and G. R. Patterson CSIRO Division of Atmospheric Research Station Street, Aspendale, Victoria, Australia A narrow beam fast filter radiometer has been developed for the Atmospheric Radiation Measurement (ARM) Program. The radiometer is intended to operate alongside a lidar at ARM sites in a lidar/radiometer

  15. ARM - Measurement - Atmospheric moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Measurements associated with the Aerosol Observing System UAV-MET-OTTER : Meteorology from UAV-Twin Otter MFRSR-WV1MICH : MFRSR-WV-Michalsky1 MWRP : Microwave ...

  16. Tidal Flow Turbulence Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What)can)we)measure?) * Acous+c)Doppler)Current)Profilers)(ADCP)) - Temporal)noise) - Spa+al)aliasing)) * Acous+c)Doppler)Velocimeters)(ADVs)) * Other)op+ons) Northwest)Na+onal)Mar...

  17. Capacitance measuring device

    DOE Patents [OSTI]

    Andrews, W.H. Jr.

    1984-08-01

    A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

  18. In situ measurement system

    DOE Patents [OSTI]

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  19. Measuring Strong Nanostructures

    ScienceCinema (OSTI)

    Andy Minor

    2010-01-08

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  20. ARM - Measurement - Advective tendency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Advective tendency The large-scale advective tendency of temperature and moisture...

  1. ARM - Measurement - Actinic flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Actinic flux The quantity of light in the atmosphere available to molecules at a...

  2. ARM - Measurement - Aerosol image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol image Images of aerosols from which one can derive characteristics such...

  3. Electron Heat Transport Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer, * C. B. Forest, ... limit of s &29; 1, RR assumed the electron heat flux to be diffusive, obeying Fourier's ...

  4. ARM - Measurement - Precipitable water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitable water Total amount ...

  5. ARM - Measurement - Cloud extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud extinction The removal of radiant energy from an incident beam by the process of cloud absorption andor ...

  6. ARM - Measurement - Aerosol extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol extinction The removal of radiant energy from an incident beam by the process of aerosol absorption ...

  7. Performance Measurement Analysis System

    Energy Science and Technology Software Center (OSTI)

    1989-06-01

    The PMAS4.0 (Performance Measurement Analysis System) is a user-oriented system designed to track the cost and schedule performance of Department of Energy (DOE) major projects (MPs) and major system acquisitions (MSAs) reporting under DOE Order 5700.4A, Project Management System. PMAS4.0 provides for the analysis of performance measurement data produced from management control systems complying with the Federal Government''s Cost and Schedule Control Systems Criteria.

  8. ARM - Measurement - Lidar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsLidar polarization ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Lidar polarization The temporal and geometric behavior of the electric field vector of an electromagnetic wave transmitted or received by a lidar system, e.g. elliptical polarization, differential reflectivity, phase shift, co-polar correlation coefficient, linear depolarization ratio. Categories Cloud Properties

  9. ARM - Measurement - Soil characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil characteristics Includes available water capacity, bulk density, permeability, porosity, rock fragment classification, rock fragment volume, percent clay, percent sand, and texture classification Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer

  10. ARM - Measurement - Surface condition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    condition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface condition State of the surface, including vegetation, land use, surface type, roughness, and such; often provided in model output. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  11. Measurement of the absolute \

    SciTech Connect (OSTI)

    Aunion, Jose Luis Alcaraz; /Barcelona, IFAE

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 10{sup 20} protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 10{sup 20} POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  12. Pulse flux measuring device

    DOE Patents [OSTI]

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  13. Ultrasonic differential measurement

    DOE Patents [OSTI]

    Rhodes, George W.; Migliori, Albert

    1995-01-01

    A method and apparatus for ultrasonic resonance testing of an object is shown and described. Acoustic vibrations are applied to an object at a plurality of frequencies. Measurements of the object's vibrational response are made simultaneously at different locations on said object. The input frequency is stepped by using small frequency changes over a predetermined range. There is a pause interval or ring delay which permits the object to reach a steady state resonance before a measurement is taken.

  14. Device for calorimetric measurement

    DOE Patents [OSTI]

    King, William P; Lee, Jungchul

    2015-01-13

    In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.

  15. Solution mass measurement

    SciTech Connect (OSTI)

    Ford, W.; Marshall, R.S.; Osborn, L.C.; Picard, R.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the efforts to develop and demonstrate a solution mass measurement system for use at the Los Alamos Plutonium Facility. Because of inaccuracy of load cell measurements, our major effort was directed towards the pneumatic bubbler tube. The differential pressure between the air inlet to the bubbler tube and the glovebox interior is measured and is proportional to the solution mass in the tank. An inexpensive, reliable pressure transducer system for measuring solution mass in vertical, cylindrical tanks was developed, tested, and evaluated in a laboratory test bed. The system can withstand the over- and underpressures resulting from solution transfer operations and can prevent solution backup into the measurement pressure transducer during transfers. Drifts, noise, quantization error, and other effects limit the accuracy to 30 g. A transportable calibration system using a precision machined tank, pneumatic bubbler tubes, and a Ruska DDR 6000 electromanometer was designed, fabricated, tested, and evaluated. Resolution of the system is +-3.5 g out of 50 kg. The calibration error is 5 g, using room-temperature water as the calibrating fluid. Future efforts will be directed towards in-plant test and evaluation of the tank measurement systems. 16 figures, 3 tables.

  16. Broadband Outdoor Radiometer Calibration Process for the Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    Research Org: National Renewable Energy Lab. (NREL), Golden, CO (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy ...

  17. Cloud Optical Properties from the Multi-Filter Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    public from the National Technical Information Service, Springfield, VA at www.ntis.gov. ... depths larger than approximately 7. The retrieval assumes a single cloud layer consisting ...

  18. ARM - Evaluation Product - Microwave Radiometer version 2 (MWRRETv2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This VAP is an updated version of mwrret1liljclou (documented in Turner et al. 2007) that ... Developed by Laura Riihimaki | Krista Gaustad | David Turner Contact Laura Riihimaki ...

  19. ARM: Portable Radiation Package: Fast Rotating Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science (SC), Biological and Environmental Research (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 ...

  20. Narrow Field of View Zenith Radiometer (NFOV) Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    With a one-second sampling rate of the NFOV2, faster than almost any other ARM Climate Research Facility (ACRF) instrument, we are able, for the first time, to capture changes in ...

  1. ARM: Microwave Radiometer, 3 Channel: airmasses, brightness temperatur...

    Office of Scientific and Technical Information (OSTI)

    (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences Microwave narrowband brightness temperature Dataset File size ...

  2. Balloon-borne radiometer profiler: Field observations (Conference...

    Office of Scientific and Technical Information (OSTI)

    Authors: Shaw, W.J. ; Whiteman, C.D. ; Anderson, G.A. ; Alzheimer, J.M. ; Hubbe, J.M. ; Scott, K.A. Publication Date: 1995-03-01 OSTI Identifier: 70721 Report Number(s): PNL-SA--26...

  3. Maturation and Hardening of the Stabilized Radiometer Platforms...

    Office of Scientific and Technical Information (OSTI)

    Work supported by the U.S. Department of Energy, Office of Science, Office of Biological ... 2 2.2.4 Upgrade of the Navigational Control and Analysis Software 3 2.2.5 Replacement ...

  4. Cloud Optical Properties from the Multi-Filter Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    The Min and Harrison algorithm has been incorporated into an ARM Value-Added Product (VAP) ... As specified by Min and Harrison (1996), the wavelength at 415 nm was chosen due to the ...

  5. ARM: Pixels from SASHe corresponding to MFR radiometer wavelengths...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science (SC), Biological and Environmental Research (BER) ... irradiance; Shortwave narrowband direct downwelling irradiance; Shortwave ...

  6. Broadband Outdoor Radiometer Callibration Process for the Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperaturerelative humidity probes, multimeters, and data acquisition ...

  7. NREL: MIDC/Oak Ridge National Laboratory Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (35.93 N, 84.31 W, 245 m, GMT-5) Oak Ridge National Laboratory Irradiance Inc. Rotating Shadowband

  8. I BALLOON-BORNE RADIOMETER PROFILER: FIELD OBSERVATIONS W. J...

    Office of Scientific and Technical Information (OSTI)

    The platform i s leveled by an automatic control loop stabilization system in which the level sensors are two single-axis solid-state rotation rate sensors. These sensors use ...

  9. Evaluation of Radiometers Deployed at the National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  10. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  11. Measurement uncertainty relations

    SciTech Connect (OSTI)

    Busch, Paul; Lahti, Pekka; Werner, Reinhard F.

    2014-04-15

    Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order ? rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases, the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.

  12. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Barnes, L.M.

    2003-11-12

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001080.pdf. These parameters are summarized in the table at the bottom of this introduction.

  13. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  14. Magnet measurement workshop

    SciTech Connect (OSTI)

    1986-12-01

    This report covers the deliberations of the participants the workshop and some subsequent contributions. Section III, the report of the rotating coil group, includes a summary table of the major measuring systems in use today, with separate sections on each. Section IV is the summary report of the group that addressed other measuring techniques. Because one of the limits of all the techniques being considered is electronic data acquisition, Section V addresses this topic. A set of issues relevant to magnetic field measurements of SSC dipoles was raised and addressed during the workshop. These are included as Section VI. Section VII includes a complete list of attendees with their addresses and a separate list of the members of the two working groups.

  15. Electrochemical thermodynamic measurement system

    DOE Patents [OSTI]

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  16. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  17. ARM - Measurement - Surface albedo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    albedo ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface albedo The fraction of incoming solar radiation at a surface (i.e. land, cloud top) that is effectively reflected by that surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of

  18. Study of electron temperature profile evolution during L-H transition with measurement of electron cyclotron emission on DIII-D

    SciTech Connect (OSTI)

    Wang, Z.; Hsieh, C.; Zhang, J.; Lohr, J.; Stockdale, R.E.; Bell, G.L.; Wilgen, J.B.; Luo, J.

    1995-06-01

    The L-H transition has been intensively investigated since it was discovered in the ASDEX tokamak in 1982. Considerable experimental evidence shows that the formation of the transport barrier at the plasma edge, during which the edge density and temperature gradients suddenly increase, is a common feature in the L-H transition discharge in all devices. Formation of the transport barrier is indicated by a sharp reduction in the D{alpha} radiation at the periphery of the plasma despite a simultaneous increase in the plasma density. A new heterodyne electron cyclotron emission radiometer, which had been built for the ATF device at the Oak Ridge National Laboratory, has been installed on DIII-D. The instrument features 32 channels with high temporal and spatial resolution and covers the outer half of DIII-D plasma at full magnetic field. Initial measurements with the instrument at the time of the L-H transition show that there is no T{sub e}, precursor to the transition and this is further supported by observations during dithering L-H transition where the transport barrier is immediately destroyed when the plasma briefly returns to the L-mode during process of the transition. Other applications of the new instrument have included T{sub e}, profile measurements during edge localized modes and during Ohmic and beam-heated sawteeth, which highlight the magnetic reconnection process. The instrument will be described and some of these results win be presented.

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tale of the Tapes-No More Boxes of Data! Bookmark and Share In October 1997, the ARM Program entered into a contract with the University of Alaska-Fairbanks to obtain image data covering the ARM Climate Research Facility's North Slope of Alaska (NSA) locale. Image data taken by an advanced very high resolution radiometer (AVHRR) are collected by a satellite receiver at Fairbanks and, up until February 2004, were stored on 4mm tapes. These boxes were then shipped by the boxful to the ARM

  20. Measure Guideline: Evaporative Condensers

    SciTech Connect (OSTI)

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  1. First Measurement of $\

    SciTech Connect (OSTI)

    Palomino Gallo, Jose Luis

    2012-12-01

    Understanding of the $\\pi^0$ production via anti-neutrino-nucleus charged current interaction in the neutrino energy region of 1-10 GeV is essential for neutrino oscillation experiments. In this thesis, we present a measurement of charged current $\\pi^0$ production from anti-muon neutrinos scattering on a polystyrene scintillator (CH) target in the MINER$\

  2. Measurements and material accounting

    SciTech Connect (OSTI)

    Hammond, G.A. )

    1989-11-01

    The DOE role for the NBL in safeguarding nuclear material into the 21st century is discussed. Development of measurement technology and reference materials supporting requirements of SDI, SIS, AVLIS, pyrochemical reprocessing, fusion, waste storage, plant modernization program, and improved tritium accounting are some of the suggested examples.

  3. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  4. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  5. Underwater measuring gage

    DOE Patents [OSTI]

    Lockhart, James L.

    1989-01-01

    A device for remotely measuring the diameter of wire rope. The device includes a linear variable differential tansducer, a mechanism to guide and clamp the rope in relation to the anvil of the transducer, an elongated handle for manually manipulating the transducer and the guide and clamp mechanism.

  6. Measuring environmental performance

    SciTech Connect (OSTI)

    Weireter, R.

    1995-12-01

    Environmental management has become increasingly complex as regulatory and social forces transform traditional business practices. In recent years, due to the growing importance and cost of environmental management, emphasis has shifted away from regulatory compliance toward the broader areas of strategic environment management and total quality environmental management. This shift in emphasis has sought to incorporate environmental management throughout the entire company, rather than confine it to the {open_quotes}environmental department.{close_quotes} This shift has produced a need to measure environmental performance so that business managers can make more informed decisions regarding appropriate management strategies. Identifying appropriate measurement indicators and incorporating this goal into traditional company management information systems has become a key challenge for many environmental professionals. The objective of the presentation will be to discuss tools which can be used to measure a company`s environmental performance, and how these tools can help managers promote more cost-effective environmental management. The presentation will contain a general overview of the issues involved in establishing an environmental performance measurement system. Topics to be addressed include environmental management information systems, developing effective environmental programs, benchmarking your current status against which to evaluate future performance, and striving for continuous environmental improvement.

  7. High frequency energy measurements

    SciTech Connect (OSTI)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described.

  8. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  9. Impedance Measurement Box

    ScienceCinema (OSTI)

    Christophersen, Jon

    2013-05-28

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  10. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  11. Measure Guideline: Evaporative Condensers

    SciTech Connect (OSTI)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  12. Measuring Neutrino Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Neutrino Interactions with MiniBooNE R. Tayloe for the MiniBooNE collaboration Physics Department, Indiana University Bloomington, IN 47405, USA Abstract. The MiniBooNE neutrino oscillation experiment has collected a large sample of charged- and neutral-current neutrino interaction events. These samples are important to understand the normalization and backgrounds in neutrino oscillation searches. They also reveal insight into the structure of the nucleus and nucleon. The MiniBooNE

  13. Optical absorption measurement system

    DOE Patents [OSTI]

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  14. ARM - Measurement - Radar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polarization ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radar polarization The temporal and geometric behavior of the electric field vector of an electromagnetic wave transmitted or received by a radar system, e.g. elliptical polarization, differential reflectivity, phase shift, co-polar correlation coefficient, linear depolarization ratio. Categories Cloud Properties Instruments The above

  15. ARM - Measurements and Platforms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements and Platforms Related Links ISDAC Home AAF Home AVP Aircraft Instrumentation, October 14-16, 2008 ARM Data Discovery Browse Data Post-Campaign Data Sets Flight Summary Table (PDF, 440K) ISDAC Wiki Mission Summary Journal Deployment Resources NSA Site ARM Data Plots Quick Links Experiment Planning ISDAC Proposal Abstract Full Proposal (pdf, 1,735K) Science Questions Science Overview Document for ISDAC (pdf, 525K) ISDAC Flight Planning Document (PDF, 216K) Collaborations Logistics

  16. Phasor Measurement Units

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phasor Measurement Units - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  17. Wake Imaging Measurement System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Measurement System - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  18. Arctic Climate Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Measurements - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  19. Climate Measurement & Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement & Modeling - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  20. CLASIC Measurement Platforms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms June 2007 Mark A. Miller, Principal Investigator and The CLASIC Steering Committee: Roni Avissar, Larry Berg, Sylvia Edgerton, Marc Fischer, Tom Jackson, Bill Kustas, Pete Lamb, Greg McFarquhar, Qilong Min, Beat Schmid, Margaret Torn, and Dave Turner Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research M.R. Miller et al., DOE/SC-ARM-0704 Contents 1.

  1. Motor Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  2. AC resistance measuring instrument

    DOE Patents [OSTI]

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  3. AC Resistance measuring instrument

    DOE Patents [OSTI]

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  4. ARM - Blog Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the World Radiometric Reference, the international standard of solar radiation measurement. Data quality of the measurements from radiometers requires accurate and ...

  5. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ARM program has acquired more than 100 pyranometers and pyrheliometers for measuring shortwave solar irradiance. The data quality of the measurements from these radiometers ...

  6. A comparison of cloudiness measures derived from longwave measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A comparison of cloudiness measures derived from longwave measurements and shortwave sky imagers Takara, Ezra Florida State University Ellingson, Robert Florida State University...

  7. Surface cleanliness measurement procedure

    DOE Patents [OSTI]

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  8. Water Conservation Measures

    SciTech Connect (OSTI)

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  9. Measuring Process Safety Management

    SciTech Connect (OSTI)

    Sweeney, J.C. (ARCO Chemical Co., Newtown Square, PA (United States))

    1992-04-01

    Many companies are developing and implementing Process Safety Management (PSM) systems. Various PSM models, including those by the Center for Chemical Process Safety (CCPS), the American Petroleum Institute (API), the Chemical Manufacturers Association (CMA) and OSHA have emerged to guide the design, development and installation of these systems. These models represent distillations of the practices, methods and procedures successfully used by those who believed that a strong correlation exists between sound PSM practices and achieving reductions in the frequency and severity of process incidents. This paper describes the progress of CCPS research toward developing a PSM performance measurement model. It also provides a vision for future CCPS research to define effectiveness indices.

  10. Method for resonant measurement

    DOE Patents [OSTI]

    Rhodes, G.W.; Migliori, A.; Dixon, R.D.

    1996-03-05

    A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.

  11. Water Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits ofmore » a project.« less

  12. Plug Loads Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple plug loads inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Vending Machine Misers, Delamp Vending Machine, Desktop to Laptop retrofit, CRT to LCD monitors retrofit, Computer Power Management Settings, and Energy Star Refrigerator retrofit. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings tomore » investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  13. SUMP MEASURING SYSTEM

    SciTech Connect (OSTI)

    Vrettos, N; Athneal Marzolf, A; Casandra Robinson, C; James Fiscus, J; Daniel Krementz, D; Thomas Nance, T

    2007-11-26

    The process sumps in H-Canyon at the Savannah River Site (SRS) collect leaks from process tanks and jumpers. To prevent build-up of fissile material the sumps are frequently flushed which generates liquid waste and is prone to human error. The development of inserts filled with a neutron poison will allow a reduction in the frequency of flushing. Due to concrete deterioration and deformation of the sump liners the current dimensions of the sumps are unknown. Knowledge of these dimensions is necessary for development of the inserts. To solve this problem a remote Sump Measurement System was designed, fabricated, and tested to aid development of the sump inserts.

  14. Method for resonant measurement

    DOE Patents [OSTI]

    Rhodes, George W.; Migliori, Albert; Dixon, Raymond D.

    1996-01-01

    A method of measurement of objects to determine object flaws, Poisson's ratio (.sigma.) and shear modulus (.mu.) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson's ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson's ratio using other modes dependent on both the shear modulus and Poisson's ratio.

  15. Cross-Section Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section Measurement of 2 H(n,np)n at 16 MeV in Symmetric Constant Relative Energy Configurations Alexander Hoff Couture A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy. Chapel Hill 2011 Approved by: T. B. Clegg, Advisor C. R. Howell, Advisor H. J. Karwowski, Reader J. Lu, Reader J. Engel, Reader c 2011 Alexander Hoff Couture ALL

  16. Measuring Safeguards Culture

    SciTech Connect (OSTI)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  17. Monolithically compatible impedance measurement

    DOE Patents [OSTI]

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  18. Integration of remote sensing and geographic information systems for Great Lakes water quality monitoring

    SciTech Connect (OSTI)

    Lathrop, R.G. Jr.

    1988-01-01

    The utility of three operational satellite remote sensing systems, namely, the Landsat Thematic Mapper (TM), the SPOT High Resolution Visible (HRV) sensors and the NOAA Advanced Very High Resolution Radiometer (AVHRR), were evaluated as a means of estimating water quality and surface temperature. Empirical calibration through linear regression techniques was used to relate near-simultaneously acquired satellite radiance/reflectance data and water quality observations obtained in Green Bay and the nearshore waters of Lake Michigan. Four dates of TM and one date each of SPOT and AVHRR imagery/surface reference data were acquired and analyzed. Highly significant relationships were identified between the TM and SPOT data and secchi disk depth, nephelometric turbidity, chlorophyll a, total suspended solids (TSS), absorbance, and surface temperature (TM only). The AVHRR data were not analyzed independently but were used for comparison with the TM data. Calibrated water quality image maps were input to a PC-based raster GIS package, EPPL7. Pattern interpretation and spatial analysis techniques were used to document the circulation dynamics and model mixing processes in Green Bay. A GIS facilitates the retrieval, query and spatial analysis of mapped information and provides the framework for an integrated operational monitoring system for the Great Lakes.

  19. Measuring electrode assembly

    DOE Patents [OSTI]

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  20. Measuring electrode assembly

    DOE Patents [OSTI]

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  1. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  2. Performance Evaluation and Measurement Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 4 PEMP ORGANIZATION Fee Determining Official ... Evaluation and Measurement Plan (PEMP) is an award fee plan containing both ...

  3. ARM - Measurement - Soil surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  4. ARM - Measurement - Trace gas concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsTrace gas concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Trace gas concentration The amount per unit volume of trace gases other than carbon dioxide, nitrogen oxides, ozone and water vapor, typically measured in conjunction with in situ aerosol measurements, e.g. carbon monoxide, and sulfur dioxide. Categories Atmospheric State, Atmospheric Carbon Instruments The above

  5. ARM - Measurement - Volatile organic compounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVolatile organic compounds ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Volatile organic compounds The quantity or concentration measure of volatile organic compounds including both man-made and naturally occurring chemical compounds (this is inclusive of hydrocarbons). Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following

  6. Prioritization Tool Measurement Input Form

    Office of Energy Efficiency and Renewable Energy (EERE)

    BTO encourages stakeholders to recommend updates and improvements to the Prioritization Tool by using the below Measure Input Form.

  7. Measuring and Understanding Memory Bandwidth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring and Understanding Memory Bandwidth Measuring and Understanding Memory Bandwidth Measuring Bandwidth Usage Measuring memory bandwidth is a good way of understanding how well your application uses cache memory. Today's processors are constructed under the assumption that a small amount of (expensive) fast memory - called "cache" - is used more often than a larger amount of slower memory (DRAM). The extent to which this assumption applies to your code is referred to as memory

  8. Chemometrics/on-line measurements

    SciTech Connect (OSTI)

    O'Rourke, P.E. )

    1989-11-01

    The possible future of on-line analytical-quality measurements for improved process control and more timely safeguards measurements is examined in the light of a current project at Savannah River. A measurement system involving a fiber-optic spectrophotometer and the application of mathematical techniques called chemometrics is described.

  9. Direct measure of quantum correlation

    SciTech Connect (OSTI)

    Yu, Chang-shui [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Zhao, Haiqing [School of Science, Dalian Jiaotong University, Dalian 116028 (China)

    2011-12-15

    The quantumness of the correlation known as quantum correlation is usually measured by quantum discord. So far various quantum discords can be roughly understood as indirect measure by some special discrepancy of two quantities. We present a direct measure of quantum correlation by revealing the difference between the structures of classically and quantum correlated states. Our measure explicitly includes the contributions of the inseparability and local nonorthogonality of the eigenvectors of a density matrix. Besides its relatively easy computability, our measure can provide a unified understanding of quantum correlation of all the present versions.

  10. Eddy-Covariance and auxiliary measurements, NGEE-Barrow, 2012-2013

    SciTech Connect (OSTI)

    Torn, Margaret; Billesbach, Dave; Raz-Yaseef, Naama

    2014-03-24

    The EC tower is operated as part of the Next Generation Ecosystem Experiment-Arctic (NGEE) at Barrow, Alaska. The tower is collecting flux data from the beginning of the thaw season, early June, and until conditions are completely frozen, early November. The tower is equipped with a Gill R3-50 Sonic Anemometer, LI-7700 (CH4) sensor, a LI-7500A (CO2/H2O) sensor, and radiation sensors (Kipp and Zonen CNR-4 (four component radiometer), two LiCor LI-190 quantum sensors (PAR upwelling and downwelling), and a down-looking Apogee SI-111 infrared radiometer (surface temperature)). The sensors are remotely controlled, and communication with the tower allows us to retrieve information in real time.

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed, which combines downwelling radiative fluxes at 415 nm, measured by a multi-filter rotating shadowband radiometer and liquid water path retrievals from a microwave...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... energy laboratory (1) nrel (1) pv module (1) pyrgeometer (1) pyrgeometers (1) solar energy atmospheric radiation measurement (1) solar energy broadband outdoor radiometer ...

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program has deployed dual-frequency microwave water radiometers (MWRs) at its Cloud and Radiation Testbed (CART)...

  14. ARM - Publications: Science Team Meeting Documents: A Climatology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and lidar pair, and rawinsonde sounding; cloud liquid water path (LWP) is retrieved from ground-based microwave radiometer measured brightness temperature; and cloud-droplet...

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forcing at the surface and the TOA. Comparisons to surface radiometer (SurfRad and ISIS) and satellite broadband measurements (CERES) demonstrate that the optical model formed ...

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Therefore, broadband radiometers at the ARM North Slope of Alaska (NSA) site are equipped ... loss correction methodology for surface broadband measurements acquired at the NSA site. ...

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud and Radiation Measurements Millimeter-wavelength cloud radar Micropulse Lidars Laser Ceilometers Aircrafts Surface Microwave Radiometers Surface Radiometric Instrument System ...

  18. ARM Value-Added Cloud Products: Description and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This VAP combines the data from the millimeter cloud radar (MMCR), micropulse lidar (MPL), laser ceilometer, microwave radiometer (MWR), and surface measurements. It produces a ...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on top of the radiometer. Scientific research increasingly shows evidence of climate change first appearing in the Arctic. Unfortunately, typical instruments for measuring water...

  20. From Measurements to Models: Cross-Comparison of Measured and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models: Cross-Comparison of Measured and Simulated Behavioral States of the Atmosphere Hoffman, Forrest Oak Ridge National Laboratory Hargrove, William Oak Ridge National...

  1. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  2. ARM - Measurement - Ice water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water content The concentration (mass/vol) of ice water particles in a cloud. Categories Cloud Properties, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  3. ARM - Measurement - Images of Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsImages of Clouds ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Images of Clouds Digital images of cloud scenes (various formats) from satellite, aircraft, and ground-based platforms. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  4. ARM - Measurement - Inorganic chemical composition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsInorganic chemical composition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Inorganic chemical composition The chemical composition of an aerosol, with the exception of those with hydrocarbons, and usually including carbides, oxides of carbon, metallic carbonates, carbon sulfur compounds, and carbon nitrogen compounds. Categories Aerosols Instruments The above measurement is

  5. ARM - Measurement - Liquid water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Liquid water content The concentration (mass/vol) of liquid water droplets in a cloud. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded

  6. ARM - Measurement - Organic Carbon Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  7. ARM - Measurement - Ozone Column Abundance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Column Abundance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Column Abundance The vertically integrated amount of ozone (commonly measured in Dobson Unit, 1 DU = 134 mmol/m^2) Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  8. ARM - Measurement - Particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  9. ARM - Measurement - Photosynthetically Active Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPhotosynthetically Active Radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Photosynthetically Active Radiation Photosynthetically Active Radiation (PAR) designates the spectral range (wave band) of solar radiation from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis Categories Radiometric Instruments The above measurement is

  10. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  11. ARM - Measurement - Soil moisture flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture flux A quantity measured according to the formula B = {lambda}(dq/dz), where {lambda} is the conductivity of the soil that the moisture is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  12. ARM - Measurement - Surface skin temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Surface Properties, Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the

  13. Making, Measuring, and Modeling Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making, Measuring, and Modeling Materials Making, Measuring, and Modeling Materials M4 facility aims to accelerate the transition from observation to control of materials providing unique synthesis and characterization tools to advance the frontiers of materials design and discovery. CONTACT Mark Bourke (505) 667-9667 Email Predicting and Controlling Materials' Performance MaRIE's Making, Measuring, and Modeling Materials (M4) Facility aims to accelerate the transition from observation to

  14. Paleomagnetic Measurements | Open Energy Information

    Open Energy Info (EERE)

    Over Core Stress Paleomagnetic Measurements Petrography Analysis Rock Density X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) Field Procedures One field method is to take small...

  15. ARM - Measurement - Black carbon concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of carbon in its very absorbing, elemental, non-organic, non-oxide form (e.g. graphite). Categories Aerosols, Atmospheric Carbon Instruments The above measurement is...

  16. ARM - Measurement - Ice water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    path ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water path A measure of the weight of the ice particles in the atmosphere above a unit surface area in kg m-2. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  17. Baseline Control Measures.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Individual Permit Baseline Control Measures at Los Alamos National Laboratory, Poster, Individual Permit for Storm Water, NPDES Permit No. NM0030759 Author(s): Veenis, Steven J....

  18. ARM - Measurement - Hydrometeor fall velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    velocity Fall velocity of hydrometeors (e.g. rain, snow, graupel, hail). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  19. ARM - Measurement - Hydrometeor optical properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scattering and absorption cross-sections, and backscatter fraction. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  20. ARM - Measurement - Sea surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  1. ARM - Measurement - Hydrometeor Size Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of hydrometeors observed in a given size range. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  2. ARM - Measurement - Cloud effective radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the number size distribution of cloud particles, whether liquid or ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  3. Performance Measurement Plans - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CH2M Contract CH2M Contract Modifications WAI Contract WAI Contract Mods Performance Measurement Plans Email Email Page | Print Print Page |Text Increase Font Size Decrease...

  4. Summary of QM02 Measurements

    SciTech Connect (OSTI)

    Fisher, Andrew

    2010-12-03

    This note summarizes both the beam-based and various laboratory measurements of quadrupole magnets, units 387 and 428, used for QM02 in the LCLS Injector. These were undertaken because of a consistent discrepancy between accelerator model predictions and beam observations which seemed to indicate a weak QM02. A report 'QM02 Strength Measurement', by Welch and Wu, describes the discrepancy and beam-based measurements on unit 387. Subsequently, unit 387 was replaced by unit 428, refinements were made to analysis of the beam-based measurements were made, and additional magnetic measurements were made on unit 387 in the lab. These new results are summarized in this note. The principle results are: (1) Laboratory measurements of integrated gradient for the same magnet, or for different magnets of the same type, are all within 1% of each other at gradients of interest. These cases cover three independent types of measurements, disassembly/reassembly of the units, and extended periods of time between measurements. (2) Standardization, or lack thereof, can cause integrated gradient errors of approximately 0.2 kG, which can amount to a few percent of the strength of the magnet depending on the setting. (3) Model-independent beam-based measurements indicate the magnets are actually weaker than expected by about 2 percent, but these measurements are subject to the uncertainty of the BPMS1 location. (4) The standardization cycle is effective. (5) The stainless steel BPM vacuum chamber inside the magnets has no significant effect on the beam. The discrepancy between the accelerator model predictions and the actual orbit response is not resolved, but the evidence points away from magnetic strength errors as the source. Differences between the model locations and effective locations of BPM's is a possible culprit. This idea is explored in Section 2. Table 1 summarizes the measurement activities that were performed on the units. The dates listed correspond to the date when the

  5. Synchronous Phasor-like Measurements

    SciTech Connect (OSTI)

    Kirkham, Harold; Dagle, Jeffery E.

    2014-02-14

    Phasor measurement units struggle to make acceptable estimates of frequency and rate of change of frequency. The most important cause of the problem is that the quantity being measured is not actually a phasor. The paper substitutes a different equation for the phasor equatin, and obtains its solution by curve-fitting.

  6. Measuring Dependence on Imported Oil

    Reports and Publications (EIA)

    1995-01-01

    U.S. dependence on imported oil can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA introduces a revised table that expresses dependence on imports in terms of both measures.

  7. Quantum discord with weak measurements

    SciTech Connect (OSTI)

    Singh, Uttam Pati, Arun Kumar

    2014-04-15

    Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the super quantum discord, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: Introduced the role of weak measurements in quantifying quantum correlation. We have introduced the notion of the super quantum discord (SQD). For pure entangled state, we show that the SQD exceeds the entanglement entropy. This shows that quantum correlation depends not only on observer but also on measurement strength.

  8. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hall Dynamo Effect during Magnetic Reconnection in a High-Temperature Plasma W. X. Ding, 1,3 D. L. Brower, 1,3 D. Craig, 2,3 B. H. Deng, 1,3 G. Fiksel, 2,3 V. Mirnov, 2,3 S. C. Prager, 2,3 J. S. Sarff, 2,3 and V. Svidzinski 2,3 1 Electrical Engineering Department, University of California at Los Angeles, Los Angeles, California 90095, USA 2 Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA 3 Center for Magnetic Self-Organization in Astrophysical and Laboratory

  9. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fast electron distribution using a flexible, high time resolution hard x-ray spectrometer R. O'Connell, D. J. Den Hartog, and C. B. Forest University of Wisconsin-Madison, Madison, Wisconsin 53706 R. W. Harvey CompX, California ͑Presented on 10 July 2002͒ A 16 spatial channel hard x-ray ͑HXR͒ diagnostic using solid state CdZnTe detectors ͑active area 10 mmϫ10 mmϫ2 mm, 50 mmϫ20 mmϫ20 mm packaged͒ has recently been installed on the Madison Symmetric Torus ͑MST͒ reversed field pinch to

  10. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    current profile dynamics in the Madison Symmetric Torus S. D. Terry, a) D. L. Brower, and W. X. Ding Electrical Engineering Department, University of California, Los Angeles, California 90095 J. K. Anderson, T. M. Biewer, B. E. Chapman, D. Craig, C. B. Forest, R. O'Connell, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 ͑Received 26 August 2003; accepted 20 November 2003͒ The current profile and core magnetic field fluctuation amplitudes

  11. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radial profile of magnetic field in the Gas-Dynamic Trap using a motional Stark effect diagnostic P. A. Bagryansky, P. P. Deichuli, A. A. Ivanov, S. A. Korepanov, A. A. Lizunov, S. V. Murakhtin, and V. Ya. Savkin Budker Institute of Nuclear Physics, 11 Academician Lavrentiev prospect, Novosibirsk 630090, Russia D. J. Den Hartog a) and G. Fiksel Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Presented on 8 July 2002͒ We have implemented a spectral motional

  12. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch a... A. Kuritsyn, 1,2,b͒ G. Fiksel, 1,2 A. F. Almagri, 1,2 D. L. Brower, 2,3 W. X. Ding, 2,3 M. C. Miller, 1,2 V. V. Mirnov, 1,2 S. C. Prager, 1,2 and J. S. Sarff 1,2 1 Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 2 Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

  13. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic field induced by a turbulent flow of liquid metal a... M. D. Nornberg, E. J. Spence, R. D. Kendrick, C. M. Jacobson, and C. B. Forest b͒ Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 28 October 2005; accepted 20 January 2006; published online 8 May 2006͒ Initial results from the Madison Dynamo Experiment provide details of the inductive response of a turbulent flow of liquid sodium to an applied magnetic field. The

  14. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MHD Dynamo in the Quasi-Single-Helicity Reversed-Field Pinch P. Piovesan, 1 D. Craig, 2 L. Marrelli, 1 S. Cappello, 1 and P. Martin 1,3 1 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti,4 35127 Padova, Italy 2 Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA 3 Department of Physics, University of Padova, Padova, Italy (Received 7 May 2004; published 29 November 2004) The first experimental study of the MHD dynamo in a

  15. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Cosmic Ray Background in LArTF for MicroBooNE Katherine Woodruff with Vassili Papavassiliou (Prof.) Stephen Pate (Prof.) Tia Miceli (Postdoc) Alistair McLean (Undergraduate) APS 4 Corners Section Meeting October 19, 2013 Katherine Woodruff, et al. New Mexico State University 1/13 MicroBooNE A Time Projection Chamber (TPC) is a liquid or gas filled volume that allows for three dimensional tracking of particles image: http://www-microboone.fnal.gov/ MicroBooNE is a Liquid Argon TPC

  16. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I would also like to thank my friends and family of Madison, specifically Rich Magee, Dan Clayton, Josh Reusch, Hillary Stephens, and Matt Miller, for being such great co-workers ...

  17. The Digital Revolution in Measurements

    SciTech Connect (OSTI)

    Kirkham, Harold

    2013-02-27

    This paper considers what it means to make a measurement, and the changes in measurement technology over the years. The impact of the latest changes, which have resulted in most electrical measurements being done digitally, is explored. It is argued that the process of measurement can be considered equivalent to one of data compression. The smart grid will certainly result in many more signals being made available, and therefore a great deal of data compression will be taking place. Measurements will be made in parts of the power system presently unmonitored, as well as parts that are already well covered by instrumentation. The smart grid engineer must decide what it means to have “useful” information. Unless care is taken, the signal processing may furnish information that is not useful, and may not even make sense. The paper concludes by examining the possibilities of data compression from multiple separate signals.

  18. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  19. Integrated Emissivity And Temperature Measurement

    DOE Patents [OSTI]

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  20. Specimen coordinate automated measuring machine/fiducial automated measuring machine

    DOE Patents [OSTI]

    Hedglen, Robert E.; Jacket, Howard S.; Schwartz, Allan I.

    1991-01-01

    The Specimen coordinate Automated Measuring Machine (SCAMM) and the Fiducial Automated Measuring Machine (FAMM) is a computer controlled metrology system capable of measuring length, width, and thickness, and of locating fiducial marks. SCAMM and FAMM have many similarities in their designs, and they can be converted from one to the other without taking them out of the hot cell. Both have means for: supporting a plurality of samples and a standard; controlling the movement of the samples in the +/- X and Y directions; determining the coordinates of the sample; compensating for temperature effects; and verifying the accuracy of the measurements and repeating as necessary. SCAMM and FAMM are designed to be used in hot cells.

  1. Robot-assisted torque measurement

    SciTech Connect (OSTI)

    Lembke, J.R.

    1986-03-01

    An Intelledex 605T robot was used to evaluate the feasibility of automating the measurement of rotary solenoid torque, with the goal of improving productivity. The solenoid chosen for the evaluation is expected to be produced in relatively large quantities for several programs. A new measurement concept was devised, in which the robot connects the solenoid shaft to a torque sensor, rotates the solenoid housing, and correlates rotational data with digitized torque measurements. Prototype tooling was designed and fabricated, and the measurement concept was evaluated in comparison with the manual method which is presently used. The automatic robot-based measurement system was shown to yield results that are in good agreement with manual measurements. The technique automatically performs all necessary operations once the solenoids have been placed into a part loading fixture, with a cycle time significantly reduced from the manual method. Manual interpretation of chart data is not required, because the results are digitized. The system can compare the measured torque to specification limits and can provide a printed report of acceptance or rejection. 12 figs.

  2. Measuring antimatter gravity with muonium

    SciTech Connect (OSTI)

    Kaplan, Daniel M.; Kirch, Klaus; Mancini, Derrick; Phillips, James D.; Phillips, Thomas J.; Roberts, Thomas J.; Terry, Jeff; Bravina, L.; Foka, Y.; Kabana, S.

    2015-05-29

    The gravitational acceleration of antimatter, ¯g, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Only two avenues for such a measurement appear to be feasible: antihydrogen and muonium. The muonium measurement requires a novel, monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nm grating pitch, a 10% measurement of ¯g can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the first measurement of the gravitational acceleration of antimatter.

  3. Measuring antimatter gravity with muonium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaplan, Daniel M.; Kirch, Klaus; Mancini, Derrick; Phillips, James D.; Phillips, Thomas J.; Roberts, Thomas J.; Terry, Jeff; Bravina, L.; Foka, Y.; Kabana, S.

    2015-05-29

    The gravitational acceleration of antimatter, ¯g, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Only two avenues for such a measurement appear to be feasible: antihydrogen and muonium. The muonium measurement requires a novel, monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nmmore » grating pitch, a 10% measurement of ¯g can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the first measurement of the gravitational acceleration of antimatter.« less

  4. Assessing deforestation and habitat fragmentation in Uganda using satellite observations and fractal analysis

    SciTech Connect (OSTI)

    Hlavka, C.A.; Strong, L.L. )

    1992-10-01

    The MSS, SPOT, and AVHRR imagery of Ugandan forests were analyzed to assess the information content related to deforestation and tropical habitat fragmentation, focusing primarily on the Kibale and Mabira Forests. Analysis of actual and simulated AVHRR imagery showed that it might be possible to monitor major changes in forest extent with the relatively coarse spatial resolution of AVHRR imagery (about 1 km) provided ancillary data were available. The fractal dimension of the forest edges, measured with the Landsat and SPOT imagery, was consistently about 1.7 or 1.8. This high fractal dimension was due to the coplex pattern of clearings, remnant forest stands, and jagged forest edges caused by repeated human encroachment over centuries. 28 refs.

  5. Fundamentals of gas measurement II

    SciTech Connect (OSTI)

    Smith, J.P.

    1995-12-01

    A knowledge of the Fundamentals of Gas Measurement is essential for all technicians and engineers that are called upon to perform gas volume calculations. These same people must have at least a working knowledge of the fundamentals to perform their everyday jobs including equipment calibrations, specific gravity tests, collecting gas samples, etc. To understand the fundamentals, one must be familiar with the definitions of the terms that are used in day-to- day gas measurement operations. They also must know how to convert some values from one quantity as measured to another quantity that is called for in the gas purchase or sales contracts or transportation agreements.

  6. ARM - Measurement - Extreme event time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsExtreme event time ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Extreme event time The time of extreme meteorological events such as min/max temperature and wind gusts. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  7. ARM - Measurement - Liquid water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    path ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Liquid water path A measure of the weight of the liquid water droplets in the atmosphere above a unit surface area on the earth, given in units of kg m-2. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument

  8. ARM - Measurement - Shortwave broadband radiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    broadband radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband radiance A measure of the intrinsic radiant energy flux intensity, at wavelengths between 0.4 and 4 {mu}, emitted by a radiator in a given direction, expressed in units of energy per unit time per unit solid angle. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  9. ARM - Measurement - Shortwave narrowband radiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    narrowband radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband radiance A measure of the intrinsic radiant energy flux intensity, at wavelengths between 0.4 and 4 {mu}, emitted by a radiator in a given direction, expressed in units of energy per unit time per unit solid angle. Categories Radiometric Instruments The above measurement is considered scientifically relevant for

  10. ARM - Measurement - Soil heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil heat flux A quantity measured according to the formula B = {lambda}(dT/dz), where {lambda} is the conductivity of the soil that the heat is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  11. ARM - Measurement - Aerosol optical depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sky-Scanning, Sun Tracking Atmospheric Research SAM : Sun and Aureole Measurement UAV-GNAT : UAV-General Atomics GNAT Value-Added Products AOD : Aerosol Optical Depth, derived from ...

  12. Article: OpenStudio Measures

    Broader source: Energy.gov [DOE]

    This article discusses a scripting facility called Measures for the OpenStudio software development kit. The article was published in the journal Energy and Buildings in September 2015.

  13. Measuring mine roof bolt strains

    SciTech Connect (OSTI)

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  14. ARM - Measurement - Aerosol effective radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol effective radius Aerosol effective radius is the ratio of the third and...

  15. Measurements and Characterization (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Measurements and Characterization that includes scope, core competencies and capabilities, and contact/web information for Analytical Microscopy, Electro-Optical Characterization, Surface Analysis, and Cell and Module Performance.

  16. ARM - Measurement - Sensible heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sensible heat flux The time ...

  17. ARM - Measurement - Latent heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Latent heat flux The time ...

  18. ARM - Measurement - Aerosol backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a ...

  19. ARM - Measurement - Longwave narrowband radiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    narrowband radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband radiance The rate at which radiant energy in the longwave portion of the spectrum is emitted in narrow wavelength bands in a particular direction per unit area perpendicular to the direction of radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  20. ARM - Measurement - Longwave spectral radiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectral radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave spectral radiance The rate at which the spectrally resolved radiant energy in the longwave portion of the spectrum is emitted in a particular direction per unit area perpendicular to the direction of radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  1. ARM - Measurement - Particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle size distribution The number of particles present in any given volume of air within a specified size range. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  2. ARM - Measurement - Shortwave spectral radiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectral radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral radiance The rate at which the spectrally resolved radiant energy in the shortwave portion of the spectrum is emitted in a particular direction per unit area perpendicular to the direction of radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  3. ARM - Measurement - Surface energy balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy balance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface energy balance The energy balance at the earth's surface between the net radiation and the sensible and latent heat fluxes and ground heat flux. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  4. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  5. LANL installs additional protective measures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab completes additional protections LANL installs additional protective measures Work crews completed additional flood and erosion-control measures this week to reduce the environmental effects of any flash floods following the Las Conchas Fire. July 20, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  6. Performance Evaluation and MEasurement Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Occupational Medical Services at Hanford J-10-1 PERFORMANCE EVALUATION AND MEASUREMENT PLAN Fiscal Year 2017 Occupational Medical Services Contract DE-EM0002043, Modification 048 Occupational Medical Services at Hanford SECTION J ATTACHMENT J-10 DE-EM0002043, Mod 048 Occupational Medical Services at Hanford J-10-2 Occupational Medical Services Contract Fiscal Year (FY) 2017 - October 1, 2016 through September 30, 2017 Performance Evaluation and Measurement Plan (PEMP) Table of Contents 1.0

  7. Electroweak measurements at the Tevatron

    SciTech Connect (OSTI)

    Garcia, Jose E.; /INFN, Pisa

    2006-06-01

    Recent Electroweak measurements by the CDF and D0 collaborations in p{bar p} collisions {radical}s = 1.96 TeV are presented here. Measurements of W, Z and diboson production cross sections as well as W asymmetry using integrated luminosities up to 800 pb{sup -1} are reviewed. Limits on triple gauge anomalous couplings on diboson production are discussed elsewhere.

  8. Measurement & Verification with Green Button Data | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement & Verification with Green Button Data Measurement & Verification with Green ... Measurement and verification (M&V) focuses on ensuring that the savings from energy ...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combination of Temperature and Humidity Profiles from a Scanning 5-mm Radiometer and MWR-Scaled Radiosondes During the 1999 Winter NSA/AAO Radiometer Experiment Westwater, E.R.(a), Leuski, V.(a), and Racette, P.(b), CIRES, University of Colorado/NOAA-ETL (a), NASA/ Goddard Space Flight Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A scanning 5-mm-wavelength radiometer was deployed during an Intensive Operating Periods (IOP) at the Atmospheric Radiation

  10. ARM - Blog Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2015 [Blog, Field Notes, SGP] Calibration Season Begins Bookmark and Share Editor's Note: Craig Webb, calibration technician at the Southern Great Plains site, sent this update. A view of a collection of radiometers taken from the now closed Tropical Western Pacific facility. A view of a collection of radiometers taken from the now closed Tropical Western Pacific facility. The ARM Climate Research Facility requires accurate measurements of solar radiation from radiometers used in ground-based

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 31, 2007 [Facility News] Radiometers Operate in Low Water Vapor Conditions in Barrow, Alaska Bookmark and Share A researcher checks the GVR antennae on a cold, crisp day at the ARM site in Barrow, Alaska. The radiometer is inside the insulated box beneath the antenna; the data is collected and displayed on the computer inside the instrument shelter. To provide more accurate ground-based measurements of water vapor in extremely arid environments, three types of 183.3-GHz radiometers

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multifilter Radiometer Added to Cessna Payload Bookmark and Share Back at the hangar in Ponca City, a multifilter radiometer is positioned inside the Cessna's new starboard wingtip extension. Downward-facing multifilter radiometers (MFR) are instruments used to measure the intensity and distribution of reflected energy from different surfaces, such as grass or dirt. The relative amount of reflected energy-also called "surface spectral albedo"-is important for determining the amount of

  13. liljegren(1)-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automatic Self-Calibration of ARM Microwave Radiometers J. C. Liljegren Ames Laboratory Ames, Iowa Introduction The Atmospheric Radiation Measurement (ARM) Program has deployed continuously operating Microwave Radiometers in remote locations including rural Oklahoma, islands in the tropical Pacific Ocean, and in northern Alaska. In order to assure that their calibrations are properly maintained, algorithms that permit the radiometer calibrations to be automatically and continuously updated have

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Results of the Radiometer Cleaning Study IOP Stoffel, T.L. and Gotseff, P.A., National Renewable Energy Laboratory Our goal for this study was to determine any measurable effects of the present maintenance schedule for broadband shortwave and longwave radiometers on the quality of irradiance data. Results of our prelimnary analyses are based on data collected since April 7, 2003 to February 1, 2004 by the Radiometer Characterization System at the SGP/Guest Instrument Facility. During

  15. Aerial Measuring System in Japan

    SciTech Connect (OSTI)

    Lyons, C., Colton, D. P.

    2012-05-01

    The U.S. Department of Energy National Nuclear Security Agencys Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring Systems mission beyond the borders of the US.

  16. TIME-INTERVAL MEASURING DEVICE

    DOE Patents [OSTI]

    Gross, J.E.

    1958-04-15

    An electronic device for measuring the time interval between two control pulses is presented. The device incorporates part of a previous approach for time measurement, in that pulses from a constant-frequency oscillator are counted during the interval between the control pulses. To reduce the possible error in counting caused by the operation of the counter gating circuit at various points in the pulse cycle, the described device provides means for successively delaying the pulses for a fraction of the pulse period so that a final delay of one period is obtained and means for counting the pulses before and after each stage of delay during the time interval whereby a plurality of totals is obtained which may be averaged and multplied by the pulse period to obtain an accurate time- Interval measurement.

  17. Measuring mine roof bolt strains

    SciTech Connect (OSTI)

    Steblay, B.J.

    1986-07-22

    A method is described of measuring the strain in mine roof bolts comprising the steps of: machining a flat portion on the head of the bolt before loading; drilling a reflector hole radially through the diameter of the bolt at a predetermined distance from the bolt head before loading, the ratio of the diameter of the hole to the diameter of the bolt being less than 0.10 to prevent weakening of the loaded bolt; generating an ultrasonic pulse at the flat portion after loading; measuring the time of travel of the ultrasonic pulse reflected from the hole, which increases as the bolt is loaded; and correlating the time measurement of the strain in the bolt.

  18. In-situ measurement system

    DOE Patents [OSTI]

    Lord, David E.

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  19. Field Calibration Facilities for Environmental Measurement of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and ... Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and ...

  20. Acoustic Building Infiltration Measurement System (ABIMS)

    Broader source: Energy.gov [DOE]

    The Acoustic Building Infilitration Measurement System project is developing an acoustic method of measuring the infiltration of a building envelope.