Powered by Deep Web Technologies
Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Method and apparatus for in-cell vacuuming of radiologically contaminated materials  

DOE Patents [OSTI]

A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.

Spadaro, Peter R. (Pittsburgh, PA); Smith, Jay E. (Pittsburgh, PA); Speer, Elmer L. (Ruffsdale, PA); Cecconi, Arnold L. (Clairton, PA)

1987-01-01T23:59:59.000Z

2

Understanding Mechanisms of Radiological Contamination  

SciTech Connect (OSTI)

Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

Rick Demmer; John Drake; Ryan James, PhD

2014-03-01T23:59:59.000Z

3

Understanding Contamination; Twenty Years of Simulating Radiological Contamination  

SciTech Connect (OSTI)

A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

Emily Snyder; John Drake; Ryan James

2012-02-01T23:59:59.000Z

4

How to deal with radiologically contaminated vegetation  

SciTech Connect (OSTI)

This report describes the findings from a literature review conducted as part of a Department of Energy, Office of Technology Development Biomass Remediation Task. The principal objective of this project is to develop a process or group of processes to treat radiologically contaminated vegetation in a manner that minimizes handling, processing, and treatment costs. Contaminated, woody vegetation growing on waste sites at SRS poses a problem to waste site closure technologies that are being considered for these sites. It is feared that large sections of woody vegetation (logs) can not be buried in waste sites where isolation of waste is accomplished by capping the site. Logs or large piles of woody debris have the potential of decaying and leaving voids under the cap. This could lead to cap failure and entrance of water into the waste. Large solid objects could also interfere with treatments like in situ mixing of soil with grout or other materials to encapsulate the contaminated sediments and soils in the waste sites. Optimal disposal of the wood includes considerations of volume reduction, treatment of the radioactive residue resulting from volume reduction, or confinement without volume reduction. Volume reduction consists primarily of removing the carbon, oxygen, and hydrogen in the wood, leaving an ash that would contain most of the contamination. The only contaminant that would be released by volume reduction would by small amounts of the radioactive isotope of hydrogen, tritium. The following sections will describe the waste sites at SRS which contain contaminated vegetation and are potential candidates for the technology developed under this proposal. The description will provide a context for the magnitude of the problem and the logistics of the alternative solutions that are evaluated later in the review. 76 refs.

Wilde, E.W.; Murphy, C.E.; Lamar, R.T.; Larson, M.J.

1996-12-31T23:59:59.000Z

5

Fixation of Radiological Contamination; International Collaborative Development  

SciTech Connect (OSTI)

A cooperative international project was conducted by the Idaho National Laboratory (INL) and the United Kingdom’s National Nuclear Laboratory (NNL) to integrate a capture coating with a high performance atomizing process. The initial results were promising, and lead to further trials. The somewhat longer testing and optimization process has resulted in a product that could be demonstrated in the field to reduce airborne radiological dust and contamination.

Rick Demmer

2013-03-01T23:59:59.000Z

6

Radiological hazards of alpha-contaminated waste  

SciTech Connect (OSTI)

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

7

Management of Transuranic Contaminated Material  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

1982-09-30T23:59:59.000Z

8

Basic radiological studies contamination control experiments  

SciTech Connect (OSTI)

This report describes the results of experiments relating to contamination control performed in support of the Environmental Restoration Programs Retrieval Project. During the years 1950 to 1970 waste contaminated with plutonium and other transuranic radionuclides was disposed of in shallow land-filled pits and trenches at the Idaho National Engineering Laboratory. Due to potential for migration of radionuclides to an existing aquifer the feasibility of retrieving and repackaging the waste for placement in a final repository is being examined as part of a retrieval project. Contamination control experiments were conducted to determine expected respirable and nonrespirable plutonium contaminated dust fractions and the effectiveness of various dust suppression techniques. Three soil types were tested to determine respirable fractions: Rocky Flats Plant generic soil, Radioactive Waste Management Complex generic soil, and a 1:1 blend of the two soil types. Overall, the average respirable fraction of airborne dust was 5.4% by weight. Three contamination control techniques were studied: soil fixative sprays, misting agents, and dust suppression agents. All of the tested agents proved to be effective in reducing dust in the air. Details of product performance and recommended usage are discussed.

Duce, S.W.; Winberg, M.R.; Freeman, A.L.

1989-09-01T23:59:59.000Z

9

GTRI's Nuclear and Radiological Material Removal | National Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and permanently disposing of excess, disused, unwanted, or abandoned radiological material overseas. This includes the recovery of Russian radioisotope thermoelectric...

10

Estimating the exposure to first receivers from a contaminated victim of a radiological dispersal device detonation  

E-Print Network [OSTI]

The threat of a Radiological Dispersal Device (RDD) detonation arouses the concern of contaminated victims of all ages. The purpose of this study was to investigate the dose to a uniformly contaminated five-year old male. It also explores...

Phillips, Holly Anne

2009-05-15T23:59:59.000Z

11

RCUT: A Non-Invasive Method for Detection, Location, and Quantification of Radiological Contaminants in Pipes and Ducts - 12514  

SciTech Connect (OSTI)

Radiological Characterization Using Tracers (RCUT) is a minimally invasive method for detection and location of residual radiological contamination in pipes and ducts. The RCUT technology utilizes reactive gaseous tracers that dissociate when exposed to gamma and/or beta radiation emitting from a radiological contaminant in a pipe or duct. Sulfur hexafluoride (SF{sub 6}) was selected as a tracer for this radiological application, because it is a chemically inert gas that is both nonflammable, nontoxic, and breaks down when exposed to gamma radiation. Laboratory tests demonstrated that the tracer pair of SF{sub 6} and O{sub 2} formed SO{sub 2}F{sub 2} when exposed to a gamma or beta radioactive field, which indicated the presence of radiological contamination. Field application of RCUT involves first injecting the reactive tracers into the pipe to fill the pipe being inspected and allowing sufficient time for the tracer to interact with any contaminants present. This is followed by the injection of an inert gas at one end of the pipe to push the reactive tracer at a known or constant flow velocity along the pipe and then out the exit and sampling port at the end of the pipeline where its concentration is measured by a gas chromatograph. If a radiological contaminant is present in the pipe being tested, the presence of SO{sub 2}F{sub 2} will be detected. The time of arrival of the SO{sub 2}F{sub 2} can be used to locate the contaminant. If the pipe is free of radiological contamination, no SO{sub 2}F{sub 2} will be detected. RCUT and PCUT are both effective technologies that can be used to detect contamination within pipelines without the need for mechanical or human inspection. These methods can be used to detect, locate, and/or estimate the volume of a variety of radioactive materials and hazardous chemicals such as chlorinated solvents, petroleum products, and heavy metals. While further optimization is needed for RCUT, the key first step of identification of a tracer compound appropriate for the application of detecting radioactive pipeline contamination through the detection of decomposition products of SF{sub 6} has been demonstrated. Other tracer gases that will also undergo radiolysis will be considered in the future. The next step for the RCUT development process is conducting laboratory scale tests using short pipelines to define analytical requirements, establish performance boundaries, and develop strategies for lower exposure levels. Studies to identify additional analytical techniques using equipment that is more field rugged than a GC/MS would also be beneficial. (authors)

Bratton, Wesley L.; Maresca, Joseph W. Jr.; Beck, Deborah A. [Vista Engineering Technologies, L.L.C., Richland, WA, 99352 (United States)

2012-07-01T23:59:59.000Z

12

Health care facility-based decontamination of victims exposed to chemical, biological, and radiological materials  

E-Print Network [OSTI]

contaminants, and management of contaminated materials andmanagement, triage, surveillance, decontamination procedures and materials,from the body, and management of contaminated materials and

Koenig, Kristi L MD

2008-01-01T23:59:59.000Z

13

Evaluation of soil washing for radiologically contaminated soils  

SciTech Connect (OSTI)

Soil washing has been applied internationally to decontaminate soils due to the widespread increase in environmental awareness manifested in the United States by promulgation of the Comprehensive Environmental Response, Compensation and Liability Act, yet we continue to lack understanding on why the technique works in one application and not in another. A soil washing process typically integrates a variety of modules, each designed to decontaminate the matrix by destroying a particular phase or segregating a particle size fraction in which the contaminants are concentrated. The more known about how the contaminants are fixed, the more likely the process will succeed. Much can be learned from bioavailability studies on heavy metals in soils. Sequential extraction experiments designed to destroy one fixation mechanism at a time can be used to determine how contaminants are bound. This knowledge provides a technical basis for designing a processing strategy to efficiently decontaminate soil while creating a minimum of secondary wastes. In this study, a soil from the Idaho National Engineering Laboratory was physically and chemically characterized, then sequentially extracted to determine if soil washing could be effectively used to remove cesium, cobalt and chromium.

Gombert, D. II

1994-03-01T23:59:59.000Z

14

Treatment options for low-level radiologically contaminated ORNL filtercake  

SciTech Connect (OSTI)

Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithic waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.

Lee, Hom-Ti [Oak Ridge Associated Universities, Inc., TN (United States); Bostick, W.D. [Oak Ridge K-25 Site, TN (United States)

1996-04-01T23:59:59.000Z

15

Methods for removing contaminant matter from a porous material  

DOE Patents [OSTI]

Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

Fox, Robert V. (Idaho Falls, ID) [Idaho Falls, ID; Avci, Recep (Bozeman, MT) [Bozeman, MT; Groenewold, Gary S. (Idaho Falls, ID) [Idaho Falls, ID

2010-11-16T23:59:59.000Z

16

Guidance for use of Radiology Devices and Radioactive Materials in Research Protocols  

E-Print Network [OSTI]

Guidance for use of Radiology Devices and Radioactive Materials in Research Protocols Definition preparation, handling, storage, administration, and waste disposal in sufficient detail to permit a radiological hazards evaluation of the proposal, including potential for radiation dose to other health care

Puglisi, Joseph

17

Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction  

SciTech Connect (OSTI)

Disclosed is a method for separating a vaporous or gaseous contaminant from an air stream contaminated therewith. This method includes the steps of: (a) passing said contaminated air into a contact zone in which is disposed an aerogel material capable of selecting adsorbing said contaminant from air and therein contacting said contaminated air with an aerogel material; and (b) withdrawing from said zone, air depleted of said contaminant. For present purposes, "contaminant" means a material not naturally occurring in ambient air and/or a material naturally occurring in air but present at a concentration above that found in ambient air. Thus, the present invention scrubs (or treats) air for the purpose of returning it to its ambient composition. Also disclosed herein is a process for the photocatalytic destruction of contaminants from an air stream wherein the contaminated air stream is passed into a control cell or contact zone in which is disposed a photocatalytic aerogel and exposing said aerogel to ultraviolet (UV) radiation for photocatalytically destroying the adsorbed contaminant, and withdrawing from said cell an exhaust air stream depleted in said contaminant.

Attia, Yosry A. (221 Oakland Park Ave., Columbus, OH 43214)

2000-01-01T23:59:59.000Z

18

The inspection of a radiologically contaminated pipeline using a teleoperated pipe crawler  

SciTech Connect (OSTI)

In the 1950s, the Savannah River Site built an open, unlined retention basin to temporarily store potentially radionuclide contaminated cooling water from a chemical separations process and storm water drainage from a nearby waste management facility that stored large quantities of nuclear fission byproducts in carbon steel tanks. The retention basin was retired from service in 1972 when a new, lined basin was completed. In 1978, the old retention basin was excavated, backfilled with uncontaminated dirt, and covered with grass. At the same time, much of the underground process pipeline leading to the basin was abandoned. Since the closure of the retention basin, new environmental regulations require that the basin undergo further assessment to determine whether additional remediation is required. A visual and radiological inspection of the pipeline was necessary to aid in the remediation decision making process for the retention basin system. A teleoperated pipe crawler inspection system was developed to survey the abandoned sections of underground pipelines leading to the retired retention basin. This paper will describe the background to this project, the scope of the investigation, the equipment requirements, and the results of the pipeline inspection.

Fogle, R.F.; Kuelske, K.; Kellner, R.A.

1995-08-01T23:59:59.000Z

19

Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment  

SciTech Connect (OSTI)

Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

1995-07-01T23:59:59.000Z

20

Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry  

SciTech Connect (OSTI)

The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility.

Foltman, A.; Newsom, D.; Lerner, K.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project  

SciTech Connect (OSTI)

This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

Reynolds, T. D.; Easterling, S. D.

2010-10-01T23:59:59.000Z

22

Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

1994-03-01T23:59:59.000Z

23

Method for removing hydrocarbon contaminants from solid materials  

DOE Patents [OSTI]

A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

24

Apparatus for removing hydrocarbon contaminants from solid materials  

DOE Patents [OSTI]

A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

25

Apparatus for removing hydrocarbon contaminants from solid materials  

DOE Patents [OSTI]

A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

Bala, G.A.; Thomas, C.P.

1996-02-13T23:59:59.000Z

26

Method for removing hydrocarbon contaminants from solid materials  

DOE Patents [OSTI]

A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

Bala, G.A.; Thomas, C.P.

1995-10-03T23:59:59.000Z

27

Testing for characterization of the materials from radiological point of view  

SciTech Connect (OSTI)

The nuclear techniques and materials are now used in a large number of applications, both in medicine and industry. Due to this fact, new materials are needed in order to assure the radiological protection of the personnel involved in these activities. But, finally, all these materials have to be tested for some specific parameters, in order to prove that they are adequate for the purposed for which they were created. One of the important parameters of the materials used for the radiological protection is the attenuation coefficient. The attenuation coefficient of the ionizing radiation composed by particles without electrical charge (X,?-ray and neutron) is the most important parameter for the materials used for the shielding of these ionizing radiation. This paper deals with the experimental methods developed for the determination of the attenuation of fast and thermal neutrons. These experimental methods, involved the use of Am-Be source and U-120 Cyclotron of IFIN-HH. For the tests which were done at the U-120 Cyclotron, a number of experiments had to be performed, in order to establish the irradiation geometry and the dose equivalent rates in front of and behind the material samples. The experimental results obtained for samples of several materials, confirmed the methods as adequate for the aim of the test.

Bercea, Sorin; Iliescu, Elena; Dudu, Dorin; Iancso, Georgeta [National Institute of R and D for Physics and Nuclear Engineering-Horia Hulubei , Reactorului 30 St, P.O.BOX MG-6,Magurele, cod 077125 (Romania)

2013-12-16T23:59:59.000Z

28

Effects of surfactants on the desorption of organic contaminants from aquifer materials. Doctoral thesis  

SciTech Connect (OSTI)

The efficiency of removing organic contaminants from groundwater aquifers by the pump and treat process is adversely affected by the retardation of the contaminant's mobility due to adsorption onto aquifer material. The use of surfactants in conjunction with the pump and treat process has the potential for improving contaminant mobility by solubilizing the adsorbed contaminant.

Brickell, J.L.

1989-08-01T23:59:59.000Z

29

Radiological Modeling for Determination of Derived Concentration Levels of an Area with Uranium Residual Material - 13533  

SciTech Connect (OSTI)

As a result of a pilot project developed at the old Spanish 'Junta de Energia Nuclear' to extract uranium from ores, tailings materials were generated. Most of these residual materials were sent back to different uranium mines, but a small amount of it was mixed with conventional building materials and deposited near the old plant until the surrounding ground was flattened. The affected land is included in an area under institutional control and used as recreational area. At the time of processing, uranium isotopes were separated but other radionuclides of the uranium decay series as Th-230, Ra-226 and daughters remain in the residue. Recently, the analyses of samples taken at different ground's depths confirmed their presence. This paper presents the methodology used to calculate the derived concentration level to ensure that the reference dose level of 0.1 mSv y-1 used as radiological criteria. In this study, a radiological impact assessment was performed modeling the area as recreational scenario. The modelization study was carried out with the code RESRAD considering as exposure pathways, external irradiation, inadvertent ingestion of soil, inhalation of resuspended particles, and inhalation of radon (Rn-222). As result was concluded that, if the concentration of Ra-226 in the first 15 cm of soil is lower than, 0.34 Bq g{sup -1}, the dose would not exceed the reference dose. Applying this value as a derived concentration level and comparing with the results of measurements on the ground, some areas with a concentration of activity slightly higher than latter were found. In these zones the remediation proposal has been to cover with a layer of 15 cm of clean material. This action represents a reduction of 85% of the dose and ensures compliance with the reference dose. (authors)

Perez-Sanchez, Danyl [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)] [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)

2013-07-01T23:59:59.000Z

30

MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT  

SciTech Connect (OSTI)

Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

M.A. Ebadian, Ph.D.

2001-01-01T23:59:59.000Z

31

RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)  

SciTech Connect (OSTI)

The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

MINETTE, M.J.

2007-05-30T23:59:59.000Z

32

Radiological Control Manual  

SciTech Connect (OSTI)

This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

Not Available

1993-04-01T23:59:59.000Z

33

Electrokinetic removal of charged contaminant species from soil and other media using moderately conductive adsorptive materials  

DOE Patents [OSTI]

Method for collecting and concentrating charged species, specifically, contaminant species in a medium, preferably soil. The method utilizes electrokinesis to drive contaminant species into and through a bed adjacent to a drive electrode. The bed comprises a moderately electrically conductive adsorbent material which is porous and is infused with water or other solvent capable of conducting electrical current. The bed material, preferably activated carbon, is easily removed and disposed of. Preferably, where activated carbon is used, after contaminant species are collected and concentrated, the mixture of activated carbon and contaminant species is removed and burned to form a stable and easily disposable waste product.

Lindgren, Eric R. (Albuquerque, NM); Mattson, Earl D. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

34

Power-law distributions in events involving nuclear and radiological materials  

E-Print Network [OSTI]

Nuclear and radiological events are large-impact, hard-to-predict rare events, whose associated probability is exceedingly low. They can exert monumental impacts and lead to grave environmental and economic consequences. ...

Chow, Jijun

2009-01-01T23:59:59.000Z

35

Admixture enhanced controlled low-strength material for direct underwater injection with minimal cross-contamination  

SciTech Connect (OSTI)

Commercially available admixtures have been developed for placing traditional concrete products under water. This paper evaluates adapting anti-washout admixture (AWA) and high range water reducing admixture (HRWRA) products to enhance controlled low-strength materials (CLSMs) for underwater placement. A simple experimental scale model (based on dynamic and geometric similitude) of typical grout pump emplacement equipment has been developed to determine the percentage of cementing material washed out. The objective of this study was to identify proportions of admixtures and underwater CLSM emplacement procedures which would minimize the cross-contamination of the displaced water while maintaining the advantages of CLSM. Since the displaced water from radioactively contaminated systems must be subsequently treated prior to release to the environment, the amount of cross-contamination is important for cases in which cementing material could form hard sludges in a water treatment facility and contaminate the in-place CLSM stabilization medium.

Hepworth, H.K.; Davidson, J.S.; Hooyman, J.L.

1997-03-01T23:59:59.000Z

36

REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION  

SciTech Connect (OSTI)

Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field using gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.

XU, X. George; Zhang, X.C.

2002-05-10T23:59:59.000Z

37

Portable XRF and wet materials: application to dredged contaminated sediments1 from waterways2  

E-Print Network [OSTI]

1 Portable XRF and wet materials: application to dredged contaminated sediments1 from waterways2 of the main pollutants to facilitate their safe reuse or treatment. Portable X-ray fluorescence (pXRF) is9 operations and produces sample pellets with 30 to 50% water contents. The relationship between17 pXRF

Paris-Sud XI, Université de

38

radiological | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

radiological radiological Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate...

39

Modeling for Airborne Contamination  

SciTech Connect (OSTI)

The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift walls. The gamma-ray scattering properties of concrete are sufficiently similar to those of the host rock and proposed insert material; use of concrete will have no significant impact on the conclusions. The information in this report is presented primarily for use in performing pre-closure radiological safety evaluations of radiological contaminants, but it may also be used to develop strategies for contaminant leak detection and monitoring in the MGR. Included in this report are the methods for determining the source terms and release fractions, and mathematical models and model parameters for contaminant transport and distribution within the repository. Various particle behavior mechanisms that affect the transport of contaminant are included. These particle behavior mechanisms include diffusion, settling, resuspension, agglomeration and other deposition mechanisms.

F.R. Faillace; Y. Yuan

2000-08-31T23:59:59.000Z

40

A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers  

SciTech Connect (OSTI)

This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436  

SciTech Connect (OSTI)

Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)] [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Meira Castro, Ana Cristina [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)] [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)

2013-07-01T23:59:59.000Z

42

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David Frederick

2012-02-01T23:59:59.000Z

43

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike Lewis

2014-02-01T23:59:59.000Z

44

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David B. Frederick

2011-02-01T23:59:59.000Z

45

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike lewis

2013-02-01T23:59:59.000Z

46

Volatile tritiated organic acids in stack effluents and in air surrounding contaminated materials  

SciTech Connect (OSTI)

A small fraction of the tritium released into the atmosphere from tritium-handling or solid waste storage facilities was shown to be in the form of volatile organic acids. The same compounds were also found, but at a much higher proportion, in the tritium evolved at room temperature from highly contaminated materials placed under air atmospheres. This might be due to the oxidation and labeling of hydrocarbon(s) by mechanisms that are presumably of a radiolytic nature. The new forms could have an impact on operational requirements and waste management strategies within a tritium facility and a fusion reactor hall. Further data are needed to assess the related doses.

Belot, Y.; Camus, H.; Marini, T.; Raviart, S. (Institut de Protection et de Surete Nucleaire (France))

1993-06-01T23:59:59.000Z

47

Estimation of Internal Radiation Dose from both Immediate Releases and Continued Exposures to Contaminated Materials  

SciTech Connect (OSTI)

A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, is discussed based upon a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from the damaged reactors and also to the management of wastes that may be generated in both regional cleanup and NPP decommissioning.

Napier, Bruce A.

2012-03-26T23:59:59.000Z

48

Nevada National Security Site Radiological Control Manual  

SciTech Connect (OSTI)

This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

Radiological Control Managers’ Council

2012-03-26T23:59:59.000Z

49

Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if contaminants of concern are present. (5) If contaminants of concern are present, collect additional step-out samples to define the extent of the contamination. (6) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection, and field work will commence following approval.

David Strand

2006-06-01T23:59:59.000Z

50

Radiological Control Manual. Revision 0, January 1993  

SciTech Connect (OSTI)

This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

Not Available

1993-04-01T23:59:59.000Z

51

Laboratory to demolish excavation enclosures at Material Disposal Area B  

E-Print Network [OSTI]

to hazardous and radiological contamination while excavating and packaging contaminated debris and soil from of a highly successful environmental cleanup project at Material Disposal Area B," said Ed Worth, federal project manager #12;- 2 - with the National Nuclear Security Administration's Los Alamos Site Office. "We

52

EMSL - radiological  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

radiological en Diffusional Motion of Redox Centers in Carbonate Electrolytes . http:www.emsl.pnl.govemslwebpublicationsdiffusional-motion-redox-centers-carbonate-electrolytes...

53

Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as LLW, and accumulators, gas cylinders, and associated debris were removed and are currently pending treatment and disposal as MW. (3) At CAS 05-19-02, Contaminated Soil and Drum, as a BMP, an empty drum was removed and disposed as sanitary waste. (4) At CAS 18-01-01, Aboveground Storage Tank, approximately 165 gal of lead-impacted liquid were removed and are currently pending disposal as HW, and approximately 10 gal of lead shot and 6 yd{sup 3} of wax embedded with lead shot were removed and are currently pending treatment and disposal as MW. As a BMP, approximately 0.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, approximately 55 gal of liquid were removed and disposed as sanitary waste, and two metal containers were grouted in place. (5) At CAS 18-99-03, Wax Piles/Oil Stain, no further action was required; however, as a BMP, approximately l.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, and one metal container was grouted in place.

NSTec Environmental Restoration

2009-08-01T23:59:59.000Z

54

Bottled drinking water: water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification  

E-Print Network [OSTI]

Bottled drinking water: water contamination from bottle materials (glass, hard PET, soft PET in glass at pH 3.5). None of the leachates approaches the maximum concentrations for drinking water- QMS) in 294 samples of the same bottled water (predominantly mineral water) sold in the European Union

Filzmoser, Peter

55

A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 1  

SciTech Connect (OSTI)

This report presents a comprehensive inventory of the radiological and nonradiological contaminants in waste buried or projected to be buried from 1984 through 2003 in the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. The project to compile the inventory is referred to as the recent and projected data task. The inventory was compiled primarily for use in a baseline risk assessment under the Comprehensive Environmental Response, Compensation, and Liability Act. The compiled information may also be useful for environmental remediation activities that might be necessary at the RWMC. The information that was compiled has been entered into a database termed CIDRA-the Contaminant Inventory Database for Risk Assessment. The inventory information was organized according to waste generator and divided into waste streams for each generator. The inventory is based on waste information that was available in facility operating records, technical and programmatic reports, shipping records, and waste generator forecasts. Additional information was obtained by reviewing the plant operations that originally generated the waste, by interviewing personnel formerly employed as operators, and by performing nuclear physics and engineering calculations. In addition to contaminant inventories, information was compiled on the physical and chemical characteristics and the packaging of the 99 waste streams. The inventory information for waste projected to be buried at the SDA in the future was obtained from waste generator forecasts. The completeness of the contaminant inventories was confirmed by comparing them against inventories in previous reports and in other databases, and against the list of contaminants detected in environmental monitoring performed at the RWMC.

NONE

1995-05-01T23:59:59.000Z

56

EA-1599: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications  

Broader source: Energy.gov [DOE]

This EA was being prepared to evaluate potential environmental impacts of a proposal to dispose of nickel scrap that is volumetrically contaminated with radioactive materials and that DOE recovered from equipment it had used in uranium enrichment. This EA is on hold.

57

Radiological Survey of Contaminated Installations of Research Reactor before Dismantling in High Dose Conditions with Complex for Remote Measurements of Radioactivity - 12069  

SciTech Connect (OSTI)

Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. These research reactors have a long history and many installations - nine loop facilities for experiments with different kinds of fuel. When decommissioning nuclear facilities it is necessary to measure the distribution of radioactive contamination in the rooms and at the equipment at high levels of background radiation. At 'Kurchatov Institute' some special remote control measuring systems were developed and they are applied during dismantling of the reactors MR and RFT. For a survey of high-level objects a radiometric system mounted on the robotic Brokk vehicle is used. This system has two (4? and collimated) dose meters and a high resolution video camera. Maximum measured dose rate for this system is ?8.5 Sv/h. To determine the composition of contaminants, a portable spectrometric system is used. It is a remotely controlled, collimated detector for scanning the distribution of radioactive contamination. To obtain a detailed distribution of contamination a remote-controlled gamma camera is applied. For work at highly contaminated premises with non-uniform background radiation, another camera is equipped with rotating coded mask (coded aperture imaging). As a result, a new system of instruments for remote radioactivity measurements with wide range of sensitivity and angular resolution was developed. The experience and results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. These activities are conducted under the Federal Program for Nuclear and Radiation Safety of Russia. Adaptation of complex remote measurements of radioactivity and survey of contaminated installations of research reactor before dismantling in high dose conditions has proven successful. The radioactivity measuring devices for operation at high, non-uniform dose background were tested in the field and a new data of measurement of contamination distribution in the premises and installations were obtained. (authors)

Danilovich, Alexey; Ivanov, Oleg; Lemus, Alexey; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly [National Research Centre 'Kurchatov Institute', Moscow (Russian Federation)

2012-07-01T23:59:59.000Z

58

Versatile, automated sample preparation and detection of contaminants and biological materials  

E-Print Network [OSTI]

Contamination of food, water, medicine and ingestible household products is a public health hazard that episodically causes outbreaks worldwide. Existing laboratory methods are often expensive, require a laboratory environment ...

Hoehl, Melanie Margarete

2013-01-01T23:59:59.000Z

59

Radiological safety training for uranium facilities  

SciTech Connect (OSTI)

This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

NONE

1998-02-01T23:59:59.000Z

60

Radiological Assistance Program, DOE Region 6 response plan  

SciTech Connect (OSTI)

This program plan meets all the requirements identified in DOE Order 5530.3, Radiological Assistance Program and supports those requirements leading to the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC) as required by DOE 5530-5. Requests for radiological assistance may come from other DOE facilities, Federal or state agencies, tribal officials, or from any private corporation or individual. Many of the requests will be handled by a telephone call, a conference or a letter, teletype or memorandum. Other requests for assistance may involve radioactive material in serious accidents, fire, personal injuries, contamination or possible hazards to the general public. Some occurrences may require the dispatch of trained personnel equipped with radiation monitoring instruments and related equipment necessary to evaluate, control and neutralize the hazard. The primary responsibility for incidents involving radioactive material always remains with the party having custody of the radioactive materials. In addition, the DOE recognizes that the assistance provided shall not in any way preempt state, tribal, or local authority and/or responsibility on state or tribal properties. Toward this end, DOE assistance for non-DOE radioactive materials, is limited to technical assistance, advice, measurement and other resources as deemed necessary by the local authorities but excludes DOE interface with the public media. This is a function handled by the local or state Incident Commander.

Jakubowski, F.M.

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Contained radiological analytical chemistry module  

DOE Patents [OSTI]

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1989-01-01T23:59:59.000Z

62

Contained radiological analytical chemistry module  

DOE Patents [OSTI]

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1990-01-01T23:59:59.000Z

63

Radiological re-survey results at 130 West Central Avenue, Maywood, New Jersey (MJ029)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from 1916 to 1959. During the early years of operation, MCW stored wastes and residues in low-lying areas west of the processing facilities and consequently some of the residuals containing radioactive materials migrated offsite to the surrounding area. Subsequently, the U.S. Department of Energy (DOE), designated for remedial action the old MCW property and several vicinity properties. Additionally, in 1984, the property at 130 West Central Ave., Maywood, New Jersey and properties in its vicinity were included as a decontamination research and development project under the DOE Formerly Utilized Sites Remedial Action Program. In 1987 and 1988, at the request of DOE, ORNL conducted a radiological survey on this property. A second radiological survey by ORNL was conducted on this property in May, 1993 at the request of DOE after an ad hoc radiological survey, requested by a new property owner and conducted by Bechtel National, Inc. (BNI), identified some contamination not previously found by ORNL. The purpose of the survey was to determine if residuals from the old MCW were present on the property, and if so, if any radiological elements present were above guidelines. A certified civil survey was requisitioned by ORNL to determine actual property boundaries before beginning the radiological survey. The radiological re-survey included a surface gamma scan and the collection of a large number of soil samples for radionuclide analyses.

Murray, M.E.; Johnson, C.A.

1994-01-01T23:59:59.000Z

64

Paint for detection of radiological or chemical agents  

DOE Patents [OSTI]

A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

Farmer, Joseph C. (Tracy, CA); Brunk, James L. (Martinez, CA); Day, Sumner Daniel (Danville, CA)

2010-08-24T23:59:59.000Z

65

Women in pediatric radiology  

E-Print Network [OSTI]

AM et al. (2001) Pediatric radiology at the millennium.a case study of pediatric radiology. J Am Coll Radiol 6:635–WORKPLACE Women in pediatric radiology M. Ines Boechat # The

Boechat, M. Ines

2010-01-01T23:59:59.000Z

66

Possibility of Contamination of Subcontractor-Owned Materials and Equipment UT-B Contracts Div Page 1 of 1  

E-Print Network [OSTI]

establish appropriate surface contamination limits for the non- Company radioactive contaminants. (c to decontaminate rejected equipment on the site. Any decontamination to remove non-Company radioactive contaminants wastes generated as a result of decontamination to remove non-Company radioactive contaminants. Neither

Pennycook, Steve

67

Radiological Worker Training - Radiological Contamination Control for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.F 1325.8CHANGENOT NOT8 DecemberB

68

NV/YMP radiological control manual, Revision 2  

SciTech Connect (OSTI)

The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste and the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.

Gile, A.L. [comp.] [comp.

1996-11-01T23:59:59.000Z

69

Corrective Action Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 166, Storage Yards and Contaminated Materials, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 166 consists of seven Corrective Action Sites (CASs) located in Areas 2, 3, 5, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada (Figure 1). CAU 166 consists of the following CASs: (1) CAS 02-42-01, Cond. Release Storage Yd - North; (2) CAS 02-42-02, Cond. Release Storage Yd - South; (3) CAS 02-99-10, D-38 Storage Area; (4) CAS 03-42-01, Conditional Release Storage Yard; (5) CAS 05-19-02, Contaminated Soil and Drum; (6) CAS 18-01-01, Aboveground Storage Tank; and (7) CAS 18-99-03, Wax Piles/Oil Stain. Details of the site history and site characterization results for CAU 166 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007).

NSTec Environmental Restoration

2007-10-01T23:59:59.000Z

70

INL@Work Radiological Search & Response Training  

ScienceCinema (OSTI)

Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

Turnage, Jennifer

2013-05-28T23:59:59.000Z

71

Physics Division ESH Bulletin 2007-03 Radiological Survey Requirements  

E-Print Network [OSTI]

and found to contain no other radioactive material or contamination. The direct cause of this incident Area Airborne Radioactivity Area High Contamination Area Contamination Area Contamination Buffer Awareness Program (OAP) inspection, a small, unlabeled plastic bag that was emitting radioactivity

72

Estimation of Cosmic Induced Contamination in Ultra-low Background Detector Materials  

SciTech Connect (OSTI)

Executive Summary This document presents the result of investigating a way to reliably determine cosmic induced backgrounds for ultra-low background materials. In particular, it focuses on those radioisotopes produced by the interactions with cosmic ray particles in the detector materials that act as a background for experiments looking for neutrinoless double beta decay. This investigation is motivated by the desire to determine background contributions from cosmic ray activation of the electroformed copper that is being used in the construction of the MAJORANA DEMONSTRATOR. The most important radioisotope produced in copper that contributes to the background budget is 60Co, which has the potential to deposit energy in the region of interest of this experiment. Cobalt-60 is produced via cosmic ray neutron collisions in the copper. This investigation aims to provide a method for determining whether or not the copper has been exposed to cosmic radiation beyond the threshold which the Majorana Project has established as the maximum exposure. This threshold is set by the Project as the expected contribution of this source of background to the overall background budget. One way to estimate cosmic ray neutron exposure of materials on the surface of the Earth is to relate it to the cosmic ray muon exposure. Muons are minimum-ionizing particles and the available technologies to detect muons are easier to implement than those to detect neutrons. We present the results of using a portable, ruggedized muon detector, the µ-Witness made by our research group, for determination of muon exposure of materials for the MAJORANA DEMONSTRATOR. From the muon flux measurement, this report presents a method to estimate equivalent sea-level exposure, and then infer the neutron exposure of the tracked material and thus the cosmogenic activation of the copper. This report combines measurements of the muon flux taken by the µ-Witness detector with Geant4 simulations in order to assure our understanding of the µ-Witness prototype. As a proof of concept, we present the results of using this detector with electroformed copper during its transport from Pacific Northwest National Laboratory, where the copper is grown, to the underground lab in Lead, South Dakota, where the experiment is being deployed. The development of a code to be used with the Majorana parts tracking database, designed to aid in estimating the cosmogenic activation, is also presented.

Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Berguson, Timothy J.; Greene, Austen T.

2012-08-01T23:59:59.000Z

73

Radiological assessment and remedial action report for the ''Son of Lansdowne'' property, 186 North Lansdowne Avenue, Lansdowne, Pennsylvania  

SciTech Connect (OSTI)

This document reports the results of a radiological assessment and remedial action program conducted by Argonne National Laboratory personnel at a radioactively contaminated private residence in Lansdowne, Pennsylvania. The program was conducted on the residence at 186 Lansdowne Avenue. The survey conducted by the ANL personnel indicated that several dozen areas or spots of contamination were present on all floors and the basement of the three-story house. Contamination was found on furniture, carpeting, walls, floors, woodwork, and ceilings. Remedial action undertaken to remove the contamination ranged from scrubbing, to scraping, to shaving of wood, to removal and disposal of items and material that could not be adequately decontaminated. Outdoors, contaminated soil was removed from the backyard, and the driveway was dug up so the contaminated subsurface material could be removed. The remedial action generated quantities of radioactive waste, including four 55-gallon drums and one M-III bin (120 ft/sup 3/) containing floor tile, concrete, personal items, furniture, floor scrapings, vermiculite absorbed scrub water, and other items. In addition, there were 24 M-III bins containing approximately 112 tons of contaminated soil and rock from the two contaminated areas in the backyard and from the contaminated subsurface of the driveway. 2 refs., 39 figs., 12 tabs.

Smith, W.H.; Wynveen, R.A.

1987-08-01T23:59:59.000Z

74

Estimating radiological background using imaging spectroscopy  

SciTech Connect (OSTI)

Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

2014-06-13T23:59:59.000Z

75

GUIDANCE FOR THE PROPER CHARACTERIZATION AND CLASSIFICATION OF LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS FOR DISPOSAL  

SciTech Connect (OSTI)

Regulatory concerns over the proper characterization of certain waste streams led CH2M HILL Plateau Remediation Company (CHPRC) to develop written guidance for personnel involved in Decontamination & Decommissioning (D&D) activities, facility management and Waste Management Representatives (WMRs) involved in the designation of wastes for disposal on and off the Hanford Site. It is essential that these waste streams regularly encountered in D&D operations are properly designated, characterized and classified prior to shipment to a Treatment, Storage or Disposal Facility (TSDF). Shipments of waste determined by the classification process as Low Specific Activity (LSA) or Surface Contaminated Objects (SCO) must also be compliant with all applicable U.S. Department of Transportation (DOE) regulations as well as Department of Energy (DOE) orders. The compliant shipment of these waste commodities is critical to the Hanford Central Plateau cleanup mission. Due to previous problems and concerns from DOE assessments, CHPRC internal critiques as well as DOT, a management decision was made to develop written guidance and procedures to assist CHPRC shippers and facility personnel in the proper classification of D&D waste materials as either LSA or SCO. The guidance provides a uniform methodology for the collection and documentation required to effectively characterize, classify and identify candidate materials for shipping operations. A primary focus is to ensure that waste materials generated from D&D and facility operations are compliant with the DOT regulations when packaged for shipment. At times this can be difficult as the current DOT regulations relative to the shipment of LSA and SCO materials are often not clear to waste generators. Guidance is often sought from NUREG 1608/RAMREG-003 [3]: a guidance document that was jointly developed by the DOT and the Nuclear Regulatory Commission (NRC) and published in 1998. However, NUREG 1608 [3] is now thirteen years old and requires updating to comply with the newer DOT regulations. Similar challenges present themselves throughout the nuclear industry in both commercial and government operations and therefore, this is not only a Hanford Site problem. Shipping radioactive wastes as either LSA or SCO rather than repacking it is significantly cheaper than other DOT radioactive materials shipping classifications particularly when the cost of packages is included. Additionally, the need to 'repackage' materials for transport can often increase worker exposure, necessitated by 'repackaging' waste materials into DOT 7 A Type A containers.

PORTSMOUTH JH; BLACKFORD LT

2012-02-13T23:59:59.000Z

76

Researchers at Montana State University and Idaho National Lab have developed a process to effectively and efficiently clean natural and man-made porous material of radioactive contamination. The system eliminates  

E-Print Network [OSTI]

to effectively and efficiently clean natural and man-made porous material of radioactive contamination. The system eliminates the practice of full demolition and removal of contaminated objects and can address contaminated substrate. Thus, building walls (interior or exterior), floors and ceilings can be remediated

Maxwell, Bruce D.

77

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents & PublicationsReaffirmation August

78

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents & PublicationsReaffirmation August2 of

79

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents & PublicationsReaffirmation August2

80

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents & PublicationsReaffirmation

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents & PublicationsReaffirmation06-97

82

Radiological and Nuclear Security in A Global Context  

E-Print Network [OSTI]

This paper considers the state of nuclear and radiological security in the UK and abroad and reports on the methods that could be employed by terrorists with radiological or nuclear material to cause destruction. It is shown that despite current safeguards that problems arise due to materials that are unaccounted for and poor implementation of detection regimes in some geographical regions. The prospect of a future terrorist event that involves nuclear or radiological materials seems likely despite best efforts of prevention.

Jones, Nick

2010-01-01T23:59:59.000Z

83

International Data on Radiological Sources  

SciTech Connect (OSTI)

ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

Martha Finck; Margaret Goldberg

2010-07-01T23:59:59.000Z

84

Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site  

SciTech Connect (OSTI)

The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site.

Not Available

1993-10-01T23:59:59.000Z

85

Contaminant distributions at typical U.S. uranium milling facilities and their effect on remedial action decisions  

SciTech Connect (OSTI)

Past operations at uranium processing sites throughout the US have resulted in local contamination of soils and ground water by radionuclides, toxic metals, or both. Understanding the origin of contamination and how the constituents are distributed is a basic element for planning remedial action decisions. This report describes the radiological and nonradiological species found in ground water at a typical US uranium milling facility. The report will provide the audience with an understanding of the vast spectrum of contaminants that must be controlled in planning solutions to the long-term management of these waste materials.

Hamp, S. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Jackson, T.J. [Geraghty and Miller, Inc., Albuquerque, NM (United States); Dotson, P.W. [Roy F. Weston, Inc., Albuquerque, NM (United States)

1995-03-01T23:59:59.000Z

86

Radiological re-survey results at 146 West Central Avenue, Maywood, New Jersey (MJ034)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from 1916 to 1959. During the early years of operation, MCW stored wastes and residues in low-lying areas west of the processing facilities and consequently some of the residuals containing radioactive materials migrated offsite to the surrounding area. Subsequently, the U.S. Department of Energy (DOE) designated for remedial action the old MCW property and several vicinity properties. Additionally, in 1984, the property at 146 West Central Ave., Maywood, New Jersey and properties in its vicinity were included as a decontamination research and development project under the DOE Formerly Utilized Sites Remedial Action Program. In 1987 and 1988, at the request of DOE, Oak Ridge National Laboratory (ORNL) conducted a radiological survey on this property. A report describing this survey was published in 1989. A second radiological survey by ORNL was conducted on this property in May 1993 at the request of DOE after an ad hoc radiological survey, requested by the property owner and conducted by Bechtel National, Inc. (BNI), identified some contamination not previously found by ORNL. The purpose of the second ORNL survey was to determine whether radioactive materials from the old MCW were present on the property, and if so, if radioactive materials present were above guidelines. A certified civil survey was requisitioned by ORNL to determine actual property boundaries before beginning the radiological re-survey. The re-survey included a surface gamma scan and the collection of a large number of soil samples for radionuclide analyses. Results of this survey demonstrated that although elevated residual thorium-232 contamination was present in a few isolated spots on the southern end of the backyard, it did not exceed DOE guidelines.

Murray, M.E.; Johnson, C.A.

1994-05-01T23:59:59.000Z

87

Radiological Risk Assessment for King County Wastewater Treatment Division  

SciTech Connect (OSTI)

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

Strom, Daniel J.

2005-08-05T23:59:59.000Z

88

Radiological survey results at 4400 Piehl Road, Ottawa Lake, Michigan  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at 4400 Piehl Road in Ottawa Lake, Michigan. The survey was performed in September, 1992. The purpose of the survey was to determine if materials containing uranium from work performed under government contract at the former Baker Brothers facility in Toledo, Ohio had been transported off-site to this neighboring area. The radiological survey included surface gamma scans indoors and outdoors, alpha and beta scans inside the house and attached garage, beta-gamma scans of the hard surfaces outside, and the collection of soil, water, and dust samples for radionuclide analyses. Results of the survey demonstrated that the majority of the measurements on the property were within DOE guidelines. However, the presence of isolated spots of uranium contamination were found in two areas where materials were allegedly transported to the property from the former Baker Brothers site. Uranium uptake by persons on the property by ingestion is fairly unlikely, but inhalation is a possibility. Based on these findings, it is recommended that the residential property at 4400 Piehl Road in Ottawa Lake, Michigan be considered for inclusion under FUSRAP.

Foley, R.D.; Johnson, C.A.

1993-04-01T23:59:59.000Z

89

Uncertainty analyses for radiological assessments of St. Louis FUSRAP Sites  

SciTech Connect (OSTI)

Uncertainty analyses were performed in conjunction with radiological assessments of the Formerly Utilized Site Remedial Action Program (FUSRAP) St. Louis Downtown Site (SLDS), the Airport Site (SLAPS), and the Ball Field Site (SLBFS). Contaminants of concern at each location are natural uranium, radium, {sup 232}Th, and {sup 230}Th. The SLDS was used for uranium and thorium ore processing and includes an area of 45 acres. The SLAPS covers 22 acres and was used as a staging area for materials from the SLDS. Contaminants on the SLEFS were dispersed from the SLAPS, which involves an area of 80 acres. Significant levels of uranium contamination range from near zero to several thousand pCi/g and extend to about 20 feet in depth in a few locations at SLAPS and SLDS. Significant areas of peak radium and thorium concentrations are several hundred pCi/g with similar ranges in depth. Peak concentrations correspond to high grade ore. Radium and thorium constitute a greater radiological hazard than does uranium at all three locations. In order to satisfy the Environmental Protection Agency guideline for a lifetime risk of less than 10{sup -4}, the maximally exposed individual must receive less than about 4 mrem y{sup -1} if one assumes a risk of 5% per Sv. Based on the plant ingestion pathway, residual {sup 238}U, {sup 226}Ra, {sup 232}Th, and {sup 230}Th, concentrations of 400, 2, 4, and 40 pCi g{sup -1} at SLDS result in a 10{sup -4} lifetime risk with a 95% confidence level. Slightly different results were obtained for SLAPS and SLBFS. If more pathways are considered, such as radon, these values are even lower. Residual contamination levels could be increased by a factor of 25 if the historical Department of Energy limit of 100 mrem y{sup -1} is acceptable. The volume of contaminated soil that presents a 10{sup -4} lifetime risk is about 500,000 yd{sup 3}. The volume of soil contaminated to greater than 15 pCi g{sup -1} of each radionuclide is about a factor of ten less.

Miller, L.F.; Spencer, K.M.; White, D.E. [Univ. of Tennessee, Knoxville, TN (United States)

1996-06-01T23:59:59.000Z

90

Current Trends in Gamma Ray Detection for Radiological Emergency Response  

SciTech Connect (OSTI)

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies.

Mukhopadhyay, S., Guss, P., Maurer, R.

2011-08-18T23:59:59.000Z

91

Radiological Instrumentation Assessment for King County Wastewater Treatment Division  

SciTech Connect (OSTI)

The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 ?Ci per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine “innocent” alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

2005-05-19T23:59:59.000Z

92

Radiological Assistance Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy, procedures, authorities, and responsibilities for its Radiological Assistance Program. Canceled by DOE O 153.1.

1992-04-10T23:59:59.000Z

93

Method for warning of radiological and chemical substances using detection paints on a vehicle surface  

DOE Patents [OSTI]

A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

Farmer, Joseph C. (Tracy, CA)

2012-03-13T23:59:59.000Z

94

Surface with two paint strips for detection and warning of chemical warfare and radiological agents  

DOE Patents [OSTI]

A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

Farmer, Joseph C.

2013-04-02T23:59:59.000Z

95

Paint for detection of corrosion and warning of chemical and radiological attack  

DOE Patents [OSTI]

A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

Farmer, Joseph C. (Tracy, CA)

2010-08-24T23:59:59.000Z

96

Radiological assessment of residues from uranium and other ore mining and processing - A precondition for decisions on remedial measures  

SciTech Connect (OSTI)

In certain parts of Eastern Germany relics of uranium mining and milling as well as of traditional ore mining and processing may contribute to the environmental contamination and the radiation exposure of the public. Systematic investigations of the situation are the indispensable prerequisite for decisions upon the radiological relevance and remedial actions. In view of the large number and scattering of relics under consideration, a stepwise procedure with increasing intensity of investigation was developed to solve the task effectively and in an appropriate time. For the radiological evaluation following the steps of investigation generic criteria were derived. They are based on a primary reference dose of level (1 mSv/year) and on measureable radioactivity quantities recommend by the German Commission on Radiological Protection for unrestricted/restricted release of contaminated grounds. Applying the criteria established for the verification (gamma dose rate, volume of disposed material, area affected by waste materials) the investigations led to the result that no more than 30% of the objects of former mining have to be classified as {open_quotes}possibly relevant{close_quotes} and have to be investigated further on.

Ettenhuber, E; Roehnsch, W. [Bundesamt fuer Strahlenschutz, Berlin (Germany); Biesold, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Colonge (Germany)

1994-12-31T23:59:59.000Z

97

In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part II-evaluation of sorption materials  

SciTech Connect (OSTI)

The function and longevity of traditional, passive, isolation caps can be augmented through the use of more chemically active capping materials which have higher sorptive capacities, ideally rendering metals non-bioavailable. In the case of Hg, active caps also mitigate the rate and extent of methylation. This research examined low cost, readily available, capping materials for their ability to sequester Hg and MeHg. Furthermore, selected capping materials were evaluated to inhibit the methylation of Hg in an incubation study as well as the capacity of a selected capping material to inhibit translocation of Hg and MeHg with respect to ebullition-facilitated contaminant transport in a column study. Results indicated that bauxite had a better capacity for mercury sorption than the other test materials. However, bauxite as well as soil capping materials did not decrease methylation to a significant extent. Materials with larger surface areas, higher organic matter and acid volatile sulfide (AVS) content displayed a larger partitioning coefficient. In the incubation experiments, the presence of a carbon source (lactate), electron acceptor (sulfate) and the appropriate strains of SRB provided the necessary conditions for Hg methylation to occur. The column study showed effectiveness in sequestering Hg and MeHg and retarding transport to the overlying water column; however, disturbances to the soil capping material resulting from gas ebullition negated its effectiveness.

Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Yates, Brian J.; Lal, Vivek; Darlington, Ramona [Battelle, 505 King Avenue, Columbus, OH 43201 (United States)] [Battelle, 505 King Avenue, Columbus, OH 43201 (United States); Fimmen, Ryan [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States)] [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States)

2013-08-15T23:59:59.000Z

98

Aerial vehicle with paint for detection of radiological and chemical warfare agents  

DOE Patents [OSTI]

A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

Farmer, Joseph C.; Brunk, James L.; Day, S. Daniel

2013-04-02T23:59:59.000Z

99

Method for warning of radiological and chemical agents using detection paints on a vehicle surface  

DOE Patents [OSTI]

A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

Farmer, Joseph C. (Tracy, CA); Brunk, James L. (Martinez, CA); Day, S. Daniel (Danville, CA)

2012-03-27T23:59:59.000Z

100

Corrective Action Investigation Plan for Corrective Action Unit 529: Area 25 Contaminated Materials, Nevada Test Site, Nevada, Rev. 0, Including Record of Technical Change No. 1  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 529, Area 25 Contaminated Materials, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. CAU 529 consists of one Corrective Action Site (25-23-17). For the purpose of this investigation, the Corrective Action Site has been divided into nine parcels based on the separate and distinct releases. A conceptual site model was developed for each parcel to address the translocation of contaminants from each release. The results of this investigation will be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Preliminary results of the radiological survey at the former Dow Chemical Company site, Madison, Illinois  

SciTech Connect (OSTI)

During the late 1950s and early 1960s, the former Dow Chemical Company plant, now owned and operated by Spectrulite Consortium Inc., supplied materials and provided services for the Atomic Energy Commission (AEC) under purchase orders issued by the Mallinckrodt Chemical Company, a primary AEC contractor. Information indicates that research and development work involving gamma-phase extrusion of uranium metal was conducted at the Dow Chemical plant. Because documentation establishing the current radiological condition of the property was unavailable, a radiological survey was conducted by members of the Measurement Applications and Development Group of the Oak Ridge National Laboratory in March 1989. The survey included: measurement of indoor gamma exposure rates; collection and radionuclide analysis of dust and debris samples; and measurements to determine alpha and beta-gamma surface contamination. The results of the survey demonstrate that Building 6, the area uranium extrusion and rod-straightening work occurred, is generally free of radioactive residuals originating from former DOE-sponsored activities. However, {sup 238}U- and {sup 232}Th-contaminated dust was found on overhead beams at the south end of Building 6. These findings suggest that past DOE-supported operations were responsible for uranium-contaminated beam dust in excess of guidelines in Building 6. However, the contamination is localized and limited in extent, rendering it highly unlikely that under present use an individual working in or frequenting these remote areas would receive a significant radiation exposure. We recommend that additional scoping survey measurements and sampling be performed to further define the extent of indoor uranium contamination southward to include Building 4 and northward throughout Building 6. 5 refs., 11 figs., 4 tabs.

Cottrell, W.D.; Williams, J.K.

1990-12-01T23:59:59.000Z

102

Addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 529: Area 25 Contaminated Materials, Nevada Test Site, Nevada, Revision 1  

SciTech Connect (OSTI)

This document constitutes an addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 529: Area 25 Contaminated Materials, Nevada Test Site, Nevada as described in the document Recommendations and Justifications To Remove Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Federal Facility Agreement and Consent Order dated September 2013. The Use Restriction (UR) Removal document was approved by the Nevada Division of Environmental Protection on October 16, 2013. The approval of the UR Removal document constituted approval of each of the recommended UR removals. In conformance with the UR Removal document, this addendum consists of: This page that refers the reader to the UR Removal document for additional information The cover, title, and signature pages of the UR Removal document The NDEP approval letter The corresponding section of the UR Removal document This addendum provides the documentation justifying the cancellation of the UR for CAS 25-23-17, Contaminated Wash (Parcel H). This UR was established as part of FFACO corrective actions and was based on the presence of total petroleum hydrocarbon diesel-range organics contamination at concentrations greater than the NDEP action level at the time of the initial investigation.

Krauss, Mark J

2013-10-01T23:59:59.000Z

103

Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter  

DOE Patents [OSTI]

A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs.

Pinson, P.A.

1998-02-24T23:59:59.000Z

104

Radiation Safety Training Materials  

Broader source: Energy.gov [DOE]

The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

105

Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement  

SciTech Connect (OSTI)

Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

Seguin, Nicole R. [Los Alamos National Laboratory

2012-07-18T23:59:59.000Z

106

DOE standard: Radiological control  

SciTech Connect (OSTI)

The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

Not Available

1999-07-01T23:59:59.000Z

107

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas  

Broader source: Energy.gov [DOE]

This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

108

Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

109

Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

110

Final report of the radiological release survey of Building 54 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 54 and the underlying soil were found not to be radiologically contaminated, and can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

111

Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

112

Radiological worker training  

SciTech Connect (OSTI)

This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

NONE

1998-10-01T23:59:59.000Z

113

324 Building Baseline Radiological Characterization  

SciTech Connect (OSTI)

This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

R.J. Reeder, J.C. Cooper

2010-06-24T23:59:59.000Z

114

ORISE: Radiological program assessment services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental monitoring programs Operational environments Decontamination and decommissioning projects Compliance assessments Radiological release programs ORISE is actively...

115

An aerial radiological survey of the Nevada Test Site  

SciTech Connect (OSTI)

A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

Hendricks, T J; Riedhauser, S R

1999-12-01T23:59:59.000Z

116

Uranium mill tailings remedial action program. Radiological survey of Shiprock vicinity property SH03, Shiprock, NM, July-November 1982  

SciTech Connect (OSTI)

A comprehensive survey of the vicinity property designated as SH03 was conducted on an intermittent basis from July 26 to November 11, 1982. At the time of the survey, three structures were located on the property - a residential trailer, the main structure, and an old gas pump housing. The lands surrounding the structures were either sparsely covered with arid vegetation or paved. The assessment activities included determination of indoor and outdoor surface radiation levels, for both fixed and removable contamination, through direct instrument and smear (indoor only) surveys; measurement of ambient external penetrating radiation levels at 1-meter heights; and analyses of air, soil, and other material samples. No evidence of radioactive contamination was found inside the trailer. However, the results of the radiological assessment did indicate the occurrence of elevated levels of gamma, surface alpha, and radon daughter radioactivity within the main structure. The short-term radon daughter measurements exceeded the limit of 0.02 Working Level for average annual concentration including background. The assessment also indicated elevated levels of radioactivity in the outdoor environs, encompassing about 32,000 ft/sup 2/ of the grounds adjacent to and surrounding the main structure on the east, south, and west sides. The contamination appeared to be due to the presence of unprocessed uranium ore. Analysis of surface soil samples collected from the environs indicated radium concentrations in excess of the limit of 5 pCi/g above background specified in the EPA Standard. Subsurface soil sampling was not conducted, and thus the vertical extent of the radiological contamination is not known. Since the surface soil contamination levels exceeded the limits specified in the EPA Standard, remedial action for this vicinity site should be considered.

Flynn, K F; Justus, A L; Sholeen, C M; Smith, W H; Wynveen, R A

1984-04-01T23:59:59.000Z

117

Radiology of thoracic diseases  

SciTech Connect (OSTI)

This book presents the essential clinical and radiologic findings of a wide variety of thoracic diseases. The authors include conventional, CT and MR images of each disease discussed. In addition, they present practical differential diagnostic considerations for most of the radiographic findings or patterns portrayed.

Swensen, S.J.; Pugatch, R.D.

1989-01-01T23:59:59.000Z

118

Effect of Saltstone Vault Roof Configuration on the Rate of Contaminant Transport  

SciTech Connect (OSTI)

At the Savannah River Site, low-level radioactive decontaminated salt solution is mixed with slag, flyash, and cement to form a grout-like material called ``Saltstone``. The Saltstone is poured into concrete vaults constructed at the Saltstone Disposal Facility (SDF). The impact of SDF on groundwater has been studied in a radiological performance assessment (PA). Sophisticated groundwater models were used to predict the groundwater flow and contaminant transport problems. The modeling effort was divided into two parts: the unsaturated-zone model and the saturated zone model. One of the major performance objectives is to show that the impacted groundwater will be in compliance with the Safe Drinking Water Act.

Hsu, R.H.; Yu, A.D.; Lam, Poh-Sang

1994-12-28T23:59:59.000Z

119

Results of radiological measurements taken in the Niagara Falls, New York, area (NF002)  

SciTech Connect (OSTI)

The results of a radiological survey of 100 elevated gamma radiation anomalies in the Niagara Falls, New York, area are presented. These radiation anomalies were identified by a mobile gamma scanning survey during the period October 3-16, 1984, and were recommended for an onsite survey to determine if the elevated levels of radiation may be related to the transportation of radioactive waste material to the Lake Ontario Ordnance Works for storage. In this survey, radiological measurements included outdoor gamma exposure rates at 1 m above the surface; outdoor gamma exposure rates at the surface, range of gamma exposure rates during scan; and uranium, radium, and thorium concentrations in biased surface soil samples. The results show 38 anomalies (35 located along Pletcher Road and 3 associated with other unreleated locations) were found to exceed Formerly Utilized Sites Remedial Action Program (FUSRAP) remedial action guidelines and were recommended for formal characterization surveys. (Since the time of this survey, remedial actions have been conducted on the 38 anomalies identified as exceeding FUSRAP guidelines, and the radioactive material above guidelines has been removed.) The remaining 62 anomalies are associated with asphalt driveways and parking lots, which used a phosphate slag material (previously identified as cyclowollastonite, synthetic CaSiO/sub 3/). This rocky-slag waste material was used for bedding under asphalt surfaces and in general gravel applications. Most of the contaminated soil and rock samples collected at the latter anomalies had approximately equal concentrations of /sup 226/Ra and /sup 238/U and, therefore, are not related to materials connected with the Niagara Falls Storage Site (NFSS), including material that was transported to the NFSS. 13 refs., 7 figs., 14 tabs.

Williams, J.K.; Berven, B.A.

1986-11-01T23:59:59.000Z

120

Nearest Neighbor Averaging and its Effect on the Critical Level and Minimum Detectable Concentration for Scanning Radiological Survey Instruments that Perform Facility Release Surveys.  

SciTech Connect (OSTI)

Through the SNL New Mexico Small Business Assistance (NMSBA) program, several Sandia engineers worked with the Environmental Restoration Group (ERG) Inc. to verify and validate a novel algorithm used to determine the scanning Critical Level (L c ) and Minimum Detectable Concentration (MDC) (or Minimum Detectable Areal Activity) for the 102F scanning system. Through the use of Monte Carlo statistical simulations the algorithm mathematically demonstrates accuracy in determining the L c and MDC when a nearest-neighbor averaging (NNA) technique was used. To empirically validate this approach, SNL prepared several spiked sources and ran a test with the ERG 102F instrument on a bare concrete floor known to have no radiological contamination other than background naturally occurring radioactive material (NORM). The tests conclude that the NNA technique increases the sensitivity (decreases the L c and MDC) for high-density data maps that are obtained by scanning radiological survey instruments.

Fournier, Sean Donovan; Beall, Patrick S [Sandia National Laboratories, Livermore, CA; Miller, Mark L.

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Relocation of on-site spoils pile materials at the Linde Fusrap Site  

SciTech Connect (OSTI)

During the 1940's, the Linde Division of Union Carbide used portions of their property in Tonawanda, New York for processing uranium ores under Federal Manhattan Engineering District (MED) contracts. These activities resulted in radiological contamination on portions of the property. The radionuclides of concern at the site are Radium, Thorium, and Uranium. The site is currently owned and operated by Praxair Inc., an industrial gas company. The U.S. Army Corps of Engineers (USACE) issued a Record of Decision to remediate the radiologically-contaminated materials associated with MED activities in March 2000 under the authority of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The selected remedy is fully protective of human health and the environment and complies with Federal and State requirements that are legally applicable or relevant and appropriate and meets community commitments. The USACE - Buffalo District has been executing remedial activities at the site and has successfully addressed many challenges in a safe and cost effective manner through effective coordination, project management, and partnering with stakeholders. These efforts supported the successful relocation of approximately 29,000 cubic yards of stockpiled material (soils, concrete, steel, asphalt and miscellaneous non-soil) that had been generated by the property owner as a result of ongoing development of the facility. Relocation of the material was necessary to allow safe access to the surface and subsurface soils beneath the pile for sampling and analysis. During relocation operations, materials were evaluated for the presence of radiological contamination. The vast majority of material was relocated onsite and remained the property owner's responsibility. A small portion of the material required off-site disposal at a permitted disposal facility due to radiological contamination that exceeded site criteria. This paper presents details associated with the successful resolution of responsibility concerns associated with a large stockpile of materials accumulated over many years by the property owner. A cost effective approach and partnership was developed to allow for real time radiological characterization and material dispositions by the government and satisfying chemical concerns presented by State regulators. These actions resulted in onsite relocation and responsible transfer of the materials to the property owner for beneficial reuse resulting in significant project cost savings. (authors)

Schwippert, M.T. [Shaw Environmental and Infrastructure, Inc., New York (United States); Boyle, J.D.; Bousquet, S.M. [US Army Corps of Engineers, Buffalo District, New York (United States)

2007-07-01T23:59:59.000Z

122

Contaminated concrete: Occurrence and emerging technologies for DOE decontamination  

SciTech Connect (OSTI)

The goals of the Facility Deactivation, Decommissioning, and Material Disposition Focus Area, sponsored by the US Department of Energy (DOE) Office of Technology Development, are to select, demonstrate, test, and evaluate an integrated set of technologies tailored to provide a complete solution to specific problems posed by deactivation, decontamination, and decommissioning, (D&D). In response to these goals, technical task plan (TTP) OR152002, entitled Accelerated Testing of Concrete Decontamination Methods, was submitted by Oak Ridge National Laboratory. This report describes the results from the initial project tasks, which focused on the nature and extent of contaminated concrete, emerging candidate technologies, and matching of emerging technologies to concrete problems. Existing information was used to describe the nature and extent of contamination (technology logic diagrams, data bases, and the open literature). To supplement this information, personnel at various DOE sites were interviewed, providing a broad perspective of concrete contamination. Because characterization is in the initial stage at many sites, complete information is not available. Assimilation of available information into one location is helpful in identifying potential areas of concern in the future. The most frequently occurring radiological contaminants within the DOE complex are {sup 137}Cs, {sup 238}U (and it daughters), and {sup 60}Co, followed closely by {sup 90}Sr and tritium, which account for {minus}30% of the total occurrence. Twenty-four percent of the contaminants were listed as unknown, indicating a lack of characterization information, and 24% were listed as other contaminants (over 100 isotopes) with less than 1% occurrence per isotope.

Dickerson, K.S.; Wilson-Nichols, M.J. [Oak Ridge National Lab., Grand Junction, CO (United States); Morris, M.I. [Oak Ridge National Lab., TN (United States)

1995-08-01T23:59:59.000Z

123

Radiological review of conditions created during & after a fire on the Hanford Site in the BC Crib controlled area & areas of radiological concern  

SciTech Connect (OSTI)

The radiological implications of fighting a wildland fire in the BC Crib controlled area with the surrounding Soil Contamination Area (SCA) and for fighting a wildland fire in the genera1 600 Area are addressed in this document. The primary focus is on the BC Crib controlled area; however, the 600 Area radiological concerns are much lower and generally have the same constraints as the BC Crib controlled area. This analysis addresses only radiological hazards and does not address any physical hazards or industrial hygiene hazards.

EVANS, C.L.

2003-04-01T23:59:59.000Z

124

Broken Arrows: Radiological hazards from nuclear warhead accidents (the Minot USAF base nuclear weapons incident)  

E-Print Network [OSTI]

According to numerous press reports, in 2007 at Minot US Air Force Base six AGM-129 Advanced Cruise Missiles mistakenly armed with W80-1 thermonuclear warheads were loaded on a B-52H heavy bomber in place of six unarmed AGM-129 missiles that were awaiting transport to Barksdale US Air Force Base for disposal. The live nuclear missiles were not reported missing, and stood unsecured and unguarded while mounted to the aircraft for a period of 36 hours. The present work investigates the radiological hazards associated with a worst-case postulated accident that would disperse the nuclear material of the six warheads in large metropolitan cities. Using computer simulations approximate estimates are derived for the ensuing cancer mortality and land contamination after the accident. Health, decontamination and evacuation costs are also estimated in the framework of the linear risk model.

Liolios, Theodore

2009-01-01T23:59:59.000Z

125

GTRI's Nuclear and Radiological Material Protection | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at civilian sites worldwide; Provide specialized alarm response training for on-site security and local law enforcement agencies responsible for monitoring and responding to...

126

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

127

Total effective dose equivalent associated with fixed uranium surface contamination  

SciTech Connect (OSTI)

This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm{sup 2} and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels.

Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

1997-04-01T23:59:59.000Z

128

Final report of the radiological release survey of Building 30B at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 30B and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Krauland, P.A.; Corle, S.G.

1997-09-01T23:59:59.000Z

129

Normalized Tritium Quantification Approach (NoTQA) a Method for Quantifying Tritium Contaminated Trash and Debris at LLNL  

SciTech Connect (OSTI)

Several facilities and many projects at LLNL work exclusively with tritium. These operations have the potential to generate large quantities of Low-Level Radioactive Waste (LLW) with the same or similar radiological characteristics. A standardized documented approach to characterizing these waste materials for disposal as radioactive waste will enhance the ability of the Laboratory to manage them in an efficient and timely manner while ensuring compliance with all applicable regulatory requirements. This standardized characterization approach couples documented process knowledge with analytical verification and is very conservative, overestimating the radioactivity concentration of the waste. The characterization approach documented here is the Normalized Tritium Quantification Approach (NoTQA). This document will serve as a Technical Basis Document which can be referenced in radioactive waste characterization documentation packages such as the Information Gathering Document. In general, radiological characterization of waste consists of both developing an isotopic breakdown (distribution) of radionuclides contaminating the waste and using an appropriate method to quantify the radionuclides in the waste. Characterization approaches require varying degrees of rigor depending upon the radionuclides contaminating the waste and the concentration of the radionuclide contaminants as related to regulatory thresholds. Generally, as activity levels in the waste approach a regulatory or disposal facility threshold the degree of required precision and accuracy, and therefore the level of rigor, increases. In the case of tritium, thresholds of concern for control, contamination, transportation, and waste acceptance are relatively high. Due to the benign nature of tritium and the resulting higher regulatory thresholds, this less rigorous yet conservative characterization approach is appropriate. The scope of this document is to define an appropriate and acceptable characterization method for quantification of tritium contaminated trash and debris. The characterization technique is applicable to surface and subsurface tritium contaminated materials with surfaces amenable to swiping. Some limitations of this characterization technique are identified.

Dominick, J L; Rasmussen, C L

2008-07-23T23:59:59.000Z

130

Nuclear & Radiological Activity Center (NRAC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear & Radiological Activity Center (NRAC) Where nuclear research and deployment capabilities come together to solve nuclear nonproliferation challenges. Skip Navigation Links...

131

Smart Radiological Dosimeter  

DOE Patents [OSTI]

A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

Kosslow, William J.; Bandzuch, Gregory S.

2004-07-20T23:59:59.000Z

132

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.F 1325.8 (08-93) Radiological

133

Subsurface Contamination Control  

SciTech Connect (OSTI)

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-11-16T23:59:59.000Z

134

Subsurface Contamination Control  

SciTech Connect (OSTI)

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-12-12T23:59:59.000Z

135

Autonomous mobile robot for radiologic surveys  

DOE Patents [OSTI]

An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

Dudar, Aed M. (Augusta, GA); Wagner, David G. (Augusta, GA); Teese, Gregory D. (Aiken, SC)

1994-01-01T23:59:59.000Z

136

Autonomous mobile robot for radiologic surveys  

DOE Patents [OSTI]

An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.

Dudar, A.M.; Wagner, D.G.; Teese, G.D.

1994-06-28T23:59:59.000Z

137

Radiological Work Planning and Procedures  

E-Print Network [OSTI]

Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In add...

Kurtz, J E

2000-01-01T23:59:59.000Z

138

Radiological Release Accident Investigation Report - Phase 1...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Radiological Release Accident Investigation Report - Phase 1 Radiation Report Radiological Release Accident Investigation Report - Phase 1 Radiation Report Phase 1 of this accident...

139

Standardized radiological dose evaluations  

SciTech Connect (OSTI)

Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

Peterson, V.L.; Stahlnecker, E.

1996-05-01T23:59:59.000Z

140

Method of removing contaminants from plastic resins  

DOE Patents [OSTI]

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2008-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Method of removing contaminants from plastic resins  

DOE Patents [OSTI]

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert,George W. (Harrisonville, MO); Hand,Thomas E. (Lee's Summit, MO); Delaurentiis,Gary M. (Jamestown, CA)

2007-08-07T23:59:59.000Z

142

Method for removing contaminants from plastic resin  

DOE Patents [OSTI]

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2008-12-30T23:59:59.000Z

143

Management of Contaminated Territories Radiological Principles and Practice  

E-Print Network [OSTI]

problems which can arise after a serious nuclear accident. The differences between CIS practice include their application after a nuclear accident. It has been suggested that the inclusion and the international development of intervention guidance since the Chernobyl accident is reviewed. The experience

144

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable Projects FactHandbook onDepartment

145

Surface Contamination Guidelines/Radiological Clearance of Property |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4Superhard CoatingNovemberDecember 23,Supporting

146

Pre-Hospital Practices for Handling a Radiologically Contaminated Patient |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactorBatteriesDiseaseDOE SmallQuadrennialN E RDepartment of

147

Recovery Act-Funded Study Assesses Contamination at Former Test Site in California  

Broader source: Energy.gov [DOE]

Workers in a study funded by $38 million from the American Recovery and Reinvestment Act to assess radiological contamination have collected more than 600 soil samples and surveyed 120 acres of...

148

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

149

Stanford Radiology LPCH Fast Pediatric MRI  

E-Print Network [OSTI]

Stanford Radiology LPCH Fast Pediatric MRI Shreyas Vasanawala, MD/PhD Stanford University Lucile Radiology LPCH Thank you Par Lab Briefer, lighter, safer anesthesia for pediatric MRI #12; practice #12;Stanford Radiology LPCH #12;Stanford Radiology LPCH Current Solution INVASIVE LIMITS ACCESS

California at Berkeley, University of

150

Radiological assessment. A textbook on environmental dose analysis  

SciTech Connect (OSTI)

Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

Till, J.E.; Meyer, H.R. (eds.)

1983-09-01T23:59:59.000Z

151

Radiation Shielding and Radiological Protection  

E-Print Network [OSTI]

Radiation Shielding and Radiological Protection J. Kenneth Shultis Richard E. Faw Department@triad.rr.com Radiation Fields and Sources ................................................ . Radiation Field Variables........................................................... .. Direction and Solid Angle Conventions ......................................... .. Radiation Fluence

Shultis, J. Kenneth

152

Radiological Emergency Response Plan (Vermont)  

Broader source: Energy.gov [DOE]

This legislation establishes a radiological emergency response plan fund, into which any entity operating a nuclear reactor or storing nuclear fuel and radioactive waste in this state (referred to...

153

Radiological Protection for DOE Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

1995-09-29T23:59:59.000Z

154

Radiological survey report for the Weldon Spring Raffinate Pits site, Weldon Spring, Missouri  

SciTech Connect (OSTI)

The Weldon Spring Site (WSS) is a US Department of Energy (DOE) surplus facility comprising the Raffinate Pits facility, the Quarry, and potentially contaminated vicinity properties. Radiological characterization of the WSS will be conducted in three phases: the Raffinate Pits facility, Quarry, and the vicinity properties. Bechtel National, Inc. (BNI) and its radiological support subcontractor, Eberline Instrument Corporation (EIC), conducted a radiological characterization survey of the Raffinate Pits during 1982 and 1983 in support of on-site construction work and a technical evaluation of site geology. The survey consisted of direct beta-gamma surface readings, near-surface gamma readings, exposure level measurements, and gamma-logs of boreholes. Soil samples were also collected from the surface, shallow boreholes, and trenches on the site. This report describes the radiological characterization of the Raffinate Pits facility, the procedures used to conduct the survey, the survey results, and their significance. 5 references, 9 figures, 8 tables.

Not Available

1984-08-01T23:59:59.000Z

155

Recent Developments in Field Response for Mitigation of Radiological...  

Energy Savers [EERE]

of technologies and methods to detect, prepare, or manage radiological incidents or accidents . With any radiological accident, radiological dispersal device (RDD), or improvised...

156

CHANGING THE LANDSCAPE--LOW-TECH SOLUTIONS TO THE PADUCAH SCRAP METAL REMOVAL PROJECT ARE PROVIDING SAFE, COST-EFFECTIVE REMEDIATION OF CONTAMINATED SCRAP YARDS  

SciTech Connect (OSTI)

Between 1974 and 1983, contaminated equipment was removed from the Paducah Gaseous Diffusion Plant (PGDP) process buildings as part of an enrichment process upgrade program. The upgrades consisted of the dismantlement, removal, and on-site storage of contaminated equipment, cell components, and scrap material (e.g., metal) from the cascade facilities. Scrap metal including other materials (e.g., drums, obsolete equipment) not related to this upgrade program have thus far accumulated in nine contiguous radiologically-contaminated and non-contaminated scrap yards covering 1.05E5 m2 (26 acres) located in the northwestern portion of the PGDP. This paper presents the sequencing of field operations and methods used to achieve the safe removal and disposition of over 47,000 tonnes (53,000 tons) of metal and miscellaneous items contained in these yards. The methods of accomplishment consist of mobilization, performing nuclear criticality safety evaluations, moving scrap metal to ground level, inspection and segregation, sampling and characterization, scrap metal sizing, packaging and disposal, and finally demobilization. Preventing the intermingling of characteristically hazardous and non-hazardous wastes promotes waste minimization, allowing for the metal and materials to be segregated into 13 separate waste streams. Low-tech solutions such as using heavy equipment to retrieve, size, and package scrap materials in conjunction with thorough planning that integrates safe work practices, commitment to teamwork, and incorporating lessons learned ensures that field operations will be conducted efficiently and safely.

Watson, Dan; Eyman, Jeff

2003-02-27T23:59:59.000Z

157

Radiological Work Planning and Procedure  

SciTech Connect (OSTI)

Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In addition, there seems to be confusion as to what should be and what should not be included in the TWD.

KURTZ, J.E.

2000-01-01T23:59:59.000Z

158

Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect (OSTI)

In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station 401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

2013-07-01T23:59:59.000Z

159

Radiological control manual. Revision 1  

SciTech Connect (OSTI)

This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

Kloepping, R.

1996-05-01T23:59:59.000Z

160

Results of the independent radiological verification survey of the lower Sheffield Brook floodplain, Wayne, New Jersey  

SciTech Connect (OSTI)

Prior to 1971, the W.R. Grace Company processed and stored radioactive materials at Wayne, New Jersey, under license to the Atomic Energy Commission. Decontamination of structures and storage of waste materials on the property at the Wayne Interim Storage Site (WISS) took place in 1974. Surveys by the State of New Jersey Department of Environmental Protection and by Oak Ridge Associated Universities for the NRC in 1982 indicated that properties adjacent to the WISS contained surface contamination by radioactive residuals in amounts exceeding those acceptable under US Department of Energy (DOE) remedial action guidelines. At the request of DOE, remedial actions have been conducted by Bechtel National, Inc., to remove radioactive residuals from properties adjacent to the site. It is the policy of DOE to assign an independent verification contractor to ensure the effectiveness of remedial actions performed within the Formerly Utilized Sites Remedial Action Program. This report describes the methods and results of those studies that were conducted by the Measurement Applications and Development Group of the Oak Ridge National Laboratory for the lower Sheffield Brook floodplain west of the WISS. Based upon post-remedial action and verification survey data, it was concluded that residual soil concentrations and gamma levels following excavation and backfilling of the area are within the limits prescribed by DOE radiological guidelines. 12 refs., 6 figs., 8 tabs.

Yalcintas, M.G.; Carrier, R.F.

1989-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Current Trends in Gamma Radiation Detection for Radiological Emergency Response  

SciTech Connect (OSTI)

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

Mukhopadhyay, S., Guss, P., Maurer, R.

2011-09-01T23:59:59.000Z

162

U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2  

SciTech Connect (OSTI)

Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

Jakubowski, F.M.

1998-02-01T23:59:59.000Z

163

Nuclear and Radiological Forensics and Attribution Overview  

SciTech Connect (OSTI)

The goal of the U.S. Department of Homeland Security (DHS) Nuclear and Radiological Forensics and Attribution Program is to develop the technical capability for the nation to rapidly, accurately, and credibly attribute the origins and pathways of interdicted or collected materials, intact nuclear devices, and radiological dispersal devices. A robust attribution capability contributes to threat assessment, prevention, and deterrence of nuclear terrorism; it also supports the Federal Bureau of Investigation (FBI) in its investigative mission to prevent and respond to nuclear terrorism. Development of the capability involves two major elements: (1) the ability to collect evidence and make forensic measurements, and (2) the ability to interpret the forensic data. The Program leverages the existing capability throughout the U.S. Department of Energy (DOE) national laboratory complex in a way that meets the requirements of the FBI and other government users. At the same time the capability is being developed, the Program also conducts investigations for a variety of sponsors using the current capability. The combination of operations and R&D in one program helps to ensure a strong linkage between the needs of the user community and the scientific development.

Smith, D K; Niemeyer, S

2005-11-04T23:59:59.000Z

164

E-Print Network 3.0 - alpha contaminated wastes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and solid radioactively contaminated wastes in unlined... that uses electrical power to heat and melt contaminated soil, fusing the ... Source: Pint, Bruce A. - Materials...

165

Nuclear Radiological Threat Task Force Established | National...  

National Nuclear Security Administration (NNSA)

Radiological Threat Task Force Established | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

166

Radiological Assistance Program | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

Federal Radiological Monitoring and Assessment Center Emergency Response Accident Response Group Radiation Emergency Assistance Center Training Site National Atmospheric Release...

167

Uranium mill tailings remedial action program. Radiological survey of Shiprock vicinity property SH12, Shiprock, NM, October-November 1982  

SciTech Connect (OSTI)

A comprehensive survey of the vicinity property designated as SH12 was conducted on an intermittent basis from October 27 to November 22, 1982. At the time of the survey, several exhibition halls and concession stands; an auction yard; a race track and rodeo arena with associated stands, shutes, and corrals; and a hogan were located on the property. The surrounding environs were either sparsely covered with arid vegetation or covered with gravel. The assessment activities included determination of indoor and outdoor surface radiation levels, for both fixed and removable contamination, through direct instrument and smear (indoor only) surveys; measurement of ambient external penetrating radiation levels at 1-meter heights; and analyses of air, soil, and other material samples. The radiological assessment indicated elevated levels of radioactivity within only one of the structures. Background levels of radioactivity were indicated within all other structures. The assessment indicated elevated levels of radioactivity at the rodeo arena and nearby shutes and corrals, encompassing about 49,000 ft/sup 2/ of land. Radiochemical analysis of the soil sample collected from this general area indicated 23 +- 2 pCi/g for radium, which is in excess of the limit of 5 pCi/g above background, averaged over the first 15 cm of soil below the surface. Elevated levels of radioactivity were also found at the southern end of the west parking lot, encompassing about 7500 ft/sup 2/ of land, and at several areas in the southern section of the property, encompassing about 160,000 ft/sup 2/ of land. Radiochemical analyses of two of the soil samples collected from the southern section indicated radium concentrations of 43 +- 5 and 42 +- 5 pCi/g of soil, in excess of the limit of 5 pCi/g above background as specified in the EPA Standard. Subsurface soil sampling was not conducted, and thus the vertical extent of the radiological contamination is not known.

Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

1984-04-01T23:59:59.000Z

168

Rice University Environmental Health and Safety Laboratory-Specific Radiological Safety Training Attendance Record  

E-Print Network [OSTI]

. [ ] Radioactive material waste segregation and disposal forms and inventory forms properly signed and dated. [ ] Review of written protocols involving radioactive material. [ ] Radiological safety considerations with the material. Such training shall include: 1. A brief discussion of the hazards of radiation and radioactive

Natelson, Douglas

169

Best practice techniques for environmental radiological monitoring  

E-Print Network [OSTI]

Best practice techniques for environmental radiological monitoring Science Report ­ SC030308/SR SCHO0407BMNL-E-P #12;ii Science Report Best Practice Techniques for Environmental Radiological #12;iv Science Report Best Practice Techniques for Environmental Radiological Monitoring Executive

170

RADIOLOGICAL & ENVIRONMENTAL MANAGEMENT GUIDANCE DOCUMENT  

E-Print Network [OSTI]

RADIOLOGICAL & ENVIRONMENTAL MANAGEMENT GUIDANCE DOCUMENT: Minors in Research Laboratories or Animal Facilities Page 1 of 4 PURPOSE: The purpose of this document is to provide guidance for Purdue sponsored programs which are designed for youth under the age of 15 and which have documented

Holland, Jeffrey

171

Departmental Radiological Emergency Response Assets  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Cancels DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

2007-06-27T23:59:59.000Z

172

Y-12 Groundwater Protection Program Extent Of The Primary Groundwater Contaminants At The Y-12 National Security Complex  

SciTech Connect (OSTI)

This report presents data summary tables and maps used to define and illustrate the approximate lateral extent of groundwater contamination at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The data tables and maps address the primary (i.e., most widespread and mobile) organic, inorganic, and radiological contaminants in the groundwater. The sampling locations, calculated contaminant concentrations, plume boundary values, and paired map format used to define, quantify, delineate, and illustrate the approximate extent of the primary organic, inorganic, and radiological contaminants in groundwater at Y-12 are described.

none,

2013-12-01T23:59:59.000Z

173

Uranium mill tailings remedial action program. Radiological survey of Shiprock vicinity property SH04, Shiprock, New Mexico, September-November 1982  

SciTech Connect (OSTI)

The radiological assessment conducted at the Shiprock vicinity property SH04 by the ANL Radiological Survey Group indicated background levels of radioactivity within the residential structure. Short-term radon daughter measurements did not exceed the 0.02 WL (or 20 mWL) limit for average annual concentration including background as specified in the EPA Standard (40 CFR 192.12(b)(1)). The assessment indicated elevated levels of radioactivity at several areas in the outside environs. Twelve discrete hot spots or localized areas were found in the backyard, most associated with small slabs of decorative flagstone. Radiochemical analyses of the stone sample collected from one of the localized areas indicated the presence of natural uranium ore. Radiochemical analysis of the soil sample collected from one other of the localized areas indicated a radium concentration of 33 +- 3 pCi/g, which is in excess of the limit of 5 pCi/g above background, averaged over the first 15 cm of soil below the surface, as specified in Section 192.12(a)(1) of the EPA Standard. From the analyses of the samples and the history of the site, the contaminating material in the general area at the backyard and alleyway, in the area in the frontyard, and at several of the discrete locations in the backyard appears to be residual radioactive material under the provisions of the Uranium Mill Tailings Radiation Control Act of 1978 in the form of radium-enhanced material (i.e., tailings) and natural uranium ore. Since the surface soil contamination levels exceed the limits specified in the EPA Standard, remedial action for this vicinity site should be considered. 10 references, 4 figures, 5 tables.

Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

1984-05-01T23:59:59.000Z

174

Uranium mill tailings remedial action program. Radiological survey of Shiprock vicinity property SH05, Shiprock, New Mexico, August-November 1982  

SciTech Connect (OSTI)

The radiological assessment conducted at the Shiprock vicinity property SH05 by the ANL Radiological Survey Group indicated background levels of radioactivity within the residential structure. Radiation exposure rates were less than the 20 ..mu..R/h above background limit specified in the EPA Standard (40 CFR 192.12(b)(2)). Short-term radon daughter measurements within the residence did not exceed the 0.02 WL (or 20 mWL) limit for average annual concentration including background as specified in the EPA Standard (Section 192.12(b)(1)). The assessment indicated elevated levels of radioactivity at several areas in the outside environs. One discrete hot spot or localized area was found in the frontyard, near the front porch of the residence. Radiochemical analysis of the soil sample collected there indicated a radium concentration of 352 +- 35 pCi/g, which is in excess of the limit of 5 pCi/g above background, averaged over the first 15 cm of soil below the surface, as specified in Section 192.12(a)(1) of the EPA Standard. From soil sample analyses and the history of the site, the contaminating material appears to be residual radioactive material under the provisions of the Uranium Mill Tailings Radiation Control Act of 1978 in the form of radium-enhanced material (i.e., tailings) and natural uranium ore. Since the surface soil contamination levels exceed the limits specified in the EPA Standard, remedial action for this vicinity site should be considered. 10 references, 4 figures, 5 tables.

Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

1984-05-01T23:59:59.000Z

175

Acceptance of Soil from Off Site Sources In order to guard against receiving contaminated soils to used as fill material on campus,  

E-Print Network [OSTI]

this guideline document in order to provide information for acceptance of clean imported fill material from off regulations governing the remediation of site, and hazardous chemical disposal. Local Oversight Program Agency, auto repair facilities and sites containing petroleum impacted soils and disposal and transportation

de Lijser, Peter

176

Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids  

SciTech Connect (OSTI)

Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

Charles J Werth; Albert J Valocchi, Hongkyu Yoon

2011-05-21T23:59:59.000Z

177

Results of the radiological survey at the former Associate Aircraft Tool and Manufacturing Company site, Fairfield, Ohio (FOH001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from oak Ridge National Laboratory conducted a radiological survey of the former Associate Aircraft Tool and Manufacturing Company facility, Fairfield, Ohio. The survey was performed in July and September 1992. The purpose of the survey was to determine if the facility had become contaminated with residuals containing radioactive materials during the work performed under government contract from February to September, 1956. The survey included gamma scanning over a circumscribed area around and outside of the building, and gamma scanning over most accessible indoor floor surfaces as well as the collection of soil and other samples for radionuclide analyses. Roof trusses were beta-gamma scanned in locations where floor contamination was found. Results of the survey demonstrated radionuclide concentrations in indoor and outdoor samples, and radiation measurements over floor and overhead surfaces, in excess of the DOE Formerly Utilized Sites Remedial Action Program guidelines. Elevated uranium concentrations outdoors were limited to several small, isolated spots. Radiation measurements exceeded guidelines indoors over numerous spots and areas inside the building, mainly in the areas that had been used in the early government work.

Murray, M.E.; Carrier, R.F.; Mathis, R.A.

1993-03-01T23:59:59.000Z

178

Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 1, Operations  

SciTech Connect (OSTI)

The Monitoring division is primarily responsible for the coordination and direction of: Aerial measurements to delineate the footprint of radioactive contaminants that have been released into the environment. Monitoring of radiation levels in the environment; Sampling to determine the extent of contaminant deposition in soil, water, air and on vegetation; Preliminary field analyses to quantify soil concentrations or depositions; and Environmental and personal dosimetry for FRMAC field personnel, during a Consequence Management Response Team (CMRT) and Federal Radiological Monitoring and Assessment Center (FRMAC) response. Monitoring and sampling techniques used during CM/FRMAC operations are specifically selected for use during radiological emergencies where large numbers of measurements and samples must be acquired, analyzed, and interpreted in the shortest amount of time possible. In addition, techniques and procedures are flexible so that they can be used during a variety of different scenarios; e.g., accidents involving releases from nuclear reactors, contamination by nuclear waste, nuclear weapon accidents, space vehicle reentries, or contamination from a radiological dispersal device. The Monitoring division also provides technicians to support specific Health and Safety Division activities including: The operation of the Hotline; FRMAC facility surveys; Assistance with Health and Safety at Check Points; and Assistance at population assembly areas which require support from the FRMAC. This volume covers deployment activities, initial FRMAC activities, development and implementation of the monitoring and assessment plan, the briefing of field teams, and the transfer of FRMAC to the EPA.

NSTec Aerial Measurement Systems

2012-07-31T23:59:59.000Z

179

Method for testing earth samples for contamination by organic contaminants  

DOE Patents [OSTI]

Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants.

Schabron, John F. (Laramie, WY)

1996-01-01T23:59:59.000Z

180

Method for testing earth samples for contamination by organic contaminants  

DOE Patents [OSTI]

Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.

Schabron, J.F.

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Results of the radiological survey at the Sacandaga site Glenville, New York  

SciTech Connect (OSTI)

The Sacandaga site, located on Sacandaga Road, Glenville, New York, was operated by the General Electric Company for the Atomic Energy Commission (AEC) between 1947 and 1951. Originally used for the study and development of radar during World War II, the facilities housed later operations involving physics studies and sodium technology development in support of breeder reactor design and other AEC programs. Though not in use since the original equipment was dismantled and removed in the early 1950s, portions of the 51-acre site are known to contain buried rubble from demolished structures used in former operations. At the request of the Office of Naval Reactors through the Office of Remedial Action and Waste Technology, a characterization of current radiological conditions over the site was performed between August and October 1989. The survey included the measurement of direct radiation levels (gamma, alpha, and beta-gamma) over all surfaces both inside and outside the building and tunnel, radionuclide analysis of systematic, biased, and auger hole soil samples, and analysis of sediments from underground structures. Gamma logging of auger holes was conducted and removable contamination levels inside the tunnel were determined. Samples of soil and structural materials from within and around an excavated concrete bunker were analyzed to determine concentrations of radionuclides and nonradioactive elemental beryllium.

Foley, R.D.; Cottrell, W.D.; Carrier, R.F.

1992-08-01T23:59:59.000Z

182

Radiological survey results at the former Bridgeport Brass Company facility, Seymour, Connecticut  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey of the former Bridgeport Brass Company facility, Seymour, Connecticut. The survey was performed in May 1992. The purpose of the survey was to determine if the facility had become contaminated with residuals containing radioactive materials during the work performed in the Ruffert building under government contract in the 1960s. The survey included a gamma scanning over a circumscribed area around the building, and gamma and beta-gamma scanning over all indoor surfaces as well as the collection of soil and other samples for radionuclide analyses. Results of the survey demonstrated radionuclide concentrations in indoor and outdoor samples, and radiation measurements over floor and wall surfaces, in excess of the DOE Formerly Utilized Sites Remedial Action Program guidelines. Elevated uranium concentrations outdoors were limited to several small, isolated spots. Radiation measurements exceeded guidelines indoors over numerous spots and areas inside the building, mainly in Rooms 1--6 that had been used in the early government work.

Foley, R.D.; Carrier, R.F.

1993-06-01T23:59:59.000Z

183

RadSTraM: Radiological Source Tracking and Monitoring, Phase II Final Report  

SciTech Connect (OSTI)

This report focuses on the technical information gained from the Radiological Source Tracking and Monitoring (RadSTraM) Phase II investigation and its implications. The intent of the RadSTraM project was to determine the feasibility of tracking radioactive materials in commerce, particularly International Atomic Energy Agency (IAEA) Category 3 and 4 materials. Specifically, Phase II of the project addressed tracking radiological medical isotopes in commerce. These categories of materials are susceptible to loss or theft but the problem is not being addressed by other agencies.

Warren, Tracy A [ORNL; Walker, Randy M [ORNL; Hill, David E [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Abercrombie, Robert K [ORNL

2008-12-01T23:59:59.000Z

184

Roadmap: Radiologic Technology Radiology Department Management Technology Associate of Technical Study  

E-Print Network [OSTI]

Roadmap: Radiologic Technology ­ Radiology Department Management Technology ­ Associate-Nov-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However

Sheridan, Scott

185

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Data results provided back to the field within 30-60 minutes. All NNSA teams that conduct search, detection and identification operations, to include the Radiological...

186

ORISE Resources: Radiological and Nuclear Terrorism: Medical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training Clinicians for Response to a Radiological or Nuclear Terrorism Attack The Centers for Disease Control and Prevention and its Radiation Studies Branch in the National...

187

Radiological Assistance Program | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

(trained personnel and equipment) to evaluate, assess, advise, isotopically identify, search for, and assist in the mitigation of actual or perceived nuclear or radiological...

188

Modification of Polymer Flocculants for the Removal of Soluble Contaminants from Water  

E-Print Network [OSTI]

Contaminants in aqueous environments exist in phases that are sorbed to suspended or colloidal material and that are dissolved in solution. Polymer flocculants can be used to remove suspended or colloidal material along with sorbed contaminants...

Goebel, Timothy Steven O'Gara

2012-02-14T23:59:59.000Z

189

Remediation of Occupied Commercial Property Subject to Widespread Radium-226 Contamination - Confidential Client in the South-West of England - 12570  

SciTech Connect (OSTI)

AMEC was contacted by a company that managed commercial office space in 2010. High Rn- 222 measurements had been observed throughout the facility and the landlord had been advised to commission a radiological survey of the site. The site had been purchased by the client in the 1990's. Initial desk studies found that the building had operated for around 50 years as a compass factory. Non-intrusive investigation identified widespread Ra-226 contamination. Ra-226 was found in the fabric of the building, in attic spaces, buried under floor boards and underlying car parks. Intrusive investigation was undertaken to estimate volume(s) of waste, waste categories, activity concentrations and the total inventory of radioactive materials on site. This work identified the presence of 180 GBq of Ra-226 on site. A programme of work is currently underway to remediate the site tackling areas posing the greatest risk to site occupants as a priority. We have worked closely with Regulators, our client, and tenants, to decontaminate the fabric of the building whilst areas of the building remain occupied. The radiological risk, from irradiation, ingestion and inhalation (of Ra-226 and Rn- 222) has been assessed before, during and after intervention to minimise the risks to site occupants. Tenants were moved from areas of unacceptable radiological risk to areas unaffected by the presence of radioactive materials. Rn-222 mitigation measures were installed during the remedial operations to minimise the hazard from Rn-222 that was liberated as a result of decontamination activities. Decontamination techniques were required to be sympathetic to the building as the ageing structure was in danger of collapse during several phases of work. The first phase of remediation is now complete and the decontaminated building is being returned for use as office space. The radiological risks have been significantly reduced and, in areas where decontamination was not possible (e.g. due to concerns over the structural integrity of the building), mitigation measures have been installed. (authors)

Sinclair, Philip [AMEC, UK (United Kingdom)

2012-07-01T23:59:59.000Z

190

Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant  

SciTech Connect (OSTI)

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

Hickey, Eva E.; Strom, Daniel J.

2005-08-01T23:59:59.000Z

191

2012-2013 Diagnostic Radiology Fellows Cardiovascular Imaging  

E-Print Network [OSTI]

dbweinreb@ Pediatric Radiology Body Imaging 1st yr. Neuroradiology NCI Body Mammography Sonya Edwards 149042012-2013 Diagnostic Radiology Fellows Cardiovascular Imaging Nuclear Medicine David Weinreb 14895 14909 laxpati@ Michael Kim 14961 mjjkim@ Vascular and Interventional Radiology Charles Kosydar 14908

Sonnenburg, Justin L.

192

The long-term problems of contaminated land: Sources, impacts and countermeasures  

SciTech Connect (OSTI)

This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'').

Baes, C.F. III

1986-11-01T23:59:59.000Z

193

Federal Radiological Monitoring and Assessment Center  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy, procedures, authorities, and requirements for the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC), as set forth in the Federal Radiological Emergency Response Plan (FRERP). This directive does not cancel another directive. Canceled by DOE O 153.1.

1992-12-02T23:59:59.000Z

194

Memorandum, Reporting of Radiological Sealed Sources Transactions  

Broader source: Energy.gov [DOE]

The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the Office of Information Management, within the Office of Environment, Health, Safety and Security.

195

Radiological health aspects of uranium milling  

SciTech Connect (OSTI)

This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

Fisher, D.R.; Stoetzel, G.A.

1983-05-01T23:59:59.000Z

196

Nevada Test Site Radiological Control Manual  

SciTech Connect (OSTI)

This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council Nevada Test Site

2010-02-09T23:59:59.000Z

197

Nevada Test Site Radiological Control Manual  

SciTech Connect (OSTI)

This document supersedes DOE/NV/11718--079, “NV/YMP Radiological Control Manual,” Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council - Nevada Test Site

2009-10-01T23:59:59.000Z

198

Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns  

SciTech Connect (OSTI)

In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

1999-01-21T23:59:59.000Z

199

CRAD, Radiological Controls - Oak Ridge National Laboratory TRU...  

Broader source: Energy.gov (indexed) [DOE]

Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A...

200

Unified Resolve 2014: A Proof of Concept for Radiological Support...  

Office of Environmental Management (EM)

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders...

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Radiological survey of the Shpack Landfill, Norton, Massachusetts  

SciTech Connect (OSTI)

The results of a radiological survey of the Shpack Landfill, Norton, Massachusetts, are given in this report. The survey was conducted over approximately eight acres which had received radioactive wastes from 1946 to 1965. The survey included measurement of the following: external gamma radiation at the surface and at 1 m (3 ft) above the surface throughout the site; beta-gamma exposure rates at 1 cm (0.4 in.) from the surface throughout the site; concentrations of /sup 226/Ra, /sup 238/U, and /sup 235/U in surface and subsurface soil on the site; and concentrations of /sup 226/Ra, /sup 238/U, /sup 235/U, /sup 230/Th, and /sup 210/Pb in groundwater on the site and in surface water on and near the site. Results indicate that the radioactive contamination is confined to the site and to the swamp immediately adjacent to the site.

Cottrell, W.D.; Haywood, F.F.; Witt, D.A.; Myrick, T.E.; Goldsmith, W.A.; Shinpaugh, W.H.; Loy, E.T.

1981-12-01T23:59:59.000Z

202

The Northern Marshall Islands radiological survey: Data and dose assessments  

SciTech Connect (OSTI)

Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for {sup 137}Cs, {sup 90}Sr, {sup 239+240}Pu and {sup 241}Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from {sup 137}Cs accounts for about 10% to 30% of the dose. {sup 239+240}Pu and {sup 241}Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y{sup -1}. The background dose in the Marshall Islands is estimated to be 2.4 mSv y{sup -1} to 4.5 mSv y{sup -1}. The 50-y integral dose ranges from 0.5 to 65 mSv. 35 refs., 2 figs., 9 tabs.

Robison, W.L.; Noshkin, V.E.; Conrado, C.L. [Lawrence Livermore National Lab., CA (United States)] [and others

1997-07-01T23:59:59.000Z

203

Feed gas contaminant removal in ion transport membrane systems  

SciTech Connect (OSTI)

An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

2012-04-03T23:59:59.000Z

204

A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569  

SciTech Connect (OSTI)

Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

Boe, Timothy [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States)] [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States); Lemieux, Paul [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)] [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Washington, DC 20460 (United States)] [U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Hayes, Colin [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)] [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)

2013-07-01T23:59:59.000Z

205

Integrating pathology and radiology disciplines: an emerging opportunity?  

E-Print Network [OSTI]

Pediatric vascular malformations: pathophysiology, diagnosis, and the role of interventional radiology.

Sorace, James; Aberle, Denise R; Elimam, Dena; Lawvere, Silvana; Tawfik, Ossama; Wallace, W Dean

2012-01-01T23:59:59.000Z

206

Method of treating fluoride contaminated wastes  

SciTech Connect (OSTI)

A method for treating spent aluminum smelting potliner material containing fluoride contaminants is described which comprises: adding silica to the material to form a mixture thereof; elevating the temperature of the mixture within the range of 1,000/sup 0/ to 1,700/sup 0/C. to form a slag; providing sufficient silica in the mixture and forming the slag in the presence of sufficient water for pyrohydrolysis conditions resulting in the volatilization of substantially all of the fluoride contaminants mostly in the form of hydrogen fluoride; and cooling the slag remaining after volatilizatiion of substantially all of the fluoride contaminants to produce an insoluble silicate glass-residue containing any remaining portion of the fluoride contaminants in an immobile state.

Davis, P.K.; Kakaria, V.K.

1988-04-05T23:59:59.000Z

207

Nuclear Material Packaging Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

2008-03-07T23:59:59.000Z

208

The Health Physics and Radiological Health  

E-Print Network [OSTI]

of the nuclear data required to compute this constant is available (Kocher 1981) for approximately 500 nuclides important to dosimetry and radiological assessment applications, and it has been used to compute a table

209

Apparatus for safeguarding a radiological source  

DOE Patents [OSTI]

A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

Bzorgi, Fariborz M

2014-10-07T23:59:59.000Z

210

CRAD, Radiological Controls - Idaho Accelerated Retrieval Project...  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Retrieval Project Phase II CRAD, Radiological Controls - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal...

211

Method for removing contaminants from plastic resin  

DOE Patents [OSTI]

A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2008-12-09T23:59:59.000Z

212

US Department of Energy Radiological Control Manual  

SciTech Connect (OSTI)

This manual establishes practices for the conduct of radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. (VC)

Not Available

1992-06-01T23:59:59.000Z

213

US Department of Energy Radiological Control Manual  

SciTech Connect (OSTI)

This manual establishes practices for the conduct of radiological control activities. The Manual states DOE's positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. (VC)

Not Available

1992-06-01T23:59:59.000Z

214

Results of the radiological survey at the Sacandaga site Glenville, New York. Waste Management Research and Development Programs  

SciTech Connect (OSTI)

The Sacandaga site, located on Sacandaga Road, Glenville, New York, was operated by the General Electric Company for the Atomic Energy Commission (AEC) between 1947 and 1951. Originally used for the study and development of radar during World War II, the facilities housed later operations involving physics studies and sodium technology development in support of breeder reactor design and other AEC programs. Though not in use since the original equipment was dismantled and removed in the early 1950s, portions of the 51-acre site are known to contain buried rubble from demolished structures used in former operations. At the request of the Office of Naval Reactors through the Office of Remedial Action and Waste Technology, a characterization of current radiological conditions over the site was performed between August and October 1989. The survey included the measurement of direct radiation levels (gamma, alpha, and beta-gamma) over all surfaces both inside and outside the building and tunnel, radionuclide analysis of systematic, biased, and auger hole soil samples, and analysis of sediments from underground structures. Gamma logging of auger holes was conducted and removable contamination levels inside the tunnel were determined. Samples of soil and structural materials from within and around an excavated concrete bunker were analyzed to determine concentrations of radionuclides and nonradioactive elemental beryllium.

Foley, R.D.; Cottrell, W.D.; Carrier, R.F.

1992-08-01T23:59:59.000Z

215

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:ComputingFusionSanGE

216

Letter Report - Verification Results for the Non-Real Property Radiological Release Program at the West Valley Demonstration Project, Ashford, New York  

SciTech Connect (OSTI)

The objective of the verification activities is to provide an independent review of the design, implementation, and performance of the radiological unrestricted release program for personal property, materials, and equipment (non-real property).

M.A. Buchholz

2009-04-29T23:59:59.000Z

217

Results of the radiological survey at the New Betatron Building, Granite City Steel facility, Granite City, Illinois (GSG002)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the New Betatron Building, located in the South Plant facility of Granite City Steel Division, 1417 State Street, Granite City, Illinois. The survey was performed in August 1991. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U, as a result of work done for the Atomic Energy Commission (AEC) from 1958 to 1966. The survey included a surface gamma scan of the ground surface outdoors near the building, the floor and walls in all accessible areas inside the building, and the roof; measurement of beta-gamma dose rates, alpha radiation levels, and removable alpha and beta-gamma activity levels at selected locations inside the building and on the roof; and radionuclide analysis of outdoor soil samples and indoor samples of shield-wall fill material land debris. Analysis of soil, shield-wall fill material, debris, and smear samples showed no residual {sup 238}U attributable to former AEC-supported operations at this site. None of the indoor or outdoor gamma exposure rate measurements were elevated above DOE guidelines. The slight elevations in gamma levels found outdoors and on the roof over the shield wall are typical of naturally occurring radioactive substances present in coal ash and cinders in the fill material surrounding the building and in concrete and cinders used in constuction of the shield wall. The slightly elevated gamma levels measured at soil sampling locations can be attributed to the presence of naturally occurring radionuclides. In all samples, {sup 226}Ra and {sup 238}U appeared to be in equilibrium, indicating that these radionuclides were of natural origin and not derived from former AEC activities at this site.

Murray, M.E.; Uziel, M.S.

1992-01-01T23:59:59.000Z

218

The effects of using Cesium-137 teletherapy sources as a radiological weapon (dirty bomb)  

E-Print Network [OSTI]

While radioactive sources used in medical diagnosis do not pose a great security risk due to their low level of radioactivity, therapeutic sources are extremely radioactive and can presumably be used as a radiological weapon. Cobalt-60 and Cesium-137 sources are the most common ones used in radiotherapy with over 10,000 of such sources currently in use worldwide, especially in the developing world, which cannot afford modern accelerators. The present study uses computer simulations to investigate the effects of using Cesium-137 sources from teletherapy devices as a radiological weapon. Assuming a worst-case terrorist attack scenario, we estimate the ensuing cancer mortality, land contamination, evacuation area, as well as the relevant evacuation, decontamination, and health costs in the framework of the linear risk model. The results indicate that an attack with a Cesium-137 dirty bomb in a large metropolitan city (especially one that would involve several teletherapy sources) although would not cause any sta...

Liolios, Theodore

2009-01-01T23:59:59.000Z

219

Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities  

SciTech Connect (OSTI)

This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs.

Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

1986-01-01T23:59:59.000Z

220

Urandium mill tailings remedial action program. Radiological survey of Shiprock vicinity property SH06, Shiprock, New Mexico, August-November 1982  

SciTech Connect (OSTI)

The radiological assessment conducted at the Shiprock vicinity property SH06 by the ANL Radiological Survey Group indicated background levels of radioactivity within the residential structure. Radiation exposure rates were less than the 20 ..mu..R/h above background limit specified in the EPA Standard (40 CFR 192.12(b)(2)). Short-term radon daughter measurements did not exceed the 0.02 WL (or 20 mWL) limit for average annual concentration including background as specified in the EPA Standard (40 CFR 192.12(b)(1)). The assessment indicated elevated levels of radioactivity at several areas in the outside environs. General areas of elevated radioactivity were found over almost the entire frontyard, encompassing about 1300 ft/sup 2/ (120 m/sup 2/), and at the west side of the residence, encompassing about 460 ft/sup 2/ (43 m/sup 2/). Radiochemical analysis of the soil sample collected from the frontyard near the residence indicated a radium concentration of 24 +- 2 pCi/g, which is in excess of the limit of 5 pCi/g above background, averaged over the first 15 cm of soil below the surface, as specified in Section 192.12(a)(1) of the EPA Standard. Elevated levels were also found at a 37-ft/sup 2/ (3.4-m/sup 2/) strip of land along the east property line, and in the backyard, at a small shack encompassing about 21 ft/sup 2/ (2.0 m/sup 2/) of land. From soil sample analyses and the history of the site, the contaminating material appears to be residual radioactive material under the provisions of the Uranium Mill Tailings Radiation Control Act of 1978 in the form of radium-enhanced material (i.e., tailings). Since the surface soil contamination levels exceed the limits specified in the EPA Standard, remedial action for this vicinity site should be considered. 9 references, 4 figures, 5 tables.

Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

1984-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Bioremediation of contaminated groundwater  

DOE Patents [OSTI]

An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

Hazen, T.C.; Fliermans, C.B.

1995-01-24T23:59:59.000Z

222

Contamination analysis unit  

DOE Patents [OSTI]

The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

Gregg, Hugh R. (Livermore, CA); Meltzer, Michael P. (Livermore, CA)

1996-01-01T23:59:59.000Z

223

Contamination analysis unit  

DOE Patents [OSTI]

The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

Gregg, H.R.; Meltzer, M.P.

1996-05-28T23:59:59.000Z

224

Bioremediation of contaminated groundwater  

DOE Patents [OSTI]

An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

Hazen, Terry C. (Augusta, GA); Fliermans, Carl B. (Augusta, GA)

1995-01-01T23:59:59.000Z

225

Results of the radiological verification survey at the former Herring-Hall-Marvin Safe Company, 1550 Grand Boulevard, Hamilton Ohio (HO001V)  

SciTech Connect (OSTI)

During the period between the 1940s and early 1950s, the Herring-Hall-Marvin Safe Company, 1550 Grand Boulevard, Hamilton, Ohio, was one company under subcontract to the Manhattan Engineer District (MED), and the Atomic Energy Commission (AEC), the lead agencies in the development of nuclear energy for defense-related projects. The US Department of Energy (DOE) conducted radiological surveys of these sites to evaluate current radiological conditions as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). In 1988, a radiological survey of the Herring-Hall-Marvin Safe Company facility was conducted, and after small fragments of uranium metal were removed, no beta or gamma radiation above background was detected and the building was dismissed from any additional DOE restrictions. In 1993, it was discovered that a portion of the actual machining work was conducted on the third floor of the facility, located in the southeastern comer of the building. At the request of DOE, this part of the facility was radiologically surveyed by an ORNL survey team to determine whether fixed surface contamination could be found that might exceed the DOE guidelines. Results of this radiological survey indicated {sup 238}U contamination in excess of the DOE criteria for surface contamination, and the site was recommended for remediation. In February and March of 1995, a verification survey of the third floor of the former Herring-Hall-Marvin Safe Company facility by an ORNL survey team was performed in conjunction with decontamination operations conducted under the supervision of Bechtel National Incorporated. The verification survey included gamma scans at the surface and at one meter, alpha and beta-gamma scans for fixed contamination, and smears for transferable contamination.

Murray, M.E.; allred, J.F.; Johnson, C.A.

1995-11-01T23:59:59.000Z

226

The radiological impact of the 2000 Hanford Fire (24-Command Fire)  

E-Print Network [OSTI]

contaminated areas of the Hanford Site, but very little on the land in between. Once soil concentrations were determined, resuspension factors were applied to estimate releases of material from these areas. A Hanford-specific diffusion and dispersion program...

Henderson, Ashley David

2001-01-01T23:59:59.000Z

227

Los Alamos racquetball contamination incident  

SciTech Connect (OSTI)

Several employees of the Los Alamos Plutonium Facility were found to have low levels of radioactivity on their hands and clothing when they arrived for work one morning. The initial concern was that the stringent contamination or material controls at the facility had failed, and that one or more of the employees had either accidentally or intentionally removed plutonium from the Laboratory premises. Fortunately, however, an investigation revealed that the source of the radioactivity was radon daughters electrostatically collected upon the surface of the racquetball and transferred by physical contact to the employees during an early morning racquetball game. This paper describes the events leading to the discovery of this phenomenon. 1 figure.

McAtee, J.L.; Stafford, R.G.; Dowdy, E.J.; Prestwood, R.J.

1985-01-01T23:59:59.000Z

228

Contamination Control Techniques  

SciTech Connect (OSTI)

Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

EBY, J.L.

2000-05-16T23:59:59.000Z

229

Radiological Characterization and Final Facility Status Report Tritium Research Laboratory  

SciTech Connect (OSTI)

This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

Garcia, T.B.; Gorman, T.P.

1996-08-01T23:59:59.000Z

230

Radiological Scoping Survey of the Scotia Depot, Scotia, NY  

SciTech Connect (OSTI)

The objectives of the radiological scoping survey were to collect adequate field data for use in evaluating the radiological condition of Scotia Depot land areas, warehouses, and support buildings.

Bailey, E. N.

2008-02-25T23:59:59.000Z

231

Bioremediation of contaminated groundwater  

DOE Patents [OSTI]

Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

232

E-Print Network 3.0 - arms aerial radiological Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Diagnostic Radiology * Clinical Rotation Breast Imaging... * Clinical Rotation Pediatric Radiology * Clinical Rotation Nuclear Medicine Semester ... Source: VandeVord,...

233

E-Print Network 3.0 - anticipated radiological dose Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- thropomorphic models. II. Organ doses from computed tomographic examinations in pediatric radiology. Neuherberg... dose at CT in pediatric patients. Radiology...

234

Environmental Health & Safety Office of Radiological Safety  

E-Print Network [OSTI]

Environmental Health & Safety Office of Radiological Safety Page 1 of 2 FORM LU-1 Revision 01 1 safety training and submit this registration to the LSO prior to use of Class 3B or 4 lasers. A copy will be returned to the Laser Supervisor to be filed in the Laboratory Laser Safety Notebook. Both the Laser

Houston, Paul L.

235

Nuclear Engineering Catalog 2013 Radiological Concentration  

E-Print Network [OSTI]

Nuclear Engineering Catalog 2013 Radiological Concentration Fall Math 141 or 147 (4) FA, SP, SU-approved by the department. Courses in Nuclear Engineering other than 500, 502 or 598 may also be used as technical electives on academic performance. Factors considered include overall grade point average, performance in selescted

Tennessee, University of

236

Nuclear Engineering Catalog 2014 Radiological Concentration  

E-Print Network [OSTI]

Nuclear Engineering Catalog 2014 Radiological Concentration Fall Math 141 or 147 (4) FA, SP, SU-approved by the department. Courses in Nuclear Engineering other than 500, 502 or 598 may also be used as technical electives. No more than four (4) credit hours of nuclear engineering courses in which a C- or lower is the highest

Grissino-Mayer, Henri D.

237

Subsurface contaminants focus area  

SciTech Connect (OSTI)

The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

NONE

1996-08-01T23:59:59.000Z

238

Radiological survey of the inactive uranium-mill tailings at Gunnison, Colorado  

SciTech Connect (OSTI)

The findings of a radiological survey of the inactive uranium-mill site at Gunnison, Colorado, conducted in May 1976, are presented. Results of surface soil sample analyses and direct gamma radiation measurements indicate limited spread of tailings off the site. The only significant above background measurements off the site were obtained in an area previously covered by the tailings pile. There was little evidence of contamination of the surface or of unconfined groundwater in the vicinity of the tailings pile; however, the hydrologic conditions at the site indicate a potential for such contamination. The concentration of /sup 226/Ra in all water samples except one from the tailings pile was well below the concentration guide for drinking water. The subsurface distribution of /sup 226/Ra in 14 bore holes located on and around the tailings pile was calculated from gamma ray monitoring data obtained jointly with Ford, Bacon and Davis Utah Inc.

Haywood, F.F.; Jacobs, D.G.; Hubbard, H.M. Jr.; Ellis, B.S.; Shinpaugh, W.H.

1980-03-01T23:59:59.000Z

239

Complexity of Groundwater Contaminants at DOE Sites  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities. Note that Riley and Zachara analyzed the data from only 18 sites/facilities including 91 plumes. In this paper, we present the results of statistical analyses of the data in the GWD as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara. The difference between our results and those summarized in the 1992 report by Riley and Zachara could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination. Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such as Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone ccount for 71% of the value of the remediation work.

Hazen, T.C.; Faybishenko, B.; Jordan, P.

2010-12-03T23:59:59.000Z

240

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect (OSTI)

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE  

SciTech Connect (OSTI)

Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

Donna Post Guillen

2013-05-01T23:59:59.000Z

242

Mechanisms of contaminant migration from grouted waste  

SciTech Connect (OSTI)

Low-level radioactive decontaminated salt solution is generated at the Savannah River Site (SRS) from the In-Tank Precipitation process. The solution is mixed with cement, slag, and fly ash, to form a grout, termed ``Saltstone``, that will be disposed in concrete vaults at the Saltstone Disposal Facility (SDF) [1]. Of the contaminants in the Saltstone, the greatest concern to SRS is the potential release of nitrate to the groundwater because of the high initial nitrate concentration (0.25 g/cm{sup 3}) in the Saltstone and the low Safe Drinking Water Act (SDWA) maximum contaminant level (MCL) of 44 mg/L. The SDF is designed to allow a slow, controlled release over thousands of years. This paper addresses a modeling study of nitrate migration from intact non-degraded concrete vaults in the unsaturated zone for the Radiological Performance Assessment (PA) of the SRS Saltstone Disposal Facility [3]. The PA addresses the performance requirements mandated by DOE Order 5820.2A [4].

Magnuson, S.O. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Yu, A.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

1992-12-31T23:59:59.000Z

243

Ecotoxicity literature review of selected Hanford Site contaminants  

SciTech Connect (OSTI)

Available information on the toxicity, food chain transport, and bioconcentration of several Hanford Site contaminants were reviewed. The contaminants included cesium-137, cobalt-60, europium, nitrate, plutonium, strontium-90, technetium, tritium, uranium, and chromium (III and VI). Toxicity and mobility in both aquatic and terrestrial systems were considered. For aquatic systems, considerable information was available on the chemical and/or radiological toxicity of most of the contaminants in invertebrate animals and fish. Little information was available on aquatic macrophyte response to the contaminants. Terrestrial animals such as waterfowl and amphibians that have high exposure potential in aquatic systems were also largely unrepresented in the toxicity literature. The preponderance of toxicity data for terrestrial biota was for laboratory mammals. Bioconcentration factors and transfer coefficients were obtained for primary producers and consumers in representative aquatic and terrestrial systems; however, little data were available for upper trophic level transfer, particularly for terrestrial predators. Food chain transport and toxicity information for the contaminants were generally lacking for desert or sage brush-steppe organisms, particularly plants and reptiles

Driver, C.J.

1994-03-01T23:59:59.000Z

244

Applications of RESRAD family of computer codes to sites contaminated with radioactive residues.  

SciTech Connect (OSTI)

The RESIL4D family of computer codes was developed to provide a scientifically defensible answer to the question ''How clean is clean?'' and to provide useful tools for evaluating human health risk at sites contaminated with radioactive residues. The RESRAD codes include (1) RESRAD for soil contaminated with radionuclides; (2) RESRAD-BUILD for buildings contaminated with radionuclides; (3) RESRAD-CHEM for soil contaminated with hazardous chemicals; (4) RESRAD-BASELINE for baseline risk assessment with measured media concentrations of both radionuclides and chemicals; (5) RESRAD-ECORISK for ecological risk assessment; (6) RESRAD-RECYCLE for recycle and reuse of radiologically contaminated metals and equipment; and (7) RESRAD-OFFSITE for off-site receptor radiological dose assessment. Four of these seven codes (RESRAD, RESRAD-BUILD, RESRAD-RECYCLE, and RESRAD-OFFSITE) also have uncertainty analysis capabilities that allow the user to input distributions of parameters. RESRAD has been widely used in the United States and abroad and approved by many federal and state agencies. Experience has shown that the RESRAD codes are useful tools for evaluating sites contaminated with radioactive residues. The use of RESRAD codes has resulted in significant savings in cleanup cost. Analysis of 19 site-specific uranium guidelines is discussed in the paper.

Yu, C.; Kamboj, S.; Cheng, J.-J.; LePoire, D.; Gnanapragasam, E.; Zielen, A.; Williams, W. A.; Wallo, A.; Peterson, H.

1999-10-21T23:59:59.000Z

245

System for removing contaminants from plastic resin  

DOE Patents [OSTI]

A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2010-11-23T23:59:59.000Z

246

Organic contaminant separator  

DOE Patents [OSTI]

A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

Del Mar, P.

1993-12-28T23:59:59.000Z

247

NEW MATERIALS DEVELOPED TO MEET REGULATORY AND TECHNICAL REQUIREMENTS ASSOCIATED WITH IN-SITU DECOMMISSIONING OF NUCLEAR REACTORS AND ASSOCIATED FACILITIES  

SciTech Connect (OSTI)

For the 2010 ANS Embedded Topical Meeting on Decommissioning, Decontamination and Reutilization and Technology, Savannah River National Laboratory's Mike Serrato reported initial information on the newly developed specialty grout materials necessary to satisfy all requirements associated with in-situ decommissioning of P-Reactor and R-Reactor at the U.S. Department of Energy's Savannah River Site. Since that report, both projects have been successfully completed and extensive test data on both fresh properties and cured properties has been gathered and analyzed for a total of almost 191,150 m{sup 3} (250,000 yd{sup 3}) of new materials placed. The focus of this paper is to describe the (1) special grout mix for filling the P-Reactor vessel (RV) and (2) the new flowable structural fill materials used to fill the below grade portions of the facilities. With a wealth of data now in hand, this paper also captures the test results and reports on the performance of these new materials. Both reactors were constructed and entered service in the early 1950s, producing weapons grade materials for the nation's defense nuclear program. R-Reactor was shut down in 1964 and the P-Reactor in 1991. In-situ decommissioning (ISD) was selected for both facilities and performed as Comprehensive Environmental Response, Compensations and Liability Act actions (an early action for P-Reactor and a removal action for R-Reactor), beginning in October 2009. The U.S. Department of Energy concept for ISD is to physically stabilize and isolate intact, structurally robust facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities), or storing radioactive materials. Funding for accelerated decommissioning was provided under the American Recovery and Reinvestment Act. Decommissioning of both facilities was completed in September 2011. ISD objectives for these CERCLA actions included: (1) Prevent industrial worker exposure to radioactive or hazardous contamination exceeding Principal Threat Source Material levels; (2) Minimize human and ecological exposure to unacceptable risk associated with radiological and hazardous constituents that are or may be present; (3) Prevent to the extent practicable the migration of radioactive or hazardous contaminants from the closed facility to the groundwater so that concentrations in groundwater do not exceed regulatory standards; (4) Eliminate or control all routes of human exposure to radiological and chemical contamination; and (5) Prevent animal intruder exposure to radioactive and hazardous contamination.

Blankenship, J.; Langton, C.; Musall, J.; Griffin, W.

2012-01-18T23:59:59.000Z

248

In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268  

SciTech Connect (OSTI)

Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

2012-07-01T23:59:59.000Z

249

Radiological survey of the former Baker Brothers, Inc. site, 2551--2555 Harleau Place, Toledo, Ohio (BTO001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted investigative radiological surveys at the REMS, Inc., and the Doug Beet Company, 2551-2555 Harleau Place, Toledo, Ohio (BTO001) in 1988. The purpose of the surveys was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U, as a result of work contracted to the Manhattan Engineer District (MED). The survey included gamma scans; directly measured alpha, beta, and gamma radiation levels; transferable contamination levels; and soil, dust, debris, and air sampling for radionuclide analyses. The survey and sampling covered accessible portions of the exterior ground surface, roof, and interiors of buildings. Results of the surveys demonstrated four general areas having radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria for {sup 238}U outdoors and as surface contamination on shelves in one building.

Foley, R.D.; Floyd, L.M.

1992-03-01T23:59:59.000Z

250

Portable spotter for fluorescent contaminants on surfaces  

DOE Patents [OSTI]

A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.

Schuresko, Daniel D. (Oak Ridge, TN)

1980-01-01T23:59:59.000Z

251

NV/YMP RADIOLOGICAL CONTROL MANUAL  

SciTech Connect (OSTI)

This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

2004-11-01T23:59:59.000Z

252

Solvent cleaning system and method for removing contaminants from solvent used in resin recycling  

DOE Patents [OSTI]

A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2009-01-06T23:59:59.000Z

253

LEACHING BEHAVIOR OF PETROLEUM CONTAMINATED SOILS STABILIZED WITH HIGH CARBON CONTENT FLY ASH  

E-Print Network [OSTI]

1 LEACHING BEHAVIOR OF PETROLEUM CONTAMINATED SOILS STABILIZED WITH HIGH CARBON CONTENT FLY ASH the stabilization of petroleum- contaminated soils (PCSs) using another recycled material, high carbon content fly; however, the level of petroleum contamination has a significant effect on the leaching properties

Aydilek, Ahmet

254

ORISE: Radiological Assessment and Monitoring System (RAMS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK MappingHistoryMedicalInternationalRadiological

255

EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York  

Broader source: Energy.gov [DOE]

The Naval Nuclear Propulsion Program (NNPP) intent to prepare an Environmental Assessment for a radiological work and storage building at the Knolls Atomic Power Laboratory (Kesselring Site in West Milton, New York. A new facility is needed to streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors.

256

In situ remediation of uranium contaminated groundwater  

SciTech Connect (OSTI)

In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

257

In situ remediation of uranium contaminated groundwater  

SciTech Connect (OSTI)

In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

Dwyer, B.P.; Marozas, D.C.

1997-02-01T23:59:59.000Z

258

Radiological standards and calibration laboratory capabilities  

SciTech Connect (OSTI)

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest Laboratory (PNL), performs calibrations and upholds reference standards necessary to maintain traceability to national radiological standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE sites, and research programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site`s 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, and thermoluminescent and radiochromic dosimetry. The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, and a beta standards laboratory used for beta energy response studies and beta reference calibrations. Calibrations are routinely performed for personnel dosimeters, health physics instrumentations, photon transfer standards and alpha, beta and gamma field sources used throughout the Hanford Site. This report describes the standards and calibrations laboratory. Photographs that accompany the text appear in the Appendix and are designated Figure A.1 through A.29.

Goles, R.W.

1995-01-01T23:59:59.000Z

259

Uranium Mill Tailings Remedial Action Program. Partial radiological survey of Shiprock vicinity property SH13 Shiprock, New Mexico, November 1982  

SciTech Connect (OSTI)

As part of a detailed radiological assessment of the vicinity properties at Shiprock, a comprehensive survey of the vicinity property designated as SH13 was initiated on November 19, 1982. At that time, a single residential structure existed in the northwest corner of the property. The lands surrounding the structure were extensively cluttered with junk. The initial assessment activities were limited to measurements within the residential structure of the ambient external penetrating radiation level at a 1-meter height and analyses of indoor air samples for airborne radioactivity. The external penetrating radiation exposure rate (12.3 ..mu..R/h) was less than the 20 ..mu..R/h above background limit specified in the EPA Standard (40 CFR 192.12(b)(2)). As determined by the air samples, the short-term radon daughter concentration within the structure (0.36 mWL) did not exceed the 0.02 WL (or 20 mWL) limit for average annual concentration including background as specified in the EPA Standard. Further measurements required to completely determine the radiological status of this vicinity property, such as measurements of surface radiation both indoors and outdoors and collection and analyses of soil samples, were planned for the final phase of this assessment. However, that phase of the program was terminated before these measurements were accomplished. Thus, the extent of outdoor radiological contamination is presently unknown, and the evaluation of indoor contamination (if any) is incomplete.

Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

1984-05-01T23:59:59.000Z

260

Advanced Assay Systems for Radionuclide Contamination in Soils  

SciTech Connect (OSTI)

Through the support of the Department of Energy (DOE) Office of Environmental Management (EM) Technical Assistance Program, the Idaho National Laboratory (INL) has developed and deployed a suite of systems that rapidly scan, characterize, and analyze surface soil contamination. The INL systems integrate detector systems with data acquisition and synthesis software and with global positioning technology to provide a real-time, user-friendly field deployable turn-key system. INL real-time systems are designed to characterize surface soil contamination using methodologies set forth in the Multi-Agency Radiation Surveys and Site Investigation Manual (MARSSIM). MARSSIM provides guidance for planning, implementing, and evaluating environmental and facility radiological surveys conducted to demonstrate compliance with a dose or risk-based regulation and provides real-time information that is immediately available to field technicians and project management personnel. This paper discusses the history of the development of these systems and describes some of the more recent examples and their applications.

J. R. Giles; L. G. Roybal; M. V. Carpenter; C. P. Oertel; J. A. Roach

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

OPEN AIR DEMOLITION OF FACILITIES HIGHLY CONTAMINATED WITH PLUTONIUM  

SciTech Connect (OSTI)

The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than ''hands on'' techniques.

LLOYD, E.R.

2007-05-31T23:59:59.000Z

262

Geotechnical properties of oil-contaminated Kuwaiti sand  

SciTech Connect (OSTI)

Large quantities of oil-contaminated sands resulted from exploded oil wells, burning oil fires, the destruction of oil storage tanks, and the formation of oil lakes in Kuwait at the end of the Gulf War. An extensive laboratory testing program was carried out to determine the geotechnical characteristics of this material. Testing included basic properties, compaction and permeability tests, and triaxial and consolidation tests on clean and contaminated sand at the same relative density. Contaminated specimens were prepared by mixing the sand with oil in the amount of 6% by weight or less to match field conditions. The influence of the type of oil, and relative density was also investigated by direct shear tests. The results indicated a small reduction in strength and permeability and an increase in compressibility due to contamination. The preferred method of disposal of this material is to use it as a stabilizing material for other projects such as road construction.

Al-Sanad, H.A.; Eid, W.K.; Ismael, N.F. [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering] [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering

1995-05-01T23:59:59.000Z

263

Radon induced surface contaminations in low background experiments  

SciTech Connect (OSTI)

In neutrinoless double-beta decay and dark matter searches, one of the main issues is to increase the experimental sensitivity through careful material selection and production, minimizing the background contributions. In order to achieve the required, extremely low, counting rates, very stringent requirements must be fulfilled in terms of bulk material radiopurity. As the experimental sensitivity increases, the bulk impurities in the detector components decrease, and surface contaminations start to play an increasingly significant role In fully active detectors, like cryogenic particle detectors, surface contaminations are a critical issue (as shown by the CUORICINO experiment). {sup 222}Rn is by far the most intense source of airborne radioactivity, and if a radio-pure material is exposed to environment where the Radon concentration is not minimized, {sup 210}Pb and {sup 210}Po contaminations can occur. The mechanisms and the dynamics of Radon-induced surface contaminations are reviewed, and specific solutions to prevent and to reject the induced background are presented.

Pattavina, L. [INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) (Italy)] [INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) (Italy)

2013-08-08T23:59:59.000Z

264

Situ treatment of contaminated groundwater  

DOE Patents [OSTI]

A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

2001-01-01T23:59:59.000Z

265

Managing contaminated sites  

SciTech Connect (OSTI)

This book summarizes the generic principles of contaminated site management. The book walks the reader through contaminated site identification, risk assessment and the evaluation of remediation alternatives. The book is divided into two major sections, problem diagnosis and development of site restoration. In problem diagnosis, the general principles of site investigation are discussed, including the objectives and differences between tier 1,2, and 3 investigations. The principles of data collection and analysis are presented. A small quantitative discussion of statistical analysis is presented but in keeping with the objectives of the text is not sufficient comprehensive or detailed to provide much of a guide for the practitioner. Chapters on contaminant fate and transport processes and risk assessment help the reader understand the role of these issues in site investigation and remedial planning. A chapter is also included on elements of a site characterization activity, which summarizes some of the key considerations in conducting a site investigation.

Asante-Duah, D.K.

1997-12-31T23:59:59.000Z

266

Comparison of potential radiological consequences from a spent-fuel repository and natural uranium deposits  

SciTech Connect (OSTI)

A general criterion has been suggested for deep geological repositories containing spent fuel - the repositories should impose no greater radiological risk than due to naturally occurring uranium deposits. The following analysis investigates the rationale of that suggestion and determines whether current expectations of spent-fuel repository performance are consistent with such a criterion. In this study, reference spent-fuel repositories were compared to natural uranium-ore deposits. Comparisons were based on intrinsic characteristics, such as radionuclide inventory, depth, proximity to aquifers, and regional distribution, and actual and potential radiological consequences that are now occurring from some ore deposits and that may eventually occur from repositories and other ore deposits. The comparison results show that the repositories are quite comparable to the natural ore deposits and, in some cases, present less radiological hazard than their natural counterparts. On the basis of the first comparison, placing spent fuel in a deep geologic repository apparently reduces the hazard from natural radioactive materials occurring in the earth's crust by locating the waste in impermeable strata without access to oxidizing conditions. On the basis of the second comparison, a repository constructed within reasonable constraints presents no greater hazard than a large ore deposit. It is recommended that if the naturally radioactive environment is to be used as a basis for a criterion regarding repositories, then this criterion should be carefully constructed. The criterion should be based on the radiological quality of the waters in the immediate region of a specific repository, and it should be in terms of an acceptable potential increase in the radiological content of those waters due to the existence of the repository.

Wick, O.J.; Cloninger, M.O.

1980-09-01T23:59:59.000Z

267

Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect (OSTI)

In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

2014-10-01T23:59:59.000Z

268

Uranium Mill Tailings Remedial Action Program. Partial radiological survey of Shiprock vicinity property SH14 Shiprock, New Mexico, October-November 1982  

SciTech Connect (OSTI)

As part of a detailed radiological assessment of the vicinity properties at Shiprock, a comprehensive survey of the vicinity property designated as SH14 was initiated during October and November 1982. At the time of the survey, vicinity property SH14 consisted of about 20 acres of open lands to the northeast of, and directly across the San Juan River from, the upper tailings pile at Shiprock. The lands consisted of a sandy soil, sparsley covered with trees and other vegetation. The partial assessment activities included determination of surface radiation levels on about a 2-meter grid spacing through direct instrument surveys and analysis of a soil sample collected from the area. The partial radiological assessment indicated elevated levels of radioactivity at several general areas within the open lands. Radiochemical analyses of the soil sample collected from one of these areas indicated a radium concentration of 18 +- 2 pCi/g, which is in excess of the limit of 5 pCi/g above background, averaged over the first 15 cm of soil below the surface, as specified in the EPA Standard (40 CFR 192). Subsurface soil sampling was not conducted, and thus the vertical extent of the radiological contamination is not known. Further measurements required to completely determine and accurately report the radiological status of this vicinity property, including additional direct instrument surveys, collection and analyses of soil samples, and the establishment of a 200-ft grid system, were planned for the final phase of this assessment. However, that phase of the program was cancelled before these measurements were accomplished. The total extent of the radiological contamination of vicinity property SH14 is presently unknown. Nonetheless, since the surface soil contamination levels exceeded the limits specified in the EPA Standard, remedial action for this vicinity site should be considered.

Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

1984-06-01T23:59:59.000Z

269

An aerial radiological survey of Pocatello and Soda Springs, Idaho and surrounding area, June--July 1986  

SciTech Connect (OSTI)

Three aerial radiological surveys were conducted during the period 16 June through 15 July 1986 over the towns of Pocatello, Soda Springs, and Fort Hall, Idaho and the surrounding areas. The surveys were performed for the United States Environmental Protection Agency (EPA) by the United States Department of Energy's (DOE) Remote Sensing Laboratory (RSL), utilizing the Aerial Measuring System (AMS). This work was completed in cooperation with a study by the EPA to conduct a dose assessment of human radiation exposure for industrial sources in Pocatello and Soda Springs, Idaho. The aerial surveys were performed to document the natural terrestrial radiological environment of the three localities and to map the spatial extent and degree of contamination due to phosphate milling operations. The results of these surveys will be used for planning ground-based measurements in addition to being incorporated into the dose assessment document. 4 refs., 14 figs., 6 tabs.

Berry, H.A.

1987-02-01T23:59:59.000Z

270

Rev. 04/2014: JAB Environmental and Radiological Health Sciences  

E-Print Network [OSTI]

Rev. 04/2014: JAB Environmental and Radiological Health Sciences Academic Policies, Guidelines....................................................................................................................... 3 Plan A Master of Science Program......................................................................................... 3 Plan B Master of Science Program

271

CRAD, Radiological Controls - Oak Ridge National Laboratory High...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C...

272

Model Annex for Preparedness and Response to Radiological Transportati...  

Office of Environmental Management (EM)

Response to Radiological Transportation Incidents.docx More Documents & Publications TEPP Model Needs Assessment Document First Responder Initial Response Procedure Hazardous...

273

Mercury contamination extraction  

DOE Patents [OSTI]

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

274

Radiological Threat Reduction | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323Program AccomplishmentsScienceRadiological

275

Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site  

SciTech Connect (OSTI)

This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs. Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. Radiological emissions at the PNNL Site result from Physical Sciences Facility (PSF) major emissions units. A team was established to determine how the PNNL Site would meet federal regulations and address guidelines developed to monitor and estimate offsite air emissions of radioactive materials. The result is a program that monitors the impact to the public from the PNNL Site.

Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Ted M.; Rhoads, Kathleen

2010-05-25T23:59:59.000Z

276

Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site  

SciTech Connect (OSTI)

This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters -- both beta and alpha emitters -- residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methods included the use of the Toulmin model of argument, represented using Toulmin diagrams, to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using "background makers"; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra.

Millsap, William J. [Mission Support Alliance, Richland, WA (United States); Brush, Daniel J. [Mission Support Alliance, Richland, WA (United States)

2013-11-13T23:59:59.000Z

277

In vitro gastrointestinal mimetic protocol for measuring bioavailable contaminants  

DOE Patents [OSTI]

The present invention relates to measurements of contaminants in the soil and other organic or environmental materials, using a biologically relevant chemical analysis that will measure the amount of contaminants in a given sample that may be expected to be absorbed by a human being ingesting the contaminated soil. According to the present invention, environmental samples to be tested are added to a pre-prepared physiological composition of bile salts and lipids. They are thoroughly mixed and then the resulting mixture is separated e.g. by centrifugation. The supernatant is then analyzed for the presence of contaminants and these concentrations are compared to the level of contaminants in the untreated samples. It is important that the bile salts and lipids be thoroughly pre-mixed to form micelles.

Holman, Hoi-Ying N. (Berkeley, CA)

2000-01-01T23:59:59.000Z

278

Radioactive Contamination of Danish Territory  

E-Print Network [OSTI]

Risø-R-462 Radioactive Contamination of Danish Territory after Core-melt Accidents at the Barsebäck;#12;RIS0-R-462 RADIOACTIVE CONTAMINATION OF DANISH TERRITORY AFTER CORE-MELT ACCIDENTS AT THE BARSEBACK. An assessment is made of the radioactive contamination of Danish territory in the event of a core-melt accident

279

Process for minimizing solids contamination of liquids from coal pyrolysis  

DOE Patents [OSTI]

In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

Wickstrom, Gary H. (Yorba Linda, CA); Knell, Everett W. (Los Alamitos, CA); Shaw, Benjamin W. (Costa Mesa, CA); Wang, Yue G. (West Covina, CA)

1981-04-21T23:59:59.000Z

280

Containment of subsurface contaminants  

DOE Patents [OSTI]

A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

Corey, J.C.

1994-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Containment of subsurface contaminants  

DOE Patents [OSTI]

A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

Corey, John C. (Aiken, SC)

1994-01-01T23:59:59.000Z

282

GROUND WATER CONTAMINATION  

SciTech Connect (OSTI)

As required by the terms of the above referenced grant, the following summary serves as the Final Report for that grant. The grant relates to work performed at two separate sites, the Hoe Creek Underground Coal Gasification Site south of Gillette, Wyoming, and the Rock Springs In-Situ Oil Shale Retort Site near Rock Springs, Wyoming. The primary concern to the State of Wyoming at each site is ground water contamination (the primary contaminants of concern are benzene and related compounds), and the purpose of the grant has been to provide tiding for a Geohydrologist at the appropriate State agency, specifically the Land Quality Division (LQD) of the Wyoming Department of Environmental Quality. The LQD Geohydrologist has been responsible for providing technical and regulatory support to DOE for ground water remediation and subsequent surface reclamation. Substantial progress has been made toward remediation of the sites, and continuation of LQD involvement in the remediation and reclamation efforts is addressed.

Unknown

1999-09-01T23:59:59.000Z

283

Purifying contaminated water  

SciTech Connect (OSTI)

Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

Daughton, Christian G. (San Pablo, CA)

1983-01-01T23:59:59.000Z

284

THE RABIT: A RAPID AUTOMATED BIODOSIMETRY TOOL FOR RADIOLOGICAL TRIAGE  

E-Print Network [OSTI]

. Health Phys. 98(2):209­217; 2010 Key words: biological indicators; dosimetry; blood; cytogenetics-priority need in an environment of heightened concern over possible radiological or nuclear terrorist attacks of radiological injuries. A small improvised nuclear device (IND) would produce a major health emergency

285

FRMAC Interactions During a Radiological or Nuclear Event  

SciTech Connect (OSTI)

During a radiological or nuclear event of national significance the Federal Radiological Emergency Monitoring and Assessment Center (FRMAC) assists federal, state, tribal, and local authorities by providing timely, high-quality predictions, measurements, analyses and assessments to promote efficient and effective emergency response for protection of the public and the environment from the consequences of such an event.

Wong, C T

2011-01-27T23:59:59.000Z

286

Professor (Open Rank) Department of Nuclear, Plasma, and Radiological Engineering  

E-Print Network [OSTI]

Professor (Open Rank) Department of Nuclear, Plasma, and Radiological Engineering University of Illinois at Urbana-Champaign The Department of Nuclear, Plasma, and Radiological Engineering-qualified candidates with background in areas related to reactor power engineering and other nuclear applications

Ma, Yi

287

healthcare.utah.edu/radiology What is Nuclear Medicine?  

E-Print Network [OSTI]

expensive diagnostic tests or surgery. Tissues such as intestines, muscles, and blood vessels are difficulthealthcare.utah.edu/radiology Radiology What is Nuclear Medicine? Nuclear Medicine is a specialized to visualize on a standard X-ray. In Nuclear Medicine, a radioactive tracer is used so the tissue is seen more

Feschotte, Cedric

288

Porous Materials Porous Materials  

E-Print Network [OSTI]

1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

Berlin,Technische Universität

289

Surface Contamination Surface contamination from radioactive isotopes is a source of background in the Borex-  

E-Print Network [OSTI]

Chapter 5 Surface Contamination Surface contamination from radioactive isotopes is a source contamination is primarily a problem because the radioactive contaminants can be trans- ferred from the surfaces detector components that come in contact with the scintillator. Preventing radioactive contamination

290

Film Badge Application Radioactive Material Package Receipt Log  

E-Print Network [OSTI]

;RADIOACTIVE MATERIAL PACKAGE RECEIPT LOG DATE: DELIVERED BY: AUTHORIZED BY: Contamination Check DPM/100 cm2APPENDIX A Film Badge Application Radioactive Material Package Receipt Log Radioactive Material Package Receipt Form (Off-Campus Locations) Radiation / Contamination Survey Form #12;PERSONNEL MONITORING

Slatton, Clint

291

Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995  

SciTech Connect (OSTI)

Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

Smyre, J.L.; Moll, B.W.; King, A.L.

1996-06-01T23:59:59.000Z

292

Radiological survey of the inactive uranium-mill tailings at Falls City, Texas  

SciTech Connect (OSTI)

Results of a radiological survey conducted at the Falls City, Texas, site in July 1976 are presented. There are seven partial to fully stabilized tailings piles, and an overburden pile from an open-pit mine. Above ground gamma-ray exposure rate measurements show moderate levels of contamination throughout the area with a maximum exposure rate of 500 ..mu..R/hr above tailings pile 2. The average exposure rate over the different areas varied from 14 ..mu..R/hr over the southwest end of tailings pile 7 to 207 ..mu..R/hr over the northeast end of the same pile. Analyses of surface soil and dry-wash sediment samples, as well as calculations of subsurface /sup 226/Ra distribution, serve to define the spread of tailings around the area. Water erosion of the tailings is evident, but, because of abundant growth of vegetation on the tailings piles, wind erosion probably is not a major problem.

Haywood, F.F.; Christian, D.J.; Loy, E.T.; Lorenzo, D.; Ellis, B.S.

1980-10-01T23:59:59.000Z

293

Radiological survey of the inactive uranium-mill tailings at Rifle, Colorado  

SciTech Connect (OSTI)

Results of radiological surveys of two inactive uranium-mill sites near Rifle, Colorado, in May 1976 are presented. These sites are referred to as Old Rifle and New Rifle. The calculated /sup 226/Ra inventory of the latter site is much higher than at the older mill location. Data on above-ground measurements of gamma exposure rates, surface and near-surface concentration of /sup 226/Ra in soil and sediment samples, concentration of /sup 226/Ra in water, calculated subsurface distribution of /sup 226/Ra, and particulate radionuclide concentrations in air samples are given. The data serve to define the extent of contamination in the vicinity of the mill sites and their immediate surrounding areas with tailings particles. Results of these measurements were utilized as technical input for an engineering assessment of these two sites.

Haywood, F.F.; Jacobs, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Shinpaugh, W.H.

1980-06-01T23:59:59.000Z

294

Recovery from chemical, biological, and radiological incidents :  

SciTech Connect (OSTI)

To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

2012-06-01T23:59:59.000Z

295

Challenges in defining a radiologic and hydrologic source term for underground nuclear test centers, Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

The compilation of a radionuclide inventory for long-lived radioactive contaminants residual from nuclear testing provides a partial measure of the radiologic source term at the Nevada Test Site. The radiologic source term also includes potentially mobile short-lived radionuclides excluded from the inventory. The radiologic source term for tritium is known with accuracy and is equivalent to the hydrologic source term within the saturated zone. Definition of the total hydrologic source term for fission and activation products that have high activities for decades following underground testing involves knowledge and assumptions which are presently unavailable. Systematic investigation of the behavior of fission products, activation products and actinides under saturated or Partially saturated conditions is imperative to define a representative total hydrologic source term. This is particularly important given the heterogeneous distribution of radionuclides within testing centers. Data quality objectives which emphasize a combination of measurements and credible estimates of the hydrologic source term are a priority for near-field investigations at the Nevada Test Site.

Smith, D.K.

1995-06-01T23:59:59.000Z

296

Feed gas contaminant removal in ion transport membrane systems  

DOE Patents [OSTI]

Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2008-09-16T23:59:59.000Z

297

Analysis of Zinc 65 Contamination after Vacuum Thermal Process  

SciTech Connect (OSTI)

Radioactive contamination with a gamma energy emission consistent with {sup 65}Zn was detected in a glovebox following a vacuum thermal process. The contaminated components were removed from the glovebox and subjected to examination. Selected analytical techniques were used to determine the nature of the precursor material, i.e., oxide or metallic, the relative transferability of the deposit and its nature. The deposit was determined to be borne from natural zinc and was further determined to be deposited as a metallic material from vapor.

Korinko, Paul S.; Tosten, Michael H.

2013-01-01T23:59:59.000Z

298

Implementation of focused ion beam (FIB) system in characterization of nuclear fuels and materials  

SciTech Connect (OSTI)

Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. One of the first instruments to be acquired was a Dual Beam focused ion beam (FIB)-scanning electron microscope (SEM) to support preparation of transmission electron microscopy and atom probe tomography samples. Over the ensuing years, techniques have been developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not obtainable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting Dual Beam FIB technology to nuclear fuels characterization.

A. Aitkaliyeva; J. W. Madden; B. D. Miller; J I Cole; T A Hyde

2014-10-01T23:59:59.000Z

299

Contaminated nickel scrap processing  

SciTech Connect (OSTI)

The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

1994-12-01T23:59:59.000Z

300

Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present, to determine the potential for a release; (7) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes; and (8) Collect quality control samples. This Corrective Action Investigation Document (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense. Under the FFACO, this CAIP will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval.

Wickline, Alfred

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Atmospheric dispersion and the radiological consequences of normal airborne effluents from a nuclear power plant  

SciTech Connect (OSTI)

The relationship between the consequences of the normal exhaust of radioactive materials in air from nuclear power plants and atmospheric dispersion is studied. Because the source terms of the exhaust from a nuclear power plant are relatively low and their radiological consequences are far less than the corresponding authoritative limits, the atmospheric dispersion models, their various modifications, and selections of relevant parameters have few effects on those consequences. In the environmental assessment and siting, the emphasis should not be placed on the consequence evaluation of routine exhaust of nuclear power plants, and the calculation of consequences of the exhaust and atmospheric field measurements should be appropriately, simplified. 12 refs., 5 figs., 7 tabs.

Fang, D.; Yang, L. [Tsinghua Univ., Beijing (China); Sun, C.Z. [Suhou Nuclear Research Inst., Suzhou (China)

1995-01-01T23:59:59.000Z

302

Emission Standards for Contaminants (Iowa)  

Broader source: Energy.gov [DOE]

These regulations list emissions standards for various contaminants, and contain special requirements for anaerobic lagoons. These regulations also describe alternative emissions limits, which may...

303

DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites  

SciTech Connect (OSTI)

The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

Not Available

1989-03-01T23:59:59.000Z

304

Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of {sup 238}U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site.

Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

1997-08-01T23:59:59.000Z

305

Radiological survey of Latty Avenue in the vicinity of the former Cotter site, Hazelwood/Berkeley, Missouri (LM001)  

SciTech Connect (OSTI)

A radiological survey was conducted over a proposed construction corridor in the vicinity of the former Cotter site at 9200 Latty Avenue. The survey included gamma exposure rates at the ground surface and at 1 m above the surface throughout the site, sampling of surface soil, sampling of subsurface soil from auger holes, gamma logging of auger holes, and sampling of subsurface water. The results of the survey demonstrated some degree of radioactive contamination in all areas of the construction corridor, extending north and south in some regions onto adjacent private properties. Redistribution of the contamination by flooding, surface runoff, and road and utility line activities was evident. The pattern of contamination ranged from widespread to isolated spots and was found to occur from near the surface to depths of approx.1.8 m. The most highly contaminated region was noted on both sides of Latty Avenue adjacent to the former Cotter site. Concentrations of /sup 230/Th in soil from that region were as high as 16,000 pCi/g.

Cottrell, W.D.; Carrier, R.F.

1987-05-01T23:59:59.000Z

306

Bayesian Network Analysis of Radiological Dispersal Device Acquisitions  

E-Print Network [OSTI]

It remains unlikely that a terrorist organization could produce or procure an actual nuclear weapon. However, the construction of a radiological dispersal device (RDD) from commercially produced radioactive sources and conventional explosives could...

Hundley, Grant Richard

2012-02-14T23:59:59.000Z

307

Mobile autonomous robotic apparatus for radiologic characterization  

DOE Patents [OSTI]

A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

Dudar, Aed M. (Dearborn, MI); Ward, Clyde R. (Aiken, SC); Jones, Joel D. (Aiken, SC); Mallet, William R. (Cowichan Bay, CA); Harpring, Larry J. (North Augusta, SC); Collins, Montenius X. (Blackville, SC); Anderson, Erin K. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

308

A review of the radiological treatment  

SciTech Connect (OSTI)

The Draft Waste Management Programmatic Environmental Impact Statement (WM PEIS) was released by the U.S. Department of Energy (DOE) for public comment on September 22, 1995. Prepared in accordance with the National Environmental Policy Act (NEPA), the Final WM PEIS is currently scheduled for release in late summer 1996. The Draft WM PEIS was published after about 3 years of effort to select and evaluated the best alternatives for treating, storing, and disposing of the 50-year legacy of radioactive and chemically hazardous wastes existing within the DOE complex. The evaluation examined the potential health and environmental impacts of integrated waste management alternatives for five categories of waste types at 54 DOE sites. A primary consideration as a potential source of human health impacts at all sites is that of radiological releases resulting from postulated accidents involving facilities used to treat radioactive wastes. This paper first provides a brief, updated summary of the approach used to define and perform treatment facility accident analyses in the Draft WM PEIS. It reviews the selection of dominant sequences for the major sites most affected by the preferred waste management alternatives and highlights the salient accident analysis results. Finally, it summarizes and addresses key public and state and federal agency comments relating to accident analysis that were received in the public comment process.

Mueller, C.J.; Folga, S.; Nabelssi, B.; Kohout, E.

1996-07-01T23:59:59.000Z

309

Mobile autonomous robotic apparatus for radiologic characterization  

DOE Patents [OSTI]

A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

1999-08-10T23:59:59.000Z

310

Results of the radiological survey at 48 Schlosser Drive, Rochelle Park, New Jersey (RJ005)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956.MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from thisthorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy(DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 48 Schlosser Drive, Rochelle Park, New Jersey (RJO05), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

311

Results of the radiological survey at 77 Sinninger Street, Maywood, New Jersey (MJ052)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 77 Sinninger Street, Maywood, New Jersey (MJ052), was conducted on December 17, 1992. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

Foley, R.D.; Brown, K.S.

1993-06-01T23:59:59.000Z

312

Results of the radiological survey at 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Th derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

313

Results of the radiological survey at 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

314

Results of the radiological survey at 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Th derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 37 Schlosser Drive, Rochelle Park, New Jersey (RJ002), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

315

Results of the radiological survey at 48 Schlosser Drive, Rochelle Park, New Jersey (RJ005)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956.MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from thisthorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy(DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 48 Schlosser Drive, Rochelle Park, New Jersey (RJO05), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

316

Results of the radiological survey at 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 27 Schlosser Drive, Rochelle Park, New Jersey (RJ004), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

317

Results of the radiological survey at 31 Schlosser Drive, Rochelle Park, New Jersey (RJ003)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally {sup 232}Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 31 Schlosser Drive, Rochelle Park, New Jersey (RJ003), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

318

Results of the radiological survey at 31 Schlosser Drive, Rochelle Park, New Jersey (RJ003)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally [sup 232]Tb, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 31 Schlosser Drive, Rochelle Park, New Jersey (RJ003), was conducted on July 14, 1991. Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

319

Radioactive Contamination of Danish Territory  

E-Print Network [OSTI]

» & Risø-R-462 Radioactive Contamination of Danish Territory after Core-melt Accidents 1982 Risø National Laboratory, DK-4000 Roskilde, Denmark #12;RIS�-R-462 RADIOACTIVE CONTAMINATION. Heikel Vinther, L. Warming and A. Aarkrog Abstract. An assessment is made of the radioactive

320

Impacts of Contaminant Storage on Indoor Air Quality: Model Development  

E-Print Network [OSTI]

. Impacts of contaminant storage on indoor air quality: Model development. Atmospheric Environment. LBNL the buffering of airborne chemical species by building materials and furnishings in the indoor environment to the time scale of depletion of the compound from the storage medium, however, the total exposure

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Removal of Estrogenic Pollutants from Contaminated Water Using  

E-Print Network [OSTI]

Removal of Estrogenic Pollutants from Contaminated Water Using Molecularly Imprinted Polymers Z I H that this material may be appropriate for treating a complex mixture of estrogenic pollutants. The feasibility of removing estrogenic compounds from environmental water by the MIP was demonstrated using lake water spiked

Chen, Wilfred

322

Making Drinking Water Safer from Bacterial Contamination in Emergency Situations  

E-Print Network [OSTI]

. Avoid water having a dark color, an odor or containing floating materials since such things may indicate or floating matter. 2. Boil the water vigorously for at least 10 minutes. 3. After it cools, the waterMaking Drinking Water Safer from Bacterial Contamination in Emergency Situations Monty C. Dozier

323

Developing effective removal of caesium, strontium and uranium from contaminated soils and sediments  

E-Print Network [OSTI]

their migration from the source. One of the handful of contaminated soil and water remediation technologies being (National Nuclear Laboratory Ltd.) Nuclear materials processing has produced a large and complex legacy of radioactively contaminated ground (1, 2) . An immediate priority is the remediation of high activity fission

Burke, Ian

324

Rehabilitation of contaminated territories while liquidating enterprises of uranium mining industry of the CIS  

SciTech Connect (OSTI)

Uranium mining in the Russian Federation has caused contamination of the environment with solid, liquid and gaseous wastes. Radioactive materials are being leached from residual uranium ores and mill tailings piles. These contaminated areas are being decontaminated and recultivated. Ensuring radiation safety in remediating is of prime importance.

Karamushka, V.P.; Ostroborodov, V.V. [VNIPIPROMTECHNOLOGII, Moscow (Russian Federation)

1993-12-31T23:59:59.000Z

325

Characterization Investigation Study: Volume 3, Radiological survey of surface soils  

SciTech Connect (OSTI)

The Feed Materials Production Center was constructed to produce high purity uranium metal for use at various Department of Energy facilities. The waste products from these operations include general uncontaminated scrap and refuse, contaminated and uncontaminated metal scrap, waste oils, low-level radioactive waste, co-contaminated wastes, mixed waste, toxic waste, sludges from water treatment, and fly ash from the steam plant. This material is estimated to total more than 350,000 cubic meters. Other wastes stored in this area include laboratory chemicals and other combustible materials in the burn pit; fine waste stream sediments in the clear well; fly ash and waste oils in the two fly ash areas; lime-alum sludges and boiler plant blowdown in the lime sludge ponds; and nonradioactive sanitary waste, construction rubble, and asbestos in the sanitary landfill. A systematic survey of the surface soils throughout the Waste Storage Area, associated on-site drainages, and the fly ash piles was conducted using a Field Instrument for Detecting Low-Energy Radiation (FIDLER). Uranium is the most prevalent radioactive element in surface soil; U-238 is the principal radionuclide, ranging from 2.2 to 1790 pCi/g in the general Waste Storage Area. The maximum values for the next highest activity concentrations in the same area were 972 pCi/g for Th-230 and 298 pCi/g for U-234. Elevated activity concentrations of Th-230 were found along the K-65 slurry line, the maximum at 3010 pCi/g. U-238 had the highest value of 761 pCi/g in the drainage just south of pit no. 5. The upper fly ash area had the highest radionuclide activity concentrations in the surface soils with the maximum values for U-238 at 8600 pCi/g, U-235 at 2190 pCi/g, U-234 at 11,400 pCi/g, Tc-99 at 594 pCi/g, Ra-226 at 279 pCi/g, and Th-230 at 164 pCi/g.

Solow, A.J.; Phoenix, D.R.

1987-12-01T23:59:59.000Z

326

Book Review: Radiological Conditions in the Dnieper River Basin: Assessment by an International Expert Team and Recommendations for an Action Plan  

SciTech Connect (OSTI)

This article is a book review of a report from the International Atomic Energy Agency that was prepared by a team of scientists from Belarus, the Russian Federation, and Ukraine as an assessment of radiological contamination of the Dnieper River, which flows through these three countries. The topics covered begin with radioactive sources (actual and potential) including areas affected by the Chernobyl nuclear accident, nuclear power plants along the river and its tributaries, uranium mining and ore processing, radioactive waste storage and disposal sites, and non-power sources, such as medicine, industry, and research. The report continues with an assessment of human exposures to radiation from these sources. An additional area of consideration is radiological “hot spots” in the region. The report finishes with conclusions and recommendations to the regional governments for a strategic action plan and individual government national plans.

Napier, Bruce A.

2007-12-31T23:59:59.000Z

327

Radioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located in the 3410 Material Science and  

E-Print Network [OSTI]

contamination during transportation. Dispersible radioactive material must be placed in rigid, leak- tight inner be sufficient such that EMSL staff will not encounter radioactive contamination when they open the shippingRadioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located

328

Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems  

SciTech Connect (OSTI)

In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B. [Pacific Northwest Lab., Richland, WA (United States)

1992-05-01T23:59:59.000Z

329

Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor  

SciTech Connect (OSTI)

A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

1980-01-01T23:59:59.000Z

330

Skin contamination dosimeter  

DOE Patents [OSTI]

A technique and device provides absolute skin dosimetry in real time at multiple tissue depths simultaneously. The device uses a phoswich detector which has multiple scintillators embedded at different depths within a non-scintillating material. A digital pulse processor connected to the phoswich detector measures a differential distribution (dN/dH) of count rate N as function of pulse height H for signals from each of the multiple scintillators. A digital processor computes in real time from the differential count-rate distribution for each of multiple scintillators an estimate of an ionizing radiation dose delivered to each of multiple depths of skin tissue corresponding to the multiple scintillators embedded at multiple corresponding depths within the non-scintillating material.

Hamby, David M. (Corvallis, OR); Farsoni, Abdollah T. (Corvallis, OR); Cazalas, Edward (Corvallis, OR)

2011-06-21T23:59:59.000Z

331

Radiological characterization survey of the former Diamond Magnesium Company Company site, 720 Fairport-Nursery Road, Painesville, Ohio (DMP001, DMP002)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory performed an investigative radiological survey at the former Diamond Magnesium Company (DMC) site at 720 Fairport-Nursery Road, Painesville, Ohio, in September 1990. The purpose of the survey was to determine if the site is contaminated with radioactive residues as a result of federal government operation in the development of nuclear energy for defense-related projects. The survey of the site, separate parcels of which are currently owned by the Uniroyal Chemical Company (DMP001) and the Lonza Chemical Company (DMP002), included a gamma scan over the ground surface, determination of gamma exposure rates at the surface and at 1 m above the surface at grid points, collection and radionuclide analysis of soil samples, and directly measured radiation levels inside three buildings used during original DMC processing. Results of the survey revealed widespread radiological contamination outdoors on the Uniroyal property and several isolated spots of elevated radiation levels on the Lonza property. The contaminants consisted of radium, uranium, and thorium in surface and subsurface soil in concentrations exceeding DOE guidelines for the release of property for unrestricted use.

Foley, R.D.; Carrier, R.F.

1991-12-01T23:59:59.000Z

332

Estimates of the radiological dose to people living on Bikini Island for two weeks while diving in and around the sunken ships in Bikini Lagoon  

SciTech Connect (OSTI)

Bikini Island and Bikini Lagoon were contaminated by fallout from nuclear weapons tests conducted at the atoll by the United States from 1946 to 1958. The second test, Baker, of the Crossroads series was an underwater detonation in 1946 that sank several ships in the lagoon, including the USS Saratoga and the Japanese battleship Nagato. The ships received high-intensity gamma-ray and neutron bombardment from the Baker test, which induced radioactivity in the metal structures. Some of the tests conducted after the Baker shot (there were 21 tests in all) injected contaminated carbonate particles into the air, some of which were deposited across the lagoon surface. Most of this contaminated soil then settled onto the ships' decks and other structures and on the lagoon bottom. These sunken ships provide an interesting location for divers. Recreational diving and swimming in and around the ships raises the question of the potential radiological dose from the radionuclides present in or on the ships and in the lagoon sediments. The purpose of this paper, therefore, is to present an analysis of the potential radiological dose to persons who would dive near the sunken ships and live on Bikini Island for a short period of time.

Robison, W.L.

1990-09-01T23:59:59.000Z

333

Estimates of the radiological dose to people living on Bikini Island for two weeks while diving in and around the sunken ships in Bikini Lagoon  

SciTech Connect (OSTI)

Bikini Island and Bikini Lagoon were contaminated by fallout from nuclear weapons tests conducted at the atoll by the United States from 1946 to 1958. The second test, Baker, of the Crossroads series was an underwater detonation in 1946 that sank several ships in the lagoon, including the USS Saratoga and the Japanese battleship Nagato. The ships received high-intensity gamma-ray and neutron bombardment from the Baker test, which induced radioactivity in the metal structures. Some of the tests conducted after the Baker shot (there were 21 tests in all) injected contaminated carbonate particles into the air, some of which were deposited across the lagoon surface. Most of this contaminated soil then settled onto the ships` decks and other structures and on the lagoon bottom. These sunken ships provide an interesting location for divers. Recreational diving and swimming in and around the ships raises the question of the potential radiological dose from the radionuclides present in or on the ships and in the lagoon sediments. The purpose of this paper, therefore, is to present an analysis of the potential radiological dose to persons who would dive near the sunken ships and live on Bikini Island for a short period of time.

Robison, W.L.

1990-09-01T23:59:59.000Z

334

ASPECT Emergency Response Chemical and Radiological Mapping  

ScienceCinema (OSTI)

A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

LANL

2009-09-01T23:59:59.000Z

335

GIS Symbology for FRMAC/CMHT Radiological/Nuclear Products  

SciTech Connect (OSTI)

This document is intended to codify, to the extent currently possible, the representation of map products produced for and by the Federal Radiological Monitoring and Assessment Center (FRMAC) and the Consequence Management Home Team (CHMT), particularly those that include model products from the National Atmospheric Release Advisory Capability (NARAC). This is to facilitate consistency between GIS products produced by different members of these teams, which should ease the task of interpreting these products by both team members and those outside the team who may need to use these products during a response. The aspects of symbology being considered are primarily isopleths levels (breakpoints) and colors used to plot NARAC modeled dose or deposition fields on mpas, although some comments will be made about the handling of legend and supporting textual information. Other aspects of symbolizing such products (e.g., transparency) are being left to the individual team members to allow them to adapt to particular organizational needs or requirements that develop during a particular a response or exercise. This document has been written in coordination with the creation of training material in Baskett, et al., 2008. It is not intended as an aid to NARAC product interpretation but to facilitate the work of GIS specialists who deal with these products in map design and in the development of supporting scripts and software that partially or completely automate the integration of NARAC model products with other GIS data. This work was completed as part of the NA-42 Technical Integration Project on GIS Automated Data Processing and Map Production in FY 2008. Other efforts that are part of this work include (a) updating the NARAC shapefile product representation to facilitate the automation work proceed at RSL as part of the same TI effort and (b) to ensure that the NARAC shapefile construct includes all of the necessary legend and other textual data to interpret dispersion and deposition patterns and related products correctly. This document is focusing on the products produced by the GIS Division of the Remove Sensing Laboratory (RSL) and by the National Atmospheric Release Advisory Center (NARAC), both separately and in combination. The expectation is that standard products produced by either group independently or in combination should use the same key attributes in displaying the same kinds of data so that products of a given type generally look similar in key aspects of the presentation, thereby minimizing any confusion of users when a variety of products from these groups may be needed. This document is dealing with the set of common standard products used in responding to radiological/nuclear releases. There are a number of less standard products that are used occasionally or in certain specific situations that are not addressed here. This includes special products that are occasionally produced by both NARAC and RSL in responses and major exercises to meet immediate and unanticipated requirements. At some future time, it may be appropriate to review the handling of such special products by both organizations to determine if there are any areas that would benefit from being integrated with the conventions described here. A particular area that should be addressed in the near-term is that of Derived Response Levels (DRLs) calculated by the Consequence Management Home Team (CMHT) or FRMAC Assessment Scientists. A new calculation is done for every event assigning contour levels, or break-points, based upon field measurements. These contour levels can be applied to deposition or dose rate NARAC calculations. Because these calculations are different every time, they can not be stored in a database.

Walker, H; Aluzzi, F; Foster, K; Pobanz, B; Sher, B

2008-10-06T23:59:59.000Z

336

Radiological dose assessments in the northern Marshall Islands (1989--1991)  

SciTech Connect (OSTI)

The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southwest of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral islands, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} of ocean. Between 1946 and 1958 the United states conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planning to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods.

Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

1991-11-01T23:59:59.000Z

337

Radiological dose assessments in the northern Marshall Islands (1989--1991). Revision  

SciTech Connect (OSTI)

The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southwest of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral islands, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} of ocean. Between 1946 and 1958 the United states conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planning to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods.

Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

1991-11-01T23:59:59.000Z

338

Radiological dose assessments in the northern Marshall Islands (1989--1991)  

SciTech Connect (OSTI)

The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southeast of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral island, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} km{sup 2} of ocean. Between 1946 and 1958 the United States conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planing to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides, such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods. 6 refs.

Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

1991-12-01T23:59:59.000Z

339

Radiological dose assessments in the northern Marshall Islands (1989--1991). Revision  

SciTech Connect (OSTI)

The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southeast of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral island, having a total land area of about 180 km{sup 2}, distributed over more than 2.5 {times} 10{sup 6} km{sup 2} of ocean. Between 1946 and 1958 the United States conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planing to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure {gamma}-emitters, such as {sup 40}K, {sup 60}Co and {sup 137}Cs, present in individuals. Urine samples are used to measure {alpha} and {beta}-emitting nuclides, such as {sup 239}Pu and {sup 90}Sr, that are undetectable by WBC routine methods. 6 refs.

Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

1991-12-01T23:59:59.000Z

340

Trace gas contaminant control in a space station atmosphere using adsorption  

SciTech Connect (OSTI)

Trace contaminants enter spacecraft atmospheres through offgassing of spacecraft materials and as products of crew metabolism. The consequences of fire or accidental release of toxic vapors from onboard systems is also a crew safety concern. The purpose of this work was to determine how these contaminants could be limited to safe concentrations in the atmosphere of the proposed space station. Contaminant source models were developed from spacecraft material offgassing and human metabolic production rate measurements. Contaminants were represented with a simplified model of 30 compounds by grouping similar species together. A trace contaminant control process, which consists of chemisorption of ammonia on phosphoric acid-impregnated activated carbon, ambient temperature catalytic oxidation of hydrogen and carbon monoxide, catalytic conversion of the sulfur in hydrogen sulfide and mercaptans to elemental sulfur, and adsorption of the other contaminants in a regenerable activated carbon adsorber, was proposed. Trace contaminant adsorption rate and equilibrium equations were derived. Various adsorbents were evaluated to determine the optimum sorbents for this application. Removal system performance limits were established, and optimum design ranges for process parameters were developed. Trace gas contaminants can be limited to safe concentrations by the process proposed under normal conditions using as little as 1 Kg/man-year of ammonia chemisorbent. The most likely accidental contaminant releases can be removed in {approximately}20 hours using frequent adsorber regenerations.

Winter, J.D.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Monitoring materials  

DOE Patents [OSTI]

The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2002-01-01T23:59:59.000Z

342

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania  

SciTech Connect (OSTI)

This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

Not Available

1994-09-01T23:59:59.000Z

343

Hanford Radiological Protection Support Services Annual Report for 2000  

SciTech Connect (OSTI)

During calendar year 2000, the Pacific Northwest National Laboratory performed its customary radiological protection support services in support of the U.S. Department of Energy Richland Operations Office and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo monitoring, 4) radiological records, 5) instrument calibration and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology. Each program summary describes the routine operations, program changes and improvements, program assessments, supporting technical studies, and professional activities.

Lynch, Timothy P.; Bihl, Donald E.; Johnson, Michelle L.; Maclellan, Jay A.; Piper, Roman K.

2001-05-07T23:59:59.000Z

344

Effect of Fuel Cell System Contaminants on the Pt Catalyst  

SciTech Connect (OSTI)

The cost of the balance of plant (BOP) fuel cell system has increased in importance with recent decreases in fuel cell stack cost. In order to lower the cost of the BOP system, low cost but relatively clean components must be used. Selection of these materials requires an understanding of potential materials and the contaminants that evolve from them, which have been shown to affect the performance and durability of fuel cells. The present work evaluates the influence of leachable constituents from prospective materials and model compounds on the electrochemical performance of a platinum catalyst.

Wang, H.; Christ, J.; Macomber, C. S.; O'Neill, K.; Neyerlin, K. C.; O'Leary, K. A.; Reid, R.; Lakshmanan, B.; Das, M.; Ohashi, M.; Van Zee, J. W.; Dinh, H. N.

2012-01-01T23:59:59.000Z

345

Evaluation of Recent Trailer Contamination and Supersack Integrity Issues  

SciTech Connect (OSTI)

During the period from fiscal year (FY) 2009 to FY 2011, there were a total of 21 incidents involving radioactively contaminated shipment trailers and 9 contaminated waste packages received at the Nevada National Security Site (NNSS) Area 5 Radioactive Waste Management Site (RWMS). During this time period, the EnergySolutions (ES) Clive, Utah, disposal facility had a total of 18 similar incidents involving trailer and package contamination issues. As a result of the increased occurrence of such incidents, DOE Environmental Management Headquarters (EM/HQ) Waste Management organization (EM-30) requested that the Energy Facility Contractors’ Group (EFCOG) Waste Management Working Group (WMWG) conduct a detailed review of these incidents and report back to EM-30 regarding the results of this review, including providing any recommendations formulated as a result of the evaluation of current site practices involving handling and management of radioactive material and waste shipments.

Gordon, S.

2012-09-17T23:59:59.000Z

346

Radiological verification survey results at 14 Peck Ave., Pequannock, New Jersey (PJ001V)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) conducted remedial action during 1993 at the Pompton Plains Railroad Spur and eight vicinity properties in the Wayne and Pequannock Townships in New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Wayne Interim Storage Site (WISS), formerly the W. R. Grace facility. The property at 14 Peck Ave., Pequannock, New Jersey is one of these vicinity properties. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at this property. The purpose of the survey, conducted between September and December 1993, was to confirm the success of the remedial actions performed to remove any radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter, beta-gamma scans, and the collection of soil and debris samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at 14 Peck Ave. were within applicable DOE guidelines. Based on the results of the remedial action data and confirmed by the verification survey data, the portions of the site that had been remediated during this action successfully meet the DOE remedial action objectives.

Rodriguez, R.E.; Johnson, C.A.

1995-05-01T23:59:59.000Z

347

Radiological verification survey results at 7 Peck Ave., Pequannock, New Jersey (PJ003V)  

SciTech Connect (OSTI)

The US Department of Energy (DOE) conducted remedial action during 1993 at the Pompton Plains Railroad Spur and eight vicinity properties in the Wayne and Pequannock Townships in New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Wayne Interim Storage Site (WISS), formerly the W.R. Grace facility. The property at 7 Peck Ave., Pequannock, New Jersey is one of these vicinity properties. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at this property. The purpose of the survey, conducted between September and December 1993, was to confirm the success of the remedial actions performed to remove any radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter, beta-gamma scans, and the collection of soil samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at 7 Peck Ave. were within applicable DOE guidelines. Based on the results of the remedial action data and confirmed by the verification survey data, the portions of the site that had been remediated during this action successfully meet the DOE remedial action objectives.

Rodriguez, R.E.; Johnson, C.A.

1995-05-01T23:59:59.000Z

348

Radiological characterization survey results for Gaskill Hall, Miami University, Oxford, Ohio (OXO015)  

SciTech Connect (OSTI)

Between October 1952 and February 1957, National Lead of Ohio (NLO), a primary contractor for the Atomic Energy Commission (AEC), subcontracted certain uranium machining operations to Alba Craft Laboratory, Incorporated, located at 10-14 West Rose Avenue, Oxford, Ohio. In 1992, personnel from Oak Ridge National Laboratory (ORNL) confirmed the presence of residual radioactive materials from the AEC-related operations in and around the facility in amounts exceeding the applicable Department of Energy (DOE) guidelines. Although the amount of uranium found on the property posed little health hazard if left undisturbed, the levels were sufficient to require remediation to bring radiological conditions into compliance with current guidelines, thus ensuring that the public and the environment are protected. Because it was suspected that uranium may have been used in the past in the immediate vicinity of Alba Craft in a Miami University building a team from ORNL, performed a radiological characterization survey of that structure in January 1994. The survey was conducted at the request of DOE as a precautionary measure to ensure that no radioactive residuals were present at levels exceeding guidelines. The survey included the determination of directly measured radiation levels and the collection of smear samples to detect possible removable alpha and beta-gamma activity levels, and comparison of these data to the guidelines. Results of the survey showed that all measurements were below the applicable guideline limits set by DOE.

Kleinhans, K.R.; Murray, M.E.; Carrier, R.F.

1996-04-01T23:59:59.000Z

349

E-Print Network 3.0 - aspects radiological aspects Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Radiological Health Sciences (1994) from Colorado State University. Her fields... , dosimetry, radiation protection, radiochemistry, societal aspects of nuclear technology,...

350

24.01.01.M5 Radiological Safety Page 1 of 3 UNIVERSITY RULE  

E-Print Network [OSTI]

Radiological Safety Page 3 of 3 1.5 Employees, visitors and students shall only work with radiation sources24.01.01.M5 Radiological Safety Page 1 of 3 UNIVERSITY RULE 24.01.01.M5 Radiological Safety 25, 2011 Next scheduled review: March 25, 2014 Rule Statement Environmental Health and Safety (EHS

351

COMMENTARY/COMMENTAIRE The radiological consequences of the Chernobyl  

E-Print Network [OSTI]

COMMENTARY/COMMENTAIRE The radiological consequences of the Chernobyl accident The First­22 March 1996 Eric Voice Abstract: The human health consequences of the Chernobyl accident in 1986 have are discussed with particular focus on thyroid cancers and exposures to iodine-131. Key words: Chernobyl

Shlyakhter, Ilya

352

Radiology utilizing a gas multiwire detector with resolution enhancement  

DOE Patents [OSTI]

This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

Majewski, Stanislaw (Grafton, VA); Majewski, Lucasz A. (Grafton, VA)

1999-09-28T23:59:59.000Z

353

DOE Radiological Calibrations Intercomparison Program: Results of fiscal year 1987  

SciTech Connect (OSTI)

This report presents the FY 1987 results of the radiological calibrations intercomparison program. The intercomparison operation is discussed, and the equipment is described, particularly the instrument set, the beta source set, and relevant calculations. Solutions to problems and improvements in the program are suggested, and conclusions are then introduced. 9 refs., 3 figs., 8 tabs.

Cummings, F.M.; McDonald, J.C.

1988-06-01T23:59:59.000Z

354

EM-Led Radiological Incident Response Program Receives Honors  

Broader source: Energy.gov [DOE]

A program led by EM’s Carlsbad Field Office (CBFO) that coordinates analytical capabilities throughout DOE for response to potential national radiological incidents recently received recognition for the best-in-track poster at a waste management conference earlier this year.

355

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002  

E-Print Network [OSTI]

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002 Science commissioned Pipeline, 2002 The Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory Pakefield OF SURVEY 5 2.1 Pipeline description 5 2.2 Occupancy 6 2.3 Gamma dose rate measurements 7 3 SURVEY FINDINGS

356

Nuclear and Radiological Engineering and Medical Physics Programs  

E-Print Network [OSTI]

Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants one of the highest among all engineers #12;Westinghouse AP1000 Areva EPR GE Nuclear ESBWR B&W m

Weber, Rodney

357

Results of the radiological survey at the ALCOA Research Laboratory, 600 Freeport Road, New Kensington, Pennsylvania (ANK001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the ALCOA Research Laboratory, 600 Freeport Road, New Kensington, Pennsylvania. The survey was performed on November 12, 1991. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally [sup 238]U, as a result of work done for the Manhattan Engineer District in 1944. The survey included measurement of direct alpha and beta-gamma levels in the northeast comer of the basement of Building 29, and the collection of a debris sample from a floor drain for radionuclide analysis. The survey area was used for experimental canning of uranium slugs prior to production activities at the former New Kensington Works nearby.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

358

Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Appendix D, Addenda D1--D7  

SciTech Connect (OSTI)

This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation foe the US Department of Energy (DOE), Grand Junction Project Office, in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. the objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of the areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on-pile sampling was required to determine the depth of the 15-pCi/g Ra-226 interface in an area where wind and water erosion has taken place.

Ludlam, J.R.

1985-01-01T23:59:59.000Z

359

Explosive Contamination from Substrate Surfaces: Differences and Similarities in Contamination Techniques using RDX and C-4  

SciTech Connect (OSTI)

The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, temperature, humidity, rain, etc. This laboratory study focused on looking at similarities and differences in three different surface contamination techniques that are used when performance testing explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples. The three techniques used were dry transfer deposition of solutions using the Transportation Security Laboratory (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards, and fingerprinting of actual explosives. Explosives were deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each surface type using each contamination technique. The surface types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination techniques.

C.J. Miller; T.S. Yoder

2010-06-01T23:59:59.000Z

360

DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites. Final report and users` guide  

SciTech Connect (OSTI)

The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

Not Available

1989-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Laboratory Surveys when Working with Radioactive Materials  

E-Print Network [OSTI]

radioactive materials (RAM) are used or stored, including waste areas. Negative results should be clearlyLaboratory Surveys when Working with Radioactive Materials Procedure: 7.546 Created: 9/25/14 Version: 1.0 Revised: Environmental Health & Safety Page 1 of 6 A. Purpose Radioactive contamination and

Jia, Songtao

362

Results of the radiological and beryllium verification survey at the Sacandaga Site, Glenville, New York (SY002V)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted an independent verification radiological and non-radioactive beryllium survey at the Sacandaga Site, located on Sacandaga Road, Glenville, New York following limited remediation of the site by Allwash of Syracuse, Inc. At the time of this survey, only building P was still standing. A small concrete structure at the east of the property had been demolished and the debris hauled away, leaving only a pit. The purpose of the survey, conducted between April and August 1993, was to confirm the success of the remedial actions performed to remove any beryllium concentrations or radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter indoors and outdoors, alpha and beta scans inside building P, and the collection of soil, dust and debris samples and smears for radionuclide and beryllium analyses. Results of the survey demonstrated that all radiological and beryllium measurements on the property were within applicable DOE guidelines. Based on all data collected. the Sacandaga Site, Glenville, New York, conforms to all applicable radiological and non-radioactive beryllium guidelines established for this site by DOE and approved by the State of New York.

Foley, R.D.; Cottrell, W.D.; Johnson, C.A.

1994-09-01T23:59:59.000Z

363

Results of the radiological and beryllium verification survey at the Peek Street Site, Schenectady, New York (SY001V)  

SciTech Connect (OSTI)

At the request of the U.S. Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted an independent verification radiological and non-radioactive beryllium survey at the Peek Street site, located at 425 Peek Street, Schenectady, New York. The purpose of the survey, conducted during 1993 and continuing through January 1994, was to confirm the success of the remedial actions performed to remove any beryllium concentrations or radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at one meter indoors and outdoors, alpha and beta scans inside the structure, and the collection of soil, dust and debris samples and smears for radionuclide and beryllium analyses. Results of the survey demonstrated that all radiological and beryllium measurements on the property were within applicable DOE guidelines. Based on all data collected, the industrial property at 425 Peek Street and the adjacent state-owned bike path in Schenectady, New York, conforms to all applicable radiological and non-radioactive beryllium guidelines established for this site by DOE and approved by the State of New York.

Foley, R.D.; Johnson, C.A.; Carrier, R.F.; Allred, J.F.

1994-10-01T23:59:59.000Z

364

Results of the radiological verification survey of the partial remediation at 90 Avenue C, Lodi, New Jersey (LJ079V)  

SciTech Connect (OSTI)

The property at 90 Avenue C, Lodi, New Jersey is one of the vicinity properties of the former Maywood Chemical Works, Maywood, New Jersey designated for remedial action by the US Department of Energy (DOE). In July 1991, Bechtel National, Inc. performed a partial remedial action on this property. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey in July, 1991 at this site. The purpose of the verification survey was to ensure the effectiveness of remedial actions performed within FUSRAP and to confirm the site`s compliance with DOE guidelines. The radiological survey included surface gamma scans indoors and outdoors, ground-level beta-gamma measurements, and systematic and biased soil and material sampling. Results of the verification survey demonstrated that all radiological measurements on the portions of the property that had been remediated were within DOE guidelines. However, there still remains a portion of the property to be remediated that is not covered by this verification survey.

Foley, R.D.; Johnson, C.A.

1994-02-01T23:59:59.000Z

365

DECONTAMINATION AND BENEFICIAL USE OF DREDGED MATERIALS.  

SciTech Connect (OSTI)

Our group is leading a large-sale demonstration of dredged material decontamination technologies for the New York/New Jersey Harbor. The goal of the project is to assemble a complete system for economic transformation of contaminated dredged material into an environmentally-benign material used in the manufacture of a variety of beneficial use products. This requires the integration of scientific, engineering, business, and policy issues on matters that include basic knowledge of sediment properties, contaminant distribution visualization, sediment toxicity, dredging and dewatering techniques, decontamination technologies, and product manufacturing technologies and marketing. A summary of the present status of the system demonstrations including the use of both existing and new manufacturing facilities is given here. These decontamination systems should serve as a model for use in dredged material management plans of regions other than NY/NJ Harbor, such as Long Island Sound, where new approaches to the handling of contaminated sediments are desirable.

STERN, E.A.; LODGE, J.; JONES, K.W.; CLESCERI, N.L.; FENG, H.; DOUGLAS, W.S.

2000-12-03T23:59:59.000Z

366

Cleaning Contaminated Water at Fukushima  

SciTech Connect (OSTI)

Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

Rende, Dean; Nenoff, Tina

2013-11-21T23:59:59.000Z

367

Cleaning Contaminated Water at Fukushima  

ScienceCinema (OSTI)

Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

Rende, Dean; Nenoff, Tina

2014-02-26T23:59:59.000Z

368

Materials of Gasification  

SciTech Connect (OSTI)

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15T23:59:59.000Z

369

Survey of the {sup 137}Cs contamination in Belgium by in-situ gamma spectrometry, a decade after the Chernobyl accident  

SciTech Connect (OSTI)

The residual radiocesium concentration, nearly 10 y after the Chernobyl accident, is measured at different sites on the Belgian territory by means of in-situ gamma-spectrometry. A possible link between the rainfall at the beginning of May 1986 and the actual cesium concentration is investigated. The radiological impact of this contamination, even in the most affected regions in the Ardennes, is very small (<6 {mu}Sv y{sup -1}). 6 refs., 4 figs., 1 tab.

Uyttenhove, J. [Univ. of Gent (Belgium); Pomme, S.; Hardenman, F. [Belgian Nuclear Research Centre, Boeretang (Belgium); Culot, J.P. [A.V. Nuclear, Brussels (Belgium)] [and others

1997-10-01T23:59:59.000Z

370

Uranium mill tailings remedial action program. Radiological survey of Shiprock vicinity property SH01, Shiprock, NM, August-November 1982  

SciTech Connect (OSTI)

A comprehensive survey of the vicinity property designated as SH01 was conducted on an intermittent basis from August 23 to November 11, 1982. At the time of the survey, three structures were located on the property - two residential structures and a residential trailer. In addition to the three residences, the frame from a former truck scale was still on the property. The lands surrounding the structures and former truck scale were sparsely covered with vegetation. The assessment activities included determination of indoor and outdoor surface radiation levels through direct instrument surveys and analysis of air and soil samples. No evidence of radioactive contamination was found inside the structures, although elevated levels of radioactivity due to proximity to or shine from contaminated soils were indicated within all. The short-term radon daughter measurements did not exceed the limit of 0.02 Working Level for average annual concentration including background, as specified in the EPA Standard 40 CFR 192. The assessment indicated elevated levels of radioactivity in the outdoor environs, encompassing about 32,000 ft/sup 2/ (2900 m/sup 2/) of land surrounding, and north of, the former truck scale. Analysis of a surface soil sample collected from the environs indicated a radium concentration considerably in excess of the limit of 5 pCi/g above background specified in the EPA Standard. Subsurface soil sampling was not conducted, and thus the vertical extent of the radiological contamination is not known. Since the surface soil contamination level exceeded the limit specified in the EPA Standard, remedial action for this vicinity site should be considered.

Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

1984-04-01T23:59:59.000Z

371

Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report  

SciTech Connect (OSTI)

The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

Not Available

1999-06-01T23:59:59.000Z

372

Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste  

SciTech Connect (OSTI)

The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

1986-02-01T23:59:59.000Z

373

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah  

SciTech Connect (OSTI)

This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

Not Available

1994-09-01T23:59:59.000Z

374

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

375

Los Alamos National Laboratory's environmental surveillance and radiological emergency vehicle and the Co-60 incident  

SciTech Connect (OSTI)

A 4-wheel drive van has been outfitted at Los Alamos for environmental surveillance and radiological emergencies. The van's capabilities were described at this conference in 1982. The rapid gamma search and spectral analysis capabilities were utilized in conjunction with the cobalt-60 (/sup 60/Co) teletherapy source incident in Juarez, Mexico. Assistance was requested by the State of New Mexico (through DOE/Albuquerque Area Office) in January 1984 to perform initial in-situ isotopic identification of the contaminated steel that was first discovered in the United States by Los Alamos. The van's capabilities were again called upon in March 1984 to survey the New Mexico highways using the highly sensitive delta count rate monitoring system for /sup 60/Co pellets that may have been tracked into the state. This paper provides (1) setup and results of the surveys conducted with the van, (2) interactions with the press, and (3) an evaluation of the van's usefulness in such an emergency response. 2 references, 5 figures.

Van Etten, D.M.; Ahlquist, A.J.; Hansen, W.R.

1984-01-01T23:59:59.000Z

376

Method for refining contaminated iridium  

DOE Patents [OSTI]

Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

Heshmatpour, B.; Heestand, R.L.

1982-08-31T23:59:59.000Z

377

Method for refining contaminated iridium  

DOE Patents [OSTI]

Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

Heshmatpour, Bahman (Waltham, MA); Heestand, Richard L. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

378

Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles  

SciTech Connect (OSTI)

Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes and other potential remediation opportunities; a discussion of how the implementation of the HRC technology eased permitting issues and other challenges of remediating groundwater contaminated with radionuclides and organics; an overview of the remedial design and installation of the design including the inputs required to design the remediation system; a summary of results achieved to date and a forecast of future results; and a discussion of future needs and lessons learned.

Scott, J.; Case, N.; Coltman, K.

2003-02-25T23:59:59.000Z

379

Supplementary radiological and beryllium characterization of the facility at 425 Peek Street, Schenectady, New York  

SciTech Connect (OSTI)

At the request of the Office of Naval Reactors through the Office of Remedial Action and Waste Technology, a radiological survey of the Peek Street industrial facility, the adjacent state-owned bike path, and two nearby residential properties was conducted by Oak Ridge National Laboratory (ORNL) in November 1989. The results indicated small isolated areas that exceeded DOE guidelines. These areas totaled approximately 0.2 m{sup 2} of floor area and approximately 3 m{sup 2} of wall area inside the building, and two small areas totaling approximately 5 m{sup 2} outside the building. A small section of one of these areas extended beyond the fence on the east side of the industrial property onto the state-owned property. No residual radioactive material or elevated radiation levels were detected on any portion of the paved section of the bike path or the residential properties adjacent to the site. Because the elevated radiation levels were localized and limited in extent, any credible use scenario, including current use conditions, indicated that no significant radiation exposures would accrue to individuals frequenting the area. Samples were also analyzed for elemental beryllium since that material had formerly been used at the site. In conjunction with the planned remediation at the facility, a supplementary characterization survey was performed to further define the areas containing beryllium in excess of the identified guidelines. Additional radiological characterization of Ra-226, Th-232, and U-238 was also performed in areas that were largely inaccessible prior to the remediation efforts.

Foley, R.D.; Allred, J.F.; Carrier, R.F.

1994-10-01T23:59:59.000Z

380

A PERMEABLE ACTIVE AMENDMENT CONCRETE (PAAC) FOR CONTAMINANT REMEDIATION AND EROSION CONTROL  

SciTech Connect (OSTI)

The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste that forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.

Knox, A.; Paller, M.; Dixon, K.

2012-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Systems and strippable coatings for decontaminating structures that include porous material  

DOE Patents [OSTI]

Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

Fox, Robert V. (Idaho Falls, ID); Avci, Recep (Bozeman, MT); Groenewold, Gary S. (Idaho Falls, ID)

2011-12-06T23:59:59.000Z

382

Treatment of Mercury Contaminated Oil from the Mound Site  

SciTech Connect (OSTI)

Over one thousand gallons of tritiated oil, at various contamination levels, are stored in the Main Hill Tritium Facility at the Miamisburg Environmental Management Project (MEMP), commonly referred to as Mound Site. This tritiated oil is to be characterized for hazardous materials and radioactive contamination. Most of the hazardous materials are expected to be in the form of heavy metals, i.e., mercury, silver, lead, chromium, etc, but transuranic materials and PCBs could also be in some oils. Waste oils, found to contain heavy metals as well as being radioactively contaminated, are considered as mixed wastes and are controlled by Resource Conservation and Recovery Act (RCRA) regulations. The SAMMS (Self-Assembled Mercaptan on Mesoporous Silica) technology was developed by the Pacific Northwest National Laboratory (PNNL) for removal and stabilization of RCRA metals (i.e., lead, mercury, cadmium, silver, etc.) and for removal of mercury from organic solvents. The SAMMS material is based on self-assembly of functionalized monolayers on mesoporous oxide surfaces. The unique mesoporous oxide supports provide a high surface area, thereby enhancing the metal-loading capacity. SAMMS material has high flexibility in that it binds with different forms of mercury, including metallic, inorganic, organic, charged, and neutral compounds. The material removes mercury from both organic wastes, such as pump oils, and from aqueous wastes. Mercury-loaded SAMMS not only passes TCLP tests, but also has good long-term durability as a waste form because: (1) the covalent binding between mercury and SAMMS has good resistance in ion-exchange, oxidation, and hydrolysis over a wide pH range and (2) the uniform and small pore size of the mesoporous silica prevents bacteria from solubilizing the bound mercury.

Klasson, KT

2000-11-09T23:59:59.000Z

383

Reliability and Consistency of Surface Contamination Measurements  

SciTech Connect (OSTI)

Surface contamination evaluation is a tough problem since it is difficult to isolate the radiations emitted by the surface, especially in a highly irradiating atmosphere. In that case the only possibility is to evaluate smearable (removeable) contamination since ex-situ countings are possible. Unfortunately, according to our experience at CEA, these values are not consistent and thus non relevant. In this study, we show, using in-situ Fourier Transform Infra Red spectrometry on contaminated metal samples, that fixed contamination seems to be chemisorbed and removeable contamination seems to be physisorbed. The distribution between fixed and removeable contamination appears to be variable. Chemical equilibria and reversible ion exchange mechanisms are involved and are closely linked to environmental conditions such as humidity and temperature. Measurements of smearable contamination only give an indication of the state of these equilibria between fixed and removeable contamination at the time and in the environmental conditions the measurements were made.

Rouppert, F.; Rivoallan, A.; Largeron, C.

2002-02-26T23:59:59.000Z

384

Emerging contaminants and microorganisms into the environment  

E-Print Network [OSTI]

Workshop Emerging contaminants and microorganisms into the environment: contamination pathways Environmental Engineering Division Surname _____________________Name____________________ Job Environmental Engineering Division (SEED) Department of Civil Engineering University of Salerno Via Ponte don

Costagliola, Gennaro

385

Materials Scientist  

Broader source: Energy.gov [DOE]

Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

386

Webinar: NREL's Fuel Cell Contaminant Database  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled "NREL's Fuel Cell Contaminant Database," originally presented on May 27, 2014.

387

US Department of Energy radiological control manual. Revision 1  

SciTech Connect (OSTI)

This manual establishes practices for the conduct of Department of Energy radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. This Manual is not a substitute for Regulations; it is intended to be consistent with all relevant statutory and regulatory requirements and shall be revised whenever necessary to ensure such consistency. Some of the Manual provisions, however, challenge the user to go well beyond minimum requirements. Following the course of action delineated in the Manual will result in achieving and surpassing related statutory or regulatory requirements.

Not Available

1994-04-01T23:59:59.000Z

388

The Role of Interventional Radiology in Obstetric Hemorrhage  

SciTech Connect (OSTI)

Obstetric hemorrhage remains a major cause of maternal morbidity and mortality worldwide. Traditionally, in cases of obstetric hemorrhage refractory to conservative treatment, obstetricians have resorted to major surgery with the associated risks of general anesthesia, laparotomy, and, in the case of hysterectomy, loss of fertility. Over the past two decades, the role of pelvic arterial embolization has evolved from a novel treatment option to playing a key role in the management of obstetric hemorrhage. To date, interventional radiology offers a minimally invasive, fertility-preserving alternative to conventional surgical treatment. We review current literature regarding the role of interventional radiology in postpartum hemorrhage, abnormal placentation, abortion, and cervical ectopic pregnancy. We discuss techniques, success rates, and complications.

Gonsalves, M., E-mail: michael.gonsalves@stgeorges.nhs.uk; Belli, A., E-mail: Anna.Belli@stgeorges.nhs.u [St. Georges Hospital, Radiology Department (United Kingdom)

2010-10-15T23:59:59.000Z

389

Hanford radiological protection support services annual report for 1988  

SciTech Connect (OSTI)

The report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1988 by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standard or industry committees are also listed. The programs covered provide services in the areas of (1) internal dosimetry, (2) in vivo measurements, (3) external dosimetry, (4) instrument calibration and evaluation, (5) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards), and (6) radiological records. 23 refs., 15 figs., 15 tabs.

Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

1989-06-01T23:59:59.000Z

390

In situ bioremediation of petrol contaminated groundwater  

E-Print Network [OSTI]

) Bacterial Diversity and Aerobic Biodegradation Potential in a BTEX-Contaminated Aquifer Water Air Soil21/11/08 1 In situ bioremediation of petrol contaminated groundwater Guido Miguel Delgadillo EVS and facts · Likelihood of contamination · Benefits of in situ bioremediation So... Ask not what groundwater

Blouin-Demers, Gabriel

391

Radiological survey results at Beverly Harbor, Beverly, Massachusetts (VB025)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Beverly Harbor, Beverly, Massachusetts. The survey was performed in may 1991. The purpose of the survey was to determine if uranium from work performed under government contract at the former Ventron facility had migrated off-site to the harbor and neighboring areas. The survey included a surface gamma scan and the collection of soil and biological samples for radionuclide analyses.

Foley, R.D.; Johnson, C.A.

1992-08-01T23:59:59.000Z

392

Radiological survey results for the Peek Street site properties, Schenectady, New York  

SciTech Connect (OSTI)

The Peek Street Industrial Facility, located at 425 Peek Street, Schenectady, New York, was operated by the General Electric Company for the Atomic Energy Commission (AEC) between 1947 and 1955. A variety of operations using radioactive materials were conducted at the site, but the main activities were to design an intermediate breeder reactor and to develop a chemical process for the recovery of uranium and plutonium from spent reactor fuel. Nonradioactive beryllium metal was machined on the site for breeder reactor application. The 4.5-acre site was decommissioned and released in October 1955. A radiological survey was conducted by Oak Ridge National Laboratory in November 1989. The survey included scan and grid point measurements of direct radiation levels outdoors on the five properties and inside the factory building, and radionuclide analysis of samples collected from each property. Radionuclide concentrations were determined in outdoor surface and subsurface soil samples from each property and in dust, debris, and structural materials from inside the factory building. Auger holes were logged to assess location and extent of possible subsurface residual soil radioactivity. Radionuclide concentrations were deter-mined in both indoor and outdoor water samples and in selected samples of vegetation. The presence of fixed and transferable surface residual radioactivity was investigated inside the factory building and on discarded materials outdoors on the property. High-volume air samples as well as additional selected indoor and outdoor soil samples were analyzed to determine levels of elemental beryllium.

Foley, R.D.; Cottrell, W.D.; Carrier, R.F.

1992-08-01T23:59:59.000Z

393

Review of soil contamination guidance  

SciTech Connect (OSTI)

A review of existing and proposed radioactive soil contamination standards and guidance was conducted for United Nuclear Corporation (UNC), Office of Surplus Facilities Management. Information was obtained from both government agencies and other sources during a literature survey. The more applicable standards were reviewed, evaluated, and summarized. Information pertaining to soil contamination for both facility operation and facility decommissioning was obtained from a variety of sources. These sources included: the Code of Federal Regulations, regulatory guides, the Federal Register, topical reports written by various government agencies, topical reports written by national laboratories, and publications from the American National Standards Institute (ANSI). It was difficult to directly compare the standards and guidance obtained from these sources since each was intended for a specific situation and different units or bases were used. However, most of the information reviewed was consistent with the philosophy of maintaining exposures at levels as low as reasonably achievable (ALARA).

Mueller, M.A.; Kennedy, W.E. Jr.; Soldat, J.K.

1981-08-01T23:59:59.000Z

394

Results of the radiological survey at the former Alba Craft Laboratory site properties, Oxford, Ohio (OXO001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the former Alba Craft Laboratory Site Properties, Oxford, Ohio. The survey was performed in July and September of 1992. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, primarily [sup 238]U, from uranium machining operations conducted for National Lead of Ohio, a prime Atomic Energy Commission contractor. The survey included scan measurement of direct radiation levels inside and outside the former laboratory, outdoors on eight properties adjoining the former laboratory, and the city right-of-way adjacent to the surveyed properties. Radionuclide concentrations were determined in outdoor surface and subsurface soil samples taken from each property and the exterior of the laboratory. Fixed surface residual radioactivity was measured inside the laboratory and outside the building. Air samples were collected, direct exposure was measured, and samples were collected to measure transferable radioactivity inside the building. Results of the survey indicate areas where surface and soil contamination level s are above the DOE guidelines for uncontrolled areas.

Murray, M.E.; Brown, K.S.; Mathis, R.A.

1993-03-01T23:59:59.000Z

395

Results of the radiological survey at the former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts (CIO001)  

SciTech Connect (OSTI)

Radiological survey was conducted at Building 23 (Department No. 40) at the former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts. The survey was performed in August 1991. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U, as a result of work done for the Atomic Energy Commission (AEC) during the 1940s. The survey included a gamma scan, a beta-gamma scan, and measurement of alpha activity; measurement of direct and removable alpha and beta-gamma levels; and the collection of soil, dust, debris, and smear samples for radionuclide analyses. Survey emphasis was on interior floors, walls, and overhead beams. Radionuclide analysis of soil, dust, and debris, and analysis of smear samples indicate that residual {sup 238}U attributable to former AEC-supported operations is present at this site. Elevated levels of radioactivity were particularly evident on the floors and walls in the western part of the central area of the building (grid blocks Al through A6). Concentrations of {sup 238}U in dust samples collected from overhead beams exceeded DOE guidelines in grid blocks Al through A14 and remained elevated in grid blocks A15 through A19. Dust on a movable overhead crane in grid block A23 was well above the guideline, probably because the crane had at some time been located further west. Some contamination was evident in grid blocks B1 through B5, but clutter and debris in this area prevented a thorough survey.

Foley, R.D.; Uziel, M.S.

1992-07-01T23:59:59.000Z

396

Radiological Monitoring of Waste Treatment Plant  

SciTech Connect (OSTI)

Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

Amin, Y. M. [Physics Dept, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nik, H. W. [Asialab (Malaysia) Sdn Bhd, 14 Jalan Industri USJ 1, 47600 Subang Jaya (Malaysia)

2011-03-30T23:59:59.000Z

397

Concluding Remarks In this work, we have explored in depth many types of radioactive contamination that are  

E-Print Network [OSTI]

Concluding Remarks In this work, we have explored in depth many types of radioactive contamination as radiopurity testing facilities, capable of measuring the radioactivity levels of materials to be used

398

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Tuba City, Arizona  

SciTech Connect (OSTI)

This document evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium mill site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1990 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine what remedial actions are necessary for contaminated ground water at the site.

Not Available

1994-06-01T23:59:59.000Z

399

Method for in-situ cleaning of carbon contaminated surfaces  

DOE Patents [OSTI]

Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.

Klebanoff, Leonard E.; Grunow, Philip; Graham Jr., Samuel

2006-12-12T23:59:59.000Z

400

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado  

SciTech Connect (OSTI)

This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

Not Available

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado  

SciTech Connect (OSTI)

This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

Not Available

1993-12-01T23:59:59.000Z

402

In situ removal of contamination from soil  

DOE Patents [OSTI]

A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

Lindgren, E.R.; Brady, P.V.

1997-10-14T23:59:59.000Z

403

In situ removal of contamination from soil  

DOE Patents [OSTI]

A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

Lindgren, Eric R. (Albuquerque, NM); Brady, Patrick V. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

404

Closure End States for Facilities, Waste Sites, and Subsurface Contamination  

SciTech Connect (OSTI)

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

2012-11-21T23:59:59.000Z

405

Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274  

SciTech Connect (OSTI)

Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

Hays, David C. [United States Army Corps of Engineers, Kansas City, Missouri, 64106 (United States)

2012-07-01T23:59:59.000Z

406

Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 31, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 550. The potential contamination sources associated with the study groups are from nuclear testing activities conducted at CAU 550. The DQO process resulted in an assumption that the total effective dose (TED) within the default contamination boundary of CAU 550 exceeds the final action level and requires corrective action. The presence and nature of contamination outside the default contamination boundary at CAU 550 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based final action level. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each group of CASs.

Grant Evenson

2012-05-01T23:59:59.000Z

407

Nuclear, Plasma, and Radiological Engineering Center for Plasma-Material Interactions  

E-Print Network [OSTI]

16, 2011 VLT Conference Call No cold hydrogen returns from wall: Plasma stays hot Courtesy: PPPL What Very-Low Recycling Does for Fusion Standard Case Lithium Case ­ Cost of Fusion Power is Reduced metal and therefore subject to MHD effects. After all, fusion devices have large circulating currents

408

Forward model calculations for determining isotopic compositions of materials used in a radiological dispersal device  

E-Print Network [OSTI]

for the multiple radial-region pin cell was 7 times that of the 2D pin cell. For this reason, the 2D pin cell was used to benchmark the isotopics with data from other reactors. The reactors from which the methodology was benchmarked were Calvert Cliffs Unit #1...

Burk, David Edward

2005-08-29T23:59:59.000Z

409

weapons material  

National Nuclear Security Administration (NNSA)

2%2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

410

Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada  

SciTech Connect (OSTI)

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as Appendix F of this report. The requirements are summarized in Section 5.2 of this report. The proposed post-closure requirements consist of visual inspections to determine the condition of postings and radiological surveys to verify contamination has not migrated. NNSA/NSO requests the following: (1) A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 547; and (2) The transfer of CAU 547 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

NSTec Environmental Restoration

2012-07-17T23:59:59.000Z

411

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1  

SciTech Connect (OSTI)

This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

412

In situ recycling of contaminated soil uses bioremediation  

SciTech Connect (OSTI)

OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties.

Shevlin, P.J.; Reel, D.A.

1996-04-01T23:59:59.000Z

413

Status Update on the NCRP Scientific Committee SC 5-1 Report: Decision Making for Late-Phase Recovery from Nuclear or Radiological Incidents - 13450  

SciTech Connect (OSTI)

In August 2008, the U.S. Department of Homeland Security (DHS) issued its final Protective Action Guide (PAG) for radiological dispersal device (RDD) and improvised nuclear device (IND) incidents. This document specifies protective actions for public health during the early and intermediate phases and cleanup guidance for the late phase of RDD or IND incidents, and it discusses approaches to implementing the necessary actions. However, while the PAG provides specific guidance for the early and intermediate phases, it prescribes no equivalent guidance for the late-phase cleanup actions. Instead, the PAG offers a general description of a complex process using a site-specific optimization approach. This approach does not predetermine cleanup levels but approaches the problem from the factors that would bear on the final agreed-on cleanup levels. Based on this approach, the decision-making process involves multifaceted considerations including public health, the environment, and the economy, as well as socio-political factors. In an effort to fully define the process and approach to be used in optimizing late-phase recovery and site restoration following an RDD or IND incident, DHS has tasked the NCRP with preparing a comprehensive report addressing all aspects of the optimization process. Preparation of the NCRP report is a three-year (2010-2013) project assigned to a scientific committee, the Scientific Committee (SC) 5-1; the report was initially titled, Approach to Optimizing Decision Making for Late- Phase Recovery from Nuclear or Radiological Terrorism Incidents. Members of SC 5-1 represent a broad range of expertise, including homeland security, health physics, risk and decision analysis, economics, environmental remediation and radioactive waste management, and communication. In the wake of the Fukushima nuclear accident of 2011, and guided by a recent process led by the White House through a Principal Level Exercise (PLE), the optimization approach has since been expanded to include off-site contamination from major nuclear power plant accidents as well as other nuclear or radiological incidents. The expanded application under the current guidance has thus led to a broadened scope of the report, which is reflected in its new title, Decision Making for Late-Phase Recovery from Nuclear or Radiological Incidents. The NCRP report, which is due for publication in 2013, will substantiate the current DHS guidance by clarifying and elaborating on the processes required for the development and implementation of procedures for optimizing decision making for late-phase recovery, enabling the establishment of cleanup goals on a site-specific basis. The report will contain a series of topics addressing important issues related to the long-term recovery from nuclear or radiological incidents. Special topics relevant to supporting the optimization of the decision-making process will include cost-benefit analysis, radioactive waste management, risk communication, stakeholder interaction, risk assessment, and decontamination approaches and techniques. The committee also evaluated past nuclear and radiological incidents for their relevance to the report, including the emerging issues associated with the Fukushima nuclear accident. Thus, due to the commonality of the late-phase issues (such as the potential widespread contamination following an event), the majority of the information pertaining to the response in the late-phase decision-making period, including site-specific optimization framework and approach, could be used or adapted for use in case of similar situations that are not due to terrorism, such as those that would be caused by major nuclear facility accidents or radiological incidents. To ensure that the report and the NCRP recommendations are current and relevant to the effective implementation of federal guidance, SC 5-1 has actively coordinated with the agencies of interest and other relevant stakeholders throughout the duration of the project. The resulting report will be an important resource to guide those involved

Chen, S.Y. [Environmental Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)] [Environmental Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

414

Extension of DOE N 441.1, Radiological Protection for DOE Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Notice extends DOE N 441.1, Radiological Protection for DOE Activities, dated 9-30-95 until 6-30-00.

1998-11-20T23:59:59.000Z

415

E-Print Network 3.0 - academic pediatric radiology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The residents all appreciate the work... . Scott McKillop, Pediatric Radiology Dr. Keng Tay, Neuroradiology New Dr. Daniele Wiseman, Angio IR New... to the conference. Dr. David...

416

Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary Assessment and Recommendations for Further Study  

SciTech Connect (OSTI)

This is a review of the book ''Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary Assessment and Recommendations for Further Study.''

Napier, Bruce A. (BATTELLE (PACIFIC NW LAB))

1999-01-01T23:59:59.000Z

417

Rev. 10/24/2014 -JAB Environmental and Radiological Health Sciences  

E-Print Network [OSTI]

Rev. 10/24/2014 - JAB Environmental and Radiological Health Sciences Academic Policies, Guidelines....................................................................................................................... 3 Plan A Master of Science Program......................................................................................... 3 Plan B Master of Science Program

418

E-Print Network 3.0 - assisted radiology proceedings Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

staffing is maintained in CT, MR, Vascular... and outpatient populations are served from pediatric to adult. Within their role, the Radiology nurses Source: Duke University,...

419

E-Print Network 3.0 - aerial radiological monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

staffing is maintained in CT, MR, Vascular... and outpatient populations are served from pediatric to adult. Within their role, the Radiology nurses Source: Duke University,...

420

E-Print Network 3.0 - automated radiological monitoring Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

staffing is maintained in CT, MR, Vascular... and outpatient populations are served from pediatric to adult. Within their role, the Radiology nurses Source: Duke University,...

Note: This page contains sample records for the topic "radiologically contaminated material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Aging effects on oil-contaminated Kuwaiti sand  

SciTech Connect (OSTI)

Large quantities of oil-contaminated sands resulted from the destruction of oil wells and the formation of oil lakes in Kuwait at the end of the Gulf Wa/r. A laboratory testing program was carried out to determine the geotechnical properties of this material and the effect of aging on their properties. Tests included direct shear, triaxial, and consolidation tests on clean and contaminated sand at the same relative density. The influence of aging was examined by testing uncontaminated sand after aging for one, three, and six months in natural environmental conditions. The results indicated increased strength and stiffness due to aging and a reduction of the oil content due to evaporation of volatile compounds. The factors that influence the depth of oil penetration in compacted sand columns were also examined including the type of oil, relative density, and the amount of fines.

Al-Sanad, H.A.; Ismael, N.F. [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering

1997-03-01T23:59:59.000Z

422

Apparatus for in situ cleaning of carbon contaminated surfaces  

DOE Patents [OSTI]

Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled.

Klebanoff, Leonard E.; Grunow, Philip; Graham Jr., Samuel

2004-08-10T23:59:59.000Z

423

Modelling of contaminant release from a uranium mine tailings site  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: Uranium mining and milling continuing from the early 1960's until 1990 close to the town of Seelingstaedt in Eastern Germany resulted in 4 tailings impoundments with a total tailings volume of about 105 Mio. m{sup 3}. Leakage from these tailings impoundments enters the underlying aquifers and is discharged into surface water streams. High concentration of salts, uranium and several heavy metals are released from the tailings. At present the tailings impoundments are reshaped and covered. For the identification of suitable remediation options predictions of the contaminant release for different remediation scenarios have to be made. A compartment model representing the tailings impoundments and the surrounding aquifers for the calculation of contaminant release and transport was set up using the software GOLDSIM. This compartment model describes the time dependent hydraulic conditions within the tailings and the surrounding aquifers taking into account hydraulic and geotechnical processes influencing the hydraulic properties of the tailings material. A simple geochemical approach taking into account sorption processes as well as retardation by applying a k{sub d}-approach was implemented to describe the contaminant release and transport within the hydraulic system. For uranium as the relevant contaminant the simple approach takes into account additional geochemical conditions influencing the mobility. Alternatively the model approach allows to include the results of detailed geochemical modelling of the individual tailings zones which is than used as source term for the modelling of the contaminant transport in the aquifer and to the receiving streams. (authors)

Kahnt, Rene [G.E.O.S. Freiberg Ingenieurgesellschaft mbH, P.O.Box 1162. D-09581 Freiberg (Germany); Metschies, Thomas [Wismut GmbH, Jagdschaenkenstrasse 29. D-09117 Chemnitz (Germany)

2007-07-01T23:59:59.000Z

424

Precision Dual-Aquifer Dewatering at a Low Level Radiological Cleanup in New Jersey  

SciTech Connect (OSTI)

Cleanup of low-level radioactive wastes at the Wayne Interim Storage Site (WISS), Wayne, New Jersey during the period October, 2000 through November, 2001 required the design, installation and operation of a dual-aquifer dewatering system to support excavation of contaminated soils. Waste disposal pits from a former rare-earth processing facility at the WISS had been in contact with the water table aquifer, resulting in moderate levels of radionuclides being present in the upper aquifer groundwater. An uncontaminated artesian aquifer underlies the water table aquifer, and is a localized drinking water supply source. The lower aquifer, confined by a silty clay unit, is flowing artesian and exhibits potentiometric heads of up to 4.5 meters above grade. This high potentiometric head presented a strong possibility that unloading due to excavation would result in a ''blowout'', particularly in areas where the confining unit was < 1 meter thick. Excavation of contaminated materials w as required down to the surface of the confining unit, potentially resulting in an artesian aquifer head of greater than 8 meters above the excavation surface. Consequently, it was determined that a dual-aquifer dewatering system would be required to permit excavation of contaminated material, with the water table aquifer dewatered to facilitate excavation, and the deep aquifer depressurized to prevent a ''blowout''. An additional concern was the potential for vertical migration of contamination present in the water table aquifer that could result from a vertical gradient reversal caused by excessive pumping in the confined system. With these considerations in mind, a conceptual dewatering plan was developed with three major goals: (1) dewater the water table aquifer to control radionuclide migration and allow excavation to proceed; (2) depressurize the lower, artesian aquifer to reduce the potential for a ''blowout''; and (3) develop a precise dewatering level control mechanism to insure a vertical gradient reversal did not result in cross-contamination. The plan was executed through a hydrogeologic investigation culminating with the design and implementation of a complex, multi-phased dual-aquifer dewatering system equipped with a state of the art monitoring network.

Gosnell, A. S.; Langman, J. W. Jr.; Zahl, H. A.; Miller, D. M.

2002-02-27T23:59:59.000Z

425

Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of [sup 238]U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of [sup 226]Ra and [sup 230]Th with much lower concentrations of [sup 238]U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for [sup 238]U, [sup 226]Ra, and/or [sup 230]Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

1992-10-01T23:59:59.000Z

426

Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of {sup 238}U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of {sup 226}Ra and {sup 230}Th with much lower concentrations of {sup 238}U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for {sup 238}U, {sup 226}Ra, and/or {sup 230}Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

1992-10-01T23:59:59.000Z

427

Federal Radiological Monitoring and Assessment Center Health and Safety Manual  

SciTech Connect (OSTI)

This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intended to pertain to the general public.

FRMAC Health and Safety Working Group

2012-03-20T23:59:59.000Z

428

Hanford radiological protection support services annual report for 1990  

SciTech Connect (OSTI)

Various Hanford site-wide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy-Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1990. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable. 22 refs., 10 figs., 19 tabs.

Lyon, M; Bihl, D E; Fix, J J; Piper, R K; Freolich, T J; Leonowich, J A; Lynch, T P

1991-07-01T23:59:59.000Z

429

Hanford Radiological Protection Support Services annual report for 1993  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1993. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Olsen, P.C.

1994-07-01T23:59:59.000Z

430

Hanford Radiological Protection Support Services annual report for 1992  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Field Office and Hanford contractors are described in this annual report of calendar year 1992. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M; Bihl, D E; Fix, J J; Piper, R K; Froelich, T J; Lynch, T P

1993-07-01T23:59:59.000Z

431

Hanford radiological protection support services annual report for 1997  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1997. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Johnson, M.L.; Lynch, T.P.; Piper, R.K.

1998-06-01T23:59:59.000Z

432

Hanford radiological protection support services. Annual report for 1995  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the U.S. Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1995. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Carbaugh, E.H. [and others

1996-05-01T23:59:59.000Z

433

Hanford radiological protection support services annual report for 1996  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1996. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Schulze, S.A.