Powered by Deep Web Technologies
Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

TEPP Training - Modular Emergency Response Radiological Transportation  

Broader source: Energy.gov (indexed) [DOE]

Services » Waste Management » Packaging and Transportation » Services » Waste Management » Packaging and Transportation » Transportation Emergency Preparedness Program » TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge for responding to transportation incidents involving radiological material and builds on training in existing hazardous materials curricula. MERRTT satisfies the training requirements outlined in the Waste Isolation Pilot

2

Radiological Worker Training  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix A Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 Foreword This Handbook describes an implementation process for training as recommended in

3

Radiological Worker Training  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix A Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 Foreword This Handbook describes an implementation process for training as recommended in

4

Radiological Worker Training  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix C December 2008 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008

5

Radiological Worker Training  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix C December 2008 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008

6

Radiological Worker Training  

Broader source: Energy.gov (indexed) [DOE]

MEASUREMENT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix B December 2008 Reaffirmed 2013 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ . ii Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 Foreword This Handbook describes a recommended implementation process for core training as outlined in

7

Radiological worker training  

SciTech Connect (OSTI)

This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

NONE

1998-10-01T23:59:59.000Z

8

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

7of 9 7of 9 Radiological Control Technician Training Practical Training Phase II Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii Table of Contents Page Introduction.............................................................................. ......1 Development of Job Performance Measures (JPMs)............................ .....1 Conduct Job Performance Evaluation...................................................3 Qualification Area: Radiological Instrumentation.......................................5 Task 2-1.................. ..................................................................... 5 Objective.............................................................................. 5

9

Radiological Worker Training - Radiological Control Training for Supervisors  

Broader source: Energy.gov (indexed) [DOE]

A A December 2008 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 iii Foreword This Handbook describes an implementation process for training as recommended in

10

Radiological Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Part 2 of 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank. DOE-HDBK-1122-2009 iii Table of Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Purpose of Qualification Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Phase I: RCT Academics Training . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1 Phase II: RCT Core Practical (JPMs) Training . . . . . . . . . . . . . . . . . .. . . . . . . 1

11

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank DOE-HDBK-1122-2009 iii Table of Contents Page Introduction................................................................................................................................1 Facility Job Performance Measures ........................................................................................2 Final Verification Signatures ....................................................................................................3 DOE-HDBK-1122-2009 iv

12

Radiological Assessor Training  

Broader source: Energy.gov (indexed) [DOE]

1-2008 1-2008 August 2008 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document is available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techs\ Foreword This Handbook describes an implementation process for training as recommended in Implementation Guide G441.1-1B, Radiation Protection Programs, March 2007, and as outlined in DOE- STD- 1098-99, CN1, March 2005, DOE Radiological Control (the Radiological Control Standard - RCS). The Handbook is meant to assist those individuals within the Department of

13

General Employee Radiological Training  

Broader source: Energy.gov (indexed) [DOE]

DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1131-2007 iii Foreword This Handbook describes an implementation process for core training as recommended in chapter 14, Radiation Safety Training, of Implementation Guide G44.1B, Radiation Protection Programs Guide, and as outlined in the DOE Radiological Control Standard [RCS - DOE-STD-1098-99, Ch. 1]. The Handbook is meant to assist those individuals

14

Radiological Assessor Training  

Broader source: Energy.gov (indexed) [DOE]

141-2001 141-2001 April 2001 Change Notice No. 1 and Reaffirmation January 2007 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Assessor Training DOE-HDBK-1141-2001 iii

15

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Change Notice No. 1 2009 Change Notice No. 2 2011 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93 "Ionizing Radiation Exposure of the Population of the United States". NCRP Report No. 160 "Ionizing Radiation Exposure of the Population

16

Radiological Worker Training  

Broader source: Energy.gov (indexed) [DOE]

98 98 October 1998 Change Notice No. 1 June 2001 Change Notice No. 2 December 2003 Reaffirmation with Errata May 2004 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-98 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration,

17

Radiological training for tritium facilities  

SciTech Connect (OSTI)

This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

NONE

1996-12-01T23:59:59.000Z

18

Radiological transportation emergency response training course funding and timing in the southern states  

SciTech Connect (OSTI)

The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under {section}180(c) of the Nuclear Waste Policy Amendments Act. Under {section}180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs.

Not Available

1991-10-01T23:59:59.000Z

19

Radiological transportation emergency response training course funding and timing in the southern states  

SciTech Connect (OSTI)

The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under [section]180(c) of the Nuclear Waste Policy Amendments Act. Under [section]180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs.

Not Available

1991-10-01T23:59:59.000Z

20

Radiological Worker Training  

Broader source: Energy.gov (indexed) [DOE]

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 December 2008 Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 2 DOE-HDBK-1130-2008 Original Change Throughout Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement document.

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

General Employee Radiological Training  

Broader source: Energy.gov (indexed) [DOE]

Not Measurement Not Measurement Sensitive DOE-HDBK-1131-2007 December 2007_______ Change Notice 1 Reaffirmed 2013 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a member of the general population is about 360 millirem/year. The average annual radiation dose to a member of the general population is about 620 millirem/year. Part 2 page 5 Natural background radiation is by far the

22

General Employee Radiological Training  

Broader source: Energy.gov (indexed) [DOE]

_______ _______ Change Notice 1 June 2009 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a member of the general population is about 360 millirem/year. The average annual radiation dose to a member of the general population is about 620 millirem/year. Part 2 page 5 Natural background radiation is by far the

23

Radiological Worker Training  

Broader source: Energy.gov (indexed) [DOE]

8 8 December 2008 Change Notice 1 June 2009 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1130-2008 Original Change Part 2 Module 2 page 17 Medical radiation sources (total average dose ~ 54 mrem/yr) 1) X rays (total average dose ~ 40mrem/yr) a) X rays are similar to gamma rays; however, they originate outside the nucleus.

24

Radiological Worker Training  

Broader source: Energy.gov (indexed) [DOE]

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 December 2008 Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 2 DOE-HDBK-1130-2008 Original Change Throughout Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement document.

25

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

_______ _______ Change Notice 1 June 2009 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93 "Ionizing Radiation Exposure of the Population of the United States". NCRP Report No. 160 "Ionizing Radiation Exposure of the Population of the United States". Part 3 1.05-9 4) U.S. national average from diagnostic

26

Radiological Training for Tritium Facilities  

Broader source: Energy.gov (indexed) [DOE]

Change Notice No. 2 Change Notice No. 2 May 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 2. Radiological Safety Training for Tritium Facilities DOE-HDBK-1105-2002 Page/Section Change Part 1, page 14 Change: U.S. Department of Energy, Radiological Control

27

Radiological Training for Accelerator Facilities  

Broader source: Energy.gov (indexed) [DOE]

8-2002 8-2002 May 2002 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Accelerator Facilities

28

Radiological Training for Tritium Facilities  

Broader source: Energy.gov (indexed) [DOE]

DOE HANDBOOK DOE HANDBOOK RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Tritium Facilities DOE-HDBK-1105-2002 Page/Section Change Cover sheets parts 1, 2, 3, and 4 Change: Office of Environment, Safety & Health

29

Radiological Control Training for Supervisors  

Broader source: Energy.gov (indexed) [DOE]

3-2001 3-2001 August 2001 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Control Training for Supervisors

30

Radiological Worker Training - Radiological Contamination Control for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

B B December 2008 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ . Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 iii Foreword This Handbook describes a recommended implementation process for core training as outlined in

31

Radiological Safety Training for Accelerator Facilities  

Office of Environmental Management (EM)

HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public...

32

Radiological safety training for uranium facilities  

SciTech Connect (OSTI)

This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

NONE

1998-02-01T23:59:59.000Z

33

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

5 Radiological Considerations for First Aid 5 Radiological Considerations for First Aid Instructor's Guide 2.15-1 Course Number: Radiological Control Technicians Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after medical personnel have arrived at the scene. L 2.15.04 List the requirements for treatment and transport of contaminated injured personnel at your facility. References: 1. Basic Radiation Protection Technology (2nd edition) - Daniel A. Gollnick 2. Operational Health Physics Training - H. J. Moe

34

Radiological Worker Training - Radiological Safety Training for Radiation Producing (X-Ray) Devices  

Broader source: Energy.gov (indexed) [DOE]

C C December 2008 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management

35

INL@Work Radiological Search & Response Training  

ScienceCinema (OSTI)

Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

Turnage, Jennifer

2013-05-28T23:59:59.000Z

36

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

3 of 3) 3 of 3) RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH Student's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page TERMINAL OBJECTIVE............................................................................1 ENABLING OBJECTIVES...........................................................................1 I. RADIOLOGICAL CONTAMINATION................................................. 2 A. Comparison of Radiation and Radioactive Contamination ..................... 2 B. Types of Contamination.............................................................. 2

37

Model Recovery Procedure for Response to a Radiological Transportation...  

Office of Environmental Management (EM)

Recovery Procedure for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation...

38

US, UK, Kazakhstan Secure Radiological Transportation Vehicles...  

National Nuclear Security Administration (NNSA)

place them in secure storage, and improve radiological transportation security and site security. The United Kingdom-funded projects provide an immediate security and safety...

39

Radiological Safety Training for Accelerator Facilities  

Broader source: Energy.gov (indexed) [DOE]

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1108-2002 May 2002 Reaffirmation with Change Notice 2 July 2013 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change Notice No.2 Radiological Training for Accelerator Facilities Page/Section Change Throughout the document: Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Revised to: Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement

40

Radiological Safety Training for Plutonium Facilities  

Broader source: Energy.gov (indexed) [DOE]

145-2008 145-2008 April 2008 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2008 Program Management Guide

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Radiological Safety Training for Uranium Facilities  

Broader source: Energy.gov (indexed) [DOE]

DOE HDBK-1113-2008 DOE HDBK-1113-2008 April 2008 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1113-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1113-2008 iii Foreword This Handbook describes a recommended implementation process for additional training as outlined in DOE-STD-1098-99, Radiological Control (RCS). Its purpose is to assist those individuals, Department of Energy (DOE) employees, Managing and Operating (M&O) contractors, and Managing and Integrating

42

Radiological Safety Training for Plutonium Facilities  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. ii Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2013 Program Management Foreword

43

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

2 of 3) 2 of 3) Radiological Contamination Control Training for Laboratory Research Instructor's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page DEPARTMENT OF ENERGY - Course/Lesson Plan.............................. 1 Standardized Core Course Materials................................................... 1 Course Goal.........................................................................1 Target Audience.................................................................. 1 Course Description............................................................... 1 Prerequisites...................................................................... 1

44

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

06-97 06-97 February 1997 CHANGE NOTICE NO. 1 March 2002 Reaffirmation with Errata August 2002 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Reaffirmation with Errata DOE-HDBK-1106-97 Radiological Contamination Control for Laboratory Research

45

DOE, Westinghouse to Partner with NMJC To Train Radiological...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Partner with NMJC To Train Radiological and Waste Handling Technicians Hobbs, NM, December 5, 2001 -- Representatives of the Waste Isolation Pilot Plant (WIPP) yesterday...

46

NNSA Conducts Radiological Training in Slovenia | National Nuclear Security  

National Nuclear Security Administration (NNSA)

NNSA Blog > NNSA Conducts Radiological Training in Slovenia NNSA Blog > NNSA Conducts Radiological Training in Slovenia NNSA Conducts Radiological Training in Slovenia Posted By Office of Public Affairs NNSA Blog NNSA today concluded International Radiological Assistance Program Training for Emergency Response (I-RAPTER) in Slovenia. The training, co-sponsored by the International Atomic Energy Agency, was provided to 36 nuclear/radiological emergency responders, which included 15 participants from Slovenia and 21 students from 20 other countries. The training was conducted with involvement of personnel from Sandia National Laboratories, the Remote Sensing Laboratory and Idaho National Laboratory. To read more about the training see: http://www.nnsa.energy.gov/mediaroom/pressreleases/slovenia Posted on March 22, 2012 at 4:13 pm ET

47

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

Change Notice 2 Change Notice 2 with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1106-97 iii Page/Section Change

48

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

Reaffirmation Reaffirmation August 2002 Change Notice 1 December 2004 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1106-97 iii Page/Section Change

49

Idaho National Laboratory Radiological Response Training Range draft  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment August 4, 2010 Media contact: Brad Bugger, 208-526-0833 The public is invited to read and comment on a draft environmental assessment that the U.S. Department of Energy has published for a proposed radiological response training range at the Idaho National Laboratory (INL). At the range, INL experts would train personnel, conduct exercises, and perform technology evaluation and demonstrations in support of national technical nuclear forensic and radiological emergency response programs. �The Radiological Response Training Range will allow emergency responders to prepare for a major radiological incident by training in an environment that safely simulates scenarios they might encounter,� said Vic Pearson, DOE�s document manager for the environmental assessment. �Activities at the range would directly support the nation�s readiness to respond to a radiological incident, but more importantly, would enable responders to develop proficiency in characterizing the scene in support of determining the origins of the incident.�

50

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Protection Standards Radiological Protection Standards Instructor's Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of the 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998) "Occupational Radiation Protection" Instructional Aids:

51

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

9 9 Radiological Control Technician Training Fundamental Academic Training Instructor's Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers

52

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Considerations for First Aid Radiological Considerations for First Aid Study Guide 2.15-1 Course Title: Radiological Control Technician Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after medical personnel have arrived at the scene. i 2.15.04 List the requirements for treatment and transport of contaminated injured personnel at your facility. INTRODUCTION "Standard first aid is applied prior to contamination control whenever it is considered to have life-saving value, or is important to the patient for relief of pain or prevention of

53

Radiological safety training for accelerator facilities: DOE handbook  

SciTech Connect (OSTI)

This program management guide describes the proper implementation standard for core training as outline in the DOE Radiological Control (RadCon) Manual. Its purpose is to assist DOE employees and Managing and Operating (M&O) contractors having responsibility for implementing the core training recommended by the RadCon Manual.

NONE

1997-03-01T23:59:59.000Z

54

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiation Protection Standards Radiation Protection Standards Study Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998) "Occupational Radiation Protection" DOE-HDBK-1122-99 Module 1.09 Radiation Protection Standards

55

DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Course Introduction  

Broader source: Energy.gov (indexed) [DOE]

143-2001 143-2001 Instructor's Guide DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Administrative Policies and Procedures Objectives: Upon completion of this training, the student will be able to: 1. Identify the radiological controlled areas a person should be allowed to enter after successfully completing General Employee Radiological Training, Radiological Worker I training, and Radiological Worker II training. 2. List five actions used to increase the awareness level of workers relating to proper radiological work practices. 3. Identify three conditions when a "Stop Radiological Work" should be initiated. 4. Identify the actions that should be performed, prior to recommencement of work, after a "Stop Radiological Work" order has been initiated.

56

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

9 9 Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Study Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Study Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy

57

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

6 of 9 6 of 9 Radiological Control Technician Training Site Academic Training Study Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Study Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Study Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy

58

Radiological Worker Training Power Point Slides for App. A  

Broader source: Energy.gov (indexed) [DOE]

30-2008 30-2008 DOE HANDBOOK Radiological Worker Training DOE-HDBK-1130-2008 Overheads December 2008 Reaffirmed 2013 OT 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in the above documents. * Describe the role of the Defense Nuclear Facilities Safety Board (DNFSB) at DOE sites and facilities. OT 1.3 DOE-HDBK-1130-2008 Overhead 1.3 DOE Radiological Health and Safety Policy * Conduct oversight to ensure compliance and that appropriate radiological work

59

Radiological Worker Training Power Point Slides for App. A  

Broader source: Energy.gov (indexed) [DOE]

30-2008 30-2008 DOE HANDBOOK Radiological Worker Training DOE-HDBK-1130-2008 Overheads December 2008 Reaffirmed 2013 OT 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in the above documents. * Describe the role of the Defense Nuclear Facilities Safety Board (DNFSB) at DOE sites and facilities. OT 1.3 DOE-HDBK-1130-2008 Overhead 1.3 DOE Radiological Health and Safety Policy * Conduct oversight to ensure compliance and that appropriate radiological work

60

DOE-HDBK-1141-2001; Radiological Assessor Training  

Broader source: Energy.gov (indexed) [DOE]

41-2001 41-2001 April 2001 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Assessor Training DOE-HDBK-1141-2001 iii Foreword This Handbook describes an implementation process for training as recommended in

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE-HDBK-1141-2001; Radiological Assessor Training, Student's Guide, Part 4 of 5  

Broader source: Energy.gov (indexed) [DOE]

Assessor Training Assessor Training DOE-HDBK-1141-2001 Student's Guide Office of Environment, Safety & Health U.S. Department of Energy Radiological Assessor Training DOE-HDBK-1141-2001 Student's Guide ii This page intentionally left blank. Radiological Assessor Training DOE-HDBK-1141-2001 Student's Guide iii Table of Contents Regulatory Documents.....................................................................................

62

Compact cyclone filter train for radiological and hazardous environments  

DOE Patents [OSTI]

A compact cyclone filter train is disclosed for the removal of hazardous and radiological particles from a gaseous fluid medium. This filter train permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired. 3 figs.

Bench, T.R.

1998-04-28T23:59:59.000Z

63

Compact cyclone filter train for radiological and hazardous environments  

DOE Patents [OSTI]

A compact cyclone filter train for the removal of hazardous and radiologi particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

Bench, Thomas R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

64

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

DOE-HDBK-1122-99 July 1999 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1122-99 iii Foreword This Handbook describes an implementation process for core training as recommended in DOE Guide G441.1-1, Management and Administration of Radiation Protection Programs and as

65

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instructor's Guide Instructor's Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on packages and state the applicable limits. 2.12.05 Describe the necessary radiation and contamination surveys to be performed on exclusive use vehicles and state the applicable limits. 2.12.06 Identify the proper placement of placards on a transport vehicle. L 2.12.07 Identify inspection criteria that should be checked prior to releasing a

66

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Study Guide Study Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on packages and state the applicable limits. 2.12.05 Describe the necessary radiation and contamination surveys to be performed on exclusive use vehicles and state the applicable limits. 2.12.06 Identify the proper placement of placards on a transport vehicle. i 2.12.07 Identify inspection criteria that should be checked prior to releasing a

67

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

9 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 ii This page intentionally left blank. DOE-HDBK-1122-99 iii Course Developers Dave Lent Coleman Research Joe DeMers EG&G Mound Applied Technologies (formerly) Andy Hobbs FERMCO Dennis Maloney RUST - GJPO Richard Cooke Argonne National Laboratory Bobby Oliver Lockheed Martin Energy Systems Michael McNaughton Los Alamos National Laboratory Eva Lauber West Valley Nuclear Services Michael McGough Westinghouse Savannah River Corporation Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy Peter O'Connell U.S. Department of Energy

68

DOE-HDBK-1131-98; General Employee Radiological Training  

Broader source: Energy.gov (indexed) [DOE]

HDBK-1131-98 HDBK-1131-98 December 1998 Change Notice No. 1 November 2003 Reaffirmation with Errata April 2004 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

69

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Sources of Radiation Sources of Radiation Instructor's Guide 1.05-1 Course Title: Radiological Control Technician Module Title: Sources of Radiation Module Number: 1.05 Objectives: 1.05.01 Identify the following four sources of natural background radiation including the origin, radionuclides, variables, and contribution to exposure. a. Terrestrial b. Cosmic c. Internal Emitters d. Radon 1.05.02 Identify the following four sources of artificially produced radiation and the magnitude of dose received from each. a. Nuclear Fallout b. Medical Exposures c. Consumer Products d. Nuclear Facilities References: 1. "Basic Radiation Protection Technology"; Gollnick, Daniel; Pacific Radiation Press; 1983. 2. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago.

70

DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide  

Broader source: Energy.gov (indexed) [DOE]

4-1 4-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Elements of a Radiological Control Program Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify factors that influence the scope and magnitude of a Radiological Control Program at any nuclear facility. 2. Identify typical elements of a Radiological Control Program. Training Aids: Overhead Transparencies (OTs): OT 4.1 - OT 4.5 (may be supplemented or substituted with updated or site-specific information) Handouts - "List of Radiological Control Program Elements" "Elements of a Radiological Control Program" Equipment Needs: Overhead projector Screen Flip chart Markers Masking tape Student Materials: Student's Guide

71

DOE-HDBK-1122-99 Radiological Control Technical Training, Practical Training Phase II, Part 7 of 9  

Broader source: Energy.gov (indexed) [DOE]

Radiological Control Technician Training Radiological Control Technician Training Practical Training Phase II Part 7 of 9 Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 ii This page intentionally left blank. DOE-HDBK-1122-99 iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy

72

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Work Coverage Radiological Work Coverage Instructor's Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that should be discussed with workers during pre-job briefings. 2.11.06 Describe exposure control techniques that can be used to control worker and technician radiation exposures. L 2.11.07 Describe the in-progress radiological surveys that should be performed, at your site, under various radiological conditions.

73

DOE-HDBK-1122-99; Radiological Control Technican Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Work Coverage Radiological Work Coverage Study Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that should be discussed with workers during pre-job briefings. 2.11.06 Describe exposure control techniques that can be used to control worker and technician radiation exposures. i 2.11.07 Describe the in-progress radiological surveys that should be performed, at your site, under various radiological conditions.

74

DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Overheads  

Broader source: Energy.gov (indexed) [DOE]

Control Training for Supervisors Control Training for Supervisors DOE-HDBK-1143-2001 Overheads Office of Environment, Safety & Health U.S. Department of Energy Radiological Control Training for Supervisors DOE-HDBK-1143-2001 Overheads This page intentionally left blank. ii OT 1.1 DOE-HDBK-1143-2001 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1143-2001 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms

75

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Incidents and Emergencies Radiological Incidents and Emergencies Instructor's Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. L 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. L 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM) alarm. L 2.13.04 Describe the RCT response to a personnel contamination monitor alarm. L 2.13.05 Describe the RCT response to off scale or lost dosimetry. L 2.13.06 Describe the RCT response to rapidly increasing, unanticipated radiation levels or an area radiation monitor alarm. L

76

DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads  

Broader source: Energy.gov (indexed) [DOE]

13.1 13.1 Overhead 13.1 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators Objectives: * Identify the general characteristics of accelerators. * Identify the types of particles accelerated. * Identify the two basic types of accelerators. * Identify uses for accelerators. * Define prompt radiation. * Identify prompt radiation sources. OT 13.2 Overhead 13.2 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Define radioactivation. * Explain how contaminated material differs from activated material with regard to radiological concerns. * Identify activation sources. OT 13.3 Overhead 13.3 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Identify engineered and administrative controls at accelerator facilities. * Identify the special

77

DOE-HDBK-1122-99; Radiological Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Incidents and Emergencies Radiological Incidents and Emergencies Study Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. i 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. i 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM) alarm. i 2.13.04 Describe the RCT response to a personnel contamination monitor alarm. i 2.13.05 Describe the RCT response to off scale or lost dosimetry. i 2.13.06 Describe the RCT response to rapidly increasing, unanticipated radiation levels or an area radiation monitor alarm. i 2.13.07

78

Radiological Worker Training Power Point Slides for App. A  

Broader source: Energy.gov (indexed) [DOE]

1.1 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in the above documents. * Describe the role of the Defense Nuclear Facilities Safety Board (DNFSB) at DOE sites and facilities. OT 1.3 DOE-HDBK-1130-2008 Overhead 1.3 DOE Radiological Health and Safety Policy * Conduct oversight to ensure compliance and that appropriate radiological work practices are implemented. * Ensure accurate and appropriately made measurements. * Incorporate measures to minimize

79

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

ALARA Instructor's Guide ALARA Instructor's Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities for ALARA implementation. References: 1. NCRP Report No. 91 (1987) "Recommendations on Limits for Exposure to Ionizing Radiation" 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998), "Occupational Radiation Protection"

80

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Access Control and Work Area Setup Access Control and Work Area Setup Instructor's Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: L 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. L 2.10.02 State responsibilities in using or initiating a RWP. L 2.10.03 State the document that governs the ALARA program at your site. L 2.10.04 Describe how exposure/performance goals are established at your site. L 2.10.05 State the conditions under which a pre-job ALARA review is required at your site. L 2.10.06 State the conditions under which a post-job ALARA review is required at your site. 2.10.07 State purpose of radiological postings, signs, labels, and barricades; and

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Environmental Monitoring Environmental Monitoring Study Guide 2.09-1 Course Title: Radiological Control Technician Module Title: Environmental Monitoring Module Number: 2.09 Objectives: 2.09.01 State the goals of an environmental monitoring program. 2.09.02 State the exposure limits to the general public as they apply to environmental monitoring. 2.09.03 Define the term "critical nuclide." 2.09.04 Define the term "critical pathway." i 2.09.05 State locations frequently surveyed for radiological contamination at outdoor waste sites associated with your site and the reasons for each. 2.09.06 Define the term "suspect waste site," and how they can be identified. i 2.09.07 Describe the methods used for environmental monitoring at your site. INTRODUCTION Environmental monitoring plays a large role in the field of radiological control.

82

DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide  

Broader source: Energy.gov (indexed) [DOE]

8-1 8-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Radiological Aspects of Plutonium Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify the radiological properties of plutonium. 2. Identify the biological effects of plutonium. 3. Identify special controls and considerations required for plutonium operations. 4. Describe appropriate instruments, measurement techniques, and special radiological survey methods for plutonium. 5. Describe personnel protection requirements and dose control techniques for plutonium. Training Aids: Overhead Transparencies (OTs): OT 8.1 - OT 8.12 (may be supplemented or substituted with updated or site-specific information) Equipment Needs: Overhead projector Screen

83

Center for Transportation Training and Research Texas Southern University  

E-Print Network [OSTI]

Center for Transportation Training and Research Texas Southern University Carol Lewis, Ph.D. Director, Center for Transportation Training and Research, and SWUTC Executive Committee Member Texas is an Associate Professor in Transportation Studies and Direc- tor of the Center for Transportation Training

84

DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Student's Guide, Part 4 of 5  

Broader source: Energy.gov (indexed) [DOE]

Control Training for Supervisors Control Training for Supervisors DOE-HDBK-1143-2001 Student's Guide Office of Environment, Safety & Health U.S. Department of Energy Radiological Control Training for Supervisors DOE-HDBK-1143-2001 Student's Guide This page intentionally left blank. ii Radiological Control Training for Supervisors DOE-HDBK-1143-2001 Student's Guide Table of Contents Page Occupational Radiation Protection Program Policy and Guidance Review..................1-1

85

Radiological Worker (RW) and Radiological Control Technician (RCT) Training Exam Banks  

Broader source: Energy.gov [DOE]

Examination banks are available to DOE Contractors for use with the radiation safety training Handbooks. Questions and answers for these courses have also been prepared by DOE.

86

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Environmental Monitoring Environmental Monitoring Instructor's Guide 2.09-1 Course Title: Radiological Control Technician Module Title: Environmental Monitoring Module Number: 2.09 Objectives: 2.09.01 State the goals of an environmental monitoring program. 2.09.02 State the exposure limits to the general public as they apply to environmental monitoring. 2.09.03 Define the term "critical nuclide." 2.09.04 Define the term "critical pathway." L 2.09.05 State locations frequently surveyed for radiological contamination at outdoor waste sites associated with your site and the reasons for each. 2.09.06 Define the term "suspect waste site," and how they can be identified. L 2.09.07 Describe the methods used for environmental monitoring at your site. References: 1. Gollnick, Daniel, Basic Radiation Protection Technology, 2nd Edition, Pacific

87

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Contamination Control Contamination Control Instructor's Guide 2.05-1 Course Title: Radiological Control Technician Module Title: Contamination Control Module Number: 2.05 Objectives: 2.05.01 Define the terms "removable and fixed surface contamination," state the difference between them and list common methods used to measure each. 2.05.02 State the components of a radiological monitoring program for contamination control and common methods used to accomplish them. 2.05.03 State the basic goal of a contamination control program and list actions that contribute to its success. 2.05.04 State the basic principles of contamination control and list examples of implementation methods. 2.05.05 List and describe the possible engineering control methods used for contamination control. 2.05.06

88

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Unit Analysis & Conversion Unit Analysis & Conversion Instructor's Guide 1.02-1 Course Title: Radiological Control Technician Module Title: Unit Analysis & Conversion Module Number: 1.02 Objectives: 1.02.01 Identify the commonly used unit systems of measurement and the base units for mass, length, and time in each system. 1.02.02 Identify the values and abbreviations for SI prefixes. 1.02.03 Given a measurement and the appropriate conversion factor(s) or conversion factor table, convert the measurement to the specified units. 1.02.04 Using the formula provided, convert a given temperature measurement to specified units. References: 1. "Health Physics and Radiological Health Handbook"; Scinta, Inc; 1989. 2. DOE-HDBK-1010-92 (June 1992) "Classical Physics" DOE Fundamental Handbook; US

89

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Contamination Control Contamination Control Study Guide 2.05-1 Course Title: Radiological Control Technician Module Title: Contamination Control Module Number: 2.05 Objectives: 2.05.01 Define the terms "removable and fixed surface contamination," state the difference between them and list common methods used to measure each. 2.05.02 State the components of a radiological monitoring program for contamination control and common methods used to accomplish them. 2.05.03 State the basic goal of a contamination control program and list actions that contribute to its success. 2.05.04 State the basic principles of contamination control and list examples of implementation methods. 2.05.05 List and describe the possible engineering control methods used for contamination control. 2.05.06

90

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

ALARA ALARA Study Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities for ALARA implementation. INTRODUCTION All personnel at a facility must be committed to the ALARA philosophy. The RCT can play a major role in establishing and maintaining that commitment by understanding its concepts. This lesson will familiarize the student with the ALARA concepts and the

91

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Study Guide Study Guide 2.14-1 Course Title: Radiological Control Technician Module Title: Personnel Decontamination Module Number: 2.14 Objectives: 2.14.01 List the three factors which determine the actions taken in decontamination of personnel. i 2.14.02 List the preliminary actions and notifications required by the RCT for an individual suspected to be contaminated. i 2.14.03 List the actions to be taken by the RCT when contamination of clothing is confirmed. i 2.14.04 List the actions to be taken by the RCT when skin contamination is confirmed. i 2.14.05 List the steps for using decontamination reagents to decontaminate personnel. INTRODUCTION In our work environment, one of the major concerns of radiological control is the prevention of personnel contamination. When personnel contamination has been

92

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Unit Analysis & Conversion Unit Analysis & Conversion Study Guide 1.02-1 Course Title: Radiological Control Technician Module Title: Unit Analysis & Conversion Module Number: 1.02 Objectives: 1.02.01 Identify the commonly used unit systems of measurement and the base units for mass, length, and time in each system. 1.02.02 Identify the values and abbreviations for SI prefixes. 1.02.03 Given a measurement and the appropriate conversion factor(s) or conversion factor table, convert the measurement to the specified units. 1.02.04 Using the formula provided, convert a given temperature measurement to specified units. INTRODUCTION A working knowledge of the unit analysis and conversion process is necessary for the Radiological Control Technician. It is useful for air and water sample activity

93

Center for Transportation Training and Research Texas Southern University  

E-Print Network [OSTI]

Center for Transportation Training and Research Texas Southern University Khosro Godazi Associate Director, Center for Transportation Training and Research, and SWUTC Associate Director for Transportation.S. in City Planning. He is Director of 4-week Texas Summer Transportation Institute that has been held

94

DOE-HDBK-1122-99; Radiological Control Technical Training  

Broader source: Energy.gov (indexed) [DOE]

10 Access Control and Work Area Setup 10 Access Control and Work Area Setup Study Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: i 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. i 2.10.02 State responsibilities in using or initiating a RWP. i 2.10.03 State the document that governs the ALARA program at your site. i 2.10.04 Describe how exposure/performance goals are established at your site. i 2.10.05 State the conditions under which a pre-job ALARA review is required at your site. i 2.10.06 State the conditions under which a post-job ALARA review is required at your site. 2.10.07 State purpose of radiological postings, signs, labels, and barricades; and the

95

Fifth Anniversary of Radiological Alarm Response Training for...  

National Nuclear Security Administration (NNSA)

Training The three-day course is held at NNSA's Y-12 National Security Complex in Oak Ridge, Tenn. While at Y-12, participants develop and discuss their own tactics,...

96

DOE-HDBK-1122-99; Radiological Control Technician Training, Part 5 of 9  

Broader source: Energy.gov (indexed) [DOE]

5 of 9 5 of 9 Radiological Control Technician Training Site Academic Training Instructor's Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers

97

DOE-HDBK-1145-2001; Radiological Safety Training for Plutonium Facilities  

Broader source: Energy.gov (indexed) [DOE]

SENSITIVE SENSITIVE DOE-HDBK-1145-2001 August 2001 DOE STANDARD Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2001 Program Management Guide Foreword This Handbook describes an implementation process for training as recommended in

98

DOE-HDBK-1143-2001; Radiological Control Training for Supervisors  

Broader source: Energy.gov (indexed) [DOE]

SENSITIVE DOE-HDBK-1143-2001 August 2001 DOE HANDBOOK Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Control Training for Supervisors DOE-HDBK-1143-2001 Foreword This Handbook describes an implementation process for training as recommended in

99

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Study Guide Study Guide 2.19-1 Course Title: Radiological Control Technician Module Title: Counting Room Equipment Module Number: 2.19 Objectives: 2.19.01 Describe the features and specifications for commonly used laboratory counters or scalers: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting 2.19.02 Describe the features and specifications for low-background automatic counting systems: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting 2.19.03 Describe the following features and specifications for commonly used gamma spectroscopy systems.

100

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Air Sampling Program/Methods Air Sampling Program/Methods Instructor's Guide 2.06-1 Course Title: Radiological Control Technician Module Title: Air Sampling Program/Methods Module Number: 2.06 Objectives: 2.06.01 State the primary objectives of an air monitoring program. 2.06.02 Describe the three physical states of airborne radioactive contaminants. 2.06.03 List and describe the primary considerations to ensure a representative air sample is obtained. 2.06.04 Define the term "isokinetic sampling" as associated with airborne radioactivity sampling. 2.06.05 Identify the six general methods for obtaining samples or measurements of airborne radioactivity concentrations and describe the principle of operation for each method. a. Filtration b. Volumetric c. Impaction/impingement d. Adsorption e. Condensation/dehumidification

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Communication Systems Communication Systems Instructor's Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the importance of good communication. 2.02.02 Identify two methods of communication and be able to determine different types of each. 2.02.03 Describe different types of communication systems. 2.02.04 Describe the FCC and DOE guidelines regarding proper use of communication systems. 2.02.05 Describe general attributes of good communications. 2.02.06 Explain the importance of knowing how to contact key personnel. i 2.02.07 Identify the communication systems available at your site and methods available to contact key personnel. i 2.02.08 Describe the emergency communication systems available at your site.

102

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

6 Radiation Survey Instrumentation 6 Radiation Survey Instrumentation Instructor's Guide 2.16-1 Course Title: Radiological Control Technician Module Title: Radiation Survey Instrumentation Module Number: 2.16 Objectives: 2.16.01 List the factors which affect an RCT's selection of a portable radiation survey instrument, and identify appropriate instruments for external radiation surveys. L 2.16.02 Identify the following features and specifications for ion chamber instruments used at your facility: a. Detector type b. Instrument operating range c. Detector shielding d. Detector window e. Types of radiation detected/measured f. Operator-adjustable controls g. Markings for detector effective center h. Specific limitations/characteristics. L 2.16.03 Identify the following features and specifications for high range

103

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

External Exposure Control External Exposure Control Instructor's Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify "time-saving" techniques for minimizing personnel external exposures. 1.11.05 Using the stay time equation, calculate an individual's remaining allowable dose equivalent or stay time. 1.11.06 Identify "distance to radiation sources" techniques for minimizing personnel external exposures.

104

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Counting Errors and Statistics Counting Errors and Statistics Instructor's Guide 2.03-1 Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State two applications of counting statistics in sample analysis. 2.03.03. Define the following terms: a. mode b. median c. mean 2.03.04. Given a series of data, determine the mode, median, or mean. 2.03.05. Define the following terms: a. variance b. standard deviation 2.03.06. Given the formula and a set of data, calculate the standard deviation. 2.03.07. State the purpose of a Chi-squared test. L 2.03.08. State the criteria for acceptable Chi-squared values at your site.

105

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Dosimetry Dosimetry Instructor's Guide 2.04-1 Course Title: Radiological Control Technician Module Title: Dosimetry Module Number: 2.04 Objectives: 2.04.01 Identify the DOE external exposure limits for general employees. 2.04.02 Identify the DOE limits established for the embryo/fetus of a declared pregnant female general employee. L 2.04.03 Identify the administrative exposure control guidelines at your site, including those for the: a. General Employee b. Member of the Public/Minor c. Incidents and emergencies d. Embryo/Fetus L 2.04.04 Identify the requirements for a female general employee who has notified her employer in writing that she is pregnant. 2.04.05 Determine the theory of operation of a thermoluminescent dosimeter (TLD). 2.04.06 Determine how a TLD reader measures the radiation dose from a TLD.

106

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instructor's Guide Instructor's Guide 2.14-1 Course Title: Radiological Control Technician Module Title: Personnel Decontamination Module Number: 2.14 Objectives: 2.14.01 List the three factors which determine the actions taken in decontamination of personnel. L 2.14.02 List the preliminary actions and notifications required by the RCT for an individual suspected to be contaminated. L 2.14.03 List the actions to be taken by the RCT when contamination of clothing is confirmed. L 2.14.04 List the actions to be taken by the RCT when skin contamination is confirmed. L 2.14.05 List the steps for using decontamination reagents to decontaminate personnel. References: (Site Specific) Instructional Aids: 1. Overheads 2. Overhead projector/screen 3. Chalkboard/whiteboard 4. Lessons learned DOE-HDBK-1122-99 Module 2.14 Personnel Decontamination

107

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Study Guide Study Guide 2.18-1 Course Title: Radiological Control Technician Module Title: Air Sampling Equipment Module Number: 2.18 Objectives: 2.18.01 Identify the factors that affect the operator's selection of a portable air sampler. i 2.18.02 Identify the physical and operating characteristics and the limitation(s) of the Staplex and Radeco portable air samplers. i 2.18.03 Identify the physical and operating characteristics and the limitation(s) of Motor air pumps. i 2.18.04 List the steps for a preoperational checkout of a portable air sampler. i 2.18.05 Identify the physical and operational characteristics and the limitation(s) of beta-gamma constant air monitors (CAMs). i 2.18.06 Identify the physical and operating characteristics and the limitation(s) of alpha constant air monitors (CAMs).

108

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Biological Effects of Radiation Biological Effects of Radiation Instructor's Guide 1.08-1 Course Title: Radiological Control Technician Module Title: Biological Effects of Radiation Module Number: 1.08 Objectives: 1.08.01 Identify the function of the following cell structures: a. Cell membrane b. Cytoplasm c. Mitochondria d. Lysosome e. Nucleus f. DNA g. Chromosomes 1.08.02 Identify effects of radiation on cell structures. 1.08.03 Define the law of Bergonie and Tribondeau. 1.08.04 Identify factors which affect the radiosensitivity of cells. 1.08.05 Given a list of types of cells, identify which are most or least radiosensitive. 1.08.06 Identify primary and secondary reactions on cells produced by ionizing radiation. 1.08.07 Identify the following definitions and give examples of each: a. Stochastic effect b. Non-stochastic effect

109

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

External Exposure Control External Exposure Control Study Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify "time-saving" techniques for minimizing personnel external exposures. 1.11.05 Using the stay time equation, calculate an individual's remaining allowable dose equivalent or stay time. 1.11.06 Identify "distance to radiation sources" techniques for minimizing personnel external exposures.

110

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radioactive Source Control Radioactive Source Control Study Guide 2.08-1 Course Title: Radiological Control Technician Module Title: Radioactive Source Control Module Number: 2.08 Objectives: 2.08.01 Describe the requirements for radioactive sources per 10 CFR 835. i 2.08.02 Identify the characteristics of radioactive sources that must be controlled at your site. i 2.08.03 Identify the packaging, marking, and labeling requirements for radioactive sources. i 2.08.04 Describe the approval and posting requirements for radioactive materials areas. i 2.08.05 Describe the process and procedures used at your site for storage and accountability of radioactive sources. INTRODUCTION A radioactive source is material used for its emitted radiation. Sources are constructed as sealed or unsealed and are classified as accountable or exempt.

111

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Respiratory Protection Respiratory Protection Instructor's Guide 2.07-1 Course Title: Radiological Control Technician Module Title: Respiratory Protection Module Number: 2.07 Objectives: 2.07.01 Explain the purpose of respiratory protection standards and regulations. 2.07.02 Identify the OSHA, ANSI, and DOE respiratory protection program requirements. 2.07.03 Identify the standards which regulate respiratory protection. 2.07.04 Describe the advantages and disadvantages (limitations) of each of the following respirators: a. Air purifying, particulate removing filter respirators b. Air purifying, Chemical Cartridge and Canister respirators for Gases and Vapors c. Full-face, supplied-air respirators d. Self-contained breathing apparatus (SCBA) e. Combination atmosphere supplying respirators 2.07.05

112

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Internal Exposure Control Internal Exposure Control Study Guide 1.12-1 Course Title: Radiological Control Technician Module Title: Internal Exposure Control Module Number: 1.12 Objectives: 1.12.01 Identify four ways in which radioactive materials can enter the body. 1.12.02 Given a pathway for radioactive materials into the body, identify one method to prevent or minimize entry by that pathway. 1.12.03 Identify the definition and distinguish between the terms "Annual Limit on Intake" (ALI) and "Derived Air Concentration" (DAC). 1.12.04 Identify the basis for determining Annual Limit on Intake (ALI). 1.12.05 Identify the definition of "reference man". 1.12.06 Identify a method of using DACs to minimize internal exposure potential. 1.12.07 Identify three factors that govern the behavior of radioactive materials in the

113

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

8 Radioactive Source Control 8 Radioactive Source Control Instructor's Guide 2.08-1 Course Title: Radiological Control Technician Module Title: Radioactive Source Control Module Number: 2.08 Objectives: 2.08.01 Describe the requirements for radioactive sources per 10 CFR 835. L 2.08.02 Identify the characteristics of radioactive sources that must be controlled at your site. L 2.08.03 Identify the packaging, marking, and labeling requirements for radioactive sources. L 2.08.04 Describe the approval and posting requirements for radioactive materials areas. L 2.08.05 Describe the process and procedures used at your site for storage and accountability of radioactive sources. References: 1. 10 CFR 835, "Occupational Radiation Protection," (1998) Instructional Aids: 1. Overheads 2. Overhead projector and screen

114

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

- Radioactivity and Radioactive Decay Study Guide - Radioactivity and Radioactive Decay Study Guide 1.06-1 Course Title: Radiological Control Technician Module Title: Radioactivity & Radioactive Decay Module Number: 1.06 Objectives: 1.06.01 Identify how the neutron to proton ratio is related to nuclear stability. 1.06.02 Identify the definition for the following terms: a. radioactivity b. radioactive decay 1.06.03 Identify the characteristics of alpha, beta, and gamma radiations. 1.06.04 Given simple equations identify the following radioactive decay modes: a. alpha decay b. beta decay c. positron decay d. electron capture 1.06.05 Identify two aspects associated with the decay of a radioactive nuclide. 1.06.06 Identify differences between natural and artificial radioactivity. 1.06.07 Identify why fission products are unstable.

115

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Number TRNG-0003 Number TRNG-0003 Module 1.13 Radiation Detector Theory Study Guide 1.13-1 Course Title: Radiological Control Technician Module Title: Radiation Detector Theory Module Number: 1.13 Objectives: 1.13.01 Identify the three fundamental laws associated with electrical charges. 1.13.02 Identify the definition of current, voltage and resistance and their respective units. 1.13.03 Select the function of the detector and readout circuitry components in a radiation measurement system. 1.13.04 Identify the parameters that affect the number of ion pairs collected in a gas- filled detector. 1.13.05 Given a graph of the gas amplification curve, identify the regions of the curve. 1.13.06 Identify the characteristics of a detector operated in each of the useful regions of the gas amplification curve.

116

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instructor's Guide Instructor's Guide 2.19-1 Course Title: Radiological Control Technician Module Title: Counting Room Equipment Module Number: 2.19 Objectives: L 2.19.01 Describe the following features and specifications for commonly used laboratory counter or scalers: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting L 2.19.02 Describe the following features and specifications for low-background automatic counting systems: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls d. Source check e. Procedures for sample counting L 2.19.03 Describe the following features and specifications for commonly used

117

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radioactivity & Radioactive Decay Radioactivity & Radioactive Decay Instructor's Guide 1.06-1 Course Title: Radiological Control Technician Module Title: Radioactivity & Radioactive Decay Module Number: 1.06 Objectives: 1.06.01 Identify how the neutron to proton ratio is related to nuclear stability. 1.06.02 Identify the definition for the following terms: a. radioactivity b. radioactive decay 1.06.03 Identify the characteristics of alpha, beta, and gamma radiations. 1.06.04 Given simple equations identify the following radioactive decay modes: a. alpha decay b. beta decay c. positron decay d. electron capture 1.06.05 Identify two aspects associated with the decay of a radioactive nuclide. 1.06.06 Identify differences between natural and artificial radioactivity. 1.06.07 Identify why fission products are unstable.

118

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instructor's Guide Instructor's Guide 2.18-1 Course Title: Radiological Control Technician Module Title: Air Sampling Equipment Module Number: 2.18 Objectives: 2.18.01 Identify the factors that affect the operator's selection of a portable air sampler. L 2.18.02 Identify the physical and operating characteristics and the limitation(s) of the Staplex and Radeco portable air samplers. L 2.18.03 Identify the physical and operating characteristics and the limitation(s) of Motor air pumps. L 2.18.04 List the steps for a preoperational checkout of a portable air sampler. L 2.18.05 Identify the physical and operational characteristics and the limitation(s) of beta-gamma constant air monitors (CAM's). L 2.18.06 Identify the physical and operating characteristics and the limitation(s) of alpha constant air monitors (CAM's).

119

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

3 Radiation Detector Theory 3 Radiation Detector Theory Instructor's Guide 1.13-1 Course Title: Radiological Control Technician Module Title: Radiation Detector Theory Module Number: 1.13 Objectives: 1.13.01 Identify the three fundamental laws associated with electrical charges. 1.13.02 Identify the definition of current, voltage and resistance and their respective units. 1.13.03 Select the function of the detector and readout circuitry components in a radiation measurement system. 1.13.04 Identify the parameters that affect the number of ion pairs collected in a gas- filled detector. 1.13.05 Given a graph of the gas amplification curve, identify the regions of the curve. 1.13.06 Identify the characteristics of a detector operated in each of the useful regions of the gas amplification curve. 1.13.07

120

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Counting Errors and Statistics Counting Errors and Statistics Study Guide 2.03-1 Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State two applications of counting statistics in sample analysis. 2.03.03. Define the following terms: a. mode b. median c. mean 2.03.04. Given a series of data, determine the mode, median, or mean. 2.03.05. Define the following terms: a. variance b. standard deviation 2.03.06. Given the formula and a set of data, calculate the standard deviation. 2.03.07. State the purpose of a Chi-squared test. i 2.03.08. State the criteria for acceptable Chi-squared values at your site.

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Physics Nuclear Physics Instructor's Guide 1.04-1 Course Title: Radiological Control Technician Module Title: Nuclear Physics Module Number: 1.04 Objectives: 1.04.01 Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope 1.04.02 Identify the basic principles of the mass-energy equivalence concept. 1.04.03 Identify the definitions of the following terms: a. Mass defect b. Binding energy c. Binding energy per nucleon 1.04.04 Identify the definitions of the following terms: a. Fission b. Criticality c. Fusion References: 1. "Nuclear Chemistry"; Harvey, B. G. 2. "Physics of the Atom"; Wehr, M. R. and Richards, J. A. Jr. 3. "Introduction to Atomic and Nuclear Physics"; Oldenburg, O. and Holladay, W. G. 4. "Health Physics Fundamentals"; General Physics Corp.

122

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

- Sources of Radiation - Sources of Radiation Study Guide 1.05-1 Course Title: Radiological Control Technician Module Title: Sources of Radiation Module Number: 1.05 Objectives: 1.05.01 Identify the following four sources of natural background radiation including the origin, radionuclides, variables, and contribution to exposure. a. Terrestrial b. Cosmic c. Internal Emitters d. Radon 1.05.02 Identify the following four sources of artificially produced radiation and the magnitude of dose received from each. a. Nuclear Fallout b. Medical Exposures c. Consumer Products d. Nuclear Facilities INTRODUCTION Apart from the amount of radiation a worker may receive while performing work, they will also be exposed to radiation because of the very nature of our environment. All individuals are subject to some irradiation even though they may not work with

123

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instructor's Guide Instructor's Guide 2.17-1 Course Title: Radiological Control Technician Module Title: Contamination Monitoring Instrumentation Module Number: 2.17 Objectives: 2.17.01 List the factors which affects an RCT's selection of a portable contamination monitoring instrument. L 2.17.02 Describe the following features and specifications for commonly used count rate meter probes used at your site for beta/gamma and/or alpha surveys: a. Detector type b. Detector shielding and window c. Types of radiation detected/measured d. Energy response for measured radiation e. Specific limitations/characteristics L 2.17.03 Describe the following features and specifications for commonly used count rate instruments used at your site: a. Types of detectors available for use b. Operator-adjustable controls

124

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Internal Exposure Control Internal Exposure Control Instructor's Guide 1.12-1 Course Title: Radiological Control Technician Module Title: Internal Exposure Control Module Number: 1.12 Objectives: 1.12.01 Identify four ways in which radioactive materials can enter the body. 1.12.02 Given a pathway for radioactive materials into the body, identify one method to prevent or minimize entry by that pathway. 1.12.03 Identify the definition and distinguish between the terms "Annual Limit on Intake" (ALI) and "Derived Air Concentration" (DAC). 1.12.04 Identify the basis for determining Annual Limit on Intake (ALI). 1.12.05 Identify the definition of "reference man". 1.12.06 Identify a method of using DACs to minimize internal exposure potential. 1.12.07 Identify three factors that govern the behavior of radioactive materials in the

125

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

8 Biological Effects of Radiation 8 Biological Effects of Radiation Study Guide 1.08-1 Course Title: Radiological Control Technician Module Title: Biological Effects of Radiation Module Number: 1.08 Objectives: 1.08.01 Identify the function of the following cell structures: a. Cell membrane b. Cytoplasm c. Mitochondria d. Lysosome e. Nucleus f. DNA g. Chromosomes 1.08.02 Identify effects of radiation on cell structures. 1.08.03 Define the law of Bergonie and Tribondeau. 1.08.04 Identify factors which affect the radiosensitivity of cells. 1.08.05 Given a list of types of cells, identify which are most or least radiosensitive. 1.08.06 Identify primary and secondary reactions on cells produced by ionizing radiation. 1.08.07 Identify the following definitions and give examples of each: a. Stochastic effect b. Non-stochastic effect

126

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Dosimetry Dosimetry Study Guide 2.04-1 Course Title: Radiological Control Technician Module Title: Dosimetry Module Number: 2.04 Objectives: 2.04.01 Identify the DOE external exposure limits for general employees. 2.04.02 Identify the DOE limits established for the embryo/fetus of a declared pregnant female general employee. i 2.04.03 Identify the administrative exposure control guidelines at your site, including those for the: a. General employee b. Member of the public/minor c. Incidents and emergencies d. Embryo/fetus i 2.04.04 Identify the requirements for a female general employee who has notified her employer in writing that she is pregnant. 2.04.05 Determine the theory of operation of a thermoluminescent dosimeter (TLD). 2.04.06 Determine how a TLD reader measures the radiation dose from a TLD.

127

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Air Sampling Program/Methods Air Sampling Program/Methods Study Guide 2.06-1 Course Title: Radiological Control Technician Module Title: Air Sampling Program/Methods Module Number: 2.06 Objectives: 2.06.01 State the primary objectives of an air monitoring program. 2.06.02 Describe the three physical states of airborne radioactive contaminants. 2.06.03 List and describe the primary considerations to ensure a representative air sample is obtained. 2.06.04 Define the term "isokinetic sampling" as associated with airborne radioactivity sampling. 2.06.05 Identify the six general methods for obtaining samples or measurements of airborne radioactivity concentrations and describe the principle of operation for each method. a. Filtration b. Volumetric c. Impaction/impingement d. Adsorption e.

128

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instrumentation Study Guide Instrumentation Study Guide 2.16-1 Course Title: Radiological Control Technician Module Title: Radiation Survey Instrumentation Module Number: 2.16 Objectives: 2.16.01 List the factors which affect an RCT's selection of a portable radiation survey instrument, and identify appropriate instruments for external radiation surveys. i 2.16.02 Identify the following features and specifications for ion chamber instruments used at your facility: a. Detector type b. Instrument operating range c. Detector shielding d. Detector window e. Types of radiation detected/measured f. Operator-adjustable controls g. Markings for detector effective center h. Specific limitations/characteristics i 2.16.03 Identify the following features and specifications for high range instruments used at your facility:

129

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

4 - Nuclear Physics 4 - Nuclear Physics Study Guide 1.04-1 Course Title: Radiological Control Technician Module Title: Nuclear Physics Module Number: 1.04 Objectives: 1.04.01 Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope 1.04.02 Identify the basic principles of the mass-energy equivalence concept. 1.04.03 Identify the definitions of the following terms: a. Mass defect b. Binding energy c. Binding energy per nucleon 1.04.04 Identify the definitions of the following terms: a. Fission b. Criticality c. Fusion INTRODUCTION Nuclear power is made possible by the process of nuclear fission. Fission is but one of a large number of nuclear reactions which can take place. Many reactions other than fission are quite important because they affect the way we deal with all aspects of

130

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Respiratory Protection Respiratory Protection Study Guide 2.07-1 Course Title: Radiological Control Technician Module Title: Respiratory Protection Module Number: 2.07 Objectives: 2.07.01 Explain the purpose of respiratory protection standards and regulations. 2.07.02 Identify the OSHA, ANSI, and DOE respiratory protection program requirements. 2.07.03 Identify the standards which regulate respiratory protection. 2.07.04 Describe the advantages and disadvantages (limitations) of each of the following respirators: a. Air purifying, particulate removing filter respirators b. Air purifying, Chemical Cartridge and Canister respirators for Gases and Vapors c. Full-face, supplied-air respirators d. Self-contained breathing apparatus (SCBA) e. Combination atmosphere supplying respirators 2.07.05 Define the term protection factor (PF).

131

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Communication Systems Communication Systems Study Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the importance of good communication. 2.02.02 Identify two methods of communication and be able to determine different types of each. 2.02.03 Describe different types of communication systems. 2.02.04 Describe the FCC and DOE guidelines regarding proper use of communication systems. 2.02.05 Describe general attributes of good communications. 2.02.06 Explain the importance of knowing how to contact key personnel. i 2.02.07 Identify the communication systems available at your site and methods available to contact key personnel. i 2.02.08 Describe the emergency communication systems available at your site.

132

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

7 Interaction of Radiation with Matter 7 Interaction of Radiation with Matter Instructor's Guide 1.07-1 Course Title: Radiological Control Technician Module Title: Interaction of Radiation with Matter Module Number: 1.07 Objectives: 1.07.01 Identify the definitions of the following terms: a. ionization b. excitation c. bremsstrahlung 1.07.02 Identify the definitions of the following terms: a. specific ionization b. linear energy transfer (LET) c. stopping power d. range e. W-value 1.07.03 Identify the two major mechanisms of energy transfer for alpha particulate radiation. 1.07.04 Identify the three major mechanisms of energy transfer for beta particulate radiation. 1.07.05 Identify the three major mechanisms by which gamma photon radiation interacts with matter. 1.07.06 Identify the four main categories of neutrons as they are classified by kinetic

133

DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Student's Guide  

Broader source: Energy.gov (indexed) [DOE]

43-2001 43-2001 Student's Guide Notes I. Introduction II. Problem analysis Supervisors of radiological workers are often faced with critical decisions. Providing a model for strategic decision making will ensure that these critical decisions are made in an efficient, rational manner. Module 6-1 Radiological Control Training for Supervisors DOE-HDBK-1143-2001 Student's Guide Notes A. Stating the mission In making decisions, the organization's mission and resultant goals should always be considered. Decisions should be consistent with the stated mission of the organization. Prior to decision making, the organization's mission must be defined. This may be difficult if the organization's

134

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Physical Sciences Physical Sciences Study Guide 1.03-1 Course Title: Radiological Control Technician Module Title: Physical Sciences Module Number: 1.03 Objectives: 1.03.01 Define the following terms as they relate to physics: a. Work b. Force c. Energy 1.03.02 Identify and describe four forms of energy. 1.03.03 State the Law of Conservation of Energy. 1.03.04 Distinguish between a solid, a liquid, and a gas in terms of shape and volume. 1.03.05 Identify the basic structure of the atom, including the characteristics of subatomic particles. 1.03.06 Define the following terms: a. Atomic number b. Mass number c. Atomic mass d. Atomic weight 1.03.07 Identify what each symbol represents in the A Z X notation. 1.03.08 State the mode of arrangement of the elements in the Periodic Table. 1.03.09 Identify periods and groups in the Periodic Table in terms of their layout.

135

Radiological Training for Tritium Facilities DOE-HDBK-1105-2002  

Broader source: Energy.gov (indexed) [DOE]

Superseding Superseding DOE-HDBK-1105-96 December 1996 DOE HANDBOOK RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. (PART 1 OF 4) Radiological Training for Tritium Facilities Program Management Guide

136

DOE-HDBK-1130-98-CN2; DOE Handbook Radiological Worker Training  

Broader source: Energy.gov (indexed) [DOE]

30-98 30-98 October 1998 Change Notice No. 1 June 2001 Change Notice No. 2 December 2003 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice No. 1 DOE-HDBK-1130-98 June 2001 Radiological Worker Training An attachment to the Handbook was omitted. The same attachment is included in DOE-HDBK-

137

Radiological Safety Training for Radiation-Producing (X-RAY) Devices  

Broader source: Energy.gov (indexed) [DOE]

Change Notice No. 2 Change Notice No. 2 with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR RADIATION-PRODUCING (X-RAY) DEVICES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1109-97 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.energy.gov/NuclearSafety/techstds/ DOE-HDBK-1109-97 iii Note: The page numbers refer to Change Notice 1 of the standard which was issued in February 2002. The changes have been incorporated in the Adobe PDF file posted on the DOE Technical Standards Web Site. Change Notice No. 1. RADIOLOGICAL SAFETY TRAINING FOR RADIATION-

138

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Training) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are

139

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are links to relevant online training/learning sites. To suggest additional

140

DOE-HDBK-1113-98, CN 1, Reaffirm; Radiological Safety Training for Uranium Facilities  

Broader source: Energy.gov (indexed) [DOE]

REAFFIRMATION WITH REAFFIRMATION WITH ERRATA April 2005 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1113-98 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1113-98 iii April 2005 Reaffirmation with Errata Changes to DOE-HDBK-1113-98, Radiological

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Model Recovery Procedure for Response to a Radiological Transportation Incident  

Broader source: Energy.gov [DOE]

This Transportation Emergency Preparedness Program (TEPP) Model Recovery Procedure contains the recommended elements for developing and conducting recovery planning at transportation incident scene...

142

TEC Working Group Topic Groups Archives Training - Medical Training |  

Broader source: Energy.gov (indexed) [DOE]

Training - Medical Training Training - Medical Training TEC Working Group Topic Groups Archives Training - Medical Training The TEC Training and Medical Training Issues Topic Group was formed to address the training issues for emergency responders in the event of a radioactive material transportation incident. The Topic Group first met in 1996 to assist DOE in developing an approach to address radiological emergency response training needs and to avoid redundancy of existing training materials. The group worked with the Transportation Emergency Preparedness Program (TEPP) to review existing training material to determine its applicability, developed a front-end analysis describing an approach, and developed the Modular Emergency Response Radiological Transportation Training (MERRTT). In 1998, the Medical Training Issues

143

DOE-HDBK-1113-98, CH 1; Radiological Safety Training for Uranium Facilities  

Broader source: Energy.gov (indexed) [DOE]

3-9 8 February 199 8 CHANGE NOTICE NO. 1 December 2002 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. A pproved for public release; dist ribution is unlim ited. DOE-HDBK-1113-98 This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1113-98 iii Foreword This Handbook describes a recommended implementation process for additional training as outlined in

144

Commercial low-level radioactive waste transportation liability and radiological risk  

SciTech Connect (OSTI)

This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

1992-08-01T23:59:59.000Z

145

Center for Transportation Training and Research Texas Southern University  

E-Print Network [OSTI]

Center for Transportation Training and Research Texas Southern University Lei Yu, Ph.D., P.E. Professor of Transportation and Dean College of Science and Technology, and SWUTC Executive Committee Member and Technology, Industrial Technol- ogy, Mathematics, Physics, and Transportation Studies. He also oversees

146

DOE Awards Small Business Transportation Emergency Training Contract |  

Broader source: Energy.gov (indexed) [DOE]

Transportation Emergency Training Transportation Emergency Training Contract DOE Awards Small Business Transportation Emergency Training Contract March 1, 2011 - 12:00pm Addthis Media Contact Bill Taylor, 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati -- The Department of Energy (DOE) announced today a contract award to Technical Resources Group, Inc. (TRG), of Idaho Falls, Idaho. TRG, a small business that is also the incumbent contractor, will continue performing environmental consulting and training services for the Office of Environmental Management's (EM) Transportation Emergency Preparedness Program (TEPP). The new contract value is $4,034,666, with a six-month base period and options for up to five years, the renewed contract will begin April 1, 2011. Managed by the EM Office of Packaging and Transportation, TRG provides

147

Model Annex for Preparedness and Response to Radiological Transportation Incidents  

Broader source: Energy.gov [DOE]

This part should contain a general statement of the intent of this Annex. To provide for the planning, preparedness and coordination of emergency service efforts to respond to a transportation...

148

DOE-HDBK-1141-2001; Radiological Assessor Training, Student's Guide  

Broader source: Energy.gov (indexed) [DOE]

Student's Guide Notes Module 4-1 I. Introduction II. Radiological Control Program A. Overall program The Radiological Control Program consists of the commitments, policies, and procedures that are administered by a site or facility to meet the EH Health and Safety Policy. The Radiation Protection Program required by 10 CFR Part 835 is an element of the overall Radiological Control Program. The Radiological Control Program should address the following: * Requirements * Responsibilities * Programs/procedures * Assessments B. Size of the program Radiological Control Programs vary in size. There are several factors that may affect the magnitude of a Radiological Control Program. The specific mission, types and quantities of

149

DOE-HDBK-1122-99 Radiological Control Technical Training, Facility Practical Training Attachment Phase IV, Part 9 0f 9  

Broader source: Energy.gov (indexed) [DOE]

Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 ii This page intentionally left blank DOE-HDBK-1122-99 iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy

150

DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide  

Broader source: Energy.gov (indexed) [DOE]

13-1 13-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Radiological Aspects of Accelerators Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify the general characteristics of accelerators. 2. Identify the types of particles accelerated. 3. Identify the two basic types of accelerators. 4. Identify uses for accelerators. 5. Define prompt radiation. 6. Identify prompt radiation sources. 7. Define radioactivation. 8. Explain how contaminated material differs from activated material with regard to radiological concerns. 9. Identify activation sources. 10. Identify engineered and administrative controls at accelerator facilities. 11. Identify the special radiological concern and recommended instrument for each

151

TEPP Training Brochure | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

TEPP Training Brochure TEPP Training Brochure TEPP Training Brochure The Transportation Emergency Preparedness Program (TEPP) developed the Modular Emergency Response Radiological Transportation Training (MERRTT) to address concerns from States, Tribes, and local jurisdictions about shipments of radioactive material by the U.S. Department of Energy. MERRTT was developed through the Training and Medical Issues Topic Group of the Transportation External Coordination Working Group (TEC). DOE formed TEC to improve coordination with external groups interested in transportation activities. TEC members represent national and regional state, tribal and local government organizations, as well as labor, industry and professional groups. TEPP Training Brochure More Documents & Publications

152

Packaging and Transportation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Packaging and Transportation Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012 Annual Report. SUPPORTING PROGRAMS SAFE TRANSPORTATION OF RADIOLOGICAL SHIPMENTS Transportation Emergency Preparedness Program (TEPP) TEPP provides the tools for planning, training and exercises, and technical assistance to assist State and Tribal authorities in preparing for response

153

508 Compliant Version - TEPP Training Brochure | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Training Brochure Training Brochure 508 Compliant Version - TEPP Training Brochure The Transportation Emergency Preparedness Program (TEPP) developed the Modular Emergency Response Radiological Transportation Training (MERRTT) to address concerns from States, Tribes, and local jurisdictions about shipments of radioactive material by the U.S. Department of Energy. MERRTT was developed through the Training and Medical Issues Topic Group of the Transportation External Coordination Working Group (TEC). DOE formed TEC to improve coordination with external groups interested in transportation activities. TEC members represent national and regional state, tribal and local government organizations, as well as labor, industry and professional groups. 508 Compliant Version - TEPP Training Brochure

154

Transportation radiological risk assessment for the programmatic environmental impact statement: An overview of methodologies, assumptions, and input parameters  

SciTech Connect (OSTI)

The U.S. Department of Energy is considering a broad range of alternatives for the future configuration of radioactive waste management at its network of facilities. Because the transportation of radioactive waste is an integral component of the management alternatives being considered, the estimated human health risks associated with both routine and accident transportation conditions must be assessed to allow a complete appraisal of the alternatives. This paper provides an overview of the technical approach being used to assess the radiological risks from the transportation of radioactive wastes. The approach presented employs the RADTRAN 4 computer code to estimate the collective population risk during routine and accident transportation conditions. Supplemental analyses are conducted using the RISKIND computer code to address areas of specific concern to individuals or population subgroups. RISKIND is used for estimating routine doses to maximally exposed individuals and for assessing the consequences of the most severe credible transportation accidents. The transportation risk assessment is designed to ensure -- through uniform and judicious selection of models, data, and assumptions -- that relative comparisons of risk among the various alternatives are meaningful. This is accomplished by uniformly applying common input parameters and assumptions to each waste type for all alternatives. The approach presented can be applied to all radioactive waste types and provides a consistent and comprehensive evaluation of transportation-related risk.

Monette, F.; Biwer, B.; LePoire, D.; Chen, S.Y.

1994-02-01T23:59:59.000Z

155

Dental Radiology  

Science Journals Connector (OSTI)

Dental radiology is the core diagnostic modality of veterinary dentistry. Dental radiographs assist in detecting hidden painful pathology, estimating the severity of dental conditions, assessing treatment options, providing intraoperative guidance, and also serve to monitor success of prior treatments. Unfortunately, most professional veterinary training programs provide little or no training in veterinary dentistry in general or dental radiology in particular. Although a technical learning curve does exist, the techniques required for producing diagnostic films are not difficult to master. Regular use of dental x-rays will increase the amount of pathology detected, leading to healthier patients and happier clients who notice a difference in how their pet feels. This article covers equipment and materials needed to produce diagnostic intraoral dental films. A simplified guide for positioning will be presented, including a positioning cheat sheet to be placed next to the dental x-ray machine in the operatory. Additionally, digital dental radiograph systems will be described and trends for their future discussed.

Tony M. Woodward

2009-01-01T23:59:59.000Z

156

RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel  

SciTech Connect (OSTI)

This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

Yuan, Y.C. [Square Y, Orchard Park, NY (United States); Chen, S.Y.; LePoire, D.J. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rothman, R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

1993-02-01T23:59:59.000Z

157

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Documentation ............................................................................2.01-1 Documentation ............................................................................2.01-1 Module 2.02 Communication Systems ..................................................................................2.02-1 Module 2.03 Counting Errors and Statistics ..........................................................................2.03-1 Module 2.04 Dosimetry .........................................................................................................2.04-1 Module 2.05 Contamination Control .....................................................................................2.05-1 Module 2.06 Airborne Sampling Program/Methods .............................................................2.06-1 Module 2.07 Respiratory Protection ......................................................................................2.07-1

158

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Documentation Documentation ............................................................................2.01-1 Module 2.02 Communication Systems ..................................................................................2.02-1 Module 2.03 Counting Errors and Statistics ..........................................................................2.03-1 Module 2.04 Dosimetry .........................................................................................................2.04-1 Module 2.05 Contamination Control .....................................................................................2.05-1 Module 2.06 Airborne Sampling Program/Methods .............................................................2.06-1 Module 2.07 Respiratory Protection ......................................................................................2.07-1

159

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

the the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank DOE-HDBK-1122-2009 iii Table of Contents Page Introduction................................................................................................................................1 Purpose of Oral Examinations .....................................................................................................1 Scope............................................................................................................................................1 Participation in Oral Examination Boards..............................................................................2 Board Membership.......................................................................................................................2

160

RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel  

SciTech Connect (OSTI)

This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows{trademark} environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident.

Yuan, Y.C. [Square Y Consultants, Orchard Park, NY (US); Chen, S.Y.; Biwer, B.M.; LePoire, D.J. [Argonne National Lab., IL (US)

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Model Annex for Preparedness and Response to Radiological Transportati...  

Office of Environmental Management (EM)

Annex for Preparedness and Response to Radiological Transportation Incidents Model Annex for Preparedness and Response to Radiological Transportation Incidents This part should...

162

PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT  

Broader source: Energy.gov (indexed) [DOE]

Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional specific areas of competency or more hours of training

163

Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios.

Green, J.R.

1995-01-31T23:59:59.000Z

164

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation  

Broader source: Energy.gov (indexed) [DOE]

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise May 1, 2012 - 12:00pm Addthis A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia.

165

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation  

Broader source: Energy.gov (indexed) [DOE]

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise May 1, 2012 - 12:00pm Addthis A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia.

166

Transportation Emergency Preparedness Program Exercise Overview  

Broader source: Energy.gov (indexed) [DOE]

Exercise Exercise Program TEPP Exercise Program Tom Clawson TEPP Contractor tom@trgroupinc.com Brief TEPP History Brief TEPP History * In 1988, identified need to address emergency preparedness concerns of DOE emergency preparedness concerns of DOE radiological shipments bl h d * EM established in 1989 - Identified need for responder training along all transportation corridors as key to EM mission - TEPP incorporated into DOE Order 151.1, with responsibility assigned to EM * WIPP adopted the the TEPP training in 2000, and began using MERRTT along their routes in 2000 * Created a single DOE radiological transportation training program * Created a single DOE radiological transportation training program for the Department TEPP Exercise Program TEPP Exercise Program * TEPP's exercise program is just

167

Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013) * Half of the employees who should have taken suspectcounterfeit items (SCI) training had actually completed the course. Status - Revised procedures to clarify training...

168

Training  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys (DOE) Office of Independent Assessments (IEA) provides expert evaluations of management performance in safety, security and other areas by seasoned experts who are independent of line management and will ensure that training reflects the most current Departmental policy on safety and security issues. IEA incorporates the lessons learned from inspections, reviews and assessments into safety and security training courses through its management of the National Training Center (NTC).

169

Radiological Assistance Program | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

(trained personnel and equipment) to evaluate, assess, advise, isotopically identify, search for, and assist in the mitigation of actual or perceived nuclear or radiological...

170

508 Compliant Version - TEPP Training Brochure  

Broader source: Energy.gov (indexed) [DOE]

Training Training for a Radiological Transportation Emergency CECBEMS Accreditation The MERRTT program has been approved by the Continuing Education Coordinating Board of Emergency Medical Services for Continuing Education Hours (CEH). CEHs are awarded for each module completed and for the Practical Exercises. MERRTT Instructor Patch The TEPP instructor patches are designed for personnel who are qualified as MERRTT instructors. To receive a patch, instructors must attend a MERRTT Train-the-Trainer. When they conduct their first MERRTT classroom session, the instructor can request a patch from the regional TEPP Coordinator. Technical Assistance TEPP provides technical assistance to State and Tribal Governments in obtaining a greater understanding of radiological risks, identifying planning deficiencies, updating plans, training first responders, and stimulating and

171

Radiation Safety Training Materials  

Broader source: Energy.gov [DOE]

The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

172

Type B Accident Investigation Report of the October 28, 2004, Burn Injuries Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA  

Broader source: Energy.gov [DOE]

TYPE B Accident Investigation Report of the October 28, 2004 Burn Injuries Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA

173

Training and Medical Training Issues Topic Group Meeting Summary  

Broader source: Energy.gov (indexed) [DOE]

and Medical Training Issues Topic Group Meeting Summary and Medical Training Issues Topic Group Meeting Summary Philadelphia, PA July 13, 1999 Fire Chief Bill Ruting (La Grange, IL, Fire Department) presented the results of the topic group's discussions: The MERRTT (Modular Emergency Response Radiological Transportation Training) series, comprised of 16 modules, is in the process of being finalized and pilot tested in a number of locations in the U.S. Pilot testing will include: using a needs assessment tool; developing model procedures; and actual training delivery of the MERRTT modules. The topic group, working with the regional government group staff representatives to TEC/WG, has sent a survey to State points-of-contact

174

Implementation of a Radiological Safety Coach program  

SciTech Connect (OSTI)

The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

Konzen, K.K. [Safe Sites of Colorado, Golden, CO (United States). Rocky Flats Environmental Technology Site; Langsted, J.M. [M.H. Chew and Associates, Golden, CO (United States)

1998-02-01T23:59:59.000Z

175

EMSL - radiological  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

radiological en Diffusional Motion of Redox Centers in Carbonate Electrolytes . http:www.emsl.pnl.govemslwebpublicationsdiffusional-motion-redox-centers-carbonate-electrolytes...

176

E-Print Network 3.0 - action program radiological Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

program RWT Radiological Worker Training SLAC Stanford Linear Accelerator Center 12;DOE G 441.1-12 1 03... radiological hazards (10 CFR 835.901(c)). Radiation safety training...

177

E-Print Network 3.0 - assess radiological risk Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Medicine 7 TRAINING & QUALIFICATIONS PROGRAM OFFICE Summary: and the policies and procedures in place to minimize their risk. Radiological Worker 1 Training is...

178

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Broader source: Energy.gov (indexed) [DOE]

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Emergency Response to a Transportation Accident Involving Radioactive Material Radioactive Materials Transportation and Incident Response

179

Hospital Triage in First Hours After Nuclear or Radiological...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

180

Radiological Assistance Program (RAP)- Nuclear Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Major Programs > Radiological Major Programs > Radiological Assistance Program Radiological Assistance Program Overview Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Radiological Assistance Program Bookmark and Share Survey equipment is used to detect and measure radiation Survey equipment is used to detect and measure radiation. Click on image to view larger image. The Radiological Assistance Program (RAP) team at Argonne can provide assistance in the event of a radiological accident or incident. Support ranges from giving technical information or advice over the telephone, to sending highly trained team members and state-of-the-art equipment to the accident site to help identify and minimize any radiological hazards. The

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

INMM 55th Annual Meeting, July 2024, 2014, Atlanta Marriott Marquis, Atlanta, Georgia, USA Transport Security for Nuclear and Other Radioactive Materials --A DOE Training Course  

E-Print Network [OSTI]

Laboratory. The course was developed by Argonne for the U.S. Department of Energy Packaging Certification of Energy, Washington, D.C. 20585 ABSTRACT In early December of 2013, a weeklong training course on security Transport Security for Nuclear and Other Radioactive Materials -- A DOE Training Course Ronald B. Pope, Yung

Kemner, Ken

182

I COMPREHENSIVE RADIOLOGICAL SURVEY I  

Office of Legacy Management (LM)

im im I COMPREHENSIVE RADIOLOGICAL SURVEY I Prepared by Oak Ridge Associated Universities Prprd* OFF-SITE PROPERTY H' | Prepared for Office of Operational FORMER LAKE ONTARIO ORDNANCE WORKS SITE Safety U.S. Department LEWISTON, NEW YORK I of Energy i J.D. BERGER i Radiological Site Assessment Program Manpower Education, Research, and Training Division I l*~~~~~~ ~~~~DRAFT REPORT January 1983 I I I ------- COMPREHENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY H' FORMER LAKE ONTARIO ORDNANCE WORKS SITE LEWISTON, NEW YORK Prepared for U.S. Department of Energy as part of the Formerly Utilized Sites -- Remedial Action Program J. D. Berger Project Staff L.W. Cole W.O. Helton R.D. Condra T.J. Sowell P.R. Cotten C.F. Weaver G.R. Foltz T.S. Yoo R.C. Gosslee Prepared by Radiological Site Assessment Program

183

Radiological Control  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1098-2008 October 2008 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii DOE-STD-1098-2008 This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ DOE-STD-1098-2008 Radiological Control DOE Policy October 2008 iii Foreword The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal

184

Radiological Control  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1098-2008 October 2008 ------------------------------------- Change Notice 1 May 2009 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1098-2008 ii This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ iii DOE-STD-1098-2008 Change Notice 1: DOE-STD-1098-2008, Radiological Control Standard Section/page/paragraph Change Section 211, page 2-3, paragraph 1 Add new paragraph 1: "Approval by the appropriate Secretarial Officer or designee should be required

185

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Broader source: Energy.gov (indexed) [DOE]

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

186

Alarm Response Training | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On Time: 4:04 min. View an introduction to our Alarm Response Training, which prepares and trains personnel responding to civilian nuclear and radiological security alarms...

187

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

188

Fostering a Translational Research Attitude Among Residents in Radiology/Nuclear Medicine  

Science Journals Connector (OSTI)

Innovative approaches to resident research training development are essential when the training is to supplement existing Radiology and Nuclear Medicine resident training programs so as not to overburden them and...

Aaron Fenster; Rethy K. Chhem

2010-01-01T23:59:59.000Z

189

Radiological Areas  

Broader source: Energy.gov (indexed) [DOE]

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

190

RADIOLOGICAL SURWY  

Office of Legacy Management (LM)

111 111 j -,~ ' - et- -*\. _(a v - r\lfs+8 plY 45+ c iill I r\l&; p) :;!I..; .: .. :,, ,m -,< :' - ' ec-. :-*% ". _(.*- ~ . . : : : ' .. : : : .. ..:, . . . :. : : ,, :;I;:~~:; :.:.!,;;y ' 1;: .: 1. .., ; ' . :. : c :...: .;: .: RADIOLOGICAL SURWY - RADIoL~BI~L.::.~~~y:- : ::: 1 ,: . . : : :: :. :..." - OFi~:,~~~~:poRTI~~~ 0J-g ,m_ ,. :. y.;,:. ,.:I; .:. F~~~~~~as~~~ ~~~~~~~:~~~~ :co~~~:~~~~~; ;, .. ; I : : ::.. :.. :. - ,B~~Lo,.~-~~~. ..; .:I ,,,, :--:.;:I:: ;' #I Y' i ' 11". .. .. ; :;: ;I, ' . 1::. J;,;. ~;_:y,;:::::; - T.J..:+~uS~~ .' .:' : : . . .. ...: .:.. : OFTHE EXCERIORPORTIONS O F THE FORIMER BLISS ANT3 LAUGHLIN STEEL COMPANY FAC' KJTy - BUFFALO,NEw YORK - T. J.VITKUS I : . . : : ' . .:. : I : : .. :. Prepaied for.:the:' 6ffice.iibfiEnvir~nmenfal Re$o&idn z . . :

191

T-1 Training Area  

SciTech Connect (OSTI)

Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

None

2014-11-07T23:59:59.000Z

192

T-1 Training Area  

ScienceCinema (OSTI)

Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

None

2015-01-09T23:59:59.000Z

193

Women in pediatric radiology  

E-Print Network [OSTI]

AM et al. (2001) Pediatric radiology at the millennium.a case study of pediatric radiology. J Am Coll Radiol 6:635WORKPLACE Women in pediatric radiology M. Ines Boechat # The

Boechat, M. Ines

2010-01-01T23:59:59.000Z

194

Environmental Health & Safety Office of Radiological Safety  

E-Print Network [OSTI]

Environmental Health & Safety Office of Radiological Safety Page 1 of 2 FORM LU-1 Revision 01 1 safety training and submit this registration to the LSO prior to use of Class 3B or 4 lasers. A copy will be returned to the Laser Supervisor to be filed in the Laboratory Laser Safety Notebook. Both the Laser

Houston, Paul L.

195

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

196

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

197

ORISE: REAC/TS trains emergency responders in preparation for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REACTS trains emergency responders in preparation for Pan American Games Workshop in Mexico helps medical professionals prepare for treating victims of radiological or nuclear...

198

ORAU: Health Communication and Technical Training fact sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health Communication and Technical Training Infectious and chronic disease, radiological terrorism, pollution, natural disasters - the threats to public health and safety are...

199

Training Topic Group Conference Call March 17, 1999 ROLL CALL  

Broader source: Energy.gov (indexed) [DOE]

March 17, 1999 March 17, 1999 ROLL CALL Aubrey Godwin Deena LaRue Corrine Macaluso Tammy Ottmer Bill Ruting Gordon Veerman STATUS OF TRAINING MODULES A new name has been selected for the base training modules: MERRTT - Modular Emergency Response Radiological Transportation Training. There was a meeting held in Chicago on March 11-12 to complete a final review of the modules prior to distributing them for final comments. Those in attendance were: Jim Price, Tom Clawson, Jeff Everitt, Bill Ruting, and Gordon Veerman. The modules will be distributed to approximately 84 people on Friday, March 19, 1999, and comments are to be submitted to Jim Price by Monday, April 5, 1999. This short review period is required in order to address any significant comments and still have the modules ready for TEC/WG approval in July.

200

Apparatus for safeguarding a radiological source  

DOE Patents [OSTI]

A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

Bzorgi, Fariborz M

2014-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor Safety 3 C #12;Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2013-2014 Page 1

Sheridan, Scott

202

Panoramic Radiology: Endodontic Considerations  

Science Journals Connector (OSTI)

Endodontics is concerned with the morphology, physiology, and pathology of the human dental pulp and periradicular tissues. Radiology is especially important for diagnosis in the...

2007-01-01T23:59:59.000Z

203

Radiological Assistance Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy, procedures, authorities, and responsibilities for its Radiological Assistance Program. Canceled by DOE O 153.1.

1992-04-10T23:59:59.000Z

204

Transportation  

Science Journals Connector (OSTI)

The romantic rides in Sandburgs eagle-car changed society. On the one hand, motor vehicle transportation is an integral thread of societys fabric. On the other hand, excess mobility fractures old neighborh...

David Hafemeister

2014-01-01T23:59:59.000Z

205

Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture  

SciTech Connect (OSTI)

The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project teams approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

Vahdat, Nader

2013-09-30T23:59:59.000Z

206

Photon Sciences Training Courses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photon Sciences Training Courses Photon Sciences Training Courses Beamline Ops (BLOSA) BNL Web Courses (Help) BNL Class Schedules Business Systems & Software Contractor Orientation Cranes, Forklifts, Aerial Lifts Electrical Environmental ESH Briefings ESH Tours GERT GERT Reciprocity Human Resources IRP (Briefings) (Procedures) Job Briefings JRAs and FRAs Lasers Lead Machine Shops Medical Surveillance Nano Materials NSLS-II (Bldg 740) Photographic Dark Rm Procedures (Control Rm) Procedures (PRMs) (SOPs) Radiological Remedial (GERT) (NSLS) Roster Form (.docx) R2A2s Source Dev Lab Staff Development Study Guides Supervisory Training Training Course Dev Form User Training Work Control All Photon Sciences (PS) courses and some BNL courses (HP, OM, TQ, and GE) commonly assigned by the PS Directorate for work within PS buildings are

207

DOE standard: Radiological control  

SciTech Connect (OSTI)

The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

Not Available

1999-07-01T23:59:59.000Z

208

Radiological risk evaluation for risk-based design criteria of the multiple canister overpack packaging  

SciTech Connect (OSTI)

The Multiple Canister Overpack (MCO) cask will be used in the transportation of irradiated nuclear fuel from the K Basins to a Canister Storage Building. This report presents the radiological risk evaluation, which is used in the development of the design criteria for the MCO cask. The radiological risk evaluation ensures compliance with the onsite transportation safety program.

Green, J.R., Westinghouse Hanford

1996-07-18T23:59:59.000Z

209

Fundemental Academic Training Instructor's Guide Phase 1  

Broader source: Energy.gov (indexed) [DOE]

3 of 9 3 of 9 Radiological Control Technician Training Fundamental Academic Training Instructor's Guide Phase I Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 Radiological Control Technician Instructor's Guide 1.01- ii This page intentionally left blank. DOE-HDBK-1122-2009 Radiological Control Technician Instructor's Guide 1.01- iii Table of Contents Page Module 1.01 Basic Mathematics and Algebra...................................................... 1.01-1 Module 1.02 Unit Analysis and Conversion........................................................ 1.02-1 Module 1.03 Physical Sciences.......................................................................1.03-1

210

Pre-Hospital Practices for Handling a Radiologically Contaminated Patient |  

Broader source: Energy.gov (indexed) [DOE]

Pre-Hospital Practices for Handling a Radiologically Contaminated Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Pre-Hospital Practices for Handling a Radiologically Contaminated Patient The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on key activities and duties at the scene. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT More Documents & Publications Emergency Response to a Transportation Accident Involving Radioactive Material Handling and Packaging a Potentially Radiologically Contaminated Patient

211

TEPP Training Brochure  

Broader source: Energy.gov (indexed) [DOE]

CECBEMS Accreditation CECBEMS Accreditation The MERRTT program has been approved by the Continuing Education Coordinating Board of Emergency Medical Services for Continuing Education Hours (CEH). CEHs are awarded for each module completed and for the Practical Exercises. MERRTT Instructor Patch The TEPP instructor patches are designed for personnel who are qualified as MERRTT instructors. To receive a patch, instructors must attend a MERRTT Train- the-Trainer. When they conduct their first MERRTT classroom session, the instructor can request a patch from the regional TEPP Coordinator. Technical Assistance TEPP provides technical assistance to State and Tribal Governments in obtaining a greater understanding of radiological risks, identifying planning deficiencies, updating plans, training first

212

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

213

ORISE: REAC/TS Radiological Incident Medical Consultation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiological Incident Medical Consultation Radiological Incident Medical Consultation Radiological Incident Medical Consultation The Oak Ridge Institute for Science and Education (ORISE) provides the U.S. Department of Energy (DOE) with a comprehensive capability to respond effectively to medical emergencies involving radiological or nuclear materials. Through the management of the Radiation Emergency Assistance Center/Training Site (REAC/TS), ORISE provides advice and consultation to emergency personnel responsible for the medical management of radiation accidents. REAC/TS strengthens hospital preparedness for radiation emergencies by preparing and educating first responders, medical personnel and occupational health professionals who will provide care to patients with a radiation injury or illness. REAC/TS staff provide medical advice,

214

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with AAS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTRT] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

215

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with AAS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 25-Oct-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

216

Roadmap: Radiologic Imaging Sciences -Radiation Therapy (with AAS Radiologic Technology)  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Radiation Therapy (with AAS Radiologic Technology) ­ Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

217

Roadmap: Radiologic Imaging Sciences -Radiation Therapy (with AAS Radiologic Technology)  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Radiation Therapy (with AAS Radiologic Technology) ­ Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

218

Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester-by-semester plan of study

Sheridan, Scott

219

Radiological assessment. A textbook on environmental dose analysis  

SciTech Connect (OSTI)

Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

Till, J.E.; Meyer, H.R. (eds.)

1983-09-01T23:59:59.000Z

220

Radiology of thoracic diseases  

SciTech Connect (OSTI)

This book presents the essential clinical and radiologic findings of a wide variety of thoracic diseases. The authors include conventional, CT and MR images of each disease discussed. In addition, they present practical differential diagnostic considerations for most of the radiographic findings or patterns portrayed.

Swensen, S.J.; Pugatch, R.D.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nevada National Security Site Radiological Control Manual  

SciTech Connect (OSTI)

This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

Radiological Control Managers Council

2012-03-26T23:59:59.000Z

222

Transportation Management Workshop: Proceedings  

SciTech Connect (OSTI)

This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

Not Available

1993-10-01T23:59:59.000Z

223

Lawrence Pack, train conductor, and Y-12s uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lawrence Pack, train conductor, and Y-12's uranium? Trains were the primary means of long haul transportation in the 1940's. Many trains brought building materials to Y-12 and...

224

Transportation Networks for Emergency Evacuations  

SciTech Connect (OSTI)

Evacuation modeling systems (EMS) have been developed to facilitate the planning, analysis, and deployment of emergency evacuation of populations at risk. For any EMS, data such as road network maps, traffic control characteristics, and population distribution play critical roles in delineating emergency zones, estimating population at risk, and determining evacuation routes. There are situations in which it is possible to plan in advance for an emergency evacuation including, for example, an explosion at a chemical processing facility or a radiological accident at a nuclear plant. In these cases, if an accident or a terrorist attack were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other instances -for example, the derailment of a train transporting hazardous materials-, there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on if and how to identify and proceed with the best course of action to minimize losses. Although both cases require as a starting point the development of a transportation network model of the area at risk, which must include road capacity and topology, in the latter the available time to generate this network is extremely limited. This time constraint precludes the use of any traditional data gathering methodology and the network generation process has to rely on the use of GIS and stochastic modeling techniques. The generation of these transportation networks in real time is the focus of this entry.

Franzese, Oscar [ORNL; Liu, Cheng [ORNL

2008-01-01T23:59:59.000Z

225

Radiological hazards of alpha-contaminated waste  

SciTech Connect (OSTI)

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

226

Nuclear & Radiological Activity Center (NRAC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear & Radiological Activity Center (NRAC) Where nuclear research and deployment capabilities come together to solve nuclear nonproliferation challenges. Skip Navigation Links...

227

Panoramic Radiology: Oncologic Dentistry Considerations  

Science Journals Connector (OSTI)

Panoramic radiology can serve as an important input supporting ... they are also important (1) for planning dental treatment in preparation of the oral cavity...

2007-01-01T23:59:59.000Z

228

Training Topic Group Conference Call February 17, 1999 PARTICIPANTS ON CALL:  

Broader source: Energy.gov (indexed) [DOE]

February 17, 1999 February 17, 1999 PARTICIPANTS ON CALL: Tom Hughes Bill Ruting Deena LaRue Randy Small Ella McNeil Wilbur Smith Tammy Ottmer Gordon Veerman Jim Price STATUS OF TRAINING MODULES: The training modules are still in need of an official name. Group members are requested to submit suggested titles for these modules by next week. In developing the title, keep in mind these three key words: transportation, radiological, module. Any logo ideas will also be welcome. Tom Clawson, Eastern Idaho Technical College, has revised the first five modules. Jim Price will review, edit, and forward copies to the Topic Group members for review. The Specialist module is on hold and will be the last module to be completed. Chief Bill Ruting, LaGrange, Illinois Fire Department, has taken the lead to develop the two Incident Command modules, Response and Recovery Phases. Drafts of these

229

TRAINING (TR)  

Broader source: Energy.gov (indexed) [DOE]

TRAINING (TR) TRAINING (TR) OBJECTIVE TRG.1 The selection, training and qualification programs for operations and operations support personnel have been established, documented, and implemented. The selection process and applicable position-specific training for managers assures competence commensurate with responsibilities. (The training and qualification program encompasses the range of duties and activities required to be performed.) (CR-3) Criteria * Training to support the SWS qualification programs for operations and operations support personnel shall be based on a systematic approach to training. (DOE Order 5480.20A, Chapter I) * Requirements for SWS continuing training have been adequately defined to ensure that operating organization personnel are qualified to perform job requirements.

230

Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect (OSTI)

In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

2014-10-01T23:59:59.000Z

231

Handling and Packaging a Potentially Radiologically Contaminated...  

Office of Environmental Management (EM)

Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical ExaminerCoroner...

232

For S Radiological  

Office of Legacy Management (LM)

? . ? . -. .- * -* (\/If.r.-5- .* , d- For S Radiological ' mer Bridgepo pecial Metals Adrian, Survey of the Irt Brass Company Extrusion Plant, Michigan / /f?t' . ( F. F. Haywood H. W. Dickson W. D. Cottrell W. H. Shinpaugh _ : I., _-. .I ( ._ rc/ DOE/EV-0005128 ORNL-57 13 / J. E. Burden 0. R. Stone R. W. Doane W. A. Goldsmith 4 , Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A06 Microfiche A01 This report was prepared as an account of work sponsored by an agency of the UnitedStatesGovernment. Neither theUnitedStatesGovernment noranyagency thereof, nor any of their employees, makes any warranty, express or implied, or

233

Case Based Dental Radiology  

Science Journals Connector (OSTI)

Dental radiology is quickly becoming integral to the standard of care in veterinary dentistry. This is not only because it is critical for proper patient care, but also because client expectations have increased. Furthermore, providing dental radiographs as a routine service can create significant practice income. This article details numerous conditions that are indications for dental radiographs. As you will see, dental radiographs are often critical for proper diagnosis and treatment. These conditions should not be viewed as unusual; they are present within all of our practices. When you choose not to radiograph these teeth, you leave behind painful pathology. Utilizing the knowledge gained from dental radiographs will both improve patient care and increase acceptance of treatment recommendations. Consequently, this leads to increased numbers of dental procedures performed at your practice.

Brook A. Niemiec

2009-01-01T23:59:59.000Z

234

Standardized radiological dose evaluations  

SciTech Connect (OSTI)

Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

Peterson, V.L.; Stahlnecker, E.

1996-05-01T23:59:59.000Z

235

Stanford Radiology LPCH Fast Pediatric MRI  

E-Print Network [OSTI]

Stanford Radiology LPCH Fast Pediatric MRI Shreyas Vasanawala, MD/PhD Stanford University Lucile Radiology LPCH Thank you Par Lab Briefer, lighter, safer anesthesia for pediatric MRI #12; practice #12;Stanford Radiology LPCH #12;Stanford Radiology LPCH Current Solution INVASIVE LIMITS ACCESS

California at Berkeley, University of

236

Radiological Source Registry and Tracking  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiological Source Registry and Tracking (RSRT) Radiological Source Registry and Tracking (RSRT) Home HSS Logo Radiological Source Registry and Tracking (RSRT) Department of Energy (DOE) Notice N 234.1 Reporting of Radioactive Sealed Sources has been superseded by DOE Order O 231.1B Environment, Safety and Health Reporting. O 231.1B identifies the requirements for centralized inventory and transaction reporting for radioactive sealed sources. Each DOE site/facility operator that owns, possesses, uses or maintains in custody those accountable radioactive sealed sources identified in Title 10 Code of Federal Regulation Part 835, Occupational Radiation Protection (10 CFR 835), Appendix E, and International Atomic Energy Agency (IAEA) Categories 1 and 2 radioactive sealed sources identified in Attachment 5, Appendix A of O 321.1B, will submit information to the DOE Radiological Source Registry and Tracking (RSRT) System.

237

Radiological Emergency Response Plan (Vermont)  

Broader source: Energy.gov [DOE]

This legislation establishes a radiological emergency response plan fund, into which any entity operating a nuclear reactor or storing nuclear fuel and radioactive waste in this state (referred to...

238

Radiological cleanup of Enewetak Atoll  

SciTech Connect (OSTI)

For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

Not Available

1981-01-01T23:59:59.000Z

239

Models for Train Scheduling Krishna C. Jha  

E-Print Network [OSTI]

Models for Train Scheduling Krishna C. Jha Vice President - Research & Development krishna/analytics, and packaging into web-based map-based interfaces. Innovative Scheduling Overview #12;-3- The train schedule is one of most critical components in the passenger or freight transportations. The quality of a train

Bustamante, Fabián E.

240

Radiological Protection for DOE Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

1995-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

INTEGRATEDFORMALMETHODSFORSAFETY ANALYSIS OF TRAIN SYSTEMS  

E-Print Network [OSTI]

among all cars of the whole train or autonomous, intelligent equipment on the track. This all results rises dramatically. #12; 2 radio communication central office route profile defects Figure 1. Overview on transportation [0] more fatalities involving railroads than any other form of transportation besides cars

Reif, Wolfgang

242

Louisiana Transportation Research Center  

E-Print Network [OSTI]

Louisiana Transportation Research Center LTRC www.ltrc.lsu.edu 2012-13 ANNUALREPORT #12;The Louisiana Transportation Research Center (LTRC) is a research, technology transfer, and training center administered jointly by the Louisiana Department of Transportation and Development (DOTD) and Louisiana State

Harms, Kyle E.

243

Fifth Anniversary of Radiological Alarm Response Training for...  

National Nuclear Security Administration (NNSA)

Related News DOENNSA Participates in Large-Scale CTBT On-Site Inspection Exercise in Jordan Y-12 recognized for outstanding procurement stewardship Pantex, Y-12 celebrate 'One...

244

DOE-HDBK-1141-2001; Radiological Assessor Training, Student's...  

Office of Environmental Management (EM)

effect for electrons than it is for protons having the same kinetic energy) * Thermal neutron capture: Photons can be emitted as a result of nuclear reactions in which materials...

245

DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor...  

Office of Environmental Management (EM)

with resolution of internal audit findings. DNFSB Recommendation 99-1 dealt with safe storage of fissionable materials. Implementation of DOE and site commitments made in...

246

RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE  

Office of Legacy Management (LM)

h h ' . * ' 1. MI). q-8 RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE FUTURA CHEMICAL COMPANY FACILITY 9200 LATTY AVENUE HAZELWOOD, MISSOURI L.W. Cole J.D. Berger W.O. Helton B.M. Putnam T.J. Sowell C.F. Weaver R.D. Condra September 9, 1981 Work performed by Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities Oak Ridge, Tennessee 37830 Under Interagency Agreement DOE No. 40-770-80 NRC Fin. No. A-9093-0 Between the U.S. Nuclear Regulatory Commission and the Department of Energy I_--___- ". TABLE OF CONTENTS Page List of Figures. . . . . . . . . . . . . . . . . . . . . . ii List of Tables . . . . . . . . . . . . . . . . . . . . . . iii Introduction . . . . . . . . . . . . . . . . . . . . . . . 1.

247

DOE Order Self Study Modules - DOE STD 1098-2008, Radiological Control  

Broader source: Energy.gov (indexed) [DOE]

STD-1098-2008 STD-1098-2008 DOE STANDARD: RADIOLOGICAL CONTROL DOE-STD-1098-2008 Familiar Level August 2011 1 DOE-STD-1098-2008 RADIOLOGICAL CONTROL FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What is the purpose of DOE-STD-1098-2008? 2. To which DOE position is the authority and responsibility to establish a comprehensive and effective radiological control training program assigned? 3. What is the definition of the term -total effective dose?‖ 4. What is the definition of the term -lifetime control level?‖ 5. What are three trigger levels that require a formal radiological review of work activities?

248

LANL responds to radiological incident  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL responds to radiological incident LANL responds to radiological incident LANL responds to radiological incident Multiple tests indicate no health risks to public or employees. August 27, 2012 Aerial view of the Los Alamos Neutron Science Center(LANSCE). Aerial view of the Los Alamos Neutron Science Center (LANSCE). The contamination poses no danger to the public. The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The Laboratory has determined that about a dozen people

249

Education & Training  

Broader source: Energy.gov [DOE]

Science and technology a critical sector of the U.S. economy. Learn about opportunities for education and training supported by the Energy Department.

250

An overview of dental radiology: a primer on dental radiology  

SciTech Connect (OSTI)

To provide medical and scientific background on certain selected technologies generally considered to be of particular significance, the National Center for Health Care Technology (NCHCT) has commissioned a series of overview papers. This is one of several projects entered into jointly by the Bureau of Radiological Health (BRH) and NCHCT relating to the use of radiation for health care. Dental radiation protection has been a long-time interest of BRH. Both past and on-going efforts to minimize population radiation exposure from electronic products have included specific action programs directed at minimizing unnecessary radiation exposure to the population from dental radiology. Current efforts in quality assurance and referral criteria are two aspects of NCHCT's own assessment of this technology which are described within the larger picture presented in this overview. The issues considered in this document go beyond the radiation exposure aspects of dental x-ray procedures. To be responsive to the informational needs of NCHCT, the assessment includes various other factors that influence the practice of dental radiology. It is hoped this analysis will serve as the basis for planning and conducting future programs to improve the practice of dental radiology.

Manny, E.F.; Carlson, K.C.; McClean, P.M.; Ra1hlin, J.A.; Segal, P.

1980-11-07T23:59:59.000Z

251

ORISE: Radiation Emergency Training for Iraq, South Africa and Morocco  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Training International Training REAC/TS Provides International Radiation Emergency Medical Response Training for Emergency Responders In support of the National Nuclear Security Administration's international approach to nuclear and radiological incident response, REAC/TS staff provide training to physicians, nurses and emergency responders in multiple countries each year. REAC/TS has conducted radiation emergency medical response training in Iraq, Kuwait, Morocco, Singapore, South Africa, and Thailand. "As one of the world's primary responders to nuclear and radiological accidents, it's critical that REAC/TS help prepare a variety of health care professionals for the medical management of radiation accidents," said REAC/TS Medical/Technical Director Dr. Albert Wiley. "Our medical

252

Assessor Training Assessor Qualification &  

E-Print Network [OSTI]

NVLAP Assessor Training Assessor Qualification & Training Requirements #12;Assessor Training 2009: Qualification & Training Requirements 2 References ·ISO/IEC 17011: Conformity assessment General requirements 2 #12;Assessor Training 2009: Qualification & Training Requirements 3 Assessor Defined ·Lead

253

Study of Training System Applying on Energy-Saving Driving  

Science Journals Connector (OSTI)

In this paper, the importance of energy saving on urban railway transportation and inevitability of energy-saving training are emphasized. To improve the energy-saving performance in the process of train operatio...

Haili Yuan; Bin Li; Wei Wang

2013-01-01T23:59:59.000Z

254

Train Diplomacy  

E-Print Network [OSTI]

Broadcast Transcript: You got your A Train. You got your Chattanooga Choo Choo. You got your Hogwarts Express. And now you got your Reunification Railroad. For the first time in 56 years, trains crossed the border between North and South Korea...

Hacker, Randi; Tsutsui, William; Bleier, R.H.

2007-06-04T23:59:59.000Z

255

Nuclear Radiological Threat Task Force Established | National...  

National Nuclear Security Administration (NNSA)

Radiological Threat Task Force Established | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

256

Operational Guidelines/Radiological Emergency Response  

Broader source: Energy.gov [DOE]

Operational Guidelines/Radiological Emergency Response. Provides information and resources concerning the development of Operational Guidelines as part of planning guidance for protection and recovery following Radiological Dispersal Device (RDD) and/or Improvised Nuclear Device (IND) incidents. Operational Guidelines Technical (OGT) Manual, 2009 RESRAD-RDD Complementing Software to OGT Manual EPA Protective Action Guidelines (2013), Interim Final Federal Radiological Monitoring and Assessment Center (FRMAC) Federal Radiological Preparedness Coordinating Committee (FRPCC)

257

Annual Training Plan Template  

Broader source: Energy.gov [DOE]

The Annual Training Plan Template is used by an organization's training POC to draft their organization's annual training plan.

258

Training Standardization  

SciTech Connect (OSTI)

The article describes the benefits of and required process and recommendations for implementing the standardization of training in the nuclear power industry in the United States and abroad. Current Information and Communication Technologies (ICT) enable training standardization in the nuclear power industry. The delivery of training through the Internet, Intranet and video over IP will facilitate this standardization and bring multiple benefits to the nuclear power industry worldwide. As the amount of available qualified and experienced professionals decreases because of retirements and fewer nuclear engineering institutions, standardized training will help increase the number of available professionals in the industry. Technology will make it possible to use the experience of retired professionals who may be interested in working part-time from a remote location. Well-planned standardized training will prevent a fragmented approach among utilities, and it will save the industry considerable resources in the long run. It will also ensure cost-effective and safe nuclear power plant operation.

Agnihotri, Newal

2003-09-01T23:59:59.000Z

259

Departmental Radiological Emergency Response Assets  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Cancels DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

2007-06-27T23:59:59.000Z

260

Best practice techniques for environmental radiological monitoring  

E-Print Network [OSTI]

Best practice techniques for environmental radiological monitoring Science Report ­ SC030308/SR SCHO0407BMNL-E-P #12;ii Science Report Best Practice Techniques for Environmental Radiological #12;iv Science Report Best Practice Techniques for Environmental Radiological Monitoring Executive

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Transportation | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Power Electronics and Electric Machinery Fuels, Engines, Emissions Transportation Analysis Vehicle Systems Energy Storage Propulsion Materials Lightweight Materials Bioenergy Fuel Cell Technologies Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Transportation SHARE Transportation Research ORNL researcher Jim Szybist uses a variable valve-train engine to evaluate different types of fuels, including ethanol blends, and their effects on the combustion process in an internal combustion engine. Oak Ridge National Laboratory brings together science and technology experts from across scientific disciplines to partner with government and industry in addressing transportation challenges. Research objectives are

262

Nuclear / Radiological Advisory Team | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

/ Radiological Advisory Team | National Nuclear Security / Radiological Advisory Team | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear / Radiological Advisory Team Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations > Nuclear / Radiological Advisory Team Nuclear / Radiological Advisory Team

263

Training  Access Training  CHRIS Training Workflow  

Broader source: Energy.gov (indexed) [DOE]

Using ESS to register for PMCDP training Using ESS to register for PMCDP training Find the course CHRIS Code/Session # on the PMCDP Training Schedule located on PMCDP's website http://energy.gov/management/downloads/pmcdp-course-schedule Login into ESS using mis.doe.gov/ESS From the tabs at the top of the screen, select Training  Access Training  CHRIS Training Workflow  Select ...Connect to CHRIS... tab 2 On the CHRIS page, from the Menu (left column) select the following path CHRIS Workflow  TrainingTraining Requests  Create/Modify Training Request From the Training Request tab screen Select Create Request in upper right corner 

264

Training Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 ~ Bloodborne Pathogen Training for Researchers 5 ~ Bloodborne Pathogen Training for Researchers Course Syllabus Subject Category: Biosafety Course Prerequisite: No Course Length: 15 minutes Medical Approval: No Delivery Mode: Online Course Purpose: This course is required for researchers before starting work that involves potential exposure to bloodborne pathogen (BBP) materials such as BBPs and human blood, tissues, or cells. This course provides specific training elements required in the OSHA Bloodborne Pathogens Standard that are listed in the course content below. Supplementary and Refresher Courses: * EHS 739 (Biosafety Training for Researchers) and EHS 745 (Hepatitis B Medical Surveillance) must be taken in conjunction with this course. This course may be taken before or after taking these supplementary courses, but all courses must be

265

Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry  

SciTech Connect (OSTI)

The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility.

Foltman, A.; Newsom, D.; Lerner, K.

1988-01-01T23:59:59.000Z

266

Understanding Mechanisms of Radiological Contamination  

SciTech Connect (OSTI)

Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible loose contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

Rick Demmer; John Drake; Ryan James, PhD

2014-03-01T23:59:59.000Z

267

5 - Medical Considerations for Radiological Terrorism  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the medical considerations for radiological terrorism. Radiological warfare (RW) attack is the deliberate use of radiological materials to cause injury and death. The explosion of a radiological weapon causes damage by the heat and blast liberated at the time of detonation. The proliferation of nuclear material and technology has made the acquisition and terrorist use of ionizing radiation more probable than ever. Currently, there are three threat scenarios for radiological terrorism. The most probable scenario for the near future would be a radiological dispersion device. Such a weapon can be developed and used by any terrorist with conventional weapons and access to radionuclides. This is an expedient weapon in that the radioactive waste material is easy to obtain from any location that uses radioactive sources. These sites can include a nuclear-waste processor, a nuclear power plant, a university research facility, a medical radiotherapy clinic, or an industrial complex.

James Winkley; Paul D. Mongan

2006-01-01T23:59:59.000Z

268

Training Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 ~ Radioactive and Mixed Waste Generator Training 2 ~ Radioactive and Mixed Waste Generator Training Course Syllabus Subject Category: Waste Management Course Prerequisite: EHS 471 and EHS 472 or equiv. Course Length: 1 hour Medical Approval: None Delivery Mode: Classroom Course Purpose: Provide basic familiarization with requirements for radioactive and mixed waste generation, accumulation, and request for pick-up. Course Objectives: Upon completion of this course, students will be able to: * Protect Berkeley Lab staff and environment while managing radioactive waste * Manage the potential for radiation exposures using ALARA techniques * Properly characterize waste for appropriate management from point of generation through storage, treatment, and disposal

269

Training Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 ~ Biosafety Training for Researchers 9 ~ Biosafety Training for Researchers Course Syllabus Subject Category: Biosafety Course Prerequisite: No Course Length: 60 minutes Medical Approval: No Delivery Mode: Online Course Purpose: This course ensures that researchers conducting work with biological materials or agents in LBNL laboratories understand standard and basic biosafety principles and requirements needed to: * Assess biosafety-related hazards and risks; and * Find, select, or use appropriate biosafety controls such as biosafety level 1 and 2 practices, equipment, and facilities Course Content: * Work planning and risk assessment * Biosafety containment levels * Personal Protective Equipment and clothing * Biosafety labels and signs * Facilities, equipment, and practices

270

Radiological Assistance Program | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assistance Program | National Nuclear Security Administration Assistance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Assistance Program Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Radiological Assistance Program Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's

271

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Data results provided back to the field within 30-60 minutes. All NNSA teams that conduct search, detection and identification operations, to include the Radiological...

272

Radiological Assistance Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Assistance Program | National Nuclear Security Administration Assistance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Assistance Program Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Radiological Assistance Program Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's

273

FERPA Training Guide FERPA Training Steps  

E-Print Network [OSTI]

FERPA Training Guide 1 FERPA Training Steps Graduate committee chairs and co-chairs are encouraged-time FERPA training via TrainTraq (if not previously completed). When trying to access the Graduate Committee Degree Evaluation too, the following screen will display if you have not completed FERPA training

274

A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: A pilot study  

E-Print Network [OSTI]

Objective: To compare the outcome of training the functional movement of transport of the arm and grasping an object with the alternative of training the transport of the arm in isolation.

Krebs, Hermano Igo

275

Roadmap: Radiologic Imaging Sciences Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences ­ Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-MRHA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended

Sheridan, Scott

276

Roadmap: Radiologic Imaging Sciences Diagnostic Medical Sonography (with AAS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences ­ Diagnostic Medical Sonography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAS] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

277

Roadmap: Radiologic Imaging Sciences -Magnetic Resonance Imaging (with AAS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Magnetic Resonance Imaging (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-MRRT] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

278

Roadmap: Radiologic Imaging Sciences Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences ­ Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-MRHA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended

Sheridan, Scott

279

Roadmap: Radiologic Imaging Sciences Nuclear Medicine (with certification and ATS Radiologic Technology)  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences ­ Nuclear Medicine (with certification and ATS Radiologic Technology) ­ Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-NMHO] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May 13/LNHD This roadmap is a recommended semester

Sheridan, Scott

280

Roadmap: Radiologic Imaging Sciences -Magnetic Resonance Imaging (with AAS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Magnetic Resonance Imaging (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-MRRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Roadmap: Radiologic Imaging Sciences Nuclear Medicine (with certification and ATS Radiologic Technology)  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences ­ Nuclear Medicine (with certification and ATS Radiologic Technology) ­ Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-NMHO] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

282

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with certification and ATS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with certification and ATS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTHA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

283

Roadmap: Radiologic Imaging Sciences-Diagnostic Medical Sonography (with certification and ATS Radiologic Technology)  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences- Diagnostic Medical Sonography (with certification and ATS Radiologic Technology) Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-HATS] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD This roadmap is a recommended

Sheridan, Scott

284

Roadmap: Radiologic Imaging Sciences Diagnostic Medical Sonography (with AAS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences ­ Diagnostic Medical Sonography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAS] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-2013/LNHD This roadmap is a recommended

Sheridan, Scott

285

Roadmap: Radiologic Imaging Sciences Radiation Therapy (with certification and ATS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences ­ Radiation Therapy ­ (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-RTHB] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

286

Roadmap: Radiologic Imaging Sciences-Diagnostic Medical Sonography (with certification and ATS Radiologic Technology)  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences- Diagnostic Medical Sonography (with certification and ATS Radiologic Technology) Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-HATS] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended

Sheridan, Scott

287

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with certification and ATS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with certification and ATS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTHA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 25-Oct-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

288

Mixing Fast Trains on Freight Rail Corridors presented by  

E-Print Network [OSTI]

Mixing Fast Trains on Freight Rail Corridors presented by: Minnesota Department of Transportation May 23, 2012 #12;Presentation Outline · State Plans for Fast (Passenger) Trains · Overarching) Suggest picture of CP grain train be inserted here #12;Passenger Rail Development Overarching Principles

Minnesota, University of

289

2012-2013 Diagnostic Radiology Fellows Cardiovascular Imaging  

E-Print Network [OSTI]

dbweinreb@ Pediatric Radiology Body Imaging 1st yr. Neuroradiology NCI Body Mammography Sonya Edwards 149042012-2013 Diagnostic Radiology Fellows Cardiovascular Imaging Nuclear Medicine David Weinreb 14895 14909 laxpati@ Michael Kim 14961 mjjkim@ Vascular and Interventional Radiology Charles Kosydar 14908

Sonnenburg, Justin L.

290

Nevada Test Site Radiological Control Manual  

SciTech Connect (OSTI)

This document supersedes DOE/NV/25946--801, Nevada Test Site Radiological Control Manual, Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council Nevada Test Site

2010-02-09T23:59:59.000Z

291

Nevada Test Site Radiological Control Manual  

SciTech Connect (OSTI)

This document supersedes DOE/NV/11718--079, NV/YMP Radiological Control Manual, Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council - Nevada Test Site

2009-10-01T23:59:59.000Z

292

Federal Radiological Monitoring and Assessment Center  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy, procedures, authorities, and requirements for the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC), as set forth in the Federal Radiological Emergency Response Plan (FRERP). This directive does not cancel another directive. Canceled by DOE O 153.1.

1992-12-02T23:59:59.000Z

293

Memorandum, Reporting of Radiological Sealed Sources Transactions  

Broader source: Energy.gov [DOE]

The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the Office of Information Management, within the Office of Environment, Health, Safety and Security.

294

Radiological health aspects of uranium milling  

SciTech Connect (OSTI)

This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

Fisher, D.R.; Stoetzel, G.A.

1983-05-01T23:59:59.000Z

295

SANS TRAINING  

Broader source: Energy.gov (indexed) [DOE]

SANS Training Voucher Program Registration Procedures For Federal Employees/Contractors Process: Currently, under this program, the OCIO will cover only registration fees for SANS courses. All travel costs are the responsibility of the Federal Employee/Contractor's employing organization. Every effort must be made to complete classes within the allotted time frame. Extension of on-line courses may be granted by SANS; however, this expense is to be covered by the employing organization. The employing organization must also reimburse the OCIO fees for any registered course the student does not complete. In addition, the OCIO will not pay for certification. Costs for certification testing related to the training must be covered by the employee or employing organization and submitted to SANS directly, no through the OCIO

296

Photon Sciences Training Courses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photon Sciences Training & Qualification Requirements for Accelerator Photon Sciences Training & Qualification Requirements for Accelerator Operators Medical Surveillance BNL Web-Based Training (BNL) Web-Based Training (PSD) Web-Based Training (Help) Instructor-Led Training (BNL) Instructor-Led Training (PSD) Other Training Instructions Medical Surveillance Print the forms and follow the instructions to satisfy the requirement. Web-Based Training Complete the course online. Training credit is entered immediately into the trainee's training history on successful completion of the course. Instructor-Led Training Training is in-person and led by an instructor. Training may be in the form of a briefing, tour, classroom training, hands-on training, event scenario, and may require an exam. Click on the icon for the instructor's name.

297

Basic Instructor Training  

Broader source: Energy.gov [DOE]

The Emergency Operations Training Academy, NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce site certification by the National Training Center for conduct of the Basic Instructor Training class

298

Radiological survey results at 4400 Piehl Road, Ottawa Lake, Michigan  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at 4400 Piehl Road in Ottawa Lake, Michigan. The survey was performed in September, 1992. The purpose of the survey was to determine if materials containing uranium from work performed under government contract at the former Baker Brothers facility in Toledo, Ohio had been transported off-site to this neighboring area. The radiological survey included surface gamma scans indoors and outdoors, alpha and beta scans inside the house and attached garage, beta-gamma scans of the hard surfaces outside, and the collection of soil, water, and dust samples for radionuclide analyses. Results of the survey demonstrated that the majority of the measurements on the property were within DOE guidelines. However, the presence of isolated spots of uranium contamination were found in two areas where materials were allegedly transported to the property from the former Baker Brothers site. Uranium uptake by persons on the property by ingestion is fairly unlikely, but inhalation is a possibility. Based on these findings, it is recommended that the residential property at 4400 Piehl Road in Ottawa Lake, Michigan be considered for inclusion under FUSRAP.

Foley, R.D.; Johnson, C.A.

1993-04-01T23:59:59.000Z

299

CRAD, Radiological Controls - Oak Ridge National Laboratory TRU...  

Broader source: Energy.gov (indexed) [DOE]

Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A...

300

Unified Resolve 2014: A Proof of Concept for Radiological Support...  

Office of Environmental Management (EM)

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders...

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Federal Employee Training  

Broader source: Energy.gov (indexed) [DOE]

the Chief Human Capital Officer the Chief Human Capital Officer Office of Learning and Workforce Development July 26, 2011 Federal Employee Training Desk Reference Federal Employee Training Federal Employee Training Page 2 of 53 July 26, 2011 Desk Reference Contents CHAPTER I. TRAINING REQUESTs, APPROVALs, AUTHORIZATIONS AND ALLOWABLE COSTs ........................................................................................................................................................... 3 1. TRAINING REQUESTS. ................................................................................................................. 3 2. TRAINING APPROVALS. .............................................................................................................. 3

302

Transportation Emergency Preparedness Program  

Broader source: Energy.gov (indexed) [DOE]

Stakeholders Forum 1 Planning for a Shipment Campaign Identifying Responders Needs National Transportation Stakeholders Forum Tom Clawson US Department of Energy Transportation Emergency Preparedness Program 2 Topics to Discuss * Campaign and Routings * Identifying Stakeholders * Communication Information * Determining Training Needs * Types of Training Programs * Support Resources 3 Campaign and Routing * Type of Shipments * Duration of Campaign * Possible Routes * Proposed Schedule 4 Identifying & Working with Stakeholders * Regional Groups * State Point of Contacts * Coordination Options 5 Communication Information * Fact sheet on campaign * Distribution of information * Conference calls and progress reports * National stakeholder meetings

303

EHSO TRAINING CLASSES Fire Safety Program Training  

E-Print Network [OSTI]

EHSO TRAINING CLASSES Fire Safety Program Training 1. Fire Safety (60 minutes) Instruction includes an actual fire eperience. 2. Fire Extinguisher Training (30 minutes) A practical demonstration on actual burnable liquid fires. This practical extinguisher training is a critical portion of the fire

304

LEDSGP/Transportation Toolkit/Key Actions/Prioritize and Plan...  

Open Energy Info (EERE)

Transportation Toolkit Home Tools Training Request Assistance Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for...

305

Estimating radiological background using imaging spectroscopy  

SciTech Connect (OSTI)

Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

2014-06-13T23:59:59.000Z

306

Transportation and Program Management Services  

Broader source: Energy.gov (indexed) [DOE]

Atlanta, Georgia Atlanta, Georgia Transportation and Program Management Services Secured Transportation Services, LLC Founded: December, 2003 ff Staff: 7 Experience: Over 145 years combined experience in Nuclear Transportation, Security, HP & Operations Services Transportation The largest Transportation Coordinators of Spent Nuclear Fuel in North America On-Site, Hands-On Assistance (Before & During both Loading & Transport) P d A i t (W iti d/ R i ) Procedure Assistance (Writing and/or Review) Package Handling, Loading Services Certificate of Compliance and Competent Authority Reviews & Requests Carrier Coordination (Empty Packages & Equipment, Loaded, & Returns) Vessel Charters, Special Trains, Dedicated Exclusive Use Trucks p

307

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Triage | National Nuclear Security Administration Triage | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Triage Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Render Safe > Radiological Triage Radiological Triage Triage Logo NNSA's Triage is a non-deployable, secure, on-line capability

308

Integrating pathology and radiology disciplines: an emerging opportunity?  

E-Print Network [OSTI]

Pediatric vascular malformations: pathophysiology, diagnosis, and the role of interventional radiology.

Sorace, James; Aberle, Denise R; Elimam, Dena; Lawvere, Silvana; Tawfik, Ossama; Wallace, W Dean

2012-01-01T23:59:59.000Z

309

Modeling requirements for full-scope reactor simulators of fission-product transport during severe accidents  

SciTech Connect (OSTI)

This paper describes in the needs and requirements to properly and efficiently model fission product transport on full scope reactor simulators. Current LWR simulators can be easily adapted to model severe accident phenomena and the transport of radionuclides. Once adapted these simulators can be used as a training tool during operator training exercises for training on severe accident guidelines, for training on containment venting procedures, or as training tool during site wide emergency training exercises.

Ellison, P.G.; Monson, P.R. (Westinghouse Savannah River Co., Aiken, SC (United States)); Mitchell, H.A. (Concord Associates, Inc., Knoxville, TN (United States))

1990-01-01T23:59:59.000Z

310

Modeling requirements for full-scope reactor simulators of fission-product transport during severe accidents  

SciTech Connect (OSTI)

This paper describes in the needs and requirements to properly and efficiently model fission product transport on full scope reactor simulators. Current LWR simulators can be easily adapted to model severe accident phenomena and the transport of radionuclides. Once adapted these simulators can be used as a training tool during operator training exercises for training on severe accident guidelines, for training on containment venting procedures, or as training tool during site wide emergency training exercises.

Ellison, P.G.; Monson, P.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Mitchell, H.A. [Concord Associates, Inc., Knoxville, TN (United States)

1990-12-31T23:59:59.000Z

311

2.04 - Oral and Maxillofacial Radiology  

Science Journals Connector (OSTI)

Abstract This chapter addresses the technologies and the applications of radiology used in the field of oral (or dental) and maxillofacial imaging. While the basic science and x-ray technology are the same as in general radiology, there are here important specialized differentiations that lead to very distinct equipment and procedures compared to general medical imaging. Four major subcategories are discussed: Dedicated x-ray sources for dental intraoral radiology, that is, radiography where the detector is located inside the oral cavity, and the radiographic object consisting of a few teeth Intraoral detectors: (classic) radiographic film, photostimulated-phosphor imaging plates, and solid-state digital detectors (that produce an image immediately) Equipment for panoramic and for cephalometric extraoral radiology Cone beam volumetric imaging (3D x-ray) of the head (aka CBCT)

R. Molteni

2014-01-01T23:59:59.000Z

312

Educational strategies in oral and maxillofacial radiology  

Science Journals Connector (OSTI)

In this paper, we interpret a trend in higher education in terms of its relation to oral and maxillofacial radiology education. Specifically, we describe an evidence-based dental education borrowing from the ...

Madeleine Rohlin; Koji Shinoda; Yumi Takano

2004-06-01T23:59:59.000Z

313

DOE Issues WIPP Radiological Release Investigation Report  

Broader source: Energy.gov [DOE]

Today, the Department of Energys Office of Environmental Management (EM) released the initial accident investigation report related to the Feb. 14 radiological release at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

314

Environmental/Radiological Assistance Directory (ERAD)  

Broader source: Energy.gov [DOE]

The Environmental Radiological Assistance Directory or ERAD, developed by HS-22, serves as an assistance tool to the DOE complex for protection of the public and environment from radiation. The ERAD is a combination webinar/conference call, designed to provide DOE and its contractors a forum to share information, lessons-learned, best practices, emerging trends, compliance issues, etc. in support of radiological protection programs developed in accordance with DOE O 458.1. ERAD Presentations, Questions and Answers ERAD

315

A radiological evaluation of phosphogypsum  

SciTech Connect (OSTI)

Phosphogypsum is the by-product resulting from phosphoric acid or phosphate fertilizer production. The phosphate used in these chemical processes contains the naturally occurring radioactive material U and all its subsequent decay products. During processing, the U generally remains in the phosphoric acid product, while the daughter, {sup 226}Ra, tends to be concentrated in the phosphogypsum. Phosphogypsum has physical properties that make it useful as a sub-base for roadways, parking lots, and similar construction. A radiological evaluation, to determine exposures to workers mixing this material with a stabilizing agent (portland cement), was performed at a South Louisiana phosphoric acid chemical plant. Measurements of the {sup 226}Ra content of the phosphogypsum showed an average of 1.1 +/- 0.3 Bq g-1 (0.7-1.7 Bq g-1). The average measured gross gamma exposure rate on the phosphogypsum pile corresponded to a dose equivalent rate of 0.368 +/- 0.006 mu Sv h-1 (0.32-0.42 mu Sv h-1). Radon daughter concentrations measured on top of the phosphogypsum pile ranged from 0.0006 to 0.001 working levels. An analysis of the airborne {sup 226}Ra concentrations showed only background levels.

Laiche, T.P.; Scott, L.M. (Louisiana State Univ., Baton Rouge (USA))

1991-05-01T23:59:59.000Z

316

Contained radiological analytical chemistry module  

DOE Patents [OSTI]

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1989-01-01T23:59:59.000Z

317

Contained radiological analytical chemistry module  

DOE Patents [OSTI]

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1990-01-01T23:59:59.000Z

318

Training and Organizational Development  

E-Print Network [OSTI]

Training and Organizational Development Contact: Ellen Audley Assistant, (970) 491-1376, Ellen 1 of 5 This office coordinates training and development opportunities for personal and professional and state classified personnel. Customized training and orga- nizational development consulting services

319

Training and Organizational Development  

E-Print Network [OSTI]

Training and Organizational Development Contact: Ellen Audley Assistant, 491-1376, Ellen coordinates training and development opportunities for personal and professional growth for Colorado State. Customized training and organizational development consulting services are also available. Class Locations

Stephens, Graeme L.

320

Training and Organizational Development  

E-Print Network [OSTI]

Training and Organizational Development Contact: Ellen Audley Assistant, 491-1376, Ellen coordinates training and development opportunities for personal and professional growth for Colorado State. Customized training and organizational development consulting services are also available. Class Location

Stephens, Graeme L.

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Training and Development  

E-Print Network [OSTI]

Training and Development Administration Assistant Vice Chancellor Lori Castro VC Business Senior Manager Conflict Resolution Nancy Heischman Training Coordinator Vacant Principal Technical Training Consultant Frank Widman Health Care Facilitator / Interim Benefits Manager Frank Trueba Disability

California at Santa Cruz, University of

322

On the Train  

E-Print Network [OSTI]

in the cracked mirror just as the train was stopping in Not-a blood expert on this train from Edirne to Europe. From theCarl and I will board another train for Berlin. The trees in

Adelson, Leslie A.

2014-01-01T23:59:59.000Z

323

Training and Organizational Development  

E-Print Network [OSTI]

Training and Organizational Development Contact: Ellen Audley Assistant, (970) 491-1376, Ellen training and development opportunities for personal and professional growth for Colorado State University training and organiza- tional development consulting services are also available. Class Location: Johnson

324

Training and Organizational Development  

E-Print Network [OSTI]

Training and Organizational Development Contact: Ellen Audley Assistant, 491-1376, Ellen training and development opportunities for personal and professional growth for Colorado State University training and organizational development consulting services are also available. Class Location: Johnson

Stephens, Graeme L.

325

Measuring spike train synchrony  

E-Print Network [OSTI]

mark the times where the respective spike train is slower.For this pair of spike trains an ISI-distance D I = 0.06 isalso for rather short spike trains. Finally, the sensitivity

Kreuz, Thomas; Haas, Julie S.; Morelli, Alice; Abarbanel, Henry D. I.; Politi, Antonio

2007-01-01T23:59:59.000Z

326

Assessor Training Nonconformities  

E-Print Network [OSTI]

NVLAP Assessor Training Nonconformities #12;Nonconformity ­ nonfulfillment of a specified Assessor Training 2009: Nonconformities 2 Definitions #12;Nonconformities ­ All nonconformities must of the lab. Assessor Training 2009: Nonconformities 3 Implications #12;Specified requirements are defined

327

Assessor Training Assessment Techniques  

E-Print Network [OSTI]

NVLAP Assessor Training Assessment Techniques: Communication Skills and Conducting an Assessment listener ·Knowledgeable Assessor Training 2009: Assessment Techniques: Communication Skills & Conducting, truthful, sincere, discrete · Diplomatic · Decisive · Selfreliant Assessor Training 2009: Assessment

328

Attributes and practices of oral and maxillofacial radiology departments in US and Canadian dental schools  

Science Journals Connector (OSTI)

Abstract Objective: To assess the actual state of oral and maxillofacial radiology departments in US and Canadian dental schools against the ideal characteristics defined by the American Academy of Oral and Maxillofacial Radiology (AAOMR) 1997 position paper. Study Design: Cross-sectional survey of all 65 US and Canadian dental schools. Results: Sixty-four surveys were returned (98%). At most schools, oral and maxillofacial radiology (OMR) was an identifiable division of a department, established policies, and had operational authority for radiographic practices in the primary radiology clinic. The majority of full-time faculty (72%) had formal training in OMR; the majority of part-time faculty (86%) did not. Full-time faculty spent approximately 60% of their time teaching, with the remainder of their time divided among research and scholarship, faculty practice, and service. Routine x-ray equipment was universally available; advanced imaging technologies were not. OMR faculty involvement in the interpretation of radiographs varied across diseases and conditions. Most published scholarship (85%+) was produced by full-time faculty. Average output was 1 paper per person per year, but a relatively small cadre of OMR faculty generated most papers. Conclusions: In some attributes, the status of OMR closely approximated the ideal characteristics established in the AAOMR report. Among the remaining attributes, bridging the difference between the actual and the ideal will be the challenge for the next 5 years. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;91:101-8)

Mel L. Kantor; Dona Schneider; M.Kevin O Carroll

2001-01-01T23:59:59.000Z

329

Roadmap: Radiologic Technology Radiology Department Management Technology Associate of Technical Study  

E-Print Network [OSTI]

Roadmap: Radiologic Technology ­ Radiology Department Management Technology ­ Associate-Nov-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However technology, housed at the Salem Campus. Course Subject and Title Credit Hours Min. Grade Major GPA Important

Sheridan, Scott

330

Training on Multifamily Retrofits  

Broader source: Energy.gov [DOE]

Ensure the people making decisions and installing measures in your buildings are properly trained to deal with multifamily properties by taking advantage of our national training network.

331

Nevada STEP Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Provide Training For Hospital Personnel in Nevada CARLSBAD, N.M., January 15, 2001 - Radiation Management Consultants, Inc., (RMC) will host three separate hospital training...

332

ALARA Training for Technical Support Personnel  

Broader source: Energy.gov (indexed) [DOE]

10-2008 10-2008 February 2008 DOE HANDBOOK ALARA TRAINING FOR TECHNICAL SUPPORT PERSONNEL U.S. Department of Energy FSC-6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1110-2008 This document is available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techstds/ ii DOE-HDBK-1110-2008 Foreword This Handbook describes a recommended implementation process for training as outlined in the DOE Radiological Control Standard (RadCon Standard). The Handbook is to assist those individuals within Department of Energy (DOE), Managing and Operating (M&O) contractors,

333

Fundemental Academic Training Study Guide Phase 1  

Broader source: Energy.gov (indexed) [DOE]

Module 1.01 Basic Mathematics and Algebra Study Guide Part 4 of 9 Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 Module 1.01 Basic Mathematics and Algebra Study Guide 1.01-ii This page intentionally left blank. DOE-HDBK-1122-2009 Module 1.01 Basic Mathematics and Algebra Study Guide 1.01-iii Table of Contents Page Module 1.01 Basic Mathematics and Algebra........................................................................1.01-1 Module 1.02 Unit Analysis and Conversion...........................................................................1.02-1 Module 1.03 Physical Sciences...............................................................................................1.03-1

334

GIZ Sourcebook Module 4e: Intelligent Transport Systems | Open...  

Open Energy Info (EERE)

management of traffic flow have been developing at a rapid pace for vehicles, buses, trains, and for the management of large public transport networks. Collectively, the various...

335

Train-the-Trainer Program Pesticide Safety Training for  

E-Print Network [OSTI]

Train-the-Trainer Program Pesticide Safety Training for Fieldworkers complete this training will become certified to provide pesticide safety training. This training is approved and co-sponsored by the California Department of Pesticide

Ishida, Yuko

336

Assessor Training International  

E-Print Network [OSTI]

NVLAP Assessor Training International Arrangements #12;Assessor Training 2009: International;Assessor Training 2009: International Arrangements 3 2009 is the 10th anniversary of the signing granted by a signatory to the ILAC Arrangement #12;Assessor Training 2009: International Arrangements 4

337

Assessor Training Traceability  

E-Print Network [OSTI]

NVLAP Assessor Training Traceability #12;Assessor Training 2009: Traceability 2 Important References ·ILAC P10:2002 ·NVLAP Handbook 150:2006, Annex B Assessor Training 2009: Traceability 2 #12;Assessor Training 2009: Traceability 3 ILAC P10:2002 ·Section 1.4: Characteristics of traceability

338

Assessor Training NVLAP Communications  

E-Print Network [OSTI]

NVLAP Assessor Training NVLAP Communications #12;Assessor Training 2009: NVLAP Communications 2 of assessment. ·Will also discuss other tools, such as internal database and webbased. #12;Assessor Training of assessors at lab · Assignments occur quarterly, in sync with renewal cycles. #12;Assessor Training 2009

339

Assessor Training Measurement Uncertainty  

E-Print Network [OSTI]

NVLAP Assessor Training Measurement Uncertainty #12;Assessor Training 2009: Measurement Uncertainty Training 2009: Measurement Uncertainty 3 Measurement Uncertainty ·Calibration and testing labs performing Training 2009: Measurement Uncertainty 4 Measurement Uncertainty ·When the nature of the test precludes

340

Professional Training Information Pack  

E-Print Network [OSTI]

Intending Professional Training Students Year 2 Information Pack #12;- 1 - Applying for a Professional Training Placement To be allowed to do the Professional Training you must have enrolled on one must talk to Dr J. M. Thompson immediately. General introduction to professional training Students

Davies, Christopher

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Radon Training for Professionals  

E-Print Network [OSTI]

's International Radon Project, EPA, states, Canadian provinces, tribal nations, partner Regional Radon Training University. · MURC is widely respected as an international leader in radon training. · Your course is fromRadon Training for Professionals 2008-2009 www.cce.umn.edu/radon Regional Radon Training Center

Netoff, Theoden

342

Testing, Training, and Signature Devices | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing, Testing, Training, and ... Testing, Training, and Signature Devices Y-12 manufactures specialized uranium testing, training, and signature devices to support the nuclear detection community. As part of our national security mission, and in partnership with Oak Ridge National Laboratory, we are producing unique test objects for passive gamma ray signature analysis. Y-12 is fabricating new Highly Enriched Uranium Equivalent Radiological Signature Training Devices, tools that use an innovative method to replicate a much larger mass of uranium. These objects contain small amounts of U-235 embedded in an aluminum alloy. When seen by a detector, however, the gamma ray signature is nearly equivalent to a much larger amount of U-235, due to the alloying effect that minimizes the uranium

343

Training | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Training Training Training October 16, 2013 - 5:17pm Addthis Training is critical to successfully implementing, operating, and maintaining renewable energy systems in new Federal construction or major renovation. This section outlines the different training needs of project management, design, and facility management staff. Designing and integrating a successful renewable energy project requires training on renewable energy system specifics, especially since systems are specialized components of a building project. Once in place, renewable energy system successful operation relies on the operations and maintenance (O&M) staff, who should fully understand the system and its interaction with other building systems. Training is necessary at various stages of a new construction or major

344

Radioactive Materials Transportation and Incident Response  

Broader source: Energy.gov (indexed) [DOE]

FEMA 358, 05/10 FEMA 358, 05/10 Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q Q Law Enforcement ____________________________________ Fire ___________________________________________ Medical ____________________________________________ State Radiological Assistance ___________________________ Local Government Official ______________________________ Local Emergency Management Agency ___________________ State Emergency Management Agency ___________________ HAZMAT Team ______________________________________ Water Pollution Control ________________________________ CHEMTEL (Toll-free US & Canada) 1-800-255-3924 _________ CHEMTREC (Toll-free US & Canada) 1-800-424-9300 _______

345

Radiological Instrumentation Assessment for King County Wastewater Treatment Division  

SciTech Connect (OSTI)

The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 ?Ci per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine innocent alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

2005-05-19T23:59:59.000Z

346

EM-Led Radiological Incident Response Program Receives Honors...  

Broader source: Energy.gov (indexed) [DOE]

EM-Led Radiological Incident Response Program Receives Honors EM-Led Radiological Incident Response Program Receives Honors May 29, 2014 - 12:00pm Addthis Jessie Welch performs...

347

Nuclear and Radiological Engineering and Medical Physics Programs  

E-Print Network [OSTI]

Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Year Enrollment - Fall Semester Undergraduate Graduate #12; Nuclear Power Industry Radiological Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants

Weber, Rodney

348

E-Print Network 3.0 - arms aerial radiological Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Diagnostic Radiology * Clinical Rotation Breast Imaging... * Clinical Rotation Pediatric Radiology * Clinical Rotation Nuclear Medicine Semester ... Source: VandeVord,...

349

Feminist theoretical perspectives on ethics in radiology  

Science Journals Connector (OSTI)

......about the substantive public health issues? In the Western world...female cancer, and yet public health systems come under serious...accorded the best education, health care, nutrition or technology...unwanted food or inferior or even dangerous radiological or other technical......

Mary Condren

2009-07-01T23:59:59.000Z

350

Measurement of radiation dose in dental radiology  

Science Journals Connector (OSTI)

......product to effective dose and energy imparted to the patient. Phys...C. A. and Persliden, J. Energy imparted to the patient in diagnostic...factors for determining the energy imparted from measurements of...dental radiology. | Patient dose audit is an important tool for quality......

Ebba Helmrot; Gudrun Alm Carlsson

2005-05-01T23:59:59.000Z

351

Nuclear Engineering Catalog 2014 Radiological Concentration  

E-Print Network [OSTI]

Nuclear Engineering Catalog 2014 Radiological Concentration Fall Math 141 or 147 (4) FA, SP, SU-approved by the department. Courses in Nuclear Engineering other than 500, 502 or 598 may also be used as technical electives. No more than four (4) credit hours of nuclear engineering courses in which a C- or lower is the highest

Grissino-Mayer, Henri D.

352

Development of radiological concentrations and unit liter doses for TWRS FSAR radiological consequence calculations  

SciTech Connect (OSTI)

The analysis described in this report develops the Unit Liter Doses for use in the TWRS FSAR. The Unit Liter Doses provide a practical way to calculate conservative radiological consequences for a variety of potential accidents for the tank farms.

Cowley, W.L.

1996-04-25T23:59:59.000Z

353

THE RABIT: A RAPID AUTOMATED BIODOSIMETRY TOOL FOR RADIOLOGICAL TRIAGE  

E-Print Network [OSTI]

-priority need in an environment of heightened concern over possible radiological or nuclear terrorist attacks (Pellmar and Rockwell 2005). The detonation of even a small dirty bomb (radiological dispersal device of radiological injuries. A small improvised nuclear device (IND) would produce a major health emergency

354

National Instruments online training and training credits offering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

offer online training and training credits for those interested in attending instructor led web or classroom sessions on the latest NI tools. Self-paced online training is...

355

Piecewise training for structured prediction  

E-Print Network [OSTI]

K. (2006). Accelerated training of conditional random ?eldsmethods for discriminative training of dependency parsers (Sutton, C. (2008). Ef?cient training methods for conditional

Sutton, Charles; McCallum, Andrew

2009-01-01T23:59:59.000Z

356

Training Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Training Plan Training Plan This template is used to define the plan, scope, environment, roles and responsibilities for training needs for systemsoftware development and...

357

Global Transport and Deposition of 137Cs Following the Fukushima Nuclear Power Plant Accident in Japan: Emphasis on Europe and Asia Using HighResolution Model Versions and Radiological Impact Assessment of the Human Population and the Environment Using Interactive Tools  

Science Journals Connector (OSTI)

Such doses are equivalent with the obtained dose from a simple X-ray; for the highly contaminated regions, they are close to the dose limit for exposure due to radon inhalation (10 mSv). ... The International Commission on Radiological Protection (ICRP) provides a system of protection against the risks from exposure to ionizing radiation, including recommended dosimetric quantities. ... The authors would like to acknowledge the funding source of the project (GIS Climat-Environnement-Socit, http://www.gisclimat.fr/projet/radioclimfire). ...

Nikolaos Evangeliou; Yves Balkanski; Anne Cozic; Anders Pape Mller

2013-05-01T23:59:59.000Z

358

Mandatory Supervisory Training Requirements  

Broader source: Energy.gov (indexed) [DOE]

Mandatory Supervisory Training Requirements Mandatory Supervisory Training Requirements All DOE supervisors, managers, and executives will comply with mandatory supervisory training requirements (5 CFR 412; 5 CFR 315.801; 5 CFR 315.901; DOE O 360.1; and DOE O 320.1): * New supervisors: 80 hours of supervisory training, with 40 hours required to be completed during the supervisory probationary period. * Experienced supervisors: minimum of 8 hours of supervisory training each year. The Office of Learning and Workforce Development has developed an inventory of training and developmental activities that will meet the supervisory training requirements. The DOE courses Supervisory Essentials (32 hours) and Navigating the Federal Hiring Process (8 hours) are required to fulfill the first year 40-hour training

359

Training - 88-Inch Cyclotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training General Employee Radiation Training (GERT): All experimenters at the 88-Inch Cyclotron are required to take GERT, which only takes a few minutes and can be found here....

360

DVU Training News Form  

Energy Savers [EERE]

Plain text. Please specify the word(s) to be hyperlinked in the notes section below: For Web Team Only NODE DOE F 360.9 (092014) Guidance for Posting to "Training News" "Training...

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NSLS User Access | Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training Training Training for New Users and Users with Expired Training and/or Badges: All new users and users with expired badges must complete or update the training modules shown below prior to access to the experimental floor. The training can be completed online prior to arrival at the NSLS and is strongly recommended to save considerable time during check-in at the Guest, User, Visitor (GUV) Center in Building 400. Please note each training module is followed by an exam which asks for your name and guest number. If you do not already have a guest number, leave this entry blank. All new users and users with expired badges MUST arrive on a weekday (no weekends or holidays) and check in at the GUV Center so that your training can be verified and to receive a photo ID badge (new or updated). The GUV

362

F2010-B-107 MODELING OF THE THS-II SERIES/PARALLEL POWER TRAIN AND  

E-Print Network [OSTI]

F2010-B-107 MODELING OF THE THS-II SERIES/PARALLEL POWER TRAIN AND ITS ENERGY MANAGEMENT SYSTEM ­ Hybrid power train, power-split eCVT, rule-based control strategy, Toyota Hybrid System, driver the challenge of minimizing the consumption of the road transport. Although hybrid power train technologies did

Paris-Sud XI, Université de

363

Monitoring the Aerodynamic Efficiency of Intermodal Train Loading Using Machine Vision  

E-Print Network [OSTI]

Monitoring the Aerodynamic Efficiency of Intermodal Train Loading Using Machine Vision TRB 11 transported by North American railroads. Intermodal trains, however, use equipment that is not aerodynamically significant aerodynamic drag. This high resistance associated with the movement of intermodal trains results

Illinois at Urbana-Champaign, University of

364

INTEGRATED FORMAL METHODS FOR SAFETY ANALYSIS OF TRAIN SYSTEMS  

E-Print Network [OSTI]

among all cars of the whole train or autonomous, intelligent equipment on the track. This all results rises dramatically. #12;2 radio communication central office route profile defects Figure 1. Overview on transportation [0] more fatalities involving railroads than any other form of transportation besides cars

Reif, Wolfgang

365

Athletic Training Education Program Bachelor of Science in Athletic Training  

E-Print Network [OSTI]

Athletic Training Education Program Bachelor of Science in Athletic Training Department of Kinesiology Athletic training is a health care profession practiced by athletic trainers who collaborate with physicians to optimize activity and participation of patients and clients. Athletic training includes

Saldin, Dilano

366

2013 Environmental/Radiological Assistance Directory (ERAD) Presentations  

Broader source: Energy.gov [DOE]

November 2013 Derived Intervention and Response Levels for Tritium Oxide at the Savannah River Site May 2013 THE MARSAME METHODOLOGY Fundamentals, Benefits, and Applications March 2013 Working to Keep our Shipments Safe, Secure and Economical ANL Facility Decommissioning Training Program January 2013 DOE Corporate Operating Experience Program Radiological Reporting Annual Site Environmental Reports (ASERs) & HSS Environmental and Radiation Protection Performance Dashboards November 2012 Environmental Measurements in an Emergency: This is not a Drill! BGRR D&D Presentation for the DOE ERAD Working Group September 2012 Development of Authorized Limits for Portsmouth Oil Inventory Disposition Development of Authorized Limits for Portsmouth Oil Inventory Disposition Development of Authorized Limits for Portsmouth Oil Inventory Disposition Clearance of Real and Personal Property Under DOE Radiation Protection Directive DOE Order 458.1 June 2012 RESRAD Codes for ERAD June 27, 2012 Florida International University (FIU) D&D Knowledge Management Information Tool, June 27, 2012 May 2012 Integrated Cloud Based Environmental Data Management System DOE Order 458.1, Radiation Protection of the Public and the Environment

367

COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA FALIS STORAGE SITE  

Office of Legacy Management (LM)

COT"IPREITENS IVE RADIOLOGICAL COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA FALIS STORAGE SITE LEWISTON, NEW YORK Prepared for U.S. DePartment of EnergY as part of the Formerly Utilized Sites - Remedial ActLon Program J . D . B e r g e r P r o j e c t S t a f f J. Burden* w.L. Smlth* R.D. Condra T.J. Sowell J.S . Epler* G.M. S tePhens P.Iil. Frame L.B. Taus* W . 0 . H e l t o n C . F . W e a v e r R . C . G o s s l e e B . S . Z a c h a r e k d I I Prepared bY Radiological Slte Assessoent Progran Manpower Educailon Research, and Training Dlvision Oak Ridge Assoclated Universlties Oak Ridge, Tennessee 3783f-0117 I FINAL REPORT March 1984 Thts report ls based on work performed under contract number DE-AC05-760R00033 wiLh the DePartment of EnergY. *Evaluatlon Research Corporatlon, Oak Ridge, Tennessee TABLE OF CONTENTS L i s t o f F i g u

368

TRAINING FOR INFORMATION  

E-Print Network [OSTI]

June 1998 TRAINING FOR INFORMATION TECHNOLOGY SECURITY: EVALUATING THE EFFECTIVENESS OF RESULTS-BASED LEARNING The basic principles of results-based training for information technology (IT) security were discussed in our April 1998 bulletin, Training Require- ments for Information Technology Security

369

Training Needs Assessment Presentation  

Broader source: Energy.gov [DOE]

The TNA PowerPoint Presentation is targeted for the training points of contacts whose organization's participate in the DOE training needs assessment (TNA). This presentation goes over how the training needs assessment (TNA) is done and the components of the TNA data collection tool.

370

Federal Employee Training  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To plan and establish requirements and assign responsibilities for Department of Energy (DOE) Federal employee training, education, and development (hereafter referred to as "training") under the Government Employees Training Act of 1958. Cancels DOE O 360.1A. Canceled by DOE O 360.1C.

2001-10-11T23:59:59.000Z

371

Cyber Train Videos | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cyber Train Videos 1. Cyber Train Overview 2. Cyber Train Opt-Out Process 3. Cyber Train Complete Training 4. Submitting Course Completion Materials...

372

Microsoft Word - Berger Radiological Conditions.doc  

Office of Legacy Management (LM)

Dec. Dec. 2, 2009 1 Summary of Information Regarding Radiological Conditions of NFSS Vicinity Properties J. D. Berger, CHP DeNuke Contracting Services, Inc. Oak Ridge, TN The following is a summary of the information obtained from reviews of radiological survey reports, prepared by ORAU in support of the DOE Formerly Utilized Sites Remedial Action Program. These reports were obtained for review from the IVEA Program at ORAU/ORISE. A list of the reports, reviewed for this summary, is included at the end of this report. Hard copies of reports for ORAU survey activities of NFSS and NFSS Vicinity Properties are available at the South Campus Site of ORAU (these reports are not available in electronic form). In addition, there are 12 - 14 boxes of hard-copy supporting data and information, pertinent to the surveys. I inspected the contents of Box 54. That box contained records for NFSS Vicinity

373

OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL  

Office of Legacy Management (LM)

2 7% 2 7% d &y / 7 ORNL/TM- 10076 OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL ~-T-m -~=- -~ w-~- -"" * ,<.~- ~w&$UREMENTs: TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NF002) J. K. Williams B. A. Berven ~.~~;:;-~~~ ~. -,' - ~~ 7, OPERATED BY MARTIN MARIDTA ENERGY SYSTEMS, INC, FOR THE UNITED STATES DEPARTMENT OF ENERGY --... ORNL/TM-10076 HEALTH AND SAFETY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AH 10 05 00 0; ONLWCOI) RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NFOO2) J. K. Williams* and B. A. Berven *Biology Division Date Published November 1986 Investigation Team B. A. Berven - RASA Program Manager W. D. Cottrell - FUSRAP Project Director W. H. Shinpaugh - Field Survey Supervisor

374

Radiological Dispersion Devices and Basic Radiation Science  

Science Journals Connector (OSTI)

Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs) or dirty bombs and their associated health effects provides added motivation for students. The events of Sept. 11 2001 and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivitylectures or added as a supplementary or enrichment activity.

Joseph John Bevelacqua

2010-01-01T23:59:59.000Z

375

POSITIVE TRAIN CONTROL  

E-Print Network [OSTI]

Abstract Positive train control (PTC) is a modern system of monitoring and controlling train movements to provide advanced safety. This system uses the latest technology in mobile wireless communication. In Sept 2008, the US Congress considered a new rail safety law that sets a deadline of 2015 for implementation of positive train control (PTC) technology across most of the U.S. rail network. The bill was developed in response to the collision of a Metro link passenger train and a Union Pacific freight train Sept. 12 in California, which resulted in the deaths of 25 and injuries to more than 135 Metrolink passengers.

Suresh Badugu; Anoosha Movva

376

Radiological standards and calibration laboratory capabilities  

SciTech Connect (OSTI)

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest Laboratory (PNL), performs calibrations and upholds reference standards necessary to maintain traceability to national radiological standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE sites, and research programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site`s 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, and thermoluminescent and radiochromic dosimetry. The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, and a beta standards laboratory used for beta energy response studies and beta reference calibrations. Calibrations are routinely performed for personnel dosimeters, health physics instrumentations, photon transfer standards and alpha, beta and gamma field sources used throughout the Hanford Site. This report describes the standards and calibrations laboratory. Photographs that accompany the text appear in the Appendix and are designated Figure A.1 through A.29.

Goles, R.W.

1995-01-01T23:59:59.000Z

377

Radiological assessment of depleted uranium migration offsite from an ordnance range  

SciTech Connect (OSTI)

The military utilizes ordnance loaded with depleted uranium in order to maximize armor penetrating capabilities. These weapons are tested on open ranges where the weapons are fired through a cloth target and impact into the soil. This paper examines the potential environmental impact from use of depleted uranium in an open setting. A preliminary pathway analysis was performed to examine potential routes of exposure to nonhuman species in the vicinity and ultimately to man. Generic data was used in the study to estimate the isotopic mix and weight of the ordnance. Key factors in the analysis included analyzing the physics of weapon impact on soil, chemical changes in material upon impact, and mechanisms of offsite transport (including atmospheric and overland transport). Non-standard exposure scenarios were investigated, including the possibility of offsite contaminant transport due to range grassfires. Two radiological assessment codes, MEPAS (Multi media Environmental Pollutant Assessment System) and RESRAD were used to help analyze the scenarios.

Rynders, D.G. [Oregon State Univ., Corvallis, OR (United States)

1996-06-01T23:59:59.000Z

378

ORISE Resources: Radiological and Nuclear Terrorism: Medical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Oak Ridge Institute for Science and Education (ORISE) to develop a Web-based and CD-ROM training program to prepare clinicians-medical doctors and registered nurses in...

379

Transportation Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

380

Local Transportation  

E-Print Network [OSTI]

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Surveillance Guides - RPS 11.2 Radiological Work Practices  

Broader source: Energy.gov (indexed) [DOE]

RADIOLOGICAL WORK PRACTICES RADIOLOGICAL WORK PRACTICES 1.0 Objective The objective of this surveillance is to evaluate the practices of workers performing tasks in radiological controlled areas to ensure that these practices protect the safety and health of the workers and comply with DOE requirements. 2.0 References 2.1 10 CFR 835, Occupational Radiation Protection 2.2 DOE/EH-0256T, rev. 1, Radiological Control Manual 3.0 Requirements Implemented This surveillance is conducted to implement requirement RP-0024 from the RL S/RID. This requirement comes from the Radiological Control Manual. 4.0 Surveillance Activities The Facility Representative performs the following activities to evaluate the effectiveness of work practices by contractor personnel in minimizing exposure to radiological hazards.

382

Chamber transport  

SciTech Connect (OSTI)

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

383

Complete Safety Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complete Safety Training Print Complete Safety Training Print All users are required to take safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator and the Experimental Lead to ensure that all members of the team receive proper safety training before an experiment begins. Special consideration is available for NSLS users who have completed, and are up-to-date with, their safety training, NSLS Safety Module; they may take a brief equivalency course ALS 1010: Site-Specific Safety at the ALS in lieu of the complete safety training in ALS 1001: Safety at the ALS. These users must present documentation upon arrival at the ALS showing that they have completed NSLS Safety Module; see Acceptable NSLS Safety Documentation for examples.

384

Complete Safety Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complete Safety Training Print Complete Safety Training Print All users are required to take safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator and the Experimental Lead to ensure that all members of the team receive proper safety training before an experiment begins. Special consideration is available for NSLS users who have completed, and are up-to-date with, their safety training, NSLS Safety Module; they may take a brief equivalency course ALS 1010: Site-Specific Safety at the ALS in lieu of the complete safety training in ALS 1001: Safety at the ALS. These users must present documentation upon arrival at the ALS showing that they have completed NSLS Safety Module; see Acceptable NSLS Safety Documentation for examples.

385

Complete Safety Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complete Safety Training Print Complete Safety Training Print All users are required to take safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator and the Experimental Lead to ensure that all members of the team receive proper safety training before an experiment begins. Special consideration is available for NSLS users who have completed, and are up-to-date with, their safety training, NSLS Safety Module; they may take a brief equivalency course ALS 1010: Site-Specific Safety at the ALS in lieu of the complete safety training in ALS 1001: Safety at the ALS. These users must present documentation upon arrival at the ALS showing that they have completed NSLS Safety Module; see Acceptable NSLS Safety Documentation for examples.

386

Training Warehouse | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training » Training Warehouse Training » Training Warehouse Training Warehouse Training Warehouse Cybersecurity Training & Awareness A cyber-aware workforce is an empowered workforce. To support its role as a training service provider, the OCIO has developed an online repository, the Cybersecurity Training Warehouse, which provides direct access to cyber training and awareness resources and materials at no cost to the public. Additionally, this warehouse contains DOE-developed, role-based training program information as well as links to pertinent web sites that offer valuable training and awareness information and/or training opportunities. The resources contained on this website are available to any individual or organization involved with implementing awareness and training campaigns for their workforce or general user base.

387

Method and apparatus for laser-controlled proton beam radiology  

DOE Patents [OSTI]

A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

Johnstone, Carol J. (Warrenville, IL)

1998-01-01T23:59:59.000Z

388

Method and apparatus for laser-controlled proton beam radiology  

DOE Patents [OSTI]

A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

Johnstone, C.J.

1998-06-02T23:59:59.000Z

389

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

National Nuclear Security Administration (NNSA)

Removing Vulnerable Civilian Nuclear and Radiological Material | Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material Fact Sheet GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material

390

NNSA Helps Vietnam Establish Nuclear, Radiological Emergency Management  

National Nuclear Security Administration (NNSA)

Helps Vietnam Establish Nuclear, Radiological Emergency Management Helps Vietnam Establish Nuclear, Radiological Emergency Management System | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Helps Vietnam Establish Nuclear, Radiological Emergency ... Press Release NNSA Helps Vietnam Establish Nuclear, Radiological Emergency Management

391

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Removing Vulnerable Civilian Nuclear and Radiological Material | Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material Fact Sheet GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material

392

Recent Developments in Field Response for Mitigation of Radiological...  

Office of Environmental Management (EM)

of Radiological Incidents Carlos Corredor*, Department of Energy; Charley Yu, Argonne National Labs Abstract: Since September 11, 2001, there has been a large effort by...

393

Analysis of nuclear test TRINITY radiological and meteorological data  

SciTech Connect (OSTI)

This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the TRINITY nuclear test. Inconsistencies in the radiological data and their resolution are discussed. The methods of normalizing the radiological data to a standard time and estimating fallout-arrival times are presented. The meteorological situations on event day and the following day are described. Comparisons of the WSNSO fallout analyses with analyses performed in the 1940s are presented. The radiological data used to derive the WSNSO 1987 fallout patterns are tabulated in appendices.

Quinn, V.E.

1987-09-01T23:59:59.000Z

394

OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL  

Office of Legacy Management (LM)

ornl< ORNLRASA-8664 (MJ18V) orni OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL EZ-BBBB - *VERIFICATION SURVEY AT THE BALLOD ASSOCIATES PROPERTY,...

395

CRAD, Radiological Controls - Oak Ridge National Laboratory High...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C...

396

Trending and root cause analysis of TWRS radiological problem reports  

SciTech Connect (OSTI)

This document provides a uniform method for trending and performing root cause analysis for radiological problem reports at Tank Waste Remediation System (TWRS).

Brown, R.L.

1997-07-31T23:59:59.000Z

397

DOE Subpart H Report. Annual NESHAPS Meeting on Radiological...  

Broader source: Energy.gov (indexed) [DOE]

NESHAPS Meeting on Radiological Emissions Gustavo Vazquez*, DOE; Sandra Snyder, PNNL Abstract: The National Emissions Standards for Hazardous Air Pollutants, Subpart H,...

398

The importance of training  

Science Journals Connector (OSTI)

... investment in training and education, and it sets out an agenda for action to improve competitiveness and performance for the future.

Richard Pearson

1985-01-03T23:59:59.000Z

399

Gravity Train Project  

E-Print Network [OSTI]

Dec 7, 2013 ... Gravity Train Project. Same page in Romanian, Polish, and in French. Let us drill a straight tunnel from West Lafayette, IN to Paris, France:.

400

Training | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and productivity assessments. Qualified Specialists Become a Qualified Specialist and train your staff or advise others. Qualified Specialists are industry professionals who have...

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Training and Drills  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

1997-08-21T23:59:59.000Z

402

Jefferson Lab Travel - Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tabs Home Announcements Forms Foreign Travel Conferences Travel Reservations Training Travel Guidance Q 'n A print version Individual instruction on travel related topics...

403

Magnetic Field Safety Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Training Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain...

404

Training, Certification, and Mentoring  

Broader source: Energy.gov [DOE]

The Project Management Coordination Office (PMCO) is working to support programs in ensuring that team members have the necessary training and certifications to enable meaningful stewardship of...

405

Conferences, workshops, trainings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conferences aboutassetsimagesicon-70th2.jpg Conferences, workshops, trainings Los Alamos National Lab is situated on a mesatop on the eastern side of the Jemez Mountains, an...

406

Specialist Qualification Training (Revised)  

SciTech Connect (OSTI)

This DOE Industrial Technologies Program fact sheet describes DOE's Specialist Qualification Training for experts in industrial compressed air, fan, pump, steam, and process heating systems.

Not Available

2007-04-01T23:59:59.000Z

407

TF Web Based Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TF-Web-Based-Training Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance...

408

Training | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Bloodstain Pattern Analysis Workshop Dates: March 31-April 4, 2014 Northeast Forensic Training Center, Bethlehem, Pennsylvania Instructors: Toby Wolson, MS and LeeAnn...

409

BGSU BLACKBOARD TRAINING TUTORIAL BGSU Blackboard Training 2  

E-Print Network [OSTI]

BGSU BLACKBOARD TRAINING TUTORIAL #12;BGSU Blackboard Training 2 T A B L E O F C O N T E N T S 1 BGSU Blackboard Training 3 #12;BGSU Blackboard Training 4 Adding An Item ­ Used to upload different Course BGSU Blackboard Training 5 #12;Once you are done adding your questions to the Test Canvas, click

Moore, Paul A.

410

Transportation Emergency Preparedness Program - Making A Difference  

Broader source: Energy.gov (indexed) [DOE]

- - Making A Difference Where we started - and where we are going Tom Clawson TEPP Contractor tom@trgroupinc.com Brief TEPP History * In 1988, identified need to address d f emergency preparedness concerns of shipments to WIPP * EM established in 1989, TEPP became a funded program - Identified need to have a program to focus on p g preparedness for all radiological shipments - TEPP incorporated into DOE Order 151.1 Brief TEPP History * Developed MERRTT thru the Training and Medical I T i G Issues Topic Groups - Began using MERRTT in 1998 * MERRTT and WIPP STEP Merged * Stakeholders began asking for a more advanced level of training - In 2005, TEPP looked to the NFPA 472 standard for training competencies - Many of the NFPA competencies were not attainable - TEPP worked with NFPA to re-shape the competencies so

411

Active Shooter Training Workshop  

Broader source: Energy.gov [DOE]

The training workshop was based on real-world threats and issues and included a variety of guest lecturers and hands-on practical exercises. Participants utilized both live fire and engagement simulation system weaponry. The exercises were led by NTC instructors at the NTCs Live Fire Range and Integrated Safety and Security Training and Evaluation Complex (ISSTEC).

412

Federal Employee Training Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides detailed requirements to supplement DOE O 360.1B, FEDERAL EMPLOYEE TRAINING. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Cancels DOE M 360.1A-1. Canceled by DOE O 360.1C.

2001-10-11T23:59:59.000Z

413

Federal Employee Training  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To plan and establish requirements and assign responsibilities for Department of Energy (DOE) Federal employee training, education, and development under the Government Employees Training Act of 1958, as amended. Cancels DOE O 360.1. Canceled by DOE O 360.1B.

1999-09-21T23:59:59.000Z

414

Federal Employee Training Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides detailed requirements to supplement DOE O 360.1A, Federal Employee Training, dated 9-21-99. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Canceled by DOE M 360.1-1B.

1999-09-21T23:59:59.000Z

415

Training Management Information System  

SciTech Connect (OSTI)

The Training Management Information System (TMIS) is an integrated information system for all training related activities. TMIS is at the leading edge of training information systems used in the nuclear industry. The database contains all the necessary records to confirm the department's adherence to accreditation criteria and houses all test questions, student records and information needed to evaluate the training process. The key to the TMIS system is that the impact of any change (i.e., procedure change, new equipment, safety incident in the commercial nuclear industry, etc.) can be tracked throughout the training process. This ensures the best training can be performed that meets the needs of the employees. TMIS is comprised of six functional areas: Job and Task Analysis, Training Materials Design and Development, Exam Management, Student Records/Scheduling, Evaluation, and Commitment Tracking. The system consists of a VAX 6320 Cluster with IBM and MacIntosh computers tied into an ethernet with the VAX. Other peripherals are also tied into the system: Exam Generation Stations to include mark sense readers for test grading, Production PC's for Desk-Top Publishing of Training Material, and PC Image Workstations. 5 figs.

Rackley, M.P.

1989-01-01T23:59:59.000Z

416

Unclassified Controlled Nuclear Information Training | Department...  

Office of Environmental Management (EM)

Unclassified Controlled Nuclear Information Training Unclassified Controlled Nuclear Information Training Training Unclassified Controlled Nuclear Information for persons with...

417

Training for Records and Information Management  

Broader source: Energy.gov [DOE]

Records Management Training: NARA Records Management Training NARA Targeted Assistance NARA Brochures Training Presentation: Information Collection Requests/PRA (pdf)

418

Skill Set Training Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MGTP-002 Skill Set/Training Process 11_0502 Page 1 of 7 MGTP-002 Skill Set/Training Process 11_0502 Page 1 of 7 EOTA - Business Process Document Title: Skill Set/Training Process Document Number: MGTP-002 Rev. 11_0502 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Documents: MGTF-002 Skill Set Model, MGTF-003 Training Review/Record, MGTF-004 New Employee Checklist, MGTF-005 Departing Employee Checklist, MGTF-006 Position Descriptions MGTP-002 Skill Set/Training Process 11_0502 Page 2 of 7 Revision History: Rev. Description of Change A Initial revision B Made minor, non-content editorial changes based on internal audit results 08_0805 Minor, non-content editorial changes based on internal audit results

419

UNIRIB: Education and Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Education and Training Education and Training Education and Training The University Radioactive Ion Beam (UNIRIB) consortium provides education and training as part of its efforts to help the U.S. Department of Energy (DOE) build a highly-skilled, national, scientific workforce. UNIRIB provides a university atmosphere within the structure of a national laboratory. The on-site staff ensures dedicated support to consortium members performing research, as well as guide the training of educators and students-from undergraduates to postdoctoral researchers. UNIRIB, a division of the Oak Ridge Institute for Science and Education (ORISE), has close scientific ties with the Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science, the Joint Institute for Heavy Ion Research and nuclear physicists from the Physics Division at

420

EHS Training: What's New  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What's What's New What's New in EHS Training This is alist of projects that EHS Training is currently working on are has recently completed. For more information, contact James Basore at jdbasore@lbl.gov Updated: 8/15/2013 Instructional Video Projects Lockot/Tagout cord-n-plug Video is for new LOTO classroom training (EHS 0358) used as an activity Deveoped for Mark Scott Target date: August 2013 Safely moving pressurized gas cyclinders and cryogen dewars Short video is designed to raise awarenesss for how to safely move a pressurized gas cyclinder and cryogen dewar Target date: September 2013 New and Revised Training Courses New version of EHS0010 Overview of Environment, Health and Safety at LBNL Newly revised training addresses changes in organizational structure, and rebalances content to include traffic/pedestrian safety and

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Present Role of Radiological Methods in Engineering  

Science Journals Connector (OSTI)

...Present Role of Radiological Methods in Engineering R. Halmshaw A brief outline of the history of industrial radiology is given. Major...of metals and metal thicknesses used in engineering, X-ray energies from 20 keV to 30 MeV...

1979-01-01T23:59:59.000Z

422

IGCA Training 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Training 2012 IGCA Training 2012 IGCATraining2012.pptx More Documents & Publications Microsoft PowerPoint - IGCA Training 2011-OPAM Microsoft PowerPoint - IGCA Training 2010 v3...

423

Training and Workforce Development Forum Newsletter | Department...  

Broader source: Energy.gov (indexed) [DOE]

Training and Workforce Development Forum Newsletter Training and Workforce Development Forum Newsletter Training and Workforce Development Forum Newsletter Training and Workforce...

424

Estimation of the Transportation Risks for the Spent Fuel in Korea for Various Transportation Scenarios  

SciTech Connect (OSTI)

According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for the spent fuels in Korea. Also, we estimated and compared the transportation risks for these four transportation scenarios. From the results of this study, we found that these four transportation scenarios for spent fuels have a very low radiological risk activity with a manageable safety and health consequences. The results of this study can be used as basic data for the development of safe and economical logistics for a transportation of the spent fuels in Korea by considering the transportation costs for the four scenarios which will be needed in the near future. (authors)

Jongtae, Jeong; Cho, D.K.; Choi, H.J.; Choi, J.W. [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of)

2008-07-01T23:59:59.000Z

425

Training Program | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with resources on how to use some of the Laboratory's task-based systems, such as Cyber Train. To access your institutional training record, please log into Cyber Train. Remember...

426

SS# L# NSHE# Athletic Training  

E-Print Network [OSTI]

SS# L# NSHE# Athletic Training Admitted Date: Date Advised: Credits Semester Grade ENG 101 identified. Number of Transfer credits, 2-year Athletic Training Specialization or KIN 245) for admission into the Athletic Training Program. Admission process

Hemmers, Oliver

427

Nuclear Radiological Threat Task Force Established | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiological Threat Task Force Established | National Nuclear Radiological Threat Task Force Established | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Radiological Threat Task Force Established Nuclear Radiological Threat Task Force Established November 03, 2003 Washington, DC Nuclear Radiological Threat Task Force Established

428

How ORISE is Making a Difference: Radiological Assessment and Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Develops Paperless Tool to Assist with Data Input Into Radiological Develops Paperless Tool to Assist with Data Input Into Radiological Assessment and Monitoring System During the Empire 09 exercise, the Oak Ridge Institute for Science and Education (ORISE) tested (for the first time) a paperless system of data management to support the operations of the Federal Radiological Monitoring and Assessment Center (FRMAC). The paperless FRMAC (pFRMAC) provides tools that enables the FRMAC to collect and process field measurements and samples following a radiological or nuclear event. The process allows field data to be entered into specialized electronic tablets that are then sent to the Radiological Assessment and Monitoring System (RAMS). RAMS is the hub of pFRMAC that provides data analysis to the consequence management home team and

429

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |  

Broader source: Energy.gov (indexed) [DOE]

EA-1919: Recycle of Scrap Metals Originating from Radiological EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.) PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 28, 2012 EA-1919: Notice of Public Comment Period Extension Recycling of Scrap Metals Originating from Radiological Areas December 12, 2012 EA-1919: Notice of Availability of a Draft Programmatic Environmental

430

Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program  

Broader source: Energy.gov (indexed) [DOE]

Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q Q Law Enforcement ____________________________________ Fire ___________________________________________ Medical ____________________________________________ State Radiological Assistance ___________________________ Local Government Official ______________________________ Local Emergency Management Agency ___________________ State Emergency Management Agency ___________________ HAZMAT Team ______________________________________ Water Pollution Control ________________________________ CHEMTEL (Toll-free US & Canada) 1-800-255-3924 _________ CHEMTREC (Toll-free US & Canada) 1-800-424-9300 _______

431

Radiological aspects of in situ uranium recovery  

SciTech Connect (OSTI)

In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. An overview of the major aspects of the health physics and radiation protection programs that were developed at these facilities are discussed and contrasted to circumstances of the current generation and state of the art of Uranium ISR technologies and facilities. (authors)

BROWN, STEVEN H. [SHB INC., 7505 S. Xanthia Place, Centennial, Colorado (United States)

2007-07-01T23:59:59.000Z

432

Enhancing Diagnostic Accuracy in Oral Radiology: A Case for the Basic Sciences.  

E-Print Network [OSTI]

??Background: Cognitive processing in diagnostic oral radiology requires a solid foundation in the basic sciences as well as knowledge of the radiologic changes associated with (more)

Baghdady, Mariam

2014-01-01T23:59:59.000Z

433

E-Print Network 3.0 - aids radiological findings Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pulmonary edema... administrative codes that will aid in billing and quality assurance. The radiology report should record... of Radiology. ACR prac- tice guideline for...

434

Training For Industry Program (TIP) (Oklahoma) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Training For Industry Program (TIP) (Oklahoma) Training For Industry Program (TIP) (Oklahoma) Training For Industry Program (TIP) (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1968 State Oklahoma Program Type Training/Technical Assistance Provider Oklahoma Department of Career and Technology Education The Oklahoma Department of Career and Technology Education runs the Training For Industry Program (TIP) is a no-cost/low-cost way for new or

435

Transportation Infrastructure  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Infrastructure New Technologies * Potential need for dual-use casks * DOE should look toward industry & international communities for innovations * Industry unclear about delivery & receipt locations * Advances in physical & tracking technologies need to be factored in * Cost-benefit analysis of new technology Training & Dry Runs * Begin as soon as possible * Suggested order: #1-demonstrations, #2-training, #3-dry-runs * Don't re-invent the wheel- look at international programs * Allows DOE to test POC info/training * Standardization of training & materials * DOE should consider centralized training center * Use real equipment in dry- runs * Need for regionalized dry runs Packages * Full-scale Testing - Funds requested in 2003, potential use of

436

ORISE: Training and Technology Support  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training and Technology Support ORISE helps train all levels of government personnel for natural disasters and man-made emergencies using latest technology The Oak Ridge Institute...

437

DOE Cybersecurity Training and Education  

Broader source: Energy.gov [DOE]

Introductory information to describe DOE Cybersecurity training and education programs, to include available role-based/core competency courses as well as other Fedeal cyber training programs.

438

BIOTECHNOLOGY TRAINING PROGRAM 20132014 HANDBOOK  

E-Print Network [OSTI]

BIOTECHNOLOGY TRAINING PROGRAM 20132014 HANDBOOK #12;TTaabbllee ooff CCoonntteennttss Biotechnology Training Program Administration..........................2 History and Overview.........................................................7 Faculty by Research Thrust.....................................................9 Biotechnology

Muzzio, Fernando J.

439

_____________________________ Environment, Health, & Safety _________ __________________ Training Program  

E-Print Network [OSTI]

Program EHS 369 Lockout/Tagout Practical Refresher Training For Qualified Electrical Workers Course functions. The course is designed to provide employees with hands on training on Lockout

Eisen, Michael

440

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders  

Broader source: Energy.gov [DOE]

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders Daniel Blumenthal*, U.S. Department of Energy ; John Crapo, Oak Ridge Institute for Science and Education; Gerard Vavrina, U.S. Department of Energy; Katharine McLellan McLellan, U.S. Department of Energy; Michael J. Gresalfi, Oak Ridge National Laboratory Abstract: In response to a radiological or nuclear (R/N) emergency, Incident Command and the associated response community will require requisite technical expertise, and the application of appropriate decision-support tools, and derivative products in order to effectively manage response operations. Unlike the spectrum of natural disasters which occur with some frequency, and which our nations first responder community has great familiarity with, an emergency that includes an R/N element, whether initiated by an accidental or manmade event, is at best an infrequent occurrence and generally not an operational emergency response experience most of our nations regional, state and local first responder communities have participated in. The Unified Resolve 2014 annual exercise, conducted by the National Capital Region's Incident Management Team (NCR IMT) during March, 2014, provided the U.S. Department of Energys Office of Emergency Response with an ideal opportunity to pilot and asses a proposed R/N operational support position, designed to provide state and local incident command with technical subject matter expertise within both the planning and operational elements of both area and unified command. This proposed cadre of R/N technical specialists, volunteers willing to support their home regions state and local incident commands when facing an R/N emergency, are presently referred to as Radiological Operations Support Specialists (ROSS). The role of the ROSS cadre is envisioned to be an on-scene R/N subject matter expert to Incident Command, to provide both adaptive planning support and operational advice, with respect to a wide range of R/N modeling, measurement, and analysis capabilities, decision-tools and products available from across the Federal community, to include both DOE, EPA and others. The ROSS cadre would include personnel who are already radiation professionals, to include health physicists and others. They would receive additional training in the specifics of radiological emergency response. The skills include knowing what Federal assets are available to help local responders, how do the data and modeling products provided by these Federal assets support local decision making, and how do the radiological issues impact or complicate local decision making. The exercise helped to define the role of this specialist, additional training required, and the types of data products needed by incident management personnel. The goal is to develop a nationwide cadre of local experts who can immediately support the local response to a radiological incident before any Federal expertise has time to arrive.

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Radiological Control Programs for Special Tritium Compounds  

Broader source: Energy.gov (indexed) [DOE]

84-2004 84-2004 SEPTEMBER 2004 CHANGE NOTICE NO. 1 Date June 2006 DOE HANDBOOK RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS U.S. Department of Energy AREA OCSH Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Table of Changes Page Change 67 (near bottom) In row 1, column 2 of the table titled "dosimetric properties" 6 mrem was changed to 6 x 10 -2 mrem Available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techstds/ DOE-HDBK-1184-2004 iii Foreword The Department of Energy (DOE) and its predecessor agencies have undertaken a wide variety

442

Radiological Control Programs for Special Tritium Compounds  

Broader source: Energy.gov (indexed) [DOE]

F 1325.8 F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: May 11, 2006 REPLY TO EH-52:JRabovsky:3-2 135 ATTN OF: APPROVAL OF CHANGE NOTICE 1 TO DEPARTMENT OF ENERGY (DOE) SUBJECT. HANDBOOK 1184-2004, RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS TO: Dennis Kubicki, EH-24 Technical Standards Manager This memorandum forwards the subject Change Notice 1 to DOE Handbook, DOE- HDBK- 1184-2004, which has approved for publication and distribution. The change to this handbook consists of a correction to the rule of thumb, listed in Appendix A, for converting the uptake of tritium oxide into radiation dose. A factor of 1/100 was inadvertently omitted from this rule of thumb when this DOE Handbook was originally published. This change does not affect the references, is not of a technical nature, and

443

Radiological assessment of BWR recirculatory pipe replacement  

SciTech Connect (OSTI)

Replacement of primary recirculating coolant pipe in BWRs is a major effort that has been carried out at a number of nuclear generating stations. This report reviews the planned or actual pipe replacement projects at six sites: Nine Mile Point-1, Monticello, Cooper, Peach Bottom-2, Vermont Yankee, and Browns Ferry-1. It covers the radiological issues of the pipe replacement, measures taken to reduce doses to ALARA, estimated and actual occupational doses, and lessons learned during the various replacements. The basis for the decisions to replace the pipes, the methods used for preparation and decontamination, the removal of old pipe, and the installation of the new pipe are briefly described. Methods for reducing occupational radiation dose during pipe repairs/replacements are recommended. 32 refs., 12 figs., 17 tabs.

Parkhurst, M.A.; Hadlock, D.E.; Harty, R.; Pappin, J.L.

1986-02-01T23:59:59.000Z

444

Survey of radiologic practices among dental practitioners  

SciTech Connect (OSTI)

The purpose of this study was to determine the factors that influence and contribute to patient exposure in radiologic procedures performed in the offices of 132 staff members within the dental department of a teaching hospital. A questionnaire was prepared in which data were requested on brands of film used, type of x-ray unit used, processing, and use of leaded apron, cervical shield, and film holder. Offices were also visited to evaluate performance of existing dental x-ray equipment. Both the Dental Radiographic Normalizing and Monitoring Device and the Dental Quality Control Test Tool were evaluated. The average exposure was equivalent to the class D film (220 mR), but only 13% of those surveyed used the faster class E film, which would reduce patient exposure in half. The survey indicates that dentists are not using the newer low-exposure class E film in their practices.

Goren, A.D.; Sciubba, J.J.; Friedman, R.; Malamud, H. (Long Island Jewish Medical Center, New Hyde Park, NY (USA))

1989-04-01T23:59:59.000Z

445

Radiological Control Change Notice 1 Memorandum  

Broader source: Energy.gov (indexed) [DOE]

DATE: May DATE: May 20, 2004 REPLY TO EH-52:Judith D. Foulke:301 :903-5865 ATTN OF: CHANGE NOTICE TO DEPARTMENT OF ENERGY (DOE) HANDBOOK, DOE-STD- SUBJECT. 1098-99, RADIOLOGICAL CONTROL TO: George Detsis, EH-3 1 This memorandum forwards Change Notice Number 1 to subject DOE Technical Standard, DOE-STD-1098-99. The changes are being made as part of the 5-year review of the standard. The table inserted into the document details the changes. After the changes are made, a notice of intent to reaffirm memorandum will be issued. A compact disk (CD) of the revised document in MS Word and in PDF format is attached. If there are any questions, please contact Dr. Judith Foulke of my staff on 3-5865 or electronic mail (Judy.Foulke@eh.doe.gov). ill R. McArthur, PhD, C1}T Office Director Office of Worker Protection Policy

446

JGI Compute User Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JGI Compute JGI Compute User Training Series JGI Compute User Training Series homeh1 Overview NERSC and IT staff will host a series training sessions and open office hours to introduce new services and review best practices for using the Crius cluster. All sessions are hands on, so please bring your laptop. If you are or were a user of any of the following systems, Crius, Rhea, Kronos, Theia, Oceanus or Phoebe, it will be beneficial for you to attend these training sessions. And if you plan to use JGI compute resources in the future, we also encourage you to attend. It will also be an opportunity for JGI compute users to ask questions and give NERSC and IT staff feedback on your requirements. Session 3: February 24th, 2012 1:30-5pm rm 100-101 Agenda 1:30-1:45 - Intro and presentation of the transition schedule we talked

447

Training Session: Frederick, MD  

Broader source: Energy.gov [DOE]

This 3.5-hour training provides builders with a comprehensive review of zero net-energy-ready home construction including the business case, detailed specifications, and opportunities to be...

448

Weapon Training and Simulation  

Science Journals Connector (OSTI)

General MacArthur expressed the idea that There is no other job than ours for which the employment of ill trained personnel would lead to so important and irrevocable consequences.

C. Saint-Raymond

1987-01-01T23:59:59.000Z

449

Training Self-Assessment  

Broader source: Energy.gov [DOE]

This document contains four self-assessment forms that are aligned with the Home Energy Professional Certifications. These forms will help individuals gauge competency and identify training needs before an exam is taken.

450

ZERH Training: Harrisonburg, VA  

Broader source: Energy.gov [DOE]

This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

451

Training Session: Carbondale, CO  

Broader source: Energy.gov [DOE]

This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

452

AMIS-Training Material iReport Training Part 2  

E-Print Network [OSTI]

AMIS- Training Material iReport Training ­Part 2 (iReport-3.0.0) Topic: Parameters · Open a report- Training Material · Open the `Document structure' Page 2 of 7 6/27/2008 Institutional Research and Planning University of Nebraska-Lincoln #12;AMIS- Training Material · Right click on `Parameters' > Add > Parameter

Farritor, Shane

453

EVALUATING ROBOT TECHNOLOGIES AS TOOLS TO EXPLORE RADIOLOGICAL AND OTHER HAZARDOUS ENVIRONMENTS  

SciTech Connect (OSTI)

There is a general consensus that robots could be beneficial in performing tasks within hazardous radiological environments. Most control of robots in hazardous environments involves master-slave or teleoperation relationships between the human and the robot. While teleoperation-based solutions keep humans out of harms way, they also change the training requirements to accomplish a task. In this paper we present a research methodology that allowed scientists at Idaho National Laboratory to identify, develop, and prove a semi-autonomous robot solution for search and characterization tasks within a hazardous environment. Two experiments are summarized that validated the use of semi-autonomy and show that robot autonomy can help mitigate some of the performance differences between operators who have different levels of robot experience, and can improve performance over teleoperated systems.

Curtis W. Nielsen; David I. Gertman; David J. Bruemmer; R. Scott Hartley; Miles C. Walton

2008-03-01T23:59:59.000Z

454

Transportation Assessment Toolkit/Home | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transportation Assessment Toolkit/Home < Transportation Assessment Toolkit Jump to: navigation, search Home Transport Topics Ask an Expert Training Contact us What are the key actions necessary to implementing a transportation system LEDS? Action 1: Evaluate the existing transport system Action 2: Develop BAU scenario Action 3: Assess opportunities Avoid-Shift-Improve framework of strategies Action 4: Develop alternative scenarios Action 5: Prioritize and plan Action 6: Implement and monitor Transportation Assessment Toolkit Train licensed.png Transportation Assessment Toolkit Information licensed.png Transportation Assessment Toolkit Learning licensed.png

455

Training days: TWRI coordinates water resources training programs  

E-Print Network [OSTI]

tx H2O | pg. 2 Training days TWRI coordinates water resources training programs | pg. 2 Story by Ric Jensen tx H2O | pg. 3 H elping water professionals learn how to manage water resources is the goal of new training programs coordinated... (APEX), Water Rights Analysis Package (WRAP), and EPANET. In other training programs, the institute is working with Texas AgriLife Research, Texas AgriLife Extension Service, state and federal agencies, and various universities to conduct training...

Jensen, Ric

2008-01-01T23:59:59.000Z

456

GTRI's Nuclear and Radiological Material Protection | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protection | National Nuclear Protection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog GTRI's Nuclear and Radiological Material Protection Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative > GTRI's Nuclear and Radiological Material Protection GTRI's Nuclear and Radiological Material Protection

457

Estimating train passenger load from automated data systems : application to London Underground  

E-Print Network [OSTI]

The purpose of this thesis is to assess the feasibility of identifying which trains individual passengers take to get from their origin to destination while travelling in a high frequency urban rail transportation system. ...

Paul, Elizabeth Cheriyamadam

2010-01-01T23:59:59.000Z

458

Training for Early Career Researchers  

E-Print Network [OSTI]

Training for Early Career Researchers Research Management Training for 16 ­ 17 September 2014 training in an intensive, yet effective workshop form over two days. There is a strong emphasis on European Management Training for Early Career Researchers 16 ­ 17 September 2014 in Hamburg #12;

Greifswald, Ernst-Moritz-Arndt-Universität

459

Academic Training (J-1 Student)  

E-Print Network [OSTI]

Academic Training (J-1 Student) International Center D E F I N I T I O N : J-1 students Training. Such employment can only be in a field of study indicated on the student's DS-2019. C O N D I T I months of academic training (post-doctoral research/teaching positions only). Academic training can

Heller, Barbara

460

Training Program Environmental Health & Safety  

E-Print Network [OSTI]

Training Program Overview Environmental Health & Safety VISION STATEMENT We provide expert guidance University Medical Center 212-854-8749 Morningside Campus 212-854-8749 Introduction Training&S offers a wide range of training programs, presented by subject matter experts in multiple formats

Jia, Songtao

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Assessor Training NVLAP Assessment Forms  

E-Print Network [OSTI]

NVLAP Assessor Training NVLAP Assessment Forms #12;Assessor Training 2009: NVLAP Assessment Forms 2 Summary ·Test Method Review Summary ·ProgramSpecific Checklists Examples #12;Assessor Training 2009: NVLAP are completed · Assessor Names, Dates, Lab Code #12;Assessor Training 2009: NVLAP Assessment Forms 4 NIST

462

Assessor Training Annex A: Referencing  

E-Print Network [OSTI]

NVLAP Assessor Training Annex A: Referencing NVLAP Accreditation #12;Assessor Training: Annex · NVLAP reserves the right to control its use #12;Assessor Training: Annex A (rev. 2012-07-31) 33 · NVLAP of technical competence #12;Assessor Training: Annex A (rev. 2012-07-31) 44 · It is NVLAP's responsibility

463

Assessor Training Internal Audits and  

E-Print Network [OSTI]

NVLAP Assessor Training Internal Audits and Management Reviews #12;Assessor Training 2009, quarterly, etc., schedule throughout the year #12;Assessor Training 2009: Internal Audits and Management a copy of the full internal audit schedule. #12;Assessor Training 2009: Internal Audits and Management

464

Classification Training Institute Catalog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Classification » Classification Training Institute » Services » Classification » Classification Training Institute » Classification Training Institute Catalog Classification Training Institute Catalog Classification Training Institute (CTI) Catalog Training & Reference Materials Online Classified or Controlled Information Mini-Lessons Classified Information Training Unclassified Controlled Nuclear Information Training Official Use Only Training OpenNet Training Training For Other Agency Personnel Classification Training Institute Catalog Enforcement Guidance Oversight Reporting Security Classification Classification Training Institute Official Use Only Information Unclassified Controlled Nuclear Information (UCNI) Statutes, Regulations, & Directives Nuclear Safety Assistance Training Outreach & Collaboration

465

Rediness Review Team Member Training  

Broader source: Energy.gov (indexed) [DOE]

MEMBER MEMBER TRAINING Idaho National Engineering Laboratory Michael Hillman DOE HQ - HSS Idaho National Engineering Laboratory Dan M. Stover, PE Technical And Professional Services, Inc. 47 James Habersham Blvd Beaufort, SC 29906 Official DOE Team Member Readiness Review Training November 8-9, 2010 Module 1 Module 1 READINESS REVIEW TEAM MEMBER TRAINING Introduction & Course Conduct Readiness Review Readiness Review Official DOE Team Member Readiness Review Training November 2010 TRAINING READINESS REVIEW TEAM MEMBER TRAINING Purpose of this Course Provide Prospective Readiness Review Team members h with: * An understanding of the background behind the Readiness Review Process; e e ocess; * Training in the mechanics of performance and reporting of

466

Training Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Training Resources Training Resources Training Resources Training Resources Course Catalogs CHRIS Catalog [select CHRIS Training] EOTA Catalog Graduate School USA Leadership Development Program Catalog NTC Catalog OLC Catalog - for Feds [logon in ESS] OLC Catalog - for Contractors Professional Skills Catalog Course Schedules CHRIS Schedule [select CHRIS Training] DOE Mandatory Training Graduate School USA NTC Schedule Professional Skills Schedule Course Registration CHRIS Registration [logon in ESS] EOTA Registration NTC Registration OLC Registration - for Feds [logon in ESS] OLC Registration - for Contractors Search Tools National Library of Energy (Beta) DVU Home Page College of Environmental Management logo College of Emergency Operations College of Health Safety & Security College of Learning & Workforce Development

467

Collaborative Training | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Collaborative Training Collaborative Training Overview HSS Collaborative Training Work Group: In a teamed effort, the U.S. Department of Energy's (DOE) Office of Health, Safety and Security (HSS) National Training Center (NTC), the National Institute of Environmental Health Sciences (NIEHS), Volpentest HAMMER Training and Education Center (HAMMER), Energy Facility Contractors Group (EFCOG), and labor unions work to identify and address worker health, safety and security training improvement needs across the DOE Complex. The Work Group has served to initiate dialogue across the Complex to foster discussion and ideas for implementation of integrated safety and health training that could minimize redundancy and enhance the quality, efficiency, and effectiveness of DOE

468

PARS II TRAINING | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

TRAINING PARS II TRAINING BASICS TRAINING WORKBOOK PARS II TRAINING More Documents & Publications PARS II PARS II Training Workbook (Course 103) PARSIIUserGuideV1.0Draft.pdf...

469

Training News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Training News Training News Training News December 5, 2013 Basic Instructor Training The Emergency Operations Training Academy, NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce site certification by the National Training Center for conduct of the Basic Instructor Training class November 25, 2013 What is Continual Learning? Continual Learning is a change initiative which is used to help develop and grow a learning culture within DOE. Employee development in any organization and at any level is never ending. October 23, 2013 New and Improved Level 1 Training Evaluation Report The Level 1 Evaluation Summary is a CHRIS Training System function used to generate a report that summarizes the information obtained from CHRIS course evaluations completed by students. The Level 1 Evaluation Summary

470

Rail Coal Transportation Rates to the Electric Power Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

well as other details about the shipment. A waybill can include one or more cars and a train can include one or more waybills. Unlike most other reports with coal transportation...

471

LEDSGP/Transportation Toolkit/Strategies/Shift | Open Energy...  

Open Energy Info (EERE)

objectives by connecting with all forms of transit - motorized & non-motorized. Train or rail-based transit systems can be the most efficient form of passenger transport if...

472

Transportation Science and the Dynamics of Critical Infrastructure Networks with  

E-Print Network [OSTI]

Network Satellite and Undersea Cable Networks British Electricity Grid Transportation, Communication Automobiles, Trains, and Planes, Manufacturing and logistics Workstations, Distribution Points Processing Cables Radio Links Voice, Data, Video Energy Pumping Stations, Plants Pipelines, Transmission Lines Water

Nagurney, Anna

473

The American Board of Radiology Holman Research Pathway: 10-Year Retrospective Review of the Program and Participant Performance  

SciTech Connect (OSTI)

Introduction: In 1999, the American Board of Radiology (ABR) implemented an innovative training program track in diagnostic radiology (DR) and radiation oncology (RO) designed to stimulate development of a cadre of future academic researchers and educators in the 2 disciplines. The program was designated the Holman Research Pathway (HRP). An in-depth retrospective review of initial certification examination performance, post-training career choices, and academic productivity has not been written. This report represents a 10-year retrospective review of post-training performance of a cohort of trainees who have had sufficient time to complete their training and initial certification process and to enter practice. Methods and Materials: All pertinent proceedings of the ABR and Accreditation Council for Graduate Medical Education (ACGME) Residency Review Committees for DR and RO between 1997 and May 2011 were reviewed. Thirty-four HRP candidates who fulfilled the established evaluation criteria were identified, and their ABR data files were analyzed regarding performance on the qualifying and certifying examinations. All candidates were contacted directly to obtain a current curriculum vitae. Results: Twenty candidates in RO and 14 candidates in DR were identifiable for review. All candidates attained initial certification. At the time of analysis, 23 of 33 (66.6%) candidates were employed in full-time academic practice (1 DR candidate remained in a fellowship and was not evaluated regarding employment status). Fifteen of 20 (75%) RO candidates were in faculty positions compared with 7 of 13 (53.8%) DR trainees. Additional academic productivity metrics are reported. Conclusions: A high percentage of HRP trainees remained in academic practice and demonstrated significant academic productivity as measured by manuscript authorship and research support. Additional time and observation will be needed to determine whether these findings will be sustained by past, current, and future HRP trainees.

Wallner, Paul E., E-mail: pwallner@theabr.org [21st Century Oncology, LLC, Fort Myers, Florida, and American Board of Radiology, Tucson, Arizona (United States); Ang, K. Kian [University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zietman, Anthony L. [Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts (United States)] [Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts (United States); Harris, Jay R. [Harvard Medical School and Dana-Farber Cancer Institute, Boston, Massachusetts (United States)] [Harvard Medical School and Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Ibbott, Geoffrey S. [University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mahoney, Mary C. [University of Cincinnati Medical Center, Cincinnati, Ohio (United States)] [University of Cincinnati Medical Center, Cincinnati, Ohio (United States); Mezwa, Duane G. [Oakland University William Beaumont School of Medicine, Royal Oaks, Michigan (United States)] [Oakland University William Beaumont School of Medicine, Royal Oaks, Michigan (United States); Wilson, Lynn D. [Yale University School of Medicine, New Haven, Connecticut (United States)] [Yale University School of Medicine, New Haven, Connecticut (United States); Becker, Gary J. [American Board of Radiology, Tucson, Arizona (United States)] [American Board of Radiology, Tucson, Arizona (United States)

2013-01-01T23:59:59.000Z

474

GTRI commended for work to secure radiological sources | National Nuclear  

National Nuclear Security Administration (NNSA)

GTRI commended for work to secure radiological sources | National Nuclear GTRI commended for work to secure radiological sources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > GTRI commended for work to secure radiological sources GTRI commended for work to secure radiological sources Posted By Office of Public Affairs Container NNSA's Global Threat Reduction Initiative (GTRI) was recently commended

475

GTRI commended for work to secure radiological sources | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GTRI commended for work to secure radiological sources | National Nuclear GTRI commended for work to secure radiological sources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > GTRI commended for work to secure radiological sources GTRI commended for work to secure radiological sources Posted By Office of Public Affairs Container NNSA's Global Threat Reduction Initiative (GTRI) was recently commended

476

CRAD, Radiological Controls - Los Alamos National Laboratory Waste  

Broader source: Energy.gov (indexed) [DOE]

Radiological Controls - Los Alamos National Laboratory Waste Radiological Controls - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Radiological Controls - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Radiological Controls - Los Alamos National Laboratory Waste

477

A comparative study of quality control in diagnostic radiology  

Science Journals Connector (OSTI)

......effective National Regulatory Authority in Syria...radiological and Nuclear Regulatory Office, for his...2 Atomic Energy Regulatory Board. Atlas of Reference Plans for Medical Diagnostic...Burkhart R. L. A review of the experience......

M. H. Kharita; M. S. Khedr; K. M. Wannus

2008-07-01T23:59:59.000Z

478

Bayesian Network Analysis of Radiological Dispersal Device Acquisitions  

E-Print Network [OSTI]

It remains unlikely that a terrorist organization could produce or procure an actual nuclear weapon. However, the construction of a radiological dispersal device (RDD) from commercially produced radioactive sources and conventional explosives could...

Hundley, Grant Richard

2012-02-14T23:59:59.000Z

479

An external dose reconstruction involving a radiological dispersal device  

E-Print Network [OSTI]

emergency situation. In response, the Department of Homeland Security has published Protective Action Guides (DHS 2006) to help minimize these exposures and associated risks. This research attempts to provide some additional radiological exposure knowledge...

Hearnsberger, David Wayne

2007-04-25T23:59:59.000Z

480

Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National  

National Nuclear Security Administration (NNSA)

Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Insider Threat to Nuclear and Radiological Materials: ... Fact Sheet Insider Threat to Nuclear and Radiological Materials: Fact Sheet

Note: This page contains sample records for the topic "radiological transportation training" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

482

Models and parameters for environmental radiological assessments  

SciTech Connect (OSTI)

This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

Miller, C W [ed.] [ed.

1984-01-01T23:59:59.000Z

483

Autonomous mobile robot for radiologic surveys  

SciTech Connect (OSTI)

An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

Dudar, Aed M. (Augusta, GA); Wagner, David G. (Augusta, GA); Teese, Gregory D. (Aiken, SC)

1994-01-01T23:59:59.000Z

484

Mobile autonomous robotic apparatus for radiologic characterization  

DOE Patents [OSTI]

A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

Dudar, Aed M. (Dearborn, MI); Ward, Clyde R. (Aiken, SC); Jones, Joel D. (Aiken, SC); Mallet, William R. (Cowichan Bay, CA); Harpring, Larry J. (North Augusta, SC); Collins, Montenius X. (Blackville, SC); Anderson, Erin K. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

485

A mobile autonomous robot for radiological surveys  

SciTech Connect (OSTI)

The Robotics Development Group at the Savannah River Site is developing an autonomous robot (SIMON) to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The robot, a Cybermotion K2A base, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It uses an ultrasonic ranging system for collision avoidance. In addition, two safety bumpers located in the front and the back of the robot will stop the robots motion when they are depressed. Paths for the robot are preprogrammed and the robots motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/0 interface for remote operation. Up to 30 detectors may be configured with the RM22A.

Dudar, A.M.; Wagner, D.G.; Teese, G.D.

1992-01-01T23:59:59.000Z

486

A mobile autonomous robot for radiological surveys  

SciTech Connect (OSTI)

The Robotics Development Group at the Savannah River Site is developing an autonomous robot (SIMON) to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The robot, a Cybermotion K2A base, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It uses an ultrasonic ranging system for collision avoidance. In addition, two safety bumpers located in the front and the back of the robot will stop the robots motion when they are depressed. Paths for the robot are preprogrammed and the robots motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/0 interface for remote operation. Up to 30 detectors may be configured with the RM22A.

Dudar, A.M.; Wagner, D.G.; Teese, G.D.

1992-10-01T23:59:59.000Z

487

Radiological characterization of spent control rod assemblies  

SciTech Connect (OSTI)

This document represents the final report of an ongoing study to provide radiological characterizations, classifications, and assessments in support of the decommissioning of nuclear power stations. This report describes the results of non-destructive and laboratory radionuclide measurements, as well as waste classification assessments, of BWR and PWR spent control rod assemblies. The radionuclide inventories of these spent control rods were determined by three separate methodologies, including (1) direct assay techniques, (2) calculational techniques, and (3) by sampling and laboratory radiochemical analyses. For the BWR control rod blade (CRB) and PWR burnable poison rod assembly (BPRA), {sup 60}Co and {sup 63}Ni, present in the stainless steel cladding, were the most abundant neutron activation products. The most abundant radionuclide in the PWR rod cluster control assembly (RCCA) was {sup 108m}Ag (130 yr halflife) produced in the Ag-In-Cd alloy used as the neutron poison. This radionuclide will be the dominant contributor to the gamma dose rate for many hundreds of years. The results of the direct assay methods agree very well ({+-}10%) with the sampling/radiochemical measurements. The results of the calculational methods agreed fairly well with the empirical measurements for the BPRA, but often varied by a factor of 5 to 10 for the CRB and the RCCA assemblies. If concentration averaging and encapsulation, as allowed by 10CFR61.55, is performed, then each of the entire control assemblies would be classified as Class C low-level radioactive waste.

Lepel, E.A.; Robertson, D.E.; Thomas, C.W.; Pratt, S.L.; Haggard, D.L. [Pacific Northwest Lab., Richland, WA (United States)

1995-10-01T23:59:59.000Z

488

Mobile autonomous robotic apparatus for radiologic characterization  

DOE Patents [OSTI]

A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

1999-08-10T23:59:59.000Z

489

WIPP Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across...

490

Transportation Security  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Draft - For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work...

491

A Checklist to Improve Patient Safety in Interventional Radiology  

SciTech Connect (OSTI)

To develop a specific RADiological Patient Safety System (RADPASS) checklist for interventional radiology and to assess the effect of this checklist on health care processes of radiological interventions. On the basis of available literature and expert opinion, a prototype checklist was developed. The checklist was adapted on the basis of observation of daily practice in a tertiary referral centre and evaluation by users. To assess the effect of RADPASS, in a series of radiological interventions, all deviations from optimal care were registered before and after implementation of the checklist. In addition, the checklist and its use were evaluated by interviewing all users. The RADPASS checklist has two parts: A (Planning and Preparation) and B (Procedure). The latter part comprises checks just before starting a procedure (B1) and checks concerning the postprocedural care immediately after completion of the procedure (B2). Two cohorts of, respectively, 94 and 101 radiological interventions were observed; the mean percentage of deviations of the optimal process per intervention decreased from 24 % before implementation to 5 % after implementation (p < 0.001). Postponements and cancellations of interventions decreased from 10 % before implementation to 0 % after implementation. Most users agreed that the checklist was user-friendly and increased patient safety awareness and efficiency. The first validated patient safety checklist for interventional radiology was developed. The use of the RADPASS checklist reduced deviations from the optimal process by three quarters and was associated with less procedure postponements.

Koetser, Inge C. J. [Academic Medical Centre, Department of Interventional Radiology (Netherlands)] [Academic Medical Centre, Department of Interventional Radiology (Netherlands); Vries, Eefje N. de [Academic Medical Centre, Department of Quality and Process Innovation (Netherlands)] [Academic Medical Centre, Department of Quality and Process Innovation (Netherlands); Delden, Otto M. van [Academic Medical Centre, Department of Interventional Radiology (Netherlands)] [Academic Medical Centre, Department of Interventional Radiology (Netherlands); Smorenburg, Susanne M. [Academic Medical Centre, Department of Quality and Process Innovation (Netherlands)] [Academic Medical Centre, Department of Quality and Process Innovation (Netherlands); Boermeester, Marja A. [Academic Medical Centre, Department of Surgery (Netherlands)] [Academic Medical Centre, Department of Surgery (Netherlands); Lienden, Krijn P. van, E-mail: k.p.vanlienden@amc.uva.nl [Academic Medical Centre, Department of Interventional Radiology (Netherlands)] [Academic Medical Centre, Department of Interventional Radiology (Netherlands)

2013-04-15T23:59:59.000Z

492

Nearly 3,000 Emergency Responders Receive EM Training | Department of  

Broader source: Energy.gov (indexed) [DOE]

3,000 Emergency Responders Receive EM Training 3,000 Emergency Responders Receive EM Training Nearly 3,000 Emergency Responders Receive EM Training February 26, 2013 - 12:00pm Addthis In a mock scenario, firefighters work with an accident victim during a Transportation Emergency Preparedness Program full field exercise In a mock scenario, firefighters work with an accident victim during a Transportation Emergency Preparedness Program full field exercise Students learn to identify labels and use instruments during a Transportation Emergency Preparedness Program class Students learn to identify labels and use instruments during a Transportation Emergency Preparedness Program class In a mock scenario, firefighters work with an accident victim during a Transportation Emergency Preparedness Program full field exercise

493

TEXT Pro Force Training  

Broader source: Energy.gov (indexed) [DOE]

Basic Protective Basic Protective Force Training Program DOE/IG-0641 March 2004 * None of the 10 sites included instruction in rappelling even though it was part of the special response team core curriculum and continued to be offered by the Nonprolif- eration and National Security Institute; * Only one site conducted basic training on use of a shotgun, despite the fact that a num- ber of sites used the weapon for breaching exercises and other purposes; and, * Seven of the sites modified prescribed training techniques by reducing the intensity or delivery method for skills that some security experts characterized as critical, such as handcuffing, hand-to- hand combat, and vehicle assaults. We found that the Department's facilities were not required to report departures from the core

494

DEPARTMENT OF ENERGY Training  

Broader source: Energy.gov (indexed) [DOE]

Privacy Awareness Training Privacy Awareness Training The Privacy Act & Safeguarding Personally Identifiable Information (PII) 2 Purpose This training is designed to address the importance of privacy, and to ensure that DOE employees are aware of the vital role they play in safeguarding privacy and protecting Personally Identifiable Information (PII). 3 Privacy & PII is a Special Area of Interest at DOE Recent breaches of PII across the government, including some at the Department of Energy, were well publicized, costly, and prompted the Administration and Congress to take action to improve the protection of PII. 4 Privacy Act ► The Privacy Act of 1974 (5 U.S.C. 552a) establishes controls over what personal information is collected and maintained by the Executive Branch and how the

495

Federal Energy Management Program: Training  

Broader source: Energy.gov (indexed) [DOE]

EERE » Federal Energy Management Program » Services EERE » Federal Energy Management Program » Services Printable Version Share this resource Training Calendar eTraining Courses First Thursday Seminars Training FEMP trains Federal agency managers about the latest energy requirements, best practices, and technologies through eTraining Courses, First Thursday Seminars, and webinars. Customize your display by choosing a category and format below, or click a link in the navigation at left. 1. Select Training Category (What's this?) All categories Design, operations, and maintenance Energy efficient products Energy management Financing Fleet Greenhouse gases Institutional change Laws, regulation, and guidance Renewable energy Water efficiency 2. Select Training Format All formats Live training - register to attend On demand training - watch any time

496

Accrediting industrial safety training programs  

SciTech Connect (OSTI)

There are job-specific training requirements established by regulations that Impose stringent training requirements on a contractor, for example, the Occupational Safety & Health Act (OSHA). Failure to comply with OSHA training requirements can result in severe penalties being levied against a company. Although an accredited training program is expensive, it is a possible solution for minimizing risks associated with job-specific training requirements for employees. Operating DOE contractors direct approximately 10 percent of the operating funds toward training activities. Training needs for contractors span a broad range, from requirements awareness training for managers, to general training required on a one-time basis for all employees, to highly specialized training programs for employees involved In clean-up operations at hazardous waste sites. With this kind of an investment in training, it is logical to maximize the most return on an investment of training funds and to limit exposure to liability suits whenever possible. This presentation will provide an overview of accredited industrial safety programs. The criteria for accredited industrial safety programs will be defined. The question of whether accredited training programs are necessary will be examined. Finally, advantages and disadvantages will be identified for accrediting industrial safety training programs.

Beitel, L.

1992-12-31T23:59:59.000Z

497

Accrediting industrial safety training programs  

SciTech Connect (OSTI)

There are job-specific training requirements established by regulations that Impose stringent training requirements on a contractor, for example, the Occupational Safety Health Act (OSHA). Failure to comply with OSHA training requirements can result in severe penalties being levied against a company. Although an accredited training program is expensive, it is a possible solution for minimizing risks associated with job-specific training requirements for employees. Operating DOE contractors direct approximately 10 percent of the operating funds toward training activities. Training needs for contractors span a broad range, from requirements awareness training for managers, to general training required on a one-time basis for all employees, to highly specialized training programs for employees involved In clean-up operations at hazardous waste sites. With this kind of an investment in training, it is logical to maximize the most return on an investment of training funds and to limit exposure to liability suits whenever possible. This presentation will provide an overview of accredited industrial safety programs. The criteria for accredited industrial safety programs will be defined. The question of whether accredited training programs are necessary will be examined. Finally, advantages and disadvantages will be identified for accrediting industrial safety training programs.

Beitel, L.

1992-01-01T23:59:59.000Z

498

Training discriminative computer vision models with weak supervision  

E-Print Network [OSTI]

during training. . . . . . . . . . . . . . . . . . . . . .of the image. Prior to training, T overlapping regions arefor training . . . . . . . . . . . . . . . . . . . . . . . .

Babenko, Boris

2012-01-01T23:59:59.000Z

499

Marketplace Training Marketplace offers several training opportunities below. To request a dedicated training for your department or group, or for  

E-Print Network [OSTI]

Marketplace Training Marketplace offers several training opportunities below. To request a dedicated training for your department or group, or for general questions about Marketplace please contact

Tsien, Roger Y.

500

Rediness Review Team Leader Training  

Broader source: Energy.gov (indexed) [DOE]

LEADER LEADER TRAINING Idaho National Engineering Laboratory Idaho National Engineering Laboratory Michael Hillman DOE-HSS HQ Dan M. Stover, PE Technical And Professional Services, Inc. November 10 2010 Official DOE Team Leader Readiness Review Training November 10, 2010 READINESS REVIEW TEAM LEADER TRAINING Introduction & Course Conduct Readiness Review Official DOE Team Leader Readiness Review Training TRAINING READINESS REVIEW TEAM LEADER TRAINING Purpose of this Course Provide prospective Readiness Review Team Leaders with: -An understanding of the Team Leader Roles and Responsibilities -Methods to control team dynamics -Methods to manage interaction with the assessed organization Methods to manage interaction with the assessed organization