National Library of Energy BETA

Sample records for radiological transportation training

  1. TEPP Training - Modular Emergency Response Radiological Transportation

    Energy Savers [EERE]

    Training (MERRTT) | Department of Energy Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge

  2. Radiological Worker Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... workers attending training programs unsuitable for their needs. Prerequisites A background and foundation of knowledge ... radiological work and informing the worker of the ...

  3. Radiological Worker Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... be maintained by the organization 17 DOE-HDBK-1130-2008 ... Radiological Worker Training Program Management References ... facilitysite- specific Skin & other organs 50 NA facility...

  4. Radiological Assessor Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Uranium transported from the lungs is deposited in the bone (22%), kidney (12%), or other tissues (12%), or excreted (54%), according to International Commission on Radiological ...

  5. Radiological worker training

    SciTech Connect (OSTI)

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

  6. Radiological Control Technician Training

    Energy Savers [EERE]

    7of 9 Radiological Control Technician Training Practical Training Phase II Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii Table of Contents Page Introduction.............................................................................. ......1 Development of Job Performance Measures (JPMs)............................ .....1 Conduct Job Performance Evaluation...................................................3 Qualification

  7. Radiological Control Technician Training

    Energy Savers [EERE]

    Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank DOE-HDBK-1122-2009 iii Table of Contents Page Introduction................................................................................................................................1 Facility Job Performance Measures

  8. Radiological Worker Training - Radiological Contamination Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... workers attending training programs unsuitable for their needs. Prerequisites A background and foundation of knowledge ... radiological work and informing the worker of the ...

  9. Radiological Worker Training - Radiological Control Training for Supervisors

    Energy Savers [EERE]

    A December 2008 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at

  10. Radiological Assessor Training

    Energy Savers [EERE]

    1-2008 August 2008 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document is available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techs\ Foreword This Handbook describes an implementation process for training as recommended in Implementation Guide G441.1-1B, Radiation Protection

  11. General Employee Radiological Training

    Office of Environmental Management (EM)

    DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1131-2007 iii Foreword This Handbook describes an implementation process for core training as recommended in chapter 14,

  12. Radiological Technician Training

    Energy Savers [EERE]

    Part 2 of 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank. DOE-HDBK-1122-2009 iii Table of Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Purpose of Qualification Standard . . . . . . . . . . . . . . . . . . . . . . . .

  13. General Employee Radiological Training

    Office of Environmental Management (EM)

    _______ Change Notice 1 June 2009 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a

  14. General Employee Radiological Training

    Office of Environmental Management (EM)

    Not Measurement Sensitive DOE-HDBK-1131-2007 December 2007_______ Change Notice 1 Reaffirmed 2013 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The

  15. Radiological Worker Computer Based Training

    Energy Science and Technology Software Center (OSTI)

    2003-02-06

    Argonne National Laboratory has developed an interactive computer based training (CBT) version of the standardized DOE Radiological Worker training program. This CD-ROM based program utilizes graphics, animation, photographs, sound and video to train users in ten topical areas: radiological fundamentals, biological effects, dose limits, ALARA, personnel monitoring, controls and postings, emergency response, contamination controls, high radiation areas, and lessons learned.

  16. Radiological Control Technician Training

    Energy Savers [EERE]

    _______ Change Notice 1 June 2009 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93

  17. Radiological Control Technician Training

    Energy Savers [EERE]

    Change Notice No. 1 2009 Change Notice No. 2 2011 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP

  18. Radiological training for tritium facilities

    SciTech Connect (OSTI)

    1996-12-01

    This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

  19. Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... using these values combined with a knowledge of the drinking water sources and the ... the technician (or line supervisor) informing workers of radiological conditions such as: ...

  20. Radiological Worker Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Environment, Safety & Health U.S. Department of ... line management and their subordinates. The training function may be performed by a separate training organization, but ...

  1. Radiological Worker Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... workers attending training programs unsuitable for their needs. Prerequisites A background and foundation of knowledge ... and monitoring Informing Motivating and ...

  2. Radiological Worker Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... be maintained by the organization DOE-HDBK-1130-2008 ... Worker Training Program Management Guide 20 References ... facilitysite- specific Skin & other organs 50 NA facility...

  3. Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-HDBK-1122-2009 (Revised 2013) Module 2.03 Counting Errors and Statistics Instructor's Material Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: (This document, Instructor's Material, is referred to as Instructor's Guide in the Program Management Guide) 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample

  4. Radiological Control Technician Training

    Energy Savers [EERE]

    DOE-HDBK-1122-2009 (Revised 2013) Module 2.03 Counting Errors and Statistics Student's Material Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: (This document, Study Material, is referred to as Study Guide in the Program Management Guide) 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State

  5. Radiological Control Training for Supervisors

    Energy Savers [EERE]

    3-2001 August 2001 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax

  6. Radiological Training for Accelerator Facilities

    Energy Savers [EERE]

    8-2002 May 2002 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to

  7. Radiological Contamination Control Training for Laboratory Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... workers attending training programs unsuitable for their needs. Prerequisites A background and foundation of knowledge ... radiological work and informing the worker of the ...

  8. Model Recovery Procedure for Response to a Radiological Transportation...

    Office of Environmental Management (EM)

    for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation Emergency...

  9. Radiological safety training for uranium facilities

    SciTech Connect (OSTI)

    1998-02-01

    This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

  10. INL@Work Radiological Search & Response Training

    ScienceCinema (OSTI)

    Turnage, Jennifer

    2013-05-28

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  11. INL@Work Radiological Search & Response Training

    SciTech Connect (OSTI)

    Turnage, Jennifer

    2010-01-01

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  12. Radiological Safety Training for Accelerator Facilities

    Energy Savers [EERE]

    TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1108-2002 May 2002 Reaffirmation with Change Notice 2 July 2013 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change Notice No.2 Radiological Training

  13. Radiological Training for Tritium Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and Managing and Operating (M&O) contractors, identified as ... line management and their subordinates. The training function can be performed by a separate training organization, but ...

  14. Fifth Anniversary of Radiological Alarm Response Training for...

    National Nuclear Security Administration (NNSA)

    nuclear or radiological materials. Fifth Anniversary of Radiological Alarm Response Training The three-day course is held at NNSA's Y-12 National Security Complex in Oak...

  15. Radiological Contamination Control Training for Laboratory Research

    Energy Savers [EERE]

    Reaffirmation August 2002 Change Notice 1 December 2004 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy,

  16. Radiological Contamination Control Training for Laboratory Research

    Energy Savers [EERE]

    Change Notice 2 with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800)

  17. Radiological Safety Training for Plutonium Facilities

    Energy Savers [EERE]

    145-2008 April 2008 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public

  18. Nuclear and Radiological Field Training Center | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex ... Nuclear and Radiological Field Training Center A site used for nuclear research in Oak Ridge, Tennessee during the Manhattan Project is now the Y-12 National Security Complex's Nuclear and Radiological Field Training Center - the only facility of its kind in the world. The Center provides world-class nuclear and radiological training in a safe, secure, realistic environment using expert instruction and personnel to serve as observers/evaluators for customer training. For military

  19. Radiological Safety Training for Plutonium Facilities

    Energy Savers [EERE]

    NOT MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the

  20. Nuclear and Radiological Field Training Center | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Nuclear and Radiological Field Training Center A site used for nuclear research in Oak Ridge, Tennessee during the Manhattan Project is now the Y-12 National Security Complex's...

  1. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    9 Radiological Control Technician Training Fundamental Academic Training Instructor's Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los

  2. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    9 Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Study Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Study Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National

  3. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    6 of 9 Radiological Control Technician Training Site Academic Training Study Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Study Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Study Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National

  4. transportation-systems-modeling-training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Table of Contents Date Location Integrated Transportation Models Workshop at ITM 2012 April 29, 2012 Hyatt Regency Tampa, FL TRANSIMS Training Course April 14-15, 2011 James E. Clyburn University Transportation Center Orangeburg, SC TRANSIMS RTSTEP Guest Lecturer March 29, 2011 Argonne TRACC Argonne, IL TRANSIMS Training Course January 19-21 2011 Argonne TRACC Argonne, IL TRANSIMS Training Course September 7-8, 2010 Turner Fairbank Highway Research Center Washington D.C. Network

  5. Radiological Contamination Control Training for Laboratory Research

    Energy Savers [EERE]

    researchers. Course Description: This course illustrates and reinforces the skills and knowledge needed to assist personnel with radiological controls for laboratory research...

  6. Radiological Contamination Control Training for Laboratory Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the skills and knowledge needed to assist ... of tools, equipment, or workers. 2. Not wearing gloves, or ... radiological work and informing the worker of the ...

  7. Radiological Contamination Control Training for Laboratory Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of tools, equipment, or workers. 2. Not wearing gloves, or ... radiological work and informing the worker of the ... special survey techniques or by review of process knowledge. ...

  8. Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes

    Energy Savers [EERE]

    Safely | Department of Energy Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes Safely Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes Safely February 11, 2016 - 12:10pm Addthis Connie Martin performs work inside the Error Lab while trainees observe her actions for mistakes. Connie Martin performs work inside the Error Lab while trainees observe her actions for mistakes. Lorrie Graham (left) talks with trainees in a classroom setting before

  9. Radiological safety training for accelerator facilities: DOE handbook

    SciTech Connect (OSTI)

    1997-03-01

    This program management guide describes the proper implementation standard for core training as outline in the DOE Radiological Control (RadCon) Manual. Its purpose is to assist DOE employees and Managing and Operating (M&O) contractors having responsibility for implementing the core training recommended by the RadCon Manual.

  10. DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Course Introduction

    Office of Environmental Management (EM)

    143-2001 Instructor's Guide DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Administrative Policies and Procedures Objectives: Upon completion of this training, the student will be able to: 1. Identify the radiological controlled areas a person should be allowed to enter after successfully completing General Employee Radiological Training, Radiological Worker I training, and Radiological Worker II training. 2. List five actions used to increase the awareness level of workers relating to

  11. Radiological Worker Training Power Point Slides for App. A

    Energy Savers [EERE]

    30-2008 DOE HANDBOOK Radiological Worker Training DOE-HDBK-1130-2008 Overheads December 2008 Reaffirmed 2013 OT 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in

  12. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 ii This page intentionally left blank. DOE-HDBK-1122-99 iii Course Developers Dave Lent Coleman Research Joe DeMers EG&G Mound Applied Technologies (formerly) Andy Hobbs FERMCO Dennis Maloney RUST - GJPO Richard Cooke Argonne National Laboratory Bobby Oliver Lockheed Martin Energy Systems Michael

  13. DOE-HDBK-1131-98; General Employee Radiological Training

    Office of Environmental Management (EM)

    DOE-HDBK-1131-98 December 1998 Change Notice No. 1 November 2003 Reaffirmation with Errata April 2004 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of

  14. Compact cyclone filter train for radiological and hazardous environments

    DOE Patents [OSTI]

    Bench, T.R.

    1998-04-28

    A compact cyclone filter train is disclosed for the removal of hazardous and radiological particles from a gaseous fluid medium. This filter train permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired. 3 figs.

  15. Compact cyclone filter train for radiological and hazardous environments

    DOE Patents [OSTI]

    Bench, Thomas R.

    1998-01-01

    A compact cyclone filter train for the removal of hazardous and radiologi particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

  16. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    DOE-HDBK-1122-99 July 1999 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce,

  17. DOE-HDBK-1141-2001; Radiological Assessor Training

    Office of Environmental Management (EM)

    41-2001 April 2001 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of

  18. DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide, Part 2 of 5

    Office of Environmental Management (EM)

    5 Radiological Assessor Training DOE-HDBK-1141-2001 Instructor's Guide Office of Environment, Safety & Health U.S. Department of Energy Radiological Assessor Training DOE-HDBK-1141-2001 Instructor's Guide ii This page intentionally left blank. Radiological Assessor Training DOE-HDBK-1141-2001 Instructor's Guide iii Table of Contents Regulatory Documents * (2) ............................................................................ Module1-1 10 CFR Part 835, Background and Focus (3)

  19. NNSA Provides Tajikistan Specialized Vehicles to Transport Radiological

    National Nuclear Security Administration (NNSA)

    Materials | National Nuclear Security Administration Provides Tajikistan Specialized Vehicles to Transport Radiological Materials | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  20. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Instructor's Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on

  1. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Study Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on packages

  2. DOE TMD transportation training module 14 transportation of explosives

    SciTech Connect (OSTI)

    Griffith, R.L. Jr.

    1994-07-01

    The Department of Energy Transportation Management Division has developed training module 14, entitled {open_quotes}Transportation of Explosives{close_quotes} to compliment the basic {open_quotes}core ten{close_quotes} training modules of the Hazardous Materials Modular Training Program. The purpose of this training module is to increase awareness of the Department of Transportation (DOT) requirements concerning the packaging and transportation of explosives. Topics covered in module 14 include the classification of explosives, approval and registration of explosives, packaging requirements, hazard communication requirements, separation and segregation compatibility requirements, loading and unloading operations, as well as safety measures required in the event of a vehicle accident involving explosives.

  3. DOE-HDBK-1122-99; Radiological Control Technician Training, Part 5 of 9

    Office of Environmental Management (EM)

    5 of 9 Radiological Control Technician Training Site Academic Training Instructor's Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los

  4. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiological Protection Standards Instructor's Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of the 10 CFR Part 835. References: 1. ANL-88-26

  5. TEPP Training Brochure

    Broader source: Energy.gov [DOE]

    The Transportation Emergency Preparedness Program (TEPP) developed the Modular Emergency Response Radiological Transportation Training (MERRTT) to address concerns from States, Tribes, and local...

  6. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    5 Radiological Considerations for First Aid Instructor's Guide 2.15-1 Course Number: Radiological Control Technicians Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological

  7. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiological Considerations for First Aid Study Guide 2.15-1 Course Title: Radiological Control Technician Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after

  8. DOE-HDBK-1141-2001; Radiological Assessor Training, Student's Guide, Part 4 of 5

    Office of Environmental Management (EM)

    Assessor Training DOE-HDBK-1141-2001 Student's Guide Office of Environment, Safety & Health U.S. Department of Energy Radiological Assessor Training DOE-HDBK-1141-2001 Student's Guide ii This page intentionally left blank. Radiological Assessor Training DOE-HDBK-1141-2001 Student's Guide iii Table of Contents Regulatory Documents..................................................................................... Module1-1 10 CFR Part 835, Background and

  9. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiation Protection Standards Study Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of 10 CFR Part 835. References: 1. ANL-88-26 (1988)

  10. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads

    Office of Environmental Management (EM)

    6.1 DOE-HDBK-1141-2001 Overhead 6.1 Radiological Aspects of Uranium Objectives: * Identify the radiological properties of uranium. * Describe the toxicological properties and behavior of uranium. * Identify appropriate instrumentation, measurement techniques, and special radiological survey methods for uranium. OT 6.2 DOE-HDBK-1141-2001 Overhead 6.2 Radiological Aspects of Uranium (cont.) Objectives: * Describe personnel protection requirements, external dose control techniques, and internal

  11. DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide

    Office of Environmental Management (EM)

    4-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Elements of a Radiological Control Program Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify factors that influence the scope and magnitude of a Radiological Control Program at any nuclear facility. 2. Identify typical elements of a Radiological Control Program. Training Aids: Overhead Transparencies (OTs): OT 4.1 - OT 4.5 (may be supplemented or substituted with updated or site-specific

  12. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiological Incidents and Emergencies Instructor's Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. L 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. L 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM)

  13. DOE-HDBK-1122-99; Radiological Technician Training

    Office of Environmental Management (EM)

    Radiological Incidents and Emergencies Study Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. i 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. i 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM) alarm.

  14. DOE-HDBK-1122-99; Radiological Control Technican Training

    Office of Environmental Management (EM)

    Radiological Work Coverage Study Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that

  15. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiological Work Coverage Instructor's Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information

  16. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads

    Office of Environmental Management (EM)

    13.1 Overhead 13.1 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators Objectives: * Identify the general characteristics of accelerators. * Identify the types of particles accelerated. * Identify the two basic types of accelerators. * Identify uses for accelerators. * Define prompt radiation. * Identify prompt radiation sources. OT 13.2 Overhead 13.2 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Define radioactivation. * Explain how contaminated material

  17. DOE-HDBK-1122-99; Radiological Control Technical Training

    Office of Environmental Management (EM)

    10 Access Control and Work Area Setup Study Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: i 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. i 2.10.02 State responsibilities in using or initiating a RWP. i 2.10.03 State the document that governs the ALARA program at your site. i 2.10.04 Describe how

  18. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    ALARA Instructor's Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities

  19. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Contamination Control Instructor's Guide 2.05-1 Course Title: Radiological Control Technician Module Title: Contamination Control Module Number: 2.05 Objectives: 2.05.01 Define the terms "removable and fixed surface contamination," state the difference between them and list common methods used to measure each. 2.05.02 State the components of a radiological monitoring program for contamination control and common methods used to accomplish them. 2.05.03 State the basic goal of a

  20. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Access Control and Work Area Setup Instructor's Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: L 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. L 2.10.02 State responsibilities in using or initiating a RWP. L 2.10.03 State the document that governs the ALARA program at your site. L 2.10.04 Describe how

  1. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    ALARA Study Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities for

  2. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Contamination Control Study Guide 2.05-1 Course Title: Radiological Control Technician Module Title: Contamination Control Module Number: 2.05 Objectives: 2.05.01 Define the terms "removable and fixed surface contamination," state the difference between them and list common methods used to measure each. 2.05.02 State the components of a radiological monitoring program for contamination control and common methods used to accomplish them. 2.05.03 State the basic goal of a contamination

  3. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Environmental Monitoring Study Guide 2.09-1 Course Title: Radiological Control Technician Module Title: Environmental Monitoring Module Number: 2.09 Objectives: 2.09.01 State the goals of an environmental monitoring program. 2.09.02 State the exposure limits to the general public as they apply to environmental monitoring. 2.09.03 Define the term "critical nuclide." 2.09.04 Define the term "critical pathway." i 2.09.05 State locations frequently surveyed for radiological

  4. DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Student's Guide

    Office of Environmental Management (EM)

    43-2001 Student's Guide Notes I. Introduction II. Problem analysis Supervisors of radiological workers are often faced with critical decisions. Providing a model for strategic decision making will ensure that these critical decisions are made in an efficient, rational manner. Module 6-1 Radiological Control Training for Supervisors DOE-HDBK-1143-2001 Student's Guide Notes A. Stating the mission In making decisions, the organization's mission and resultant goals should always be considered.

  5. The Importance of Curriculum-Based Training and Assessment in Interventional Radiology

    SciTech Connect (OSTI)

    Belli, Anna-Maria; Reekers, Jim A.; Lee, Michael

    2013-10-30

    Physician performance and outcomes are being scrutinised by health care providers to improve patient safety and cost efficiency. Patients are best served by physicians who have undergone appropriate specialist training and assessment and perform large numbers of cases to maintain their skills. The Cardiovascular and Interventional Radiological Society of Europe has put into place a curriculum for training in interventional radiology (IR) and a syllabus with an examination, the European Board of Interventional Radiology, providing evidence of attainment of an appropriate and satisfactory skill set for the safe practice of IR. This curriculum is appropriate for IR where there is a high volume of image-guided procedures in vascular and nonvascular organ systems with cross-use of minimally invasive techniques in patients with a variety of disease processes. Other specialties may require different, longer, and more focused training if their experience is “diluted” by the need to master a different skill set.

  6. DOE-HDBK-1122-99 Radiological Control Technical Training, Practical Training Phase II, Part 7 of 9

    Office of Environmental Management (EM)

    Radiological Control Technician Training Practical Training Phase II Part 7 of 9 Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 ii This page intentionally left blank. DOE-HDBK-1122-99 iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian

  7. DOE, Westinghouse to Partner with NMJC To Train Radiological and Waste Handling Technicians

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Partner with NMJC To Train Radiological and Waste Handling Technicians Hobbs, NM, December 5, 2001 -- Representatives of the Waste Isolation Pilot Plant (WIPP) yesterday presented a check for $70,000 to New Mexico Junior College (NMJC) to initiate a new program to train and certify radiological and waste handling technicians. Dr. Steve McCleery, President of NMJC, accepted the check from Dr. Chuan-Fu Wu, Senior Technical Advisor for the U.S. Department of Energy's Carlsbad Field Office, and

  8. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads, Part 3 of 5

    Office of Environmental Management (EM)

    Assessor Training DOE-HDBK-1141-2001 Overheads Office of Environment, Safety & Health U.S. Department of Energy Radiological Assessor Training DOE-HDBK-1141-2001 Overheads ii This page intentionally left blank. OT 1.1 DOE-HDBK-1141-2001 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purpose of 10 CFR Part 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1141-2001 Overhead 1.2 Regulatory Documents

  9. DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Overheads

    Office of Environmental Management (EM)

    Control Training for Supervisors DOE-HDBK-1143-2001 Overheads Office of Environment, Safety & Health U.S. Department of Energy Radiological Control Training for Supervisors DOE-HDBK-1143-2001 Overheads This page intentionally left blank. ii OT 1.1 DOE-HDBK-1143-2001 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2

  10. Radiological Worker (RW) and Radiological Control Technician (RCT) Training Exam Banks

    Broader source: Energy.gov [DOE]

    Examination banks are available to DOE Contractors for use with the radiation safety training Handbooks. Questions and answers for these courses have also been prepared by DOE.

  11. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Sources of Radiation Instructor's Guide 1.05-1 Course Title: Radiological Control Technician Module Title: Sources of Radiation Module Number: 1.05 Objectives: 1.05.01 Identify the following four sources of natural background radiation including the origin, radionuclides, variables, and contribution to exposure. a. Terrestrial b. Cosmic c. Internal Emitters d. Radon 1.05.02 Identify the following four sources of artificially produced radiation and the magnitude of dose received from each. a.

  12. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radioactivity & Radioactive Decay Instructor's Guide 1.06-1 Course Title: Radiological Control Technician Module Title: Radioactivity & Radioactive Decay Module Number: 1.06 Objectives: 1.06.01 Identify how the neutron to proton ratio is related to nuclear stability. 1.06.02 Identify the definition for the following terms: a. radioactivity b. radioactive decay 1.06.03 Identify the characteristics of alpha, beta, and gamma radiations. 1.06.04 Given simple equations identify the following

  13. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    External Exposure Control Instructor's Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify

  14. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    3 Radiation Detector Theory Instructor's Guide 1.13-1 Course Title: Radiological Control Technician Module Title: Radiation Detector Theory Module Number: 1.13 Objectives: 1.13.01 Identify the three fundamental laws associated with electrical charges. 1.13.02 Identify the definition of current, voltage and resistance and their respective units. 1.13.03 Select the function of the detector and readout circuitry components in a radiation measurement system. 1.13.04 Identify the parameters that

  15. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Respiratory Protection Instructor's Guide 2.07-1 Course Title: Radiological Control Technician Module Title: Respiratory Protection Module Number: 2.07 Objectives: 2.07.01 Explain the purpose of respiratory protection standards and regulations. 2.07.02 Identify the OSHA, ANSI, and DOE respiratory protection program requirements. 2.07.03 Identify the standards which regulate respiratory protection. 2.07.04 Describe the advantages and disadvantages (limitations) of each of the following

  16. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    6 Radiation Survey Instrumentation Instructor's Guide 2.16-1 Course Title: Radiological Control Technician Module Title: Radiation Survey Instrumentation Module Number: 2.16 Objectives: 2.16.01 List the factors which affect an RCT's selection of a portable radiation survey instrument, and identify appropriate instruments for external radiation surveys. L 2.16.02 Identify the following features and specifications for ion chamber instruments used at your facility: a. Detector type b. Instrument

  17. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Instructor's Guide 2.17-1 Course Title: Radiological Control Technician Module Title: Contamination Monitoring Instrumentation Module Number: 2.17 Objectives: 2.17.01 List the factors which affects an RCT's selection of a portable contamination monitoring instrument. L 2.17.02 Describe the following features and specifications for commonly used count rate meter probes used at your site for beta/gamma and/or alpha surveys: a. Detector type b. Detector shielding and window c. Types of radiation

  18. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Instructor's Guide 2.19-1 Course Title: Radiological Control Technician Module Title: Counting Room Equipment Module Number: 2.19 Objectives: L 2.19.01 Describe the following features and specifications for commonly used laboratory counter or scalers: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting L 2.19.02 Describe the following features and specifications for

  19. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    - Sources of Radiation Study Guide 1.05-1 Course Title: Radiological Control Technician Module Title: Sources of Radiation Module Number: 1.05 Objectives: 1.05.01 Identify the following four sources of natural background radiation including the origin, radionuclides, variables, and contribution to exposure. a. Terrestrial b. Cosmic c. Internal Emitters d. Radon 1.05.02 Identify the following four sources of artificially produced radiation and the magnitude of dose received from each. a. Nuclear

  20. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    - Radioactivity and Radioactive Decay Study Guide 1.06-1 Course Title: Radiological Control Technician Module Title: Radioactivity & Radioactive Decay Module Number: 1.06 Objectives: 1.06.01 Identify how the neutron to proton ratio is related to nuclear stability. 1.06.02 Identify the definition for the following terms: a. radioactivity b. radioactive decay 1.06.03 Identify the characteristics of alpha, beta, and gamma radiations. 1.06.04 Given simple equations identify the following

  1. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    External Exposure Control Study Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify

  2. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Respiratory Protection Study Guide 2.07-1 Course Title: Radiological Control Technician Module Title: Respiratory Protection Module Number: 2.07 Objectives: 2.07.01 Explain the purpose of respiratory protection standards and regulations. 2.07.02 Identify the OSHA, ANSI, and DOE respiratory protection program requirements. 2.07.03 Identify the standards which regulate respiratory protection. 2.07.04 Describe the advantages and disadvantages (limitations) of each of the following respirators: a.

  3. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Instrumentation Study Guide 2.16-1 Course Title: Radiological Control Technician Module Title: Radiation Survey Instrumentation Module Number: 2.16 Objectives: 2.16.01 List the factors which affect an RCT's selection of a portable radiation survey instrument, and identify appropriate instruments for external radiation surveys. i 2.16.02 Identify the following features and specifications for ion chamber instruments used at your facility: a. Detector type b. Instrument operating range c. Detector

  4. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Study Guide 2.17-1 Course Title: Radiological Control Technician Module Title: Contamination Monitoring Instrumentation Module Number: 2.17 Objectives: 2.17.01 List the factors which affects an RCT's selection of a portable contamination monitoring instrument. i 2.17.02 Describe the following features and specifications for commonly used count rate meter probes used at your site for beta/gamma and/or alpha surveys: a. Detector type b. Detector shielding and window c. Types of radiation

  5. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Study Guide 2.19-1 Course Title: Radiological Control Technician Module Title: Counting Room Equipment Module Number: 2.19 Objectives: 2.19.01 Describe the features and specifications for commonly used laboratory counters or scalers: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting 2.19.02 Describe the features and specifications for low-background automatic

  6. 508 Compliant Version- TEPP Training Brochure

    Broader source: Energy.gov [DOE]

    The Transportation Emergency Preparedness Program (TEPP) developed the Modular Emergency Response Radiological Transportation Training (MERRTT) to address concerns from States, Tribes, and local...

  7. Radiological Worker Training Power Point Slides for App. A

    Energy Savers [EERE]

    1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in the above documents. * Describe the role of the Defense Nuclear Facilities Safety Board (DNFSB) at DOE sites

  8. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Unit Analysis & Conversion Instructor's Guide 1.02-1 Course Title: Radiological Control Technician Module Title: Unit Analysis & Conversion Module Number: 1.02 Objectives: 1.02.01 Identify the commonly used unit systems of measurement and the base units for mass, length, and time in each system. 1.02.02 Identify the values and abbreviations for SI prefixes. 1.02.03 Given a measurement and the appropriate conversion factor(s) or conversion factor table, convert the measurement to the

  9. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Physical Sciences Instructor's Guide 1.03-1 Course Title: Radiological Control Technician Module Title: Physical Sciences Module Number: 1.03 Objectives: 1.03.01 Define the following terms as they relate to physics: a. Work b. Force c. Energy 1.03.02 Identify and describe four forms of energy. 1.03.03 State the Law of Conservation of Energy. 1.03.04 Distinguish between a solid, a liquid, and a gas in terms of shape and volume. 1.03.05 Identify the basic structure of the atom, including the

  10. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Nuclear Physics Instructor's Guide 1.04-1 Course Title: Radiological Control Technician Module Title: Nuclear Physics Module Number: 1.04 Objectives: 1.04.01 Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope 1.04.02 Identify the basic principles of the mass-energy equivalence concept. 1.04.03 Identify the definitions of the following terms: a. Mass defect b. Binding energy c. Binding energy per nucleon 1.04.04 Identify the definitions of the following terms: a.

  11. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    7 Interaction of Radiation with Matter Instructor's Guide 1.07-1 Course Title: Radiological Control Technician Module Title: Interaction of Radiation with Matter Module Number: 1.07 Objectives: 1.07.01 Identify the definitions of the following terms: a. ionization b. excitation c. bremsstrahlung 1.07.02 Identify the definitions of the following terms: a. specific ionization b. linear energy transfer (LET) c. stopping power d. range e. W-value 1.07.03 Identify the two major mechanisms of energy

  12. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Biological Effects of Radiation Instructor's Guide 1.08-1 Course Title: Radiological Control Technician Module Title: Biological Effects of Radiation Module Number: 1.08 Objectives: 1.08.01 Identify the function of the following cell structures: a. Cell membrane b. Cytoplasm c. Mitochondria d. Lysosome e. Nucleus f. DNA g. Chromosomes 1.08.02 Identify effects of radiation on cell structures. 1.08.03 Define the law of Bergonie and Tribondeau. 1.08.04 Identify factors which affect the

  13. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Internal Exposure Control Instructor's Guide 1.12-1 Course Title: Radiological Control Technician Module Title: Internal Exposure Control Module Number: 1.12 Objectives: 1.12.01 Identify four ways in which radioactive materials can enter the body. 1.12.02 Given a pathway for radioactive materials into the body, identify one method to prevent or minimize entry by that pathway. 1.12.03 Identify the definition and distinguish between the terms "Annual Limit on Intake" (ALI) and

  14. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Communication Systems Instructor's Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the importance of good communication. 2.02.02 Identify two methods of communication and be able to determine different types of each. 2.02.03 Describe different types of communication systems. 2.02.04 Describe the FCC and DOE guidelines regarding proper use of communication systems. 2.02.05 Describe general attributes of

  15. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Counting Errors and Statistics Instructor's Guide 2.03-1 Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State two applications of counting statistics in sample analysis. 2.03.03. Define the following terms: a. mode b. median c. mean 2.03.04.

  16. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Dosimetry Instructor's Guide 2.04-1 Course Title: Radiological Control Technician Module Title: Dosimetry Module Number: 2.04 Objectives: 2.04.01 Identify the DOE external exposure limits for general employees. 2.04.02 Identify the DOE limits established for the embryo/fetus of a declared pregnant female general employee. L 2.04.03 Identify the administrative exposure control guidelines at your site, including those for the: a. General Employee b. Member of the Public/Minor c. Incidents and

  17. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Air Sampling Program/Methods Instructor's Guide 2.06-1 Course Title: Radiological Control Technician Module Title: Air Sampling Program/Methods Module Number: 2.06 Objectives: 2.06.01 State the primary objectives of an air monitoring program. 2.06.02 Describe the three physical states of airborne radioactive contaminants. 2.06.03 List and describe the primary considerations to ensure a representative air sample is obtained. 2.06.04 Define the term "isokinetic sampling" as associated

  18. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    8 Radioactive Source Control Instructor's Guide 2.08-1 Course Title: Radiological Control Technician Module Title: Radioactive Source Control Module Number: 2.08 Objectives: 2.08.01 Describe the requirements for radioactive sources per 10 CFR 835. L 2.08.02 Identify the characteristics of radioactive sources that must be controlled at your site. L 2.08.03 Identify the packaging, marking, and labeling requirements for radioactive sources. L 2.08.04 Describe the approval and posting requirements

  19. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Environmental Monitoring Instructor's Guide 2.09-1 Course Title: Radiological Control Technician Module Title: Environmental Monitoring Module Number: 2.09 Objectives: 2.09.01 State the goals of an environmental monitoring program. 2.09.02 State the exposure limits to the general public as they apply to environmental monitoring. 2.09.03 Define the term "critical nuclide." 2.09.04 Define the term "critical pathway." L 2.09.05 State locations frequently surveyed for

  20. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Instructor's Guide 2.14-1 Course Title: Radiological Control Technician Module Title: Personnel Decontamination Module Number: 2.14 Objectives: 2.14.01 List the three factors which determine the actions taken in decontamination of personnel. L 2.14.02 List the preliminary actions and notifications required by the RCT for an individual suspected to be contaminated. L 2.14.03 List the actions to be taken by the RCT when contamination of clothing is confirmed. L 2.14.04 List the actions to be taken

  1. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Instructor's Guide 2.18-1 Course Title: Radiological Control Technician Module Title: Air Sampling Equipment Module Number: 2.18 Objectives: 2.18.01 Identify the factors that affect the operator's selection of a portable air sampler. L 2.18.02 Identify the physical and operating characteristics and the limitation(s) of the Staplex and Radeco portable air samplers. L 2.18.03 Identify the physical and operating characteristics and the limitation(s) of Motor air pumps. L 2.18.04 List the steps for

  2. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Unit Analysis & Conversion Study Guide 1.02-1 Course Title: Radiological Control Technician Module Title: Unit Analysis & Conversion Module Number: 1.02 Objectives: 1.02.01 Identify the commonly used unit systems of measurement and the base units for mass, length, and time in each system. 1.02.02 Identify the values and abbreviations for SI prefixes. 1.02.03 Given a measurement and the appropriate conversion factor(s) or conversion factor table, convert the measurement to the specified

  3. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Physical Sciences Study Guide 1.03-1 Course Title: Radiological Control Technician Module Title: Physical Sciences Module Number: 1.03 Objectives: 1.03.01 Define the following terms as they relate to physics: a. Work b. Force c. Energy 1.03.02 Identify and describe four forms of energy. 1.03.03 State the Law of Conservation of Energy. 1.03.04 Distinguish between a solid, a liquid, and a gas in terms of shape and volume. 1.03.05 Identify the basic structure of the atom, including the

  4. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    4 - Nuclear Physics Study Guide 1.04-1 Course Title: Radiological Control Technician Module Title: Nuclear Physics Module Number: 1.04 Objectives: 1.04.01 Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope 1.04.02 Identify the basic principles of the mass-energy equivalence concept. 1.04.03 Identify the definitions of the following terms: a. Mass defect b. Binding energy c. Binding energy per nucleon 1.04.04 Identify the definitions of the following terms: a.

  5. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    8 Biological Effects of Radiation Study Guide 1.08-1 Course Title: Radiological Control Technician Module Title: Biological Effects of Radiation Module Number: 1.08 Objectives: 1.08.01 Identify the function of the following cell structures: a. Cell membrane b. Cytoplasm c. Mitochondria d. Lysosome e. Nucleus f. DNA g. Chromosomes 1.08.02 Identify effects of radiation on cell structures. 1.08.03 Define the law of Bergonie and Tribondeau. 1.08.04 Identify factors which affect the radiosensitivity

  6. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Internal Exposure Control Study Guide 1.12-1 Course Title: Radiological Control Technician Module Title: Internal Exposure Control Module Number: 1.12 Objectives: 1.12.01 Identify four ways in which radioactive materials can enter the body. 1.12.02 Given a pathway for radioactive materials into the body, identify one method to prevent or minimize entry by that pathway. 1.12.03 Identify the definition and distinguish between the terms "Annual Limit on Intake" (ALI) and "Derived

  7. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Number TRNG-0003 Module 1.13 Radiation Detector Theory Study Guide 1.13-1 Course Title: Radiological Control Technician Module Title: Radiation Detector Theory Module Number: 1.13 Objectives: 1.13.01 Identify the three fundamental laws associated with electrical charges. 1.13.02 Identify the definition of current, voltage and resistance and their respective units. 1.13.03 Select the function of the detector and readout circuitry components in a radiation measurement system. 1.13.04 Identify the

  8. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Communication Systems Study Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the importance of good communication. 2.02.02 Identify two methods of communication and be able to determine different types of each. 2.02.03 Describe different types of communication systems. 2.02.04 Describe the FCC and DOE guidelines regarding proper use of communication systems. 2.02.05 Describe general attributes of good

  9. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Counting Errors and Statistics Study Guide 2.03-1 Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State two applications of counting statistics in sample analysis. 2.03.03. Define the following terms: a. mode b. median c. mean 2.03.04. Given a

  10. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Dosimetry Study Guide 2.04-1 Course Title: Radiological Control Technician Module Title: Dosimetry Module Number: 2.04 Objectives: 2.04.01 Identify the DOE external exposure limits for general employees. 2.04.02 Identify the DOE limits established for the embryo/fetus of a declared pregnant female general employee. i 2.04.03 Identify the administrative exposure control guidelines at your site, including those for the: a. General employee b. Member of the public/minor c. Incidents and

  11. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Air Sampling Program/Methods Study Guide 2.06-1 Course Title: Radiological Control Technician Module Title: Air Sampling Program/Methods Module Number: 2.06 Objectives: 2.06.01 State the primary objectives of an air monitoring program. 2.06.02 Describe the three physical states of airborne radioactive contaminants. 2.06.03 List and describe the primary considerations to ensure a representative air sample is obtained. 2.06.04 Define the term "isokinetic sampling" as associated with

  12. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radioactive Source Control Study Guide 2.08-1 Course Title: Radiological Control Technician Module Title: Radioactive Source Control Module Number: 2.08 Objectives: 2.08.01 Describe the requirements for radioactive sources per 10 CFR 835. i 2.08.02 Identify the characteristics of radioactive sources that must be controlled at your site. i 2.08.03 Identify the packaging, marking, and labeling requirements for radioactive sources. i 2.08.04 Describe the approval and posting requirements for

  13. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Study Guide 2.14-1 Course Title: Radiological Control Technician Module Title: Personnel Decontamination Module Number: 2.14 Objectives: 2.14.01 List the three factors which determine the actions taken in decontamination of personnel. i 2.14.02 List the preliminary actions and notifications required by the RCT for an individual suspected to be contaminated. i 2.14.03 List the actions to be taken by the RCT when contamination of clothing is confirmed. i 2.14.04 List the actions to be taken by the

  14. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Study Guide 2.18-1 Course Title: Radiological Control Technician Module Title: Air Sampling Equipment Module Number: 2.18 Objectives: 2.18.01 Identify the factors that affect the operator's selection of a portable air sampler. i 2.18.02 Identify the physical and operating characteristics and the limitation(s) of the Staplex and Radeco portable air samplers. i 2.18.03 Identify the physical and operating characteristics and the limitation(s) of Motor air pumps. i 2.18.04 List the steps for a

  15. DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Student's Guide, Part 4 of 5

    Office of Environmental Management (EM)

    Control Training for Supervisors DOE-HDBK-1143-2001 Student's Guide Office of Environment, Safety & Health U.S. Department of Energy Radiological Control Training for Supervisors DOE-HDBK-1143-2001 Student's Guide This page intentionally left blank. ii Radiological Control Training for Supervisors DOE-HDBK-1143-2001 Student's Guide Table of Contents Page Occupational Radiation Protection Program Policy and Guidance Review..................1-1 10 CFR Part 835, Background and Focus

  16. Model Recovery Procedure for Response to a Radiological Transportation Incident

    Broader source: Energy.gov [DOE]

    This Transportation Emergency Preparedness Program (TEPP) Model Recovery Procedure contains the recommended elements for developing and conducting recovery planning at transportation incident scene...

  17. Commercial low-level radioactive waste transportation liability and radiological risk

    SciTech Connect (OSTI)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  18. A Simulation Learning Approach to Training First Responders for Radiological Emergencies ? A Continuation of Work

    SciTech Connect (OSTI)

    Lake, Joe E; Cross, Butch; Sanders, Robert Lon

    2008-01-01

    Real-time gaming engines, such as Epic Game's Unreal Engine[1], provide an excellent resource as a training environment. These engines provide an alternate reality that can accurately depict not only real world geometry, but they can also achieve realistic physical effects such as radiation fields and blast physics. The real time photorealistic graphics available through the Unreal Engine add to its applicability to this project's needs. Moreover, this engine provides a very efficient means to modify the game's physics modeling, visual effects, and game play structure to fit the ever-evolving needs of a training curriculum. To this end, we have worked to extend the Unreal Engine to incorporate radiation effects dependent on distance from a radiological source, similar to what one would experience in the real world. In order to help better prepare first responders for using the radiological detection equipment vital for mission success, we have continued work, previously described by Sanders and Rhodes [2], on a Geiger counter readout display being implemented and added to the interface's Heads Up Display (HUD) as well as incorporating a physically accurate model within the engine that will allow the first responder to acclimate themselves to the sounds and possible size of the device. Moreover, the Karma Physics Engine, which works in conjunction with the Unreal Engine 2, accurately simulates fluid physics, blast effects, and basic player movements. It is this physics engine that has been the focus of our continued efforts and has been extended to include realistic modeling of radiological effects.

  19. Model Annex for Preparedness and Response to Radiological Transportation Incidents

    Broader source: Energy.gov [DOE]

    This part should contain a general statement of the intent of this Annex. To provide for the planning, preparedness and coordination of emergency service efforts to respond to a transportation...

  20. DOE-HDBK-1113-98, CN 1, Reaffirm; Radiological Safety Training for Uranium Facilities

    Office of Environmental Management (EM)

    REAFFIRMATION WITH ERRATA April 2005 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1113-98 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public

  1. DOE-HDBK-1113-98; Radiological Safety Training for Uranium Facilities (Reaffirmation Memorandum)

    Office of Environmental Management (EM)

    DATE M a y 9, 2005 REPLY TO EH-52:Judith D. Foulke:3-5865 ATTN OF: REAFFIRMATION WITH ERRATA OF DEPARTMENT OF ENERGY (DOE) URANIUM FACILITIES" Dennis Kubicki, Technical Standards Manager, EH-24 SUBJECT. HANDBOOK, DOE-HDBK-1113-98, "RADIOLOGICAL SAFETY TRAINING FOR TO: In February 2005, a notice of intent to reaffirm with errata DOE-HDBK-1113-98 was sent to the DOE Technical Standards Managers. The notice requested comments regarding the planned reaffirmation of the handbook. No

  2. DOE-HDBK-1130-98-CN2; DOE Handbook Radiological Worker Training

    Office of Environmental Management (EM)

    30-98 October 1998 Change Notice No. 1 June 2001 Change Notice No. 2 December 2003 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to

  3. DOE-HDBK-1143-2001; Radiological Control Training for Supervisors

    Office of Environmental Management (EM)

    SENSITIVE DOE-HDBK-1143-2001 August 2001 DOE HANDBOOK Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S.

  4. DOE-HDBK-1145-2001; Radiological Safety Training for Plutonium Facilities

    Office of Environmental Management (EM)

    SENSITIVE DOE-HDBK-1145-2001 August 2001 DOE STANDARD Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the

  5. TEC Working Group Topic Groups Archives Training - Medical Training |

    Office of Environmental Management (EM)

    Department of Energy Training - Medical Training TEC Working Group Topic Groups Archives Training - Medical Training The TEC Training and Medical Training Issues Topic Group was formed to address the training issues for emergency responders in the event of a radioactive material transportation incident. The Topic Group first met in 1996 to assist DOE in developing an approach to address radiological emergency response training needs and to avoid redundancy of existing training materials. The

  6. DOE-HDBK-1122-99 Radiological Control Technical Training, Facility Practical Training Attachment Phase IV, Part 9 0f 9

    Office of Environmental Management (EM)

    Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 ii This page intentionally left blank DOE-HDBK-1122-99 iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory

  7. DOE-HDBK-1141-2001; Radiological Assessor Training, Student's Guide

    Office of Environmental Management (EM)

    Student's Guide Notes Module 4-1 I. Introduction II. Radiological Control Program A. Overall program The Radiological Control Program consists of the commitments, policies, and procedures that are administered by a site or facility to meet the EH Health and Safety Policy. The Radiation Protection Program required by 10 CFR Part 835 is an element of the overall Radiological Control Program. The Radiological Control Program should address the following: * Requirements * Responsibilities *

  8. DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide

    Office of Environmental Management (EM)

    8-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Radiological Aspects of Plutonium Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify the radiological properties of plutonium. 2. Identify the biological effects of plutonium. 3. Identify special controls and considerations required for plutonium operations. 4. Describe appropriate instruments, measurement techniques, and special radiological survey methods for plutonium. 5. Describe personnel

  9. DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide

    Office of Environmental Management (EM)

    13-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Radiological Aspects of Accelerators Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify the general characteristics of accelerators. 2. Identify the types of particles accelerated. 3. Identify the two basic types of accelerators. 4. Identify uses for accelerators. 5. Define prompt radiation. 6. Identify prompt radiation sources. 7. Define radioactivation. 8. Explain how contaminated material

  10. Radiological Control Manual

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  11. Radiological Worker Training - Radiological Safety Training for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... National and international agencies have formed to aid in the standardization of the uses ... tissues: 1) Bone 2) Liver 3) Kidney 4) Cartilage 5) Muscle 6) Nervous system ...

  12. ORISE Resources: Radiological and Nuclear Terrorism: Medical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to mass casualties that may involve radiological injuries. The interactive, two-hour training, titled Radiological and Nuclear Terrorism: Medical Response to Mass Casualties...

  13. Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II)

    SciTech Connect (OSTI)

    David P. Colton

    2007-02-28

    The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time.

  14. LEDSGP/Transportation Toolkit/Training | Open Energy Information

    Open Energy Info (EERE)

    petroleum consumption in transportation. Car Sharing Robin Chase on Zipcar and her next big idea Robin Chase founded Zipcar, the world's biggest car-sharing business. With...

  15. Model Annex for Preparedness and Response to Radiological Transportati...

    Office of Environmental Management (EM)

    Annex for Preparedness and Response to Radiological Transportation Incidents Model Annex for Preparedness and Response to Radiological Transportation Incidents This part should...

  16. Radiological Control Technician Training

    Energy Savers [EERE]

    Documentation ............................................................................2.01-1 Module 2.02 Communication Systems ..................................................................................2.02-1 Module 2.03 Counting Errors and Statistics ..........................................................................2.03-1 Module 2.04 Dosimetry .........................................................................................................2.04-1 Module 2.05

  17. Radiological Control Technician Training

    Energy Savers [EERE]

    the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank DOE-HDBK-1122-2009 iii Table of Contents Page Introduction................................................................................................................................1 Purpose of Oral Examinations .....................................................................................................1

  18. Radiological Control Technician Training

    Energy Savers [EERE]

    Documentation ............................................................................2.01-1 Module 2.02 Communication Systems ..................................................................................2.02-1 Module 2.03 Counting Errors and Statistics ..........................................................................2.03-1 Module 2.04 Dosimetry .........................................................................................................2.04-1 Module 2.05

  19. Radiological Worker Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... National and international agencies have formed to aid in the standardization of the uses ... tissues: 1) Bone 2) Liver 3) Kidney 4) Cartilage 5) Muscle 6) Nervous system ...

  20. Radiological and Environmental Monitoring at the Clean Slate I and III Sites, Tonopah Test Range, Nevada, With Emphasis on the Implications for Off-site Transport

    SciTech Connect (OSTI)

    Mizell, Steve A; Etyemezian, Vic; McCurdy, Greg; Nikolich, George; Shadel, Craig; Miller, Julianne J

    2014-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]) implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range [NAFR]). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in the dispersal of plutonium over the ground surface downwind of the test ground zero (GZ). Three tests—Clean Slate I, II, and III—were conducted on the TTR in Cactus Flat. The fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. The Desert Research Institute (DRI) installed two monitoring stations in 2008, Station 400 at the Sandia National Laboratories (SNL) Range Operations Center (ROC) and Station 401 at Clean Slate III. Station 402 was installed at Clean Slate I in 2011 to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination in the soil at the Clean Slate sites was being transported beyond the contamination area boundaries. Some of the data collected also permits comparison of radiological exposure at the TTR monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Annual average gross alpha values from the TTR monitoring stations are higher than values from the surrounding CEMP stations. Annual average gross beta values from the TTR monitoring stations are generally lower than values observed for the surrounding CEMP stations. This may be due to use of sample filters with larger pore space because when glass-fiber filters began to be used at TTR Station 400, gross beta values increased. Gamma spectroscopy typically identified only naturally occurring radionuclides. The radionuclides cesium-134 and -137 were identified in only two samples at each station collected in the weeks following the destruction of the nuclear power reactor in Fukushima, Japan, on March 11, 2011. Observed gamma energy values never exceeded the local background by more than 4 ÎŒR/h. The higher observed gamma values were coincident with wind from any of the cardinal directions, which suggests that there is no significant transport from the Clean Slate contamination areas. Annual average daily gamma values at the TTR stations are higher than at the surrounding CEMP stations, but they are equivalent to or just slightly higher than the background estimates made at locations at equivalent elevations, such as Denver, Colorado. Winds in excess of approximately 15 mph begin to resuspend soil particles and create dust, but dust generation is also affected by soil temperature, relative humidity, and soil water content. Power curves provide good predictive equations for dust concentration as a function of wind speed. However, winds in the highest wind speed category occur infrequently. iii

  1. NNSA Continues Emergency Training in Taiwan | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Radiological Measurements with SPARCS Course (Spectral Advanced Radiological Computer System), focused on advanced techniques for hands-on training in radiological monitoring,...

  2. Radiological Control Manual. Revision 0, January 1993

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  3. I COMPREHENSIVE RADIOLOGICAL SURVEY I

    Office of Legacy Management (LM)

    im I COMPREHENSIVE RADIOLOGICAL SURVEY I Prepared by Oak Ridge Associated Universities Prprd* OFF-SITE PROPERTY H' | Prepared for Office of Operational FORMER LAKE ONTARIO ORDNANCE WORKS SITE Safety U.S. Department LEWISTON, NEW YORK I of Energy i J.D. BERGER i Radiological Site Assessment Program Manpower Education, Research, and Training Division I l*~~~~~~ ~~~~DRAFT REPORT January 1983 I I I ------- COMPREHENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY H' FORMER LAKE ONTARIO ORDNANCE WORKS SITE

  4. Assessment of the risk of transporting propane by truck and train

    SciTech Connect (OSTI)

    Geffen, C.A.

    1980-03-01

    The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

  5. 508 Compliant Version - TEPP Training Brochure

    Office of Environmental Management (EM)

    Training for a Radiological Transportation Emergency CECBEMS Accreditation The MERRTT program has been approved by the Continuing Education Coordinating Board of Emergency Medical Services for Continuing Education Hours (CEH). CEHs are awarded for each module completed and for the Practical Exercises. MERRTT Instructor Patch The TEPP instructor patches are designed for personnel who are qualified as MERRTT instructors. To receive a patch, instructors must attend a MERRTT Train-the-Trainer. When

  6. Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discerns Threatening Liquids Scientists Train Honeybees to Detect Explosives LANL Guns Los Alamos Team Demonstrates Bottle Scanner Technology Los Alamos tests of conventional...

  7. radiological. survey

    National Nuclear Security Administration (NNSA)

    7%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  8. Radiological Control

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-06-16

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs.

  9. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  10. Radiological Training for Tritium Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Available to the public from the U.S. Department ... certification by the American Board of Health Physics andor ... Particles, Health Physics Journal, September (2001). ...

  11. Emergency Response Training Draws Professionals From Seven States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seven States CARLSBAD, N.M., August 18, 2000 - Emergency response professionals from Arizona, California, Louisiana, Mississippi, Nevada, New Mexico, and Texas will be in Carlsbad Aug. 23-25 to learn how to handle potential accidents involving radioactive and hazardous materials. The course, titled "Train-The-Trainer: First Responder Radiological Transportation Emergency Course," is taught by members of the Waste Isolation Pilot Plant's (WIPP) Emergency Responder Training Team. The

  12. Emergency response training draws professionals from two states

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two States CARLSBAD, N.M., January 31, 2000 - Emergency response professionals from Oregon and Texas will be in Carlsbad Feb. 1-2 to learn how to handle potential accidents involving radioactive and hazardous materials. The course, titled "Train-The-Trainer: First Responder Radiological Transportation Emergency Course," is taught by members of the Waste Isolation Pilot Plant's (WIPP) Emergency Responder Training Team. It provides emergency response professionals with the tools to teach

  13. ORISE: Radiological Terrorism Toolkit | How ORISE is Making a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education (ORISE) distributed more than 400 radiological terrorism toolkits filled with key resources, such as training guidelines, clinical directives, details about radioactive...

  14. Transportation Emergency Preparedness Program Plan, U.S. Department of Energy Region 6

    SciTech Connect (OSTI)

    Marsha Keister

    2010-04-01

    The United States Department of Energy (DOE) Region 6 Transportation Emergency Preparedness Program Plan (TEPP Plan) operates within the framework of the DOE emergency management system for developing, coordinating, and directing emergency planning, preparedness, and readiness assurance activities for radiological transportation incidents. The DOE Region 6 TEPP Plan is a narrative description of the DOE Transportation Emergency Preparedness Program activities, training and technical assistance provided to states and tribes along DOE's transportation corridors in DOE Region 6.

  15. Radiological Control

    Energy Savers [EERE]

    DOE-STD-1098-2008 October 2008 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii DOE-STD-1098-2008 This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ DOE-STD-1098-2008 Radiological Control DOE Policy October 2008 iii Foreword The Department of Energy (DOE) has developed this Standard to assist

  16. RADIOLOGICAL SURWY

    Office of Legacy Management (LM)

    111 j -,~ ' - et- -*\. _(a v - r\lfs+8 plY 45+ c iill I r\l&; p) :;!I..; .: .. :,, ,m -,< :' - ' ec-. :-*% ". _(.*- ~ . . : : : ' .. : : : .. ..:, . . . :. : : ,, :;I;:~~:; :.:.!,;;y ' 1;: .: 1. .., ; ' . :. : c :...: .;: .: RADIOLOGICAL SURWY - RADIoL~BI~L.::.~~~y:- : ::: 1 ,: . . : : :: :. :..." - OFi~:,~~~~:poRTI~~~ 0J-g ,m_ ,. :. y.;,:. ,.:I; .:. F~~~~~~as~~~ ~~~~~~~:~~~~ :co~~~:~~~~~; ;, .. ; I : : ::.. :.. :. - ,B~~Lo,.~-~~~. ..; .:I ,,,, :--:.;:I:: ;' #I Y' i ' 11".

  17. ORISE: Radiological Terrorism Toolkit | How ORISE is Making a Difference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Terrorism Toolkit ORISE partners with CDC to develop Radiological Terrorism: A Toolkit for Public Health Officials Radiological Terrorism: A Toolkit for Public Health Officials How ORISE is Making a Difference Working closely with the Centers for Disease Control and Prevention (CDC), the Oak Ridge Institute for Science and Education (ORISE) distributed more than 400 radiological terrorism toolkits filled with key resources, such as training guidelines, clinical directives, details

  18. Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Training Training

  19. Radiological Control

    National Nuclear Security Administration (NNSA)

    NOT MEASUREMENT SENSITIVE DOE-STD-1098-2008 October 2008 ------------------------------------- Change Notice 1 May 2009 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1098-2008 ii This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ iii DOE-STD-1098-2008 Change Notice 1: DOE-STD-1098-2008,

  20. Radiological Protection

    National Nuclear Security Administration (NNSA)

    This document is an extract from ICRP Publication 103 The 2007 Recommendations of the International Commission on Radiological Protection The full report is available for purchase and may be ordered online at: http://www.elsevier.com/wps/find/bookdescription.cws_home/713998/description#description A shorter "users edition" is available at a lower cost and may be ordered here at: http://www.elsevier.com/wps/find/bookdescription.cws_home/714371/description#description Annals of the ICRP

  1. Transportation Emergency Preparedness Program Exercise Overview

    Office of Environmental Management (EM)

    Exercise Program TEPP Exercise Program Tom Clawson TEPP Contractor tom@trgroupinc.com Brief TEPP History Brief TEPP History * In 1988, identified need to address emergency preparedness concerns of DOE emergency preparedness concerns of DOE radiological shipments bl h d * EM established in 1989 - Identified need for responder training along all transportation corridors as key to EM mission - TEPP incorporated into DOE Order 151.1, with responsibility assigned to EM * WIPP adopted the the TEPP

  2. RADIOLOGICAL ASSESSMENT OF BALLOD AND ASSOCIATES PROPERTY

    Office of Legacy Management (LM)

    ,..~ ,!-~ <-\ NJ' to RADIOLOGICAL ASSESSMENT OF BALLOD AND ASSOCIATES PROPERTY (STEPAN CHEMICAL COMPANY) MAYWOOD, NEW JERSEY Leslie W. Cole, Jim Berger, Phyllis Cotton, Robert Gosslee, Jonathan Sowell, Clayton Weaver FINAL REPORT July 30, 1981 Work performed by Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities Oak Ridge, Tennessee 37830 Under Interagency Agreement DOE No. 40-770-80 NRC Fin. No. A-9093-0, Between the U.S.

  3. T-1 Training Area

    SciTech Connect (OSTI)

    2014-11-07

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  4. T-1 Training Area

    ScienceCinema (OSTI)

    None

    2015-01-09

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  5. Emergency Operations Training Academy | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Emergency Operations Training Academy Emergency Operations Training Academy Emergency Operations Training Academy The Office of Emergency Operations, NA-40-The Emergency Operations Training Academy (EOTA) EOTA provides training and education to enhance the readiness of personnel in the radiological-

  6. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  7. Fundemental Academic Training Instructor's Guide Phase 1

    Office of Environmental Management (EM)

    Part 3 of 9 Radiological Control Technician Training Fundamental Academic Training Instructor's Guide Phase I Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 Radiological Control Technician Instructor's Guide 1.01- ii This page intentionally left blank. DOE-HDBK-1122-2009 Radiological Control Technician Instructor's Guide 1.01- iii Table of Contents Page Module 1.01 Basic Mathematics and

  8. Apparatus for safeguarding a radiological source

    DOE Patents [OSTI]

    Bzorgi, Fariborz M

    2014-10-07

    A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

  9. Idaho National Laboratory Radiological Response Training Range...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy, Idaho Operations Office, 1955 Fremont Avenue, Idaho Falls, ID 83415-1170, or emailed to: RRTREA@id.doe.gov. DOE-ID-10-010 Editorial Date August 4...

  10. Radiological Safety Training for Uranium Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Continued on Next Page * Stein, F., Instructor Competencies: the Standards. International ... and acute exposures to significant amounts of uranium may result in kidney damage. ...

  11. Radiological Assistance Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-04-10

    To establish Department of Energy (DOE) policy, procedures, authorities, and responsibilities for its Radiological Assistance Program. Canceled by DOE O 153.1.

  12. Office of Radiological Security

    National Nuclear Security Administration (NNSA)

    of physical security of radiological materials;

  13. Provision of mobile and man-portable radiation detection equipment;
  14. Regional cooperation on safeguards...

  15. Emergency Operations Training Academy | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration About Us / Our Programs / Emergency Response / Training / Emergency Operations Training Academy Emergency Operations Training Academy Rotating image showing pictures of Classroom, Online and Hands on trainings The Office of Emergency Operations, NA-40-The Emergency Operations Training Academy (EOTA) EOTA provides training and education to enhance the readiness of personnel in the radiological-nuclear emergency operations community. For more information or to contact us, visit

  16. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  17. ORISE: REAC/TS trains emergency responders in preparation for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REACTS trains emergency responders in preparation for Pan American Games Workshop in Mexico helps medical professionals prepare for treating victims of radiological or nuclear...

  18. Hospital Triage in First Hours After Nuclear or Radiological Disaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance Center/Training Site (REAC/TS) at the Oak Ridge Institute for Science and Education (ORISE) authored an article that addresses the problems emergency physicians would likely face in the event of a nuclear or radiological catastrophe. The article specifically covers actions that would need to occur so that reasonable decisions are made during the critical

  19. DOE standard: Radiological control

    SciTech Connect (OSTI)

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  20. Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture

    SciTech Connect (OSTI)

    Vahdat, Nader

    2013-09-30

    The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

  21. Scenario-Driven Training | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scenario-Driven Training Scenario-Driven Training An initial entry team member assesses the overall hazards in a clandestine lab. Y-12's Nuclear and Radiological Field Training Center equips military units, as well as federal, state and local emergency response agencies with the hands-on skills and knowledge they need to safely detect, safeguard and handle real nuclear and radiological sources. To test their skills, Y-12 has developed training exercises that include the following scenarios:

  22. transims-training-course

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Modeling TRANSIMS Training Course April 14 to 15, 2011 South Carolina State University, SC Michael Hope and Dr. Vadim Sokolov This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small A training course in the use of TRANSIMS software was held at the Training Room of the James E. Clyburn University Transportation Center (JECUTC) at South Carolina State University, South Carolina on April 14-15, 2011. The Transportation Research

  1. Training & Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TraccTraining1 735w TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Training Courses and Workshops at TRACC TRACC offers expanded outreach, training, collaboration, visualization, and technology enablement to users, collaborators, and USDOT partners. TRACC resources can enrich the meeting experience for all participants. Events (meetings, conferences and training sessions) that benefit from sharing both video/audio and data among

  2. ORISE Resources: Radiological and Nuclear Terrorism: Medical Response to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Casualties Training Clinicians for Response to a Radiological or Nuclear Terrorism Attack The Centers for Disease Control and Prevention and its Radiation Studies Branch in the National Center for Environmental Health asked the Oak Ridge Institute for Science and Education (ORISE) to develop a Web-based and CD-ROM training program to prepare clinicians-medical doctors and registered nurses in hospital emergency service settings-on how to locally respond to mass casualties that may

  3. Alarm Response Training | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alarm Response Training Alarm Response Training The mp4 video format is not supported by this browser. Download video Captions: On Time: 4:04 min. View an introduction to our Alarm Response Training, which prepares and trains personnel responding to civilian nuclear and radiological security alarms

  4. 324 Building Baseline Radiological Characterization

    SciTech Connect (OSTI)

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  5. Radiological assessment. A textbook on environmental dose analysis

    SciTech Connect (OSTI)

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

  6. Packaging and Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012

  7. RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE

    Office of Legacy Management (LM)

    h ' . * ' 1. MI). q-8 RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE FUTURA CHEMICAL COMPANY FACILITY 9200 LATTY AVENUE HAZELWOOD, MISSOURI L.W. Cole J.D. Berger W.O. Helton B.M. Putnam T.J. Sowell C.F. Weaver R.D. Condra September 9, 1981 Work performed by Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities Oak Ridge, Tennessee 37830 Under Interagency Agreement DOE No. 40-770-80 NRC Fin. No. A-9093-0

  8. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  9. Nevada National Security Site Radiological Control Manual

    SciTech Connect (OSTI)

    Radiological Control Managers’ Council

    2012-03-26

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

  10. Career Map: Transportation Worker | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Worker Career Map: Transportation Worker Transportation workers help to guide a large wind turbine component down a narrow road. Transportation Worker Position Title Transportation Worker Alternate Title(s) Railroad worker, truck driver, driver, long-haul truck driver, water transportation officer or engineer Education & Training Level Bachelor's degree generally not expected Education & Training Level Description Transportation workers' education and training requirements

  11. ORISE: Radiological program assessment services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological program assessment services Minimizing the risk of human exposure to hazardous levels of radioactive materials requires designing a comprehensive safety program that...

  12. Overview of Radiological Dose

    Office of Environmental Management (EM)

    Upgrading RESRAD-RDD and Planning for Improvised Nuclear Device Incidents - The RESRAD-RDD&IND Charley Yu 1 , Carlos Corredor 2 , Jing-Jy Cheng 1 , Sunita Kamboj 1 , David LePoire 1 , and Paul Flood 1 1 Argonne National Laboratory, 2 U.S. Department of Energy July 16, 2014 HPS 59 th Annual Meeting, Baltimore, MD RESRAD-RDD Background  Computer model that runs on the .NET framework (4.0)  First released in 2004  Calculates operational guidelines for a radiological dispersal device

  13. For S Radiological

    Office of Legacy Management (LM)

    ? . -. .- * -* (\/If.r.-5- .* , d- For S Radiological ' mer Bridgepo pecial Metals Adrian, Survey of the Irt Brass Company Extrusion Plant, Michigan / /f?t' . ( F. F. Haywood H. W. Dickson W. D. Cottrell W. H. Shinpaugh _ : I., _-. .I ( ._ rc/ DOE/EV-0005128 ORNL-57 13 / J. E. Burden 0. R. Stone R. W. Doane W. A. Goldsmith 4 , Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia

  14. Smart Radiological Dosimeter

    DOE Patents [OSTI]

    Kosslow, William J.; Bandzuch, Gregory S.

    2004-07-20

    A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

  15. ORNL-5680 Radiological Surveys

    Office of Legacy Management (LM)

    DOVEV-0005/l (Supplement) ORNL-5680 Radiological Surveys of Properties in the Middlesex, New Jersey, Area R. W. Leggett D. L. Anderson F. F. Haywood D. J. Christian W. D. Cottrell R. W. Doane D. J. Crawford W. H. Shinpaugh E. B. Wagner T. E. Myrick W. A. Goldsmith Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A07 Microfiche ,401 I I This

  16. Alarm Response Training Academy celebrates an anniversary | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Complex Alarm Response Training ... Alarm Response Training Academy celebrates an anniversary Posted: November 12, 2015 - 3:08pm Top-notch classroom training and live scenarios drive ART's success. A little more than a year ago, the Alarm Response Training program moved into the newly remodeled Building 9109. There, Y-12 experts conduct courses to train law enforcement, radiation safety officers, security personnel, FBI and others to protect nuclear and radiological materials of

  17. Cardiovascular and Interventional Radiological Society of Europe...

    Office of Scientific and Technical Information (OSTI)

    Sant'Andrea University Hospital, Interventional Radiology Unit (Italy) "Sacro Cuore" Catholic University, Radiology Department (Italy) Publication Date: 2013-11-06 OSTI Identifier: ...

  18. Handling and Packaging a Potentially Radiologically Contaminated...

    Office of Environmental Management (EM)

    Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is...

  19. Cori Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Cori Training Intel OpenMP Training @ NERSC Key Actions for Optimizing KNL Performance Tuning and Functional Debugging for Xeon-Phi OpenMP and Vectorization Training IXPUG...

  20. US Department of Energy standardized radiation safety training

    SciTech Connect (OSTI)

    Trinoskey, P.A.

    1997-02-01

    The following working groups were formed under the direction of a radiological training coordinator: managers, supervisors, DOE auditors, ALARA engineers/schedulers/planners, radiological control personnel, radiation-generating device operators, emergency responders, visitors, Pu facilities, U facilities, tritium facilities, accelerator facilities, biomedical researchers. General courses for these groups are available, now or soon, in the form of handbooks.

  1. Standardized radiological dose evaluations

    SciTech Connect (OSTI)

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  2. EM Conducts Third Annual Spanish Language Training with Record Participation

    Broader source: Energy.gov [DOE]

    SAN DIEGO – EM conducted a training program with mock exercises in radiological accident response this year that drew record attendance, more than twice the participants from the year prior.

  3. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Nikoloch, George; Shadel, Craig; Chapman, Jenny; Mizell, Steve A.; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  4. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  5. Central Characterization Program (CCP) Training and Qualification Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Training and Qualification Plan Central Characterization Program (CCP) Training and Qualification Plan This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014, report in Attachment F.

  6. PIA - Radiological Work Permit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Work Permit PIA - Radiological Work Permit PIA - Radiological Work Permit PDF icon PIA - Radiological Work Permit More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory PIA - HSPD-12 Physical and Logical Access System

  7. Estimate Radiological Dose for Animals

    Energy Science and Technology Software Center (OSTI)

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  8. Radiological cleanup of Enewetak Atoll

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

  9. Radiological Protection for DOE Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-29

    Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

  10. ORISE: Radiological program assessment services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological program assessment services Minimizing the risk of human exposure to hazardous levels of radioactive materials requires designing a comprehensive safety program that ensures appropriate measures are taken to protect workers and the public. As a U.S. Department of Energy (DOE) institute, the Oak Ridge Institute for Science and Education (ORISE) understands the importance of having an effective safety program in place to assure stakeholders and regulators that your radiological

  11. LANL responds to radiological incident

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL responds to radiological incident LANL responds to radiological incident Multiple tests indicate no health risks to public or employees. August 27, 2012 Aerial view of the Los Alamos Neutron Science Center(LANSCE). Aerial view of the Los Alamos Neutron Science Center (LANSCE). The contamination poses no danger to the public. The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The

  12. Radiological Monitoring Continues at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Monitoring Continues at WIPP CARLSBAD, N.M., February 19, 2014 - Radiological control personnel continue to collect surface and underground monitoring samples at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) after an underground air monitor detected airborne radiation around 11:30 p.m. (MT) on February 14. Recent laboratory analyses by Carlsbad Environmental Monitoring and Research Center (CEMRC) found some trace amounts of americium and plutonium from a

  13. Testing, Training, and Signature Devices | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing, Training, and ... Testing, Training, and Signature Devices Y-12 manufactures specialized uranium testing, training, and signature devices to support the nuclear detection community. As part of our national security mission, and in partnership with Oak Ridge National Laboratory, we are producing unique test objects for passive gamma ray signature analysis. Y-12 is fabricating new Highly Enriched Uranium Equivalent Radiological Signature Training Devices, tools that use an innovative

  14. Forklift Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forklift Training Forklift Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! Forklift Training Overview Training reduces risk. Check controls before starting. Know how to handle situations. Wear proper equipment. Make sure you can see. Forklift training is required for all individuals who wish to use the forklift at CAMD. This manual is presented as a guide and may be used for retraining/re-certification only. Initial training in forklift safety requires an

  15. Training Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Courses NERSC Training Accounts Request Form Training Links OSF HPC Seminars Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request...

  16. Radiological control manual. Revision 1

    SciTech Connect (OSTI)

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  17. Cori Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Cori Training Intel OpenMP Training @ NERSC Key Actions for Optimizing KNL Performance Tuning and Functional Debugging for Xeon-Phi OpenMP and Vectorization Training IXPUG ISC15 Documents Last edited: 2015-04-28 00:10:29

  18. MSDS Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Radiation Safety Training Cleanroom Safety Information Test Material Forklift Training Crane Operation Training Tests Radiation Safety Test Forklift Test Crane Operation Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices 6980 Jefferson Hwy., Baton Rouge, LA 70806 Telephone: 225-578-8887 * Fax: 225-578-6954 Copyright © 2012

  19. Fifth Anniversary of Radiological Alarm Response Training for...

    National Nuclear Security Administration (NNSA)

    Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios...

  20. Fifth Anniversary of Radiological Alarm Response Training for Local Law

    National Nuclear Security Administration (NNSA)

    Enforcement and First Responders Across the Country | National Nuclear Security Administration Across the Country | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  1. Radiological Safety Training for Radiation-Producing (X-RAY)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... National and international agencies have formed to aid in the standardization of the uses ... tissues: 1) Bone 2) Liver 3) Kidney 4) Cartilage 5) Muscle 6) Nervous system ...

  2. Radiological Safety Training for Radiation-Producing (X-Ray)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... National and international agencies have formed to aid in the standardization of the uses ... tissues: 1) Bone 2) Liver 3) Kidney 4) Cartilage 5) Muscle 6) Nervous system ...

  3. Fifth Anniversary of Radiological Alarm Response Training for Local Law

    National Nuclear Security Administration (NNSA)

    Enforcement and First Responders across the Country | National Nuclear Security Administration across the Country | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  4. Memorandum, Reporting of Radiological Sealed Sources Transactions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Memorandum, Reporting of Radiological Sealed Sources Transactions Memorandum, Reporting of Radiological Sealed Sources Transactions December 16, 2010 The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the

  5. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  6. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  7. International Data on Radiological Sources

    SciTech Connect (OSTI)

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

  8. Departmental Radiological Emergency Response Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-27

    The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Supersedes DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

  9. Special Training Materials | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special Training Materials Special Training Materials Members of the 54th WMD Civil Support Team (Wisconsin National Guard) operate a decontamination line while practicing proper personnel monitoring techniques. Realistic training is enhanced by the use of relevant quantities of nuclear and radiological materials. These materials force teams to exercise the full range of their equipment and to properly exercise tactics, techniques and procedures. The Y-12 site license allows the use of

  10. Customer Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Operating Committee Transmission Issues Policy Steering Committee Customer Training Interconnection Small Generator Interconnection Procedures (SGIP) Balancing Authority...

  11. Cleanroom Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanroom Safety Information Test Material NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! Cleanroom Training Overview This page has been prepared to describe those hazards which are associated with silicon wafer preparation and processing as well as other hazards connected with the cleanroom environment. It is intended as a guide only and not as a replacement for specific training in cleanroom activities. Why Safety Training? 6,000 fatal workplace injuries per year 50,000

  12. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station 401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

  13. LEDSGP/Transportation Toolkit/Tools | Open Energy Information

    Open Energy Info (EERE)

    Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Request Assistance Tools for Low Emission Development Strategies in Transportation...

  14. LEDSGP/Transportation Toolkit/Contact Us | Open Energy Information

    Open Energy Info (EERE)

    Contact Us < LEDSGP | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Request Assistance Contacts for the LEDS GP...

  15. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect (OSTI)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  16. Understanding Mechanisms of Radiological Contamination

    SciTech Connect (OSTI)

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  17. integrated-transportation-models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Archive Integrated Transportation Models Workshop at ITM 2012 April 29, 2012 Hyatt Regency Tampa Hosted by: The Transportation Research and Analysis Computing Center at Argonne National Laboratory This email address is being protected from spambots. You need JavaScript enabled to view it. The aim of the workshop was to provide an opportunity for researchers and practitioners to discuss recent research results that can support a wider application of integrated transportation models,

  18. Limitations Influencing Interventional Radiology in Canada: Results of a National Survey by the Canadian Interventional Radiology Association (CIRA)

    SciTech Connect (OSTI)

    O'Brien, Jeremy; Baerlocher, Mark Otto Asch, Murray R.; Hayeems, Eran; Kachura, John R.; Collingwood, Peter

    2007-09-15

    Purpose. To describe the current state and limitations to interventional radiology (IR) in Canada through a large, national survey of Canadian interventional radiologists. Methods. An anonymous online survey was offered to members of the Canadian Interventional Radiology Association (CIRA). Only staff radiologists were invited to participate. Results. Seventy-five (75) responses were received from a total of 247, giving a response rate of 30%. Respondents were split approximately equally between academic centers (47%) and community practice (53%), and the majority of interventional radiologists worked in hospitals with either 200-500 (49%) or 500-1,000 (39%) beds. Procedures listed by respondents as most commonly performed in their practice included PICC line insertion (83%), angiography and stenting (65%), and percutaneous biopsy (37%). Procedures listed as not currently performed but which interventional radiologists believed would benefit their patient population included radiofrequency ablation (36%), carotid stenting (34%), and aortic stenting (21%); the majority of respondents noted that a lack of support from referring services was the main reason for not performing these procedures (56%). Impediments to increasing scope and volume of practice in Canadian IR were most commonly related to room or equipment shortage (35%), radiologist shortage (33%), and a lack of funding or administrative support (28%). Conclusion. Interventional radiology in Canada is limited by a number of factors including funding, manpower, and referral support. A concerted effort should be undertaken by individual interventional radiologists and IR organizations to increase training capacity, funding, remuneration, and public exposure to IR in order to help advance the subspecialty.

  19. Training Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning and Workforce Development » Training Resources Training Resources Training Resources Type Training Resources

  20. ORISE: Radiological Assessment and Monitoring System (RAMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Assessment and Monitoring System (RAMS) ORISE develops paperless tool to assist with data entry for radiological monitoring During the Empire 09 exercise, the Oak Ridge Institute for Science and Education tested for the first time a paperless system of data management to support the operations of the Federal Radiological Monitoring and Assessment Center. How ORISE is Making a Difference The paperless FRMAC provides tools that enables the FRMAC to collect and process field

  1. Education & Training

    Broader source: Energy.gov [DOE]

    Science and technology a critical sector of the U.S. economy. Learn about opportunities for education and training supported by the Energy Department.

  2. Operating Experience Level 3: Radiologically Contaminated Respirators...

    Energy Savers [EERE]

    Experience Level 3 provides information on a safety concern related to radiological contamination of launderedreconditioned respirators and parts that have been certified as...

  3. Progress Continues on Mitigation of Radiological Contamination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 13, 2015 Progress Continues on Mitigation of Radiological Contamination This week, WIPP personnel will complete the installation of the brattice cloth and salt barrier on a...

  4. Radiological Control - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    98-2008, Change Notice 1, Radiological Control by Diane Johnson The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities...

  5. Radiological Assistance Program Flight Planning Tool

    Energy Science and Technology Software Center (OSTI)

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this responsemore » time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.« less

  6. Radiological Assistance Program Flight Planning Tool

    SciTech Connect (OSTI)

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this response time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.

  7. radiological. survey | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    survey NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas A U.S. Department of Energy National Nuclear Security...

  8. Environmental/Radiological Assistance Directory (ERAD) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    practices, emerging trends, compliance issues, etc. in support of radiological ... of Real and Personal Property RESRAD Family of Codes Knowledge Information Management ...

  9. NEVADA TEST SITE RADIOLOGICAL CONTROL MANUAL

    Office of Scientific and Technical Information (OSTI)

    ... are based on dose coefficients from International Commission on Radiological Protec- ... dose is: BS Bone surface, ET Extrathoracic, K Kidney, L Liver, and T Thyroid. ...

  10. RADIOLOGICAL DATA FOR ALARA PLANNING PURPOSES Rev. 1 Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RADIOLOGICAL DATA FOR ALARA PLANNING PURPOSES Rev. 1 Contact 1 ft 3 ft 10 ft 25 ft 50 ft 125 ft 100 mR/hr line 5 mR/hr line (R/hr) (R/hr) (R/hr) (R/hr) (R/hr) (R/hr) (R/hr) (feet) (feet) Outside of Cask (max) *Unshielded Liner (max) Top of *Unshielded Liner after the cask lid is removed *Unshielded Liner Inside of Cask/Lid Outside of Cask Lifting rig or any other support equipment Does the cask have fixed contamination that may "leach out" during transport (Yes/No)? If yes, please list

  11. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  12. Annual Training Plan Template

    Broader source: Energy.gov [DOE]

    The Annual Training Plan Template is used by an organization's training POC to draft their organization's annual training plan.

  13. Lawrence Pack, train conductor, and Y-12s uranium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Y-12's uranium? Trains were the primary means of long haul transportation in the 1940's. Many trains brought building materials to Y-12 and other Manhattan Project sites...

  14. Weapons of Mass Destruction Technology Evaluation and Training Range

    SciTech Connect (OSTI)

    Kevin Larry Young

    2009-05-01

    The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testing capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.

  15. Federal Radiological Monitoring and Assessment Center

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-12-02

    To establish Department of Energy (DOE) policy, procedures, authorities, and requirements for the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC), as set forth in the Federal Radiological Emergency Response Plan (FRERP). This directive does not cancel another directive. Canceled by DOE O 153.1.

  16. Nevada Test Site Radiological Control Manual

    SciTech Connect (OSTI)

    Radiological Control Managers' Council - Nevada Test Site

    2009-10-01

    This document supersedes DOE/NV/11718--079, “NV/YMP Radiological Control Manual,” Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

  17. Nevada Test Site Radiological Control Manual

    SciTech Connect (OSTI)

    Radiological Control Managers' Council Nevada Test Site

    2010-02-09

    This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  18. Memorandum, Reporting of Radiological Sealed Sources Transactions

    Broader source: Energy.gov [DOE]

    The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the Office of Information Management, within the Office of Environment, Health, Safety and Security.

  19. ls-dyna-training-course

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LS-DYNAÂź Training Course November 17 - 19, 2008 Argonne TRACC Dr. Ronald F. Kulak Announcement pdficon small This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it. "> The US Department of Transportation-funded Transportation Research and Analysis Computing Center at Argonne National Laboratory held training courses on (1) the finite element code LS-DYNAÂź

  20. Hawaii Department of Health Indoor and Radiological Health Branch...

    Open Energy Info (EERE)

    Indoor and Radiological Health Branch Jump to: navigation, search Name: Hawaii Department of Health Indoor and Radiological Health Branch From Open Energy Information Address: 591...

  1. Los Alamos National Security Corrective Action Plan - Radiological...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos ...

  2. Radiological Source Term Estimates for the February 14, 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Source Term Estimates for the February 14, 2014 WIPP Release Event Radiological Source Term Estimates for the February 14, 2014 WIPP Release Event This document was...

  3. Office of Radiological Security | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Radiological ... Office of Radiological Security Read more about Y-12's contributions of the Global Threat Reduction Initiative to secure the world's most vulnerable...

  4. MODARIA: Modelling and Data for Radiological Impact Assessment...

    Office of Environmental Management (EM)

    MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview Presentation...

  5. Fundemental Academic Training Study Guide Phase 1

    Office of Environmental Management (EM)

    Module 1.01 Basic Mathematics and Algebra Study Guide Part 4 of 9 Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 Module 1.01 Basic Mathematics and Algebra Study Guide 1.01-ii This page intentionally left blank. DOE-HDBK-1122-2009 Module 1.01 Basic Mathematics and Algebra Study Guide 1.01-iii Table of Contents Page Module 1.01 Basic

  6. Training | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Nuclear Security / Nuclear Materials Management & Safeguards System / Training Training 2015 Annual Users Training Meeting Presentations 2014 Annual Users Training Meeting Presentations 2013 Annual Users Training Meeting Presentations Annual Users Training Meeting Archives NMMSS I Training NMMSS II Training Individualized Site Training NMMSS Training for NRC Licensees Learn More NMMSS I Training NMMSS II Training Individualized Site Training Annual Users Training Meeting Archives

  7. HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-05-01

    Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

  8. Emergency Response Training Exercises at JLab March 3 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Training Exercises at JLab on Thursday, March 3 Several emergency response organizations will be at Jefferson Lab on Thursday, March 3, to conduct a training session that will include hands-on exercises involving radioactive materials. In an effort to keep the JLab community informed and to prevent unnecessary alarm, an overview of the event follows. Nearly 50 individuals from the Newport News Fire Department, the Va. Dept. of Emergency Management, the Bureau of Radiological

  9. ANALYSIS RESULTS FOR BUILDING 241 702-AZ A TRAIN

    SciTech Connect (OSTI)

    DUNCAN JB; FRYE JM; COOKE CA; LI SW; BROCKMAN FJ

    2006-12-13

    This report presents the analyses results for three samples obtained under RPP-PLAN-28509, Sampling and Analysis Plan for Building 241 702-AZ A Train. The sampling and analysis was done in response to problem evaluation request number PER-2004-6139, 702-AZ Filter Rooms Need Radiological Cleanup Efforts.

  10. transims-training-course-april-2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2008 TRACC Dr. Hubert Ley This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small The Transportation Research and Analysis Computing Center at Argonne National Laboratory has held several training courses on TRANSIMS. The courses originated from the need to train several groups of students and collaborators that work on a major evacuation study for Chicago under a project for the Illinois Department of Transportation and other

  11. transims-training-course-jan-27

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSIMS Training Course January 27-29, 2009 Moreno Valley, CA Dr. Hubert Ley This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small The Transportation Research and Analysis Computing Center at Argonne National Laboratory has held several training courses on TRANSIMS. The courses originated from the need to train several groups of students and collaborators that work on a major evacuation study for Chicago under a project for the

  12. 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Environmental/Radiological Assistance Directory (ERAD) Presentations » 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations PDF icon November 2012; Environmental Measurements in an Emergency: This is not a Drill!; Stephen V. Musolino; Brookhaven National Laboratory PDF icon November 2012; Brookhaven

  13. DOE Issues WIPP Radiological Release Investigation Report

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy’s Office of Environmental Management (EM) released the initial accident investigation report related to the Feb. 14 radiological release at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

  14. Contained radiological analytical chemistry module

    DOE Patents [OSTI]

    Barney, David M. (Scotia, NY)

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  15. Contained radiological analytical chemistry module

    DOE Patents [OSTI]

    Barney, David M. (Scotia, NY)

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  16. Radiological Primer Common Understanding of Terms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Primer Understanding Radiological Terms Richard Bloom and Dr. Antone Brooks Health Safety Environmental Protection Committee Hanford Advisory Board Tom Rogers and Crystal Mathey Washington State Department of Health Radioactivity vs. Radiation  What is radioactivity?  Property exhibited by certain types of matter of emitting radiation spontaneously.  What is radiation?  Process by which energy is emitted from a source  Forms of ionizing radiation  Gamma (photons)

  17. Flashback: Rapid scanning for radiological threats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flashback: Rapid scanning for radiological threats Flashback: Rapid scanning for radiological threats The ability to identify distinct material density enables the Multi-Mode Passive Detection System (MMPDS)to quickly detect unshielded to heavily shielded nuclear threats, as well as gamma rays, with near-zero false alarms. November 1, 2015 Decision Science Decision Science Decision Sciences' Multi-Mode Passive Detection System: Rapid scanning forradiological threats Click on headline to go to

  18. Microsoft Word - Berger Radiological Conditions.doc

    Office of Legacy Management (LM)

    Dec. 2, 2009 1 Summary of Information Regarding Radiological Conditions of NFSS Vicinity Properties J. D. Berger, CHP DeNuke Contracting Services, Inc. Oak Ridge, TN The following is a summary of the information obtained from reviews of radiological survey reports, prepared by ORAU in support of the DOE Formerly Utilized Sites Remedial Action Program. These reports were obtained for review from the IVEA Program at ORAU/ORISE. A list of the reports, reviewed for this summary, is included at the

  19. Fermilab | Visit Fermilab | Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Transportation to and from Chicago O'Hare Airport or Midway Airport is available by limousine, taxi or car rental. Transportation to and from the Geneva local commuter Metra train station on the Union Pacific West line is available by taxi or Pace Call-n-Ride. Car rental All of the usual rental companies (such as Hertz, Avis, Budget and National) are located at the airports. For the best price, we recommend Ace Rent-a-Car at O'Hare Airport, telephone 1-800-243-3443 or

  20. Scientists Train Electrons with Microwaves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Train Electrons with Microwaves

  1. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT

    Office of Environmental Management (EM)

    Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do

  2. LEDSGP/Transportation Toolkit/Key Actions/Create a Baseline ...

    Open Energy Info (EERE)

    a Baseline) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Request Assistance Key Actions for Low-Emission Development in Transportation...

  3. PMCDP Training Schedule

    Broader source: Energy.gov [DOE]

    ­Download FY2016 listing of all PMCDP training courses.  For a calendar view of the upcoming training courses, please visit PMCDP Training Events Calendar.

  4. Training | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training MFRC Training at a Glance Previous Events 2014 Events Advanced Bloodstain Pattern Analysis Workshop Dates: March 31-April 4, 2014 Northeast Forensic Training Center,...

  5. ORISE: Health Physics Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational ...

  6. Regional Transportation Simulation Tool for Emergency Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rtstep-diag TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Regional Transportation Simulation Tool for Emergency Evacuation Planning (Click to play movie) Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the

  7. Simulation of transportation of low enriched uranium solutions

    SciTech Connect (OSTI)

    Hope, E.P.; Ades, M.J.

    1996-08-01

    A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes.

  8. Green Jobs Training Center

    Broader source: Energy.gov [DOE]

    Provides an overview of the training available through the Green Jobs Training Center including certification courses and the apprenticeship program.

  9. Interventional Radiology of Male Varicocele: Current Status

    SciTech Connect (OSTI)

    Iaccarino, Vittorio Venetucci, Pietro

    2012-12-15

    Varicocele is a fairly common condition in male individuals. Although a minor disease, it may cause infertility and testicular pain. Consequently, it has high health and social impact. Here we review the current status of interventional radiology of male varicocele. We describe the radiological anatomy of gonadal veins and the clinical aspects of male varicocele, particularly the physical examination, which includes a new clinical and ultrasound Doppler maneuver. The surgical and radiological treatment options are also described with the focus on retrograde and antegrade sclerotherapy, together with our long experience with these procedures. Last, we compare the outcomes, recurrence and persistence rates, complications, procedure time and cost-effectiveness of each method. It clearly emerges from this analysis that there is a need for randomized multicentre trials designed to compare the various surgical and percutaneous techniques, all of which are aimed at occlusion of the anterior pampiniform plexus.

  10. Routine Radiological Environmental Monitoring Plan. Volume 1

    SciTech Connect (OSTI)

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  11. Emergency Response Planning for Radiological Releases

    SciTech Connect (OSTI)

    Biwer, B.M.; LePoire, D.J.; Lazaro, M.A.; Allison, T.; Kamboj, S.; Chen, S.Y.

    2006-07-01

    The emergency management planning tool RISK-RDD was developed to aid emergency response planners and decision makers at all levels of government to better understand and prepare for potential problems related to a radiological release, especially those in urban areas. Radioactive release scenarios were studied by using the RISK-RDD radiological emergency management program. The scenarios were selected to investigate the key aspects of radiological risk management not always considered in emergency planning as a whole. These aspects include the evaluation of both aerosolized and non-aerosolized components of an atmospheric release, methods of release, acute and chronic human health risks, and the concomitant economic impacts as a function of the risk-based cleanup level. (authors)

  12. OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL

    Office of Legacy Management (LM)

    2 7% d &y / 7 ORNL/TM- 10076 OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL ~-T-m -~=- -~ w-~- -"" * ,<.~- ~w&$UREMENTs: TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NF002) J. K. Williams B. A. Berven ~.~~;:;-~~~ ~. -,' - ~~ 7, OPERATED BY MARTIN MARIDTA ENERGY SYSTEMS, INC, FOR THE UNITED STATES DEPARTMENT OF ENERGY --... ORNL/TM-10076 HEALTH AND SAFETY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AH 10 05 00 0; ONLWCOI) RESULTS OF RADIOLOGICAL

  13. Media Training

    ScienceCinema (OSTI)

    None

    2011-10-06

    With the LHC starting up soon, the world's media are again turning their attention to CERN. We're all likely to be called upon to explain what is happening at CERN to media, friends and neighbours. The seminar will be given by BBC television news journalists Liz Pike and Nadia Marchant, and will deal with the kind of questions we're likely to be confronted with through the restart period. The training is open for everybody. Make sure you arrive early enough to get a seat - there are only 200 seats in the Globe. The session will also be webcast: http://webcast.cern.ch/

  14. Radiological Safety Analysis Computer Program

    Energy Science and Technology Software Center (OSTI)

    2001-08-28

    RSAC-6 is the latest version of the RSAC program. It calculates the consequences of a release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory; decay and in-grow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Internal dose from the inhalation and ingestion pathways is calculated. External dose from ground surface andmore » plume gamma pathways is calculated. New and exciting updates to the program include the ability to evaluate a release to an enclosed room, resuspension of deposited activity and evaluation of a release up to 1 meter from the release point. Enhanced tools are included for dry deposition, building wake, occupancy factors, respirable fraction, AMAD adjustment, updated and enhanced radionuclide inventory and inclusion of the dose-conversion factors from FOR 11 and 12.« less

  15. Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone

    SciTech Connect (OSTI)

    Cannell, Gary L.; Huth, Ralph J.; Hallum, Randall T.

    2013-08-26

    In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work in a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.

  16. Radiological Instrumentation Assessment for King County Wastewater Treatment Division

    SciTech Connect (OSTI)

    Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

    2005-05-19

    The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 ?Ci per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine “innocent” alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

  17. Radiological Scoping Survey of the Scotia Depot, Scotia, NY

    SciTech Connect (OSTI)

    Bailey, E. N.

    2008-02-25

    The objectives of the radiological scoping survey were to collect adequate field data for use in evaluating the radiological condition of Scotia Depot land areas, warehouses, and support buildings.

  18. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  19. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  20. 2013 Environmental/Radiological Assistance Directory (ERAD) Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 Environmental/Radiological Assistance Directory (ERAD) Presentations » 2013 Environmental/Radiological Assistance Directory (ERAD) Presentations 2013 Environmental/Radiological Assistance Directory (ERAD) Presentations Below are the presentations presented during the 2013 Environmental/Radiological Assistance Directory (ERAD) meetings PDF icon Nov 2013 Derived Intervention and Response Levels for Tritium Oxide at the Savannah River Site; Tim Janik, Savannah River Site

  1. Los Alamos National Security Corrective Action Plan - Radiological Release

    Energy Savers [EERE]

    Phase II | Department of Energy Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II PDF icon Los Alamos National Security Corrective Action Plan - Radiological Release Phase II More Documents & Publications Environmental Management Los Alamos Field Office Corrective Action Plan -

  2. Accident Investigation Report - Radiological Release | Department of Energy

    Energy Savers [EERE]

    Radiological Release Accident Investigation Report - Radiological Release On February 14, 2014, an airborne radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following the event, the investigation was broken into two phases. The Phase 1 report focused on how the radiological material was released into the atmosphere and Phase 2, performed once limited access to the underground

  3. Radiological/biological/aerosol removal system

    DOE Patents [OSTI]

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  4. Nuclear / Radiological Advisory Team | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration / Radiological Advisory Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  5. Environmental Radiological Effluent Monitoring and Environmental Surveillance

    Office of Environmental Management (EM)

    Environmental Radiological Effluent Monitoring and Environmental Surveillance U.S. Department of Energy AREA ENVR Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1216-2015 NOT MEASUREMENT SENSITIVE INTENTIONALLY BLANK DOE-HDBK-1216-2015 iii TABLE OF CONTENTS PARAGRAPH PAGE 1 INTRODUCTION ............................................................................................................... 1 1.1 Objectives

  6. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Map of Argonne Site Showing CNM Location A shuttle bus operates between Argonne and the University of Chicago's Hyde Park campus. Northwestern University offers a car pool program to Argonne. From early spring until early fall, Argonne offers a bike-share program that facility users are welcome to join. Before using the bikes, you must take a online bike safety course and sign a liability waiver. On completion of the training and waiver, you will receive an Argonne-issued bike

  7. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  8. DOE - Office of Legacy Management -- Penn Central Transportation Co - PA 06

    Office of Legacy Management (LM)

    Central Transportation Co - PA 06 FUSRAP Considered Sites Site: Penn Central Transportation Co. (PA.06) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Documents Related to Penn Central Transportation Co.

  9. Cyber Train Videos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Train Videos Cyber Train Overview Cyber Train Opt-Out Process Cyber Train Complete Training Submitting Course Completion Materials...

  10. Paint for detection of radiological or chemical agents

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA); Brunk, James L. (Martinez, CA); Day, Sumner Daniel (Danville, CA)

    2010-08-24

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  11. transims-training-course-june-23

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 23 to 25, 2009 University of Houston Dr. Hubert Ley This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small The Transportation Research and Analysis Computing Center at Argonne National Laboratory has held several training courses on TRANSIMS. The courses originated from the need to train several groups of students and collaborators that work on a major evacuation study for Chicago under a project for the Illinois Department of

  12. Training Program | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training & Documents Training Program The Laboratory's Training Program provides employees with the institutional training necessary for the safe and productive completion of...

  13. Training Worksheet Job Aid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Worksheet Job Aid Maintained by Corporate Education, Development & Training (CEDT) Purchase Order A. General Awareness Sandia-Specific Training - Initial and Refresher Training Program/ Hazards Title Course Number Annual Counterintelligence Training Members of the Workforce who process, or have access to information. CI100 Annual Integrated Cyber and Information Security Training All members of the SNL workforce who create and process Sandia information are required to complete

  14. Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Training Training on various systems/components that use energy is available to help manufacturing plants and buildings run more efficiently. Learn how to use powerful decision support software tools to help identify, analyze, and implement energy savings opportunities. Training is offered through online courses as well as in-person classroom-based events. Online training for steam systems, process heating, and mechanical insulation are available on the National Training & Education

  15. NV/YMP RADIOLOGICAL CONTROL MANUAL

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

    2004-11-01

    This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

  16. The Radiological Safety Analysis Computer Program (RSAC-5) user`s manual. Revision 1

    SciTech Connect (OSTI)

    Wenzel, D.R.

    1994-02-01

    The Radiological Safety Analysis Computer Program (RSAC-5) calculates the consequences of the release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory from either reactor operating history or nuclear criticalities. RSAC-5 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated through the inhalation, immersion, ground surface, and ingestion pathways. RSAC+, a menu-driven companion program to RSAC-5, assists users in creating and running RSAC-5 input files. This user`s manual contains the mathematical models and operating instructions for RSAC-5 and RSAC+. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-5 and RSAC+. These programs are designed for users who are familiar with radiological dose assessment methods.

  17. ORISE: Mentor Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentor Training Mentor Training Oak Ridge Institute for Science and Education (ORISE) research participation programs depend heavily upon mentoring leadership and guidance from the...

  18. HAZWOPER Training Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or experience entry requirements for HAZWOPER Training. Comprehension of the English language is a requirement to attend the HAZWOPER training. The 40-Hour Initial HAZWOPER...

  19. NERSC Training Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced OpenMP Training, February 4, 2016 IXPUG 2015 BerkeleyGW2015 Tutorial: Getting Up to Speed on OpenMP 4.0 New User Training: 8/13/2015 Intel VTune Training Materials Science Application Training 2015 Allinea DDT and MAP Training 2015 Intel compiler performance optimization and characterization Key Actions for Optimizing for KNL Intel OpenMP Training @ NERSC TotalView Training 2015 NUG 2015 Training Edison Programming, Debugging, and Optimization BerkeleyGW2014 Performance Tuning and

  20. ORISE: Training and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training and Tools Chronic diseases such as diabetes, heart disease and cancer afflict more people every year and have resulted in increased demand for trained health care...

  1. Fixation of Radiological Contamination; International Collaborative Development

    SciTech Connect (OSTI)

    Rick Demmer

    2013-03-01

    A cooperative international project was conducted by the Idaho National Laboratory (INL) and the United Kingdom’s National Nuclear Laboratory (NNL) to integrate a capture coating with a high performance atomizing process. The initial results were promising, and lead to further trials. The somewhat longer testing and optimization process has resulted in a product that could be demonstrated in the field to reduce airborne radiological dust and contamination.

  2. 2013 Environmental/Radiological Assistance Directory (ERAD) Presentations

    Broader source: Energy.gov [DOE]

    November 2013 Derived Intervention and Response Levels for Tritium Oxide at the Savannah River Site May 2013 THE MARSAME METHODOLOGY Fundamentals, Benefits, and Applications March 2013 Working to Keep our Shipments Safe, Secure and Economical ANL Facility Decommissioning Training Program January 2013 DOE Corporate Operating Experience Program Radiological Reporting Annual Site Environmental Reports (ASERs) & HSS Environmental and Radiation Protection Performance Dashboards November 2012 Environmental Measurements in an Emergency: This is not a Drill! BGRR D&D Presentation for the DOE ERAD Working Group September 2012 Development of Authorized Limits for Portsmouth Oil Inventory Disposition Development of Authorized Limits for Portsmouth Oil Inventory Disposition Development of Authorized Limits for Portsmouth Oil Inventory Disposition Clearance of Real and Personal Property Under DOE Radiation Protection Directive DOE Order 458.1 June 2012 RESRAD Codes for ERAD June 27, 2012 Florida International University (FIU) D&D Knowledge Management Information Tool, June 27, 2012 May 2012 Integrated Cloud Based Environmental Data Management System DOE Order 458.1, Radiation Protection of the Public and the Environment

  3. Enewetak radiological support project. Final report

    SciTech Connect (OSTI)

    Friesen, B.

    1982-09-01

    From 1972 through 1980, the Department of Energy acted in an advisory role to the Defense Nuclear Agency during planning for and execution of the cleanup of Enewetak Atoll. The Nevada Operations Office of the Department of Energy was responsible for the radiological characterization of the atoll and for certification of radiological condition of each island upon completion of the project. In-situ measurements of gamma rays emitted by americium-241 were utilized along with wet chemistry separation of plutonium from soil samples to identify and delineate surface areas requiring removal of soil. Military forces removed over 100,000 cubic yards of soil from the surface of five islands and deposited this material in a crater remaining from the nuclear testing period. Subsurface soil was excavated and removed from several locations where measurements indicated the presence of radionuclides above predetermined criteria. The methodologies of data acquisition, analysis and interpretation are described and detailed results are provided in text, figures and microfiche. The final radiological condition of each of 43 islets is reported.

  4. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation beam is transported from the linac through the pulsed Ring Injection Kicker (RIKI) magnet. When RIKI is switched on, the beam is injected into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beam_transport1 Simplified drawing of the

  5. Cyber Train Videos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Train Videos Cyber Train Overview Cyber Train Opt-Out Process Cyber Train Complete Training Submitting Course Completion Materials Click here for information on accessing Cyber Train.

  6. DOE handbook: Guide to good practices for training and qualification of chemical operators

    SciTech Connect (OSTI)

    1996-03-01

    The purpose of this Handbook is to provide contractor training organizations with information that can be used as a reference to refine existing chemical operator training programs, or develop new training programs where no program exists. This guide, used in conjunction with facility-specific job analyses, will provide a framework for training and qualification programs for chemical operators at DOE reactor and nonreactor facilities. Recommendations for qualification are made in four areas: education, experience, physical attributes, and training. Contents include: initial qualification; administrative training; industrial safety training; specialized skills training; on-the-job training; trainee evaluation; continuing training; training effectiveness evaluation; and program records. Two appendices describe Fundamentals training and Process operations. This handbook covers chemical operators in transportation of fuels and wastes, spent fuel receiving and storage, fuel disassembly, fuel reprocessing, and both liquid and solid low-level waste processing.

  7. Training Scientists | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Scientists A practical guide to developing programs in scientific management. PDF icon Training Scientists...

  8. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  9. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  10. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  11. Crane Operation Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crane Operational Training Crane Operational Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! Crane Training - Information Reduces Risk Crane training is required for all individuals who wish to use the crane at CAMD. This manual is presented as a guide and may be used for retraining/re-certification only. Initial training in crane safety requires an appointment made through CAMD safety and a minimum of a two hour time commitment to learn about general crane safety

  12. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  13. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  14. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  15. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Facility Safety Training Required for ALL Users Users must register with the ALS to obtain an LBNL ID number before they can complete safety training courses. Once registered, choose the non-LDAP login and enter your LBNL ID number to begin. ALS 1001: Safety at the ALS EHS 0470: General Employee Radiation Training (GERT) Special Training Required for Some Users Laser Safety Users working with a Class 3B/4 laser EHS 0302 Macromolecular Crystallography Users

  16. ORISE: Health Physics Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational commitments in the areas of radiation and health physics is an essential part of protecting your workers, the public and the environment. ORAU, the managing contractor of the Oak Ridge Institute for Science and Education, offers hands-on, laboratory-based training courses in a variety of health physics areas. Training

  17. Training | Department of Energy

    Energy Savers [EERE]

    Earned Value Management » Training Training DOE Office of Project Management Oversight & Assessments offers number of training opportunities in the area of Earned Value Management that is delivered in variety of formats. Review various types of training available and select the one that fits your needs best. EVMS Video Tutorials A series of 34 short video snippets, sponsored by the Office of Project Management Oversight and Assessments (PM), provides training in variety of EVMS tropics.

  18. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  19. MODARIA: Modelling and Data for Radiological Impact Assessment Context and

    Office of Environmental Management (EM)

    Overview | Department of Energy MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview Presentation from the 2015 Annual Performance and Risk Assessment (P&RA) Community of Practice (CoP) Technical Exchange Meeting held in Richland, Washington on December 15-16, 2015. PDF icon MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview More Documents

  20. Anniversary of Fire, Radiological Events Marks Major Progress at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 12, 2016 Anniversary of Fire, Radiological Events Marks Major Progress at WIPP February 2016 marks two years since the underground fire and radiological release events forced the temporary closure of the Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Since that time much progress has been made in the recovery of the underground including mine stability and habitability, initial panel closure, radiological risk remediation and the addition of

  1. 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Environmental/Radiological Assistance Directory (ERAD) Presentations 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations PDF icon November 2012; Environmental Measurements in an Emergency: This is not a Drill!; Stephen V. Musolino; Brookhaven National Laboratory PDF icon November 2012; Brookhaven Graphite Research Reactor (BGRR) D&D Presentation for the DOE ERAD Working

  2. Environmental/Radiological Assistance Directory (ERAD) | Department of

    Energy Savers [EERE]

    Energy Environmental/Radiological Assistance Directory (ERAD) Environmental/Radiological Assistance Directory (ERAD) The Environmental Radiological Assistance Directory or ERAD, developed by AU-22, serves as an assistance tool to the DOE complex for protection of the public and environment from radiation. The ERAD is a combination webinar/conference call, designed to provide DOE and its contractors a forum to share information, lessons-learned, best practices, emerging trends, compliance

  3. Operational Guidelines/Radiological Emergency Response | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Operational Guidelines/Radiological Emergency Response Operational Guidelines/Radiological Emergency Response This page provides information and resources concerning the development of operational guidelines as part of planning guidance for protection and recovery following Radiological Dispersal Device (RDD) and/or Improvised Nuclear Device (IND) incidents. Operational Guidelines Technical (OGT) Manual, 2009 RESRAD-RDD Complementing Software to OGT Manual EPA Protective Action

  4. EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in

  5. Surface Contamination Guidelines/Radiological Clearance of Property |

    Energy Savers [EERE]

    Department of Energy Surface Contamination Guidelines/Radiological Clearance of Property Surface Contamination Guidelines/Radiological Clearance of Property Authorized limits govern the control and clearance of personal and real property. They are radionuclide concentrations or activity levels approved by DOE to permit the clearance of property from DOE radiological control for either restricted or unrestricted use, consistent with DOE's radiation protection framework and standards for the

  6. Recent Developments in Field Response for Mitigation of Radiological

    Energy Savers [EERE]

    Incidents | Department of Energy Developments in Field Response for Mitigation of Radiological Incidents Recent Developments in Field Response for Mitigation of Radiological Incidents Carlos Corredor*, Department of Energy; Charley Yu, Argonne National Labs Abstract: Since September 11, 2001, there has been a large effort by the government to develop new methods to reduce the consequence of potential radiological incidents. This is evident in the enhancement of technologies and methods to

  7. Accident Investigations of the February 14, 2014, Radiological Release at

    Energy Savers [EERE]

    the Waste Isolation Pilot Plant, Carlsbad, NM | Department of Energy Accident Investigations of the February 14, 2014, Radiological Release at the Waste Isolation Pilot Plant, Carlsbad, NM Accident Investigations of the February 14, 2014, Radiological Release at the Waste Isolation Pilot Plant, Carlsbad, NM February 14, 2014 Accident Investigations of the February 14, 2014, Radiological Release at the Waste Isolation Pilot Plant, Carlsbad, NM On February 14, 2014, at approximately 2314

  8. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsTransportation Fuel Supply content top Transportation Fuel Supply

  9. DOE Issues WIPP Radiological Release Phase II Investigation Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    radiological event at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. ... second from left, receives the New Mexico Patriotic Employer Award from the N.M. ...

  10. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jan 1, 2009 The National Nuclear Security Administration (NNSA) has more than 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and...

  11. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Dec 1, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and incidents....

  12. An Assessment Of The External Radiological Impact In Areas Of...

    Open Energy Info (EERE)

    Assessment Of The External Radiological Impact In Areas Of Greece With Elevated Natural Radioactivity Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  13. Radiological Release Event at the Waste Isolation Pilot Plant...

    Broader source: Energy.gov (indexed) [DOE]

    radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following...

  14. Evaluation of Final Radiological Conditions at Areas of the Niagara...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage ...

  15. The New Radiological and Environmental Sciences Laboratory (RESL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    None File Format: Microsoft Windows WMV File Size: 19 Kb Video of Radiological and Environmental Sciences Laboratory (RESL) Editorial Date December 7, 2011 By Danielle Miller...

  16. Handling and Packaging a Potentially Radiologically Contaminated Patient

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients.

  17. Radiological Dose Calculations for Fusion Facilities

    SciTech Connect (OSTI)

    Michael L. Abbott; Lee C. Cadwallader; David A. Petti

    2003-04-01

    This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.

  18. Radiological Control Programs for Special Tritium Compounds

    Energy Savers [EERE]

    84-2004 SEPTEMBER 2004 CHANGE NOTICE NO. 1 Date June 2006 DOE HANDBOOK RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS U.S. Department of Energy AREA OCSH Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Table of Changes Page Change 67 (near bottom) In row 1, column 2 of the table titled "dosimetric properties" 6 mrem was changed to 6 x 10 -2 mrem Available on the Department of Energy

  19. Radiological Control Programs for Special Tritium Compounds

    Energy Savers [EERE]

    DOE.F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: May 11, 2006 REPLY TO EH-52:JRabovsky:3-2 135 ATTN OF: APPROVAL OF CHANGE NOTICE 1 TO DEPARTMENT OF ENERGY (DOE) SUBJECT. HANDBOOK 1184-2004, RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS TO: Dennis Kubicki, EH-24 Technical Standards Manager This memorandum forwards the subject Change Notice 1 to DOE Handbook, DOE- HDBK- 1184-2004, which has approved for publication and distribution. The change to

  20. Method and apparatus for laser-controlled proton beam radiology

    DOE Patents [OSTI]

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  1. Method and apparatus for laser-controlled proton beam radiology

    DOE Patents [OSTI]

    Johnstone, C.J.

    1998-06-02

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  2. Transportation Electrification

    SciTech Connect (OSTI)

    Schwendeman, Lawrence; Crouch, Alan

    2013-12-17

    This project has accomplished the following objectives: to address the critical need for technician training in new and emerging propulsion technologies by developing new courses, including information and training on electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles; to integrate the new certificate with the existing Associate of Applied Science Degree and Certificate automotive degrees; to disseminate these leading edge courses throughout the Commonwealth of Virginia and neighboring Mid-Atlantic States; and to provide training opportunities for displaced workers and underrepresented populations seeking careers in the automotive industry.

  3. Radiological Safety Analysis Computer (RSAC) Program Version 7.2 Users’ Manual

    SciTech Connect (OSTI)

    Dr. Bradley J Schrader

    2010-10-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.2 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  4. Packaging and Transportation News | Department of Energy

    Energy Savers [EERE]

    Packaging and Transportation News Packaging and Transportation News January 14, 2016 Ron Hafner with Lawrence Livermore National Laboratory lectures for a course in San Ramon, Calif. on packaging and transporting radioactive material. EM, University of Nevada, Reno Team on "Packaging University" A burgeoning relationship between EM and the University of Nevada, Reno (UNR) is giving new depth and breadth to a program that trains students and nuclear industry professionals in packing and

  5. Nuclear and Radiological Forensics and Attribution Overview

    SciTech Connect (OSTI)

    Smith, D K; Niemeyer, S

    2005-11-04

    The goal of the U.S. Department of Homeland Security (DHS) Nuclear and Radiological Forensics and Attribution Program is to develop the technical capability for the nation to rapidly, accurately, and credibly attribute the origins and pathways of interdicted or collected materials, intact nuclear devices, and radiological dispersal devices. A robust attribution capability contributes to threat assessment, prevention, and deterrence of nuclear terrorism; it also supports the Federal Bureau of Investigation (FBI) in its investigative mission to prevent and respond to nuclear terrorism. Development of the capability involves two major elements: (1) the ability to collect evidence and make forensic measurements, and (2) the ability to interpret the forensic data. The Program leverages the existing capability throughout the U.S. Department of Energy (DOE) national laboratory complex in a way that meets the requirements of the FBI and other government users. At the same time the capability is being developed, the Program also conducts investigations for a variety of sponsors using the current capability. The combination of operations and R&D in one program helps to ensure a strong linkage between the needs of the user community and the scientific development.

  6. Transportation Infrastructure

    Office of Environmental Management (EM)

    Infrastructure New Technologies * Potential need for dual-use casks * DOE should look toward industry & international communities for innovations * Industry unclear about delivery & receipt locations * Advances in physical & tracking technologies need to be factored in * Cost-benefit analysis of new technology Training & Dry Runs * Begin as soon as possible * Suggested order: #1-demonstrations, #2-training, #3-dry-runs * Don't re-invent the wheel- look at international programs *

  7. Classification Training Institute Catalog | Department of Energy

    Energy Savers [EERE]

    Classification Training Institute Catalog Classification Training Institute Catalog Classification Training Institute (CTI) Catalog

  8. LPG emergency response training

    SciTech Connect (OSTI)

    Dix, R.B.; Newton, B.

    1995-12-31

    ROVER (Roll Over Vehicle for Emergency Response) is a specially designed and constructed unit built to allow emergency response personnel and LPG industry employees to get ``up close and personal`` with the type of equipment used for the highway transportation of liquefied petroleum gas (LPG). This trailer was constructed to simulate an MC 331 LPG trailer. It has all the valves, piping and emergency fittings found on highway tankers. What makes this unit different is that it rolls over and opens up to allow program attendees to climb inside the trailer and see it in a way they have never seen one before. The half-day training session is composed of a classroom portion during which attendees will participate in a discussion of hazardous material safety, cargo tank identification and construction. The specific properties of LPG, and the correct procedures for dealing with an LPG emergency. Attendees will then move outside to ROVER, where they will participate in a walkaround inspection of the rolled over unit. All fittings and piping will be representative of both modern and older equipment. Participants will also be able to climb inside the unit through a specially constructed hatch to view cutaway valves and interior construction. While the possibility of an LPG emergency remains remote, ROVER represents Amoco`s continuing commitment to community, education, and safety.

  9. FRMAC Interactions During a Radiological or Nuclear Event

    SciTech Connect (OSTI)

    Wong, C T

    2011-01-27

    During a radiological or nuclear event of national significance the Federal Radiological Emergency Monitoring and Assessment Center (FRMAC) assists federal, state, tribal, and local authorities by providing timely, high-quality predictions, measurements, analyses and assessments to promote efficient and effective emergency response for protection of the public and the environment from the consequences of such an event.

  10. Current Trends in Gamma Ray Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-08-18

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies.

  11. Radiological Security Partnership | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Security ... Radiological Security Partnership The mp4 video format is not supported by this browser. Download video Captions: On Time: 4:36 min. This voluntary program provides government-funded security enhancements at sites with radioactive materials of concern

  12. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  13. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Transportation Energyadmin2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of

  14. Annual Training Summary Report Template

    Broader source: Energy.gov [DOE]

    The Annual Training Summary Report is a template used by the organization's training POC to report on the training their organization's employees completed in the current Fiscal Year.

  15. Better Buildings Training Toolkit

    Broader source: Energy.gov [DOE]

    The Better Buildings Residential Network Training Toolkit can be used by residential energy efficiency programs interested in realizing the value of providing training opportunities for contractors, staff, and volunteers.

  16. NUG 2014 Training Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New User Training: Introduction to NERSC February 3, 2014 | Author(s): Harvey Wasserman, NERSC | Download File: 01-NERSCIntro-NUG2014.pdf | pdf | 11 MB New User Training:...

  17. Accessing Online COR Training

    Broader source: Energy.gov [DOE]

    Contracting Officer’s Representative (COR) training is now be available in an online format. "Accessing Online COR Training" provides a step-by-step guide to access the online COR course. 

  18. CAIRS Training Package

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Data Entry Training Package Version 7.0 June 2014 CAIRS Training Package (draft June 27, 2014) TABLE OF CONTENTS Introduction ..................................................................................................................................... 1 Business Rules for CAIRS Direct Data Entry ................................................................................ 2 CAIRS Case Input: Workspace vs. Production Space

  19. WORLD EDITOR TRAINING GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORLD EDITOR TRAINING GUIDE Doc number: ESD-12-P19313 Revision: 1.0, April 2013 World Editor Training Guide April 2013 i . CONTENTS CONTENTS ............................................................................................................................... I INTRODUCTION .....................................................................................................................1 Learning Objectives

  20. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  1. Training and Certification Requirements for Personnel Utilizing ETA Procedures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GAC005 Revision 1 Effective June 2008 Training and Certification Requirements for Personnel Utilizing ETA Procedures Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett P. Beauregard Approved by: ______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-GAC005 Revision 1 2 ©2006 Electric Transportation Applications All Rights Reserved Table of Contents 1 Objective

  2. UNIRIB: Education and Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education and Training Education and Training The University Radioactive Ion Beam (UNIRIB) consortium provides education and training as part of its efforts to help the U.S. Department of Energy (DOE) build a highly-skilled, national, scientific workforce. UNIRIB provides a university atmosphere within the structure of a national laboratory. The on-site staff ensures dedicated support to consortium members performing research, as well as guide the training of educators and students-from

  3. Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Training The U.S. Department of Energy's (DOE) Office of Independent Assessments (IEA) provides expert evaluations of management performance in safety, security and other areas by seasoned experts who are independent of line management and will ensure that training reflects the most current Departmental policy on safety and security issues. IEA incorporates the lessons learned from inspections, reviews and assessments into safety and security training courses through its management of

  4. Federal Employee Training

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-11

    To plan and establish requirements and assign responsibilities for Department of Energy (DOE) Federal employee training, education, and development (hereafter referred to as "training") under the Government Employees Training Act of 1958. Cancels DOE O 360.1A. Canceled by DOE O 360.1C.

  5. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect (OSTI)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  6. PARS II TRAINING | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRAINING PARS II TRAINING BASICS TRAINING WORKBOOK PDF icon PARS II TRAINING More Documents & Publications PARS II Training Workbook (Course 103)

  7. Transportation Emergency Preparedness Program - Making A Difference

    Office of Environmental Management (EM)

    - Making A Difference Where we started - and where we are going Tom Clawson TEPP Contractor tom@trgroupinc.com Brief TEPP History * In 1988, identified need to address d f emergency preparedness concerns of shipments to WIPP * EM established in 1989, TEPP became a funded program - Identified need to have a program to focus on p g preparedness for all radiological shipments - TEPP incorporated into DOE Order 151.1 Brief TEPP History * Developed MERRTT thru the Training and Medical I T i G Issues

  8. DOE/EA-1499; Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nevada Test Site Final Environmental Assessment

    National Nuclear Security Administration (NNSA)

    Suppleme 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 The DHS has identified a critical need to consolidate a broad spectrum of radiological and nuclear countermeasures test and evaluation activities as well as training and other operational needs throughout its organization. The NTS offers the isolation and security needed to successfully operate such a complex. In recognizing the ongoing need for DHS

  9. DOE-HDBK-1113-98; Radiological Safety Training for Uranium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    contact Judy Foulke on 3-5865 or at Judy.Foulke@eh.doe.gov. Office of Worker Protection Policy and Programs 2 Attachments cc watt achment s : David Compton, DNFSB Representative...

  10. Radiological Training for Tritium Facilities DOE-HDBK-1105-2002

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Available to the public from the U.S. Department ... certification by the American Board of Health Physics andor ... Particles, Health Physics Journal, September (2001). ...

  11. DOE-HDBK-1141-2001; Radiological Assessor Training, Student's Guide

    Office of Environmental Management (EM)

    Notes Module 13-1 I. Introduction 10 CFR Part 835, Occupational Radiation Protection, includes provisions for exposure to ionizing radiation from DOE activities, which includes exposures from accelerator operations. II. DOE Guidance DOE G441.1-5, Radiation-Generating Devices Guide, provides guidance on DOE's expectations for controlling exposure from accelerators (see section 4.3.2.1). The IG refers to applicable ANSI standards and DOE O 420.2, Safety of Accelerator Facilities. Article 364 of

  12. Adaptively Reevaluated Bayesian Localization (ARBL): A Novel Technique for Radiological Source Localization

    SciTech Connect (OSTI)

    Miller, Erin A.; Robinson, Sean M.; Anderson, Kevin K.; McCall, Jonathon D.; Prinke, Amanda M.; Webster, Jennifer B.; Seifert, Carolyn E.

    2015-06-01

    Adaptively Reevaluated Bayesian Localization (ARBL): A Novel Technique for Radiological Source Localization

  13. Nevada STEP Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Provide Training For Hospital Personnel in Nevada CARLSBAD, N.M., January 15, 2001 - Radiation Management Consultants, Inc., (RMC) will host three separate hospital training sessions this week in the state of Nevada on behalf of the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). RMC, based in Philadelphia, is contracted by the Westinghouse Waste Isolation Division to train hospital personnel in assessing and treating patients who may be contaminated with radioactive

  14. ORISE: Training and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training and Tools Chronic diseases such as diabetes, heart disease and cancer afflict more people every year and have resulted in increased demand for trained health care providers and accessible health information. Because health care workers and the public are becoming more technology savvy, e-learning or computer-based training experiences that are visually interesting and interactive are increasingly desirable. Computer and Web-based learning tools offer a cost-effective and flexible

  15. TEXT Pro Force Training

    Energy Savers [EERE]

    Basic Protective Force Training Program DOE/IG-0641 March 2004 * None of the 10 sites included instruction in rappelling even though it was part of the special response team core curriculum and continued to be offered by the Nonprolif- eration and National Security Institute; * Only one site conducted basic training on use of a shotgun, despite the fact that a num- ber of sites used the weapon for breaching exercises and other purposes; and, * Seven of the sites modified prescribed training

  16. INTERNATIONAL COOPERATION ON RADIOLOGICAL THREAT REDUCTION PROGRAMS IN RUSSIA

    SciTech Connect (OSTI)

    Landers, Christopher C.; Tatyrek, Aaron P.

    2009-10-07

    Since its inception in 2004, the United States Department of Energy’s Global Threat Reduction Initiative (GTRI) has provided the Russian Federation with significant financial and technical assistance to secure its highly vulnerable and dangerous radiological material. The three program areas of this assistance are the removal of radioisotope thermoelectric generators (RTG), the physical protection of vulnerable in-use radiological material of concern, and the recovery of disused or abandoned radiological material of concern. Despite the many successes of the GTRI program in Russia, however, there is still a need for increased international cooperation in these efforts. Furthermore, concerns exist over how the Russian government will ensure that the security of its radiological materials provided through GTRI will be sustained. This paper addresses these issues and highlights the successes of GTRI efforts and ongoing activities.

  17. Autonomous mobile robot for radiologic surveys

    DOE Patents [OSTI]

    Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.

    1994-01-01

    An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

  18. Mobile autonomous robotic apparatus for radiologic characterization

    DOE Patents [OSTI]

    Dudar, Aed M. (Dearborn, MI); Ward, Clyde R. (Aiken, SC); Jones, Joel D. (Aiken, SC); Mallet, William R. (Cowichan Bay, CA); Harpring, Larry J. (North Augusta, SC); Collins, Montenius X. (Blackville, SC); Anderson, Erin K. (Pleasanton, CA)

    1999-01-01

    A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

  19. Autonomous mobile robot for radiologic surveys

    DOE Patents [OSTI]

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1994-06-28

    An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.

  20. Mobile autonomous robotic apparatus for radiologic characterization

    DOE Patents [OSTI]

    Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

    1999-08-10

    A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

  1. ORISE: Spokesperson Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    events. ORISE's spokesperson training covers: Trust and credibility Verbal and nonverbal communication Message development Working with the media News conference management...

  2. Interest & Training Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interest-Training-Announcements Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  3. Technical skills training program

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    The departmentally administered Technical Skills Training Program encompasses three functional areas: Program Management Skills, Project Management Skills and Procurement and Assistance Skills Training. Primary emphasis is directed at providing DOE employees the specific work related skills necessary to perform effectively and efficiently. This directory contains descriptions of the courses available in the three program areas and general information for participation in the training programs. Separate sections have been reserved for the Current Year Schedule and listings of the Headquarters and Field Training Office Coordinators.

  4. Readiness Review Training- Member

    Broader source: Energy.gov [DOE]

    Slides used for November 10, 2010 Readiness Review Member Training at the Idaho National Laboratory. Course provides tools and tips to be an effective readiness review team member.

  5. TF Web Based Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TF-Web-Based-Training Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance...

  6. NUG 2014 Training Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Name | Date (low-high) | Date (high-low) | Source | Category New User Training: Introduction to NERSC February 3, 2014 | Author(s): Harvey Wasserman, NERSC | Download File:...

  7. Criticality Safety Training

    Energy Science and Technology Software Center (OSTI)

    2002-12-01

    CST is a web-based training program designed to help the user to safely access and work in areas where fissionable nuclear materials may be present.

  8. FEOSH Annual Safety Training

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) has developed an annual safety training course that is mandatory for all current DOE Federal employees and for each new hire.

  9. Training and Drills

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

  10. Training - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training *If you are coming from outside of Berkeley Lab, make sure you let the Admin Office know (88Admin@lbl.gov). There is additional paperwork that needs to be completed. Requirements: 1.) General Employee Radiation Training (GERT): All personnel at the 88-Inch Cyclotron are required to take GERT, which only takes a few minutes and can be found here. 2.) Building 88 On-The-Job Training (OJT): All personnel are required to take Building 88's access training (NSD 439) before card-key access

  11. Training | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources Training Programs at Jefferson Lab There exist many exciting career opportunities at Jefferson Lab, and the lab provides training to keep employees current and to advance careers. A D D I T I O N A L L I N K S: Human Resources Online Forms Courses (Lab ID Req'd) ODH Manual Rad Worker Education Reimburse top-right bottom-left-corner bottom-right-corner TRAINING Need to take a course or class, or interested in mentoring? The Training and Development Office is ready to assist. The

  12. Radiological Source Registry and Tracking (RSRT) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Source Registry and Tracking (RSRT) Radiological Source Registry and Tracking (RSRT) Department of Energy (DOE) Notice N 234.1 Reporting of Radioactive Sealed Sources has been superseded by DOE Order O 231.1B Environment, Safety and Health Reporting. O 231.1B identifies the requirements for centralized inventory and transaction reporting for radioactive sealed sources. Each DOE site/facility operator that owns, possesses, uses or maintains in custody those accountable radioactive

  13. Cardiovascular and Interventional Radiological Society of Europe Guidelines

    Office of Scientific and Technical Information (OSTI)

    on Endovascular Treatment in Aortoiliac Arterial Disease (Journal Article) | SciTech Connect Cardiovascular and Interventional Radiological Society of Europe Guidelines on Endovascular Treatment in Aortoiliac Arterial Disease Citation Details In-Document Search Title: Cardiovascular and Interventional Radiological Society of Europe Guidelines on Endovascular Treatment in Aortoiliac Arterial Disease PurposeThese guidelines are intended for use in assessing the standard for technical success

  14. DOE Subpart H Report. Annual NESHAPS Meeting on Radiological Emissions |

    Office of Environmental Management (EM)

    Department of Energy Subpart H Report. Annual NESHAPS Meeting on Radiological Emissions DOE Subpart H Report. Annual NESHAPS Meeting on Radiological Emissions Gustavo Vazquez*, DOE; Sandra Snyder, PNNL Abstract: The National Emissions Standards for Hazardous Air Pollutants, Subpart H, (NESHAPs - Radioactive Air) meeting provides an opportunity for federal and state regulators, Department of Energy employees and contractors, standards developers, and industry representatives to work together

  15. ORISE: National Security Training Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSEPP Training HSEEP Training Spokesperson Training Incident Command System Training Emergency Management Emergency Response Crisis and Risk Communication How ORISE is Making a Difference Overview Exercises and Planning Training and Technology Support Resources How to Work With Us Contact Us Oak Ridge Institute for Science Education National Security and Emergency Management Training Training Because it can be difficult to pinpoint when a threat to national security or public safety will occur;

  16. Training | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Emergency Response / Training Training NNSA provides training to emergency managers and emergency responders through the Emergency Operations Training Academy (EOTA). EOTA provides state-of-the-art training and education for NNSA to enhance the readiness of personnel in the emergency operations community. The EOTA is recognized as a model technical training provider for NNSA's emergency operations personnel. To learn more about the EOTA, click here. Learn More Emergency Operations Training

  17. Lessons learned by southern states in transportation of radioactive materials

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE`s Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board`s Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns.

  18. transims-training-course-jan-19

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 19 to 21, 2011 Argonne National Laboratory Dr. Hubert Ley This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small Transportation Research and Analysis Computing Center at Argonne National Laboratory has held nearly a dozen of courses on TRANSIMS. The courses originated from the need to train several groups of students and collaborators that work on a major evacuation study for Chicago under a project for the Illinois

  19. RECOVERY ACT: Geologic Sequestration Training and Research

    Office of Scientific and Technical Information (OSTI)

    RECOVERY ACT: Geologic Sequestration Training and Research Final Scientific/Technical Report Reporting Period Start Date: December 1, 2009 Reporting Period End Date: June 30, 2013 Peter M. Walsh,* Richard A. Esposito,†* Konstantinos Theodorou,‡* Michael J. Hannon, Jr.,* Aaron D. Lamplugh,§* and Kirk M. Ellison†* *University of Alabama at Birmingham †Southern Company, Birmingham, AL ‡Jefferson State Community College, Birmingham, AL §John A. Volpe National Transportation Systems

  20. Lessons Learned Concerning the Human Element in Events and Training

    SciTech Connect (OSTI)

    Michael D. Sandvig

    2006-02-01

    As the number and complexity of responses to hazardous material incidents have increased, government regulators have implemented a national incident command system, bolstered by a host of protective measures and response equipment. Special advanced technical equipment has also been developed and made available to on-scene responders and command staff. Yet with all the investment in organizational and technical advance, the human element of emergency response remains critical and also needs our continued attention to ensure effective operation and success. This paper focuses on lessons learned from radiological events and training exercises that pertain to these human elements.

  1. Federal Employee Training

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-21

    To plan and establish requirements and assign responsibilities for Department of Energy (DOE) Federal employee training, education, and development under the Government Employees Training Act of 1958, as amended. Cancels DOE O 360.1. Canceled by DOE O 360.1B.

  2. Federal Employee Training Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-11

    This Manual provides detailed requirements to supplement DOE O 360.1B, FEDERAL EMPLOYEE TRAINING. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Cancels DOE M 360.1A-1. Canceled by DOE O 360.1C.

  3. Federal Employee Training Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-21

    This Manual provides detailed requirements to supplement DOE O 360.1A, Federal Employee Training, dated 9-21-99. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Canceled by DOE M 360.1-1B.

  4. ZERH Training PA Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Zero Energy Ready Home(tm) TRAINING PARTNER AGREEMENT Contents Instructions for Partnering with U.S. Department of Energy.................................................................. 2 U.S. Department of Energy Zero Energy Ready Home Terms of the Agreement................................. 3 TRAINING PARTNER ........................................................................................................................... 3 Introduction

  5. The development of radioactive sample surrogates for training and exercises

    SciTech Connect (OSTI)

    Martha Finck; Bevin Brush; Dick Jansen; David Chamberlain; Don Dry; George Brooks; Margaret Goldberg

    2012-03-01

    The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Members from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.

  6. Transportation (technology 86)

    SciTech Connect (OSTI)

    Caplan, G.

    1986-01-01

    As railroads strive to cut operating and maintenance costs in an increasingly competitive transportation industry, AC propulsion and microprocessors figure prominently in their plans. New generations of locomotives and cars incorporating AC propulsion and microprocessors entered service last year, and the trend is destined to continue. Electronics is also making possible freight trains that rely on a telemetry unit at the rear to monitor airbrake pressure, instead of a manned caboose. AC is gaining acceptance because it permits simpler motors with fewer parts to wear and replace, and it saves energy by allowing the traction motors to work as generators during braking. Microprocessors are being used in locomotives not only to reduce energy waste through better regulation of traction motor currents and auxiliary devices such as cooling fans, but also to control engine speed, braking, and other functions.

  7. Training for Records and Information Management

    Broader source: Energy.gov [DOE]

    Records Management Training:  NARA Records Management Training   NARA Targeted Assistance NARA Brochures Training Presentation:  Information Collection Requests/PRA (pdf)  

  8. Integrated Training Management (ITM) Timeline

    Broader source: Energy.gov [DOE]

    The TNA Timeline lists the completion dates when for the deliverables for the integrated training management components to include the TNA, the annual training plan and the annual training summary report.

  9. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on...

  10. Radiological Emergency Response Health and Safety Manual

    SciTech Connect (OSTI)

    D. R. Bowman

    2001-05-01

    This manual was created to provide health and safety (H&S) guidance for emergency response operations. The manual is organized in sections that define each aspect of H and S Management for emergency responses. The sections are as follows: Responsibilities; Health Physics; Industrial Hygiene; Safety; Environmental Compliance; Medical; and Record Maintenance. Each section gives guidance on the types of training expected for managers and responders, safety processes and procedures to be followed when performing work, and what is expected of managers and participants. Also included are generic forms that will be used to facilitate or document activities during an emergency response. These ensure consistency in creating useful real-time and archival records and help to prevent the loss or omission of information.

  11. ASPECT Emergency Response Chemical and Radiological Mapping

    ScienceCinema (OSTI)

    LANL

    2009-09-01

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

  12. ASPECT Emergency Response Chemical and Radiological Mapping

    SciTech Connect (OSTI)

    LANL

    2008-05-12

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

  13. CBEI Broker Training Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBEI Broker Training Project 2015 Building Technologies Office Peer Review Dr. Susan Wachter wachter@wharton.upenn.edu CBEI/University of Pennsylvania Project Summary Timeline: Start date: May, 2014 Planned end date: April, 2016 Key Milestones 1. Broker training course approved; 8/14 2. First training course delivered; 12/9/14 3. Provided summary of survey feedback to CBEI for Go/No Go decision; 1/30/2015 4. Provided proposed delivery partner & final market strategy to CBEI for

  14. RPAM Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon RPAM Training More Documents & Publications Microsoft PowerPoint - FY10 FIMSRPAM Training090804 TEC Meeting Summaries - January 2002 Policy Flash 2013-54 Acquisition ...

  15. Training of nuclear facility personnel

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    Separate abstracts are included for each of the papers presented concerning certification and standards; operations training; the human element; and non-licensed training.

  16. Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)

    SciTech Connect (OSTI)

    Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

    1997-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of {sup 238}U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site.

  17. Results of radiological measurements taken in the Niagara Falls, New York, area (NF002)

    SciTech Connect (OSTI)

    Williams, J.K.; Berven, B.A.

    1986-11-01

    The results of a radiological survey of 100 elevated gamma radiation anomalies in the Niagara Falls, New York, area are presented. These radiation anomalies were identified by a mobile gamma scanning survey during the period October 3-16, 1984, and were recommended for an onsite survey to determine if the elevated levels of radiation may be related to the transportation of radioactive waste material to the Lake Ontario Ordnance Works for storage. In this survey, radiological measurements included outdoor gamma exposure rates at 1 m above the surface; outdoor gamma exposure rates at the surface, range of gamma exposure rates during scan; and uranium, radium, and thorium concentrations in biased surface soil samples. The results show 38 anomalies (35 located along Pletcher Road and 3 associated with other unreleated locations) were found to exceed Formerly Utilized Sites Remedial Action Program (FUSRAP) remedial action guidelines and were recommended for formal characterization surveys. (Since the time of this survey, remedial actions have been conducted on the 38 anomalies identified as exceeding FUSRAP guidelines, and the radioactive material above guidelines has been removed.) The remaining 62 anomalies are associated with asphalt driveways and parking lots, which used a phosphate slag material (previously identified as cyclowollastonite, synthetic CaSiO/sub 3/). This rocky-slag waste material was used for bedding under asphalt surfaces and in general gravel applications. Most of the contaminated soil and rock samples collected at the latter anomalies had approximately equal concentrations of /sup 226/Ra and /sup 238/U and, therefore, are not related to materials connected with the Niagara Falls Storage Site (NFSS), including material that was transported to the NFSS. 13 refs., 7 figs., 14 tabs.

  18. ZERH Training: Harrisonburg, VA

    Broader source: Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

  19. Training Session: Madison, WI

    Broader source: Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero net-energy-ready home construction including the business case, detailed specifications, and opportunities to be...

  20. Computerized training management system

    DOE Patents [OSTI]

    Rice, H.B.; McNair, R.C.; White, K.; Maugeri, T.

    1998-08-04

    A Computerized Training Management System (CTMS) is disclosed for providing a procedurally defined process that is employed to develop accreditable performance based training programs for job classifications that are sensitive to documented regulations and technical information. CTMS is a database that links information needed to maintain a five-phase approach to training-analysis, design, development, implementation, and evaluation independent of training program design. CTMS is designed using R-Base{trademark}, an-SQL compliant software platform. Information is logically entered and linked in CTMS. Each task is linked directly to a performance objective, which, in turn, is linked directly to a learning objective; then, each enabling objective is linked to its respective test items. In addition, tasks, performance objectives, enabling objectives, and test items are linked to their associated reference documents. CTMS keeps all information up to date since it automatically sorts, files and links all data; CTMS includes key word and reference document searches. 18 figs.

  1. Computerized training management system

    DOE Patents [OSTI]

    Rice, Harold B. (Franklin Furnace, OH); McNair, Robert C. (East Setauket, NY); White, Kenneth (Shirley, NY); Maugeri, Terry (Wading River, NY)

    1998-08-04

    A Computerized Training Management System (CTMS) for providing a procedurally defined process that is employed to develop accreditable performance based training programs for job classifications that are sensitive to documented regulations and technical information. CTMS is a database that links information needed to maintain a five-phase approach to training-analysis, design, development, implementation, and evaluation independent of training program design. CTMS is designed using R-Base.RTM., an-SQL compliant software platform. Information is logically entered and linked in CTMS. Each task is linked directly to a performance objective, which, in turn, is linked directly to a learning objective; then, each enabling objective is linked to its respective test items. In addition, tasks, performance objectives, enabling objectives, and test items are linked to their associated reference documents. CTMS keeps all information up to date since it automatically sorts, files and links all data; CTMS includes key word and reference document searches.

  2. NUG 2014 Training Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | pdf | 1019 KB NERSC File Systems and How to Use Them February 3, 2014 | Author(s): David Turner, NERSC | Download File: 08-FileSystems2.pdf | pdf | 1 MB New User Training:...

  3. Training Session: Euless, TX

    Broader source: Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

  4. Training Session: Buffalo, NY

    Broader source: Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

  5. Training Session: Frederick, MD

    Broader source: Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero net-energy-ready home construction including the business case, detailed specifications, and opportunities to be...

  6. Training Session: Carbondale, CO

    Broader source: Energy.gov [DOE]

    This 3.5-hour training provides builders with a comprehensive review of zero energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized...

  7. Enhancing international radiation/nuclear detection training opportunities

    SciTech Connect (OSTI)

    Williams, Thomas L.; Bersell, Bridget M.; Booker, Paul M.; Anderson, Gerald E.; Leitch, Rosalyn M.; Meagher, John B.; Siefken, Rob R.; Spracklen, James L.

    2015-09-23

    The United States has worked domestically to develop and provide radiological and nuclear detection training and education initiatives aimed at interior law enforcement, but the international community has predominantly focused efforts at border and customs officials. The interior law enforcement officials of a State play a critical role in maintaining an effective national-level nuclear detection architecture. To meet this vital need, DNDO was funded by the U.S. Department of State (DOS) to create and deliver a 1-week course at the International Law Enforcement Academy (ILEA) in Budapest, Hungary to inform interior law enforcement personnel of the overall mission, and to provide an understanding of how the participants can combat the threats of radiological and nuclear terrorism through detection efforts. Two courses, with approximately 20 students in each course, were delivered in fiscal year (FY) 2013, two were delivered in FY 2014 and FY 2015, and as of this report’s writing more are planned in FY 2016. However, while the ILEA courses produced measurable success, DNDO requested Pacific Northwest National Laboratory (PNNL) research potential avenues to further increase the course impact.In a multi-phased approach, PNNL researched and analyzed several possible global training locations and venues, and other possible ways to increase the impact of the course using an agreed-to data-gathering format.

  8. DEPARTMENT OF ENERGY Training

    Energy Savers [EERE]

    Privacy Awareness Training The Privacy Act & Safeguarding Personally Identifiable Information (PII) 2 Purpose This training is designed to address the importance of privacy, and to ensure that DOE employees are aware of the vital role they play in safeguarding privacy and protecting Personally Identifiable Information (PII). 3 Privacy & PII is a Special Area of Interest at DOE Recent breaches of PII across the government, including some at the Department of Energy, were well publicized,

  9. ORISE: Epidemiology Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Epidemiology Training Epidemiological studies can provide valuable insight into health trends for workers and the public at large. Once a study is complete, however, it must be interpreted and explained to workers and the public. In many cases, the ability to do so is not a ready expertise many industries possess. Leveraging its 30-plus years of experience, ORISE now offers training to help customers understand and explain critical, salient points found in key epidemiological studies and data

  10. ORISE: Training and Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructional Design and Development Training and Qualification Programs Human Subjects Protection Multimedia Applications Health Promotion and Outreach How ORISE is Making a Difference Overview Operating Public Shelters in a Radiation Emergency Training Tools for Healthy Schools ORISE to Support CDC Infectious Disease Initiative ORISE Supports CDC's Know:BRCA Education Initiative CDC Travelers' Health Team Receives Innovation Award for Website Redesign CDC Travelers' Health Mobile App,

  11. DRAFT DOE Training Curriculum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Training Curriculum DOE-100DE Federal Staff Orientation Training DOE-120 DOE Oversight and Implementation DOE-140 Developing Integrated Oversight Plans (Managers/Supervisors) PHY-128DE Basic Survey Overview PHY-130 Basic Survey VAP-335 Fundamentals of Performance Testing DOE-200DE Assessment Fundamentals DOE-210 Assessment Preparation DOE-220 Assessment Techniques DOE-130 Performance Management Fundamentals DOE-310 Oversight Data Analysis & Reporting DOE-320 Causal Analysis &

  12. Annual training manual for security training: Protective force

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Westinghouse is committed to high quality training relevant to the need of the Protective Forces at the Waste Isolation Pilot Plant (WIPP). The training programs at WIPP are designed to qualify Security personnel to perform WIPP security missions in a professional and responsible manner. The program consists of basic as well as sustainment training, as further described in this plan. This plan documents the WIPP Security training program for security personnel for calendar year 1990. The programs detailed in this plan are designed to adequately train persons to ensure the uninterrupted continuity of Department of Energy (DOE)/Westinghouse operations. The Security Training Program consists of four basic elements. These elements are (1) basic level training; (2) on-the-job training; (3) refresher training; and (4) in-service training.

  13. Analytical methods for removing radiological constituents prior to organic analysis

    SciTech Connect (OSTI)

    Hakonson, K.; Monagle, M.; Cournoyer, M.

    1997-12-31

    Within the Department of Energy (DOE), there is a need to analyze mixed waste materials (i.e. materials that are contaminated with both radiological and hazardous components). As part of the technical support the Organic Analysis Group provides for programs within Los Alamos National Laboratory, methods are under development for radiologically contaminated oil samples being tested for polychlorinated biphenyls and other semivolatile constituents. Radionuclides are removed from oil samples by filtering the samples through a commercials available solid phase extraction cartridge. An aliquot of the eluent is then analyzed to quantitate the residual radioactivity.

  14. RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    327-33 a a RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE 0 NEVADA TEST SITE (JANUARY 1986 THROUGH DECEMBER 1986) BANEL A. GONZALEZ HEALTH PHY%ICIST SePTEMl3ER 1987 WORK PERFORMED UNDER CONTRACT NO. DE-ACXM-84-84NV10327 REYNOLDS ELECTRICAL & ENGINEERING CO., INC. POST OFFICE BOX 14400 LAS VEGAS, NV 89114 DOE/NV/10327-33 RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE NEVADA TEST SITE (JANUARY 1986 THROUGH DECEMBER 1986) Daniel A. Gonzalez Health Physicist

  15. DOE - Office of Legacy Management -- U S Naval Radiological Defense

    Office of Legacy Management (LM)

    Laboratory - CA 0-06 Naval Radiological Defense Laboratory - CA 0-06 FUSRAP Considered Sites Site: U. S. NAVAL RADIOLOGICAL DEFENSE LABORATORY (CA.0-06) Eliminated from consideration under FUSRAP - Referred to the DoD Designated Name: Not Designated Alternate Name: None Location: San Francisco , California CA.0-06-1 Evaluation Year: 1987 CA.0-06-1 Site Operations: NRC licensed DoD facility which used small quantities of nuclear materials for R&D purposes and decontaminated ships.

  16. Radiological risk assessment of environmental radon

    SciTech Connect (OSTI)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2013-11-27

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m{sup ?3} to 571.1 ± 251.4 Bq m{sup ?3}, 101.0 ± 41.0 Bq m{sup ?3} to 245.3 ± 100.2 Bq m{sup ?3}, 53.1 ± 7.5 Bq m{sup ?3} to 181.8 ± 9.7 Bq m{sup ?3}, 256.1 ± 59.3 Bq m{sup ?3} to 652.2 ± 222.2 Bq m{sup ?3} and 164.5 ± 75.9 Bq m{sup ?3} to 653.3 ± 240.0 Bq m{sup ?3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m{sup ?3}, 192.1 ± 75.4 Bq m{sup ?3}, 176.1 ± 85.9 Bq m{sup ?3} and 28.4 ± 5.7 Bq m{sup ?3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the action level for radon gas of 148 Bq m{sup ?3} proposed by EPA except monazite 0.15 kg, struverite 0.15 kg and 0.25 kg. Whereas, all building material samples have exceeded the radon concentration in concrete and building materials of 3 to 7 Bq m{sup ?3} estimated by ICRP. The annual effective dose, effective dose equivalent, and radon exhalation rates in tin tailings were calculated to be in the range of 2.47 to 11.46 mSv, 5.94 to 1090.56 mSv y{sup ?1}, and 0.23 to 1.18 mBq kg{sup ?1} h{sup ?1}. For building materials, the calculated risk assessment of the annual effective dose, effective dose equivalent, radon exhalation rates and fatal cancer risk were 0.72 to 10.00 mSv, 1.73 to 24.00 mSv y{sup ?1}, 0.010 to 0.06 mBq kg{sup ?1} h{sup ?1} and 40 to 550 chances of persons will suffer the cancer per million (1 Ś 10{sup 6}), respectively.

  17. Improving Site-Specific Radiological Performance Assessments - 13431

    SciTech Connect (OSTI)

    Tauxe, John; Black, Paul; Catlett, Kate; Lee, Robert; Perona, Ralph; Stockton, Tom; Sully, Mike

    2013-07-01

    An improved approach is presented for conducting complete and defensible radiological site-specific performance assessments (PAs) to support radioactive waste disposal decisions. The basic tenets of PA were initiated some thirty years ago, focusing on geologic disposals and evaluating compliance with regulations. Some of these regulations were inherently probabilistic (i.e., addressing uncertainty in a quantitative fashion), such as the containment requirements of the U.S. Environmental Protection Agency's (EPA's) 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Chap. 191.13 [1]. Methods of analysis were developed to meet those requirements, but at their core early PAs used 'conservative' parameter values and modeling approaches. This limited the utility of such PAs to compliance evaluation, and did little to inform decisions about optimizing disposal, closure and long-term monitoring and maintenance, or, in general, maintaining doses 'as low as reasonably achievable' (ALARA). This basic approach to PA development in the United States was employed essentially unchanged through the end of the 20. century, principally by the U.S. Department of Energy (DOE). Performance assessments developed in support of private radioactive waste disposal operations, regulated by the U.S. Nuclear Regulatory Commission (NRC) and its agreement states, were typically not as sophisticated. Discussion of new approaches to PA is timely, since at the time of this writing, the DOE is in the midst of revising its Order 435.1, Radioactive Waste Management [2], and the NRC is revising 10 CFR 61, Licensing Requirements for Land Disposal of Radioactive Waste [3]. Over the previous decade, theoretical developments and improved computational technology have provided the foundation for integrating decision analysis (DA) concepts and objective-focused thinking, plus a Bayesian approach to probabilistic modeling and risk analysis, to guide improvements in PA. This decision-making approach, [4, 5, 6] provides a transparent formal framework for using a value- or objective-focused approach to decision-making. DA, as an analytical means to implement structured decision making, provides a context for both understanding how uncertainty affects decisions and for targeting uncertainty reduction. The proposed DA approach improves defensibility and transparency of decision-making. The DA approach is fully consistent with the need to perform realistic modeling (rather than conservative modeling), including evaluation of site-specific factors. Instead of using generic stylized scenarios for radionuclide fate and transport and for human exposures to radionuclides, site-specific scenarios better represent the advantages and disadvantages of alternative disposal sites or engineered designs, thus clarifying their differences as well as providing a sound basis for evaluation of site performance. The full DA approach to PA is described, from explicitly incorporating societal values through stakeholder involvement to model building. Model building involves scoping by considering features, events, processes, and exposure scenarios (FEPSs), development of a conceptual site model (CSM), translation into numerical models and subsequent computation, and model evaluation. These are implemented in a cycle of uncertainty analysis, sensitivity analysis and value of information analysis so that uncertainty can be reduced until sufficient confidence is gained in the decisions to be made. This includes the traditional focus on hydrogeological processes, but also places emphasis on other FEPSs such as biotically-induced transport and human exposure phenomena. The significance of human exposure scenarios is emphasized by modifying the traditional acronym 'FEPs' to include them, hence 'FEPSs'. The radioactive waste community is also recognizing that disposal sites are to be considered a national (or even global) resource. As such, there is a pressing need to optimize their utility withi

  18. Training Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Plan Training Plan This template is used to define the plan, scope, environment, roles and responsibilities for training needs for system/software development and installation PDF icon Training Plan More Documents & Publications System Design Transition Plan Conversion Plan

  19. Paint for detection of corrosion and warning of chemical and radiological attack

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA)

    2010-08-24

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  20. Method for warning of radiological and chemical substances using detection paints on a vehicle surface

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA)

    2012-03-13

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  1. Surface with two paint strips for detection and warning of chemical warfare and radiological agents

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2013-04-02

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  2. Energy Assurance Technical Training and Awareness Program/Energy Infrastructure Training and Analysis Center

    SciTech Connect (OSTI)

    Barbara McCabe

    2005-11-15

    This report covers the work completed during Year One (Year One has a 16 month project period) of a five- year Cooperative Agreement (DE-FC26-03NT41895) between the International Union of Operating Engineers (IUOE) National Hazmat Program (OENHP) and the U. S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). This final technical report is being submitted, as required by the Cooperative Agreement, within 90 (calendar) days after the project period ends (December 31, 2004). The resources allocated to Year One of the Cooperative Agreement were adequate for the completion of the required deliverables. All deliverables have been completed and sent to AAD Document Control as directed in the cooperative agreement. The allocation for Year One required 20-25 trainers to be trained in each of five Train-the-Trainer courses and a total of 6,000 workers trained throughout the country. Through cost savings employed for the scheduling and conduct of Train-the-Trainer, instructor refreshers, and direct training classes, 3171 workers have been trained to date. This total incorporates 159 trainers and members from management, local, county, state and federal organizations identified in the Strategic Plan. The largest percentage of personnel trained is heavy equipment operators, and building engineers, which is the largest targeted population identified under this cooperative agreement. The OENHP, using existing curriculum as appropriate, has modified and developed new training modules that have been used to establish four different levels of training courses. The four courses are: (1) EA 500 Energy Assurance Train-the-Trainer, (2) EA 400 Energy Assurance Instructor Refresher, (3) EA 300 Energy Assurance, and (4) EA 100 Energy Assurance Awareness. Training modules cover topics, such as, but not limited to, facility vulnerability and vulnerability assessment, physical security- heating, ventilation, air conditioning, terrorism awareness, weapons of mass destruction, respiratory protection, and decontamination. All of the courses and training modules are described in detail in the ''Training Course and Module Description Catalog'', April 2004. The OENHP has developed a Compendium of reference materials, training demonstration/hands-on models, and is revising its student manual. Course and instructor evaluations and the input of a general Advisory Board and an Advisory Board made up of Stationary (Building) Engineers has provided direction for modification and improvement of the Energy Security (Assurance) Training Program. The OENHP has identified the target training population, IUOE Stationary (Building) Engineers as being the primary population and IUOE heavy equipment operators as also being a targeted population. The OENHP however, has also identified several applicable populations outside of its membership, such as the Transport Workers Union and special populations within its membership, such as IUOE Local Union 25 Maritime Division. During Year One, a redesigned web site and brochures have been developed to assist in promotion of the energy security (assurance) program and the benefits of its training courses.

  3. ORISE: Training and Qualification Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training and Qualification Programs As a core part of providing effective communication and training to protect the safety of workers, the Oak Ridge Institute for Science and Education (ORISE) works with the U.S. Department of Energy (DOE) to engage in federal and contractor training and qualification management. Through training and qualification programs, ORISE provides technical training expertise to federal and contract workers to ensure field sites are safe and that each project reflects a

  4. Solar Training | Department of Energy

    Energy Savers [EERE]

    Soft Costs » Solar Training Solar Training Solar Business Innovation Networking and Solar Technical Assistance Solar Training Solar DATA ANALYSIS Solar jobs have risen rapidly since the start of the SunShot Initiative. Training a prepared and skilled workforce that enables the solar industry to meet growing deployment demands is a high priority. The SunShot Initiative addresses the critical need for high-quality, local, accessible training in solar energy system design, installation, sales, and

  5. Find Trainings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Jobs & Career Planning » Find Trainings Find Trainings To pursue a clean energy career, you may need general as well as specialized training. This page has links to training and courses in energy efficiency and renewable energy. This list is a work in progress and is not intended to be all-inclusive or to assure individual program quality. Many of these trainings are local, state or organizational based. Seeking a degree, certificate or education? Check out the Education &

  6. Nearly 3,000 Emergency Responders Receive EM Training | Department of

    Office of Environmental Management (EM)

    Energy Nearly 3,000 Emergency Responders Receive EM Training Nearly 3,000 Emergency Responders Receive EM Training February 26, 2013 - 12:00pm Addthis In a mock scenario, firefighters work with an accident victim during a Transportation Emergency Preparedness Program full field exercise In a mock scenario, firefighters work with an accident victim during a Transportation Emergency Preparedness Program full field exercise Students learn to identify labels and use instruments during a

  7. DOE Awards Small Business Transportation Emergency Training Contract

    Broader source: Energy.gov [DOE]

    Cincinnati -- The Department of Energy (DOE) announced today a contract award to Technical Resources Group, Inc. (TRG), of Idaho Falls, Idaho.

  8. LEDSGP/Transportation Toolkit/Training | Open Energy Information

    Open Energy Info (EERE)

    and Programs - Dario Hidalgo, World Resources Institute-EMBARQ Videos and Presentations Alternative Fuels and Advanced Vehicles U.S. Clean Cities TV Clean Cities TV is the...

  9. Order Module--DOE STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL |

    Energy Savers [EERE]

    Department of Energy STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL Order Module--DOE STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL "The radiological control program discussed in DOE-STD-1098-2008 goes beyond the scope of, and includes more details than, the documented radiation protection program (RPP) required by 10 CFR 835, -Occupational Radiation Protection.‖ To ensure implementation of a comprehensive and coherent radiological control program that exceeds basic

  10. Radiology utilizing a gas multiwire detector with resolution enhancement

    DOE Patents [OSTI]

    Majewski, Stanislaw (Grafton, VA); Majewski, Lucasz A. (Grafton, VA)

    1999-09-28

    This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

  11. EA-1919: Recycle of Scrap Metals Originating from Radiological Areas

    Broader source: Energy.gov [DOE]

    This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

  12. EM-Led Radiological Incident Response Program Receives Honors

    Broader source: Energy.gov [DOE]

    A program led by EM’s Carlsbad Field Office (CBFO) that coordinates analytical capabilities throughout DOE for response to potential national radiological incidents recently received recognition for the best-in-track poster at a waste management conference earlier this year.

  13. Federal Radiological Monitoring and Assessment Center | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Radiological Monitoring and Assessment Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  14. GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  15. Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  16. NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica,

    National Nuclear Security Administration (NNSA)

    Berkeley, And Oakland, CA Areas | National Nuclear Security Administration Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our

  17. Nuclear Radiological Threat Task Force Established | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Radiological Threat Task Force Established | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  18. Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement

    SciTech Connect (OSTI)

    Seguin, Nicole R.

    2012-07-18

    Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

  19. NNSA Nuclear/Radiological Incident Response | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear/Radiological Incident Response | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  20. NNSA Recovers Radiological Material from Mexico | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Recovers Radiological Material from Mexico | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs