Powered by Deep Web Technologies
Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Radiological Emergency Response Plan (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes a radiological emergency response plan fund, into which any entity operating a nuclear reactor or storing nuclear fuel and radioactive waste in this state (referred to...

2

Departmental Radiological Emergency Response Assets  

Directives, Delegations, and Requirements

The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Cancels DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

2007-06-27T23:59:59.000Z

3

TEPP Training - Modular Emergency Response Radiological Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Packaging and Transportation » Services » Waste Management » Packaging and Transportation » Transportation Emergency Preparedness Program » TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge for responding to transportation incidents involving radiological material and builds on training in existing hazardous materials curricula. MERRTT satisfies the training requirements outlined in the Waste Isolation Pilot

4

Operational Guidelines/Radiological Emergency Response  

Energy.gov (U.S. Department of Energy (DOE))

Operational Guidelines/Radiological Emergency Response. Provides information and resources concerning the development of Operational Guidelines as part of planning guidance for protection and recovery following Radiological Dispersal Device (RDD) and/or Improvised Nuclear Device (IND) incidents. Operational Guidelines Technical (OGT) Manual, 2009 RESRAD-RDD Complementing Software to OGT Manual EPA Protective Action Guidelines (2013), Interim Final Federal Radiological Monitoring and Assessment Center (FRMAC) Federal Radiological Preparedness Coordinating Committee (FRPCC)

5

ASPECT Emergency Response Chemical and Radiological Mapping  

SciTech Connect

A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

LANL

2008-05-12T23:59:59.000Z

6

Neutron Energy Measurements in Radiological Emergency Response Applications  

SciTech Connect

We present significant results in recent advances in the determination of neutron energy. Neutron energy measurements are a small but very significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of paramount importance.

Sanjoy Mukhopadhyay, Paul Guss, Michael Hornish, Scott Wilde, Tom Stampahar, Michael Reed

2009-04-30T23:59:59.000Z

7

Application of a geographic information system for radiologic emergency response  

SciTech Connect

A geographic information system (GIS) is a multifunctional analytical tool that can be used to compile available data and derive information. A GIS is a computerized database management system for the capture, storage, retrieval, analysis, and display of spatial data. Maps are the most common type of spatial data, but any type of data that can be referenced by an x-y location or geographic coordinate can be used in a GIS. In a radiological emergency, it is critical that data of all types be rapidly compiled into a common format in order to make accurate observations and informed decisions. Developing a baseline GIS for nuclear facilities would offer a significant incentive for all organizations to contribute to and utilize this powerful data management tool. The system being developed could integrate all elements of emergency planning, from the initial protective actions based on models through the emergency monitoring phase, and finally ending with the complex reentry and recovery phase. Within the Federal Radiological Monitoring and Assessment Center (FRMAC), there is a continuing effort to improve the data management and communication process. To demonstrate the potential of GIS for emergency response, the system has been utilized in interagency FRMAC exercises. An interactive GIS system has been deployed and used to analyze the available spatial data to help determine the impact of a hypothetical radiological release and to develop mitigation plans. For this application, both hardcopy and real-time spatial displays were generated with the GIS. Composite maps with different sizes, scales, and themes were produced to support the exercises.

Best, R.G.; Doyle, J.F.

1995-03-01T23:59:59.000Z

8

Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant  

SciTech Connect

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

Hickey, Eva E.; Strom, Daniel J.

2005-08-01T23:59:59.000Z

9

Radiological transportation emergency response training course funding and timing in the southern states  

SciTech Connect

The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under {section}180(c) of the Nuclear Waste Policy Amendments Act. Under {section}180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs.

Not Available

1991-10-01T23:59:59.000Z

10

Radiological transportation emergency response training course funding and timing in the southern states  

SciTech Connect

The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under [section]180(c) of the Nuclear Waste Policy Amendments Act. Under [section]180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs.

Not Available

1991-10-01T23:59:59.000Z

11

NNSA Helps Vietnam Establish Nuclear, Radiological Emergency Management  

National Nuclear Security Administration (NNSA)

Helps Vietnam Establish Nuclear, Radiological Emergency Management Helps Vietnam Establish Nuclear, Radiological Emergency Management System | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Helps Vietnam Establish Nuclear, Radiological Emergency ... Press Release NNSA Helps Vietnam Establish Nuclear, Radiological Emergency Management

12

Nuclear tools for characterising radiological dispersion in complex terrain: evaluation of regulatory and emergency response models  

Science Journals Connector (OSTI)

Routine operations of a nuclear research reactor and its facilities offer opportunities for collection of rare environmental tracer datasets which can be used for atmospheric dispersion model evaluation studies. The HIFAR reactor near Sydney, Australia, routinely emits the radioactive noble gas 41Ar, and other radionuclides such as 133Xe and 135Xe are also emitted from nearby radiopharmaceutical production facilities. Despite extremely low emission levels of these gases, they are nevertheless detectable using state-of-the-art technology, and sensitive detectors have been placed at four locations in the surrounding region which features complex terrain. The high research potential of this unique dataset is illustrated in the current study, in which predictions from two atmospheric dispersion models used for emergency response are compared with 41Ar peak observations from the detector network under a range of stability conditions, and long-term integrated data is also compared with a routine impact assessment model.

Alastair G. Williams; Geoffrey H. Clark; Leisa Dyer; Richard Barton

2005-01-01T23:59:59.000Z

13

Hospital response for children as a vulnerable population in radiological/nuclear incidents  

Science Journals Connector (OSTI)

......hospital's response to a nuclear or radiological emergency...Stronger links between nuclear medicine programs and...operations and preparedness policies need to include paediatric...Infectious Disease. Policy statement: chemical-biological...population in radiological/nuclear incidents. | Emergency......

Brenda Conway; Jordan Pike

2010-11-01T23:59:59.000Z

14

Emergency Response | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us > Our Programs > Emergency Response About Us > Our Programs > Emergency Response Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a last line of defense in the event of a nuclear terrorist incident or other types of radiological accident. This readiness level provides the U.S. government with quickly deployable, dedicated resources capable of responding rapidly and comprehensively to nuclear or radiological incidents

15

Idaho National Laboratory Radiological Response Training Range draft  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment August 4, 2010 Media contact: Brad Bugger, 208-526-0833 The public is invited to read and comment on a draft environmental assessment that the U.S. Department of Energy has published for a proposed radiological response training range at the Idaho National Laboratory (INL). At the range, INL experts would train personnel, conduct exercises, and perform technology evaluation and demonstrations in support of national technical nuclear forensic and radiological emergency response programs. �The Radiological Response Training Range will allow emergency responders to prepare for a major radiological incident by training in an environment that safely simulates scenarios they might encounter,� said Vic Pearson, DOE�s document manager for the environmental assessment. �Activities at the range would directly support the nation�s readiness to respond to a radiological incident, but more importantly, would enable responders to develop proficiency in characterizing the scene in support of determining the origins of the incident.�

16

ENERGY EMERGENCY RESPONSE PLAN  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY EMERGENCY RESPONSE PLAN COMMISSIONREPORT October 2006 CEC-600-2006-014 Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY COMMISSION Jackalyne Pfannenstiel Chairman James D Deputy Director FUELS AND TRANSPORTATION DIVISION #12;The Energy Emergency Response Plan is prepared

17

Emergency Response | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Mission > Emergency Response Our Mission > Emergency Response Emergency Response NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. Planning for Emergencies NNSA develops and implements specific programs, plans, and systems to minimize the impacts of emergencies on worker and public health and safety, the environment, and national security. Learn More > Responding to Emergencies NNSA's mission is to protect the public, environment, and emergency responders from both terrorist and non-terrorist events by providing a

18

Emergency Response | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Our Mission > Emergency Response Our Mission > Emergency Response Emergency Response NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. Planning for Emergencies NNSA develops and implements specific programs, plans, and systems to minimize the impacts of emergencies on worker and public health and safety, the environment, and national security. Learn More > Responding to Emergencies NNSA's mission is to protect the public, environment, and emergency responders from both terrorist and non-terrorist events by providing a

19

Model Recovery Procedure for Response to a Radiological Transportation...  

Office of Environmental Management (EM)

Recovery Procedure for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation...

20

Model Annex for Preparedness and Response to Radiological Transportati...  

Office of Environmental Management (EM)

Annex for Preparedness and Response to Radiological Transportation Incidents Model Annex for Preparedness and Response to Radiological Transportation Incidents This part should...

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Pantex Plant Emergency Response Exercise  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Information Center Emergency Manager Offsite Interface Coordinator DOE Technical Advisor Emergency Press Center Radiation Safety Figure 1. Pantex Plant Emergency Response...

22

EM-Led Radiological Incident Response Program Receives Honors...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM-Led Radiological Incident Response Program Receives Honors EM-Led Radiological Incident Response Program Receives Honors May 29, 2014 - 12:00pm Addthis Jessie Welch performs...

23

Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry  

SciTech Connect

The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility.

Foltman, A.; Newsom, D.; Lerner, K.

1988-01-01T23:59:59.000Z

24

emergency response assets  

National Nuclear Security Administration (NNSA)

physicians, emergency physicians, and nurses involved in short-term and long-term patient care, as well as courses specifically for health and medical physicists. In...

25

Recent Developments in Field Response for Mitigation of Radiological Incidents  

Energy.gov (U.S. Department of Energy (DOE))

Recent Developments in Field Response for Mitigation of Radiological Incidents Carlos Corredor*, Department of Energy ; Charley Yu, Argonne National Labs Abstract: Since September 11, 2001, there has been a large effort by the government to develop new methods to reduce the consequence of potential radiological incidents. This is evident in the enhancement of technologies and methods to detect, prepare, or manage radiological incidents or accidents . With any radiological accident, radiological dispersal device (RDD), or improvised nuclear device (IND) , the major focus is always on the immediate phase of an incident or accident and less centered on the intermediate phase and the late recovery phase of that incident. In support of the 2008 protective action guides(PAGs) for RDDs , established by the Department of Homeland Security and by agreement with the EPA, the White House requested establishment of a series of operational guidelines that would focus on efforts during all phases of the incident and not just the immediate phase. Operational Guidelines were developed for this purpose. The operational guidelines are dose based pre-derived levels of radioactivity or radionuclide concentrations in various media that can be measured in the field and compared to the PAGs to quickly determine if protective actions are warranted. I.e can certain roads, bridges or metro systems be used, can the public return to their homes or businesses, can the public consume certain foods, etc. An operational guidelines manual, developed by a federal interagency working group led by the Department of Energy (DOE), was published in 2009 as the Preliminary Report on Operational Guidelines Developed for Use in Emergency Response to a Radiological Dispersal Device Incident, with its companion software RESidual RADiation (RESRAD)-RDD. With the development of the new PAG Manual (Interim Final 2013) by the EPA, an interagency working group was created under the auspices of the ISCORS to develop a revised operational guidelines manual that would reflect the changes by EPAs new PAG Manual, new best available technology based on new dosimetric models (ICRP 60+), include operational guidelines for INDs and increase the amount of radionuclides in the OGT Manual from 11 radioisotopes to 55. The new manual is scheduled for publication in 2015.

26

Integrating pathology and radiology disciplines: an emerging opportunity?  

E-Print Network (OSTI)

Pediatric vascular malformations: pathophysiology, diagnosis, and the role of interventional radiology.

Sorace, James; Aberle, Denise R; Elimam, Dena; Lawvere, Silvana; Tawfik, Ossama; Wallace, W Dean

2012-01-01T23:59:59.000Z

27

Dealing with at-risk populations in radiological/nuclear emergencies  

Science Journals Connector (OSTI)

......Biological, Radiological-Nuclear, and Explosives (CBRNE...Device (RDD) and Improvised Nuclear Device (IND) Incidents...Security Council Interagency Policy Coordination Subcommittee for...Response to Radiological and Nuclear Threats. Planning guidance......

Diana Wilkinson

2009-06-01T23:59:59.000Z

28

SRNL EMERGENCY RESPONSE CAPABILITY FOR ATMOSPHERIC CONTAMINANT RELEASES  

SciTech Connect

Emergency response to an atmospheric release of chemical or radiological contamination is enhanced when plume predictions, field measurements, and real-time weather information are integrated into a geospatial framework. The Weather Information and Display (WIND) System at Savannah River National Laboratory (SRNL) utilizes such an integrated framework. The rapid availability of predictions from a suite of atmospheric transport models within this geospatial framework has proven to be of great value to decision makers during an emergency involving an atmospheric contaminant release.

Koffman, L; Chuck Hunter, C; Robert Buckley, R; Robert Addis, R

2006-07-12T23:59:59.000Z

29

INL@Work Radiological Search & Response Training  

ScienceCinema (OSTI)

Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

Turnage, Jennifer

2013-05-28T23:59:59.000Z

30

Pantex Plant Emergency Response Exercise  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight and Performance Assurance November 2000 Independent Oversight Evaluation of the Pantex Plant Emergency Response Exercise OVERSIGHT Table of Contents 1.0 INTRODUCTION ..................................................................................... 1 2.0 RESULTS ................................................................................................... 4 2.1 Positive Program Attributes ............................................................... 4 2.2 Weaknesses and Items Requiring Attention ..................................... 5 3.0 CONCLUSIONS ........................................................................................ 9 4.0 RATING .................................................................................................... 10

31

The Evergreen State College EMERGENCY RESPONSE HANDBOOK  

E-Print Network (OSTI)

Emergency Management System (ICS) 3 Emergency Operations 4 II. Responsibilities of Key Responders 6 Incident. Emergency Communications 17 VII. Emergency Lighting, Power, Heat, Fuel 19 VIII. Emergency Systems 19 IX actions and operations required to respond to an emergency or disaster. The Handbook is Section II

32

Program Led by EM's Carlsbad Field Office Joins Emergency Response in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Led by EM's Carlsbad Field Office Joins Emergency Response Program Led by EM's Carlsbad Field Office Joins Emergency Response in National Exercise Program Led by EM's Carlsbad Field Office Joins Emergency Response in National Exercise October 30, 2013 - 12:00pm Addthis Hnin Khaing of WIPP Laboratories checks a radiological sample, similar to what would be analyzed in an event like the one simulated in the exercise to test national readiness to respond to a large radiological event. Hnin Khaing of WIPP Laboratories checks a radiological sample, similar to what would be analyzed in an event like the one simulated in the exercise to test national readiness to respond to a large radiological event. CARLSBAD, N.M. - For the first time, a program led by EM's Carlsbad Field Office (CBFO) that coordinates analytical capabilities throughout DOE

33

Program Led by EM's Carlsbad Field Office Joins Emergency Response in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Led by EM's Carlsbad Field Office Joins Emergency Response Program Led by EM's Carlsbad Field Office Joins Emergency Response in National Exercise Program Led by EM's Carlsbad Field Office Joins Emergency Response in National Exercise October 30, 2013 - 12:00pm Addthis Hnin Khaing of WIPP Laboratories checks a radiological sample, similar to what would be analyzed in an event like the one simulated in the exercise to test national readiness to respond to a large radiological event. Hnin Khaing of WIPP Laboratories checks a radiological sample, similar to what would be analyzed in an event like the one simulated in the exercise to test national readiness to respond to a large radiological event. CARLSBAD, N.M. - For the first time, a program led by EM's Carlsbad Field Office (CBFO) that coordinates analytical capabilities throughout DOE

34

IEA Response System for Oil Supply Emergencies 2012 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IEA Response System for Oil Supply Emergencies 2012 IEA Response System for Oil Supply Emergencies 2012 IEA Response System for Oil Supply Emergencies 2012.pdf More Documents &...

35

Technical basis for setting Hanford Fire Department electronic dosimetry for emergency response (TBD-HSO-RC-009)  

SciTech Connect

This document addresses the need to establish a reasonable methodology for establishing alarm points for electronic dosimetry used by the Hanford Fire Department (HFD) for emergency response in radiological facilities.

EVANS, C.L.

2003-04-01T23:59:59.000Z

36

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . . . . .

Yen, W.W.S.

2010-01-01T23:59:59.000Z

37

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

in 10 CFR. "Regulatory Standard Review Plans are prepared27 Regulatory Review of Utility Emergency Plans There arethe Standard Review Plan; and (5) Regulatory Guide LlOl, "

Yen, W.W.S.

2010-01-01T23:59:59.000Z

38

Improving Emergency Response and Human-Robotic Performance  

SciTech Connect

Preparedness for chemical, biological, and radiological/nuclear incidents at nuclear power plants (NPPs) includes the deployment of well trained emergency response teams. While teams are expected to do well, data from other domains suggests that the timeliness and accuracy associated with incident response can be improved through collaborative human-robotic interaction. Many incident response scenarios call for multiple, complex procedure-based activities performed by personnel wearing cumbersome personal protective equipment (PPE) and operating under high levels of stress and workload. While robotic assistance is postulated to reduce workload and exposure, limitations associated with communications and the robots ability to act independently have served to limit reliability and reduce our potential to exploit human robotic interaction and efficacy of response. Recent work at the Idaho National Laboratory (INL) on expanding robot capability has the potential to improve human-system response during disaster management and recovery. Specifically, increasing the range of higher level robot behaviors such as autonomous navigation and mapping, evolving new abstractions for sensor and control data, and developing metaphors for operator control have the potential to improve state-of-the-art in incident response. This paper discusses these issues and reports on experiments underway intelligence residing on the robot to enhance emergency response.

David I. Gertman; David J. Bruemmer; R. Scott Hartley

2007-08-01T23:59:59.000Z

39

Waiver of the Bi-Weekly Pay L:imitation for Emergency Response Activities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waiver of the Bi-Weekly Pay L:imitation for Emergency Response Waiver of the Bi-Weekly Pay L:imitation for Emergency Response Activities Waiver of the Bi-Weekly Pay L:imitation for Emergency Response Activities Heads of Departmental elements, with the concurrence of their servicing Human Resources staff, are authorized to waive the bi-weekly pay limitation for employees engaged in emergency response activities that include, but are not limited to, disaster relief assistance, radiological assistance, and terrorist attacks. This authority will expire December 31, 2015. Waiver of the Bi-Weekly Pay Limitation for Emergency Response Activities Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov Phone 202-586-3372 More Documents & Publications Guidance on Waivers of Premium Pay To Meet A Critical Need

40

Energy Department Announces Emergency Oil Loan In Response to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Oil Loan In Response to Hurricane Isaac-Related Request Energy Department Announces Emergency Oil Loan In Response to Hurricane Isaac-Related Request August 31, 2012 -...

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear / Radiological Advisory Team | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

/ Radiological Advisory Team | National Nuclear Security / Radiological Advisory Team | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear / Radiological Advisory Team Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations > Nuclear / Radiological Advisory Team Nuclear / Radiological Advisory Team

42

Emergency Response & Procedures | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Security + Safety » Emergency Response & Procedures National Security + Safety » Emergency Response & Procedures Emergency Response & Procedures November 1, 2013 A Statement from U.S. Secretary of Energy Ernest Moniz Regarding Fukushima On Friday, I made my first visit to the Fukushima Daiichi Nuclear Power Station. It is stunning that one can see firsthand the destructive force of the tsunami even more than two and a half years after the tragic events October 29, 2013 Workers repair power lines in the Mid-Atlantic shortly after Hurricane Sandy. | Photo courtesy of the Energy Department. Hurricane Sandy One Year Later: Rebuilding Stronger, More Resilient Communities The Energy Department continues to take actions to protect our energy infrastructure, adapt to climate change and build partnerships to make

43

Radioanalytical Data Quality Objectives and Measurement Quality Objectives during a Federal Radiological Monitoring and Assessment Center Response  

SciTech Connect

During the early and intermediate phases of a nuclear or radiological incident, the Federal Radiological Monitoring and Assessment Center (FRMAC) collects environmental samples that are analyzed by organizations with radioanalytical capability. Resources dedicated to quality assurance (QA) activities must be sufficient to assure that appropriate radioanalytical measurement quality objectives (MQOs) and assessment data quality objectives (DQOs) are met. As the emergency stabilizes, QA activities will evolve commensurate with the need to reach appropriate DQOs. The MQOs represent a compromise between precise analytical determinations and the timeliness necessary for emergency response activities. Minimum detectable concentration (MDC), lower limit of detection, and critical level tests can all serve as measurements reflecting the MQOs. The relationship among protective action guides (PAGs), derived response levels (DRLs), and laboratory detection limits is described. The rationale used to determine the appropriate laboratory detection limit is described.

E. C. Nielsen

2006-01-01T23:59:59.000Z

44

Emergency Response Plan Office of the Senior Vice President  

E-Print Network (OSTI)

the emergency procedures outlined in BGSU's Emergency Response Handbook. Information from the Handbook can also offices are vacated. This should be done by physical inspection, with department staff and administrators as put forth in the BGSU's Emergency Response Handbook. #12;

Moore, Paul A.

45

Recent Developments in Field Response for Mitigation of Radiological...  

Office of Environmental Management (EM)

of Radiological Incidents Carlos Corredor*, Department of Energy; Charley Yu, Argonne National Labs Abstract: Since September 11, 2001, there has been a large effort by...

46

Emergency response determinants confirm situation status  

SciTech Connect

Since introducing the Hazardous Waste Operations and Emergency Response (HAZWOPER) standard in December 1986, OSHA has received hundreds of letters requesting clarification of emergency response.'' To facilitate more efficient access to policy interpretations, the agency's Directorate of Compliance Programs has created interpretive quips (IQs), which are abstracted from OSHA letters and memoranda, and, therefore, represent agency policy. IQ language can be incorporated into new letters of interpretation or provided as technical guidance during telephone inquiries. However, IQs are no substitute for provisions of the 1970 OSHAct. To maintain consistency, OSHA prepares a compliance guidance document (CPL) on particular standards. The agency usually prepares CPLs for performance-oriented standards, such as hazard communication, lockout/tagout, confined space entry and, of course, HAZWOPER. CPLs are detailed documents delineating how OSHA determines whether a company is in compliance with the provisions of a particular standard. The agency has developed several CPLs but only recently has created IQs.

Wray, T.K.

1993-08-01T23:59:59.000Z

47

PHMC post-NPH emergency response training  

SciTech Connect

This document describes post-Natural Phenomena Hazard (NPH) emergency response training that was provided to two teams of Project Hanford Management Contractors (PHMC) staff that will be used to assess potential structural damage that may occur as a result of a significant natural phenomena event. This training supports recent plans and procedures to use trained staff to inspect structures following an NPH event on the Hanford Site.

Conrads, T.J.

1997-04-08T23:59:59.000Z

48

Response in the late phase to a radiological emergency  

Science Journals Connector (OSTI)

......the amount of waste generated. Recovery...large quantities. Storage facilities, both...the amount of waste milk being generated...makers to take long-term decisions with...large quantities. Storage facilities, both...the amount of waste milk being generated...makers to take long-term decisions with......

Mary Morrey; Anne Nisbet; Daryl Thome; Michael Savkin; Steen Hoe; Lisbeth Brynildsen

2004-06-01T23:59:59.000Z

49

Response in the late phase to a radiological emergency  

Science Journals Connector (OSTI)

......agricultural systems, the practical...guidance on the powers and duties...more practical handbook to assist those...and support systems; the identification...workshop on restoration management...a recovery handbook for nuclear...production systems. Based on...methods Europe Power Plants Radiation......

Mary Morrey; Anne Nisbet; Daryl Thome; Michael Savkin; Steen Hoe; Lisbeth Brynildsen

2004-06-01T23:59:59.000Z

50

Radiological Assistance Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Program | National Nuclear Security Administration Assistance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Assistance Program Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Radiological Assistance Program Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's

51

Radiological Assistance Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Assistance Program | National Nuclear Security Administration Assistance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Assistance Program Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Radiological Assistance Program Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's

52

Emergency Response Planning at the Nevada Test Site  

Science Journals Connector (OSTI)

......Dosimetry Article Emergency Response Planning at the Nevada Test Site D. Randerson A robust emergency response plan was...underground testing of nuclear weapons at the United States Nevada Test Site (NTS). This plan was designed to help protect the......

D. Randerson

1997-09-01T23:59:59.000Z

53

Readiness Issues for Emergency Response Instrumentation  

SciTech Connect

Issues in maintaining readiness of instruments for deployment and use in emergency response situation often differ from those in maintaining instruments for normal operations. Confunding circumstances include use of non-availability of check sources, ensuring instruments are always in calibration and operable, possible use of instruments in different climates, packaging of instrumentation for deployment, transport of instrumentation and check sources, and ensuring users are familiar with instruments. Methods and procedures for addressing these issues are presented. Instrumentation used for survey, in situ measurements, electronic dosimetry, and air conditioning are discussed.

C.A. Riland; D.R. Bowman; R.J. Tighe

1999-03-01T23:59:59.000Z

54

U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2  

SciTech Connect

Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

Jakubowski, F.M.

1998-02-01T23:59:59.000Z

55

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Emergency Response to a Transportation Accident Involving Radioactive Material Radioactive Materials Transportation and Incident Response

56

Portable Neutron Sensors for Emergency Response Operations  

SciTech Connect

This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing LaboratoryAndrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps for neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains ?eV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.

,

2012-06-24T23:59:59.000Z

57

NNSA Conducts Two Emergency Response Training Courses in Armenia | National  

National Nuclear Security Administration (NNSA)

Conducts Two Emergency Response Training Courses in Armenia | National Conducts Two Emergency Response Training Courses in Armenia | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Conducts Two Emergency Response Training Courses ... Press Release NNSA Conducts Two Emergency Response Training Courses in Armenia

58

Review of the Headquarters Facilities Emergency Response Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2002 March 2002 Review of the Headquarters Facilities Emergency Response Plans OVERSIGHT Table of Contents 1.0 INTRODUCTION ...................................................................... 1 2.0 OVERVIEW OF RESULTS ........................................................ 3 3.0 DISCUSSION OF RESULTS ...................................................... 5 3.1 Emergency Response Programs, Plans, and Procedures ....... 5 3.2 Emergency Management Requirements, Roles, and Responsibilities ............................................................... 8 3.3 Emergency Facilities and Equipment ................................... 10 4.0 CONCLUSIONS ......................................................................... 12 5.0 OPPORTUNITIES FOR IMPROVEMENTS .............................

59

Independent Oversight Review of DOE Headquarters Emergency Response Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review of DOE Headquarters Emergency Response Review of DOE Headquarters Emergency Response Plans and Performance, March 2003 Independent Oversight Review of DOE Headquarters Emergency Response Plans and Performance, March 2003 The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted a review of emergency response plans and performance at DOE Headquarters (HQ) in February 2003. The purpose of this review was to evaluate the readiness and effectiveness of the DOE and National Nuclear Security Administration (NNSA) emergency response teams for a postulated emergency at a field site, and the HQ Incident Command Team for an emergency affecting the Forrestal building. In addition, OA was tasked to evaluate the current status of DOE's Continuity of Operations (COOP) program plans and provide recommendations

60

Model Recovery Procedure for Response to a Radiological Transportation Incident  

Energy.gov (U.S. Department of Energy (DOE))

This Transportation Emergency Preparedness Program (TEPP) Model Recovery Procedure contains the recommended elements for developing and conducting recovery planning at transportation incident scene...

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Attachment E: Emergency Response Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attachment E: Emergency Response Activities Attachment E: Emergency Response Activities Attachment E: Emergency Response Activities Emergency Response Activities States may or may not elect to fund emergency management activities with AIP money. If they do, the AIP should include an Emergency Management section. This section may be implemented at any time - when the AIP is first negotiated, at renewal, or through amendment. This Attachment provides examples of items that might be appropriate in an AIP's Emergency Management section (most have come directly from existing AIPs). These items should be considered neither requirements or restrictions. Since funding is not available to support all of these activities, the AIP should be tailored to reflect the State's most urgent and realistic needs in order

62

Model Annex for Preparedness and Response to Radiological Transportation Incidents  

Energy.gov (U.S. Department of Energy (DOE))

This part should contain a general statement of the intent of this Annex. To provide for the planning, preparedness and coordination of emergency service efforts to respond to a transportation...

63

Emergency Response | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

enforcement, and planned events such as the Super Bowl, presidential inaugurations or political conventions. Emergency Operations work is done through a number of programs:...

64

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Triage | National Nuclear Security Administration Triage | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Triage Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Render Safe > Radiological Triage Radiological Triage Triage Logo NNSA's Triage is a non-deployable, secure, on-line capability

65

Review of DOE HQ Emergency Response Plans and Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review of Review of DOE Headquarters Emergency Response Plans and Performance March 2003 Prepared by Office of Independent Oversight and Performance Assurance Office of the Secretary of Energy OFFICE OF INDEPENDENT OVERSIGHT AND PERFORMANCE ASSURANCE REVIEW OF DOE HEADQUARTERS EMERGENCY RESPONSE PLANS AND PERFORMANCE EXECUTIVE SUMMARY INTRODUCTION The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted a review of emergency response plans and performance at DOE Headquarters (HQ) in February 2003. The purpose of this review was to evaluate the readiness and effectiveness of the DOE and National Nuclear Security Administration (NNSA) emergency response teams for a postulated emergency at a field site, and the HQ Incident Command Team for an emergency affecting the Forrestal building. In addition,

66

NNSA, IAEA Conduct Emergency Response Training for First Responders for  

National Nuclear Security Administration (NNSA)

IAEA Conduct Emergency Response Training for First Responders for IAEA Conduct Emergency Response Training for First Responders for Ports and Customs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA, IAEA Conduct Emergency Response Training for ... Press Release NNSA, IAEA Conduct Emergency Response Training for First Responders for

67

Emergency Response | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

is to measure NNSA takes part in 'DHS Day on the Hill' NNSA's Office of Emergency Operations participated in "DHS Day on the Hill," sponsored by the House Committee on...

68

EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emer Emer Emer Emer Emer Emergency Response to a T gency Response to a T gency Response to a T gency Response to a T gency Response to a Transportation ransportation ransportation ransportation ransportation Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional

69

Emergency Response & Procedures | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 1998 4, 1998 Enforcement Letter, Lockheed Martin Idaho Technologies Company - August 4, 1998 Issued to Lockheed Martin Idaho Technologies Company related to a Repetitive Problem with Instrument Operability at the Idaho National Engineering and Environmental Laboratory July 31, 1998 Enforcement Letter, Fluor Daniel Hanford, Inc - July 31, 1998 Issued to Fluor Daniel Hanford, Inc., related to Incomplete Corrective Actions at the Hanford Site, July 31, 1998 July 21, 1998 Enforcement Letter, Lawrence Berkeley National Laboratory - July 21, 1998 Issued to the University of California related to Radiological Work Controls at the Lawrence Berkeley National Laboratory July 21, 1998 Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 21, 1998 Issued to Kaiser-Hill Company, LLC related to Fire Protection System

70

Emergency Response & Procedures | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 1996 22, 1996 Enforcement Letter, EG&G Mound Applied Technologies - August 22, 1996 Issued to EG&G Mound Applied Technologies related to the Inadvertent Transfer of Radiological Contamination at the Mound Plant September 22, 1995 Enforcement Letter, Westinghouse Hanford Corporation - September 22, 1995 Issued to Westinghouse Hanford Corporation related to Operational Safety Requirements Implementation at the B Plant/Waste Encapsulation and Storage Facility at the Hanford Site August 1, 2011 Rebuilding a Greener New Orleans on Veteran's Day June 9, 2010 BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (3 of 4) June 9, 2010 BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) June 9, 2010 BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4)

71

Federal Radiological Monitoring and Assessment Center  

Directives, Delegations, and Requirements

To establish Department of Energy (DOE) policy, procedures, authorities, and requirements for the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC), as set forth in the Federal Radiological Emergency Response Plan (FRERP). This directive does not cancel another directive. Canceled by DOE O 153.1.

1992-12-02T23:59:59.000Z

72

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Incidents and Emergencies Radiological Incidents and Emergencies Instructor's Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. L 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. L 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM) alarm. L 2.13.04 Describe the RCT response to a personnel contamination monitor alarm. L 2.13.05 Describe the RCT response to off scale or lost dosimetry. L 2.13.06 Describe the RCT response to rapidly increasing, unanticipated radiation levels or an area radiation monitor alarm. L

73

DOE-HDBK-1122-99; Radiological Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Incidents and Emergencies Radiological Incidents and Emergencies Study Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. i 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. i 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM) alarm. i 2.13.04 Describe the RCT response to a personnel contamination monitor alarm. i 2.13.05 Describe the RCT response to off scale or lost dosimetry. i 2.13.06 Describe the RCT response to rapidly increasing, unanticipated radiation levels or an area radiation monitor alarm. i 2.13.07

74

Radiation Emergency Medicine Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Global Response Improving Global Response to Radiation Emergencies Improving Radiation Emergency Response Through Education and Specialized Expertise In the event of a radiological or nuclear incident, first responders as well as hospital and emergency management personnel must call on their knowledge and training to provide immediate and effective care for victims. Through practical, hands-on education programs, Oak Ridge Associated Universities (ORAU) is improving global response to radiation emergencies. In addition, dedicated 24/7 deployable teams of physicians, nurses, and health physicists from the Radiation Emergency Assistance Center/Training Site (REAC/TS), which is managed by ORAU for DOE/NNSA, provide expert medical management of radiological incidents

75

Hospital response for children as a vulnerable population in radiological/nuclear incidents  

Science Journals Connector (OSTI)

......November 2010 research-article Papers Hospital response for children as a vulnerable...and Life Safety Department, Kingston Hospitals, Kingston, Ontario, Canada Emergency...initial response. The primary goals of the hospital in a hazardous event are to: Protect......

Brenda Conway; Jordan Pike

2010-11-01T23:59:59.000Z

76

DOE Launches Emergency Response Hydrogen Training Resource  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department's Fuel Cell Technologies Office announces the launch of a new, free, online national hydrogen safety training resource for emergency responders that provides a single repository of credible and reliable information related to hydrogen and fuel cells that is current and accurate and eliminates duplicative efforts among various training programs.

77

Utilization of emergency response facilities described in NUREG-0696  

SciTech Connect

This report was prepared for the Emergency Preparedness Program Office, US Nuclear Regulatory Commission by Lawrence Livermore National Laboratory, California. This report was prepared in response to a request by Commissioner Victor Gilinsky. The hypothetical utilization of the Emergency Facilities (NUREG 0696) during the recent incidents at Browns Ferry 3 and Crystal River 3 is discussed.

Peterson, L.R.; Preston-Smith, J.

1980-09-01T23:59:59.000Z

78

EMERGENCY RESPONSE PLAN DEPARTMENT: Mechanical Engineering  

E-Print Network (OSTI)

. d) Call Campus Safety 5555 on campus phone or 966-5555 by cell phone and Emergency 9-911 on campus phone or 911 by cell phone, giving as much information as possible. e) Do not re-enter the room until on campus phone or 966-8493 by cell phone and Campus Safety 5555 on campus phone or 966- 5555 by cell phone

Saskatchewan, University of

79

ORISE: Helping Strengthen Emergency Response Capabilities for DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

Response Response Firefighters assisting a disaster victim The Oak Ridge Institute for Science and Education (ORISE) helps strengthen government agencies' emergency response capabilities through a variety of exercises, from tabletop training to full-scale drills. ORISE supports emergency response needs across multiple disciplines, including the medical management of radiation incidents through the U.S. Department of Energy's (DOE) Radiation Emergency Assistance Center/Training Site (REAC/TS). As a DOE reponse asset, REAC/TS is available 24 hours a day/seven days a week to deploy and provide emergency medical treatment for all types of radiation exposure anywhere in the world. Each interdisciplinary team includes a physician, nurse/paramedic and health physicist who are

80

Minicomputer Capabilities Related to Meteorological Aspects of Emergency Response  

SciTech Connect

The purpose of this report is to provide the NRC staff involved in reviewing licensee emergency response plans with background information on the capabilities of minicomputer systems that are related to the collection and dissemination of meteorological infonmation. The treatment of meteorological information by organizations with existing emergency response capabilities is described, and the capabilities, reliability and availability of minicomputers and minicomputer systems are discussed.

Rarnsdell, J. V.; Athey, G. F.; Ballinger, M. Y.

1982-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development of the triage, monitoring and treatment Handbook for Members of the Public Affected by Radiological Terrorism - A European Response  

SciTech Connect

European national emergency response plans have long been focused on accidents at nuclear power plants. Recently, the possible threats by disaffected groups have shifted the focus to being prepared also for malevolent use of radiation that are aimed at creating disruption and panic in the society. The casualties will most likely be members of the public. According to the scenario, the number of affected people can vary from a few to mass casualties. The radiation exposure can range from very low to substantial, possibly combined with conventional injuries. There is a need to develop practicable tools for the adequate response to such acts and more specifically to address European guidelines for triage, monitoring and treatment of exposed people. Although European countries have developed emergency response plans for nuclear accidents they have not all made plans for handling malevolent use of radioactive material. Indeed, there is a need to develop practical guidance on emergency response and medical treatment of the public affected by malevolent acts. Generic guidance on this topic has been published by international organisations. They are, however, not operational documents to be used in emergency situations. The Triage, Monitoring and Treatment (TMT) Handbook aims to strengthen the European ability to efficiently respond to malevolent acts in terms of protecting and treating exposed people. Part of the Handbook is also devoted to public information and communication issues which would contribute to public reassurance in emergency situations. The Handbook will be drafted by European and international experts before it is circulated to all emergency response institutions in Europe that would be a part of the handling of malevolent acts using radioactive material. The institutions would be given a 6 months consultation time with encouragement to test the draft Handbook in national exercises. A workshop will allow feedback from these end users on the content, structure and usefulness of the Handbook before a final version is produced. In order to achieve the project's objectives a consortium has been drawn together including, Belgian Nuclear Research Centre, the Norwegian Radiation Protection Authority, Radiation and Nuclear Safety Authority of Finland, the UK Health Protection Agency, the Central Laboratory for Radiological Protection of Poland and the World Health Organisation. Enviros Consulting is acting as the technical secretariat for the project. The Handbook will aim to harmonise the approaches to handling malevolent acts across Europe. This harmonisation will have an added value on the public confidence in authorities since differing approaches in neighbouring countries could lead to public confusion and mistrust. (authors)

Kruse, P. [Enviros Consulting Limited, Culham Science Centre, Abingdon OX (United Kingdom); Rojas-Palma, C. [Belgian Nuclear Research Centre (SCK-CEN), Radiation Protection Div., Mol (Belgium)

2007-07-01T23:59:59.000Z

82

Analysis of offsite emergency planning zones for the Rocky Flats Plant. Evaluation of radiological materials, Volume 1  

SciTech Connect

The objective of this report is to fully document technical data and information that have been developed to support offsite emergency planning by the State of Colorado for potential accidents at the Rocky Flats Plant. Specifically, this report documents information and data that will assist the State of Colorado in upgrading its radiological emergency planning zones for Rocky Flats Plant. The Colorado Division of Disaster Emergency Services (DODES) and the Colorado Department of Health (CDH) represent the primary audience for this report. The secondary audience for this document includes the Rocky Flats Plant; federal, State, and local governmental agencies; the scientific community; and the interested public. Because the primary audience has a pre-existing background on the subject, this report assumes some exposure to emergency planning, health physics, and dispersion modeling on the part of the reader. The authors have limited their assumptions of background knowledge as much as possible, recognizing that the topics addressed in the report may be new to some secondary audiences.

Hodgin, C.R.; Daugherty, N.M.; Smith, M.L. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Bunch, D.; Toresdahl, J.; Verholek, M.G. [TENERA, L.P., Knoxville, TN (United States)

1991-01-01T23:59:59.000Z

83

E-Print Network 3.0 - applying radiological emergency Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Exposure From Medical Imaging Time to Regulate? Summary: , Holmes JF, Dayan PS, et al; Pediatric Emergency Care Applied Research Network (PECARN). Identification... still...

84

Utilization of the emergency response facilities described in NUREG-0696  

SciTech Connect

The conceptual philosophy behind each of the Emergency Response Facilities (ERFs) is presented. The roles, responsibilities, and authorities of personnel responding to emergencies from the ERFs and the intended use of the technical information made available by each of the emergency response facilities and systems are discussed. The Browns Ferry 3 partial scram incident and the Crystal River 3 instrumentation power supply failure are reviewed and the utilization of the ERFs during these incidents is discussed. These incidents were of relatively short duration and low complexity. The malfunctions from which they resulted, however, had the potential to cause much more serious events during which the full utilization of the ERFs could have provided a greatly enhanced response capability.

Preston, J.; Peterson, L.R.

1981-10-01T23:59:59.000Z

85

Emergency Response & Procedures | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2011 18, 2011 The Re_house is nearing completion. | Courtesy of the University of Illinois at Urbana-Champaign Solar Decathlon Team. Solar Decathlon Team Leading the Way Toward Sustainable Living, Even in the Wake of Disasters For this year's Solar Decathlon, the University of Illinois at Urbana-Champaign is returning to the National Mall with the Re_home, which offers a more sustainable housing solution for communities following a natural disaster. August 9, 2011 Radiation Monitoring Data from Fukushima Area In March, 2011 the U.S. Department of Energy released data recorded from its Aerial Measuring System as well as ground detectors deployed along with its Consequence Management Response Teams. Today, the Department provided the following update on the information gathered by the AMS. This data that

86

Energy Department Announces Emergency Oil Loan In Response to Hurricane  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Oil Loan In Response to Emergency Oil Loan In Response to Hurricane Isaac-Related Request Energy Department Announces Emergency Oil Loan In Response to Hurricane Isaac-Related Request August 31, 2012 - 11:17am Addthis News Media Contact (202) 586-4940 WASHINGTON, DC - Following a request yesterday from Marathon Petroleum Company, U.S. Secretary of Energy Steven Chu announced today that the Energy Department has agreed to lend 1 million barrels of sweet crude oil from the Strategic Petroleum Reserve's (SPR) Bayou Choctaw site in Louisiana to address the short term impact on the company's refining capacity caused by Hurricane Isaac, which is resulting in limited crude oil shortages. The loan, which is distinct from a release from the SPR, will be provided to Marathon Petroleum Company under short-term contractual agreements.

87

Underground radio technology saves miners and emergency response personnel  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground radio technology saves miners and emergency response Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital Alert Technologies, Inc. (Vital Alert) has launched a wireless, two-way real-time voice communication system that is effective through 1,000+ feet of solid rock. April 3, 2012 Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock strata and other solid media. Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock

88

Energy Department Emergency Response Team Ready to Respond to Hurricane  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Emergency Response Team Ready to Respond to Department Emergency Response Team Ready to Respond to Hurricane Irene Energy Department Emergency Response Team Ready to Respond to Hurricane Irene August 26, 2011 - 12:15pm Addthis Hurricane Irene made landfall at approximately 7:30 am EDT near Cape Lookout, North Carolina with maximum sustained winds of 85 mph (Category 1). This NOAA GOES-13 satellite image captures Irene’s landfall moment. | Image courtesy of NOAA Hurricane Irene made landfall at approximately 7:30 am EDT near Cape Lookout, North Carolina with maximum sustained winds of 85 mph (Category 1). This NOAA GOES-13 satellite image captures Irene's landfall moment. | Image courtesy of NOAA Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability

89

Title: Training Effects on Emergency Management Activation Response Subject Area: Social  

E-Print Network (OSTI)

Title: Training Effects on Emergency Management Activation Response Subject Area: Social Keyword considered whether local and long-term emergency management training could produce different behavioral training on emergency management behavioral response. Individuals with higher levels of training engaged

Collett Jr., Jeffrey L.

90

An external dose reconstruction involving a radiological dispersal device  

E-Print Network (OSTI)

emergency situation. In response, the Department of Homeland Security has published Protective Action Guides (DHS 2006) to help minimize these exposures and associated risks. This research attempts to provide some additional radiological exposure knowledge...

Hearnsberger, David Wayne

2007-04-25T23:59:59.000Z

91

Priority Assignment in Emergency Response Evin Uzun Jacobson1  

E-Print Network (OSTI)

Priority Assignment in Emergency Response Evin Uzun Jacobson1 , Nilay Tanik Argon2 , Serhan Ziya2 and operating rooms) can be overwhelmed by the sudden jump in patient demand. To ration these resources for the greatest number. This article investigates how this can be done and what the potential benefits would be

Ziya, Serhan

92

Examination of offsite radiological emergency protective measures for nuclear reactor accidents involving core melt  

E-Print Network (OSTI)

Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted ...

Aldrich, David C.

1979-01-01T23:59:59.000Z

93

Emergency Response to a Transportation Accident Involving Radioactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to a Transportation Accident Involving Response to a Transportation Accident Involving Radioactive Material Emergency Response to a Transportation Accident Involving Radioactive Material The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on each response disciplines' activities or duties at the scene. During this discussion, the instructor can present response scenarios, each of which would have a different discipline arriving first at the accident scene. The purpose of this discussion

94

USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504  

SciTech Connect

The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.

BROCK CT

2011-02-15T23:59:59.000Z

95

LSUHSC New Orleans Department of Genetics EMERGENCY RESPONSE POLICY & PROCEDURES  

E-Print Network (OSTI)

an area within 36 hours, while a Warning is issued when a storm is expected to affect an area within 24 with the institutional policy regarding Hurricane Response: CM-51 (http://www.lsuhsc.edu/no/administration/cm/cm-51.aspx) · The Emergency Alert radio stations for the New Orleans area are: o AM 870/WWL and FM 101.9/WLMG · The local TV

96

emergency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dear Neighbors: Dear Neighbors: The events of September 11, 2001, the direct attack on the Pentagon in Arlington, Virginia, and the subsequent bioterrorist activities in our area, have made us all keenly aware of the need to be prepared in case of emergency. Many in Northern Virginia were directly affected by these events. Others are aware of friends, relatives and neigh- bors who were touched by these tragedies. Local governments routinely work together throughout the year to evaluate and update their emergency response plans. Recent events remind us all that home emergency prepared- ness is a must for everyone and should be carefully planned. This Home Guide to Emergency Preparedness is designed to help you do just that. It does not cover every conceivable emer- gency. However, it does

97

2011 IEA Response System for Oil Supply Emergencies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 IEA Response System for Oil Supply Emergencies 2011 IEA Response System for Oil Supply Emergencies 2011 IEA Response System for Oil Supply Emergencies Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available - focusing on stockdraw - and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security. 2011 IEA Response System for Oil Supply Emergencies More Documents & Publications IEA Response System for Oil Supply Emergencies 2012

98

2011 IEA Response System for Oil Supply Emergencies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 IEA Response System for Oil Supply Emergencies 1 IEA Response System for Oil Supply Emergencies 2011 IEA Response System for Oil Supply Emergencies Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available - focusing on stockdraw - and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security. 2011 IEA Response System for Oil Supply Emergencies More Documents & Publications IEA Response System for Oil Supply Emergencies 2012

99

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

National Nuclear Security Administration (NNSA)

Removing Vulnerable Civilian Nuclear and Radiological Material | Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material Fact Sheet GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material

100

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

NLE Websites -- All DOE Office Websites (Extended Search)

Removing Vulnerable Civilian Nuclear and Radiological Material | Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material Fact Sheet GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ORISE: REAC/TS Radiological Incident Medical Consultation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Incident Medical Consultation Radiological Incident Medical Consultation Radiological Incident Medical Consultation The Oak Ridge Institute for Science and Education (ORISE) provides the U.S. Department of Energy (DOE) with a comprehensive capability to respond effectively to medical emergencies involving radiological or nuclear materials. Through the management of the Radiation Emergency Assistance Center/Training Site (REAC/TS), ORISE provides advice and consultation to emergency personnel responsible for the medical management of radiation accidents. REAC/TS strengthens hospital preparedness for radiation emergencies by preparing and educating first responders, medical personnel and occupational health professionals who will provide care to patients with a radiation injury or illness. REAC/TS staff provide medical advice,

102

Review of the Emergency Response Organization at the Los Alamos National Laboratory, April 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Response Organization at the Emergency Response Organization at the Los Alamos National Laboratory April 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope..................................................................................................................................................... 1 3.0 Background ........................................................................................................................................... 1

103

IEA Response System for Oil Supply Emergencies 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 IEA Response System for OIL SUPPLY 2 IEA MEMBER COUNTRIES Australia Austria Belgium Canada Czech Republic Denmark Finland France Germany Greece Hungary Ireland Italy Japan Korea (Republic of) Luxembourg Netherlands New Zealand Norway Poland Portugal Slovak Republic Spain Sweden Switzerland Turkey United Kingdom United States These countries are members of the Organisation for Economic Co-operation and Development (OECD), as the IEA is an autonomous agency linked with the OECD. The European Commission also participates in the work of the IEA. The International Energy Agency (IEA) is the energy forum for 28 industrialised countries. IEA member country governments are committed to taking joint measures to meet oil supply emergencies. They also have agreed to share energy information,

104

Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling  

SciTech Connect

The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

NSTec Aerial Measurement Systems

2012-07-31T23:59:59.000Z

105

NNSA Conducts Radiological Training in Slovenia | National Nuclear Security  

National Nuclear Security Administration (NNSA)

NNSA Blog > NNSA Conducts Radiological Training in Slovenia NNSA Blog > NNSA Conducts Radiological Training in Slovenia NNSA Conducts Radiological Training in Slovenia Posted By Office of Public Affairs NNSA Blog NNSA today concluded International Radiological Assistance Program Training for Emergency Response (I-RAPTER) in Slovenia. The training, co-sponsored by the International Atomic Energy Agency, was provided to 36 nuclear/radiological emergency responders, which included 15 participants from Slovenia and 21 students from 20 other countries. The training was conducted with involvement of personnel from Sandia National Laboratories, the Remote Sensing Laboratory and Idaho National Laboratory. To read more about the training see: http://www.nnsa.energy.gov/mediaroom/pressreleases/slovenia Posted on March 22, 2012 at 4:13 pm ET

106

Management Perspective: Structure of Radiation Emergency Response in Japan  

Science Journals Connector (OSTI)

Due to previous local and international radiation incidents, emergency planning and preparedness measures have evolved in Japan. This chapter looks at the history of radiation emergency medicine in Japan and the ...

Takako Tominaga M.D.; Ph.D.; Misao Hachiya Ph.D.

2014-01-01T23:59:59.000Z

107

Radiological Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1098-2008 October 2008 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii DOE-STD-1098-2008 This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ DOE-STD-1098-2008 Radiological Control DOE Policy October 2008 iii Foreword The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal

108

Variable Voltage Substation Electric Fire and Emergency Response  

Energy.gov (U.S. Department of Energy (DOE))

Variable Voltage Substation Electric Fire and Emergency Response My question is from an emergency response perspective. You stated that it took ~ for electricians to de-energize the electrical components before firefighters were allowed in to fight the fire. This delay causes more damage to equipment and potential propagation of the fire. Is there not a master breaker or switch? Youve brought up a very good point. It gave me a good opportunity to discuss this with our Facilities Department and get a better understanding of the infrastructure upgrade plans. The direct answer to your question is Yes, but Yes, there are master breakers and switches, but we cant control them remotely. SLACs AC electrical distribution system at present is manual breakers we have not installed the infrastructure to remotely control them (except see below). We recently underwent an upgrade to our Master Substation that will allow us to remotely control some high voltage breakers in the future, but we arent there yet. We do recognize the value in having this capability (and more importantly, our vulnerability in NOT having it), and have begun the preliminary planning to make this happen. One issue were are working on is cyber security for the power distribution networked infrastructure. Before we install the capability to remotely control the main electrical breakers, we are planning the infrastructure with our Information Technologies organization to ensure we have a robust secure network that is protected from unauthorized access. Once the cyber security issues are addressed and funded, were probably 5-10 years out from having remote operation capability due to limited resources to fund and install the infrastructure. Having said the above, we do have the capability of remotely opening the VVS Secondary Main Breakers the ones that send power to the modulator distribution breakers - from our control room. Those breakers are integral parts of our safety systems in that interlock violation causes the breakers to open and remove power to the klystrons. But everything else is manual only. That remote operation capability would not have helped us in this case, as the VVS Secondary Main Breaker was the one that fried. We needed to open the breaker upstream of the VVS. Thanks for your interest. Let me know if I can provide further information.

109

Radiological Assistance Program  

Directives, Delegations, and Requirements

To establish Department of Energy (DOE) policy, procedures, authorities, and responsibilities for its Radiological Assistance Program. Canceled by DOE O 153.1.

1992-04-10T23:59:59.000Z

110

Emergency response monitoring activities and environmental impact of the K-Reactor aqueous tritium release of December 1991  

SciTech Connect

Approximately 150 gallons of tritiated water leaked from one of the K-Reactor heat exchangers between December 22 and December 25, 1991. Upon notification, the Environmental Technology Section (ETS) activated its emergency response team to provide predictions of river concentrations, transport times, and radiological effects to downstream water users. Additionally, within a few days of the release, ETS and the Environmental Monitoring Section (EMS) began a comprehensive program to collect and analyze surface water samples from SRS down to the Savannah River estuary. The TRAC mobile laboratory was deployed to the Beaufort-Jasper water treatment plant to provide initial analyses for downriver water samples. This document discusses the results of the sampling activities. Concentration levels are provided along with hypothetical maximum individual doses.

Hamby, D.M.; Addis, R.P.; Beals, D.M.; Cadieux, J.R.; Carlton, W.H.; Dunn, D.L.; Hall, G.; Hayes, D.W.; Lorenz, R.; Kantelo, M.V.; Taylor, R.W.

1992-02-07T23:59:59.000Z

111

Emergency Response Training Draws Professionals From Seven States  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy at WIPP. First responders are individuals who arrive at scenes of automobile accidents first. They include law enforcement personnel, emergency medical...

112

Emergency response training draws professionals from two states  

NLE Websites -- All DOE Office Websites (Extended Search)

a tour of the WIPP site. First responders are individuals who arrive at scenes of automobile accidents first. They include law enforcement personnel, emergency medical...

113

Independent Oversight Review of DOE Headquarters Emergency Response...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2003 More Documents & Publications Department of Energy Emergency Public Affairs Plan Independent Oversight Review, DOENNSA Nuclear Facilities - April 2013 Independent...

114

Risk decision analysis in emergency response: A method based on cumulative prospect theory  

Science Journals Connector (OSTI)

Emergency response of a disaster is generally a risk decision-making problem with multiple states. In emergency response analysis, it is necessary to consider decision-maker's (DM's) psychological behavior such as reference dependence, loss aversion and judgmental distortion, whereas DM's behavior is neglected in the existing studies on emergency response. In this paper, a risk decision analysis method based on cumulative prospect theory (CPT) is proposed to solve the risk decision-making problem in emergency response. The formulation and solution procedure of the studied emergency response problem are given. Then, according to CPT, the values of potential response results concerning each criterion are calculated. Consider the interdependence or conflict among criteria, Choquet integral is used to determine the values of each potential response result. Accordingly, the weights of probabilities of all potential response results are calculated. Furthermore, by aggregating the values and weights of response results, the prospect value of each response action (alternative) is determined, and overall prospect value of each response action is obtained by aggregating the prospect value and the cost of each action. According to the obtained overall prospect values, a ranking of all response actions can be determined. Finally, based on the background of emergency evacuation from barrier lake downstream villages, an example is given to illustrate the feasibility and validity of the proposed method.

Yang Liu; Zhi-Ping Fan; Yao Zhang

2014-01-01T23:59:59.000Z

115

OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Hazardous Waste Operations and Emergency Response 3/21/95 5 Hazardous Waste Operations and Emergency Response 3/21/95 OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95 The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are adequately protected. The surveillance also evaluates the effectiveness of programs implemented to protect the health and safety of emergency response personnel who may be called upon to mitigate upset conditions at a facility where hazardous waste operations are conducted. Finally, the surveillance includes evaluations of the contractor's compliance with specific requirements regarding hazardous waste operations and emergency response. OSS19-05.doc

116

Evaluation of an emergency response model for the Rocky Flats Plant: Charter  

SciTech Connect

This Charter provides a basis for a cooperative, interagency effort to evaluate the Terrain-Responsive Atmospheric Code for emergency response and emergency planning for the Rocky Flats Plant. This document establishes the foundation for the project entitled, Evaluation of an Emergency Response Model for the Rocky Flats Plant'' (to be referred to as the Project). This document meets the following objectives: Identify the Project; establish the project management structure, organizational responsibilities, and organizational commitments for reaching the goals of the Project, and identify a process for model revision and revelation for acceptance. 2 figs.

Not Available

1991-01-01T23:59:59.000Z

117

GTRI's Nuclear and Radiological Material Protection | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection | National Nuclear Protection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog GTRI's Nuclear and Radiological Material Protection Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative > GTRI's Nuclear and Radiological Material Protection GTRI's Nuclear and Radiological Material Protection

118

Pre-Hospital Practices for Handling a Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Hospital Practices for Handling a Radiologically Contaminated Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Pre-Hospital Practices for Handling a Radiologically Contaminated Patient The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on key activities and duties at the scene. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT More Documents & Publications Emergency Response to a Transportation Accident Involving Radioactive Material Handling and Packaging a Potentially Radiologically Contaminated Patient

119

Nuclear Radiological Threat Task Force Established | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Threat Task Force Established | National Nuclear Radiological Threat Task Force Established | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Radiological Threat Task Force Established Nuclear Radiological Threat Task Force Established November 03, 2003 Washington, DC Nuclear Radiological Threat Task Force Established

120

PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional specific areas of competency or more hours of training

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

122

Independent Oversight Review of DOE Headquarters Emergency Response Plans and Performance, March 2003  

Energy.gov (U.S. Department of Energy (DOE))

The Secretary of Energys Office of Independent Oversight and Performance Assurance (OA) conducted a review of emergency response plans and performance at DOE Headquarters (HQ) in February 2003.

123

Surveillance Guide - OSS 19.5 Hazardous Waste Operations and Emergency Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE 1.0 Objective The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are adequately protected. The surveillance also evaluates the effectiveness of programs implemented to protect the health and safety of emergency response personnel who may be called upon to mitigate upset conditions at a facility where hazardous waste operations are conducted. Finally, the surveillance includes evaluations of the contractor's compliance with specific requirements regarding hazardous waste operations and emergency response. 2.0 References 2.1 DOE 5483.1A, Occupational Safety and Health Program

124

WIPP transportation exercise to test emergency response capablities for Midland-Odessa  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Exercise to Test Transportation Exercise to Test Emergency Response Capabilities for Midland-Odessa CARLSBAD, N.M., January 10, 2000 - Emergency response agencies from Midland and Odessa, Texas, will take part in a 1 p.m. (CST) training exercise Jan. 12 at the Ector County Coliseum. The graded exercise will help agencies determine whether emergency personnel are prepared to respond to a possible accident involving a shipment of transuranic radioactive waste headed for the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). "This is an excellent opportunity for emergency responders to test the skills they've learned," said Dale Childers, assistant chief of the Odessa Fire Department and emergency management coordinator for Ector County. "It will also help us determine what improvements,

125

Emergency response to a highway accident in Springfield, Massachusetts, on December 16, 1991  

SciTech Connect

On December 16, 1991, a truck carrying unirradiated (fresh) nuclear fuel was involved in an accident on US Interstate 91, in Springfield, Massachusetts. This report describes the emergency response measures undertaken by local, State, Federal, and private parties. The report also discusses ``lessons learned`` from the response to the accident and suggests areas where improvements might be made.

Not Available

1992-06-01T23:59:59.000Z

126

Emergency response to a highway accident in Springfield, Massachusetts, on December 16, 1991  

SciTech Connect

On December 16, 1991, a truck carrying unirradiated (fresh) nuclear fuel was involved in an accident on US Interstate 91, in Springfield, Massachusetts. This report describes the emergency response measures undertaken by local, State, Federal, and private parties. The report also discusses lessons learned'' from the response to the accident and suggests areas where improvements might be made.

Not Available

1992-06-01T23:59:59.000Z

127

Demand responsive programs - an emerging resource for competitive electricity markets?  

SciTech Connect

The restructuring of regional electricity markets in the U.S. has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created significant new opportunities for technologies and business approaches that allow load serving entities and other aggregators, to control and manage the load patterns of their wholesale or retail end-users. These technologies and business approaches for manipulating end-user load shapes are known as Load Management or, more recently, Demand Responsive programs. Lawrence Berkeley National Laboratory (LBNL) is conducting case studies on innovative demand responsive programs and presents preliminary results for five case studies in this paper. These case studies illustrate the diversity of market participants and range of technologies and business approaches and focus on key program elements such as target markets, market segmentation and participation results; pricing scheme; dispatch and coordination; measurement, verification, and settlement; and operational results where available.

Heffner, Grayson C. Dr.; Goldman, Charles A.

2001-06-25T23:59:59.000Z

128

Federal Radiological Monitoring and Assessment Center Health and Safety Manual  

SciTech Connect

This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intended to pertain to the general public.

FRMAC Health and Safety Working Group

2012-03-20T23:59:59.000Z

129

Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100  

SciTech Connect

The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

Borgeson, M.E.

1994-11-09T23:59:59.000Z

130

Real time voltage control using emergency demand response in distribution system by integrating advanced metering infrastructure  

Science Journals Connector (OSTI)

In this paper an analytical study is reported to demonstrate the effects of demand response on distribution network voltages profile. Also a new approach for real time voltage control is proposed which uses emergency demand response program aiming at maintaining voltage profile in an acceptable range with minimum cost. This approach will be active in emergency conditions where in real time the voltages in some nodes leave their permissible ranges. These emergency conditions are Distributed Generation (DG) units and lines outage and unpredictable demand and renewable generations' fluctuations. The proposed approach does not need the load and renewable generation forecast data to regulate voltage. To verify the effectiveness and robustness of the proposed control scheme the proposed voltage control scheme is tested on a typical distribution network. The simulation results show the effectiveness and capability of the proposed real time voltage control model to maintain smart distribution network voltage in specified ranges in both normal and emergency conditions.

Alireza Zakariazadeh; Shahram Jadid

2014-01-01T23:59:59.000Z

131

Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q Q Law Enforcement ____________________________________ Fire ___________________________________________ Medical ____________________________________________ State Radiological Assistance ___________________________ Local Government Official ______________________________ Local Emergency Management Agency ___________________ State Emergency Management Agency ___________________ HAZMAT Team ______________________________________ Water Pollution Control ________________________________ CHEMTEL (Toll-free US & Canada) 1-800-255-3924 _________ CHEMTREC (Toll-free US & Canada) 1-800-424-9300 _______

132

GTRI commended for work to secure radiological sources | National Nuclear  

National Nuclear Security Administration (NNSA)

GTRI commended for work to secure radiological sources | National Nuclear GTRI commended for work to secure radiological sources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > GTRI commended for work to secure radiological sources GTRI commended for work to secure radiological sources Posted By Office of Public Affairs Container NNSA's Global Threat Reduction Initiative (GTRI) was recently commended

133

GTRI commended for work to secure radiological sources | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

GTRI commended for work to secure radiological sources | National Nuclear GTRI commended for work to secure radiological sources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > GTRI commended for work to secure radiological sources GTRI commended for work to secure radiological sources Posted By Office of Public Affairs Container NNSA's Global Threat Reduction Initiative (GTRI) was recently commended

134

Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National  

National Nuclear Security Administration (NNSA)

Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Insider Threat to Nuclear and Radiological Materials: ... Fact Sheet Insider Threat to Nuclear and Radiological Materials: Fact Sheet

135

Emergency management information systems| Application of an intranet portal for disaster training and response. An examination of emerging technologies in a local Emergency Operations Center.  

E-Print Network (OSTI)

?? This dissertation examined one city's implementation of an intranet virtual web portal for improved emergency management. Municipal Emergency Operation Center (EOC) managers face many (more)

Dove, Kathleen

2008-01-01T23:59:59.000Z

136

Emergency Response  

National Nuclear Security Administration (NNSA)

%2A en International Programs http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorisminternationalprograms

137

Web-based emergency response exercise management systems and methods thereof  

DOE Patents (OSTI)

According to one embodiment, a method for simulating portions of an emergency response exercise includes generating situational awareness outputs associated with a simulated emergency and sending the situational awareness outputs to a plurality of output devices. Also, the method includes outputting to a user device a plurality of decisions associated with the situational awareness outputs at a decision point, receiving a selection of one of the decisions from the user device, generating new situational awareness outputs based on the selected decision, and repeating the sending, outputting and receiving steps based on the new situational awareness outputs. Other methods, systems, and computer program products are included according to other embodiments of the invention.

Goforth, John W.; Mercer, Michael B.; Heath, Zach; Yang, Lynn I.

2014-09-09T23:59:59.000Z

138

EMSL - radiological  

NLE Websites -- All DOE Office Websites (Extended Search)

radiological en Diffusional Motion of Redox Centers in Carbonate Electrolytes . http:www.emsl.pnl.govemslwebpublicationsdiffusional-motion-redox-centers-carbonate-electrolytes...

139

MSU EMERGENCY ACTION TEAM  

E-Print Network (OSTI)

police/fire may use in emergencies for announcements HVAC system automated shut off with IPF and Hazardous Materials Emergencies (chemical, biological, radiological, nuclear, explosive) 3. Some other forms

Liu, Taosheng

140

DOE Order Self Study Modules - 29 CFR 1910.120 Hazardous Waste Operations and Emergency Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29 CFR 1910.120 29 CFR 1910.120 HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE NATIONAL NUCLEAR SECURITY ADMINISTRATION SERVICE CENTER Change No: 0 29 CFR 1910.120 Level: Familiar Date: 3/14/05 1 29 CFR 1910.120 HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE FAMILIAR LEVEL _________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources, you will be able to perform the following: 1. Discuss clean-up operations required by the regulation. 2. Discuss corrective actions during clean-up operations covered by the resource conservation and recovery act (RCRA). 3. Discuss operations involving hazardous wastes that are conducted at treatment, storage, and disposal (TSD) facilities.

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident  

SciTech Connect

The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administrations Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

Blumenthal, Daniel J. [NNSA; Clark, Harvey W. [NSTec; Essex, James J. [NSTec; Wagner, Eric C. [NSTec

2013-07-01T23:59:59.000Z

142

Transportation Emergency Preparedness Program Exercise Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exercise Exercise Program TEPP Exercise Program Tom Clawson TEPP Contractor tom@trgroupinc.com Brief TEPP History Brief TEPP History * In 1988, identified need to address emergency preparedness concerns of DOE emergency preparedness concerns of DOE radiological shipments bl h d * EM established in 1989 - Identified need for responder training along all transportation corridors as key to EM mission - TEPP incorporated into DOE Order 151.1, with responsibility assigned to EM * WIPP adopted the the TEPP training in 2000, and began using MERRTT along their routes in 2000 * Created a single DOE radiological transportation training program * Created a single DOE radiological transportation training program for the Department TEPP Exercise Program TEPP Exercise Program * TEPP's exercise program is just

143

Radioactive Materials Transportation and Incident Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEMA 358, 05/10 FEMA 358, 05/10 Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q Q Law Enforcement ____________________________________ Fire ___________________________________________ Medical ____________________________________________ State Radiological Assistance ___________________________ Local Government Official ______________________________ Local Emergency Management Agency ___________________ State Emergency Management Agency ___________________ HAZMAT Team ______________________________________ Water Pollution Control ________________________________ CHEMTEL (Toll-free US & Canada) 1-800-255-3924 _________ CHEMTREC (Toll-free US & Canada) 1-800-424-9300 _______

144

ORISE: Radiation Emergency Training for Iraq, South Africa and Morocco  

NLE Websites -- All DOE Office Websites (Extended Search)

International Training International Training REAC/TS Provides International Radiation Emergency Medical Response Training for Emergency Responders In support of the National Nuclear Security Administration's international approach to nuclear and radiological incident response, REAC/TS staff provide training to physicians, nurses and emergency responders in multiple countries each year. REAC/TS has conducted radiation emergency medical response training in Iraq, Kuwait, Morocco, Singapore, South Africa, and Thailand. "As one of the world's primary responders to nuclear and radiological accidents, it's critical that REAC/TS help prepare a variety of health care professionals for the medical management of radiation accidents," said REAC/TS Medical/Technical Director Dr. Albert Wiley. "Our medical

145

PREPARE: INNOVATIVE INTEGRATED TOOLS AND PLATFORMS FOR RADIOLOGICAL EMERGENCY PREPAREDNESS AND POST-ACCIDENT RESPONSE IN EUROPE  

Science Journals Connector (OSTI)

......and to further enhance advanced decision support systems...pathways for European water bodies. In addition...releases from many different reactor types and accident sequences...management of complex fresh water ecosystems contaminated by radionuclides and heavy metals. Comput. Geosci......

Wolfgang Raskob; Thierry Schneider; Florian Gering; Sylvie Charron; Mark Zhelezniak; Spyros Andronopoulos; Gilles Heriard-Dubreuil; Johan Camps

2014-09-01T23:59:59.000Z

146

A process for evaluation and state approval of an emergency response atmospheric dispersion model for Rocky Flats, Colorado  

SciTech Connect

This document contains copies of the vugraphs used by C. R. Hodgin for the November 6, 1991 presentation summarizing the process to be used for evaluation of the Emergency Response Dispersion Model. (MHB)

Hodgin, C.R.

1991-11-06T23:59:59.000Z

147

Radiological worker training  

SciTech Connect

This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

NONE

1998-10-01T23:59:59.000Z

148

Drill Program Ensures Emergency Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

underground event. Drill scenarios have included a full evacuation of the WIPP underground facility and responding to radiological incidents and a variety of emergencies on the...

149

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

150

Review of the source term algorithm for emergency response at the Savannah River Site  

SciTech Connect

The purpose of this work was to verify the Source Term Setup Module of the Reactor Accident Program (RAP) which is used to perform environmental consequence assessments during emergency response situations at the Savannah River Site (SRS). The Source Term Setup Module is that portion of the program that estimates the source term based on either an input number of melted assemblies or a derived number of melted assemblies based on the Total Stack Activity Monitor (TSAM) response. In order to verify the code, the following items were completed: a review of isotope and fuel specific data by examining the original literature, a complete derivation of all equations employed in the module, and a comparison study of hand calculations with computer results.

Simpkins, A.A.; O'Kula, K.R.; Hunter, C.H.

1992-01-01T23:59:59.000Z

151

Review of the source term algorithm for emergency response at the Savannah River Site  

SciTech Connect

The purpose of this work was to verify the Source Term Setup Module of the Reactor Accident Program (RAP) which is used to perform environmental consequence assessments during emergency response situations at the Savannah River Site (SRS). The Source Term Setup Module is that portion of the program that estimates the source term based on either an input number of melted assemblies or a derived number of melted assemblies based on the Total Stack Activity Monitor (TSAM) response. In order to verify the code, the following items were completed: a review of isotope and fuel specific data by examining the original literature, a complete derivation of all equations employed in the module, and a comparison study of hand calculations with computer results.

Simpkins, A.A.; O`Kula, K.R.; Hunter, C.H.

1992-12-31T23:59:59.000Z

152

Radiological Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1098-2008 October 2008 ------------------------------------- Change Notice 1 May 2009 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1098-2008 ii This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ iii DOE-STD-1098-2008 Change Notice 1: DOE-STD-1098-2008, Radiological Control Standard Section/page/paragraph Change Section 211, page 2-3, paragraph 1 Add new paragraph 1: "Approval by the appropriate Secretarial Officer or designee should be required

153

Hospital Triage in First Hours After Nuclear or Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

154

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

155

DE-SOL-0003174 Critical Capabilities for Emergency Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

3174 Critical Capabilities for Emergency Operations 3174 Critical Capabilities for Emergency Operations Training Academy (EOTA) Support 1. Interested parties shall have experience in: a. Developing training for emergency operations type programs such as response to radiological or nuclear incidents, emergency management and preparation, exercises (full scale through table top), continuity of operations, or other related programs, b. Coordinating consultants and instructional design staff to integrate content provided by the consultants with the course development process employed by instructional designers for technical training development, c. conducting comprehensive analyses such as needs assessments, training effectiveness evaluations, job analyses, functional analyses, task analyses, etc.,

156

THE RABIT: A RAPID AUTOMATED BIODOSIMETRY TOOL FOR RADIOLOGICAL TRIAGE  

E-Print Network (OSTI)

-priority need in an environment of heightened concern over possible radiological or nuclear terrorist attacks (Pellmar and Rockwell 2005). The detonation of even a small dirty bomb (radiological dispersal device of radiological injuries. A small improvised nuclear device (IND) would produce a major health emergency

157

Hazardous Materials Incident Response Procedure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA's 29 CFR 1910.120(q), for facility response. This model has been adopted and applied to work for response to transportation accidents involving radioactive material or other hazardous materials incidents Hazardous Materials Incident Response Procedure.docx More Documents & Publications Handling and Packaging a Potentially Radiologically Contaminated Patient Decontamination Dressdown at a Transportation Accident Involving Radioactive Material Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

158

Nuclear Emergency Search Team  

Directives, Delegations, and Requirements

To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

1991-09-20T23:59:59.000Z

159

Dental Radiology  

Science Journals Connector (OSTI)

Dental radiology is the core diagnostic modality of veterinary dentistry. Dental radiographs assist in detecting hidden painful pathology, estimating the severity of dental conditions, assessing treatment options, providing intraoperative guidance, and also serve to monitor success of prior treatments. Unfortunately, most professional veterinary training programs provide little or no training in veterinary dentistry in general or dental radiology in particular. Although a technical learning curve does exist, the techniques required for producing diagnostic films are not difficult to master. Regular use of dental x-rays will increase the amount of pathology detected, leading to healthier patients and happier clients who notice a difference in how their pet feels. This article covers equipment and materials needed to produce diagnostic intraoral dental films. A simplified guide for positioning will be presented, including a positioning cheat sheet to be placed next to the dental x-ray machine in the operatory. Additionally, digital dental radiograph systems will be described and trends for their future discussed.

Tony M. Woodward

2009-01-01T23:59:59.000Z

160

Radiological training for tritium facilities  

SciTech Connect

This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

NONE

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of ANSI N42-17A by investigating the effects of temperature and humidity on the response of radiological instruments  

SciTech Connect

The American National Standards Institute (ANSI) N42.17A-1989 standard`s performance criteria and test methods has been evaluated by investigating the effects of temperature and humidity on the response of 105 portable direct-reading radiological instruments (45 beta-gamma survey meters, 32 neutron rem meters, 1O alpha contamination and 18 tritium-in-air monitors). The US Department of Energy (DOE) mandates the use of ANSI standards for the calibration and performance testing of radiological instruments, and requires that instruments be appropriate for existing environmental conditions. Random tests conducted in an environmental chamber determined the effects of temperatures ranging from {minus}10{degree}C to 50{degree}C and humidity at levels of 40% RH and 95% RH on the response of a cross section of instruments used in routine health physics operations at Los Alamos. The following instruments were tested: Eberline RO-2 and RO-C ionization chambers, Eberline E-530 survey meter with the Model HP-C stainless steel Geiger-Muller (G) wall probe, Eberline PIC-6A and PIC-6B ion chambers, Eberline ESP-1 survey meter with the Model HP-260 pancake G detector, Ludlum 3 survey meter with the Model 44-6 stainless steel G wall probe, Eberline ESP-1, ESP-2 and PAR-4 survey meters with the neutron rem detector, Health Physics Instruments 2080 survey meter with the moderator detector, Ludlum 139 survey meter with the Model 43-32 air-proportional alpha detector, and the Overhoff 394-C, Johnston J-111 and J-110 tritium monitors. Experimental results encompass 1128 temperature tests (1269-hours exposure in the chamber) and 735 humidity tests (1890-hours exposure in the chamber). The study shows the standard`s test requirement for temperature at or near the extreme conditions, and the standard`s test requirement for humidity at 95% RH may be too restrictive for instruments used in the work environment.

Clement, R.S.

1995-06-01T23:59:59.000Z

162

Emergencies and Emergency Actions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergencies and Emergency Actions Emergencies and Emergency Actions Emergencies and Emergency Actions Selected documents on the topic of Emergencies and Emergency Actions under NEPA. May 12, 2010 Memorandum for Heads of Federal Departments and Agencies: Emergencies and NEPA With this Memorandum, the Council on Environmental Quality reiterates its previous guidance on the National Environmental Policy Act (NEPA) environmental review of proposed emergency response actions.This memorandum clarifies that the previous guidance remains applicable to current situations and provides guidance on required agency environmental review. September 8, 2005 Memorandum for Federal NEPA Contacts: Emergency Actions and NEPA This Council on Environmental Quality memorandum provides general information on (1) the response to hurricane Katrina;

163

RADIOLOGICAL SURWY  

Office of Legacy Management (LM)

111 111 j -,~ ' - et- -*\. _(a v - r\lfs+8 plY 45+ c iill I r\l&; p) :;!I..; .: .. :,, ,m -,< :' - ' ec-. :-*% ". _(.*- ~ . . : : : ' .. : : : .. ..:, . . . :. : : ,, :;I;:~~:; :.:.!,;;y ' 1;: .: 1. .., ; ' . :. : c :...: .;: .: RADIOLOGICAL SURWY - RADIoL~BI~L.::.~~~y:- : ::: 1 ,: . . : : :: :. :..." - OFi~:,~~~~:poRTI~~~ 0J-g ,m_ ,. :. y.;,:. ,.:I; .:. F~~~~~~as~~~ ~~~~~~~:~~~~ :co~~~:~~~~~; ;, .. ; I : : ::.. :.. :. - ,B~~Lo,.~-~~~. ..; .:I ,,,, :--:.;:I:: ;' #I Y' i ' 11". .. .. ; :;: ;I, ' . 1::. J;,;. ~;_:y,;:::::; - T.J..:+~uS~~ .' .:' : : . . .. ...: .:.. : OFTHE EXCERIORPORTIONS O F THE FORIMER BLISS ANT3 LAUGHLIN STEEL COMPANY FAC' KJTy - BUFFALO,NEw YORK - T. J.VITKUS I : . . : : ' . .:. : I : : .. :. Prepaied for.:the:' 6ffice.iibfiEnvir~nmenfal Re$o&idn z . . :

164

Hybrid similarity measure for case retrieval in CBR and its application to emergency response towards gas explosion  

Science Journals Connector (OSTI)

Case retrieval is a primary step in case-based reasoning (CBR). It is important to measure the similarity between each historical case and the target case during the case retrieval process. In recent years, some methods for similarity measure with multiple ... Keywords: Attribute value, Case retrieval, Case-based reasoning (CBR), Emergency response, Gas explosion, Hybrid similarity

Zhi-Ping Fan; Yong-Hai Li; Xiaohuan Wang; Yang Liu

2014-04-01T23:59:59.000Z

165

FACT SHEET: Fusion Center Assessment emergency response, public health and private sector security personnel to understand local intelligence  

E-Print Network (OSTI)

FACT SHEET: Fusion Center Assessment emergency response, public health and private sector security, protecting against, and responding to large scale weather/natural events or terrorism. CCICADA Project on Fusion Center Assessment: A mature, fully functioning national network of fusion centers is critical

166

Women in pediatric radiology  

E-Print Network (OSTI)

AM et al. (2001) Pediatric radiology at the millennium.a case study of pediatric radiology. J Am Coll Radiol 6:635WORKPLACE Women in pediatric radiology M. Ines Boechat # The

Boechat, M. Ines

2010-01-01T23:59:59.000Z

167

Comparative study of Dutch and German emergency-management models for near border nuclear accidents  

Science Journals Connector (OSTI)

......Dutch-German commission for nuclear facilities in the border region...radiological situation following a nuclear accident in the border region...compared or validated using datasets of experimental field campaigns...institutes are engaged in the nuclear-emergency response organisations......

Y. S. Kok; H. Eleveld; H. Schnadt; F. Gering; J. Gregor; H. Bttger; C. Salfeld; C. J. W. Twenhfel; H. A. J. M. Reinen

2005-05-01T23:59:59.000Z

168

EMERGENCY MANAGEMENT (EM)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENT (EM) MANAGEMENT (EM) OBJECTIVE EM.1 A routine drill program and emergency operations drill program, including program records, have,been established and implemented. (Core Requirement 11) Criteria 1. Emergency preparedness drills and exercises are conducted and an adequate response capability,exists. 2. Routine operations drills and exercises are conducted and an adequate response capability exists. 3. Applicable emergency management documentation (e.g., Building Emergency Plan, emergency,response procedures, Emergency Preparedness Hazards Assessment, alarm response procedures,,and emergency response procedures) has been updated to reflect implementation of the TA-55 . Approach Record Reviews: Review the emergency management documents (e.g., Building

169

Expansion of the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT EXPANSION OF THE VOLPENTEST HAZARDOUS MATERIALS MANAGEMENT AND EMERGENCY RESPONSE TRAINING AND EDUCATION CENTER HANFORD SITE, RICHLAND, WASHINGTON U.S. DEPARTMENT OF ENERGY November 2002 1 November 2002 U.S. Department of Energy Finding of No Significant Impact This page intentionally left blank. 2 November 2002 U.S. Department of Energy Finding of No Significant Impact AGENCY: U.S. Department of Energy ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1412, for expanding training and equipment testing facilities at the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center (HAMMER) on the

170

DOE/NETL's R&D Response to Emerging Coal By-Product and Water Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Response to Emerging R&D Response to Emerging Coal By-Product and Water Issues Clean Coal and Power Conference in conjunction with 2 nd Joint U.S.-People's Republic of China Conference on Clean Energy Washington, DC November 17-19, 2003 Thomas J. Feeley, III National Energy Technology Laboratory Feeley_CC&P Conf. 11/03 Electric Power Using Coal Clean Liquid Fuels Natural Gas Coal Production Environmental Control V21 Next Generation Carbon Sequestration Exploration & Production Refining & Delivery Alternative Fuels Exploration & Production Pipelines & Storage Fuel Cells Combustion Turbines NETL Plays Key Role in Fossil Energy Supply, Delivery, and Use Technologies Future Fuels Photo of hydrogen fueled car: Warren Gretz, NREL Feeley_CC&P Conf. 11/03 Innovations for Existing Plants Program

171

Environmental/Radiological Assistance Directory (ERAD)  

Energy.gov (U.S. Department of Energy (DOE))

The Environmental Radiological Assistance Directory or ERAD, developed by HS-22, serves as an assistance tool to the DOE complex for protection of the public and environment from radiation. The ERAD is a combination webinar/conference call, designed to provide DOE and its contractors a forum to share information, lessons-learned, best practices, emerging trends, compliance issues, etc. in support of radiological protection programs developed in accordance with DOE O 458.1. ERAD Presentations, Questions and Answers ERAD

172

Implementation of a Radiological Safety Coach program  

SciTech Connect

The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

Konzen, K.K. [Safe Sites of Colorado, Golden, CO (United States). Rocky Flats Environmental Technology Site; Langsted, J.M. [M.H. Chew and Associates, Golden, CO (United States)

1998-02-01T23:59:59.000Z

173

Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi  

Science Journals Connector (OSTI)

...emergence of intestinal villi 10.1073/pnas.1205669109 Katherine D. Walton asa Kolterud Michael J. Czerwinski Michael J. Bell...polarization . Development 129 : 5323 5337 . 28 Jaskoll TF Don-Wheeler G Johnson R Slavkin HC ( 1988 ) Embryonic mouse lung morphogenesis...

Katherine D. Walton; sa Kolterud; Michael J. Czerwinski; Michael J. Bell; Ajay Prakash; Juhi Kushwaha; Ann S. Grosse; Santiago Schnell; Deborah L. Gumucio

2012-01-01T23:59:59.000Z

174

Using architectures for semantic interoperability to create journal clubs for emergency response  

SciTech Connect

In certain types of 'slow burn' emergencies, careful accumulation and evaluation of information can offer a crucial advantage. The SARS outbreak in the first decade of the 21st century was such an event, and ad hoc journal clubs played a critical role in assisting scientific and technical responders in identifying and developing various strategies for halting what could have become a dangerous pandemic. This research-in-progress paper describes a process for leveraging emerging semantic web and digital library architectures and standards to (1) create a focused collection of bibliographic metadata, (2) extract semantic information, (3) convert it to the Resource Description Framework /Extensible Markup Language (RDF/XML), and (4) integrate it so that scientific and technical responders can share and explore critical information in the collections.

Powell, James E [Los Alamos National Laboratory; Collins, Linn M [Los Alamos National Laboratory; Martinez, Mark L B [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

175

NNSA Continues to Assist Vietnam in Enhancing its Nuclear/Radiological...  

National Nuclear Security Administration (NNSA)

to Assist Vietnam in Enhancing its NuclearRadiological Emergency Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

176

On-board Decision Support System for Ship Flooding Emergency Response  

Science Journals Connector (OSTI)

Abstract The paper describes a simulation system to support emergency planning decisions when ship flooding occurs. The events of grounding and collision are considered, where the risk of subsequent flooding of hull compartments is very high, and must be avoided or at least minimized. The system is based on a highly optimized algorithm that estimates, ahead in time, the progressive flooding of the compartments according to the current ship status and existing damages. Flooding times and stability parameters are measured, allowing for the crew to take the adequate measures, such as isolate or counter-flood compartments, before the flooding takes incontrollable proportions. The simulation is supported by a Virtual Environment in real-time, which provides all the functionalities to evaluate the seriousness and consequences of the situation, as well as to test, monitor and carry out emergency actions. Being a complex physical phenomena that occurs in an equally complex structure such as a ship, the real-time flooding simulation combined with the Virtual Environment requires large computational power to ensure the accuracy of the simulation results. Moreover, the distress normally experienced by the crew in such situations, and the urgent (and hopefully appropriate) required counter-measures, leave no room for inaccuracies or misinterpretations, caused by the lack of computational power, to become acceptable. For the events considered, the system is primarily used as a decision support tool to take urgent actions in order to avoid or at least minimize disastrous consequences such as oil spilling, sinking, or even loss of human lives.

J.M. Varela; J.M. Rodrigues; C. Guedes Soares

2014-01-01T23:59:59.000Z

177

Puget Sound Operational Forecast System - A Real-time Predictive Tool for Marine Resource Management and Emergency Responses  

SciTech Connect

To support marine ecological resource management and emergency response and to enhance scientific understanding of physical and biogeochemical processes in Puget Sound, a real-time Puget Sound Operational Forecast System (PS-OFS) was developed by the Coastal Ocean Dynamics & Ecosystem Modeling group (CODEM) of Pacific Northwest National Laboratory (PNNL). PS-OFS employs the state-of-the-art three-dimensional coastal ocean model and closely follows the standards and procedures established by National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). PS-OFS consists of four key components supporting the Puget Sound Circulation and Transport Model (PS-CTM): data acquisition, model execution and product archive, model skill assessment, and model results dissemination. This paper provides an overview of PS-OFS and its ability to provide vital real-time oceanographic information to the Puget Sound community. PS-OFS supports pacific northwest regions growing need for a predictive tool to assist water quality management, fish stock recovery efforts, maritime emergency response, nearshore land-use planning, and the challenge of climate change and sea level rise impacts. The structure of PS-OFS and examples of the system inputs and outputs, forecast results are presented in details.

Yang, Zhaoqing; Khangaonkar, Tarang; Chase, Jared M.; Wang, Taiping

2009-12-01T23:59:59.000Z

178

An overview of dental radiology: a primer on dental radiology  

SciTech Connect

To provide medical and scientific background on certain selected technologies generally considered to be of particular significance, the National Center for Health Care Technology (NCHCT) has commissioned a series of overview papers. This is one of several projects entered into jointly by the Bureau of Radiological Health (BRH) and NCHCT relating to the use of radiation for health care. Dental radiation protection has been a long-time interest of BRH. Both past and on-going efforts to minimize population radiation exposure from electronic products have included specific action programs directed at minimizing unnecessary radiation exposure to the population from dental radiology. Current efforts in quality assurance and referral criteria are two aspects of NCHCT's own assessment of this technology which are described within the larger picture presented in this overview. The issues considered in this document go beyond the radiation exposure aspects of dental x-ray procedures. To be responsive to the informational needs of NCHCT, the assessment includes various other factors that influence the practice of dental radiology. It is hoped this analysis will serve as the basis for planning and conducting future programs to improve the practice of dental radiology.

Manny, E.F.; Carlson, K.C.; McClean, P.M.; Ra1hlin, J.A.; Segal, P.

1980-11-07T23:59:59.000Z

179

1. Introduction. The importance of rapid ambulance response to emergency medical crises has been  

E-Print Network (OSTI)

of bystander-initiated CPR increased2 . A study performed in King County, Washington determined survival rate is on the spatial-temporal pattern of response times in Santa Barbara County, California, during 2006 time in a Southwestern metropolitan county of population 620,000 was correlated with myocardial

Schoenberg, Frederic Paik (Rick)

180

Physics-based simulation of the impact of demand response on lead-acid emergency power availability in a datacenter  

Science Journals Connector (OSTI)

Abstract This paper uses a one-dimensional, physics-based model of a valve-regulated lead-acid (VRLA) battery to examine the impact of demand response on uninterruptible power supply (UPS) availability in a datacenter. Datacenters are facilities that provide services such as cloud computing, web search, etc. They are also large electricity consumers. An energy-efficient 15MW datacenter, for instance, may pay $1m per month for electricity. Datacenters often utilize VRLA batteries to ensure high reliability in serving their computational demand. This motivates the paper's central question: to what extent does the use of datacenter UPS batteries for demand response affect their availability for their primary purpose (namely, emergency power)? We address this question using a physics-based model of the coupled diffusion-reaction dynamics of VRLA batteries. We discretize this model using finite differences, and simulate it for different datacenter battery pack sizes. The results show that for a typical datacenter power demand profile, a VRLA battery pack sized for UPS functionality can provide demand response with only a minimal loss of UPS availability.

A. Mamun; D. Wang; I. Narayanan; A. Sivasubramaniam; H.K. Fathy

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor Safety 3 C #12;Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2013-2014 Page 1

Sheridan, Scott

182

ORISE: REAC/TS trains emergency responders in preparation for...  

NLE Websites -- All DOE Office Websites (Extended Search)

REACTS trains emergency responders in preparation for Pan American Games Workshop in Mexico helps medical professionals prepare for treating victims of radiological or nuclear...

183

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEASUREMENT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix B December 2008 Reaffirmed 2013 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ . ii Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 Foreword This Handbook describes a recommended implementation process for core training as outlined in

184

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix A Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 Foreword This Handbook describes an implementation process for training as recommended in

185

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix A Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 Foreword This Handbook describes an implementation process for training as recommended in

186

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix C December 2008 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008

187

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix C December 2008 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008

188

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Considerations for First Aid Radiological Considerations for First Aid Study Guide 2.15-1 Course Title: Radiological Control Technician Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after medical personnel have arrived at the scene. i 2.15.04 List the requirements for treatment and transport of contaminated injured personnel at your facility. INTRODUCTION "Standard first aid is applied prior to contamination control whenever it is considered to have life-saving value, or is important to the patient for relief of pain or prevention of

189

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Radiological Considerations for First Aid 5 Radiological Considerations for First Aid Instructor's Guide 2.15-1 Course Number: Radiological Control Technicians Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after medical personnel have arrived at the scene. L 2.15.04 List the requirements for treatment and transport of contaminated injured personnel at your facility. References: 1. Basic Radiation Protection Technology (2nd edition) - Daniel A. Gollnick 2. Operational Health Physics Training - H. J. Moe

190

Development of the table of initial isolation distances and protective action distances for the 2004 emergency response guidebook.  

SciTech Connect

This report provides technical documentation for values in the Table of Initial Isolation and Protective Action Distances (PADs) in the 2004 Emergency Response Guidebook (ERG2004). The objective for choosing the PADs specified in the ERG2004 is to balance the need to adequately protect the public from exposure to potentially harmful substances against the risks and expenses that could result from overreacting to a spill. To quantify this balance, a statistical approach is adopted, whereby the best available information is used to conduct an accident scenario analysis and develop a set of up to 1,000,000 hypothetical incidents. The set accounts for differences in containers types, incident types, accident severity (i.e., amounts released), locations, times of day, times of year, and meteorological conditions. Each scenario is analyzed using detailed emission rate and atmospheric dispersion models to calculate the downwind chemical concentrations from which a 'safe distance' is determined. The safe distance is defined as the distance downwind from the source at which the chemical concentration falls below health protection criteria. The American Industrial Hygiene Association's Emergency Response Planning Guideline Level 2 (ERPG-2) or equivalent is the health criteria used. The statistical sample of safe distance values for all incidents considered in the analysis are separated into four categories: small spill/daytime release, small spill/nighttime release, large spill/daytime release, and large spill/nighttime release. The 90th-percentile safe distance values for each of these groups became the PADs that appear in the ERG2004.

Brown, D. F.; Freeman, W. A.; Carhart, R. A.; Krumpolc, M.; Decision and Information Sciences; Univ. of Illinois at Chicago

2005-09-23T23:59:59.000Z

191

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders  

Energy.gov (U.S. Department of Energy (DOE))

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders Daniel Blumenthal*, U.S. Department of Energy ; John Crapo, Oak Ridge Institute for Science and Education; Gerard Vavrina, U.S. Department of Energy; Katharine McLellan McLellan, U.S. Department of Energy; Michael J. Gresalfi, Oak Ridge National Laboratory Abstract: In response to a radiological or nuclear (R/N) emergency, Incident Command and the associated response community will require requisite technical expertise, and the application of appropriate decision-support tools, and derivative products in order to effectively manage response operations. Unlike the spectrum of natural disasters which occur with some frequency, and which our nations first responder community has great familiarity with, an emergency that includes an R/N element, whether initiated by an accidental or manmade event, is at best an infrequent occurrence and generally not an operational emergency response experience most of our nations regional, state and local first responder communities have participated in. The Unified Resolve 2014 annual exercise, conducted by the National Capital Region's Incident Management Team (NCR IMT) during March, 2014, provided the U.S. Department of Energys Office of Emergency Response with an ideal opportunity to pilot and asses a proposed R/N operational support position, designed to provide state and local incident command with technical subject matter expertise within both the planning and operational elements of both area and unified command. This proposed cadre of R/N technical specialists, volunteers willing to support their home regions state and local incident commands when facing an R/N emergency, are presently referred to as Radiological Operations Support Specialists (ROSS). The role of the ROSS cadre is envisioned to be an on-scene R/N subject matter expert to Incident Command, to provide both adaptive planning support and operational advice, with respect to a wide range of R/N modeling, measurement, and analysis capabilities, decision-tools and products available from across the Federal community, to include both DOE, EPA and others. The ROSS cadre would include personnel who are already radiation professionals, to include health physicists and others. They would receive additional training in the specifics of radiological emergency response. The skills include knowing what Federal assets are available to help local responders, how do the data and modeling products provided by these Federal assets support local decision making, and how do the radiological issues impact or complicate local decision making. The exercise helped to define the role of this specialist, additional training required, and the types of data products needed by incident management personnel. The goal is to develop a nationwide cadre of local experts who can immediately support the local response to a radiological incident before any Federal expertise has time to arrive.

192

Panoramic Radiology: Endodontic Considerations  

Science Journals Connector (OSTI)

Endodontics is concerned with the morphology, physiology, and pathology of the human dental pulp and periradicular tissues. Radiology is especially important for diagnosis in the...

2007-01-01T23:59:59.000Z

193

Aerial Measuring System (AMS) Baseline Surveys for Emergency Planning  

SciTech Connect

Originally established in the 1960s to support the Nuclear Test Program, the AMS mission is to provide a rapid and comprehensive worldwide aerial measurement, analysis, and interpretation capability in response to a nuclear/radiological emergency. AMS provides a responsive team of individuals whose processes allow for a mission to be conducted and completed with results available within hours. This presentation slide-show reviews some of the history of the AMS, summarizes present capabilities and methods, and addresses the value of the surveys.

Lyons, C

2012-06-04T23:59:59.000Z

194

EMERGENCY PREPAREDNESS (EMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EMP) EMP) OBJECTIVE EMP.1 A routine drill program and emergency operations drill program, including program records, have been established and implemented. (CR-11) Scope: Operations and emergency drill programs, as affected by the SWS, are within the scope of this ORR. Criteria * Emergency preparedness drills and exercises are conducted and an adequate response capability exists. (DOE Order 151.1; DOE Order 5480.20A, Chapter I) * Routine operations drills and exercises are conducted and an adequate response capability exists. (DOE Order 425.1B) * Applicable emergency management documentation (e.g., Building Emergency Plan, emergency response procedures, Emergency Preparedness Hazards Assessment, alarm response procedures, and emergency response procedures) has been updated to

195

Notice of Emergency Action - Emergency Order To Resume Limited...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Action - Emergency Order To Resume Limited Operation at the Potomac River Generating Station, Alexandria, VA, in Response to Electricity Reliability Concerns in...

196

Radiation source rate estimation through data assimilation of gamma dose rate measurements for operational nuclear emergency response systems  

Science Journals Connector (OSTI)

This paper presents an evaluation of an innovative data assimilation method that has been recently developed in NCSR Demokritos for estimating an unknown emission rate of radionuclides in the atmosphere, with real-scale experimental data. The efficient algorithm is based on the assimilation of gamma dose rate measured data in the Lagrangian atmospheric dispersion model DIPCOT and uses variational principles. The DIPCOT model is used in the framework of the nuclear emergency response system (ERS) RODOS. The evaluation is performed by computational simulations of dispersion of Ar-41 that was emitted routinely by the Australian Nuclear Science and Technology Organisation's (ANSTO) previous research reactor, HIFAR, located in Sydney, Australia. In this paper the algorithm is evaluated against a more complicated case than the others used in previous studies: there was only one monitoring station available each day and the site topography is characterised as moderately complex. Overall the estimated release rate approaches the real one to a very satisfactory degree as revealed by the statistical indicators of errors.

Vasiliki Tsiouri; Spyros Andronopoulos; Ivan Kovalets; Leisa L. Dyer; John G. Bartzis

2012-01-01T23:59:59.000Z

197

ORISE: DeepwaterHorizon and Nuclear & Radiological Incidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Wi l l i a m H a l e y Wi l l i a m H a l e y B r a d P o t t e r C o mm o n C h a l l e n g e s a n d S o l u t i o n s J u n e 2 0 1 1 D e e p w a t e r H o r i z o n a n dN u c l e a r & R a d i o l o g i c a l I n c i d e n t s The 2010 Deepwater Horizon oil spill shares many of the same challenges associated with a radiological incident like the one considered in the Empire 09 1 exercise or even a much larger nuclear incident. By analyzing experiences during Deepwater Horizon, these challenges can be identified by the interagency in advance of a radiological or nuclear emergency and solutions made available. Establishing and staffing a UnifiEd Command strUCtUrE The demands of Deepwater Horizon challenged the traditional response construct envisioned by national planning systems.

198

DOE-HDBK-1141-2001; Radiological Assessor Training, Student's Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Student's Guide Notes Module 4-1 I. Introduction II. Radiological Control Program A. Overall program The Radiological Control Program consists of the commitments, policies, and procedures that are administered by a site or facility to meet the EH Health and Safety Policy. The Radiation Protection Program required by 10 CFR Part 835 is an element of the overall Radiological Control Program. The Radiological Control Program should address the following: * Requirements * Responsibilities * Programs/procedures * Assessments B. Size of the program Radiological Control Programs vary in size. There are several factors that may affect the magnitude of a Radiological Control Program. The specific mission, types and quantities of

199

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7of 9 7of 9 Radiological Control Technician Training Practical Training Phase II Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii Table of Contents Page Introduction.............................................................................. ......1 Development of Job Performance Measures (JPMs)............................ .....1 Conduct Job Performance Evaluation...................................................3 Qualification Area: Radiological Instrumentation.......................................5 Task 2-1.................. ..................................................................... 5 Objective.............................................................................. 5

200

Comprehensive Emergency Management System  

Directives, Delegations, and Requirements

The Order establishes policy and assigns roles and responsibilities for the Department of Energy (DOE) Emergency Management System. Cancels DOE O 151.1B.

2005-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE standard: Radiological control  

SciTech Connect

The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

Not Available

1999-07-01T23:59:59.000Z

202

Radiological Worker Training - Radiological Control Training for Supervisors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A December 2008 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 iii Foreword This Handbook describes an implementation process for training as recommended in

203

OPERATIONAL GUIDANCE FOR RADIATION EMERGENCY RESPONSE ORGANISATIONS IN EUROPE FOR USING BIODOSIMETRIC TOOLS DEVELOPED IN EU MULTIBIODOSE PROJECT  

Science Journals Connector (OSTI)

......Radiation Surveillance, Radiation and Nuclear Safety Authority, Helsinki...for most low-LET radiation qualities. THE MULTIBIODOSE SOFTWARE The Guidance briefly...K. Multibiodose Radiation Emergency Triage Categorization Software. Health Phys......

Alicja Jaworska; Elizabeth A. Ainsbury; Paola Fattibene; Carita Lindholm; Ursula Oestreicher; Kai Rothkamm; Horst Romm; Hubert Thierens; Francois Trompier; Philippe Voisin; Anne Vral; Clemens Woda; Andrzej Wojcik

2014-10-01T23:59:59.000Z

204

ORISE: Health Physics in Radiation Emergencies | REAC/TS Continuing Medical  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Physics in Radiation Emergencies Health Physics in Radiation Emergencies Dates Scheduled Register Online February 24-28, 2014 June 9-13, 2014 Fee: $200 Maximum enrollment: 24 32 hours American Academy of Health Physics credit This 4½-day course is designed primarily for Health Physicists (HP), Medical Physicists (MP), Radiation Safety Officers (RSO) and others who have radiation dose assessment and/or radiological control responsibilities. The course presents an advanced level of information on radiological/ nuclear event reconstruction, dose assessments/estimations and integration of the physics discipline with medicine. The course provides the basis for HPs, MPs and RSOs to interact with and provide advice and recommendations to medical practitioners for the diagnosis and treatment of radiation injuries and illnesses.

205

Radiological Assessor Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-2008 1-2008 August 2008 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document is available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techs\ Foreword This Handbook describes an implementation process for training as recommended in Implementation Guide G441.1-1B, Radiation Protection Programs, March 2007, and as outlined in DOE- STD- 1098-99, CN1, March 2005, DOE Radiological Control (the Radiological Control Standard - RCS). The Handbook is meant to assist those individuals within the Department of

206

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTRT] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

207

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 25-Oct-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

208

Roadmap: Radiologic Imaging Sciences -Radiation Therapy (with AAS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Radiation Therapy (with AAS Radiologic Technology) ­ Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

209

Roadmap: Radiologic Imaging Sciences -Radiation Therapy (with AAS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Radiation Therapy (with AAS Radiologic Technology) ­ Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

210

Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester-by-semester plan of study

Sheridan, Scott

211

Radiology of thoracic diseases  

SciTech Connect

This book presents the essential clinical and radiologic findings of a wide variety of thoracic diseases. The authors include conventional, CT and MR images of each disease discussed. In addition, they present practical differential diagnostic considerations for most of the radiographic findings or patterns portrayed.

Swensen, S.J.; Pugatch, R.D.

1989-01-01T23:59:59.000Z

212

ORISE Radiation Emergency Assistance Center/Training Site (REAC/TS):  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities REAC/TS offers medical management of radiation incidents, consultation and training in radiation emergency medicine REAC/TS staff member providing medical assistance Recognized around the world for its expertise in the medical management of radiation incidents, the Radiation Emergency Assistance Center/Training Site (REAC/TS) at the Oak Ridge Institute for Science and Education (ORISE) provides radiation incident response, consultation and preparedness training, and participates in simulation exercises to address the medical aspects of human exposure to ionizing radiation. As REAC/TS continues to establish international partnerships through education, exercises and conferences, the group is strengthening radiological emergency preparedness and response around the globe. REAC/TS

213

Hydrogen Emergency Response Training for First Responders - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

52 52 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Monte R. Elmore Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd. Richland, WA 99352 Phone: (509) 372-6158 Email: monte.elmore@pnnl.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractors: * Jennifer Hamilton, California Fuel Cell Partnership (CaFCP), Sacramento, CA * Hanford Fire Department, Richland, WA * Hazardous Materials Management and Emergency

214

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1131-2007 iii Foreword This Handbook describes an implementation process for core training as recommended in chapter 14, Radiation Safety Training, of Implementation Guide G44.1B, Radiation Protection Programs Guide, and as outlined in the DOE Radiological Control Standard [RCS - DOE-STD-1098-99, Ch. 1]. The Handbook is meant to assist those individuals

215

Radiological Assessor Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

141-2001 141-2001 April 2001 Change Notice No. 1 and Reaffirmation January 2007 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Assessor Training DOE-HDBK-1141-2001 iii

216

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank DOE-HDBK-1122-2009 iii Table of Contents Page Introduction................................................................................................................................1 Facility Job Performance Measures ........................................................................................2 Final Verification Signatures ....................................................................................................3 DOE-HDBK-1122-2009 iv

217

Radiological Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Part 2 of 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank. DOE-HDBK-1122-2009 iii Table of Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Purpose of Qualification Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Phase I: RCT Academics Training . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1 Phase II: RCT Core Practical (JPMs) Training . . . . . . . . . . . . . . . . . .. . . . . . . 1

218

Radiological Worker Training - Radiological Contamination Control for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B B December 2008 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ . Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 iii Foreword This Handbook describes a recommended implementation process for core training as outlined in

219

Emergency Response and Phone EMERGENCY TELEPHONE NUMBERS  

E-Print Network (OSTI)

extinguisher. Do not use water on electrical fires. #12;154 BUILDING EVACUATION When the alarm sounds, walk and may lose electric power. Be aware of alternate exits from the building. Before leaving the work. · conscious and ambulatory STAFF, arrange for transportation by car or ambulance to the hospital or doctor

220

Power Marketing Administration Emergency Management Program Manual  

Directives, Delegations, and Requirements

This Manual establishes emergency management policy and requirements for emergency planning, preparedness, readiness assurance, and response for the Department's Power Marketing Administrations. Cancels DOE O 5500.11.

2008-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nevada National Security Site Radiological Control Manual  

SciTech Connect

This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

Radiological Control Managers Council

2012-03-26T23:59:59.000Z

222

Nuclear & Radiological Activity Center (NRAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Radiological Activity Center (NRAC) Where nuclear research and deployment capabilities come together to solve nuclear nonproliferation challenges. Skip Navigation Links...

223

Panoramic Radiology: Oncologic Dentistry Considerations  

Science Journals Connector (OSTI)

Panoramic radiology can serve as an important input supporting ... they are also important (1) for planning dental treatment in preparation of the oral cavity...

2007-01-01T23:59:59.000Z

224

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice No. 1 2009 Change Notice No. 2 2011 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93 "Ionizing Radiation Exposure of the Population of the United States". NCRP Report No. 160 "Ionizing Radiation Exposure of the Population

225

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

98 98 October 1998 Change Notice No. 1 June 2001 Change Notice No. 2 December 2003 Reaffirmation with Errata May 2004 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-98 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration,

226

Radiological standards and calibration laboratory capabilities  

SciTech Connect

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest Laboratory (PNL), performs calibrations and upholds reference standards necessary to maintain traceability to national radiological standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE sites, and research programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site`s 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, and thermoluminescent and radiochromic dosimetry. The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, and a beta standards laboratory used for beta energy response studies and beta reference calibrations. Calibrations are routinely performed for personnel dosimeters, health physics instrumentations, photon transfer standards and alpha, beta and gamma field sources used throughout the Hanford Site. This report describes the standards and calibrations laboratory. Photographs that accompany the text appear in the Appendix and are designated Figure A.1 through A.29.

Goles, R.W.

1995-01-01T23:59:59.000Z

227

Radiological Risk Assessment for King County Wastewater Treatment Division  

SciTech Connect

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

Strom, Daniel J.

2005-08-05T23:59:59.000Z

228

2013 Environmental/Radiological Assistance Directory (ERAD) Presentations  

Energy.gov (U.S. Department of Energy (DOE))

November 2013 Derived Intervention and Response Levels for Tritium Oxide at the Savannah River Site May 2013 THE MARSAME METHODOLOGY Fundamentals, Benefits, and Applications March 2013 Working to Keep our Shipments Safe, Secure and Economical ANL Facility Decommissioning Training Program January 2013 DOE Corporate Operating Experience Program Radiological Reporting Annual Site Environmental Reports (ASERs) & HSS Environmental and Radiation Protection Performance Dashboards November 2012 Environmental Measurements in an Emergency: This is not a Drill! BGRR D&D Presentation for the DOE ERAD Working Group September 2012 Development of Authorized Limits for Portsmouth Oil Inventory Disposition Development of Authorized Limits for Portsmouth Oil Inventory Disposition Development of Authorized Limits for Portsmouth Oil Inventory Disposition Clearance of Real and Personal Property Under DOE Radiation Protection Directive DOE Order 458.1 June 2012 RESRAD Codes for ERAD June 27, 2012 Florida International University (FIU) D&D Knowledge Management Information Tool, June 27, 2012 May 2012 Integrated Cloud Based Environmental Data Management System DOE Order 458.1, Radiation Protection of the Public and the Environment

229

Handling and Packaging a Potentially Radiologically Contaminated...  

Office of Environmental Management (EM)

Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical ExaminerCoroner...

230

Multi-wavelength high-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response  

E-Print Network (OSTI)

State-of-the-art solar instrumentation is revealing magnetic activity of the Sun with unprecedented resolution. Observations with the 1.6m New Solar Telescope of the Big Bear Solar Observatory are making next steps in our understanding of the solar surface structure. Granular-scale magnetic flux emergence and the response of the solar atmosphere are among the key research. As part of a joint observing program with NASA's IRIS mission, the NST observed active region NOAA 11810 in photospheric and chromospheric wavelengths. Complimentary data are provided by SDO and Hinode space-based telescopes. The region displayed a group of solar pores, in the vicinity of which we detect a small-scale buoyant horizontal magnetic flux tube causing abnormal granulation and interacting with the pre-existing ambient field in upper atmospheric layers. Following the expansion of distorted granules at the emergence site, we observed a sudden appearance of an extended surge in the HeI data. IRIS catched ejection of a hot plasma jet...

Dominguez, Santiago Vargas; Yurchyshyn, Vasyl

2014-01-01T23:59:59.000Z

231

Emergency Readiness Assurance Plans (ERAPs)  

Directives, Delegations, and Requirements

This volume describes the assessments and documentation that would ensure that stated response capabilities are sufficient to implement emergency plans. Canceled by DOE G 151.1-3.

1997-08-21T23:59:59.000Z

232

This letter is in response to the Department of Energy Emergency Order to Resume Limited Operation at the Potomac River Genera  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 th , 2007 Anthony J. Como Permitting, Siting, and Analysis Division Office of Electricity Delivery and Energy Reliability Department of Energy 1000 Independence Avenue, SW Washington, DC 20585-0119 Dear Mr.Como: This letter is in response to the Department of Energy Special Environmental Analysis for Actions Taken under the U.S Department of Energy Emergency Orders Regarding Operation of the Potomac River Generating Station in Alexandria, Virginia. Air Quality impacts This study neglects to report the spatial distribution of modeled pollutant concentrations The only information provided in this regard is that maximum modeled pollutant concentrations occur in Alexandria. Were there modeled NAAQS exceedances elsewhere, such as in the District of Columbia ?

233

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 December 2008 Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 2 DOE-HDBK-1130-2008 Original Change Throughout Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement document.

234

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Measurement Not Measurement Sensitive DOE-HDBK-1131-2007 December 2007_______ Change Notice 1 Reaffirmed 2013 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a member of the general population is about 360 millirem/year. The average annual radiation dose to a member of the general population is about 620 millirem/year. Part 2 page 5 Natural background radiation is by far the

235

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

_______ _______ Change Notice 1 June 2009 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a member of the general population is about 360 millirem/year. The average annual radiation dose to a member of the general population is about 620 millirem/year. Part 2 page 5 Natural background radiation is by far the

236

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 December 2008 Change Notice 1 June 2009 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1130-2008 Original Change Part 2 Module 2 page 17 Medical radiation sources (total average dose ~ 54 mrem/yr) 1) X rays (total average dose ~ 40mrem/yr) a) X rays are similar to gamma rays; however, they originate outside the nucleus.

237

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 December 2008 Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 2 DOE-HDBK-1130-2008 Original Change Throughout Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement document.

238

For S Radiological  

Office of Legacy Management (LM)

? . ? . -. .- * -* (\/If.r.-5- .* , d- For S Radiological ' mer Bridgepo pecial Metals Adrian, Survey of the Irt Brass Company Extrusion Plant, Michigan / /f?t' . ( F. F. Haywood H. W. Dickson W. D. Cottrell W. H. Shinpaugh _ : I., _-. .I ( ._ rc/ DOE/EV-0005128 ORNL-57 13 / J. E. Burden 0. R. Stone R. W. Doane W. A. Goldsmith 4 , Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A06 Microfiche A01 This report was prepared as an account of work sponsored by an agency of the UnitedStatesGovernment. Neither theUnitedStatesGovernment noranyagency thereof, nor any of their employees, makes any warranty, express or implied, or

239

Case Based Dental Radiology  

Science Journals Connector (OSTI)

Dental radiology is quickly becoming integral to the standard of care in veterinary dentistry. This is not only because it is critical for proper patient care, but also because client expectations have increased. Furthermore, providing dental radiographs as a routine service can create significant practice income. This article details numerous conditions that are indications for dental radiographs. As you will see, dental radiographs are often critical for proper diagnosis and treatment. These conditions should not be viewed as unusual; they are present within all of our practices. When you choose not to radiograph these teeth, you leave behind painful pathology. Utilizing the knowledge gained from dental radiographs will both improve patient care and increase acceptance of treatment recommendations. Consequently, this leads to increased numbers of dental procedures performed at your practice.

Brook A. Niemiec

2009-01-01T23:59:59.000Z

240

Standardized radiological dose evaluations  

SciTech Connect

Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

Peterson, V.L.; Stahlnecker, E.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

_______ _______ Change Notice 1 June 2009 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93 "Ionizing Radiation Exposure of the Population of the United States". NCRP Report No. 160 "Ionizing Radiation Exposure of the Population of the United States". Part 3 1.05-9 4) U.S. national average from diagnostic

242

Criticality Safety Basics for INL Emergency Responders  

SciTech Connect

This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know ).

INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

Valerie L. Putman

2012-08-01T23:59:59.000Z

243

Emergency Staff Before an emergency  

E-Print Network (OSTI)

that need special attention Special Collections Declaration Form 5. Conduct an inspection of your building, an emergency Emergency Operations Plan (EOP) Emergency Action Plan (EAP) Respond, Recover, and Mitigate to the Incident Commander (or Emergency Operations Center) Incident Command System (ICS) training 10. Provide

244

Facility location and multi-modality mass dispensing strategies and emergency response for biodefence and infectious disease outbreaks  

Science Journals Connector (OSTI)

Mass dispensing for medical prophylaxis and treatment of the general population requires rapid establishment of a network of dispensing sites and health facilities that are flexible, scalable and sustainable. In this article, we describe a systems approach to analyse mass dispensing of countermeasures, and present a set of powerful modelling and computational tools to assist in strategic and operational planning. Facility location models are used to determine the number of dispensing sites required. Our models account for variable population densities, the maximum distance individuals should have to travel, the types of private and public facilities available and the availability of critical staff to man the point-of-dispensing facilities (PODs). Large-scale simulation is employed to model the stochastic service and dynamic flow behaviour within PODs; and optimisation is interwoven to determine appropriate staffing levels for efficient operations logistics. A cost??effective mass dispensing network for anthrax prophylaxis involving a metropolitan area with over 5 million people is presented. The study reveals that: (1) the sharing of labour resources across counties and districts is important; (2) the most cost??effective dispensing plan across a region involves a multi-modality strategy, consisting of a combination of drive-through, walk-through and closed PODs, each operating at a throughput rate depending on the surrounding population density, facility type and labour availability; (3) the optimal combination of POD modalities changes according to various facility capacity restrictions, as well as the availability of critical public health personnel; (4) an increase in the number of PODs in operation does not necessarily increase the total number of core public health personnel needed; (5) optimal staffing is non-linear with respect to throughput; thus, the optimal staffing and throughput cannot simply be estimated using an average estimate; (6) there exists an 'optimal' capacity for each POD location, depending on the population, that provides the most effective staffing needs. The study also reveals that such computationally sophisticated decision support tools are invaluable to emergency managers. The tools provide flexibility to quickly analyse design strategies and decisions, and can generate a feasible regional dispensing plan based on the best estimates and analysis available, and then allow for reconfiguration of various PODs as the event unfolds. The type of disaster being confronted (e.g. biological attack, infectious disease outbreak or natural disaster) also dictates different design considerations with respect to the dispensing clinic, facility locations, dispensing and backup strategies, and level of security protection.

Eva K. Lee; Hannah K. Smalley; Yang Zhang; Ferdinand Pietz; Bernard Benecke

2009-01-01T23:59:59.000Z

245

Emergency Management Fundamentals and the Operational Emergency Base Program  

Directives, Delegations, and Requirements

The Guide provides information about the emergency management fundamentals imbedded in the requirements of DOE O 151.1C, as well as acceptable methods of meeting the requirements for the Operational Emergency Base Program, which ensures that all DOE facilities have effective capabilities for all emergency response. Cancels DOE G 151.1-1, Volume 1.

2007-07-11T23:59:59.000Z

246

DOE Issues Finding of No Significant Impact and Final Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

technology evaluation and demonstrations in support of national technical nuclear forensic and radiological emergency response programs. The Radiological Response Training...

247

Stanford Radiology LPCH Fast Pediatric MRI  

E-Print Network (OSTI)

Stanford Radiology LPCH Fast Pediatric MRI Shreyas Vasanawala, MD/PhD Stanford University Lucile Radiology LPCH Thank you Par Lab Briefer, lighter, safer anesthesia for pediatric MRI #12; practice #12;Stanford Radiology LPCH #12;Stanford Radiology LPCH Current Solution INVASIVE LIMITS ACCESS

California at Berkeley, University of

248

I COMPREHENSIVE RADIOLOGICAL SURVEY I  

Office of Legacy Management (LM)

im im I COMPREHENSIVE RADIOLOGICAL SURVEY I Prepared by Oak Ridge Associated Universities Prprd* OFF-SITE PROPERTY H' | Prepared for Office of Operational FORMER LAKE ONTARIO ORDNANCE WORKS SITE Safety U.S. Department LEWISTON, NEW YORK I of Energy i J.D. BERGER i Radiological Site Assessment Program Manpower Education, Research, and Training Division I l*~~~~~~ ~~~~DRAFT REPORT January 1983 I I I ------- COMPREHENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY H' FORMER LAKE ONTARIO ORDNANCE WORKS SITE LEWISTON, NEW YORK Prepared for U.S. Department of Energy as part of the Formerly Utilized Sites -- Remedial Action Program J. D. Berger Project Staff L.W. Cole W.O. Helton R.D. Condra T.J. Sowell P.R. Cotten C.F. Weaver G.R. Foltz T.S. Yoo R.C. Gosslee Prepared by Radiological Site Assessment Program

249

Radiological Source Registry and Tracking  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Source Registry and Tracking (RSRT) Radiological Source Registry and Tracking (RSRT) Home HSS Logo Radiological Source Registry and Tracking (RSRT) Department of Energy (DOE) Notice N 234.1 Reporting of Radioactive Sealed Sources has been superseded by DOE Order O 231.1B Environment, Safety and Health Reporting. O 231.1B identifies the requirements for centralized inventory and transaction reporting for radioactive sealed sources. Each DOE site/facility operator that owns, possesses, uses or maintains in custody those accountable radioactive sealed sources identified in Title 10 Code of Federal Regulation Part 835, Occupational Radiation Protection (10 CFR 835), Appendix E, and International Atomic Energy Agency (IAEA) Categories 1 and 2 radioactive sealed sources identified in Attachment 5, Appendix A of O 321.1B, will submit information to the DOE Radiological Source Registry and Tracking (RSRT) System.

250

Radiological cleanup of Enewetak Atoll  

SciTech Connect

For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

Not Available

1981-01-01T23:59:59.000Z

251

Planning for Emergencies | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

for Emergencies | National Nuclear Security Administration for Emergencies | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Planning for Emergencies Home > About Us > Our Programs > Emergency Response > Planning for Emergencies Planning for Emergencies Emergency Management is the application of the necessary resources to

252

Radiological Protection for DOE Activities  

Directives, Delegations, and Requirements

Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

1995-09-29T23:59:59.000Z

253

Radiological safety training for accelerator facilities: DOE handbook  

SciTech Connect

This program management guide describes the proper implementation standard for core training as outline in the DOE Radiological Control (RadCon) Manual. Its purpose is to assist DOE employees and Managing and Operating (M&O) contractors having responsibility for implementing the core training recommended by the RadCon Manual.

NONE

1997-03-01T23:59:59.000Z

254

External dosimetry in the aftermath of a radiological terrorist event  

Science Journals Connector (OSTI)

......Similarly, site assessment and cleanup...routinely at risk from many...case of a nuclear power plant accident...radiological assessments and may be...responsible for terrorism preparedness...Monitoring and Assessment Center...after the nuclear power plant accident......

Gladys A. Klemic; Paul D. Bailey; Kevin M. Miller; Matthew A. Monetti

2006-09-01T23:59:59.000Z

255

External dosimetry in the aftermath of a radiological terrorist event  

Science Journals Connector (OSTI)

......routinely at risk from many...case of a nuclear power plant accident...radiological attack, but its...responsible for terrorism preparedness...support of nuclear power plants. 3. Managing...Attachment G-Terrorism, is a supplement...actions for nuclear incidents......

Gladys A. Klemic; Paul D. Bailey; Kevin M. Miller; Matthew A. Monetti

2006-09-01T23:59:59.000Z

256

External dosimetry in the aftermath of a radiological terrorist event  

Science Journals Connector (OSTI)

......associated health risks. A framework...routinely at risk from many...case of a nuclear power plant accident...Homeland Security (DHS...radiological attack, but its...responsible for terrorism preparedness...of nuclear power plants. 3. Managing...Attachment G-Terrorism, is a supplement...actions for nuclear incidents...Homeland Security Working Group......

Gladys A. Klemic; Paul D. Bailey; Kevin M. Miller; Matthew A. Monetti

2006-09-01T23:59:59.000Z

257

Utilization of Local Law Enforcement Aerial Resources in Consequence Management (CM) Response  

SciTech Connect

During the past decade the U.S. Department of Homeland Security (DHS) was instrumental in enhancing the nations ability to detect and prevent a radiological or nuclear attack in the highest risk cities. Under the DHS Securing the Cities initiative, nearly 13,000 personnel in the New York City region have been trained in preventive radiological and nuclear detection operations, and nearly 8,500 pieces of radiological detection equipment have been funded. As part of the preventive radiological/nuclear detection (PRND) mission, several cities have received funding to purchase commercial aerial radiation detection systems. In 2008, the U.S. Department of Energy, National Nuclear Security Administration Aerial Measuring System (AMS) program started providing Mobile Aerial Radiological Surveillance (MARS) training to such assets, resulting in over 150 HAZMAT teams officers and pilots from 10 law enforcement organizations and fire departments being trained in the aerial radiation detection. From the beginning, the MARS training course covered both the PRND and consequence management (CM) missions. Even if the law enforcement main focus is PRND, their aerial assets can be utilized in the collection of initial radiation data for post-event radiological CM response. Based on over 50 years of AMS operational experience and information collected during MARS training, this presentation will focus on the concepts of CM response using aerial assets as well as utilizing law enforcement/fire department aerial assets in CM. Also discussed will be the need for establishing closer relationships between local jurisdictions aerial radiation detection capabilities and state and local radiation control program directors, radiological health department managers, etc. During radiological events these individuals may become primary experts/advisers to Incident Commanders for radiological emergency response, especially in the early stages of a response. The knowledge of the existence, specific capabilities, and use of local aerial radiation detection systems would be critical in planning the response, even before federal assets arrive on the scene. The relationship between local and federal aerial assets and the potential role for the further use of the MARS training and expanded AMS Reachback capabilities in facilitating such interactions will be discussed.

Wasiolek, Piotr T.; Malchow, Russell L.

2013-03-12T23:59:59.000Z

258

Emergency Response Health & Safety Manual  

Office of Scientific and Technical Information (OSTI)

and out without tearing. 4. A pumping system, complete with a filter system and holding tanks, will be needed. Water pumps should be available to spray contaminated equipment and...

259

EMERGENCY RESPONSE PLAN HOGAN BUILDING  

E-Print Network (OSTI)

911 to report the natural gas leak. · Pull the nearest fire alarm station and evacuate the building fire alarm station and evacuate the building. · From a safe location, dial 911 to report the fire GAS LEAK: · Extinguish any open controlled flames (e.g. Bunsen burners) if you can do so without

Contractor, Anis

260

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALARA Instructor's Guide ALARA Instructor's Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities for ALARA implementation. References: 1. NCRP Report No. 91 (1987) "Recommendations on Limits for Exposure to Ionizing Radiation" 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998), "Occupational Radiation Protection"

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access Control and Work Area Setup Access Control and Work Area Setup Instructor's Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: L 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. L 2.10.02 State responsibilities in using or initiating a RWP. L 2.10.03 State the document that governs the ALARA program at your site. L 2.10.04 Describe how exposure/performance goals are established at your site. L 2.10.05 State the conditions under which a pre-job ALARA review is required at your site. L 2.10.06 State the conditions under which a post-job ALARA review is required at your site. 2.10.07 State purpose of radiological postings, signs, labels, and barricades; and

262

ORISE: National Security and Emergency Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Management Emergency Management Emergency Response Crisis and Risk Communication Forensic Science How ORISE is Making a Difference Overview Exercises and Planning Training and Technology Support Resources How to Work With Us Contact Us Oak Ridge Institute for Science Education National Security and Emergency Management The Oak Ridge Institute for Science and Education (ORISE) helps prepare the U.S. Department of Energy's (DOE) emergency response assets, as well as those of other federal and state agencies, by managing and conducting programs, studies, research, exercises and training. ORISE's national security and emergency management capabilities include: Providing incident response where weapons of mass destruction and/or improvised explosive devices are involved

263

LANL responds to radiological incident  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL responds to radiological incident LANL responds to radiological incident LANL responds to radiological incident Multiple tests indicate no health risks to public or employees. August 27, 2012 Aerial view of the Los Alamos Neutron Science Center(LANSCE). Aerial view of the Los Alamos Neutron Science Center (LANSCE). The contamination poses no danger to the public. The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The Laboratory has determined that about a dozen people

264

Radiological Training for Tritium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice No. 2 Change Notice No. 2 May 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 2. Radiological Safety Training for Tritium Facilities DOE-HDBK-1105-2002 Page/Section Change Part 1, page 14 Change: U.S. Department of Energy, Radiological Control

265

Nuclear Radiological Threat Task Force Established | National...  

National Nuclear Security Administration (NNSA)

Radiological Threat Task Force Established | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

266

WIPP radiological assistance team dispatched to Los Alamos as precautionary measure  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Assistance Team Dispatched Radiological Assistance Team Dispatched To Los Alamos as Precautionary Measure CARLSBAD, N.M., May 11, 2000 - A team of radiological experts has been dispatched from the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) in response to a week-long forest fire that is threatening Los Alamos National Laboratory (LANL), one of the nation's premiere research laboratories. "We are responding completely as a precautionary measure," said Jere Galle, team leader for the WIPP Radiological Assistance Program (RAP) team. "It is our understanding that nuclear materials at LANL are not in harm's way. Our primary concern, however, is always to protect human health and the environment." The RAP team's mission is to provide radiological assistance to federal agencies, state,

267

Search Response Team | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

expertise. SRT is a full-response asset, which includes the manpower and equipment to conduct aerial, vehicle, or search operations by foot to locate a potential radiological...

268

Emergency Preparedness  

Energy.gov (U.S. Department of Energy (DOE))

ISER is responsible for coordinating the protection of critical energy assets and assisting Federal, State, and local governments with disruption preparation, response, and mitigation in support of...

269

Best practice techniques for environmental radiological monitoring  

E-Print Network (OSTI)

Best practice techniques for environmental radiological monitoring Science Report ­ SC030308/SR SCHO0407BMNL-E-P #12;ii Science Report Best Practice Techniques for Environmental Radiological #12;iv Science Report Best Practice Techniques for Environmental Radiological Monitoring Executive

270

Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The Emerging Technologies (ET) Program of the Building Technologies Office (BTO) supports applied research and development (R&D) for technologies, systems, and models that contribute to building energy consumption.

271

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Yankee, Dresden, and Indian Point) relied mainly on basicareas such as those around Indian Point. present a differentdensity sites such as Indian lO Point and Zion. However,

Yen, W.W.S.

2010-01-01T23:59:59.000Z

272

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Yen, W.W.S.

2010-01-01T23:59:59.000Z

273

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Licensing. Regulator. Standard Review_ Plan~. October 1974Reactor Licen- sing. Standard Review Plan. Section 2.1.3. "Reactor Regulation. Standard Review Plan. Section 2.1.1. "

Yen, W.W.S.

2010-01-01T23:59:59.000Z

274

Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Berger, ME; Leonard, RB; Ricks, RC; Wiley, AL; Lowry, PC; Flynn, DF Abstract: This article addresses the problems emergency physicians would face in the event of a nuclear or radiological catastrophe. It presents information about what needs to be done so that useful information will be gathered and reasonable decisions made in the all important triage period. A brief introductory explanation of radiation injury is followed by practical guides for managing the focused history, physical exam, laboratory tests, initial treatment, and disposition of victims of acute radiation syndrome and combined injury. The guides are not intended to serve as a hospital's "emergency

275

Analysis of offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant  

SciTech Connect

This project plan for Phase II summarizes the design of a project to complete analysis of offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant. Federal, state, and local governments develop emergency plans for facilities that may affect the public in the event of an accidental release of nuclear or hazardous materials. One of the purposes of these plans is to identify EPZs where actions might be necessary to protect public health. Public protective actions include sheltering, evacuation, and relocation. Agencies use EPZs to develop response plans and to determine needed resources. The State of Colorado, with support from the US Department of Energy (DOE) and Rocky Flats contractors, has developed emergency plans and EPZs for the Rocky Flats Plant periodically beginning in 1980. In Phase II, Interim Emergency Planning Zones Analysis, Maximum Credible Accident'' we will utilize the current Rocky Flats maximum credible accident (MCA), existing dispersion methodologies, and upgraded dosimetry methodologies to update the radiological EPZs. Additionally, we will develop recommendations for EPZs for nonradiological hazardous materials releases and evaluate potential surface water releases from the facility. This project will allow EG G Rocky Flats to meet current commitments to the state of Colorado and make steady, tangible improvements in our understanding of risk to offsite populations during potential emergencies at the Rocky Flats Plant. 8 refs., 5 figs., 4 tabs.

Hodgin, C.R.; Armstrong, C.; Daugherty, N.M.; Foppe, T.L.; Petrocchi, A.J.; Southward, B.

1990-05-01T23:59:59.000Z

276

Review of the Hanford Tank Farms Radiological Controls Activity-Level Implementation, December 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Farms Tank Farms Radiological Controls Activity-Level Implementation May 2011 December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope.................................................................................................................................................... 2 4.0 Methodology ........................................................................................................................................

277

Independent Oversight Review of Oak Ridge Environmental Management Radiological Controls Activity Level Implementation - June 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2011 May 2011 Independent Oversight Review of Oak Ridge Environmental Management Radiological Controls Activity Level Implementation June 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 1

278

Review of the Hanford Tank Farms Radiological Controls Activity-Level Implementation, December 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Tank Farms Tank Farms Radiological Controls Activity-Level Implementation May 2011 December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope.................................................................................................................................................... 2 4.0 Methodology ........................................................................................................................................

279

Independent Oversight Review of Oak Ridge Environmental Management Radiological Controls Activity Level Implementation - June 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

May 2011 May 2011 Independent Oversight Review of Oak Ridge Environmental Management Radiological Controls Activity Level Implementation June 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 1

280

Radiological Assistance Program (RAP)- Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Programs > Radiological Major Programs > Radiological Assistance Program Radiological Assistance Program Overview Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Radiological Assistance Program Bookmark and Share Survey equipment is used to detect and measure radiation Survey equipment is used to detect and measure radiation. Click on image to view larger image. The Radiological Assistance Program (RAP) team at Argonne can provide assistance in the event of a radiological accident or incident. Support ranges from giving technical information or advice over the telephone, to sending highly trained team members and state-of-the-art equipment to the accident site to help identify and minimize any radiological hazards. The

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Radiological Training for Accelerator Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-2002 8-2002 May 2002 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Accelerator Facilities

282

Radiological Training for Tritium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HANDBOOK DOE HANDBOOK RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Tritium Facilities DOE-HDBK-1105-2002 Page/Section Change Cover sheets parts 1, 2, 3, and 4 Change: Office of Environment, Safety & Health

283

Radiological Control Training for Supervisors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-2001 3-2001 August 2001 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Control Training for Supervisors

284

Understanding Mechanisms of Radiological Contamination  

SciTech Connect

Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible loose contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

Rick Demmer; John Drake; Ryan James, PhD

2014-03-01T23:59:59.000Z

285

Responding to Emergencies | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Responding to Emergencies | National Nuclear Security Administration Responding to Emergencies | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Responding to Emergencies Home > About Us > Our Programs > Emergency Response > Responding to Emergencies Responding to Emergencies emergency response logo NNSA serves as the premier technical leader in

286

Environment/Health/Safety/Security (EHSS): Security and Emergency Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Security and Emergency Services Security and Emergency Services SEO Home page collage Documents Organization Chart Related Sites Fire Department Security Services EMERGENCY SERVICES The purpose of Berkeley Lab's Emergency Services is to ensure emergency resources are in maximum readiness, before, during, and after any emergency. ISSM: Integrated Safeguards and Security Management Security Updates MISSION STATEMENT: Provide integrated and efficient life safety, emergency and security services to all employees, guests, and users at the main Berkeley site and off-site facilities. Also, promote continuous improvement of the Lab's scientific and supportive activities. The core competencies of the group are: Emergency response to include fire suppression, emergency medical and hazmat response services

287

5 - Medical Considerations for Radiological Terrorism  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the medical considerations for radiological terrorism. Radiological warfare (RW) attack is the deliberate use of radiological materials to cause injury and death. The explosion of a radiological weapon causes damage by the heat and blast liberated at the time of detonation. The proliferation of nuclear material and technology has made the acquisition and terrorist use of ionizing radiation more probable than ever. Currently, there are three threat scenarios for radiological terrorism. The most probable scenario for the near future would be a radiological dispersion device. Such a weapon can be developed and used by any terrorist with conventional weapons and access to radionuclides. This is an expedient weapon in that the radioactive waste material is easy to obtain from any location that uses radioactive sources. These sites can include a nuclear-waste processor, a nuclear power plant, a university research facility, a medical radiotherapy clinic, or an industrial complex.

James Winkley; Paul D. Mongan

2006-01-01T23:59:59.000Z

288

US, UK, Kazakhstan Secure Radiological Transportation Vehicles...  

National Nuclear Security Administration (NNSA)

place them in secure storage, and improve radiological transportation security and site security. The United Kingdom-funded projects provide an immediate security and safety...

289

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Data results provided back to the field within 30-60 minutes. All NNSA teams that conduct search, detection and identification operations, to include the Radiological...

290

Radiological Assistance Program | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

(trained personnel and equipment) to evaluate, assess, advise, isotopically identify, search for, and assist in the mitigation of actual or perceived nuclear or radiological...

291

Radiological Safety Training for Accelerator Facilities  

Office of Environmental Management (EM)

HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public...

292

TEXAS A&M UNIVERSITY EMERGENCY OPERATIONS  

E-Print Network (OSTI)

TEXAS A&M UNIVERSITY EMERGENCY OPERATIONS PLAN July 31, 2013 #12;TEXAS A&M UNIVERSITY EMERGENCY OPERATIONS PLAN 7/31/2013 v.2.0 Page 1 PROMULGATION STATEMENT The Emergency Operations Plan (EOP) and contents within is a guide to how the University conducts all-hazards response. The EOP is written

293

Learn More About NNSA's Emergency Operations Office | National...  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

294

Roadmap: Radiologic Imaging Sciences Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-MRHA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended

Sheridan, Scott

295

Roadmap: Radiologic Imaging Sciences Diagnostic Medical Sonography (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Diagnostic Medical Sonography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAS] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

296

Roadmap: Radiologic Imaging Sciences -Magnetic Resonance Imaging (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Magnetic Resonance Imaging (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-MRRT] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

297

Roadmap: Radiologic Imaging Sciences Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-MRHA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended

Sheridan, Scott

298

Roadmap: Radiologic Imaging Sciences Nuclear Medicine (with certification and ATS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Nuclear Medicine (with certification and ATS Radiologic Technology) ­ Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-NMHO] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May 13/LNHD This roadmap is a recommended semester

Sheridan, Scott

299

Roadmap: Radiologic Imaging Sciences -Magnetic Resonance Imaging (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Magnetic Resonance Imaging (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-MRRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

300

Roadmap: Radiologic Imaging Sciences Nuclear Medicine (with certification and ATS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Nuclear Medicine (with certification and ATS Radiologic Technology) ­ Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-NMHO] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with certification and ATS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTHA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

302

Roadmap: Radiologic Imaging Sciences-Diagnostic Medical Sonography (with certification and ATS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences- Diagnostic Medical Sonography (with certification and ATS Radiologic Technology) Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-HATS] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD This roadmap is a recommended

Sheridan, Scott

303

Roadmap: Radiologic Imaging Sciences Diagnostic Medical Sonography (with AAS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Diagnostic Medical Sonography (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-RTAS] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-2013/LNHD This roadmap is a recommended

Sheridan, Scott

304

Roadmap: Radiologic Imaging Sciences Radiation Therapy (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences ­ Radiation Therapy ­ (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-RTHB] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

305

Roadmap: Radiologic Imaging Sciences-Diagnostic Medical Sonography (with certification and ATS Radiologic Technology)  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences- Diagnostic Medical Sonography (with certification and ATS Radiologic Technology) Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-HATS] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended

Sheridan, Scott

306

Roadmap: Radiologic Imaging Sciences -Computed Tomography (with certification and ATS Radiologic Technology) -  

E-Print Network (OSTI)

Roadmap: Radiologic Imaging Sciences - Computed Tomography (with certification and ATS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-CTHA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 25-Oct-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

307

Emergency Operations Training Academy | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Operations Training Academy | National Nuclear Security Operations Training Academy | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Emergency Operations Training Academy Home > About Us > Our Programs > Emergency Response > Training > Emergency Operations Training Academy Emergency Operations Training Academy Rotating image showing pictures of Classroom, Online and Hands on trainings

308

FAQS Job Task Analyses - Emergency Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management FAQS Emergency Management FAQS August 2010 STEP 1: Job Task Analysis for Tasks Task (and Number) Source Importance Frequency Plan, observe and evaluate emergency management activities and Federal and contractor technical performance to ensure the adequacy, effectiveness, and compliance with Department of Energy (DOE) Order 151.1B and other DOE Orders and Federal regulations. FAQS Duties and Responsibilities #3 5 3 Review, and/or approve emergency management documentation. FAQS Duties and Responsibilities #4 3 2 Facilitate the notification and reporting of emergencies under Department of Energy (DOE) Order 151.1B Comprehensive Emergency Management System. FAQS Duties and Responsibilities #6 4 1 Resolve, or facilitate the resolution of, emergency management issues.

309

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALARA ALARA Study Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities for ALARA implementation. INTRODUCTION All personnel at a facility must be committed to the ALARA philosophy. The RCT can play a major role in establishing and maintaining that commitment by understanding its concepts. This lesson will familiarize the student with the ALARA concepts and the

310

US Department of Energy radiological control manual. Revision 1  

SciTech Connect

This manual establishes practices for the conduct of Department of Energy radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. This Manual is not a substitute for Regulations; it is intended to be consistent with all relevant statutory and regulatory requirements and shall be revised whenever necessary to ensure such consistency. Some of the Manual provisions, however, challenge the user to go well beyond minimum requirements. Following the course of action delineated in the Manual will result in achieving and surpassing related statutory or regulatory requirements.

Not Available

1994-04-01T23:59:59.000Z

311

DOE Order Self Study Modules - DOE STD 1098-2008, Radiological Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-1098-2008 STD-1098-2008 DOE STANDARD: RADIOLOGICAL CONTROL DOE-STD-1098-2008 Familiar Level August 2011 1 DOE-STD-1098-2008 RADIOLOGICAL CONTROL FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What is the purpose of DOE-STD-1098-2008? 2. To which DOE position is the authority and responsibility to establish a comprehensive and effective radiological control training program assigned? 3. What is the definition of the term -total effective dose?‖ 4. What is the definition of the term -lifetime control level?‖ 5. What are three trigger levels that require a formal radiological review of work activities?

312

2012-2013 Diagnostic Radiology Fellows Cardiovascular Imaging  

E-Print Network (OSTI)

dbweinreb@ Pediatric Radiology Body Imaging 1st yr. Neuroradiology NCI Body Mammography Sonya Edwards 149042012-2013 Diagnostic Radiology Fellows Cardiovascular Imaging Nuclear Medicine David Weinreb 14895 14909 laxpati@ Michael Kim 14961 mjjkim@ Vascular and Interventional Radiology Charles Kosydar 14908

Sonnenburg, Justin L.

313

Nevada Test Site Radiological Control Manual  

SciTech Connect

This document supersedes DOE/NV/25946--801, Nevada Test Site Radiological Control Manual, Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council Nevada Test Site

2010-02-09T23:59:59.000Z

314

Nevada Test Site Radiological Control Manual  

SciTech Connect

This document supersedes DOE/NV/11718--079, NV/YMP Radiological Control Manual, Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council - Nevada Test Site

2009-10-01T23:59:59.000Z

315

Memorandum, Reporting of Radiological Sealed Sources Transactions  

Energy.gov (U.S. Department of Energy (DOE))

The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the Office of Information Management, within the Office of Environment, Health, Safety and Security.

316

Radiological health aspects of uranium milling  

SciTech Connect

This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

Fisher, D.R.; Stoetzel, G.A.

1983-05-01T23:59:59.000Z

317

CRAD, Radiological Controls - Oak Ridge National Laboratory TRU...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A...

318

Unified Resolve 2014: A Proof of Concept for Radiological Support...  

Office of Environmental Management (EM)

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders...

319

Alarm Response Training | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

On Time: 4:04 min. View an introduction to our Alarm Response Training, which prepares and trains personnel responding to civilian nuclear and radiological security alarms...

320

Transportation Networks for Emergency Evacuations  

SciTech Connect

Evacuation modeling systems (EMS) have been developed to facilitate the planning, analysis, and deployment of emergency evacuation of populations at risk. For any EMS, data such as road network maps, traffic control characteristics, and population distribution play critical roles in delineating emergency zones, estimating population at risk, and determining evacuation routes. There are situations in which it is possible to plan in advance for an emergency evacuation including, for example, an explosion at a chemical processing facility or a radiological accident at a nuclear plant. In these cases, if an accident or a terrorist attack were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other instances -for example, the derailment of a train transporting hazardous materials-, there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on if and how to identify and proceed with the best course of action to minimize losses. Although both cases require as a starting point the development of a transportation network model of the area at risk, which must include road capacity and topology, in the latter the available time to generate this network is extremely limited. This time constraint precludes the use of any traditional data gathering methodology and the network generation process has to rely on the use of GIS and stochastic modeling techniques. The generation of these transportation networks in real time is the focus of this entry.

Franzese, Oscar [ORNL; Liu, Cheng [ORNL

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE-HDBK-1122-99; Radiological Control Technical Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Access Control and Work Area Setup 10 Access Control and Work Area Setup Study Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: i 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. i 2.10.02 State responsibilities in using or initiating a RWP. i 2.10.03 State the document that governs the ALARA program at your site. i 2.10.04 Describe how exposure/performance goals are established at your site. i 2.10.05 State the conditions under which a pre-job ALARA review is required at your site. i 2.10.06 State the conditions under which a post-job ALARA review is required at your site. 2.10.07 State purpose of radiological postings, signs, labels, and barricades; and the

322

Estimating radiological background using imaging spectroscopy  

SciTech Connect

Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

2014-06-13T23:59:59.000Z

323

Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation May 2011 November 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 1

324

Independent Oversight Targeted Review of Activity-Level Implementation of Radiological Controls at Sandia National Laboratories, November 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targeted Review of Targeted Review of Activity-Level Implementation of Radiological Controls at Sandia National Laboratories May 2011 November 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 2

325

Terrorism preparedness in Canada: a public survey on perceived institutional and individual response to terrorism  

Science Journals Connector (OSTI)

Although much effort has recently been expended on evaluating and improving terrorism preparedness among Canadian federal, provincial, and local institutions, less attention has been given to understanding the public's view of these initiatives. The national public survey of perceived chemical, biological, radiological, and nuclear terrorism threat and preparedness was conducted specifically with this aim. Since emergency preparedness is considered a shared responsibility between governments, communities, and individuals in Canada, the survey assessed Canadians' views regarding the level of preparedness of institutions at all levels, as well as the extent to which they have personally taken measures to prepare for a possible attack. Findings reveal that respondents perceived governmental institutions as less prepared for terrorist events than emergency or response institutions. Respondents also reported having taken few measures to prepare for themselves. Perceptions of institutional preparedness and individual preparedness differed significantly by demographic groups, with many observed gender differences.

Louise Lemyre; Jennifer E.C. Lee; Michelle C. Turner; Daniel Krewski

2007-01-01T23:59:59.000Z

326

Emerging technologies  

SciTech Connect

The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

Lu, Shin-yee

1993-03-01T23:59:59.000Z

327

Radiation Emergency Assistance Center / Training Site | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Emergency Assistance Center / Training Site | National Nuclear Radiation Emergency Assistance Center / Training Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiation Emergency Assistance Center / Training Site Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Consequence Management > Radiation Emergency Assistance

328

Homeland Security and Emergency Management Coordination (HSEMC) Program |  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeland Security and Emergency Management Coordination (HSEMC) Program | Homeland Security and Emergency Management Coordination (HSEMC) Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Homeland Security and Emergency Management Coordination (HSEMC) Program Home > About Us > Our Programs > Emergency Response > Planning for Emergencies > Homeland Security and Emergency Management Coordination

329

EMERGENCY READINESS ASSURANCE PLAN (ERAP) FOR FISCAL YEAR (FY) 2014  

SciTech Connect

This Emergency Readiness Assurance Plan (ERAP) for Fiscal Year (FY) 2014 in accordance with DOE O 151.1C, Comprehensive Emergency Management System. The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for FY-15. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, INL Emergency Plan/RCRA Contingency Plan.

Shane Bush

2014-09-01T23:59:59.000Z

330

College of Emergency Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Operations Emergency Operations College of Emergency Operations College of Emergency Operations Vision The Emergency Operations Training Academy (EOTA) will be recognized as the model technical training provider for DOE emergency operations personnel, while expanding its customer base to include other designated government and private-sector national and international organizations that require professional training, education, and vocational services. In this expanded role, the Academy will be a vital training asset for DOE and the nation. Roles Provide training analysis, development, and delivery support to the Office of Emergency Operations (NA-40), act in an advisory role in training oriented initiatives, provide access to emergency management/response training throughout the DOE/NNSA complex, support outreach via

331

Radiological Worker Training - Radiological Safety Training for Radiation Producing (X-Ray) Devices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C C December 2008 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management

332

Emergency Information | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Information | National Nuclear Security Administration Information | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Emergency Information Home > Field Offices > Welcome to the Sandia Field Office > Emergency Information Emergency Information The Sandia Field Office (SFO) Emergency Management System is designed to

333

Apparatus for safeguarding a radiological source  

DOE Patents (OSTI)

A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

Bzorgi, Fariborz M

2014-10-07T23:59:59.000Z

334

2.04 - Oral and Maxillofacial Radiology  

Science Journals Connector (OSTI)

Abstract This chapter addresses the technologies and the applications of radiology used in the field of oral (or dental) and maxillofacial imaging. While the basic science and x-ray technology are the same as in general radiology, there are here important specialized differentiations that lead to very distinct equipment and procedures compared to general medical imaging. Four major subcategories are discussed: Dedicated x-ray sources for dental intraoral radiology, that is, radiography where the detector is located inside the oral cavity, and the radiographic object consisting of a few teeth Intraoral detectors: (classic) radiographic film, photostimulated-phosphor imaging plates, and solid-state digital detectors (that produce an image immediately) Equipment for panoramic and for cephalometric extraoral radiology Cone beam volumetric imaging (3D x-ray) of the head (aka CBCT)

R. Molteni

2014-01-01T23:59:59.000Z

335

Educational strategies in oral and maxillofacial radiology  

Science Journals Connector (OSTI)

In this paper, we interpret a trend in higher education in terms of its relation to oral and maxillofacial radiology education. Specifically, we describe an evidence-based dental education borrowing from the ...

Madeleine Rohlin; Koji Shinoda; Yumi Takano

2004-06-01T23:59:59.000Z

336

Radiological safety training for uranium facilities  

SciTech Connect

This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

NONE

1998-02-01T23:59:59.000Z

337

DOE Issues WIPP Radiological Release Investigation Report  

Energy.gov (U.S. Department of Energy (DOE))

Today, the Department of Energys Office of Environmental Management (EM) released the initial accident investigation report related to the Feb. 14 radiological release at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

338

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 of 3) 3 of 3) RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH Student's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page TERMINAL OBJECTIVE............................................................................1 ENABLING OBJECTIVES...........................................................................1 I. RADIOLOGICAL CONTAMINATION................................................. 2 A. Comparison of Radiation and Radioactive Contamination ..................... 2 B. Types of Contamination.............................................................. 2

339

A radiological evaluation of phosphogypsum  

SciTech Connect

Phosphogypsum is the by-product resulting from phosphoric acid or phosphate fertilizer production. The phosphate used in these chemical processes contains the naturally occurring radioactive material U and all its subsequent decay products. During processing, the U generally remains in the phosphoric acid product, while the daughter, {sup 226}Ra, tends to be concentrated in the phosphogypsum. Phosphogypsum has physical properties that make it useful as a sub-base for roadways, parking lots, and similar construction. A radiological evaluation, to determine exposures to workers mixing this material with a stabilizing agent (portland cement), was performed at a South Louisiana phosphoric acid chemical plant. Measurements of the {sup 226}Ra content of the phosphogypsum showed an average of 1.1 +/- 0.3 Bq g-1 (0.7-1.7 Bq g-1). The average measured gross gamma exposure rate on the phosphogypsum pile corresponded to a dose equivalent rate of 0.368 +/- 0.006 mu Sv h-1 (0.32-0.42 mu Sv h-1). Radon daughter concentrations measured on top of the phosphogypsum pile ranged from 0.0006 to 0.001 working levels. An analysis of the airborne {sup 226}Ra concentrations showed only background levels.

Laiche, T.P.; Scott, L.M. (Louisiana State Univ., Baton Rouge (USA))

1991-05-01T23:59:59.000Z

340

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1990-01-01T23:59:59.000Z

342

Inspection of Emergency Management at the Office of Secure Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 3.0 CONCLUSIONS ..................................................................................... 4 4.0 RATINGS ................................................................................................ 6 APPENDIX A - SUPPLEMENTAL INFORMATION ................................. 7 APPENDIX B - SITE-SPECIFIC FINDINGS.............................................. 9 APPENDIX C - EMERGENCY PLANNING ............................................ 11 APPENDIX D - EMERGENCY PREPAREDNESS .................................. 19 APPENDIX E - EMERGENCY RESPONSE ............................................. 23 APPENDIX F - READINESS ASSURANCE ............................................ 29 Abbreviations Used in This Report ARG Accident Response Group CCIC Convoy Commander in Charge

343

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication Systems Communication Systems Instructor's Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the importance of good communication. 2.02.02 Identify two methods of communication and be able to determine different types of each. 2.02.03 Describe different types of communication systems. 2.02.04 Describe the FCC and DOE guidelines regarding proper use of communication systems. 2.02.05 Describe general attributes of good communications. 2.02.06 Explain the importance of knowing how to contact key personnel. i 2.02.07 Identify the communication systems available at your site and methods available to contact key personnel. i 2.02.08 Describe the emergency communication systems available at your site.

344

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dosimetry Dosimetry Instructor's Guide 2.04-1 Course Title: Radiological Control Technician Module Title: Dosimetry Module Number: 2.04 Objectives: 2.04.01 Identify the DOE external exposure limits for general employees. 2.04.02 Identify the DOE limits established for the embryo/fetus of a declared pregnant female general employee. L 2.04.03 Identify the administrative exposure control guidelines at your site, including those for the: a. General Employee b. Member of the Public/Minor c. Incidents and emergencies d. Embryo/Fetus L 2.04.04 Identify the requirements for a female general employee who has notified her employer in writing that she is pregnant. 2.04.05 Determine the theory of operation of a thermoluminescent dosimeter (TLD). 2.04.06 Determine how a TLD reader measures the radiation dose from a TLD.

345

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dosimetry Dosimetry Study Guide 2.04-1 Course Title: Radiological Control Technician Module Title: Dosimetry Module Number: 2.04 Objectives: 2.04.01 Identify the DOE external exposure limits for general employees. 2.04.02 Identify the DOE limits established for the embryo/fetus of a declared pregnant female general employee. i 2.04.03 Identify the administrative exposure control guidelines at your site, including those for the: a. General employee b. Member of the public/minor c. Incidents and emergencies d. Embryo/fetus i 2.04.04 Identify the requirements for a female general employee who has notified her employer in writing that she is pregnant. 2.04.05 Determine the theory of operation of a thermoluminescent dosimeter (TLD). 2.04.06 Determine how a TLD reader measures the radiation dose from a TLD.

346

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication Systems Communication Systems Study Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the importance of good communication. 2.02.02 Identify two methods of communication and be able to determine different types of each. 2.02.03 Describe different types of communication systems. 2.02.04 Describe the FCC and DOE guidelines regarding proper use of communication systems. 2.02.05 Describe general attributes of good communications. 2.02.06 Explain the importance of knowing how to contact key personnel. i 2.02.07 Identify the communication systems available at your site and methods available to contact key personnel. i 2.02.08 Describe the emergency communication systems available at your site.

347

Summary of Emergency Management Results from Pilot Evaluations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary of Emergency Management Results from Pilot Evaluations Summary of Emergency Management Results from Pilot Evaluations Summary of Emergency Management Results from Pilot Evaluations September 19th, 2012 Presenter: David Freshwater, Emergency Management Specialist, Office of Emergency Management, National Nuclear Security Administration Topics covered: Confirm that Critical Safety Function scenarios were addressed in HS/EPHA Determine whether site/facility had robust capabilities that allow flexible and effective emergency response to severe events Engage site/facility personnel regarding preferences for requirements/guidance changes where alternate courses of action existed Summary of Emergency Management Results from Pilot Evaluations More Documents & Publications Emergency Management Concepts, Existing Guidance, and Changes

348

PROCEDURE CARDS EMERGENCY CONTACT INFORMATION  

E-Print Network (OSTI)

of all workers in the lab for contamination Is the spill totally confined on a labeled radioactive work and place in appropriate radioactive waste container 4. Conduct a contamination survey to assess success situations please refer to http://www.udel.edu/ehs/generalhs/emergency-response.html #12;RADIOACTIVE MATERIAL

Firestone, Jeremy

349

Automatic vehicle following for emergency lane change maneuvers  

E-Print Network (OSTI)

A lane change maneuver is one of the many appropriate responses to an emergency situation. This thesis proposes to design a combined controller for automatic vehicles for an emergency lane change (ELC) maneuver on an Automatic Highway System (AHS...

Yoon, Seok Min

2012-06-07T23:59:59.000Z

350

Webinar: National Hydrogen Safety Training Resource for Emergency Responders  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department's Fuel Cell Technologies Office announces the launch of a new, free, online national hydrogen safety training resource for emergency responders. This webinar will provide additional details about the emergency response hydrogen training resource.

351

Roadmap: Radiologic Technology Radiology Department Management Technology Associate of Technical Study  

E-Print Network (OSTI)

Roadmap: Radiologic Technology ­ Radiology Department Management Technology ­ Associate-Nov-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However technology, housed at the Salem Campus. Course Subject and Title Credit Hours Min. Grade Major GPA Important

Sheridan, Scott

352

In Case of Emergency  

NLE Websites -- All DOE Office Websites (Extended Search)

In Case of Emergency In Case of Emergency Print FirePolice Emergency: ext. 7911 Cell phone or off-site: 510-486-7911 When dialing from off-site, the following numbers need to be...

353

Emergency Hospital Toxicology  

Science Journals Connector (OSTI)

......research-article Editorial Emergency Hospital Toxicology Clifford B. Walberg George...toxicology service in a large metropolitan hospital is described. Emergency toxicology tests...figures for 1972 are included. Emergency hospital toxicology. | Journal Article | 0 Hallucinogens......

Clifford B. Walberg; George D. Lundberg; Violet A. Pantlik

1974-05-01T23:59:59.000Z

354

Notice of Emergency Action - Emergency Order To Resume Limited Operation at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Action - Emergency Order To Resume Limited Emergency Action - Emergency Order To Resume Limited Operation at the Potomac River Generating Station, Alexandria, VA, in Response to Electricity Reliability Concerns in Washington, DC: Federal Register Notice Volume 71, No. 13 - Jan. 20, 2006 Notice of Emergency Action - Emergency Order To Resume Limited Operation at the Potomac River Generating Station, Alexandria, VA, in Response to Electricity Reliability Concerns in Washington, DC: Federal Register Notice Volume 71, No. 13 - Jan. 20, 2006 Docket No. EO-05-01. Pursuant to 10 CFR 1021.343, the U.S. Department of Energy is issuing this Notice to document emergency actions that it has taken, and to set forth the steps it intends to take in the future, to comply with the National Environmental Policy Act (NEPA) in the matter

355

INL's Emergency Services  

NLE Websites -- All DOE Office Websites (Extended Search)

drill packages and program assessments. Emergency Services largest element is the INL Fire Departmen and ambulance units with trained Advanced Emergency Medical Technicians....

356

Emergency Management: Facility Emergency Plan Template  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory Building 219, 274 and 278 SSRL Building Facility Emergency Plan In Case of Emergency 9-911 from a SLAC phone 911 from a non-SLAC phone Then notify SLAC Site Security, Ext. 5555 SLAC Emergency Resources SLAC Site Security 5555 On-site Palo Alto Fire Station Number 7 2776 Conventional and Experimental Facilities 8901 Normal working hours only SLAC Medical Department 2281 Waste Management 2399 Building manager Larry Cadapan Assistant building manager Brian Choi Publication date 02/11/2009 Revision date 02/11/2009 Prepared by Behzad Bozorg-Chami Approved by Larry Cadapan 20 Jun 2007 (updated 30 Jun 2007) SLAC-I-730-0A14J-001-R000 2 of 12 Emergency Management: Facility Emergency Plan Template This facility emergency plan (FEP) contains building-specific emergency information for

357

Memorandum: Emergency Actions and NEPA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2005 8, 2005 MEMORANDUM FOR FEDERAL NEPA CONTACTS FROM: HORST G. GRECZMIEL Associate Director for NEPA Oversight SUBJECT: Emergency Actions and NEPA This memorandum provides: * General information on the response to Katrina * Reporting oil and chemical spills * Projected long term recovery efforts * How agencies can respond to emergencies and comply with NEPA. Please distribute this memorandum to your agency planning and environmental personnel. General information on the response to Katrina: Information is available on the FEMA website at http://www.fema.gov and specifics on the government's response are provided at the "What Government is Doing" link which can be directly accessed at http://www.dhs.gov/dhspublic/interapp/editorial/editorial_0712.xml

358

Status Update on the NCRP Scientific Committee SC 5-1 Report: Decision Making for Late-Phase Recovery from Nuclear or Radiological Incidents - 13450  

SciTech Connect

In August 2008, the U.S. Department of Homeland Security (DHS) issued its final Protective Action Guide (PAG) for radiological dispersal device (RDD) and improvised nuclear device (IND) incidents. This document specifies protective actions for public health during the early and intermediate phases and cleanup guidance for the late phase of RDD or IND incidents, and it discusses approaches to implementing the necessary actions. However, while the PAG provides specific guidance for the early and intermediate phases, it prescribes no equivalent guidance for the late-phase cleanup actions. Instead, the PAG offers a general description of a complex process using a site-specific optimization approach. This approach does not predetermine cleanup levels but approaches the problem from the factors that would bear on the final agreed-on cleanup levels. Based on this approach, the decision-making process involves multifaceted considerations including public health, the environment, and the economy, as well as socio-political factors. In an effort to fully define the process and approach to be used in optimizing late-phase recovery and site restoration following an RDD or IND incident, DHS has tasked the NCRP with preparing a comprehensive report addressing all aspects of the optimization process. Preparation of the NCRP report is a three-year (2010-2013) project assigned to a scientific committee, the Scientific Committee (SC) 5-1; the report was initially titled, Approach to Optimizing Decision Making for Late- Phase Recovery from Nuclear or Radiological Terrorism Incidents. Members of SC 5-1 represent a broad range of expertise, including homeland security, health physics, risk and decision analysis, economics, environmental remediation and radioactive waste management, and communication. In the wake of the Fukushima nuclear accident of 2011, and guided by a recent process led by the White House through a Principal Level Exercise (PLE), the optimization approach has since been expanded to include off-site contamination from major nuclear power plant accidents as well as other nuclear or radiological incidents. The expanded application under the current guidance has thus led to a broadened scope of the report, which is reflected in its new title, Decision Making for Late-Phase Recovery from Nuclear or Radiological Incidents. The NCRP report, which is due for publication in 2013, will substantiate the current DHS guidance by clarifying and elaborating on the processes required for the development and implementation of procedures for optimizing decision making for late-phase recovery, enabling the establishment of cleanup goals on a site-specific basis. The report will contain a series of topics addressing important issues related to the long-term recovery from nuclear or radiological incidents. Special topics relevant to supporting the optimization of the decision-making process will include cost-benefit analysis, radioactive waste management, risk communication, stakeholder interaction, risk assessment, and decontamination approaches and techniques. The committee also evaluated past nuclear and radiological incidents for their relevance to the report, including the emerging issues associated with the Fukushima nuclear accident. Thus, due to the commonality of the late-phase issues (such as the potential widespread contamination following an event), the majority of the information pertaining to the response in the late-phase decision-making period, including site-specific optimization framework and approach, could be used or adapted for use in case of similar situations that are not due to terrorism, such as those that would be caused by major nuclear facility accidents or radiological incidents. To ensure that the report and the NCRP recommendations are current and relevant to the effective implementation of federal guidance, SC 5-1 has actively coordinated with the agencies of interest and other relevant stakeholders throughout the duration of the project. The resulting report will be an important resource to guide those involved

Chen, S.Y. [Environmental Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)] [Environmental Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

359

Finding of No Significant Impact Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nevada Test Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOLOGICAL/NUCLEAR COUNTERMEASURES TEST AND EVALUATION COMPLEX, NEVADA TEST SITE The U.S. Department of Homeland Security (DHS) is the Federal organization charged with defending the borders of the United States under the authority the Homeland Security Act of 2002 (Public Law 107-296). The DHS requested the National Nuclear Security Administration (NNSA) to develop at the Nevada Test Site (NTS) a complex for testing and evaluating countermeasures for interdicting potential terrorist attacks using radiological and/or nuclear weapons of mass destruction. In response to that request, NNSA proposes to construct, operate, and maintain the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC). NNSA has prepared an Environmental Assessment (DOE/EA-1499) (EA) which analyzes the potential

360

Emergency Responder Radioactive Material Quick Reference Sheet  

Energy.gov (U.S. Department of Energy (DOE))

This job aid is a quick reference to assist emergency responders in identifying preliminary safety precautions that should be taken during the initial response phase after arrival at the scene of...

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARAC: A support capability for emergency managers  

SciTech Connect

This paper is intended to introduce to the non-radiological emergency management community the 20-year operational history of the Atmospheric Release Advisory Capability (ARAC), its concept of operations, and its applicability for use in support of emergency management decision makers. ARAC is a centralized federal facility for assessing atmospheric releases of hazardous materials in real time, using a robust suite of three-dimensional atmospheric transport and diffusion models, extensive geophysical and source-description databases, automated meteorological data acquisition systems, and experienced staff members. Although originally conceived to respond to nuclear accidents, the ARAC system has proven to be extremely adaptable, and has been used successfully during a wide variety of nonradiological hazardous chemical situations. ARAC represents a proven, validated, operational support capability for atmospheric hazardous releases.

Pace, J.C.; Sullivan, T.J.; Baskett, R.L. [and others

1995-08-01T23:59:59.000Z

362

Fifth Anniversary of Radiological Alarm Response Training for...  

National Nuclear Security Administration (NNSA)

Related News DOENNSA Participates in Large-Scale CTBT On-Site Inspection Exercise in Jordan Y-12 recognized for outstanding procurement stewardship Pantex, Y-12 celebrate 'One...

363

Fifth Anniversary of Radiological Alarm Response Training for...  

National Nuclear Security Administration (NNSA)

Training The three-day course is held at NNSA's Y-12 National Security Complex in Oak Ridge, Tenn. While at Y-12, participants develop and discuss their own tactics,...

364

Nuclear and Radiological Engineering and Medical Physics Programs  

E-Print Network (OSTI)

Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Year Enrollment - Fall Semester Undergraduate Graduate #12; Nuclear Power Industry Radiological Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants

Weber, Rodney

365

ORISE: Capabilities in National Security and Emergency Management  

NLE Websites -- All DOE Office Websites (Extended Search)

will assist public information officials determine the best response to an emergency. Forensic Science Forensic Science ORISE possesses the forensic and analytical capabilities to...

366

Energy Emergency Energy Emergency Preparedness Quarterly Preparedness Quarterly  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY Office of Electricity Delivery and Energy Reliability (OE) Infrastructure Security and Energy Restoration (ISER) Deputy Assistant Secretary ISER William N. Bryan Director, Preparedness and Response ISER Stewart Cedres Visit us at: http://energy.gov/oe/services/energy-assurance/emergency-preparedness V O L U M E 2 , I S S U E 4 O C T O B E R 1 5 , 2 0 1 3 Next year the Department of Energy will celebrate an important milestone-the 25th anniversary of the Department's first energy emergency field deployments to provide disaster support to an impacted State or U.S. Territory. As the Department's energy response has evolved over time, so too, has the office charged with leading

367

Emergency Management Program, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Management Homepage Emergency Management Mike Venegoni, Manager Brookhaven National Laboratory Bldg. 860 - P.O. Box 5000 Upton, NY 11973-5000 (631) 344-7280 E-mail: mvenegoni@bnl.gov Emergency Management Program Brookhaven National Laboratory :: Fire Danger Index - LOW The Fire Danger Index level takes into account current and antecedent weather, fuel types, and both live and dead fuel moisture. ▪ Index Description (pdf) ▪ NWS Fire Weather Forecast :: Important Information EMERGENCY Numbers Offsite: 631-344-2222 ▪ Emergency Services ▪ Hurricane Awareness :: Be Alert, Be Aware! Watch out for unattended bags/packages and report any unusual or suspicious incidents immediately to Police Headquarters by calling: 631-344-2222 The mission of the Emergency Management Program at Brookhaven National Laboratory is provide the framework for development, coordination, control, and direction of all emergency planning, preparedness, readiness assurance, response, and recovery actions.

368

Princeton Plasma Physics Lab - Emergency planning  

NLE Websites -- All DOE Office Websites (Extended Search)

emergency-planning Emergency Planning emergency-planning Emergency Planning involves determining, in advance, what will be done in response to specific emergencies including identification and allocation of resources, risk management, mitigation, continuity and recovery. Staff training, using drills, exercises and real events, is an integral part of assuring that the emergency program can be implemented. en COLLOQUIUM: The Promise of Urban Science http://www.pppl.gov/events/colloquium-promise-urban-science

For the first time in history, more than half of the world's population lives in urban areas; by mid-century, 70 percent of the

369

E-Print Network 3.0 - arms aerial radiological Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

General Diagnostic Radiology * Clinical Rotation Breast Imaging... * Clinical Rotation Pediatric Radiology * Clinical Rotation Nuclear Medicine Semester ... Source: VandeVord,...

370

Environmental Health & Safety Office of Radiological Safety  

E-Print Network (OSTI)

Environmental Health & Safety Office of Radiological Safety Page 1 of 2 FORM LU-1 Revision 01 1 safety training and submit this registration to the LSO prior to use of Class 3B or 4 lasers. A copy will be returned to the Laser Supervisor to be filed in the Laboratory Laser Safety Notebook. Both the Laser

Houston, Paul L.

371

Feminist theoretical perspectives on ethics in radiology  

Science Journals Connector (OSTI)

......about the substantive public health issues? In the Western world...female cancer, and yet public health systems come under serious...accorded the best education, health care, nutrition or technology...unwanted food or inferior or even dangerous radiological or other technical......

Mary Condren

2009-07-01T23:59:59.000Z

372

Measurement of radiation dose in dental radiology  

Science Journals Connector (OSTI)

......product to effective dose and energy imparted to the patient. Phys...C. A. and Persliden, J. Energy imparted to the patient in diagnostic...factors for determining the energy imparted from measurements of...dental radiology. | Patient dose audit is an important tool for quality......

Ebba Helmrot; Gudrun Alm Carlsson

2005-05-01T23:59:59.000Z

373

Nuclear Engineering Catalog 2014 Radiological Concentration  

E-Print Network (OSTI)

Nuclear Engineering Catalog 2014 Radiological Concentration Fall Math 141 or 147 (4) FA, SP, SU-approved by the department. Courses in Nuclear Engineering other than 500, 502 or 598 may also be used as technical electives. No more than four (4) credit hours of nuclear engineering courses in which a C- or lower is the highest

Grissino-Mayer, Henri D.

374

Development of radiological concentrations and unit liter doses for TWRS FSAR radiological consequence calculations  

SciTech Connect

The analysis described in this report develops the Unit Liter Doses for use in the TWRS FSAR. The Unit Liter Doses provide a practical way to calculate conservative radiological consequences for a variety of potential accidents for the tank farms.

Cowley, W.L.

1996-04-25T23:59:59.000Z

375

User`s guide for PLTWIND Version 1.0: PC-based software for generating plots of monitored wind data and gridded wind fields for Hanford emergency response applications  

SciTech Connect

This document is a user`s guide for the PLoT Near-Surface WIND (PLTWIND) modeling system. PLTWIND is a personal-computer-based software product designed to produce graphical displays of Hanford wind observations and model-generated wind fields. The real-time wind data processed by PLTWIND are acquired from the mainframe computer system at the Hanford Meteorology Station and copied to PLTWIND systems by the Hanford Local Area Network (HLAN). PLTWIND is designed fbr operation on an IBM-compatible PC with a connection to the HLAN. An HP-compatible pen plotter or laser printer (with a minimum of 1.5 megabytes of memory and a Plotter-in-a-Cartridge hardware) is required to generate hardcopies of PLTWTND`s graphical products. PLTWM`s products are intended for use by emergency response personnel in evaluating atmospheric dispersion characteristics in the near-surface environment. Model products provide important atmospheric information to hazard evaluators; however, these products are only tools for assessing near-surface atmospheric transport and should not be interrupted as providing definitive representation of atmospheric conditions.

Glantz, C.S.; Burk, K.W.

1995-09-01T23:59:59.000Z

376

Radiological protection issues arising during and after the Fukushima nuclear reactor accident  

Science Journals Connector (OSTI)

Following the Fukushima accident, the International Commission on Radiological Protection (ICRP) convened a task group to compile lessons learned from the nuclear reactor accident at the Fukushima Daiichi nuclear power plant in Japan, with respect to the ICRP system of radiological protection. In this memorandum the members of the task group express their personal views on issues arising during and after the accident, without explicit endorsement of or approval by the ICRP.While the affected people were largely protected against radiation exposure and no one incurred a lethal dose of radiation (or a dose sufficiently large to cause radiation sickness), many radiological protection questions were raised. The following issues were identified: inferring radiation risks (and the misunderstanding of nominal risk coefficients); attributing radiation effects from low dose exposures; quantifying radiation exposure; assessing the importance of internal exposures; managing emergency crises; protecting rescuers and volunteers; responding with medical aid; justifying necessary but disruptive protective actions; transiting from an emergency to an existing situation; rehabilitating evacuated areas; restricting individual doses of members of the public; caring for infants and children; categorising public exposures due to an accident; considering pregnant women and their foetuses and embryos; monitoring public protection; dealing with 'contamination' of territories, rubble and residues and consumer products; recognising the importance of psychological consequences; and fostering the sharing of information.Relevant ICRP Recommendations were scrutinised, lessons were collected and suggestions were compiled.It was concluded that the radiological protection community has an ethical duty to learn from the lessons of Fukushima and resolve any identified challenges. Before another large accident occurs, it should be ensured that inter alia: radiation risk coefficients of potential health effects are properly interpreted; the limitations of epidemiological studies for attributing radiation effects following low exposures are understood; any confusion on protection quantities and units is resolved; the potential hazard from the intake of radionuclides into the body is elucidated; rescuers and volunteers are protected with an ad hoc system; clear recommendations on crisis management and medical care and on recovery and rehabilitation are available; recommendations on public protection levels (including infant, children and pregnant women and their expected offspring) and associated issues are consistent and understandable; updated recommendations on public monitoring policy are available; acceptable (or tolerable) 'contamination' levels are clearly stated and defined; strategies for mitigating the serious psychological consequences arising from radiological accidents are sought; and, last but not least, failures in fostering information sharing on radiological protection policy after an accident need to be addressed with recommendations to minimise such lapses in communication.

Abel J Gonzlez; Makoto Akashi; John D Boice Jr; Masamichi Chino; Toshimitsu Homma; Nobuhito Ishigure; Michiaki Kai; Shizuyo Kusumi; Jai-Ki Lee; Hans-Georg Menzel; Ohtsura Niwa; Kazuo Sakai; Wolfgang Weiss; Shunichi Yamashita; Yoshiharu Yonekura

2013-01-01T23:59:59.000Z

377

Emergency Response & Procedures | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2012 29, 2012 Hurricane Isaac is makes its way toward the Gulf Coast and the Energy Department provides details on the storm's impact, and the recovery and restoration activities being undertaken. | Photo courtesy of NOAA DOE Monitoring Energy Infrastructure, Responds as Isaac Makes Landfall The Energy Department is working to respond and restore service as quickly and safely as possible, should Hurricane Isaac result in power outages. August 27, 2012 Satellite image of Tropical Storm Isaac. | Courtesy of NOAA. UPDATE: Tropical Storm Isaac Information on customer power outages and other impacts on the energy sector as Tropical Storm Isaac develops. August 24, 2012 Are You Prepared for a Blackout? Are you prepared for a blackout? What have you done to prepare?

378

Department of Energy - Emergency Response & Procedures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

67 en A Statement from U.S. Secretary of 67 en A Statement from U.S. Secretary of Energy Ernest Moniz Regarding Fukushima http://energy.gov/articles/statement-us-secretary-energy-ernest-moniz-regarding-fukushima A Statement from U.S. Secretary of Energy Ernest Moniz Regarding Fukushima

379

Emergency Response & Procedures | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 18, 2010 June 18, 2010 Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Managing Storm Aftermath in Alabama Warm, humid climate and proximity to the Gulf of Mexico produce turbulent weather patterns that regularly bring tornadoes and hurricanes to Montgomery, AL. As a result, each year the state's capital city must manage tons of construction waste and storm debris. Now, thanks to a $2.5 million Energy Efficiency Conservation Block Grant (EECBG) from the U.S. Department of Energy, Montgomery will revamp its landfill sorting efforts and retrofit its historical city. June 2, 2010 Re-Building Greensburg December 3, 2007 Preliminary Notice of Violation, Battelle Energy Alliance, LLC - EA-2007-06 Preliminary Notice of Violation issued to Battelle Energy Alliance, LLC,

380

Cervical Spine Immobilization Device for Emergency Response  

E-Print Network (OSTI)

to the patient with a forehead and chin strap. These fingers are made from a flexible aluminum (0.040" 1100 Series Alloy) that is easy to bend into a desired shape and maintain contact with the top and sides of the head. The aluminum plate is coated with a 2" thick layer of foam (open- cell Polyurethane) for better

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Portable Neutron Sensors for Emergency Response Operations  

SciTech Connect

This slide-show presents neutron measurement work, including design, use and performance of different neutron detection systems.

Mukhopadhyay, S., Maurer, R., Detweiler, R.

2012-06-22T23:59:59.000Z

382

Emergency Response, Business Continuity and Disaster Recovery  

E-Print Network (OSTI)

at Rocky Flats for 9 years · UCAR/ NCAR: ­ Safety Director ­ Event Services ­ Logistic Operations

383

DECISION MODELS FOR EMERGENCY RESPONSE PLANNING  

E-Print Network (OSTI)

widespread applications in civilian sectors, both in private companies and in the nonmilitary government. The majority of Fortune 500 companies have utilized O.R. inside to help them in their decision making, long.R. experience, created its DRAFT #12;own permanent O.R. group within the City's Office of Management and Budget

Wang, Hai

384

EMERGENCY RESPONSE PLAN ARTHUR AND GLADYS PANCOE-  

E-Print Network (OSTI)

911 to report the natural gas leak. · Pull the nearest fire alarm station and evacuate the building fire alarm station and evacuate the building. · From a safe location, dial 911 to report the fire GAS LEAK: · Extinguish any open controlled flames (e.g. Bunsen burners) if you can do so without

Contractor, Anis

385

Sandia National Laboratories: Emergency Response Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

386

EMERGENCY PROCEDURES Initial response to a  

E-Print Network (OSTI)

of casualties · Hazards ­ spillage, chemicals · Access ­ to scene of incident · Locus ­ exact location major incident affecting this University. It will be revised from time to time in the light will be able to assist in the identification of particular hazards in respect of any property affected. 3

Glasgow, University of

387

ORAU: National Security and Emergency Management Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security and Emergency National Security and Emergency Management Services ORAU works with federal, state and local agencies to enhance emergency management planning and integrate their efforts to respond effectively to terrorism, natural disasters and other hazards. Our experienced team helps organizations identify and correct readiness gaps to strengthen their response plans.

388

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Instructor's Guide Instructor's Guide 2.17-1 Course Title: Radiological Control Technician Module Title: Contamination Monitoring Instrumentation Module Number: 2.17 Objectives: 2.17.01 List the factors which affects an RCT's selection of a portable contamination monitoring instrument. L 2.17.02 Describe the following features and specifications for commonly used count rate meter probes used at your site for beta/gamma and/or alpha surveys: a. Detector type b. Detector shielding and window c. Types of radiation detected/measured d. Energy response for measured radiation e. Specific limitations/characteristics L 2.17.03 Describe the following features and specifications for commonly used count rate instruments used at your site: a. Types of detectors available for use b. Operator-adjustable controls

389

Emergency, Fire Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency, Fire Information Emergency, Fire Information Emergency, Fire Information Protecting our people, emergency personnel, national security information, facilities, lands, and neighboring communities. Contact Communications Office (505) 667-7000 Email LANL Update (505) 667-6622 or (877) 723-4101 toll-free Emergency Public Information In the event of an emergency, Los Alamos National Laboratory will provide you with needed information here as it becomes available. The Los Alamos Site Office/Los Alamos National Laboratory Emergency Public Information Plan provides a framework for coordinated, accurate, and timely release of information to Laboratory employees, the news media, potentially affected members of the public, and other stakeholders. Want emergency news emailed to you? Subscribe here.

390

Environmental Technology and Emergency  

E-Print Network (OSTI)

Conservation and Recovery Act (RCRA), the Clean Air Act, Water Quality, and Method 9 Visible Emissions in environmental applications and emergency management. Past projects include assistance in environmental rule, border environmental and security studies, emergency communications, and energy assurance reviews

McGraw, Kevin J.

391

Deployment of Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the FUPWG Deployment of Emerging Technologies. Presented by Brad Gustafson, Department of Energy, held on November 1, 2006.

392

NHMFL Emergency Action Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL FLORIDA STATE UNIVERSITY SAFETY PROCEDURE SP-3 TITLE: EMERGENCY ACTION PLAN ...

393

Emergency Situation Reports  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Electricity Delivery and Energy Reliability issues public Situation Reports during large scale energy emergencies.

394

States & Emerging Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

395

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Protection Standards Radiological Protection Standards Instructor's Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of the 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998) "Occupational Radiation Protection" Instructional Aids:

396

HQ Emergency Management Team (EMT) | National Nuclear Security  

National Nuclear Security Administration (NNSA)

HQ Emergency Management Team (EMT) | National Nuclear Security HQ Emergency Management Team (EMT) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog HQ Emergency Management Team (EMT) Home > About Us > Our Programs > Emergency Response > Planning for Emergencies > HQ Emergency Management Team (EMT) HQ Emergency Management Team (EMT) NNSA ensures that capabilities are in place to respond to any NNSA and

397

EMERGENCY PLANNING AND PROCEDURES  

E-Print Network (OSTI)

EMERGENCY PLANNING AND PROCEDURES HANDBOOK FOR CWRU EMPLOYEES August 2013 #12;CWRU EMERGENCY innovation, technology, teamwork, public- private co- operation and vigilance. Mission Statement We increase appropriately to any crisis or emergency. This handbook is comprehensive and provides employees with information

Cavusoglu, Cenk

398

Emergency Facilities and Equipment  

Directives, Delegations, and Requirements

This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

399

Independent Oversight Review of the Los Alamos National Laboratory Radiological Controls Activity-Level Implementation, November 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory Los Alamos National Laboratory Radiological Controls Activity-Level Implementation May 2011 November 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 2 4.0 Methodology ....................................................................................................................................... 3

400

Microsoft Word - Berger Radiological Conditions.doc  

Office of Legacy Management (LM)

Dec. Dec. 2, 2009 1 Summary of Information Regarding Radiological Conditions of NFSS Vicinity Properties J. D. Berger, CHP DeNuke Contracting Services, Inc. Oak Ridge, TN The following is a summary of the information obtained from reviews of radiological survey reports, prepared by ORAU in support of the DOE Formerly Utilized Sites Remedial Action Program. These reports were obtained for review from the IVEA Program at ORAU/ORISE. A list of the reports, reviewed for this summary, is included at the end of this report. Hard copies of reports for ORAU survey activities of NFSS and NFSS Vicinity Properties are available at the South Campus Site of ORAU (these reports are not available in electronic form). In addition, there are 12 - 14 boxes of hard-copy supporting data and information, pertinent to the surveys. I inspected the contents of Box 54. That box contained records for NFSS Vicinity

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

06-97 06-97 February 1997 CHANGE NOTICE NO. 1 March 2002 Reaffirmation with Errata August 2002 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Reaffirmation with Errata DOE-HDBK-1106-97 Radiological Contamination Control for Laboratory Research

402

Radiological Safety Training for Accelerator Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1108-2002 May 2002 Reaffirmation with Change Notice 2 July 2013 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change Notice No.2 Radiological Training for Accelerator Facilities Page/Section Change Throughout the document: Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Revised to: Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement

403

OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL  

Office of Legacy Management (LM)

2 7% 2 7% d &y / 7 ORNL/TM- 10076 OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL ~-T-m -~=- -~ w-~- -"" * ,<.~- ~w&$UREMENTs: TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NF002) J. K. Williams B. A. Berven ~.~~;:;-~~~ ~. -,' - ~~ 7, OPERATED BY MARTIN MARIDTA ENERGY SYSTEMS, INC, FOR THE UNITED STATES DEPARTMENT OF ENERGY --... ORNL/TM-10076 HEALTH AND SAFETY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AH 10 05 00 0; ONLWCOI) RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NFOO2) J. K. Williams* and B. A. Berven *Biology Division Date Published November 1986 Investigation Team B. A. Berven - RASA Program Manager W. D. Cottrell - FUSRAP Project Director W. H. Shinpaugh - Field Survey Supervisor

404

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

145-2008 145-2008 April 2008 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2008 Program Management Guide

405

Radiological Safety Training for Uranium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HDBK-1113-2008 DOE HDBK-1113-2008 April 2008 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1113-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1113-2008 iii Foreword This Handbook describes a recommended implementation process for additional training as outlined in DOE-STD-1098-99, Radiological Control (RCS). Its purpose is to assist those individuals, Department of Energy (DOE) employees, Managing and Operating (M&O) contractors, and Managing and Integrating

406

Radiological Dispersion Devices and Basic Radiation Science  

Science Journals Connector (OSTI)

Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs) or dirty bombs and their associated health effects provides added motivation for students. The events of Sept. 11 2001 and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivitylectures or added as a supplementary or enrichment activity.

Joseph John Bevelacqua

2010-01-01T23:59:59.000Z

407

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. ii Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2013 Program Management Foreword

408

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 of 3) 2 of 3) Radiological Contamination Control Training for Laboratory Research Instructor's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page DEPARTMENT OF ENERGY - Course/Lesson Plan.............................. 1 Standardized Core Course Materials................................................... 1 Course Goal.........................................................................1 Target Audience.................................................................. 1 Course Description............................................................... 1 Prerequisites...................................................................... 1

409

Demand Response as a System Reliability Resource  

E-Print Network (OSTI)

for Demand Response Technology Development The objective ofin planning demand response technology RD&D by conductingNew and Emerging Technologies into the California Smart Grid

Joseph, Eto

2014-01-01T23:59:59.000Z

410

An aerial radiological survey of the Kennedy Space Center and Cape Canaveral Air Force Station and surrounding area, Titusville, Florida: Date of survey: October 1985  

SciTech Connect

An aerial radiological survey of the entire Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) was performed during the period 9 through 23 October 1985. This survey was conducted in three parts. First, a low resolution, low sensitivity background survey was performed that encompassed the entire KSC and CCAFS area. Next, two smaller, high resolution, high sensitivity surveys were conducted: the first focused on Launch Complexes 39A and 39B, and the second on the Shuttle Landing Facility. The areas encompassed by the surveys were 200, 5.5, and 8.5 square miles (500, 14, and 22 sq km), respectively. The purpose of these surveys was to provide information useful for an emergency response to a radiological accident. Results of the background survey are presented as isoradiation contour maps of both total exposure rate and man-made gross count superimposed on a mosaic of recent aerial photographs. Results of the two small, detailed surveys are also presented as an isoradiation contour map of exposure rate on the aerial photograph base. These data were evaluated to establish sensitivity limits for mapping the presence of plutonium-238. Natural background exposure rates at the Kennedy Space Center and Cape Canaveral Air Force Station are very low, generally ranging from 4 to 6.5 microroentgens per hour (..mu..R/h) and less than 4 ..mu..R/h in wet areas. However, exposure rates in developed areas were observed to be higher due to the importation of construction materials not characteristic of the area. 8 refs., 3 figs., 4 tabs.

Not Available

1988-01-01T23:59:59.000Z

411

Transportation Emergency Preparedness Program - Making A Difference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- - Making A Difference Where we started - and where we are going Tom Clawson TEPP Contractor tom@trgroupinc.com Brief TEPP History * In 1988, identified need to address d f emergency preparedness concerns of shipments to WIPP * EM established in 1989, TEPP became a funded program - Identified need to have a program to focus on p g preparedness for all radiological shipments - TEPP incorporated into DOE Order 151.1 Brief TEPP History * Developed MERRTT thru the Training and Medical I T i G Issues Topic Groups - Began using MERRTT in 1998 * MERRTT and WIPP STEP Merged * Stakeholders began asking for a more advanced level of training - In 2005, TEPP looked to the NFPA 472 standard for training competencies - Many of the NFPA competencies were not attainable - TEPP worked with NFPA to re-shape the competencies so

412

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Work Coverage Radiological Work Coverage Instructor's Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that should be discussed with workers during pre-job briefings. 2.11.06 Describe exposure control techniques that can be used to control worker and technician radiation exposures. L 2.11.07 Describe the in-progress radiological surveys that should be performed, at your site, under various radiological conditions.

413

DOE-HDBK-1122-99; Radiological Control Technican Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Work Coverage Radiological Work Coverage Study Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that should be discussed with workers during pre-job briefings. 2.11.06 Describe exposure control techniques that can be used to control worker and technician radiation exposures. i 2.11.07 Describe the in-progress radiological surveys that should be performed, at your site, under various radiological conditions.

414

Surveillance Guides - RPS 11.2 Radiological Work Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOLOGICAL WORK PRACTICES RADIOLOGICAL WORK PRACTICES 1.0 Objective The objective of this surveillance is to evaluate the practices of workers performing tasks in radiological controlled areas to ensure that these practices protect the safety and health of the workers and comply with DOE requirements. 2.0 References 2.1 10 CFR 835, Occupational Radiation Protection 2.2 DOE/EH-0256T, rev. 1, Radiological Control Manual 3.0 Requirements Implemented This surveillance is conducted to implement requirement RP-0024 from the RL S/RID. This requirement comes from the Radiological Control Manual. 4.0 Surveillance Activities The Facility Representative performs the following activities to evaluate the effectiveness of work practices by contractor personnel in minimizing exposure to radiological hazards.

415

Guidance for evaluation of operational emergency plans  

SciTech Connect

The purpose of this document is to provide guidance for development of emergency plans for the USDOE Office of Defense Programs, Office of Energy Research, and Office of Environmental Management facilities. It gathers emergency planning policy and guidance from applicable federal regulations, DOE Orders and related guidance documents. This material, along with recommended good practices, is presented as a checklist against which emergency plans can be reviewed by DOE Headquarters. The Office of Emergency Response (DP-23), Office of Environment, Safety and Health Technical Support (ER-8), and Office of Transportation, Emergency Management and Analytical Services (EM-26) will use this checklist to evaluate plans submitted by DP, ER, and EM field elements. The scope of this document encompasses plans for operational emergencies at DOE facilities, both nuclear and non-nuclear. Operational emergencies, as defined in Attachment 2 to DOE Order 5500.1B (April 30, 1991) are ``significant accidents, incidents, events, or natural phenomena which seriously degrade the safety or security of DOE facilities. Operational Emergencies apply to DOE reactors and other DOE facilities (nuclear and non-nuclear) involved with hazardous materials; DOE-controlled nuclear weapons, components, or test devices; DOE safeguards and security events; and transportation accidents involving hazardous materials under DOE control.``

NONE

1995-03-01T23:59:59.000Z

416

Emergency Readiness Assurance Program  

Directives, Delegations, and Requirements

To establish the requirements of the Emergency Readiness Assurance Program with a goal of assurting that the Department of Energy (DOE) Emergency Management System (EMS) is ready to respond promptly, efficiently, and effectively to any emergency involving DOE facilities or requiring DOE assistance. Cancels DOE O 5500.10 dated 4-30-91. Chg 1 dated 2-27-92. Change 1 canceled by DOE O 151.1 of 9-25-95.

1992-02-27T23:59:59.000Z

417

Emergency Support Function #12; Energy Annex | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Support Function #12; Energy Annex Emergency Support Function #12; Energy Annex Emergency Support Function #12; Energy Annex Emergency Support Function (ESF) #12 - Energy is intended to facilitate the restoration of damaged energy systems and components when activated by the Secretary of Homeland Security for incidents requiring a coordinated Federal response. Under Department of Energy (DOE) leadership, ESF #12 is an integral part of the larger DOE responsibility of maintaining continuous and reliable energy supplies for the United States through preventive measures and restoration and recovery actions. Emergency Support Function #12; Energy Annex More Documents & Publications Emergency Support Function #12; Energy Annex - Support Agencies Special Report: IG-0847 Energy Emergency Preparedness Quarterly Vol 1, Issue 1 - January 201

418

ORISE: Radiation Emergency Medicine - Continuing Medical Education Course  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Emergency Medicine Radiation Emergency Medicine Dates Scheduled Register Online February 4-7, 2014 March 18-21, 2014 April 29-May 2, 2014 June 3-6, 2014 August 12-15, 2014 Fee: $175 Maximum enrollment: 24 24.5 hours AMA PRA Category 1 Credits(tm) This 3½-day course is intended for physicians, nurses, nurse practitioners and physician assistants who may be called upon to provide emergency medical care following a radiological or nuclear incident. Priority registration will be given to these groups of professionals. This course may also be relevant for paramedic instructors but is generally not intended for pre-hospital responders. The course emphasizes the practical aspects of initial hospital management of irradiated and/or contaminated patients through lectures and hands-on practical exercises.

419

responding to emergencies  

National Nuclear Security Administration (NNSA)

physicians, emergency physicians, and nurses involved in short-term and long-term patient care, as well as courses specifically for health and medical physicists. In...

420

States & Emerging Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States & Emerging Energy Technologies August 15, 2013 DOE's State and Local Technical Assistance Program 2 DOE's Technical Assistance Program * Strategic Energy Planning * Program...

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

planning for emergencies  

National Nuclear Security Administration (NNSA)

1%2A en Planning for Emergencies http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismplanningforemergencies

422

Emergency Public Information  

Directives, Delegations, and Requirements

This volume defines elements of providing information to the public during and following emergencies. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

423

Analysis of nuclear test TRINITY radiological and meteorological data  

SciTech Connect

This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the TRINITY nuclear test. Inconsistencies in the radiological data and their resolution are discussed. The methods of normalizing the radiological data to a standard time and estimating fallout-arrival times are presented. The meteorological situations on event day and the following day are described. Comparisons of the WSNSO fallout analyses with analyses performed in the 1940s are presented. The radiological data used to derive the WSNSO 1987 fallout patterns are tabulated in appendices.

Quinn, V.E.

1987-09-01T23:59:59.000Z

424

OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL  

Office of Legacy Management (LM)

ornl< ORNLRASA-8664 (MJ18V) orni OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL EZ-BBBB - *VERIFICATION SURVEY AT THE BALLOD ASSOCIATES PROPERTY,...

425

CRAD, Radiological Controls - Oak Ridge National Laboratory High...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C...

426

DOE, Westinghouse to Partner with NMJC To Train Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Partner with NMJC To Train Radiological and Waste Handling Technicians Hobbs, NM, December 5, 2001 -- Representatives of the Waste Isolation Pilot Plant (WIPP) yesterday...

427

Trending and root cause analysis of TWRS radiological problem reports  

SciTech Connect

This document provides a uniform method for trending and performing root cause analysis for radiological problem reports at Tank Waste Remediation System (TWRS).

Brown, R.L.

1997-07-31T23:59:59.000Z

428

DOE Subpart H Report. Annual NESHAPS Meeting on Radiological...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NESHAPS Meeting on Radiological Emissions Gustavo Vazquez*, DOE; Sandra Snyder, PNNL Abstract: The National Emissions Standards for Hazardous Air Pollutants, Subpart H,...

429

SECTION 3-EMERGENCY GUIDELINES The basic emergency procedures outlined the University Policy 4216-University's Emergency Response  

E-Print Network (OSTI)

have also been developed for certain unique situations such as those involving aviation and hazardous and the campus location of the victim. STEP 2- In case of minor injury or illness employees should report University police at 257-4081. ELECTRICAL/LIGHT FAILURE At present campus building lighting may not provide

Selmic, Sandra

430

Radiological hazards of alpha-contaminated waste  

SciTech Connect

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

431

Emergency Operations Training Academy | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Operations Training Academy Emergency Operations Training Academy Emergency Operations Training Academy The Office of Emergency Operations, NA-40-The Emergency Operations...

432

Emergency Vocabulary | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Emergency Vocabulary Emergency Vocabulary Emergency Information Emergency Information Home Public Notifications Emergency Vocabulary Sheltering in Place Evacuation ISC Home Emergency Vocabulary Print Text Size: A A A RSS Feeds FeedbackShare Page In the event of an emergency on the Oak Ridge Reservation, you will hear one of the following terms during public announcements. Each term indicates the magnitude of the event and will help you understand any necessary protective actions. Operational Emergency: an event that does not involve a release of hazardous material, but may require a response by the site (such as calling the fire department). Events resulting in the airborne release of hazardous materials are classified into three levels of severity. Alert: harmful levels of a material were released, but have not left

433

Surveillance Guide - EMS 21.1 Emergency Preparedness  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EMERGENCY PREPAREDNESS EMERGENCY PREPAREDNESS 1.0 Objective The objective of this surveillance is to determine if facility contractor personnel have adequate background and training to ensure that appropriate actions are taken for an emergency event. 2.0 References 2.1 DOE 151.1, Comprehensive Emergency Management Program 2.2 DOE/RL-94-02, Hanford Emergency Response Plan 2.3 DOE-0223, Emergency Plan Implementing Procedures 2.4 99-QSH-213, Letter, Facility Representative Implementation of Emergency Preparedness Interview Process 3.0 Requirements Implemented This surveillance is conducted to implement requirements of letter 99-QSH-213, Facility Representative Implementation of Emergency Preparedness Interview Process. 4.0 Surveillance Activities

434

Energy Emergency Energy Emergency Preparedness Quarterly Preparedness Quarterly  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 J 3 J U L Y 1 5 , 2 0 1 3 U.S. DEPARTMENT OF ENERGY Office of Electricity Delivery and Energy Reliability (OE) Infrastructure Security and Energy Restoration (ISER) Deputy Assistant Secretary ISER William N. Bryan Director, Preparedness and Response ISER Stewart Cedres Visit us at: http://energy.gov/oe/services/energy-assurance/emergency-preparedness President Obama Discusses Hurricane Preparedness with Utility CEOs at DOE P President Obama, accompanied by DOE senior response officials, including Acting Secretary Daniel Poneman, Assistant Secretary Patricia Hoffman, and Deputy Assistant Secretary Bill Bryan, met with electric company CEOs and energy sector trade association representatives at Department of Energy headquarters to discuss preparations for the upcoming Atlantic hurricane

435

EMERGENCY PLANNING AND PROCEDURES  

E-Print Network (OSTI)

EMERGENCY PLANNING AND PROCEDURES HANDBOOK FOR CWRU STUDENTS August 2013 #12;CWRU EMERGENCY innovation, technology, teamwork, public- private co- operation and vigilance. Mission Statement We increase. This handbook is comprehensive and provides studetns with information on how to prepare for and respond

Cavusoglu, Cenk

436

FAQS Qualification Card - Emergency Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management Emergency Management FAQS Qualification Card - Emergency Management A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-EmergencyManagement.docx Description Emergency Management Qualification Card More Documents & Publications FAQS Qualification Card - Environmental Restoration

437

Office of Safeguards, Security & Emergency Preparedness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Safeguards, Security & Office of Safeguards, Security & Emergency Preparedness Office of Safeguards, Security & Emergency Preparedness Office of Safeguards, Security & Emergency Preparedness Mission Develop and oversee the implementation of policy and guidance with respect to security and emergency management. Foster continuous improvement across the Environmental Management (EM) complex through application of Integrated Safeguards and Security Management principles. Serve as a liaison with sites and other agencies on security and emergency management issues. Major Responsibilities Ensure the mandatory level of safeguards and security protection, with managed risk, for EM's nuclear materials, facilities, classified material, documents and other government assets. Apply the Graded Security Protection (GSP) Policy and other

438

Memorandum for Heads of Federal Departments and Agencies: Emergencies and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heads of Federal Departments and Agencies: Heads of Federal Departments and Agencies: Emergencies and NEPA Memorandum for Heads of Federal Departments and Agencies: Emergencies and NEPA With this Memorandum, the Council on Environmental Quality reiterates its previous guidance on the National Environmental Policy Act (NEPA) environmental review of proposed emergency response actions.This memorandum clarifies that the previous guidance remains applicable to current situations and provides guidance on required agency environmental review. Emergencies and NEPA More Documents & Publications Memorandum for Federal NEPA Contacts: Emergency Actions and NEPA Aligning National Environmental Policy Act Process with Environmental Management Systems Final Guidance on Improving the Process for Preparing Efficient and Timely

439

Emergency Services, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Services Emergency Services at Brookhaven National Laboratory :: Fire Danger Index LOW ▪ Index Description (pdf) ▪ NWS Fire Weather Forecast ▪ What is the Fire Danger Index ? The Fire Danger Index level takes into account current and antecedent weather, fuel types, and both live and dead fuel moisture. Hide :: Important Links EMERGENCY Numbers Lab Phone: 911 or 2222 Cell Phone/Offsite: 631-344-2222 OHSAS 18001 :: Contact Links ▪ Email LP Division Manager ▪ Email Fire Chief ▪ Email Fire Captains ▪ Email Fire Protection Engineer The mission of the Emergency Services Division is to provide preparedness, assessment, engineering and response services for all types of non-security related emergencies. The Division develops policies and programs for fire safety and fire risk management; provides emergency services for fire suppression, emergency medical services, hazardous material incidents, rescue, salvage, and property protection. As well as maintains the mechanical components of certain fire safety systems.

440

The Present Role of Radiological Methods in Engineering  

Science Journals Connector (OSTI)

...Present Role of Radiological Methods in Engineering R. Halmshaw A brief outline of the history of industrial radiology is given. Major...of metals and metal thicknesses used in engineering, X-ray energies from 20 keV to 30 MeV...

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Emergency Public Information  

NLE Websites -- All DOE Office Websites (Extended Search)

In the unlikely event of an emergency on the Oak Ridge Reservation, the Department of Energy's Oak Ridge Office will provide you with needed information here as it becomes available. In the unlikely event of an emergency on the Oak Ridge Reservation, the Department of Energy's Oak Ridge Office will provide you with needed information here as it becomes available. *There is no emergency at this time on the Oak Ridge Reservation.* The Department of Energy's Oak Ridge Office is committed to protecting our people, emergency personnel, national security information, facilities, lands, and neighboring communities from loss of life, injury, illness, loss of property, or degradation of the common health and the welfare caused by emergency conditions at any of our signature facilities, whether due to personal actions, forces of nature, or external events. Our partners at the Y-12 National Security Complex share in this commitment and the two organizations have joined forces with the Tennessee Emergency Management Agency to create a comprehensive Web site that contains all the information needed to prepare for and respond to an emergency on the Oak Ridge Reservation.

442

Emerging Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies Program Emerging Technologies Program Pat Phelan Program Manager patrick.phelan@ee.doe.gov (202)287-1906 April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy savings ET Mission: Accelerate the research, development and commercialization of emerging, high impact building technologies that are five years or less to market ready. 3 | Building Technologies Office eere.energy.gov

443

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

444

How ORISE is Making a Difference: Radiological Assessment and Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Develops Paperless Tool to Assist with Data Input Into Radiological Develops Paperless Tool to Assist with Data Input Into Radiological Assessment and Monitoring System During the Empire 09 exercise, the Oak Ridge Institute for Science and Education (ORISE) tested (for the first time) a paperless system of data management to support the operations of the Federal Radiological Monitoring and Assessment Center (FRMAC). The paperless FRMAC (pFRMAC) provides tools that enables the FRMAC to collect and process field measurements and samples following a radiological or nuclear event. The process allows field data to be entered into specialized electronic tablets that are then sent to the Radiological Assessment and Monitoring System (RAMS). RAMS is the hub of pFRMAC that provides data analysis to the consequence management home team and

445

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Protection Standards Radiation Protection Standards Study Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998) "Occupational Radiation Protection" DOE-HDBK-1122-99 Module 1.09 Radiation Protection Standards

446

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1919: Recycle of Scrap Metals Originating from Radiological EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.) PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 28, 2012 EA-1919: Notice of Public Comment Period Extension Recycling of Scrap Metals Originating from Radiological Areas December 12, 2012 EA-1919: Notice of Availability of a Draft Programmatic Environmental

447

Radiological aspects of in situ uranium recovery  

SciTech Connect

In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. An overview of the major aspects of the health physics and radiation protection programs that were developed at these facilities are discussed and contrasted to circumstances of the current generation and state of the art of Uranium ISR technologies and facilities. (authors)

BROWN, STEVEN H. [SHB INC., 7505 S. Xanthia Place, Centennial, Colorado (United States)

2007-07-01T23:59:59.000Z

448

Enhancing Diagnostic Accuracy in Oral Radiology: A Case for the Basic Sciences.  

E-Print Network (OSTI)

??Background: Cognitive processing in diagnostic oral radiology requires a solid foundation in the basic sciences as well as knowledge of the radiologic changes associated with (more)

Baghdady, Mariam

2014-01-01T23:59:59.000Z

449

E-Print Network 3.0 - aids radiological findings Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

pulmonary edema... administrative codes that will aid in billing and quality assurance. The radiology report should record... of Radiology. ACR prac- tice guideline for...

450

ORISE: Chemical Stockpile Emergency Preparedness Program Training Advisor  

NLE Websites -- All DOE Office Websites (Extended Search)

CSEPP Training HSEEP Training Spokesperson Training Incident Command System Training Emergency Management Emergency Response Crisis and Risk Communication Forensic Science How ORISE is Making a Difference Overview Exercises and Planning Training and Technology Support Resources How to Work With Us Contact Us Oak Ridge Institute for Science Education Training Chemical Stockpile Emergency Preparedness Program Training: Advisor 6.0 The Oak Ridge Institute for Science and Education (ORISE) designed a unique computer-based, reference product-Advisor 6.0-to assist those who work in Chemical Stockpile Emergency Preparedness Program's (CSEPP) Emergency Public Information office. Advisor 6.0 includes: Personal digital assistant (PDA) applications that can be used to enhance emergency response communications/coordination.

451

Safety & Emergency Management  

NLE Websites -- All DOE Office Websites (Extended Search)

F.A.Q.s F.A.Q.s Conference Center and APS Site Activity Coordination Management and/or Coordination of APS Site Work/Services Safety & Emergency Management Database Maintenance Personnel Safety & Emergency Management Area Emergency Supervision Drills/Training Page Bob Whitman with any questions or concerns. Area Emergency Supervisors and Building Monitors in your location can be found online. ESH 108 Building Orientation Page Bob Whitman with any questions regarding the newly designed ESH 108 Building Orientation course. Fire Alarm System Testing Through Argonne Fire Protection Services, the fire alarm system is tested visually and audibly annually. Life Safety Inspections Page Carl Nelson at 4-1892 with any questions. Life Safety Inspections are collected by Carl via fax at 2-9729 or delivery to office B0149

452

EMERGENCY PREPAREDNESS (EP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EP) EP) Objective EP.1 - A routine drill program and emergency operations drill program, including program records, have been established and implemented. (Core Requirement 11) Criteria * Operational drills are developed, approved, and implemented for normal OCF operations. Both organizations that provide the site's infrastructure (Emergency Operations Center and Fire Department) and the facility's drill program are to be assessed. * The site emergency drill program has developed adequate OCF drill scenarios. Verify that drills that have been performed and found acceptable. Reviews evaluate the drill guides that are prepared for OCF accident scenarios described in the BIO and the facility's practice of those evolutions. * Determine the adequacy of the emergency exercises through observation of one of the following

453

BFC Emergency Plan  

National Nuclear Security Administration (NNSA)

at the BFC with only two of its four boilers. The West Powerhouse boilers are primarily natural gas- fired, with No. 2 fuel oil used under emergency, training, and testing...

454

Emerging geothermal energy technologies  

Science Journals Connector (OSTI)

Geothermal energy, whether as a source of electricity or ... , has an enormous potential as a renewable energy source. This paper presents a broad overview of geothermal energy, with a focus on the emerging techn...

I. W. Johnston; G. A. Narsilio; S. Colls

2011-04-01T23:59:59.000Z

455

Biological Sciences Emergency Instructions  

E-Print Network (OSTI)

, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights the emergency call Campus Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt

de Leon, Alex R.

456

Social Sciences Emergency Instructions  

E-Print Network (OSTI)

the location of the shooter, hide in a locked or barricaded room and turn out the lights Fight ­ if confronted the emergency call Campus Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt

de Leon, Alex R.

457

Science Theatre Emergency Instructions  

E-Print Network (OSTI)

the location of the shooter, hide in a locked or barricaded room and turn out the lights Fight ­ if confronted the emergency call Campus Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt

de Leon, Alex R.

458

Professional Faculties Emergency Instructions  

E-Print Network (OSTI)

, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights the emergency call Campus Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt

de Leon, Alex R.

459

Kinesiology A Emergency Instructions  

E-Print Network (OSTI)

, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights the emergency call Campus Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt

de Leon, Alex R.

460

Mechanical Engineering Emergency Instructions  

E-Print Network (OSTI)

, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights the emergency call Campus Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt

de Leon, Alex R.

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mathematical Sciences Emergency Instructions  

E-Print Network (OSTI)

, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights the emergency call Campus Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt

de Leon, Alex R.

462

Varsity Courts Emergency Instructions  

E-Print Network (OSTI)

, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights the emergency call Campus Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt

de Leon, Alex R.

463

Radiological Control Programs for Special Tritium Compounds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84-2004 84-2004 SEPTEMBER 2004 CHANGE NOTICE NO. 1 Date June 2006 DOE HANDBOOK RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS U.S. Department of Energy AREA OCSH Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Table of Changes Page Change 67 (near bottom) In row 1, column 2 of the table titled "dosimetric properties" 6 mrem was changed to 6 x 10 -2 mrem Available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techstds/ DOE-HDBK-1184-2004 iii Foreword The Department of Energy (DOE) and its predecessor agencies have undertaken a wide variety

464

Radiological Control Programs for Special Tritium Compounds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F 1325.8 F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: May 11, 2006 REPLY TO EH-52:JRabovsky:3-2 135 ATTN OF: APPROVAL OF CHANGE NOTICE 1 TO DEPARTMENT OF ENERGY (DOE) SUBJECT. HANDBOOK 1184-2004, RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS TO: Dennis Kubicki, EH-24 Technical Standards Manager This memorandum forwards the subject Change Notice 1 to DOE Handbook, DOE- HDBK- 1184-2004, which has approved for publication and distribution. The change to this handbook consists of a correction to the rule of thumb, listed in Appendix A, for converting the uptake of tritium oxide into radiation dose. A factor of 1/100 was inadvertently omitted from this rule of thumb when this DOE Handbook was originally published. This change does not affect the references, is not of a technical nature, and

465

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice 2 Change Notice 2 with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1106-97 iii Page/Section Change

466

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaffirmation Reaffirmation August 2002 Change Notice 1 December 2004 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1106-97 iii Page/Section Change

467

Radiological assessment of BWR recirculatory pipe replacement  

SciTech Connect

Replacement of primary recirculating coolant pipe in BWRs is a major effort that has been carried out at a number of nuclear generating stations. This report reviews the planned or actual pipe replacement projects at six sites: Nine Mile Point-1, Monticello, Cooper, Peach Bottom-2, Vermont Yankee, and Browns Ferry-1. It covers the radiological issues of the pipe replacement, measures taken to reduce doses to ALARA, estimated and actual occupational doses, and lessons learned during the various replacements. The basis for the decisions to replace the pipes, the methods used for preparation and decontamination, the removal of old pipe, and the installation of the new pipe are briefly described. Methods for reducing occupational radiation dose during pipe repairs/replacements are recommended. 32 refs., 12 figs., 17 tabs.

Parkhurst, M.A.; Hadlock, D.E.; Harty, R.; Pappin, J.L.

1986-02-01T23:59:59.000Z

468

Survey of radiologic practices among dental practitioners  

SciTech Connect

The purpose of this study was to determine the factors that influence and contribute to patient exposure in radiologic procedures performed in the offices of 132 staff members within the dental department of a teaching hospital. A questionnaire was prepared in which data were requested on brands of film used, type of x-ray unit used, processing, and use of leaded apron, cervical shield, and film holder. Offices were also visited to evaluate performance of existing dental x-ray equipment. Both the Dental Radiographic Normalizing and Monitoring Device and the Dental Quality Control Test Tool were evaluated. The average exposure was equivalent to the class D film (220 mR), but only 13% of those surveyed used the faster class E film, which would reduce patient exposure in half. The survey indicates that dentists are not using the newer low-exposure class E film in their practices.

Goren, A.D.; Sciubba, J.J.; Friedman, R.; Malamud, H. (Long Island Jewish Medical Center, New Hyde Park, NY (USA))

1989-04-01T23:59:59.000Z

469

Radiological Control Change Notice 1 Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DATE: May DATE: May 20, 2004 REPLY TO EH-52:Judith D. Foulke:301 :903-5865 ATTN OF: CHANGE NOTICE TO DEPARTMENT OF ENERGY (DOE) HANDBOOK, DOE-STD- SUBJECT. 1098-99, RADIOLOGICAL CONTROL TO: George Detsis, EH-3 1 This memorandum forwards Change Notice Number 1 to subject DOE Technical Standard, DOE-STD-1098-99. The changes are being made as part of the 5-year review of the standard. The table inserted into the document details the changes. After the changes are made, a notice of intent to reaffirm memorandum will be issued. A compact disk (CD) of the revised document in MS Word and in PDF format is attached. If there are any questions, please contact Dr. Judith Foulke of my staff on 3-5865 or electronic mail (Judy.Foulke@eh.doe.gov). ill R. McArthur, PhD, C1}T Office Director Office of Worker Protection Policy

470

Local Leaders: Respond to an Energy Emergency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Respond to an Energy Emergency Respond to an Energy Emergency Local Leaders: Respond to an Energy Emergency Gather information-Tap the energy and emergency contacts you established before the disaster occurred to gather information and assess the nature of the emergency before moving forward with your response. What immediate damage has impacted energy assets? What is the extent of the damage? Who in the community is currently impacted? Is it possible to provide the community access to a place unaffected by the energy emergency if needed? How long will it take to restore the community to pre-emergency conditions? Effectively communicate with the public-Ensure quick information from local officials and energy suppliers is readily available and accessible, via radio, television, newspapers, the Internet, social media,

471

Emergency Management Program Review at the Waste Isolation Pilot Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Waste Isolation Pilot Plant Emergency Management Program Review at the May 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 6 Hazards Survey and Hazards Assessments .................................. 6 Program Plans, Procedures, and Responder Performance ........ 9 Training, Drills, and Exercises ..................................................... 13 Emergency Public Information and Offsite Response Interfaces ....................................................................................... 15 Feedback and Continuous Improvement Process

472

Emergency Procedures | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Services Employee Services Safety and Health Emergency Procedures Emergency Procedures Note: This page is pending deletion, please refer to the Safety and health main page...

473

Congestion control algorithms of TCP in emerging networks  

E-Print Network (OSTI)

In this dissertation we examine some of the challenges faced by the congestion control algorithms of TCP in emerging networks. We focus on three main issues. First, we propose TCP with delayed congestion response (TCP-DCR), for improving performance...

Bhandarkar, Sumitha

2009-06-02T23:59:59.000Z

474

Memorandum for Federal NEPA Contacts: Emergency Actions and NEPA  

Energy.gov (U.S. Department of Energy (DOE))

This Council on Environmental Quality memorandum provides general information on (1) the response to hurricane Katrina; (2) reporting oil and chemical spills; (3) projected long term recovery efforts; and (4) how agencies can respond to emergencies and comply with NEPA.

475

Radiological Conditions at Bikini Atoll: Prospects for ResettlementRadiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary assessment and recommendations for further study  

Science Journals Connector (OSTI)

Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary assessment and recommendations for further study Radiological Assessment Reports Series 1998 (Vienna: IAEA) 43 pp 200 Austr. Sch. ISBN 92 0 104098 9 These two reports stem from requests to the IAEA, from the local Government Authorities, for help and advice in assessing the radiological situations at two former nuclear weapons testing sites. Both reports have similar general structures - a discussion of the geographical context of the sites; a summary of the weapon tests, and their continuing impacts on the local populations; the basis for the IAEA programme; radiological concepts and criteria in the context of the residual contamination arising from the tests, and specifically the bases for intervention and remediation; assessments of the present and future radiation exposures of the actual/potential residents of the areas; and conclusions and recommendations. Because the indigenous Bikinian population is at present relocated elsewhere in the Marshall Islands archipelago, the report for Bikini Atoll is essentially concerned with an assessment of the current radiological situation, the prospects for resettlement, and the justification and available strategies for remedial action to reassure the Bikinians that it would be safe to return. Since the cessation of testing at the atoll in July 1958, there have been continuing radiological surveys of the local environment - the latest being the Marshall Islands Nationwide Radiological Study under an International Scientific Advisory Panel. The Panel report was not accepted by the Marshall Islands Government, who then requested the IAEA to carry out an independent peer review. The IAEA assessment (with some corroboratory data from a monitoring mission) confirmed the estimate of 15 mSv a-1 for the total potential dose rate to individuals relying entirely on locally produced foodstuffs, mainly from 137Cs in coconuts and other fruits. An examination of existing guidelines and practice concluded that 10 mSv a-1 is an appropriate generic action level to trigger consideration of remediation strategies prior to resettlement. From five potential remedial measures, two were considered in more detail - removal and disposal of the surface 40 cm of the topsoil, and treatment of the soil with high potassium fertilizers. It was concluded that the former, although reducing the dose rate from the residual contamination to less than 0.1 mSv a-1, would entail unacceptable environmental and social consequences. Experimental investigation of the latter showed that it would reduce the uptake of 137Cs significantly, with the total dose rate rapidly declining to about 1.2 mSv a-1; it was also found that the application of fertilizer would have to be repeated every 4-5 years to sustain the reduction. The latter was, therefore, the preferred option together with some localised soil removal in the living areas of the village to reduce both the external exposure and the inhalation pathway. The sole remaining concern of the Bikinians appears to relate to the identification of a reliable authority to assume responsibility for maintaining the implementation of the countermeasure to reduce the 137Cs uptake into foodstuffs for the foreseeable future. If this concern can be resolved, it appears that the way is open for the resettlement of the Bikinian people on the atoll. The situation at Semipalatinsk is somewhat different in one respect - the site, although large, has unrestricted access and small numbers of people already live within the boundaries. After the request to the IAEA from the Kazakhstan Government for assistance, the initial objective was to determine the magnitude of the problem. This was achieved on the first mission to the site when the main areas of contamination were identified using information available from the local authorities, and radiation measurements and sample collections were made at identified places both within, and external to, the site. A second mission extended the range of measurements and sample

Dennis Woodhead

1999-01-01T23:59:59.000Z

476

Transportation Emergency Preparedness Program Exercise Overview...  

Office of Environmental Management (EM)

Emergency Preparedness Program Exercise Overview Transportation Emergency Preparedness Program Exercise Overview Transportation Emergency Preparedness Program Exercise Overview...

477

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Radiological Control Technician Training Fundamental Academic Training Instructor's Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers

478

Energy Emergency Energy Emergency Preparedness Quarterly Preparedness Quarterly  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 A 2 A P R I L 1 5 , 2 0 1 3 U.S. DEPARTMENT OF ENERGY New Critical Infrastructure Cybersecurity Executive Order Office of Electricity Delivery and Energy Reliability (OE) Infrastructure Security and Energy Restoration (ISER) Deputy Assistant Secretary ISER William N. Bryan Director, Preparedness and Response ISER Stewart Cedres Visit us at: http://energy.gov/oe/services/energy-assurance/emergency-preparedness The continued growth of cyber threats against our critical infrastructure (CI) is one of the most significant national security issues facing the Nation. In an effort to improve cybersecurity and enhance the security and resiliency of the Nation's CI, on February 12, 2013, President Obama released Executive Order 13636 - Improving Critical Infrastructure Cybersecurity (E.O. 13636). Critical infrastructure refers to those systems

479

Energy Emergency Energy Emergency Preparedness Quarterly Preparedness Quarterly  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 J 1 J A N U A R Y 1 5 , 2 0 1 3 U.S. DEPARTMENT OF ENERGY Superstorm Sandy: DOE's Efforts to Help the Nation Recover Office of Electricity Delivery and Energy Reliability (OE) Infrastructure Security and Energy Restoration (ISER) Deputy Assistant Secretary ISER William N. Bryan Director, Preparedness and Response ISER Stewart Cedres Visit us at: http://energy.gov/oe/services/energy-assurance/emergency-preparedness November 30 marked the end of the 2012 Atlantic hurricane season-another busy season in a multi-decadal period of high activity in the Atlantic that extends back to 1995. During this current period of elevated activity, over 70 percent of the hurricane seasons have been above the 30-year

480

Response Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response Events Response Events Emergency preparedness and response activities help to facilitate recovery from disruptions to the energy supply, thereby reducing the impact of these events. As such, the ISER approach for emergency response is to leverage a coordinated integration of several DOE capabilities and resources to emergency response situations. These capabilities and resources include personnel with emergency response and/or energy systems operations experience, leading-edge analytical modeling and visualization capabilities, coordination and contacts with private industry, state governments, and U.S. government agencies, and facilitation of special policy waivers or legal authorities by the Secretary of Energy. This approach enables ISER to provide highly scalable support for a range of

Note: This page contains sample records for the topic "radiological emergency response" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ISER - Emergency Situation Reports  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

extra space extra space Link: Energy home page About the DOE| Organization| News|Contact Us extra space Office of Electricity Delivery and Energy Reliability OE Home ISER Home Services Information Center Mission News You are here: DOE Home > OE Home > Emergency Situation Reports Emergency Situation Reports Banner Graphic Printer-friendly icon Printer-Friendly National Hurricane Center - NOAA Emergency Situation Reports 2013 The year began with a blizzard impacting the Northeast. In early October, Tropical Storm Karen formed and has the ability to potentially impact Florida and the greater Gulf Coast. December brought a major winter storm stretching from Texas to New York. Winter Storm Tropical Storm Karen Northeast Blizzard 2012 Events in 2012 include the Derecho, impacting the Ohio Valley and Mid-Atlantic, Hurricane Isaac, impacting Florida and the Gulf Coast, and Hurricane Sandy, impacting the Mid-Atlantic and Northeast.

482

ACTIVESHOOTER CWRU EMERGENCY PROCEDURES  

E-Print Network (OSTI)

precautions. Traditional response to this type of incident has been to shelter in place and wait. The university has adopted the "ALICE" response plan to assist you in your response should this type of incident SHOOTER PART 3 of 4 4) Counter - This is the use of simple, proactive techniques should you be confronted

Cavusoglu, Cenk

483

DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13.1 13.1 Overhead 13.1 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators Objectives: * Identify the general characteristics of accelerators. * Identify the types of particles accelerated. * Identify the two basic types of accelerators. * Identify uses for accelerators. * Define prompt radiation. * Identify prompt radiation sources. OT 13.2 Overhead 13.2 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Define radioactivation. * Explain how contaminated material differs from activated material with regard to radiological concerns. * Identify activation sources. OT 13.3 Overhead 13.3 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Identify engineered and administrative controls at accelerator facilities. * Identify the special

484

Radiological Worker Training Power Point Slides for App. A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30-2008 30-2008 DOE HANDBOOK Radiological Worker Training DOE-HDBK-1130-2008 Overheads December 2008 Reaffirmed 2013 OT 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in the above documents. * Describe the role of the Defense Nuclear Facilities Safety Board (DNFSB) at DOE sites and facilities. OT 1.3 DOE-HDBK-1130-2008 Overhead 1.3 DOE Radiological Health and Safety Policy * Conduct oversight to ensure compliance and that appropriate radiological work

485

CRAD, Radiological Controls - Los Alamos National Laboratory Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Controls - Los Alamos National Laboratory Waste Radiological Controls - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Radiological Controls - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Radiological Controls - Los Alamos National Laboratory Waste

486

A comparative study of quality control in diagnostic radiology  

Science Journals Connector (OSTI)

......effective National Regulatory Authority in Syria...radiological and Nuclear Regulatory Office, for his...2 Atomic Energy Regulatory Board. Atlas of Reference Plans for Medical Diagnostic...Burkhart R. L. A review of the experience......

M. H. Kharita; M. S. Khedr; K. M. Wannus

2008-07-01T23:59:59.000Z

487

Bayesian Network Analysis of Radiological Dispersal Device Acquisitions  

E-Print Network (OSTI)

It remains unlikely that a terrorist organization could produce or procure an actual nuclear weapon. However, the construction of a radiological dispersal device (RDD) from commercially produced radioactive sources and conventional explosives could...

Hundley, Grant Richard

2012-02-14T23:59:59.000Z

488

Radiological Worker Training Power Point Slides for App. A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30-2008 30-2008 DOE HANDBOOK Radiological Worker Training DOE-HDBK-1130-2008 Overheads December 2008 Reaffirmed 2013 OT 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in the above documents. * Describe the role of the Defense Nuclear Facilities Safety Board (DNFSB) at DOE sites and facilities. OT 1.3 DOE-HDBK-1130-2008 Overhead 1.3 DOE Radiological Health and Safety Policy * Conduct oversight to ensure compliance and that appropriate radiological work

489

DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Course Introduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

143-2001 143-2001 Instructor's Guide DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Administrative Policies and Procedures Objectives: Upon completion of this training, the student will be able to: 1. Identify the radiological controlled areas a person should be allowed to enter after successfully completing General Employee Radiological Training, Radiological Worker I training, and Radiological Worker II training. 2. List five actions used to increase the awareness level of workers relating to proper radiological work practices. 3. Identify three conditions when a "Stop Radiological Work" should be initiated. 4. Identify the actions that should be performed, prior to recommencement of work, after a "Stop Radiological Work" order has been initiated.

490

Autonomous mobile robot for radiologic surveys  

SciTech Connect

An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

Dudar, Aed M. (Augusta, GA); Wagner, David G. (Augusta, GA); Teese, Gregory D. (Aiken, SC)

1994-01-01T23:59:59.000Z

491

Mobile autonomous robotic apparatus for radiologic characterization  

DOE Patents (OSTI)

A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

Dudar, Aed M. (Dearborn, MI); Ward, Clyde R. (Aiken, SC); Jones, Joel D. (Aiken, SC); Mallet, William R. (Cowichan Bay, CA); Harpring, Larry J. (North Augusta, SC); Collins, Montenius X. (Blackville, SC); Anderson, Erin K. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

492

A mobile autonomous robot for radiological surveys  

SciTech Connect

The Robotics Development Group at the Savannah River Site is developing an autonomous robot (SIMON) to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The robot, a Cybermotion K2A base, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It uses an ultrasonic ranging system for collision avoidance. In addition, two safety bumpers located in the front and the back of the robot will stop the robots motion when they are depressed. Paths for the robot are preprogrammed and the robots motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/0 interface for remote operation. Up to 30 detectors may be configured with the RM22A.

Dudar, A.M.; Wagner, D.G.; Teese, G.D.

1992-01-01T23:59:59.000Z

493

A mobile autonomous robot for radiological surveys  

SciTech Connect

The Robotics Development Group at the Savannah River Site is developing an autonomous robot (SIMON) to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The robot, a Cybermotion K2A base, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It uses an ultrasonic ranging system for collision avoidance. In addition, two safety bumpers located in the front and the back of the robot will stop the robots motion when they are depressed. Paths for the robot are preprogrammed and the robots motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/0 interface for remote operation. Up to 30 detectors may be configured with the RM22A.

Dudar, A.M.; Wagner, D.G.; Teese, G.D.

1992-10-01T23:59:59.000Z

494

Radiological characterization of spent control rod assemblies  

SciTech Connect

This document represents the final report of an ongoing study to provide radiological characterizations, classifications, and assessments in support of the decommissioning of nuclear power stations. This report describes the results of non-destructive and laboratory radionuclide measurements, as well as waste classification assessments, of BWR and PWR spent control rod assemblies. The radionuclide inventories of these spent control rods were determined by three separate methodologies, including (1) direct assay techniques, (2) calculational techniques, and (3) by sampling and laboratory radiochemical analyses. For the BWR control rod blade (CRB) and PWR burnable poison rod assembly (BPRA), {sup 60}Co and {sup 63}Ni, present in the stainless steel cladding, were the most abundant neutron activation products. The most abundant radionuclide in the PWR rod cluster control assembly (RCCA) was {sup 108m}Ag (130 yr halflife) produced in the Ag-In-Cd alloy used as the neutron poison. This radionuclide will be the dominant contributor to the gamma dose rate for many hundreds of years. The results of the direct assay methods agree very well ({+-}10%) with the sampling/radiochemical measurements. The results of the calculational methods agreed fairly well with the empirical measurements for the BPRA, but often varied by a factor of 5 to 10 for the CRB and the RCCA assemblies. If concentration averaging and encapsulation, as allowed by 10CFR61.55, is performed, then each of the entire control assemblies would be classified as Class C low-level radioactive waste.

Lepel, E.A.; Robertson, D.E.; Thomas, C.W.; Pratt, S.L.; Haggard, D.L. [Pacific Northwest Lab., Richland, WA (United States)

1995-10-01T23:59:59