Sample records for radioisotopes view document

  1. September 2013 Most Viewed Documents for Biology And Medicine...

    Office of Scientific and Technical Information (OSTI)

    September 2013 Most Viewed Documents for Biology And Medicine Science Subject Feed Drug Retention Times Center for Human Reliability Studies (2007) 29 > Oleoresin Capsicum...

  2. March 2014 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    March 2014 Most Viewed Documents for Biology And Medicine Science Subject Feed Carbon Dioxide Sequestering Using Microalgal Systems Daniel J. Stepan; Richard E. Shockey; Thomas A....

  3. January 2013 Most Viewed Documents for Power Generation And Distributi...

    Office of Scientific and Technical Information (OSTI)

    January 2013 Most Viewed Documents for Power Generation And Distribution Lessons from Large-Scale Renewable Energy Integration Studies: Preprint Bird, L.; Milligan, M. Small punch...

  4. March 2015 Most Viewed Documents for Biology And Medicine | OSTI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2015 Most Viewed Documents for Biology And Medicine Measuring dopamine release in the human brain with PET Volkow, N.D. Brookhaven National Lab., Upton, NY (United...

  5. June 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Viewed Documents for Fission And Nuclear Technologies Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 78 Estimation of gas leak rates through very...

  6. January 2013 Most Viewed Documents for Mathematics And Computing...

    Office of Scientific and Technical Information (OSTI)

    Documents for Mathematics And Computing Cybersecurity through Real-Time Distributed Control Systems Kisner, Roger A ORNL; Manges, Wayne W ORNL; MacIntyre, Lawrence Paul...

  7. June 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Documents for Power Generation And Distribution Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 118 > Electric power high-voltage transmission lines:...

  8. April 2013 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Delivery and Gene Transfection Daniela Rodica Radu (2005) 84 > Advisory Committee on human radiation experiments. Supplemental Volume 2a, Sources and documentation appendices....

  9. March 2015 Most Viewed Documents for Mathematics And Computing...

    Office of Scientific and Technical Information (OSTI)

    system solver Petzold, L.R. (1982) 98 Health and environmental effects document on geothermal energy: 1981 Layton, D.W.; Anspaugh, L.R.; O'Banion, K.D. (1981) 95 Comparison of...

  10. June 2015 Most Viewed Documents for Mathematics And Computing...

    Office of Scientific and Technical Information (OSTI)

    (1997) 53 PC-1D installation manual and user's guide Basore, P.A. (1991) 52 Conduction heat transfer solutions VanSant, J.H. (1983) 52 Health and environmental effects document...

  11. April 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History » Manhattanand

  12. April 2013 Most Viewed Documents for Fission And Nuclear Technologies |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History » ManhattanandOffice

  13. April 2013 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »Dept of Energy,OSTI, US

  14. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1986

    SciTech Connect (OSTI)

    Lamar, D.A.

    1987-10-01T23:59:59.000Z

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1)isotope suppliers, facility contact, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers for fiscal year 1986.

  15. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1987

    SciTech Connect (OSTI)

    Lamar, D.A.; Van Houten, N.C.

    1988-08-01T23:59:59.000Z

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms, including foreign and other DOE facilities. The information is divided into five sections: 1) isotope suppliers, facility contact, and isotopes or services supplied; 2) customers, suppliers, and isotopes purchased; 3) isotopes purchased cross- referenced with customer numbers; 4) geographic locations of radioisotope customers; and 5) radioisotope sales and transfers for fiscal year 1987.

  16. Light-Weight Radioisotope Heater Unit Safety Analysis Report (LWRHU-SAR). Volume I. A. Introduction and executive summary. B. Reference Design Document (RDD)

    SciTech Connect (OSTI)

    Johnson, E.W.

    1985-10-01T23:59:59.000Z

    The orbiter and probe portions of the NASA Galileo spacecraft contain components which require auxiliary heat during the mission. To meet these needs, the Department of Energy's (DOE's) Office of Special Nuclear Projects (OSNP) has sponsored the design, fabrication, and testing of a one-watt encapsulated plutonium dioxide-fueled thermal heater named the Light-Weight Radioisotope Heater Unit (LWRHU). This report addresses the radiological risks which might be encountered by people both at the launch area and worldwide should postulate mission failures or malfunctions occur, which would result in the release of the LWRHUs to the environment. Included are data from the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events.

  17. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    SciTech Connect (OSTI)

    Burlison, J.S. (comp.)

    1981-08-01T23:59:59.000Z

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.

  18. Document

    Energy Savers [EERE]

    5320 Federal Register Vol. 75, No. 204 Friday, October 22, 2010 Notices intervene or protest must serve a copy of that document on the Applicant. Notice is hereby given that...

  19. Document:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    position monitor (BPM) is on the order of a few milliseconds, the cooling effect due to remote water convection is limited. In addition, in view of the localized power input, it...

  20. Rhetoric, World-view, and Strategy in United States National Security Strategy Documents

    E-Print Network [OSTI]

    Cram, Travis J.

    2014-08-31T23:59:59.000Z

    to solve global problems and manage threats requires that these audiences buy-in to the presidents assessment of threats and possible solutions. Evaluating NSS documents as instances of symbolic action may enable critics to understand how NSS documents... the United States as the unwilling, virtuous victim in order to legitimize defense build-ups, explain policy failures, or warrant American military interventions abroad (Ivie, 1984; Klope, 1986). Reagans approach to nuclear weapons and missile defenses...

  1. Radioisotopes: Energy for Space Exploration

    ScienceCinema (OSTI)

    Carpenter, Bob; Green, James; Bechtel, Ryan

    2013-05-29T23:59:59.000Z

    Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

  2. document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ .-detonation detectionDocument

  3. Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register / Vol.PREDICTINGvN3Documents

  4. P2P Views Over Annotated Documents Konstantinos Karanasos, Ioana Manolescu

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    . Publication of such resources is inherently distributed. One could consider up- loading all published content] and social networks' tagging are among the most common methods to express annotations. Here, we designate and annotations. At the core of content sharing in AnnoVIP stand materialized views over the whole network content

  5. April 2013 Most Viewed Documents for Materials | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »

  6. April 2013 Most Viewed Documents for Biology And Medicine | OSTI, US Dept

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History » Manhattanand Summer

  7. April 2013 Most Viewed Documents for Chemistry | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History » Manhattanand SummerOffice

  8. April 2013 Most Viewed Documents for Engineering | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History » ManhattanandOffice of

  9. April 2013 Most Viewed Documents for Environmental Sciences | OSTI, US Dept

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History » ManhattanandOffice ofof

  10. April 2013 Most Viewed Documents for Geosciences | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History » ManhattanandOfficeOffice

  11. April 2013 Most Viewed Documents for Mathematics And Computing | OSTI, US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »Dept of Energy, Office of

  12. April 2013 Most Viewed Documents for National Defense | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »Dept of Energy, Office

  13. April 2013 Most Viewed Documents for Physics | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »Dept of Energy,

  14. April 2013 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »Dept of Energy,OSTI,

  15. ORNL's medical radioisotope project sees centennial campaign...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    actinium-225 processing, which provides radioisotopes for medical uses that include cancer treatment. Actinium-225 is a source for bismuth-213, a short-lived, alpha-emitting...

  16. Withdrawal from Production and Distribution of the Radioisotope...

    Energy Savers [EERE]

    Withdrawal from Production and Distribution of the Radioisotope Germanium-68 Used for Calibration Sources Withdrawal from Production and Distribution of the Radioisotope...

  17. New Horizons Mission Powered by Space Radioisotope Power Systems...

    Energy Savers [EERE]

    New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems January 30, 2008 - 6:47pm Addthis Artist's concept...

  18. Alternative Fuel Sources for Radioisotope Thermoelectric Generators

    E-Print Network [OSTI]

    Parker, Trevor Drake

    2014-09-18T23:59:59.000Z

    configurations and materials would ideally be examined as well. Possible fuel assembly designs have been hypothesized by Ambrosi at the Nuclear and Emerging Technologies for Space Conference (2012) [4]. Preliminary research has shown that Am-241, Cm-242, Po.... AMBROSI, et al., Development and Testing of Americium-241 Radioisotope Thermoelectric Generator: Concept Designs and Breadboard System, Nuclear and Emerging Technologies for Space, (2012). 5. M. RAGHEB, Radioisotopes Power Production, mragheb...

  19. Alternaive Fuel Sources For Radioisotope Thermoelectric Generators

    E-Print Network [OSTI]

    Gonzalez, Evan Sebastain

    2015-04-23T23:59:59.000Z

    configurations and materials would ideally be examined as well. Possible fuel assembly designs have been hypothesized by Ambrosi at the Nuclear and Emerging Technologies for Space Conference (2012) [4]. Preliminary research has shown that Am-241, Cm-242, Po.... AMBROSI, et al., Development and Testing of Americium-241 Radioisotope Thermoelectric Generator: Concept Designs and Breadboard System, Nuclear and Emerging Technologies for Space, (2012). 5. M. RAGHEB, Radioisotopes Power Production, mragheb...

  20. A prototype on-line work procedure system for radioisotope thermoelectric generator production

    SciTech Connect (OSTI)

    Kiebel, G.R.

    1991-09-01T23:59:59.000Z

    An on-line system to manage work procedures is being developed to support radioisotope thermoelectric generator (RTG) assembly and testing in a new production facility. This system implements production work procedures as interactive electronic documents executed at the work site with no intermediate printed form. It provides good control of the creation and application of work procedures and provides active assistance to the worker in performing them and in documenting the results. An extensive prototype of this system is being evaluated to ensure that it will have all the necessary features and that it will fit the user's needs and expectations. This effort has involved the Radioisotope Power Systems Facility (RPSF) operations organization and technology transfer between Westinghouse Hanford Company (Westinghouse Hanford) and EG G Mound Applied Technologies Inc. (Mound) at the US Department of Energy (DOE) Mound Site. 1 ref.

  1. NASA's Planetary Science Program Support of Radioisotope

    E-Print Network [OSTI]

    Rathbun, Julie A.

    500 1000 1500 2000 MMRTG ASRG Total Thermal Power Waste Heat Electric power = 1 GPHS block 7 #12NASA's Planetary Science Program Support of Radioisotope Power Capability James L. Green, Director timeline ASRG and MMRTG systems and plans DoE Infrastructure Review Summary 2 #12;Over 50 years

  2. NEW DIRECTIONS IN RADIOISOTOPE SPECTRUM IDENTIFICATION

    SciTech Connect (OSTI)

    Salaymeh, S.; Jeffcoat, R.

    2010-06-17T23:59:59.000Z

    Recent studies have found the performance of commercial handheld detectors with automatic RIID software to be less than acceptable. Previously, we have explored approaches rooted in speech processing such as cepstral features and information-theoretic measures. Scientific advances are often made when researchers identify mathematical or physical commonalities between different fields and are able to apply mature techniques or algorithms developed in one field to another field which shares some of the same challenges. The authors of this paper have identified similarities between the unsolved problems faced in gamma-spectroscopy for automated radioisotope identification and the challenges of the much larger body of research in speech processing. Our research has led to a probabilistic framework for describing and solving radioisotope identification problems. Many heuristic approaches to classification in current use, including for radioisotope classification, make implicit probabilistic assumptions which are not clear to the users and, if stated explicitly, might not be considered desirable. Our framework leads to a classification approach with demonstrable improvements using standard feature sets on proof-of-concept simulated and field-collected data.

  3. Better Buildings Network View | May 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May 2014 More Documents & Publications Better Buildings Network View | July-August 2014 Better Buildings Network View | June...

  4. An on-line information system for radioisotope thermal generator production

    SciTech Connect (OSTI)

    Kiebel, G.R.; Wiemers, M.J. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (US))

    1991-01-01T23:59:59.000Z

    An on-line production information system has been designed to support radioisotope thermal generator assembly and testing in a new facility being built at the Department of Energy Hanford Site in Washington State. This system is intended to make handling the large volumes of information associated with radioisotope thermal generator production and certification more efficient with less opportunity for error than traditional paper methods. It provides for tracking materials, implementing work procedures directly from computer terminals, and cross referencing among materials, procedures, and other documents related to production. This system will be implemented on a network of microcomputers using UNIX{sup TM} for its operating system. It has been designed to allow increased capabilities to be added as operating experience with the new facility dictates.

  5. Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL...

    Office of Science (SC) Website

    Excess pulses (90%) are diverted to BLIP for medical radioisotope research and production. Major current projects include large scale distribution of Sr-82 for heart scans,...

  6. High efficiency radioisotope thermophotovoltaic prototype generator

    SciTech Connect (OSTI)

    Avery, J.E.; Samaras, J.E.; Fraas, L.M.; Ewell, R. [JX Crystals, Inc., Issaquah, WA (United States)

    1995-10-01T23:59:59.000Z

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, the authors present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. They compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. They find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. The authors propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter.

  7. Better Buildings Network View | November 2014 | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    November 2014 More Documents & Publications Better Buildings Network View | July-August 2014 Better Buildings Network View | December 2014 Better Buildings Network View | January...

  8. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect (OSTI)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  9. Medical Radioisotope Data Survey: 2002 Preliminary Results

    SciTech Connect (OSTI)

    Siciliano, Edward R.

    2004-06-23T23:59:59.000Z

    A limited, but accurate amount of detailed information about the radioactive isotopes used in the U.S. for medical procedures was collected from a local hospital and from a recent report on the U.S. Radiopharmaceutical Markets. These data included the total number of procedures, the specific types of procedures, the specific radioisotopes used in these procedures, and the dosage administered per procedure. The information from these sources was compiled, assessed, pruned, and then merged into a single, comprehensive and consistent set of results presented in this report. (PIET-43471-TM-197)

  10. Actinium radioisotope products of enhanced purity

    DOE Patents [OSTI]

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15T23:59:59.000Z

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  11. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    SciTech Connect (OSTI)

    Satoh, J.A.

    1994-11-09T23:59:59.000Z

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

  12. Radioisotope thermoelectric generator reliability and safety

    SciTech Connect (OSTI)

    Campbell, R.; Klein, J.

    1989-01-01T23:59:59.000Z

    There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

  13. The Co-Design of Scenarios for a Didactic-based E-learning System viewed as an Adaptive Virtual Document

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The Co-Design of Scenarios for a Didactic-based E-learning System viewed as an Adaptive Virtual of the theory in didactic anthropology of knowledge and to show why we can formalize them in a hierarchical task scientific approaches ­ from computer science, didactic, cognitive psychology, education, etc. The design

  14. A 5 MW TRIGA reactor design for radioisotope production

    SciTech Connect (OSTI)

    Veca, Anthony R.; Whittemore, William L. [General Atomics, San Diego, CA (United States)

    1994-07-01T23:59:59.000Z

    The production and preparation of commercial-scale quantities of radioisotopes has become an important activity as their medical and industrial applications continue to expand. There are currently various large multipurpose research reactors capable of producing ample quantities of radioisotopes. These facilities, however, have many competing demands placed upon them by a wide variety of researchers and scientific programs which severely limit their radioisotope production capability. A demonstrated need has developed for a simpler reactor facility dedicated to the production of radioisotopes on a commercial basis. This smaller, dedicated reactor could provide continuous fission and activation product radioisotopes to meet commercial requirements for the foreseeable future. The design of a 5 MW TRIGA reactor facility, upgradeable to 10 MW, dedicated to the production of industrial and medical radioisotopes is discussed. A TRIGA reactor designed specifically for this purpose with its demonstrated long core life and simplicity of operation would translate into increased radioisotope production. As an example, a single TRIGA could supply the entire US needs for Mo-99. The facility is based on the experience gained by General Atomics in the design, installation, and construction of over 60 other TRIGAs over the past 35 years. The unique uranium-zirconium hydride fuel makes TRIGA reactors inexpensive to build and operate, reliable in their simplicity, highly flexible due to unique passive safety, and environmentally friendly because of minimal power requirements and long-lived fuel. (author)

  15. Radioisotope Power Sources for MEMS Devices,

    SciTech Connect (OSTI)

    Blanchard, J.P.

    2001-06-17T23:59:59.000Z

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a {sup 63}Ni liquid source. A source volume containing 64 {micro}Ci provided a power of {approx}0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications.

  16. Better Buildings Network View | April 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    April 2014 More Documents & Publications Better Buildings Network View | December 2014 Better Buildings Residential Network Orientation Better Buildings Network View | November...

  17. Better Buildings Network View | January 2015 | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    5 More Documents & Publications Better Buildings Network View | December 2014 Better Buildings Network View | November 2014 Better Buildings Residential Network Orientation...

  18. Better Buildings Network View | February 2015 | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    5 More Documents & Publications Better Buildings Network View | November 2014 Better Buildings Network View | September 2014 Better Buildings Residential Network Case Study:...

  19. A facility to remotely assemble radioisotope thermoelectric generators

    SciTech Connect (OSTI)

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

  20. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Adkins, H.E.; Bearden, T.E. (Westinghouse Hanford Company, P.O. Box 1970, N1-42, Richland, Washington 99352 (US))

    1991-01-01T23:59:59.000Z

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable U.S. Department of Transportation regulations without the use of a DOE Alternative.'' The U.S. Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992.

  1. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Adkins, H.E.; Bearden, T.E.

    1990-10-01T23:59:59.000Z

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  2. Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs

    SciTech Connect (OSTI)

    Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

    1995-03-16T23:59:59.000Z

    The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

  3. Structural testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect (OSTI)

    Bronowski, D.R.; Madsen, M.M.

    1991-06-01T23:59:59.000Z

    The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in three orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.

  4. Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect (OSTI)

    Bronowski, D.R.; Madsen, M.M.

    1991-09-01T23:59:59.000Z

    The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

  5. Assembly of radioisotope power systems at Westinghouse Hanford Company

    SciTech Connect (OSTI)

    Alderman, C.J.

    1990-04-01T23:59:59.000Z

    Long-term space flight requires reliable long-term power sources. For the purpose of supplying a constant supply of power in deep space, the radioisotope thermoelectric generator has proven to be a successful power source. Westinghouse Hanford Company is installing the Radioisotope Power Systems Facility which is located in the Fuels and Material Examination Facility on the Hanford Site near Richland, Washington, for assembling the generators. The radioisotope thermoelectric generator assembly process is base upon one developed at Mound Laboratory in Miamisburg, Ohio (presently operated by EG G Mound Applied Technologies). Westinghouse Hanford Company is modernizing the process to ensure the heat source assemblies are produced in a manner that maximizes operator safety and is consistent with today's environmental and operational safety standards. The facility is being prepared to assemble the generators required by the National Aeronautics and Space Administration missions for CRAF (Comet Rendezvous Asteroid Flyby) in 1995 and Cassini, an investigation of Saturn and its moons, in 1996. The facility will also have the capability to assemble larger radioisotope power generators designed for dynamic power generation. 4 refs., 11 figs.

  6. Future Supply of Medical Radioisotopes for the UK Report 2014

    E-Print Network [OSTI]

    Neilly, Brian; Ballinger, Jim; Buscombe, John; Clarke, Rob; Ellis, Beverley; Flux, Glenn; Fraser, Louise; Hall, Adrian; Owen, Hywel; Paterson, Audrey; Perkins, Alan; Scarsbrook, Andrew

    2015-01-01T23:59:59.000Z

    The UK has no research nuclear reactors and relies on the importation of 99Mo and other medical radioisotopes (e.g. Iodine-131) from overseas (excluding PET radioisotopes). The UK is therefore vulnerable not only to global shortages, but to problems with shipping and importation of the products. In this context Professor Erika Denton UK national Clinical Director for Diagnostics requested that the British Nuclear Medicine Society lead a working group with stakeholders including representatives from the Science & Technology Facilities Council (STFC) to prepare a report. The group had a first meeting on 10 April 2013 followed by a working group meeting with presentations on 9th September 2013 where the scope of the work required to produce a report was agreed. The objectives of the report are: to describe the status of the use of medical radioisotopes in the UK; to anticipate the potential impact of shortages for the UK; to assess potential alternative avenues of medical radioisotope production for the UK m...

  7. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect (OSTI)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01T23:59:59.000Z

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  8. Revised: 12.23.2013 Bb 9(SP13): Customizing the Instructor's View of the Grade Center p. 1 of 7 This document covers features in the Grade Center that helps an instructor to manage the grade

    E-Print Network [OSTI]

    Qiu, Weigang

    This document covers features in the Grade Center that helps an instructor to manage the grade columns Center documents for more information about managing the Grade Center. Renaming Columns You can change in the Grade Center table. The document includes the following topics: Renaming Columns Rearranging Columns

  9. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect (OSTI)

    King, D.A.

    1994-11-10T23:59:59.000Z

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  10. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    SciTech Connect (OSTI)

    S. Mukhopadhyay

    2003-06-01T23:59:59.000Z

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources.

  11. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect (OSTI)

    Pugh, Barry K. [EG and G Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio 45343-3000 (United States)

    1997-01-10T23:59:59.000Z

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  12. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect (OSTI)

    Pugh, B.K. [EGG Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio45343-3000 (United States)

    1997-01-01T23:59:59.000Z

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG{close_quote}s performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS. {copyright} {ital 1997 American Institute of Physics.}

  13. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    1993-10-01T23:59:59.000Z

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 5 copies in the file.

  14. Radioisotope thermoelectric generator licensed hardware package and certification tests

    SciTech Connect (OSTI)

    Goldmann, L.H.; Averette, H.S. [Westinghouse Hanford Company, P.O. Box 1970, M/S R3-86 or N1-32, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    This paper presents the Licensed Hardware package and the Certification Test portions of the Radioisitope Themoelectric Generator Transportation System. This package has been designed to meet those portions of the {ital Code} {ital of} {ital Federal} {ital Regulations} (10 CFR 71) relating to ``Type B`` shipments of radioactive materials. The licensed hardware is now in the U. S. Department of Energy licensing process that certifies the packaging`s integrity under accident conditions. The detailed information for the anticipated license is presented in the safety analysis report for packaging, which is now in process and undergoing necessary reviews. As part of the licensing process, a full-size Certification Test Article unit, which has modifications slightly different than the Licensed Hardware or production shipping units, is used for testing. Dimensional checks of the Certification Test Article were made at the manufacturing facility. Leak testing and drop testing were done at the 300 Area of the U.S. Department of Energy`s Hanford Site near Richland, Washington. The hardware includes independent double containments to prevent the environmental spread of {sup 238}Pu, impact limiting devices to protect portions of the package from impacts, and thermal insulation to protect the seal areas from excess heat during accident conditions. The package also features electronic feed-throughs to monitor the Radioisotope Thermoelectric Generator`s temperature inside the containment during the shipment cycle. This package is designed to safely dissipate the typical 4,500 thermal watts produced in the largest Radioisotope Thermoelectric Generators. The package also contains provisions to ensure leak tightness when radioactive materials, such as a Radioisotope Thermoelectric Generator for the Cassini Mission, planned for 1997 by the National Aeronautics and Space Administration, are being prepared for shipment. (Abstract Truncated)

  15. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    2012-01-19T23:59:59.000Z

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 2 copies in the file.

  16. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect (OSTI)

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01T23:59:59.000Z

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  17. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    SciTech Connect (OSTI)

    McCoy, J.C.

    1995-10-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

  18. Radioisotope Electric Propulsion for Deep Space Sample Return

    SciTech Connect (OSTI)

    Noble, Robert J.; /SLAC

    2009-07-14T23:59:59.000Z

    The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

  19. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    SciTech Connect (OSTI)

    McCoy, J.C.; Becker, D.L. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

    1996-03-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

  20. INCOMING DOCUMENT CONTROL FORM DOCUMENT DESCRIPTION ORGANIZATIO

    Office of Legacy Management (LM)

    INCOMING DOCUMENT CONTROL FORM DOCUMENT DESCRIPTION ORGANIZATIO )ATE COMPLETED: ACTION NUMBER: I I I DOCUMENT CONTROL DATE INITIALS DATA BASE: ACTION LOG: FILED: To : Doug...

  1. More Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174More Documents More Documents

  2. Creation Date: May 7, 2013 Version: 1 Edited by: SR Client Services ITS Managed Document

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Creation Date: May 7, 2013 Version: 1 Edited by: SR Client Services ITS Managed Document VIEW Client Services ITS Managed Document VIEW CLIENT INSTALLATION - MAC Page 2 When prompted with the End Edited by: SR Client Services ITS Managed Document VIEW CLIENT INSTALLATION - MAC Page 3 In Launchpad

  3. Creation Date: Feb 2014 Version: 1 Edited by: LB Application Services ITS Managed Document

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Creation Date: Feb 2014 Version: 1 Edited by: LB Application Services ITS Managed Document VIEW: LB Application Services ITS Managed Document VIEW CLIENT INSTALLATION - MICROSOFT FEB 2014 STUDENT Managed Document VIEW CLIENT INSTALLATION - MICROSOFT FEB 2014 STUDENT Page 3 Virtual Desktop Login

  4. Creation Date: Mar 2014 Version: 1 Edited by: LB Application Services ITS Managed Document

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Creation Date: Mar 2014 Version: 1 Edited by: LB Application Services ITS Managed Document VIEW Date: Mar 2014 Version: 1 Edited by: LB Application Services ITS Managed Document VIEW CLIENT Date: Mar 2014 Version: 1 Edited by: LB Application Services ITS Managed Document VIEW CLIENT

  5. Honors Enrichment Contracts Faculty View Page 1 Honors Enrichment Contracts Faculty View

    E-Print Network [OSTI]

    Honors Enrichment Contracts Faculty View Page 1 Honors Enrichment Contracts Faculty View INITIAL APPROVAL #12;Honors Enrichment Contracts Faculty View Page 2 Summary This document contains information about how to make initial and final decisions on Honors Enrichment Contracts submitted by honors

  6. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1998-12-31T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

  7. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

    1998-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel. {copyright} {ital 1998 American Institute of Physics.}

  8. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect (OSTI)

    Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory P.O. Box 1663, MS-E502 Los Alamos, New Mexico87545 (United States)

    1997-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

  9. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M. A. H.; Hinckley, J. E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

    1998-01-15T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  10. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  11. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect (OSTI)

    Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

    2009-03-16T23:59:59.000Z

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  12. Radio-isotope production scale-up at the University of Wisconsin

    SciTech Connect (OSTI)

    Nickles, Robert Jerome [Univ of Wisconsin] [Univ of Wisconsin

    2014-06-19T23:59:59.000Z

    Our intent has been to scale up our production capacity for a subset of the NSAC-I list of radioisotopes in jeopardy, so as to make a significant impact on the projected national needs for Cu-64, Zr-89, Y-86, Ga-66, Br-76, I-124 and other radioisotopes that offer promise as PET synthons. The work-flow and milestones in this project have been compressed into a single year (Aug 1, 2012- July 31, 2013). The grant budget was virtually dominated by the purchase of a pair of dual-mini-cells that have made the scale-up possible, now permitting the Curie-level processing of Cu-64 and Zr-89 with greatly reduced radiation exposure. Mile stones: 1. We doubled our production of Cu-64 and Zr-89 during the grant period, both for local use and out-bound distribution to ? 30 labs nationwide. This involved the dove-tailing of beam schedules of both our PETtrace and legacy RDS cyclotron. 2. Implemented improved chemical separation of Zr-89, Ga-66, Y-86 and Sc-44, with remote, semi-automated dissolution, trap-and-release separation under LabView control in the two dual-mini-cells provided by this DOE grant. A key advance was to fit the chemical stream with miniature radiation detectors to confirm the transfer operations. 3. Implemented improved shipping of radioisotopes (Cu-64, Zr-89, Tc-95m, and Ho-163) with approved DOT 7A boxes, with a much-improved FedEx shipping success compared to our previous steel drums. 4. Implemented broad range quantitative trace metal analysis, employing a new microwave plasma atomic emission spectrometer (Agilent 4200) capable of ppb sensitivity across the periodic table. This new instrument will prove essential in bringing our radiometals into FDA compliance needing CoAs for translational research in clinical trials. 5. Expanded our capabilities in target fabrication, with the purchase of a programmable 1600 oC inert gas tube furnace for the smelting of binary alloy target materials. A similar effort makes use of our RF induction furnace, allowing small scale metallurgy with greater control. This alloy feedstock was then used to electroplate cyclotron targets with elevated melting temperatures capable of withstanding higher beam currents. 6. Finished the beam-line developments needed for the irradiation of low-melting target materials (Se and Ga) now being used for the production of Br-76, and radioactive germanium (68, 69, 71Ge). Our planned development of I-124 production has been deferred, given the wide access from commercial suppliers. The passing of these milestones has been the subject of the previous quarterly reports. These signature accomplishments were made possible by the DOE support, and have strengthened the infrastructure at the University of Wisconsin, provided the training ground for a very talented graduate research assistant (Mr. Valdovinos) and more than doubled our out-shipments of Cu-64 and Zr-89.

  13. Documenting Spreadsheets

    E-Print Network [OSTI]

    Payette, Raymond

    2008-01-01T23:59:59.000Z

    This paper discusses spreadsheets documentation and new means to achieve this end by using Excel's built-in "Comment" function. By structuring comments, they can be used as an essential tool to fully explain spreadsheet. This will greatly facilitate spreadsheet change control, risk management and auditing. It will fill a crucial gap in corporate governance by adding essential information that can be managed in order to satisfy internal controls and accountability standards.

  14. Document13

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering How Muscles ReallyDDT DDTViewDoDocument

  15. Reference Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead ofReference-Documents Sign In About |

  16. Document Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register / Vol. 71, No.5 Document

  17. RADIOISOTOPE IDENTIFICATION OF SHIELDED AND MASKED SNM RDD MATERIALS

    SciTech Connect (OSTI)

    Salaymeh, S.; Jeffcoat, R.

    2010-06-17T23:59:59.000Z

    Sonar and speech techniques have been investigated to improve functionality and enable handheld and other man-portable, mobile, and portal systems to positively detect and identify illicit nuclear materials, with minimal data and with minimal false positives and false negatives. RadSonar isotope detection and identification is an algorithm development project funded by NA-22 and employing the resources of Savannah River National Laboratory and three University Laboratories (JHU-APL, UT-ARL, and UW-APL). Algorithms have been developed that improve the probability of detection and decrease the number of false positives and negatives. Two algorithms have been developed and tested. The first algorithm uses support vector machine (SVM) classifiers to determine the most prevalent nuclide(s) in a spectrum. It then uses a constrained weighted least squares fit to estimate and remove the contribution of these nuclide(s) to the spectrum, iterating classification and fitting until there is nothing of significance left. If any Special Nuclear Materials (SNMs) were detected in this process, a second tier of more stringent classifiers are used to make the final SNM alert decision. The second algorithm is looking at identifying existing feature sets that would be relevant in the radioisotope identification context. The underlying philosophy here is to identify parallels between the physics and/or the structures present in the data for the two applications (speech analysis and gamma spectroscopy). The expectation is that similar approaches may work in both cases. The mel-frequency cepstral representation of spectra is widely used in speech, particularly for two reasons: approximation of the response of the human ear, and simplicity of channel effect separation (in this context, a 'channel' is a method of signal transport that affects the signal, examples being vocal tract shape, room echoes, and microphone response). Measured and simulated gamma-ray spectra from a hand-held Radioisotope Identification Device were used to evaluate the algorithms. This paper will present and discuss results of the Test and Evaluation performed on two algorithms produced from the project.

  18. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    SciTech Connect (OSTI)

    Lin, E.I. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1997-12-31T23:59:59.000Z

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

  19. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect (OSTI)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01T23:59:59.000Z

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  20. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect (OSTI)

    Schmidt, George R.; Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  1. Plans, Updates, Regulatory Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stewardship Environmental Protection Obeying Environmental Laws Individual Permit Documents Individual Permit: Plans, Updates, Regulatory Documents1335769200000Plans...

  2. XML Document XML Document Types and Validation

    E-Print Network [OSTI]

    Weber, Gregory D.

    XML Document Types and Validation IIM-I340 Objectives XML Document Types and Validation IIM-I340 April, 2010 #12;XML Document Types and Validation IIM-I340 Objectives Learning Objectives Understand: The need for validation Two ways to specify validity: Document Type Definitions (DTDs) XML Schemas #12;XML

  3. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    SciTech Connect (OSTI)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01T23:59:59.000Z

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administrations Mars Science Laboratory, which launched in November of 2011.

  4. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01T23:59:59.000Z

    --Idaho National Laboratorys, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply powersupporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  5. Omega documentation

    SciTech Connect (OSTI)

    Howerton, R.J.; Dye, R.E.; Giles, P.C.; Kimlinger, J.R.; Perkins, S.T.; Plechaty, E.F.

    1983-08-01T23:59:59.000Z

    OMEGA is a CRAY I computer program that controls nine codes used by LLNL Physical Data Group for: 1) updating the libraries of evaluated data maintained by the group (UPDATE); 2) calculating average values of energy deposited in secondary particles and residual nuclei (ENDEP); 3) checking the libraries for internal consistency, especially for energy conservation (GAMCHK); 4) producing listings, indexes and plots of the library data (UTILITY); 5) producing calculational constants such as group averaged cross sections and transfer matrices for diffusion and Sn transport codes (CLYDE); 6) producing and updating standard files of the calculational constants used by LLNL Sn and diffusion transport codes (NDFL); 7) producing calculational constants for Monte Carlo transport codes that use group-averaged cross sections and continuous energy for particles (CTART); 8) producing and updating standard files used by the LLNL Monte Carlo transport codes (TRTL); and 9) producing standard files used by the LANL pointwise Monte Carlo transport code MCNP (MCPOINT). The first four of these functions and codes deal with the libraries of evaluated data and the last five with various aspects of producing calculational constants for use by transport codes. In 1970 a series, called PD memos, of internal and informal memoranda was begun. These were intended to be circulated among the group for comment and then to provide documentation for later reference whenever questions arose about the subject matter of the memos. They have served this purpose and now will be drawn upon as source material for this more comprehensive report that deals with most of the matters covered in those memos.

  6. Radioisotope Thermophotovoltaic (RTPV) Generator and Its Application to the Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred; Mukunda, Meera; Or, Chuen T; Kumar, Vasanth; Summers, G.

    1994-01-16T23:59:59.000Z

    This paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator. Instead of conducting a generic study, it was decided to focus the design by directing it at a specific space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a one-year post-encounter cruise. Because of Pluto's long distance from the sun (30-50 A.U.) and the mission's large energy demand, JPL has baselined the use of a radioisotope power system for the PFF spacecraft. The chief advantage of Radioisotope Thermophotovoltaic (RTPV) power systems over current Radioisotope Thermoelectric Generators (RTGs) is their much higher conversion efficiency, which greatly reduces the mass and cost of the required radioisotope heat source. Those attributes are particularly important for the PFF mission, which - like all NASA missions under current consideration - is severely mass- and cost-limited. The paper describes the design of the radioisotope heat source, the thermophotovoltaic converter, and the heat rejection system; and presents the results of the thermal, electrical, and structural analysis and the design optimization of the integrated RTPV system. It briefly summarizes the RTPV system's current technology status, and lists a number of factors that my greatly reduce the need for long-term tests to demonstrate generator lifetime. Our analytical results show very substantial performance improvements over an RTG designed for the same mission, and suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the PFF mission but also for other future missions requiring small, long-lived, low-mass generators. There is a duplicate copy.

  7. Research Data Management - Documentation

    E-Print Network [OSTI]

    Collins, Anna

    2013-01-01T23:59:59.000Z

    This short (16 slide) presentation "Documentation" explains the need to create documentation using several clear examples of the benefits from good documentation (and what can happen if it is not good), making research reproducible...

  8. Sandia Energy - SCADA Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Home Stationary Power Grid Modernization Cyber Security for Electric Infrastructure National Supervisory Control and Data Acquisition (SCADA) SCADA Documents SCADA...

  9. [Radioisotope thermoelectric generators and ancillary activities]. Monthly technical progress report, 1 April--28 April 1996

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    Tehnical progress achieved during this period on radioisotope thermoelectric generators is described under the following tasks: engineering support, safety analysis, qualified unicouple fabrication, ETG fabrication/assembly/test, RTG shipping/launch support, design/review/mission applications, and project management/quality assurance/reliability.

  10. EIS-0373: Proposed Consolidation of Nuclear Operations Related to the Production of Radioisotope Power Systems

    Broader source: Energy.gov [DOE]

    NOTE: EIS-0373 has been cancelled. This EIS evaluates the environmental impacts of consolidating nuclear activities related to production of radioisotope power systems (RPS) for space and national security missions at a single DOE site: the preferred alternative is the Materials and Fuels Complex at Idaho National Laboratory.

  11. Supporting Document Strategic Plan

    E-Print Network [OSTI]

    Auckland, University of

    1 Supporting Document Strategic Plan 20132020 #12;2 Supporting Document Strategic Plan 2013 more critical to the University's future than was the case in 2005. The purpose of this document are summarised via a SWOT analysis in Appendix 1. This document should therefore be read in conjunction

  12. Prarie View RDF

    Energy Savers [EERE]

    PRAIRIE VIEW RDF 2 Prairie View RDF Located at JAAP (approx. 40 miles southwest of Chicago), 223 acres on 455 Acre Parcel Will County Owner; Waste Management, Operator ...

  13. September 2013 Most Viewed Documents for Power Generation And...

    Office of Scientific and Technical Information (OSTI)

    Gas Turbine Exhaust Diffuser Norris, Thomas R. (2009) 23 > Dynamic performance and control of a static var generator using cascade multilevel inverters Peng, Fang Zheng...

  14. March 2015 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Methods for Power Distribution Systems: Final Report Tom McDermott (2010) 67 Frequency Control Concerns in the North American Electric Power System Kirby, B.J. (2003) 64 A...

  15. January 2013 Most Viewed Documents for Environmental Sciences...

    Office of Scientific and Technical Information (OSTI)

    Karlsruhe GmbH, Institut fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany) Microbial rehabilitation of soils in the vicinity of former coking plants;...

  16. June 2015 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Christopher; Keasling, Jay (2011) 59 PRODUCTION OF RADIOACTIVE IODINE. SCHLYER,D.J. (2001) 58 Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork...

  17. July 2013 Most Viewed Documents for Mathematics And Computing...

    Office of Scientific and Technical Information (OSTI)

    implementation and theory More, J.J. (1977) 38 > The Effects of Nuclear Weapons Glasstone, Samuel (1964) 35 > Understanding seismic design criteria for Japanese nuclear...

  18. July 2013 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    waste Ashley, C. (1970) 39 > 1965 audit of SRP radioactive waste Ashley, C. (1966) 39 > Case studies of sealing methods and materials used in the salt and potash mining...

  19. September 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    NM (United States). Photovoltaic System Components Dept. (1997) 33 > European Geothermal Drilling Experience-Problem Areas and Case Studies Baron, G.; Ungemach, P. (1981) 32...

  20. Most Viewed Documents - Fission and Nuclear Technologies | OSTI...

    Office of Scientific and Technical Information (OSTI)

    States) (1997) Environmental Aspects, Objectives and Targets Identification Process R. Green (2002) Flow-induced vibration of circular cylindrical structures Chen, S.S. (1985)...

  1. September 2013 Most Viewed Documents for Environmental Sciences...

    Office of Scientific and Technical Information (OSTI)

    Soil Friday, G. P. (1999) 31 > Ammonia usage in vapor compression for refrigeration and air-conditioning in the United States Fairchild, P.D.; Baxter, V.D. (1995) 30 >...

  2. March 2014 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    on Low-Temperature, Small-Scale Applications Rafferty, K. (2000) 69 > Seventh Edition Fuel Cell Handbook NETL (2004) 68 > Systems and economic analysis of microalgae ponds for...

  3. Most Viewed Documents for Renewable Energy Sources: September...

    Office of Scientific and Technical Information (OSTI)

    towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 70 Seventh Edition Fuel Cell Handbook NETL (2004) 67 Temperature coefficients for PV modules and arrays:...

  4. September 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    Ph.D.; Michael Shaepe (formerly with IPST, now at Cargill. Inc) (2008) 76 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Building a secondary containment system Broder, M.F....

  5. April 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    for Energy Storage, Conversion, And Utilization Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 628 > Continuously variable transmissions: theory and...

  6. April 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 1252 > Seventh Edition Fuel Cell Handbook NETL (2004) 628 > Wet cooling towers: rule-of-thumb design and...

  7. March 2015 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    Seiber, L.E.; Marlino, L.D.; Staunton, R.H.; Cunningham, J.P. (2008) 113 Seventh Edition Fuel Cell Handbook NETL (2004) 111 New Regenerative Cycle for Vapor Compression...

  8. Most Viewed Documents for Renewable Energy Sources: December...

    Office of Scientific and Technical Information (OSTI)

    factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 107 Seventh Edition Fuel Cell Handbook NETL (2004) 96 Advanced Electric Submersible Pump Design Tool for...

  9. March 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 83 > Seventh Edition Fuel Cell Handbook NETL (2004) 68 > Load flow analysis: Base cases, data, diagrams, and...

  10. April 2013 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles...

  11. Most Viewed Documents for Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 107 Seventh Edition Fuel Cell Handbook NETL (2004) 96 An Improved Method of Manufacturing Corrugated Boxes:...

  12. July 2013 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 135 > Seventh Edition Fuel Cell Handbook NETL (2004) 133 > Feed-pump hydraulic performance and design...

  13. Most Viewed Documents for Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 76 Seventh Edition Fuel Cell Handbook NETL (2004) 67 Separation of heavy metals: Removal from industrial...

  14. June 2014 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 300 > Seventh Edition Fuel Cell Handbook NETL (2004) 118 > Chapter 17. Engineering cost analysis Higbee,...

  15. Most Viewed Documents for Power Generation and Distribution:...

    Office of Scientific and Technical Information (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 133 Seventh Edition Fuel Cell Handbook NETL (2004) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W....

  16. July 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 142 > Seventh Edition Fuel Cell Handbook NETL (2004) 133 > Temperature coefficients for PV modules and arrays:...

  17. June 2014 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 337 > Seventh Edition Fuel Cell Handbook NETL (2004) 118 > Energy Saving Potentials and Air Quality Benefits of...

  18. March 2014 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 85 > Seventh Edition Fuel Cell Handbook NETL (2004) 68 > Separation of heavy metals: Removal from industrial...

  19. Most Viewed Documents for Power Generation and Distribution:...

    Office of Scientific and Technical Information (OSTI)

    towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 70 Seventh Edition Fuel Cell Handbook NETL (2004) 67 Load flow analysis: Base cases, data, diagrams, and...

  20. July 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 142 > Seventh Edition Fuel Cell Handbook NETL (2004) 133 > An Improved Method of Manufacturing Corrugated...

  1. March 2015 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    from 20sup 0C to 330sup 0C Ozbek, H.; Phillips, S.L. (1979) 137 Seventh Edition Fuel Cell Handbook NETL (2004) 111 A kinetic study of methanol synthesis in a slurry...

  2. Most Viewed Documents for National Defense: December 2014 | OSTI...

    Office of Scientific and Technical Information (OSTI)

    levels of information Van Groningen, C.N.; Paddock, R.A. (1997) 24 Detonation and combustion of explosives: A selected bibliography Dobratz, B. comp. (1998) 22 LLNL...

  3. June 2014 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    to the Monte Carlo N-Particle (MCNP) Visual Editor (MCNPVised) to Read in Computer Aided Design (CAD) Files Randolph Schwarz; Leland L. Carter; Alysia Schwarz (2005) 37...

  4. Most Viewed Documents - Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) Continuously variable...

  5. March 2015 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    solutions Maimoni, A. (1980) 101 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 87 One-dimensional drift-flux model and constitutive...

  6. June 2015 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 192 Calculation of brine properties. Above...

  7. June 2015 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Knoxville, TN (United States)|Oak Ridge National Lab., TN (United States) (1995) 53 Wind power forecasting : state-of-the-art 2009. Monteiro, C.; Bessa, R.; Miranda, V.;...

  8. Most Viewed Documents for National Defense: September 2014 |...

    Office of Scientific and Technical Information (OSTI)

    Kenneth C. (1955) 17 Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap Casey, Leslie A. (2014) 17 Manual for the prediction of blast and fragment loadings...

  9. April 2013 Most Viewed Documents for Mathematics And Computing...

    Office of Scientific and Technical Information (OSTI)

    for Mathematics And Computing Science Subject Feed Publications in biomedical and environmental sciences programs, 1981 Moody, J.B. (comp.) (1982) 306 > A comparison of risk...

  10. January 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    2012: Executive Summary Portuguese version NONE Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio...

  11. January 2013 Most Viewed Documents for Fission And Nuclear Technologie...

    Office of Scientific and Technical Information (OSTI)

    ; Park, H. S. IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION Allender, J; Moore, E TESTING AND CHARACTERIZATION OF ENGINEERED FORMS...

  12. Most Viewed Documents for Fission and Nuclear Technologies: December...

    Office of Scientific and Technical Information (OSTI)

    various two-phase flow regimes Ishii, M. (1977) 20 3rd Miami international conference on alternative energy sources Nejat Veziroglu, T. (1980) 19 Fission fragment rockets: A...

  13. September 2013 Most Viewed Documents for Fission And Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I: research program design. Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 69 > Flow-induced vibration of circular cylindrical...

  14. June 2015 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Savannah River Co., Aiken, SC (United States)) (1992) 245 Cleaning Contaminated Water at Fukushima Rende, Dean; Nenoff, Tina (2013) 204 Flow-induced vibration of circular...

  15. March 2014 Most Viewed Documents for Environmental Sciences ...

    Office of Scientific and Technical Information (OSTI)

    F.; Olivier, J.; Pickering, K.; Pitari, G.; Roelofs, G.-J.; Rogers, H.; Rognerud, B.; Smith, Steven J.; Solomon, S.; Staehelin, J.; Steele, P.; Stevenson, D. S.; Sundet, J.;...

  16. April 2013 Most Viewed Documents for Environmental Sciences ...

    Office of Scientific and Technical Information (OSTI)

    F.; Olivier, J.; Pickering, K.; Pitari, G.; Roelofs, G.-J.; Rogers, H.; Rognerud, B.; Smith, Steven J.; Solomon, S.; Staehelin, J.; Steele, P.; Stevenson, D. S.; Sundet, J.;...

  17. Most Viewed Documents for Environmental Sciences: September 2014...

    Office of Scientific and Technical Information (OSTI)

    F.; Olivier, J.; Pickering, K.; Pitari, G.; Roelofs, G.-J.; Rogers, H.; Rognerud, B.; Smith, Steven J.; Solomon, S.; Staehelin, J.; Steele, P.; Stevenson, D. S.; Sundet, J.;...

  18. June 2014 Most Viewed Documents for Environmental Sciences |...

    Office of Scientific and Technical Information (OSTI)

    F.; Olivier, J.; Pickering, K.; Pitari, G.; Roelofs, G.-J.; Rogers, H.; Rognerud, B.; Smith, Steven J.; Solomon, S.; Staehelin, J.; Steele, P.; Stevenson, D. S.; Sundet, J.;...

  19. July 2013 Most Viewed Documents for Environmental Sciences |...

    Office of Scientific and Technical Information (OSTI)

    Rogner, Hans-Holger; Sankovski, Alexei; Schlesinger, Michael; Shukla, Priyadarshi; Smith, Steven J.; Swart, Robert; van Rooijen, Sascha; Victor, Nadejda; Dadi, Zhou (2000) 51...

  20. Most Viewed Documents for Mathematics and Computing: December...

    Office of Scientific and Technical Information (OSTI)

    for configuration management using computer aided software engineering (CASE) tools Smith, P.R.; Sarfaty, R. (1993) 22 Solar Position Algorithm for Solar Radiation Applications...

  1. March 2015 Most Viewed Documents for Environmental Sciences ...

    Office of Scientific and Technical Information (OSTI)

    T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.;...

  2. June 2014 Most Viewed Documents for Mathematics And Computing...

    Office of Scientific and Technical Information (OSTI)

    for configuration management using computer aided software engineering (CASE) tools Smith, P.R.; Sarfaty, R. (1993) 18 > Description of DASSL: a differentialalgebraic system...

  3. Most Viewed Documents for Mathematics and Computing: September...

    Office of Scientific and Technical Information (OSTI)

    for configuration management using computer aided software engineering (CASE) tools Smith, P.R.; Sarfaty, R. (1993) 26 Ferrite Measurement in Austenitic and Duplex Stainless...

  4. Most Viewed Documents for Environmental Sciences: December 2014...

    Office of Scientific and Technical Information (OSTI)

    F.; Olivier, J.; Pickering, K.; Pitari, G.; Roelofs, G.-J.; Rogers, H.; Rognerud, B.; Smith, Steven J.; Solomon, S.; Staehelin, J.; Steele, P.; Stevenson, D. S.; Sundet, J.;...

  5. September 2013 Most Viewed Documents for National Defense | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Equivalence Cooper, P.W. (1994) 26 > LLNL small-scale drop-hammer impact sensitivity test Simpson, L.R.; Foltz, M.F. (1995) 25 > The future of components for high reliability...

  6. Most Viewed Documents for Fission And Nuclear Technologies: September...

    Office of Scientific and Technical Information (OSTI)

    under accident conditions Bomelburg, H.J. (1977) 71 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 68 Stress analysis and evaluation of a...

  7. March 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Fission And Nuclear Technologies Science Subject Feed Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 72 > Peer-review study of the draft handbook...

  8. April 2013 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Fission And Nuclear Technologies Science Subject Feed Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (null) 298 > Estimation of gas leak rates through very...

  9. September 2013 Most Viewed Documents for Mathematics And Computing...

    Office of Scientific and Technical Information (OSTI)

    heat and mass transfer code Zyvoloski, G.; Dash, Z.; Kelkar, S. (1988) 21 > Productivity and injectivity of horizontal wells. Quarterly report, January 1, 1995--March 31,...

  10. July 2013 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    DOSE ASSESSMENT A. Achudume (2004) 17 > Control of temperature for health and productivity inoffices Seppanen, Olli; Fisk, William J.; Faulkner, David (2004) 17 > Literature...

  11. March 2014 Most Viewed Documents for Mathematics And Computing...

    Office of Scientific and Technical Information (OSTI)

    and state-of-the-art assessment Mileti, D.S. (Colorado State Univ., Fort Collins, CO (USA)); Sorensen, J.H. (Oak Ridge National Lab., TN (USA)) (1990) 18 > Health and...

  12. Most Viewed Documents for Biology and Medicine: December 2014...

    Office of Scientific and Technical Information (OSTI)

    J.M.; Wheelis, S.; Carroll, S.L.; Waltz, M.D.; Palumbo, A.V. (1995) 24 Carbon Dioxide Sequestering Using Microalgal Systems Daniel J. Stepan; Richard E. Shockey;...

  13. Most Viewed Documents for Biology and Medicine: September 2014...

    Office of Scientific and Technical Information (OSTI)

    32 Dose and volume specification for reporting interstitial therapy NONE (1997) 28 Carbon Dioxide Sequestering Using Microalgal Systems Daniel J. Stepan; Richard E. Shockey;...

  14. June 2015 Most Viewed Documents for Environmental Sciences |...

    Office of Scientific and Technical Information (OSTI)

    contaminated soil Peters, R.W.; Shem, L. (1993) 234 Statistical methods for environmental pollution monitoring Gilbert, R.O. (1987) 102 Building a secondary containment system...

  15. Most Viewed Documents - Power Generation and Distribution | OSTI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of COsub 2 to biomass. Quarterly technical progress report,...

  16. January 2013 Most Viewed Documents for Biology And Medicine ...

    Office of Scientific and Technical Information (OSTI)

    L. como biomonitor Nogueira, Claudio Ailton Development of simulation tools for virus shell assembly. Final report Berger, Bonnie Transcriptional Regulation of...

  17. January 2013 Most Viewed Documents for National Defense | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Wright, B. Los Alamos National Lab., NM (United States) Investigations into seismic discrimination between earthquakes, chemical explosions and nuclear explosions...

  18. January 2013 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    Energy Consortium of New York Photovoltaic Research and Development Center Klein, Petra M. A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation Terry Battiest...

  19. January 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON... NoJamesJanos6 AnOffice

  20. January 2013 Most Viewed Documents for Environmental Sciences | OSTI, US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON... NoJamesJanos6 AnOfficeEnergy,Dept

  1. January 2013 Most Viewed Documents for Fission And Nuclear Technologies |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON... NoJamesJanos6

  2. January 2013 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON... NoJamesJanos6Energy,Office

  3. July 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015 Bonneville Power

  4. July 2013 Most Viewed Documents for Fission And Nuclear Technologies |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015 Bonneville PowerOffice of

  5. July 2013 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015 Bonneville PowerOfficeEnergy,OSTI, US

  6. June 2014 Most Viewed Documents for Energy Storage, Conversion, And

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015 BonnevilleJulyJune1 »1,7 M o

  7. June 2014 Most Viewed Documents for Fission And Nuclear Technologies |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015 BonnevilleJulyJune1 »1,7 M

  8. June 2014 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015 BonnevilleJulyJune1 »1,7DeptOffice

  9. Most Viewed Documents - Energy Storage, Conversion, and Utilization | OSTI,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.Solar Thermal16,(SC) Mortimer M.US Dept of

  10. Most Viewed Documents - Environmental Sciences | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.Solar Thermal16,(SC) Mortimer M.US DeptOffice

  11. Most Viewed Documents - Mathematics and Computing | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.Solar Thermal16,(SC) MortimerEnergy, Office of

  12. September 2013 Most Viewed Documents for Mathematics And Computing | OSTI,

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTISciTechEnergy, OfficeUS Dept of

  13. September 2013 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTISciTechEnergy, OfficeUS| OSTI,

  14. September 2013 Most Viewed Documents for Renewable Energy Sources | OSTI,

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTISciTechEnergy, OfficeUS|

  15. March 2014 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTech ConnectLow-Cycle-Fatigueof Energy, Office

  16. March 2014 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTech ConnectLow-Cycle-Fatigueof Energy,

  17. March 2014 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTech ConnectLow-Cycle-Fatigueof

  18. March 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTech ConnectLow-Cycle-FatigueofDept of

  19. March 2015 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTech ConnectLow-Cycle-FatigueofDept ofOffice ofofOSTI,

  20. March 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTech ConnectLow-Cycle-FatigueofDeptOffice of

  1. Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrange MultiplierMoltenScientific andScientific andof

  2. Most Viewed Documents for Energy Storage, Conversion, and Utilization:

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrange MultiplierMoltenScientificEnergy, Office

  3. Most Viewed Documents for Energy Storage, Conversion, and Utilization:

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrange MultiplierMoltenScientificEnergy,

  4. Most Viewed Documents for Environmental Sciences: December 2014 | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrange MultiplierMoltenScientificEnergy,Energy,Dept of

  5. Most Viewed Documents for Environmental Sciences: September 2014 | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrange MultiplierMoltenScientificEnergy,Energy,Dept

  6. Most Viewed Documents for Fission And Nuclear Technologies: September 2014

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrange MultiplierMoltenScientificEnergy,Energy,Dept|

  7. Most Viewed Documents for Fission and Nuclear Technologies: December 2014 |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrange

  8. Most Viewed Documents for Mathematics and Computing: December 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrangeEnergy, Office of ScientificUS Dept of Energy,

  9. Most Viewed Documents for Mathematics and Computing: September 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrangeEnergy, Office of ScientificUS Dept of Energy,US

  10. Most Viewed Documents for Power Generation and Distribution: December 2014

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrangeEnergy, Office of ScientificUS Dept ofofEnergy,|

  11. Most Viewed Documents for Power Generation and Distribution: September 2014

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrangeEnergy, Office of ScientificUS Dept

  12. Most Viewed Documents for Renewable Energy Sources: December 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrangeEnergy, Office of ScientificUS DeptUS Dept of

  13. Most Viewed Documents for Renewable Energy Sources: September 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrangeEnergy, Office of ScientificUS DeptUS Dept ofUS

  14. September 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTISciTech Connect

  15. September 2013 Most Viewed Documents for Environmental Sciences | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTISciTech ConnectEnergy,Dept

  16. September 2013 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTISciTech

  17. June 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input OptionsEnergy, Office of ScientificOffice of Scientific

  18. June 2015 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input OptionsEnergy, Office of ScientificOffice of

  19. June 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input OptionsEnergy, Office of ScientificOffice ofOfficeOffice ofOSTI,

  20. Acceptable NSLS Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

  1. EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

  2. GTT Tranmission Workshop- Documents

    Broader source: Energy.gov [DOE]

    Use the links below to download documents from the GTT Transmission Workshop, held November 1-2, 2012.

  3. Classification Documents and Publications

    Broader source: Energy.gov [DOE]

    Certain documents and publications created or issued by the Office of Classification are available from this page.

  4. In this document: Freshmanadmissiondecisionoverview

    E-Print Network [OSTI]

    Blanchette, Robert A.

    In this document: Freshmanadmissiondecisionoverview Academicprofileoffall2012 and Human Development Liberal Arts Management (Carlson School of) Science and Engineering #12;Frequently

  5. In this document: Freshmanadmissiondecisionoverview

    E-Print Network [OSTI]

    Blanchette, Robert A.

    In this document: Freshmanadmissiondecisionoverview Academicprofileoffall2012, Agricultural and Natural Resource Sciences Education and Human Development Liberal Arts Management (Carlson

  6. Office Automation Document Preparation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    .2 Distinctions 1.3 Facilities 1.3.1 Document Preparation 1.3.2 Records Management 1.3.3 Communication 1 organizations contemplating the installation of document-preparation systems. * Administrative managersOffice Automation and Document Preparation for the v' University of North Carolina at Chapel Hill

  7. Office of Document Reviews

    Broader source: Energy.gov [DOE]

    The Office of Document Reviews ensures that all documents prepared at DOE Headquarters are properly marked to identify the level and category of protected information they contain (if any) and to ensure that all documents the Department prepares or is required to review under applicable statutes for public release contain no information requiring protection under law, regulations and Executive orders.

  8. Radioisotope Thermophotovoltaic (RTPV) Generator and Its Applicability to an Illustrative Space Mission

    SciTech Connect (OSTI)

    Schock, A.; Mukunda, M.; Or, T.; Kumar, V.; Summers, G.

    1994-02-14T23:59:59.000Z

    The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the author. Instead of conducting a generic study, it was decided to focus the design effort by directing it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a post-encounter cruise lasting up to one year.

  9. Recovery of radioisotopes from nuclear waste for radio-scintillator-luminescence energy applications

    E-Print Network [OSTI]

    Alfred Bennun

    2012-08-16T23:59:59.000Z

    Extraction of the light weight radioisotopes (LWR) 89Sr/90Sr, from the expended nuclear bars in the Fukushima reactor, should have decreased the extent of contamination during the course of the accident. 89Sr applications could pay for the extraction of 89Sr/90Sr from nuclear residues. Added value could be obtained by using 89Sr for cancer treatments. Known technologies could be used to relate into innovative ways LWR, to obtain nuclear energy at battery scale. LWR interact by contact with scintillators converting \\beta-radiation into light-energy. This would lead to manufacturing scintillator lamps which operate independently of other source of energy. These lamps could be used to generate photoelectric energy. Engineering of radioisotopes scintillator photovoltaic cells, would lead to devices without moving parts.

  10. Recovery of radioisotopes from nuclear waste for radio-scintillator-luminescence energy applications

    E-Print Network [OSTI]

    Bennun, Alfred

    2012-01-01T23:59:59.000Z

    Extraction of the light weight radioisotopes (LWR) 89Sr/90Sr, from the expended nuclear bars in the Fukushima reactor, should have decreased the extent of contamination during the course of the accident. 89Sr applications could pay for the extraction of 89Sr/90Sr from nuclear residues. Added value could be obtained by using 89Sr for cancer treatments. Known technologies could be used to relate into innovative ways LWR, to obtain nuclear energy at battery scale. LWR interact by contact with scintillators converting \\beta-radiation into light-energy. This would lead to manufacturing scintillator lamps which operate independently of other source of energy. These lamps could be used to generate photoelectric energy. Engineering of radioisotopes scintillator photovoltaic cells, would lead to devices without moving parts.

  11. Vibration Testing of the Pluto/New Horizons Radioisotope Thermoelectric Generator

    SciTech Connect (OSTI)

    Charles D. Griffin

    2006-06-01T23:59:59.000Z

    The Radioisotopic Thermal Generator (RTG) for the Pluto/New Horizons spacecraft was subjected to a flight dynamic acceptance test to demonstrate that it would perform successfully following launch. Seven RTGs of this type had been assembled and tested at Mound, Ohio from 1984 to 1997. This paper chronicles major events in establishing a new vibration test laboratory at the Idaho National Laboratory and the nineteen days of dynamic testing.

  12. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    SciTech Connect (OSTI)

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01T23:59:59.000Z

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  13. Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms

    SciTech Connect (OSTI)

    Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

    2011-02-01T23:59:59.000Z

    Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

  14. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    1993-10-01T23:59:59.000Z

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  15. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods

    SciTech Connect (OSTI)

    Guerra Liberal, Francisco D. C., E-mail: meb12020@fe.up.pt, E-mail: adriana-tavares@msn.com; Tavares, Adriana Alexandre S., E-mail: meb12020@fe.up.pt, E-mail: adriana-tavares@msn.com; Tavares, Joo Manuel R. S., E-mail: tavares@fe.up.pt [Instituto de Engenharia Mecnica e Gesto Industrial, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465 (Portugal)

    2014-11-01T23:59:59.000Z

    Purpose: Throughout the years, the palliative treatment of bone metastases using bone seeking radiotracers has been part of the therapeutic resources used in oncology, but the choice of which bone seeking agent to use is not consensual across sites and limited data are available comparing the characteristics of each radioisotope. Computational simulation is a simple and practical method to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aims to evaluate and compare 11 different radioisotopes currently in use or under research for the palliative treatment of bone metastases using computational methods. Methods: Computational models were used to estimate the percentage of deoxyribonucleic acid (DNA) damage (fast Monte Carlo damage algorithm), the probability of correct DNA repair (Monte Carlo excision repair algorithm), and the radiation-induced cellular effects (virtual cell radiobiology algorithm) post-irradiation with selected particles emitted by phosphorus-32 ({sup 32}P), strontium-89 ({sup 89}Sr), yttrium-90 ({sup 90}Y ), tin-117 ({sup 117m}Sn), samarium-153 ({sup 153}Sm), holmium-166 ({sup 166}Ho), thulium-170 ({sup 170}Tm), lutetium-177 ({sup 177}Lu), rhenium-186 ({sup 186}Re), rhenium-188 ({sup 188}Re), and radium-223 ({sup 223}Ra). Results: {sup 223}Ra alpha particles, {sup 177}Lu beta minus particles, and {sup 170}Tm beta minus particles induced the highest cell death of all investigated particles and radioisotopes. The cell survival fraction measured post-irradiation with beta minus particles emitted by {sup 89}Sr and {sup 153}Sm, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice, was higher than {sup 177}Lu beta minus particles and {sup 223}Ra alpha particles. Conclusions: {sup 223}Ra and {sup 177}Lu hold the highest potential for palliative treatment of bone metastases of all radioisotopes compared in this study. Data reported here may prompt future in vitro and in vivo experiments comparing different radionuclides for palliative treatment of bone metastases, raise the need for the careful rethinking of the current widespread clinical use of {sup 89}Sr and {sup 153}Sm, and perhaps strengthen the use of {sup 223}Ra and {sup 177}Lu in the palliative treatment of bone metastases.

  16. Appendix 3 Document Scanning Guidelines Appendix 3 Document Scanning Guidelines

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Appendix 3 Document Scanning Guidelines App.3-1 Appendix 3 Document Scanning Guidelines 1. Turn. Note: Whenever possible, it is best to convert a Word document into a PDF than to scan a document and convert it to a PDF. A Word document that has been converted is searchable; a scanned document is not. 2

  17. UNCLASSIFIHED DEFENSE DOCUMENTATION CENTER

    E-Print Network [OSTI]

    Block, Marco

    UNCLASSIFIHED AD 463473 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION .... John Barton Head OR Analysis Group R. H. Krolick Manager Applied Science Laboratory Prepared for the .J

  18. Geothermal: Hot Documents Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  19. RMOTC - Library - Environmental Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Documents The U.S. Department of Energy National Environmental Policy Act (NEPA) requires careful consideration of the potential environmental consequences of all...

  20. Hazard Baseline Documentation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-12-04T23:59:59.000Z

    This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

  1. Environmental Policy Document Ref

    E-Print Network [OSTI]

    Aickelin, Uwe

    Document Environmental Policy Document Ref EMS.POL.001 Last Revision March 2013 Revision No 5 Page 1 of 1 Environmental Policy Through teaching and research the University of the West of England should be managed so as to minimise environmental harm. This policy commits the University of the West

  2. IMPRESS CONNECT DOCUMENT ORDERING

    E-Print Network [OSTI]

    Asaithambi, Asai

    IMPRESS CONNECT DOCUMENT ORDERING USER GUIDE FOR UNF August 2010 #12;OFFICEMAX IMPRESS CONNECT USERMax (case sensitive) Click on "Create New Custom Print Order" under Print & Document Services #12;The first landing page. You will see 3 options across the top of the landing page: Order Jobs, Track Jobs, Manage

  3. IDC System Specification Document.

    SciTech Connect (OSTI)

    Clifford, David J.

    2014-12-01T23:59:59.000Z

    This document contains the system specifications derived to satisfy the system requirements found in the IDC System Requirements Document for the IDC Reengineering Phase 2 project. Revisions Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Reengineering Project Team Initial delivery M. Harris

  4. Presidential Documents Federal Register

    E-Print Network [OSTI]

    Presidential Documents 67249 Federal Register Vol. 65, No. 218 Thursday, November 9, 2000 Title 3 principles set forth in section 2, agencies shall adhere, to the extent permitted by law, to the following #12;67250 Federal Register / Vol. 65, No. 218 / Thursday, November 9, 2000 / Presidential Documents (a

  5. Analysis, Optimization, and Assessment of Radioisotope Thermophotovoltaic System Design for an Illustrative Space Mission

    SciTech Connect (OSTI)

    Schock, Alfred; Mukunda, Meera; Summers, G.

    1994-06-28T23:59:59.000Z

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPV's are of course much less mature than RTGs, but our results indicate that - when fully developed - they could result in a 60% reduction of the heat source's mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system's specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV's current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g. RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 degrees C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low mass generators. Another copy is in the Energy Systems files.

  6. Analysis, optimization, and assessment of radioisotope thermophotovoltaic system design for an illustrative space mission

    SciTech Connect (OSTI)

    Schock, A.; Mukunda, M.; Or, C.; Summers, G. [Fairchild Space and Defense Corporation, Germantown, Maryland 20874 (United States)

    1995-01-05T23:59:59.000Z

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPVs are of course much less mature than RTGs, but our results indicate that---when fully developed---they could result in a 60% reduction of the heat source`s mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system`s specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV`s current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g., RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 {degree}C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low-mass generators. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    SciTech Connect (OSTI)

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 301-445W, Pasadena, CA 91109-8099 (United States)

    2006-01-20T23:59:59.000Z

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to 'hop' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power ({>=}330 We at beginning of life) during the 10-year cruise and 1-year science mission ({approx}11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030.

  8. Recoil-Implantation Of Multiple Radioisotopes Towards Wear Rate Measurements And Particle Tracing In Prosthetic Joints

    SciTech Connect (OSTI)

    Warner, Jacob A.; Timmers, Heiko [School of Physical, Environmental and Mathematical Sciences, University of New South Wales at ADFA, Canberra, ACT 2600 (Australia); Smith, Paul N.; Scarvell, Jennifer M. [Trauma and Orthopaedic Research Unit, Canberra Hospital, PO BOX 11, Woden, ACT 2606 (Australia); Gladkis, Laura [School of Physical, Environmental and Mathematical Sciences, University of New South Wales at ADFA, Canberra, ACT 2600 (Australia); Trauma and Orthopaedic Research Unit, Canberra Hospital, PO BOX 11, Woden, ACT 2606 (Australia)

    2011-06-01T23:59:59.000Z

    This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes {sup 97}Ru, {sup 100}Pd, {sup 100}Rh, and {sup 101m}Rh are produced in fusion evaporation reactions induced by {sup 12}C ions in a {sup 92}Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. The concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 {mu}m. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24 deg. flexion angle removed (14{+-}1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12{+-}3) mm{sup 3}/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.

  9. Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Testing

    SciTech Connect (OSTI)

    Adkins, H.E.; Ferrell, P.C.; Knight, R.C.

    1994-09-30T23:59:59.000Z

    The Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Test was conducted to validate the use of the Butyl material as a primary seal throughout the required temperature range. Three tests were performed at (1) 233 K ({minus}40 {degrees}F), (2) a specified operating temperature, and (3) 244 K ({minus}20 {degrees}F) before returning to room temperature. Helium leak tests were performed at each test point to determine seal performance. The two major test objectives were to establish that butyl rubber material would maintain its integrity under various conditions and within specified parameters and to evaluate changes in material properties.

  10. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    SciTech Connect (OSTI)

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.; Farmer, O.T.; Greenwood, L.R.; Hoppe, E.W.; Hoopes, F.V.; Lumetta, G.J.; Mong, G.M.; Ratner, R.T.; Soderquist, C.Z.; Steele, M.J.; Swoboda, R.G.; Urie, M.W.; Wagner, J.J.

    2000-10-17T23:59:59.000Z

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  11. Conceptual design of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production

    SciTech Connect (OSTI)

    Liem, Peng Hong [Nippon Advanced Information Service (NAIS Co., Inc.) Scientific Computational Division, 416 Muramatsu, Tokaimura, Ibaraki (Japan); Tran, Hoai Nam [Chalmers University of Technology, Dept. of Applied Physics, Div. of Nuclear Engineering, SE-412 96 Gothenburg (Sweden); Sembiring, Tagor Malem [National Nuclear Energy Agency (BATAN), Center for Reactor Technology and Nuclear Safety, Kawasan Puspiptek, Serpong, Tangerang Selatan, Banten (Indonesia); Arbie, Bakri [PT MOTAB Technology, Kedoya Elok Plaza Blok DA 12, Jl. Panjang, Kebun Jeruk, Jakarta Barat (Indonesia)

    2014-09-30T23:59:59.000Z

    To partly solve the global and regional shortages of Mo-99 supply, a conceptual design of a nitrate-fuel-solution based homogeneous reactor dedicated for Mo-99/Tc-99m medical radioisotope production is proposed. The modified LEU Cintichem process for Mo-99 extraction which has been licensed and demonstrated commercially for decades by BATAN is taken into account as a key design consideration. The design characteristics and main parameters are identified and the advantageous aspects are shown by comparing with the BATAN's existing Mo-99 supply chain which uses a heterogeneous reactor (RSG GAS multipurpose reactor)

  12. Content-Based Document Image Retrieval in Complex Document Collections

    E-Print Network [OSTI]

    Content-Based Document Image Retrieval in Complex Document Collections G. Agama, S. Argamona, O address the problem of content-based image retrieval in the context of complex document images. Complex document are documents that typically start out on paper and are then electronically scanned. These docu

  13. Radioisotope thermoelectric generator load and unload sequence from the licensed hardware package system and the trailer system

    SciTech Connect (OSTI)

    Reilly, M.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    The Radioisotope Thermoelectric Generator Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), including the Radioisotope Thermoelectric Generator Transportation System packaging is licensed (regularoty) hardware, certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. This paper focuses on the required interfaces and sequencing of events required by these systems and the shipping and receiving facilities in preparation of the Radioisotope Thermoelectric Generator for space flight. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  14. View of software for HEP experiments

    SciTech Connect (OSTI)

    Johnstad, H.; Lebrun, P.; Lessner, E.S.; Montgomery, H.E.

    1986-05-01T23:59:59.000Z

    A view of the software structure typical of a High Energy Physics experiment is given and the availability of general software modules in most of the important regions is discussed. The aim is to provide a framework for discussion of capabilities and inadequecies and thereby define areas where effort should be assigned and perhaps also to serve as a useful source document for the newcomer to High Energy Physics. 74 refs.

  15. Document | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal RegisterDocument DocumentDocument

  16. Document | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal RegisterDocumentDocument Document

  17. Document | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments461-93Do-It-Yourself ProjectsDocument Document Extracted PagesDocument

  18. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect (OSTI)

    Sherrell, D.L.

    1992-06-01T23:59:59.000Z

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  19. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect (OSTI)

    Sherrell, D.L.

    1992-06-01T23:59:59.000Z

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

  20. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    SciTech Connect (OSTI)

    Noble, Robert J.; /SLAC; Amini, Rashied; Beauchamp, Patricia M.; /Caltech, JPL; Bennett, Gary L.; /Metaspace Enterprises; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; /Caltech, JPL; Fernandez, Yan R.; /Central Florida U.; Grundy, Will; /Lowell Observ.; Khan, Mohammed Omair; /Caltech, JPL; King, David Q.; /Aerojet; Lang, Jared; /Caltech, JPL; Meech, Karen J.; /Hawaii U.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; /GRC; Spilker, Thomas; West, John L.; /Caltech, JPL; ,

    2010-05-26T23:59:59.000Z

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  1. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    SciTech Connect (OSTI)

    Carpenter, Robert; Kumar, V; Ore, C; Schock, Alfred

    2001-01-01T23:59:59.000Z

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.

  2. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect (OSTI)

    Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

    1993-01-15T23:59:59.000Z

    A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  3. UESC Enabling Documents

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses the enabling documents to help federal contract officers establish utility energy service contracts (UESCs).

  4. TUchem Documentation Introduction

    E-Print Network [OSTI]

    Wolfgang, Paul

    TUchem Documentation Introduction TUchem is an automated chemical inventory database system design, such as inventory import, report generation, location management, and a user-friendly look-and-feel. The motivation

  5. Presidential Documents Federal Register

    E-Print Network [OSTI]

    Presidential Documents 67249 Federal Register Vol. 65, No. 218 Thursday, November 9, 2000 Title 3 principles set forth in section 2, agencies shall adhere, to the extent permitted by law, to the following

  6. Document Type: Subject Terms

    E-Print Network [OSTI]

    Major, Arkady

    Title: Authors: Source: Document Type: Subject Terms: Abstract: Full Text Word Count: ISSN at creating team results. In fact, it's priceless. Managers in Western corporations have received a lifetime

  7. World Views From fragmentation

    E-Print Network [OSTI]

    .......................................................11 2. The Seven Components of a World View...................................................... 20 3. The Unity of the Seven Sub........................................... 25 5. The Purpose of the group `Worldviews

  8. Michigan Questionnaire Documentation System (MQDS)

    E-Print Network [OSTI]

    Cheung, Gina-Qian

    2013-04-03T23:59:59.000Z

    The Michigan Questionnaire Documentation System (MQDS) is a powerful tool used to help create questionnaire documentation, with or without summary statistics, and other documentation based on the Blaise data model for a study. MQDS works by: 1...

  9. PORTAL Aggregation Analysis and Documentation

    E-Print Network [OSTI]

    Bertini, Robert L.

    PORTAL Aggregation Analysis and Documentation Kristin A. Tufte Portland State University Introduction This document describes the aggregation procedures for PORTAL . Analysis of different aggregation system. Details on the status values and their descriptions can be found in the SWARM documentation

  10. Documentation Requirements for Sensory Impairments

    E-Print Network [OSTI]

    Documentation Requirements for Sensory Impairments Vision and Hearing Students, faculty, staff documentation requirements: 1. Requirements of the PRACTITIONER: A) Ophthalmologists and optometrists of interest. C) Documentation must be typed, dated and signed by the evaluator and submitted to ODR

  11. Published November, 1997 1997 Documentation

    E-Print Network [OSTI]

    Goldman, Steven A.

    Published November, 1997 1997 Documentation Guidelines for Evaluation and Management Services;2 1997 DOCUMENTATION GUIDELINES FOR EVALUATION AND MANAGEMENT SERVICES I. INTRODUCTION WHAT...............................................................................................................................2 What Is Documentation and Why Is it Important

  12. Document Imaging | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Converting Paper Documents into Electronic Files Converting paper documents into electronic files helps us manage, store, access and archive the organizational information...

  13. Important Trinity / NERSC-8 Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RFP Important Trinity NERSC-8 Documents Important Trinity NERSC-8 Documents Trinity NERSC-8 Use Case Scenarios for Burst Buffer and Power Management PDF Facility Limits...

  14. DOCUMENTATION SPECIFIC TASK TRAINING PROGRAM

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    DOCUMENTATION APPENDIX SPECIFIC TASK TRAINING PROGRAM Conducted by the ILLINOIS CENTER ............................................................. Coordination of Contract Documents Art.105.05 Appendix Page 14

  15. NEWS & VIEWS Glass dynamics

    E-Print Network [OSTI]

    Weeks, Eric R.

    NEWS & VIEWS Glass dynamics Diverging views on glass transition Gregory B. mc.mckenna@ttu.edu T he glass transition is one of the most intriguing phenomena in the world of soft condensed matter. Despite decades of study, many aspects of the behaviour of glass-forming liquids remain elusive

  16. Design and performance of radioisotope space power systems based on OSC multitube AMTEC converter designs

    SciTech Connect (OSTI)

    Schock, A.; Noravian, H.; Or, C. [Orbital Sciences Corp., Germantown, MD (United States)

    1997-12-31T23:59:59.000Z

    This paper extends the analytical procedure described in another paper in these proceedings to analyze a variety of compact and light-weight OSC-designed radioisotope-heated generators. Those generators employed General Purpose Heat Source (GPHS) modules and a converter containing sixteen AMTEC cells of OSC`s revised five-tube design with enhanced cell wall reflectivity described in a companion paper in these proceedings. OSC found that the performance of the generator is primarily a function of the thermal insulation between the outside of the generator`s 16 cells and the inside of its wall. After examining a variety of insulation options, it was found that the generator`s performance is optimized by employing a hybrid insulation system, in which the space between the cells is filled with fibrous Min-K insulation, and the generator walls are lined with tapered (i.e., graded-length) multifoil insulation. The OSC design results in a very compact generator, with eight AMTEC cells on each end of the heat source stack. The choice of the five-tube cells makes it possible to expand the BASE tube diameter without increasing the cell diameter. This is important because the eight cells mate well with the stacked GPHS modules. The OSC generator design includes a compliant heat source support and preload arrangement, to hold the heat source modules together during launch, and to maintain thermal contact conductance at the generator`s interfaces despite creep relaxation of its housing. The BOM and EOM (up to 15 years) performances of the revised generators were analyzed for two and three GPHS modules, both for fresh fuel and for aged fuel left over from a spare RTG (Radioisotope Thermoelectric Generator) fueled in 1982. The resulting power outputs were compared with JPL`s latest EOM power demand goals for the Pluto Express and Europa Orbiter missions, and with the generic goals of DOE`s Advanced Radioisotope Power System (ARPS) study. The OSC AMTEC designs yielded system efficiencies three to four times as high as present-generation RTGs.

  17. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery; Maassen, Joel R.; Engle, Jonathan W.; Batista, Enrique R.; Martin, Richard L.; Nortier, Francois M.; Fassbender, Michael E.; John, Kevin D.; et al

    2015-05-01T23:59:59.000Z

    The use of ?-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope Bi is a nuclide that has found substantial use for targeted ?-therapy (TAT). The relatively unexplored aqueous chemistry of Bi?, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (Lpy), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (Lpz), were prepared by a previously reported method and investigated here for their abilitiesmoreto bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A??-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ??Bi (t1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi? and the generator parent ion Ac?.In contrast to DOTA and CHX-A??-DTPA, these nitrogen-rich macrocycles selectively chelate Bi? in the presence of the parent isotope Ac?. Among the four tested, Lpy was found to exhibit optimal Bi?-binding kinetics and complex stability. Lpy complexes Bi? more rapidly than DOTA, yet the resulting complexes are of similar stability. DFT calculations corroborate the experimentally observed selectivity of these ligands for Bi? over Ac?. Taken together, these data implicate Lpy as a valuable chelating agent for the delivery of Bi. Its selectivity for Bi? and rapid and stable labeling properties warrant further investigation and biological studies.less

  18. Space Technology and Applications International Forum Proceedings, Albuquerque, New Mexico, January 2000 Miniaturized Radioisotope Solid State Power Sources

    E-Print Network [OSTI]

    thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However 2000 Miniaturized Radioisotope Solid State Power Sources J.-P. Fleurial, G.J. Snyder, J. Patel, J-pierre.fleurial@jpl.nasa.gov Abstract. Electrical power requirements for the next generation of deep space missions cover a wide range

  19. Radioisotope-powered cardiac pacemaker program. Clinical studies of the nuclear pacemaker model NU-5. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Beginning in February, 1970, the Nuclear Materials and Equipment Corporation (NUMEC) undertook a program to design, develop and manufacture a radioisotope powered cardiac pacemaker system. The scope of technical work was specified to be: establish system, component, and process cost reduction goals using the prototype Radioisotope Powered Cardiac Pacemaker (RCP) design and develop production techniques to achieve these cost reduction objectives; fabricate radioisotope powered fueled prototype cardiac pacemakers (RCP's) on a pilot production basis; conduct liaison with a Government-designated fueling facility for purposes of defining fueling requirements, fabrication and encapsulation procedures, safety design criteria and quality control and inspection requirements; develop and implement Quality Assurance and Reliability Programs; conduct performance, acceptance, lifetime and reliability tests of fueled RCP's in the laboratory; conduct liaison with the National Institutes of Health and with Government specified medical research institutions selected for the purpose of undertaking clinical evaluation of the RCP in humans; monitor and evaluate, on a continuing basis, all test data; and perform necessary safety analyses and tests. Pacemaker designs were developed and quality assurance and manufacturing procedures established. Prototype pacemakers were fabricated. A total of 126 radioisotope powered units were implanted and have been followed clinically for approximately seven years. Four (4) of these units have failed. Eighty-three (83) units remain implanted and satisfactorily operational. An overall failure rate of less than the target 0.15% per month has been achieved.

  20. SHERPA Document SHERPA Document -Institutional Repositories: Staff and Skills Requirements

    E-Print Network [OSTI]

    Southampton, University of

    SHERPA Document SHERPA Document - Institutional Repositories: Staff and Skills Requirements Mary This document began in response to requests received by the core SHERPA team for examples of job descriptions and UKCORR members. This document will be revised annually (July/August) to reflect changing needs

  1. Madonne: Document Image Analysis Techniques for Cultural Heritage Documents

    E-Print Network [OSTI]

    Boyer, Edmond

    Madonne: Document Image Analysis Techniques for Cultural Heritage Documents Jean-Marc Ogier and Karl Tombre Abstract. This paper presents the Madonne project, a French initiative to use document image anal- ysis techniques for the purpose of preserving and exploiting heritage documents. 1

  2. Software documentation, Page 1, Printed 7/11/01 Documentation

    E-Print Network [OSTI]

    Sommerville, Ian

    Software documentation, Page 1, Printed 7/11/01 Software Documentation Ian Sommerville Lancaster University, UK #12;Software documentation, Page 2, Printed 7/11/01 Introduction All large software development projects, irrespective of application, generate a large amount of associated documentation

  3. SOFA 2 Documentation Table of contents

    E-Print Network [OSTI]

    SOFA 2 Documentation Table of contents 1 Overview...................................................................................................................... 2 2 Documentation............................................................................................................. 2 3 Other documentation and howtos

  4. Technology Innovation Program Guidelines and Documentation

    E-Print Network [OSTI]

    Magee, Joseph W.

    #12;Technology Innovation Program Guidelines and Documentation Requirements for Research Involving ............................................................................ 5 F. Required Documentation.............................................................................. 16 D. Required Documentation

  5. Hazard baseline documentation

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This DOE limited technical standard establishes uniform Office of Environmental Management (EM) guidance on hazards baseline documents that identify and control radiological and nonradiological hazards for all EM facilities. It provides a road map to the safety and health hazard identification and control requirements contained in the Department`s orders and provides EM guidance on the applicability and integration of these requirements. This includes a definition of four classes of facilities (nuclear, non-nuclear, radiological, and other industrial); the thresholds for facility hazard classification; and applicable safety and health hazard identification, controls, and documentation. The standard applies to the classification, development, review, and approval of hazard identification and control documentation for EM facilities.

  6. Sandia Energy - SCADA Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary PowerResearchRiskRotorDocuments

  7. Document | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register /Document Document

  8. Document | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register /DocumentDocument

  9. Document | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register /DocumentDocumentOHA

  10. Document | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal RegisterDocument Document

  11. Document Control Program | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training, Documents, & Records Document Control Program The Document Control (DC) Plan ensures that only approved, current versions of such documents are used in the workplace or...

  12. Radioisotope thermoelectric generator package o-ring seal material validation testing

    SciTech Connect (OSTI)

    Adkins, H.E.; Ferrell, P.C.; Knight, R.C. [Westinghouse Hanford Company, P. O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    The Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Test was conducted to validate the use of the Butyl material as a primary seal throughout the required temperature range. Three tests were performed at (I) 233 K ({minus}40 {degree}F), (2) a specified operating temperature, and (3) 244 K ({minus}20 {degree}F) before returning to room temperature. Helium leak tests were performed at each test point to determine seal performance. The two major test objectives were to establish that butyl rubber material would maintain its integrity under various conditions and within specified parameters and to evaluate changes in material properties. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  13. A compendium of the radioisotope thermoelectric generator transportation system and recent programmatic changes

    SciTech Connect (OSTI)

    Becker, D.L.; McCoy, J.C.

    1996-03-01T23:59:59.000Z

    Because RTGs contain significant quantities of radioactive materials, usually plutonium-238 and its decay products, they must be transported in packages built in accordance with 10 CFR 71 (1994). To meet these regulatory requirements, US DOE commissioned Westinghouse Hanford Co. in 1988 to develop a Radioisotope Thermoelectric Generator Transportation System (RTGTS) that would fully comply while protecting RTGs from adverse environmental conditions during normal transport conditions (eg, mainly shock and heat). RTGTS is scheduled for completion Dec. 1996 and will be available to support NASA`s Cassini mission to Saturn in Oct. 1997. This paper provides an overview of the RTGTS project, discusses the hardware being produced, and summarizes various programmatic and management innovations required by recent changes at DOE.

  14. Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394

    SciTech Connect (OSTI)

    Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)] [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)

    2013-07-01T23:59:59.000Z

    The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

  15. A state of the art on coastal environmental protection using radioisotope tracer technology

    E-Print Network [OSTI]

    Jung, S H; Jin, J H; Kim, J B

    2002-01-01T23:59:59.000Z

    Construction of artificial structures has caused a sediment process change due to the variation of hydraulic condition in Korea. Subsequently we have a serious problem of shoaling for shoreline deformation, siltation of the harbor and shipping channel. To protect those abnormal environmental changes, a large estimate has been spent for additional construction such as outer wall facilities, littoral nourishment and dredging. Systematic long-term studies should be carried out to understand the causes of environmental change. In addition, comprehensive plan is required for its monitoring and prevention. The radioisotope application studies for coastal environmental protection have not been actively performed only in the developed countries like France, Canada, and Australia etc., but also in many developing countries like Poland, India. Since KAERI has performed two experiments in costal area of Korea in 1960s, no more study has been reported. Recently the studies of radiotracer application technology is getting...

  16. Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.

    SciTech Connect (OSTI)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom (Savannah River National Labs, Aiken, SC)

    2012-01-01T23:59:59.000Z

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  17. Augmenting real data with synthetic data: an application in assessing radio-isotope identification algorithms

    SciTech Connect (OSTI)

    Burr, Tom L [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory; Graves, Todd [Los Alamos National Laboratory; Myers, Steve [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    The performance of Radio-Isotope Identification (RIID) algorithms using gamma spectroscopy is increasingly important. For example, sensors at locations that screen for illicit nuclear material rely on isotope identification to resolve innocent nuisance alarms arising from naturally occurring radioactive material. Recent data collections for RIID testing consist of repeat measurements for each of several scenarios to test RIID algorithms. Efficient allocation of measurement resources requires an appropriate number of repeats for each scenario. To help allocate measurement resources in such data collections for RIID algorithm testing, we consider using only a few real repeats per scenario. In order to reduce uncertainty in the estimated RIID algorithm performance for each scenario, the potential merit of augmenting these real repeats with realistic synthetic repeats is also considered. Our results suggest that for the scenarios and algorithms considered, approximately 10 real repeats augmented with simulated repeats will result in an estimate having comparable uncertainty to the estimate based on using 60 real repeats.

  18. DOCUMENT MAPS FOR COMPETENCE MANAGEMENT

    E-Print Network [OSTI]

    Honkela, Timo

    DOCUMENT MAPS FOR COMPETENCE MANAGEMENT Timo Honkela Helsinki University of Technology Neural area of the document maps, i.e., competence management. The document map approach has approved The WEBSOM is a method for analyzing and visualizing large document col- lections. In the WEBSOM method

  19. CAPITAL ASSET DOCUMENT TRAINING

    E-Print Network [OSTI]

    KUALI CAPITAL ASSET MANAGEMENT DOCUMENT TRAINING Business and Financial Services, Property Management Presented by: Rachel Drenth #12;Sign On to the Training Site CSU CAP (Campus Administration://padroni.is.colostate.edu:7778/portal/page/portal/CAPQA (THEN CHOOSE QUAL 2) Non-production Applications: Training Kuali

  20. Virtual Gateway Network Documentation

    E-Print Network [OSTI]

    Segall, Adrian

    Virtual Gateway Network Documentation Composed By: Stiven Andre Nikolai Gukov #12;Table of contents.3) VGNET as a network manager 2) VGNET explained 2.1) One PC with multiple Internet access points. 2 both routers. 1.3) VGNET as a network manager Let's look at figure 3 again. The perfect scenario we may

  1. ENERGY REVIEW Consultation Document

    E-Print Network [OSTI]

    ENERGY REVIEW Consultation Document JANUARY 2006 Our Energy Challenge Securing clean, affordable energy for the long-term #12;Our Energy Challenge Securing clean, affordable energy for the long term #12;OUR ENERGY CHALLENGE SECURING CLEAN, AFFORDABLE ENERGY FOR THE LONG TERM ii Why is the government

  2. Computer-aided documentation

    SciTech Connect (OSTI)

    Rosenberg, S.

    1982-01-01T23:59:59.000Z

    Current standards for high-quality documentation of complex computer systems include many criteria, based on the application and user levels. Important points common to many systems are: targeting to specific user groups; being complete, concise, and structured; containing both tutorials and reference material; being field-tested; and being timely in appearance relative to the software delivery. To achieve these goals, uniform quality standards should be more vigorously applied, the documentation development cycle should be shortened, more documentation/software help should be available on line, and more user interaction should be solicited. For future computer systems, the proposal is made that the documentation be machine comprehensible. This should be phased in, with the immediate goal being to facilitate user querying for information, and with an ultimate goal of providing a database for programmer apprentice artificial-intelligence programs that assist software development. This new functionality will be the result of several trends, including the drastically reduced cost of read-only online random-access storage via video optical disks, the ongoing successes of artificial-intelligence programs when applied to limited application areas, and the ever increasing cost of software programmers. 3 references.

  3. Presidential Documents Federal Register

    E-Print Network [OSTI]

    Presidential Documents 3821 Federal Register Vol. 76, No. 14 Friday, January 21, 2011 Title 3, 1993. As stated in that Executive Order and to the extent permitted by law, each agency must, among, such as user fees or marketable permits, or providing information upon which choices can be made by the public

  4. Technical approach document

    SciTech Connect (OSTI)

    Not Available

    1989-12-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law 95-604 (PL95-604), grants the Secretary of Energy the authority and responsibility to perform such actions as are necessary to minimize radiation health hazards and other environmental hazards caused by inactive uranium mill sites. This Technical Approach Document (TAD) describes the general technical approaches and design criteria adopted by the US Department of Energy (DOE) in order to implement remedial action plans (RAPS) and final designs that comply with EPA standards. It does not address the technical approaches necessary for aquifer restoration at processing sites; a guidance document, currently in preparation, will describe aquifer restoration concerns and technical protocols. This document is a second revision to the original document issued in May 1986; the revision has been made in response to changes to the groundwater standards of 40 CFR 192, Subparts A--C, proposed by EPA as draft standards. New sections were added to define the design approaches and designs necessary to comply with the groundwater standards. These new sections are in addition to changes made throughout the document to reflect current procedures, especially in cover design, water resources protection, and alternate site selection; only minor revisions were made to some of the sections. Sections 3.0 is a new section defining the approach taken in the design of disposal cells; Section 4.0 has been revised to include design of vegetated covers; Section 8.0 discusses design approaches necessary for compliance with the groundwater standards; and Section 9.0 is a new section dealing with nonradiological hazardous constituents. 203 refs., 18 figs., 26 tabs.

  5. NEWS AND VIEWS PERSPECTIVE

    E-Print Network [OSTI]

    Mahler, D. Luke

    NEWS AND VIEWS PERSPECTIVE Niche diversification follows key innovation in Antarctic fish radiation Oxford Street, Cambridge MA 02138, USA Antarctic notothenioid fishes provide a fascinating evolu- tionary diversification has occurred repeatedly and in parallel. Keywords: community ecology, fish, macroevolution, phylo

  6. Forward viewing OCT endomicroscopy

    E-Print Network [OSTI]

    Liang, Kaicheng

    2014-01-01T23:59:59.000Z

    A forward viewing fiber optic-based imaging probe device was designed and constructed for use with ultrahigh speed optical coherence tomography in the human gastrointestinal tract. The light source was a MEMS-VCSEL at 1300 ...

  7. Managing Multiversion Documents & Historical Databases: a Unified Solution Based on XML

    E-Print Network [OSTI]

    Zaniolo, Carlo

    - mentation architectures, one based on native XML DBMS, and the other on mapping the historical XML views back into a relational DBMS. 1. INTRODUCTION Preservation of digital artifacts represents a critical is with multiversion documents, users will want to pose queries on the evolution history of the documents

  8. PCA, Continuous, & Epidural Narcotic Infusion Documentation (07.2013) Documentation

    E-Print Network [OSTI]

    Oliver, Douglas L.

    PCA, Continuous, & Epidural Narcotic Infusion Documentation (07.2013) Documentation Required Continuous Narcotic Infusions PCA Only PCA + Basal (Continuous) Infusion Epidural and Epidural PCA Continuous Verification AND Documentation of Dose / Rate of Infusion of · Every 4 hours (may be done as part of change

  9. Document title: Project Document Cover Sheet Last updated: April 2007

    E-Print Network [OSTI]

    Glasgow, University of

    Environment programme 2009-2011 Enhancement (A5) projects Programme Manager Andrew McGregor Document Name Document Title Project Plan Reporting Period N/A Author(s) & project role William J Nixon, Project Manager dissemination Document History Version Date Comments 1.0 30 Apr 09 Draft for JISC Programme Manager 1.1 21 May

  10. Design, Analysis, and Optimization of a Radioisotope Thermophotovoltaic (RTPV) Generator, and its Applicability to an Illustrative Space Mission

    SciTech Connect (OSTI)

    Schock, Alfred; Mukunda, Meera; Or, Chuen T; Kumar, Vasanth; Summers, G.

    1994-10-01T23:59:59.000Z

    Paper presented at the 45th Congress of the IAF in Jerusalem, Israel, October 1994. The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the authors. To focus the design effort, it was decided to direct it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by the JPL, envisages a direct eight to nine-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a six-week post-encounter cruise.

  11. Thermoelectric Alloys and Devices for Radioisotope Space Power Systems: State of the Art and Current Developments

    SciTech Connect (OSTI)

    Barnett, W.; Dick, P.; Beaudry, B.; Gorsuch, P.; Skrabek, E.

    1989-01-01T23:59:59.000Z

    Lead telluride and silicon germanium type alloys have served over the past several decades as the preferred thermoelectric conversion materials for U. S. radioisotope thermoelectric generator (RTG) power systems for planetary deep space exploration missions. The Pioneer missions to Jupiter and Jupiter/Saturn and the Viking Mars Lander missions employed TAGS-2N (lead and germanium telluride derivatives) power conversion devices. Since 1976, silicon germanium (SiGe) alloys, incorporated into the unicouple device, have evolved as the thermoelectric materials of choice for U. S. RTG powered space missions. These include the U. S. Air Force Lincoln Experimental Satellites 8 & 9 for communications, in 1976, followed in 1977 by the National Aeronautics and Space Administration Voyager 1 and 2 planetary missions. In 1989, advanced SiGe RTGs were used to power the Galileo exploration of Jupiter and, in 1990, will be used to power the Ulysses investigation of the Sun. In addition, SiGe technology has been chosen to provide RTG power for the 1995 Comet Rendezvous and Asteroid Flyby mission and the 1996 Cassini Saturn orbiter mission. Summaries of the flight performance data for these systems are presented.; Current U. S. Department of Energy thermoelectric development activities include (1) the development of conversion devices based on hi-density, close packed couple arrays and (2) the development of improved performance silicon germanium type thermoelectric materials. The silicon germanium type "multicouple", being developed in conjunction with the Modular RTG program, is discussed in a companion paper. A lead telluride type close-packed module, discussed herein, offers the promise of withstanding high velocity impacts and, thus, is a candidate for a Mars Penetrator application.; Recent projects sponsored by the U. S. Department of Energy, including the Improved Thermoelectric Materials and Modular Radioisotope Thermoelectric Generator programs, have shown that improvements in silicon germanium thermoelectric energy conversion capabilities of at least 50 percent can be achieved by tailoring the characteristics of the silicon germanium alloy materials and devices. This paper compares the properties and characteristics of the SiGe alloys now being developed with those used in the operational space power system.

  12. Status of an advanced radioisotope space power system using free-piston Stirling technology

    SciTech Connect (OSTI)

    White, M.A,; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-07-01T23:59:59.000Z

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel alternator electrical connections, thereby reducing vibration levels by more than an order of magnitude. It will also demonstrate use of an artificial neural network to monitor system health without invasive instrumentation. The second NASA contract, begun in January 1998, will develop an active adaptive vibration reduction system to be integrated with the DOE-funded TDC convertors. Preliminary descriptions and specifications of the Stirling convertor design, as well as program status and plans, are included.

  13. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    SciTech Connect (OSTI)

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01T23:59:59.000Z

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds to the complexity of the mission architecture.

  14. Electronic Travel Documents (VE5,

    E-Print Network [OSTI]

    Texas at Austin, University of

    Electronic Travel Documents (VE5, VE6, VP5) 512-471-8802 askUS@austin.utexas.edu www ................................................................................................. 10 III. ELECTRONIC RTA - CORRECTION DOCUMENT (VE6 ......................................................................................... 36 C. TRAVEL MANAGEMENT SERVICES

  15. Facility worker technical basis document

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    2003-08-28T23:59:59.000Z

    This technical basis document was developed to support the Tank Farm Documented Safety Analysis (DSA). It describes the criteria and methodology for allocating controls to hazardous conditions with significant facility work consequence and presents the results of the allocation.

  16. Orbitmpi Documentation Lisa L. Lowe

    E-Print Network [OSTI]

    Orbitmpi Documentation Lisa L. Lowe Princeton Plasma Physics Laboratory (September 22, 2000) I. This document gives a general description of how the parallel sections of the code run. It discusses the changes

  17. DEPARTMENTAL EMERGENCY PLAN Guidance Document

    E-Print Network [OSTI]

    Johnston, Daniel

    DEPARTMENTAL EMERGENCY PLAN Guidance Document #12;1 TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................12 EMERGENCY MANAGEMENT TEAM ........................................................12 ............................................................................................25 ADDITIONAL INFORMATIONAL DOCUMENTS.........................................25 #12;2 THIS PAGE

  18. Documentation and Scanning Tips NUFinancials

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Documentation and Scanning Tips NUFinancials Documentation and Scanning Tips 2/6/2014 - RB 2014 of a transaction (expense reports, online vouchers, journals, or requisitions) that has been scanned and attached. All relevant backup documentation that is not scanned and attached to the transaction record should

  19. Developing the Right Test Documentation

    E-Print Network [OSTI]

    and managing testing and test documentation. Over the past 17 years, we have criticized IEEE standard 829 (onDeveloping the Right Test Documentation Cem Kaner, J.D., Ph.D. Department of Computer Sciences Quality Conference #12;2Test Documentation Copyright 2001 Cem Kaner and James Bach. All rights reserved

  20. RADIOLOGICAL & ENVIRONMENTAL MANAGEMENT GUIDANCE DOCUMENT

    E-Print Network [OSTI]

    Holland, Jeffrey

    RADIOLOGICAL & ENVIRONMENTAL MANAGEMENT GUIDANCE DOCUMENT: Minors in Research Laboratories or Animal Facilities Page 1 of 4 PURPOSE: The purpose of this document is to provide guidance for Purdue sponsored programs which are designed for youth under the age of 15 and which have documented

  1. Managing and Archiving Research Documents

    E-Print Network [OSTI]

    Johannesson, Henrik

    Managing and Archiving Research Documents Summary of "Hantering och arkivering av Documents A Handbook for the Research Activity at the University of Gothenburg) #12;Managing and Archiving a method to manage and archive research documents1 . A project group of approximately 20 researchers formed

  2. EURECOM VPN SSL Documentation utilisateur

    E-Print Network [OSTI]

    Gesbert, David

    EURECOM VPN SSL Documentation utilisateur Valrie Loisel Pascal Gros V 2 Octobre 2014 Table des)................................................................... 14 EURECOM VPN SSL Documentation utilisateur Page 1 #12;Tlchargemetn des applications CEGID/SSH........................................................................................................................... 20 EURECOM VPN SSL Documentation utilisateur Page 2 #12;Introduction Eurecom met disposition du

  3. INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM

    E-Print Network [OSTI]

    Barrash, Warren

    INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM This form is not an application for financial assistance. This form is REQUIRED before we can provide immigration documents, even if your government, photocopied or faxed supporting financial documents. **List your name as it appears on your passport** Family

  4. INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM

    E-Print Network [OSTI]

    Barrash, Warren

    INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM Please complete this form if you this form and supporting financial documents after you have received your admissions decision. To receive will come from that source. Please attach supporting financial support documents that are less than six

  5. Documentation Requirements for Learning Disabilities

    E-Print Network [OSTI]

    Documentation Requirements for Learning Disabilities Students, faculty, staff, and campus guests wishing to request accommodations due to learning disabilities should refer to the following documentation of interest. C) Documentation must be typed, dated, signed by the evaluator and submitted to ODR

  6. INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM

    E-Print Network [OSTI]

    Barrash, Warren

    INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM Please complete this form if you this form and supporting financial documents after you have received your admissions decision. To receive will come from that source. Please attach original supporting financial support documents, issued in English

  7. Documents | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | Documents Memorandum from Secretary Moniz

  8. Appendix A: Conceptual Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 TableimpurityAppeals byU.S.U.S.

  9. Archived Publications and Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » HistoryAugust 1,

  10. Document | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April279Microsoft WordDocument

  11. Document | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register /Document

  12. Document | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal RegisterDocument

  13. ARM - Data Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are70ARMCommentsDocumentation

  14. Assembly and Testing of a Radioisotope Power System for the New Horizons Spacecraft

    SciTech Connect (OSTI)

    Kenneth E. Rosenberg; Stephen G. Johnson

    2006-06-01T23:59:59.000Z

    The Idaho National Laboratory (INL) recently fueled and assembled a radioisotope power system (RPS) that was used upon the New Horizons spacecraft which was launched in January 2006. New Horizons is the first mission to the last planet - the initial reconnaissance of Pluto-Charon and the Kuiper Belt, exploring the mysterious worlds at the edge of our solar system. The RPS otherwise known as a "space battery" converts thermal heat into electrical energy. The thermal heat source contains plutonium dioxide in the form of ceramic pellets encapsulated in iridium metal. The space battery was assembled in a new facility at the Idaho National Laboratory site near Idaho Falls, Idaho. The new facility has all the fueling and testing capabilities including the following: the ability to handle all the shipping containers currently certified to ship Pu-238, the ability to fuel a variety of RPS designs, the ability to perform vibrational testing to simulate transportation and launch environments, welding systems, a center of mass determination device, and various other support systems.

  15. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-05-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG`S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG`S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria.

  16. Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system

    SciTech Connect (OSTI)

    Szabo, Jeffrey G.; Impellitteri, Christopher A.; Govindaswamy, Shekar; Hall, John S.; (EPA); (Lakeshore)

    2010-01-12T23:59:59.000Z

    Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100 mg L{sup -1} solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5 M ammonia and 0.36 M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.

  17. Electron-beam processing of kilogram quantities of iridium for radioisotope thermoelectric generator applications

    SciTech Connect (OSTI)

    Huxford, T.J.; Ohriner, E.K.

    1992-01-01T23:59:59.000Z

    Iridium alloys are used as fuel-cladding materials in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyagers I and 2, Galilee, and Ulysses spacecraft. An integral part of the production of iridium-sheet metal involves electron-beam (EB) processing. These processes include the degassing of powder-pressed compacts followed by multiple meltings in order to purify 500-g buttons of Ir-0.3% W alloy. Starting in 1972 and continuing into 1992, our laboratory EB processing was Performed (ca. 1970) in a 60-kW (20 kV at 3 A), two-gun system. In 1991, a new 150-kW EB gun facility was installed to complement the older unit. This paper describes how the newly installed system was qualified for production of RTG developmental work is discussed that will potentially improve the existing process by utilizing the capabilities of the new EB system.

  18. Electron-beam processing of kilogram quantities of iridium for radioisotope thermoelectric generator applications

    SciTech Connect (OSTI)

    Huxford, T.J.; Ohriner, E.K.

    1992-12-31T23:59:59.000Z

    Iridium alloys are used as fuel-cladding materials in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyagers I and 2, Galilee, and Ulysses spacecraft. An integral part of the production of iridium-sheet metal involves electron-beam (EB) processing. These processes include the degassing of powder-pressed compacts followed by multiple meltings in order to purify 500-g buttons of Ir-0.3% W alloy. Starting in 1972 and continuing into 1992, our laboratory EB processing was Performed (ca. 1970) in a 60-kW (20 kV at 3 A), two-gun system. In 1991, a new 150-kW EB gun facility was installed to complement the older unit. This paper describes how the newly installed system was qualified for production of RTG developmental work is discussed that will potentially improve the existing process by utilizing the capabilities of the new EB system.

  19. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    SciTech Connect (OSTI)

    Rawool-Sullivan, Mohini [Los Alamos National Laboratory; Bounds, John Alan [Los Alamos National Laboratory; Brumby, Steven P. [Los Alamos National Laboratory; Prasad, Lakshman [Los Alamos National Laboratory; Sullivan, John P. [Los Alamos National Laboratory

    2012-04-30T23:59:59.000Z

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

  20. Microsoft Word - Document1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPAURTeC:8CO 2 FoamC M EBoard hiresplansViews:

  1. Document (523k)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History ViewZAPZinccellranking

  2. Engineering Aerial view of

    E-Print Network [OSTI]

    Yang, Junfeng

    -neutral Torus 2 Climate Change 4 Combustion and Catalysis Laboratory #12;4 5 1Engineering Revolution 5 #12;6 7Columbia Engineering Plus #12;1 1 2 3 4 5 6 Aerial view of Columbia campus with Columbia Engineering-a liated buildings highlighted in blue Columbia Engineering Plus Engineering Revolution 4

  3. Microsoft Word - Document7 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - Document7 Microsoft Word - Document7 More Documents & Publications Excess Uranium Inventory Management Plan 2008 Microsoft Word - 25 May Vienna GTR Fact SheetFINAL 1 .doc...

  4. Documents and Publications | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents and Publications Documents and Publications Real Estate Documents Acquisition Guide for Federal Agencies Certified Reality Specialist Biography DOJ Title Standards for...

  5. Fermilab | Director's Policy Manual | Document Hierarchy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Hierarchy The Laboratorys document hierarchy ensures top flow down of policy requirements to all levels of documentation created at the Laboratory and to all levels of...

  6. Stereoscopic optical viewing system

    DOE Patents [OSTI]

    Tallman, Clifford S. (Walnut Creek, CA)

    1987-01-01T23:59:59.000Z

    An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  7. Stereoscopic optical viewing system

    DOE Patents [OSTI]

    Tallman, C.S.

    1986-05-02T23:59:59.000Z

    An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  8. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    SciTech Connect (OSTI)

    Glenn, J. [U.S. Department of Energy, Oak Ridge Operations Office, 200 Administrative Road, Oak Ridge, TN 37830 (United States); Patterson, J.; DeRoos, K. [SEC Federal Services Corporation (SEC), 2800 Solway Road, Knoxville, TN 37931 (United States); Patterson, J.E.; Mitchell, K.G. [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN 37932 (United States)

    2012-07-01T23:59:59.000Z

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and the entire SEC RTG team are nearing the conclusion of the Sr-90 RTG disposition challenge - a legacy now 50 years in the making. Over 600,000 Ci of Sr-90 waste await disposal and its removal from ORNL will mark an historical moment in the clean-up of the cold-war legacy in the ORNL central industrial area. Elimination (i.e., removal) of the RTGs will reduce security risks at ORNL and disposal will permanently eliminate security risks. The RTGs will eventually decay to benign levels within a reasonable timeframe relative to radiological risks posed by long-lived isotopes. The safety authorization basis at ORNL Building 3517 will be reduced enabling greater operational flexibility in future clean-out and D and D campaigns. Upon disposition the Department of Energy will realize reduced direct and indirect surveillance and maintenance costs that can be reapplied to accelerated and enhanced clean-up of the Oak Ridge Reservation. At present, waste profiles for the RTGs are developed and under review by NNSS RWAP staff and approval authorities. Disposition schedule is driven by the availability of compliant shipping casks necessary to safely transport the RTGs from ORNL to NNSS. The first disposal of the RCA RTG is expected in April 2012 and the remaining RTGs disposed in 2012 and 2013. (authors)

  9. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect (OSTI)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A. [Pratt and Whitney Rocketdyne, 6633 Canoga Avenue, Canoga Park, CA 91309 (United States); Normand, Eugene [Boeing Radiation Effects Laboratory, P.O. Box 3707, M/S 2T-50, Seattle, WA 98124-22079 (United States)

    2006-01-20T23:59:59.000Z

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

  10. A NEW ALGORITHM FOR RADIOISOTOPE IDENTIFICATION OF SHIELDED AND MASKED SNM/RDD MATERIALS

    SciTech Connect (OSTI)

    Jeffcoat, R.

    2012-06-05T23:59:59.000Z

    Detection and identification of shielded and masked nuclear materials is crucial to national security, but vast borders and high volumes of traffic impose stringent requirements for practical detection systems. Such tools must be be mobile, and hence low power, provide a low false alarm rate, and be sufficiently robust to be operable by non-technical personnel. Currently fielded systems have not achieved all of these requirements simultaneously. Transport modeling such as that done in GADRAS is able to predict observed spectra to a high degree of fidelity; our research is focusing on a radionuclide identification algorithm that inverts this modeling within the constraints imposed by a handheld device. Key components of this work include incorporation of uncertainty as a function of both the background radiation estimate and the hypothesized sources, dimensionality reduction, and nonnegative matrix factorization. We have partially evaluated performance of our algorithm on a third-party data collection made with two different sodium iodide detection devices. Initial results indicate, with caveats, that our algorithm performs as good as or better than the on-board identification algorithms. The system developed was based on a probabilistic approach with an improved approach to variance modeling relative to past work. This system was chosen based on technical innovation and system performance over algorithms developed at two competing research institutions. One key outcome of this probabilistic approach was the development of an intuitive measure of confidence which was indeed useful enough that a classification algorithm was developed based around alarming on high confidence targets. This paper will present and discuss results of this novel approach to accurately identifying shielded or masked radioisotopes with radiation detection systems.

  11. Assessing Effectiveness of Personality Style in Documentation

    E-Print Network [OSTI]

    Novick, David G.

    interfaces Training, help and documentation, theory and methods. General Terms Documentation ManagementAssessing Effectiveness of Personality Style in Documentation Kenneth Sayles. Department conducted a similar experiment, but looking beyond preference to see if the personality of documentation

  12. 1995 DOCUMENTATION GUIDELINES FOR EVALUATION & MANAGEMENT SERVICES

    E-Print Network [OSTI]

    Goldman, Steven A.

    1 1995 DOCUMENTATION GUIDELINES FOR EVALUATION & MANAGEMENT SERVICES I. INTRODUCTION WHAT IS DOCUMENTATION AND WHY IS IT IMPORTANT? Medical record documentation is required to record pertinent facts, examinations, tests, treatments, and outcomes. The medical record chronologically documents the care

  13. FACILITY WORKER TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    2005-03-31T23:59:59.000Z

    This technical basis document was developed to support RPP-13033, ''Tank Farms Documented Safety Analysis (DSA). It describes the criteria and methodology for allocating controls to hazardous conditions with significant facility worker (FW) consequence and presents the results of the allocation. The criteria and methodology for identifying controls that address FW safety are in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''.

  14. Cryptographic Trust Management System Design Document

    SciTech Connect (OSTI)

    Edgar, Thomas W.; Clements, Samuel L.; Hadley, Mark D.; Maiden, Wendy M.; Manz, David O.; Zabriskie, Sean J.

    2010-08-04T23:59:59.000Z

    Deliverable for DOE NSTB Cryptographic Trust Management project. Design document to follow the Requirements document submitted in Sept 2009.

  15. Utility Energy Services Contracts: Enabling Documents Overview...

    Energy Savers [EERE]

    Utility Energy Services Contracts: Enabling Documents Overview Utility Energy Services Contracts: Enabling Documents Overview Presentation covers the utility energy service...

  16. Appendix B (Documentation of Consultation)

    E-Print Network [OSTI]

    Lee, Dongwon

    #12;#12;#12;#12;Appendix B (Documentation of Consultation) PSU and LCCC have entered this agreement Provost and Dean for Enrollment Management & Admissions Penn State University #12;

  17. Prism++ Documentation University of Erlangen

    E-Print Network [OSTI]

    Breu, Ruth

    ! "monk-it" Prism++ Documentation University of Erlangen Computer Networks and Communication.2.1. Correlation engine management . . . . . . . . . . . . . . . . . . . . 8 2.2.2. Analysis of collected events

  18. Appendix B: (Documentation of Consultation)

    E-Print Network [OSTI]

    Lee, Dongwon

    #12;#12;#12;#12;#12;#12;Appendix B: (Documentation of Consultation) PSU and NCC have entered Management & Admissions Penn State University #12;

  19. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2006 Through September 30, 2007

    SciTech Connect (OSTI)

    King, James F [ORNL

    2008-04-01T23:59:59.000Z

    The Office of Radioisotope Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Radioisotope Power Systems for fiscal year (FY) 2007. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  20. Multi-view kernel construction

    E-Print Network [OSTI]

    Sa, Virginia R.; Gallagher, Patrick W.; Lewis, Joshua M.; Malave, Vicente L.

    2010-01-01T23:59:59.000Z

    5157-z Multi-view kernel construction Virginia R. de Sa multiple different graph construction algorithms. The Ng et

  1. The Mars Hopper: a radioisotope powered, impulse driven, long-range, long-lived mobile platform for exploration of Mars

    SciTech Connect (OSTI)

    Steven D. Howe; Robert C. O'Brien; William Taitano; Doug Crawford; Nathan Jerred; Spencer Cooley; John Crapeau; Steve Hansen; Andrew Klein; James Werner

    2011-02-01T23:59:59.000Z

    Planetary exploration mission requirements are becoming more demanding. Due to the increasing cost, the missions that provide mobile platforms that can acquire data at multiple locations are becoming more attractive. Wheeled vehicles such as the MER rovers have proven extremely capable but have very limited range and cannot traverse rugged terrain. Flying vehicles such as balloons and airplanes have been proposed but are problematic due to the very thin atmospheric pressure and the strong, dusty winds present on Mars. The Center for Space Nuclear Research has designed an instrumented platform that can acquire detailed data at hundreds of locations during its lifetime - a Mars Hopper. The Mars Hopper concept utilizes energy from radioisotopic decay in a manner different from any existing radioisotopic power sourcesas a thermal capacitor. By accumulating the heat from radioisotopic decay for long periods, the power of the source can be dramatically increased for short periods. The platform will be able to "hop" from one location to the next every 5-7 days with a separation of 5-10 km per hop. Preliminary designs show a platform that weighs around 52 kgs unfueled which is the condition at deployment. Consequently, several platforms may be deployed on a single launch from Earth. With sufficient lifetime, the entire surface of Mars can be mapped in detail by a couple dozen platforms. In addition, Hoppers can collect samples from all over the planet, including gorges, mountains and crevasses, and deliver them to a central location for eventual pick-up by a Mars Sample Return mission. The status of the Mars Hopper development project at the CSNR is discussed.

  2. TotalView Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » Top InnovativeTopoisomeraseTotalView

  3. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect (OSTI)

    J. C. Giglio; A. A. Jackson

    2012-03-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  4. Reader-Friendly Environmental Documents

    E-Print Network [OSTI]

    Minnesota, University of

    the portions of the EIS that are useful to decision makers and the public 40 CFR 1502.8: Environmental impact and the public can readily understand them. 40 CFR 1502.2: Environmental impact statements shall be analyticReader-Friendly Environmental Documents Reader-Friendly Environmental Documents Improving the way

  5. Research documentation per participating group

    E-Print Network [OSTI]

    Franssen, Michael

    Research documentation per participating group #12;2. RESEARCH DOCUMENTATION OF THE GROUP SYSTEM Management Hybrid trucks StDy Steen, R. v.d. (PhD 3) FEM Tyre Modelling StDy 5.4 Mechanical Design Bedem, Ir

  6. Document: Outside Employment/ Consulting Form

    E-Print Network [OSTI]

    Quigg, Chris

    Document: Outside Employment/ Consulting Form Document #: SO-2 Issue date: 8/21/09 Revision #: 3 on the WDRS website. OUTSIDE EMPLOYMENT/CONSULTING Fermilab employees are entitled to the same rights and privileges with respect to outside employment as other citizens. Therefore, there is no general prohibition

  7. SRS ecology: Environmental information document

    SciTech Connect (OSTI)

    Wike, L.D.; Shipley, R.W.; Bowers, J.A. [and others

    1993-09-01T23:59:59.000Z

    The purpose of this Document is to provide a source of ecological information based on the exiting knowledge gained from research conducted at the Savannah River Site. This document provides a summary and synthesis of ecological research in the three main ecosystem types found at SRS and information on the threatened and endangered species residing there.

  8. Facility worker technical basis document

    SciTech Connect (OSTI)

    EVANS, C.B.

    2003-03-21T23:59:59.000Z

    This report documents the technical basis for facility worker safety to support the Tank Farms Documented Safety Analysis and described the criteria and methodology for allocating controls to hazardous conditions with significant facility worker consequences and presents the results of the allocation.

  9. Document6 April 2007 ENTERTAINMENT

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    Document6 April 2007 ENTERTAINMENT Farewell Gatherings The Department of Medical Education would like to remind all managers and supervisors that, in accordance with UCSD Policy, entertainment that has been designated for graduate student recruitment #12;Document6 April 2007 Hosting prospective

  10. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18T23:59:59.000Z

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  11. Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program

    SciTech Connect (OSTI)

    S. G. Johnson; K. L. Lively

    2010-05-01T23:59:59.000Z

    This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type B shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

  12. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08T23:59:59.000Z

    This invention consists of a viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching, the user`s eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  13. False color viewing device

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  14. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-10-20T23:59:59.000Z

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs.

  15. The view from Kiev

    SciTech Connect (OSTI)

    Kiselyov, S.

    1993-11-01T23:59:59.000Z

    This article reports the observations of correspondents for the Bulletin (two Russian journalists, one based in Moscow, the other in Kiev) who investigated the status of the Soviet Union's Black Sea Fleet and Ukraine's status as a non-nuclear-weapons state. After two years of wrangling and two earlier failed settlements, Russian President Boris Yeltsin met with Ukrainian President Leonid Kravchuk at Massandra in Crimea. On September 3, the leaders announced that Russia would buy out Ukraine's interest in the fleet and lease the port at Sevastopol. The Massandra summit was also supposed to settle Ukraine's status as a non-nuclear-weapons state. Described here are the Kiev-based correspondent's views on the Massandra summit (and its major topics), which was to have been called off by the Russian foreign ministry when Ukrainian Prime Minister Leonid Kuchma resigned.

  16. The Laws of Documentation - Engineering Document Control for Telecommunication Systems

    E-Print Network [OSTI]

    Sullivan, Terrence E.

    2008-05-16T23:59:59.000Z

    The purpose of this field project is to create a documentation system that allows co-workers at a telecommunication company to store files on a shared LAN and retrieve that information quickly, easily and confidently when ...

  17. REQUIRED DOCUMENTATION AND APPROVAL FOR CASH DISBURSEMENTS Disbursements to: Documentation** Approval***

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    REQUIRED DOCUMENTATION AND APPROVAL FOR CASH DISBURSEMENTS Disbursements to: Documentation, Invoices, Documents must be original. Requests for cash to pay for supplies, etc. before they are purchased

  18. Document creation, linking, and maintenance system

    DOE Patents [OSTI]

    Claghorn, Ronald (Pasco, WA)

    2011-02-15T23:59:59.000Z

    A document creation and citation system designed to maintain a database of reference documents. The content of a selected document may be automatically scanned and indexed by the system. The selected documents may also be manually indexed by a user prior to the upload. The indexed documents may be uploaded and stored within a database for later use. The system allows a user to generate new documents by selecting content within the reference documents stored within the database and inserting the selected content into a new document. The system allows the user to customize and augment the content of the new document. The system also generates citations to the selected content retrieved from the reference documents. The citations may be inserted into the new document in the appropriate location and format, as directed by the user. The new document may be uploaded into the database and included with the other reference documents. The system also maintains the database of reference documents so that when changes are made to a reference document, the author of a document referencing the changed document will be alerted to make appropriate changes to his document. The system also allows visual comparison of documents so that the user may see differences in the text of the documents.

  19. A Documentation Consortium Ted Habermann, NOAA

    E-Print Network [OSTI]

    A Documentation Consortium Ted Habermann, NOAA Documentation: It's not just discovery... 50% change this settles the issue.. #12;New Documentation Needs For skeptics, the 1,000 or so e-mails and documents hacked Communities - Users Documentation: communicating with the future #12;Geoffrey Moore has attributed the S

  20. DOCUMENTATION 04.22.13

    E-Print Network [OSTI]

    Stuart, Steven J.

    high-quality "snapshot" files per student. Process: Images showing the process by which the work was developed, put in appropriate sequence. This should illustrate how the work was produced. FORMAT _ Digital documentation

  1. Acceptable Documents for Identity Proofing

    Broader source: Energy.gov [DOE]

    It is a requirement that the identity of a DOE Digital Identity Subscriber be verified against acceptable identity source documents. A Subscriber must appear in person and present their Federal...

  2. Vermont Documentation University of Erlangen

    E-Print Network [OSTI]

    Breu, Ruth

    ! "monk-it" Vermont Documentation University of Erlangen Computer Networks and Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Vermont Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1. Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2. Manager

  3. Appendix B: (Documentation of Consultation)

    E-Print Network [OSTI]

    Lee, Dongwon

    #12;#12;#12;#12;Appendix B: (Documentation of Consultation) PSU and WCCC have entered John J. Romano 6/30/05 John J. Romano, Ph.D. Date Vice Provost and Dean for Enrollment Management

  4. Annotation persistence over dynamic documents

    E-Print Network [OSTI]

    Wang, Shaomin, 1969-

    2005-01-01T23:59:59.000Z

    Annotations, as a routine practice of actively engaging with reading materials, are heavily used in the paper world to augment the usefulness of documents. By annotation, we include a large variety of creative manipulations ...

  5. A Step Towards Automatic Documentation

    E-Print Network [OSTI]

    Frank, Claude

    This paper describes a system which automatically generates program documentation. Starting with a plan generated by analyzing the program, the system computes several kinds of summary information about the program. The ...

  6. Advanced control documentation for operators

    SciTech Connect (OSTI)

    Ayral, T.E. (Mobil Oil, Torrance, CA (US)); Conley, R.C. (Profimatics, Inc., Thousand Oaks, CA (US)); England, J.; Antis, K. (Ashland Oil, Ashland, KY (US))

    1988-09-01T23:59:59.000Z

    Advanced controls were implemented on Ashland Oil's Reduced Crude Conversion (RCC) and Metals Removal System (MRS) units, the RCC and MRS main fractionators and the unit gas plant. This article describes the format used for the operator documentation at Ashland. Also, a potential process unit problem is described which can be solved by good operator documentation. The situation presented in the paper is hypothetical, however,the type of unit upset described an occur if proper precautions are not taken.

  7. Mass Properties Testing and Evaluation for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect (OSTI)

    Felicione, Frank S.

    2009-12-01T23:59:59.000Z

    Mass properties (MP) measurements were performed for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), serial number (S/N) 0X730401, the power system designated for the Mars Science Laboratory (MSL) mission. Measurements were made using new mounting fixtures at the mass properties testing station in the Idaho National Laboratory (INL) Space and Security Power Systems Facility (SSPSF). The objective of making mass properties measurements was to determine the generators flight configured mass and center of mass or center of gravity (CG). Using an extremely accurate platform scale, the mass of the as-tested generator was determined to be 100.117 0.007 lb. Weight accuracy was determined by checking the platform scale with calibrated weights immediately prior to weighing the MMRTG.a CG measurement accuracy was assessed by surrogate testing using an inert mass standard for which the CG could be readily determined analytically. Repeated testing using the mass standard enabled the basic measurement precision of the system to be quantified in terms of a physical confidence interval about the measured CG position. However, repetitious testing with the MMRTG itself was not performed in deference to the gamma and neutron radiation dose to operators and the damage potential to the flight unit from extra handling operations. Since the mass standard had been specially designed to have a total weight and CG location that closely matched the MMRTG, the uncertainties determined from its testing were assigned to the MMRTG as well. On this basis, and at the 99% confidence level, a statistical analysis found the direct, as-measured MMRTG-MSL CG to be located at 10.816 0.0011 in. measured perpendicular from the plane of the lower surface of the generators mounting lugs (Z direction), and offset from the generators long axis centerline in the X and Y directions by 0.0968 0.0040 in. and 0.0276 0.0026 in., respectively. These uncertainties are based simply on the statistical treatment of results from repetitive testing performed with the mass standard and included position variations that may have occurred during several mounting/dismounting operations of both the mass standard and mounting fixtures. Because of the limited data available, the computed uncertainty intervals reported are likely, although not assuredly, wider than the intervals that would have been found had more extensive data been available. However, these uncertainties do not account for other contributors to measurement uncertainty that might be applicable. These include potential weighing errors, possible tilt of the as-mounted test article, or translation of the measurement results from the MP instrument coordinates to those of the test article. Furthermore, when testing heat producing test articles such as the MMRTG, measurement degradation can occur from thermal expansion/contraction of the mounting fixtures as they heat up or cool and cause a subtle repositioning of the test article. Analyses for such impacts were made and additional uncertainty allowances were conservatively assigned to account for these. A full, detailed description is provided in this report.

  8. OASIS OpenDocument Essentials Using OASIS OpenDocument XML

    E-Print Network [OSTI]

    Prencipe, Giuseppe

    OASIS OpenDocument Essentials Using OASIS OpenDocument XML J. David Eisenberg Cover graphic provided by Peter Harlow #12;OASIS OpenDocument Essentials: Using OASIS OpenDocument XML by J. David

  9. Incremental Hierarchical Clustering of Text Documents

    E-Print Network [OSTI]

    Gordon, Geoffrey J.

    distribution is demonstrated. 1 Introduction Document clustering is an effective tool to manage informationIncremental Hierarchical Clustering of Text Documents by Nachiketa Sahoo Adviser: Jamie Callan May 5, 2006 Abstract Incremental hierarchical text document clustering algorithms are important

  10. 500 Year Documentation Francis T. Marchese

    E-Print Network [OSTI]

    Marchese, Francis

    Documentation, Design, Management. Keywords Digital art, conservation, requirements engineering. 1. THE PROBLEM500 Year Documentation Francis T. Marchese Pace University Computer Science Department New York, NY the requirements for creating documentation that will support an artwork's adaptation to future technology

  11. Accelerator Radioisotopes Save Lives: Part II Seaborg Institute for Transactinium Science/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACME -Toggle Fermilab Navbarth

  12. Solar Background Document 6 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    6.pdf More Documents & Publications Solar Background Document 5 "Large Power Transformers and the U.S. Electric Grid" Report (June 2012) Dams and Energy Sectors...

  13. Addendum to Environmental Review Documents Concerning Exports...

    Energy Savers [EERE]

    Addendum to Environmental Review Documents Concerning Exports of Natural Gas From the US Addendum to Environmental Review Documents Concerning Exports of Natural Gas From the US...

  14. Microsoft Word - Directives Requiring Additional Documentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analysis and Technical Safety Requirements 10 DOE-STD-1186-2004 Specific...

  15. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. 1732-S 2. Government Accession No. 3. Recipients, geometric design, entrance ramps, exit ramps 18. Distribution Statement No restrictions. This document

  16. PRELIMINARY REVIEW COPY Technical Report Documentation Page

    E-Print Network [OSTI]

    Texas at Austin, University of

    PRELIMINARY REVIEW COPY Technical Report Documentation Page 1. Report No. 2941-3 Preliminary Review, long-term monitoring 18. Distribution Statement No restrictions. This document is available

  17. General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

    1996-07-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  18. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01T23:59:59.000Z

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  19. A unique radioisotopic label as a new concept for safeguarding and tagging of long-term stored items and waste

    E-Print Network [OSTI]

    Dina Chernikova; Kare Axell

    2015-01-15T23:59:59.000Z

    The present paper discuss a novel method of tagging and labeling of waste casks, copper canisters, spent fuel containers, mercury containers, waste pack- ages and other items. In particular, it is related to the development of new long-term security identification tags/labels that can be applied to articles for carrying information about the content, inventory tracking, prevention of falsifi- cation and theft etc. It is suggested to use a unique combination of radioisotopes with different predictable length of life, as a label of the items. The possibil- ity to realize a multidimensional bar code symbology is proposed as an option for a new labeling method. The results of the first tests and evaluations of this are shown and discussed in the paper. The invention is suitable for use in items assigned to long-term (hundreds of years) storing or for final repositories. Alternative field of use includes fresh nuclear fuel handling and shipment of goods.

  20. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    SciTech Connect (OSTI)

    Greenfield, Bryce A.

    2009-12-20T23:59:59.000Z

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coverage in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.

  1. Reactor operation environmental information document

    SciTech Connect (OSTI)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01T23:59:59.000Z

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  2. Propane Market Model documentation report

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The purpose of this report is to define the objectives of the Propane Market Model (PMM), describe its basic approach, and to provide details on model functions. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM performs a short-term (6- to 9-months) forecast of demand and price for consumer-grad propane in the national US market; it also calculates the end-of-month stock level during the term of the forecast. Another part of the model allows for short-term demand forecasts for certain individual Petroleum Administration for Defense (PAD) districts. The model is used to analyze market behavior assumptions or shocks and to determine the effect on market price, demand, and stock level.

  3. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2005-03-03T23:59:59.000Z

    This document describes the qualitative evaluation of frequency and consequences for DST and SST representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant structures, systems and components (SSCs) and/or technical safety requirements (TSRs) were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support WP-13033, Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  4. Organic solvent technical basis document

    SciTech Connect (OSTI)

    SANDGREN, K.R.

    2003-03-22T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for the organic solvent fire representative and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described in this report.

  5. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2005-02-18T23:59:59.000Z

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  6. Final safety analysis report for the Galileo Mission: Volume 1, Reference design document

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    The Galileo mission uses nuclear power sources called Radioisotope Thermoelectric Generators (RTGs) to provide the spacecraft's primary electrical power. Because these generators contain nuclear material, a Safety Analysis Report (SAR) is required. A preliminary SAR and an updated SAR were previously issued that provided an evolving status report on the safety analysis. As a result of the Challenger accident, the launch dates for both Galileo and Ulysses missions were later rescheduled for November 1989 and October 1990, respectively. The decision was made by agreement between the DOE and the NASA to have a revised safety evaluation and report (FSAR) prepared on the basis of these revised vehicle accidents and environments. The results of this latest revised safety evaluation are presented in this document (Galileo FSAR). Volume I, this document, provides the background design information required to understand the analyses presented in Volumes II and III. It contains descriptions of the RTGs, the Galileo spacecraft, the Space Shuttle, the Inertial Upper Stage (IUS), the trajectory and flight characteristics including flight contingency modes, and the launch site. There are two appendices in Volume I which provide detailed material properties for the RTG.

  7. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2003-10-09T23:59:59.000Z

    This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSC and/or TSR-level controls.

  8. Lecture 24: Document and Web Applications

    E-Print Network [OSTI]

    Roweis, Sam

    Lecture 24: Document and Web Applications Sam Roweis March 31, 2004 Machine Learning on Text/Web Machine Learning Problems for Text/Web Data · Document / Web Page Classification or Detection 1. Does this document/web page contain an example of thing X? e.g. Job advertisements (FlipDog). 2. Is this document/web

  9. XML Model for Legal Documents Vanyo Peychev

    E-Print Network [OSTI]

    Borissova, Daniela

    in different ways. Document processing and management require the documents to be saved in specific data structures. Some methods for structured documents saving and management are: formatting languages as SGML, XML; database for saving document structure and data; hypertext management systems. SGML [5] is used

  10. Transformation of structured documents Eila Kuikka

    E-Print Network [OSTI]

    Waterloo, University of

    Transformation of structured documents Eila Kuikka Department of Computer Science, University Structure de nitions of documents have been used successfully for inputting and for- matting in text documents and studies possibilities to extend the use of structure de nitions to document transformations

  11. Fault Tolerant CORBASpecification, OMG document: ptc/20000404

    E-Print Network [OSTI]

    Roma "La Sapienza", Universit di

    Fault Tolerant CORBASpecification, V1.0 OMG document: ptc/20000404 replaces draft adopted specification ptc/20000304 and submission document orbos/000119 This document is an OMG Final Adopted in the finalization phase. Comments on the content of this document are welcomed, and should be directed to issues

  12. If there is a discrepancy between this document and the official Plan Document the official Plan Document(s) will govern. Massachusetts Institute of Technology

    E-Print Network [OSTI]

    Reuter, Martin

    If there is a discrepancy between this document and the official Plan Document the official Plan Document(s) will govern. 1/01/2014 Massachusetts Institute of Technology Summary of 2014 Benefits to manage their healthcare. "In-network" benefits are also provided for employees and their dependents who

  13. Small Wind Site Assessor Guidelines Document (Presentation)

    SciTech Connect (OSTI)

    Preus, R.

    2014-12-01T23:59:59.000Z

    Presentation on what the small wind site assessor guidelines document will cover and timeline for completion.

  14. Technical Documentation and Verification for the

    E-Print Network [OSTI]

    PNNL-15202 Technical Documentation and Verification for the Buildings Module in the Visual Sample://www.ntis.gov/ordering.htm This document was printed on recycled paper. (9/2003) #12;PNNL-15202 Technical Documentation and Verification ...................................................................... 1 2.0 Documentation of Statistical Methods and Computations

  15. Test plan/procedure for the shock limiting device of the radioisotope thermoelectric generator package mounting subsystem 145. Revision 1

    SciTech Connect (OSTI)

    Satoh, J.A.

    1995-05-25T23:59:59.000Z

    This document defines the procedure to be used in the 18 inch drop test to be used for design verification of the RTG Transportation System Package Mounting.

  16. Danish Energy Authority Project Document

    E-Print Network [OSTI]

    Danish Energy Authority Project Document Implementation of the EU directive on the energy performance of buildings: Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers #12;List of abbreviations DEA Danish Energy Authority EU EPB EU energy performance of buildings

  17. Melter Disposal Strategic Planning Document

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-09-25T23:59:59.000Z

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  18. Documenting Organizational Process Flow Modeling

    E-Print Network [OSTI]

    Schweik, Charles M.

    1 Documenting Organizational Processes or Process Flow Modeling Analysis Phase Three Steps that describes (1) the current, and (2) the future structure of an organizational process "Natural language An overview of an organizational system showing system boundaries, external entities that interact

  19. Document Supply Services Quick Guide

    E-Print Network [OSTI]

    , phrase, ISBN/ISSN in the Search Term field (other options are available in the dropdown menu). Note1 Document Supply Services Quick Guide The DSS Portal makes requesting easy! Search for your item and password. If you are having difficulty please read the login help on the main DSS webpage. 2. Enter a word

  20. A Regulator's View of Cogeneration

    E-Print Network [OSTI]

    Shanaman, S. M.

    1982-01-01T23:59:59.000Z

    of the total national electric generation. In view of the energy requirements of Pennsylvania's industry and the impact of increasing energy costs on employment the Commission directed its technical staff to investigate the potential for industrial cogeneration...

  1. SNF AGING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    L.L. Swanson

    2005-04-06T23:59:59.000Z

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the spent nuclear fuel (SNF) aging system and associated bases, which will allow the design effort to proceed. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD follows the design with regard to the description of the system. The description provided in the SDD reflects the current results of the design process. Throughout this SDD, the term aging cask applies to vertical site-specific casks and to horizontal aging modules. The term overpack is a vertical site-specific cask that contains a dual-purpose canister (DPC) or a disposable canister. Functional and operational requirements applicable to this system were obtained from ''Project Functional and Operational Requirements'' (F&OR) (Curry 2004 [DIRS 170557]). Other requirements that support the design process were taken from documents such as ''Project Design Criteria Document'' (PDC) (BSC 2004 [DES 171599]), ''Site Fire Hazards Analyses'' (BSC 2005 [DIRS 172174]), and ''Nuclear Safety Design Bases for License Application'' (BSC 2005 [DIRS 171512]). The documents address requirements in the ''Project Requirements Document'' (PRD) (Canori and Leitner 2003 [DIRS 166275]). This SDD includes several appendices. Appendix A is a Glossary; Appendix B is a list of key system charts, diagrams, drawings, lists and additional supporting information; and Appendix C is a list of procedures that will be used to operate the system.

  2. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the terms and conditions specified in Western's long- term firm electric service contract. The amount of resource that will become available on October 1, 2014, is...

  3. Document

    National Nuclear Security Administration (NNSA)

    Such performance meas- ures shall include, but are not limited to, evaluating the costs and benefits VerDate jul<14>2003 12:11 Feb 05, 2004 Jkt 203001 PO 00000 Frm 00004 Fmt...

  4. Document

    National Nuclear Security Administration (NNSA)

    regarding the Textbook Study will also be available on the Advisory Committee's Web site, http: www.ed.govACSFA. To be included in the hearing materials, we must...

  5. Document:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in microns) is always greater than or equal to the resolution. Modern accelerator BPM systems have resolutions ap- proaching 5 to 10 microns and accuracies better than 150...

  6. Document

    Broader source: Energy.gov (indexed) [DOE]

    28 Federal Register Vol. 76, No. 29 Friday, February 11, 2011 Notices information collection, violate State or Federal law, or substantially interfere with any agency's...

  7. Document

    Gasoline and Diesel Fuel Update (EIA)

    settlement agreement signed by it and the National Marine Fisheries Service, U.S. Fish and Wildlife Service, and the New York State Department of Environmental Conservation....

  8. Document

    Office of Environmental Management (EM)

    collection of detailed meter data, direct load control, and systems that vary prices based on typical or actual grid conditions at the time the customer used power. We...

  9. Document:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pump, separated from the chamber by an all-metal angle valve, and two 30-sec ion pumps were mounted to the chamber. A quadrupole mass spectrometer type residual gas...

  10. Document:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the vacuum chamber. Even though the eddy current effect may be described by a simple multipole low-pass filter within the bandwidth of interest, designing a corresponding...

  11. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number: 505-885-0731; in Albuquerque at the Government Publications Department, Zimmerman Library, University of New Mexico, Hours: vary by semester, phone number: 505-277- 2003;...

  12. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plan to spread prosperity throughout America. I'll talk about the need to have a health care system that is modern and sensitive to the needs of our seniors. I'll talk about a lot...

  13. Document:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Offset Calibration Y. Chung March, 1992 Abstract In this note, a basic theory of wave propagation in dielectric media is discussed in con- junction with S parameters to...

  14. document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focusing on the marginal portions of the reservoir would require additional costs for fracking, but with a dolomite reservoir and the evidence above, it is highly likely that...

  15. Document

    Broader source: Energy.gov (indexed) [DOE]

    Mandates Reform Act of 1995 H. Treasury and General Government Appropriations Act, 1999 I. Review Under the Treasury and General Government Appropriations Act, 2001 J. Review...

  16. Document:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 (eV) (1) where Z L is the characteristic impedance of the transmission line or the wire running through the beam pipe, I 1 is the current flowing through the reference chamber...

  17. Document:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and measurements of the effect of the eddy current in the laminations on the magnet field will be presented. The theory assumes a simple solenoid-type magnet with laminated...

  18. Document

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amended Record of Decision for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos,...

  19. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) program. The project proposed by HECA would demonstrate...

  20. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture...

  1. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    outlining power marketing administration financial reporting and ratemaking procedures. EI: Energy Imbalance. Federal Energy Regulatory Commission (FERC): Referred to as the...

  2. Document:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the incident beam power is deposited on the surface. As such, the incident beam power profile can be used directly in the thermal-structural computations necessary for the...

  3. Document:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    torr), higher cavity temperature (X 100F), and other accessories such as a tuner, two turbo pumps, and an E - probe damper, which is close to the actual operating condi- tion....

  4. Document

    Office of Environmental Management (EM)

    10. FR Doc. 2011-1918 Filed 1-27-11; 8:45 am BILLING CODE 6560-50-P FEDERAL COMMUNICATIONS COMMISSION Notice of Public Information Collection(s) Being Reviewed by the...

  5. Document:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell: Gas production well,505EVALUATION OF

  6. Document:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell: Gas production well,505EVALUATION

  7. Document

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127by Local(Dollars per Thousand60

  8. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering How Muscles ReallyDDT DDTViewDo We Owe401

  9. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering How Muscles ReallyDDT DDTViewDo We Owe4013623

  10. Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering How Muscles ReallyDDTIV SystemVIIIDocuments

  11. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment of Energy Established |Laboratory |66 29

  12. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment of Energy Established |Laboratory |66

  13. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment of Energy Established |Laboratory |66786

  14. Documents

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict of Columbia: EnergyDobreve Energia Jump

  15. Document

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April 20153544 Federal Register /

  16. Document

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April 20153544 Federal

  17. Document

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April 20153544 Federal285459

  18. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit

  19. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No. 94 /

  20. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No. 94 /28

  1. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No. 94 /283

  2. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No. 94 /283990

  3. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No. 94

  4. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No. 94820

  5. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No. 94820637

  6. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No.

  7. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No.73 Federal

  8. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No.73

  9. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72, No.73Thursday,

  10. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,

  11. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,206 Federal

  12. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,206 FederalJuly

  13. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,206

  14. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,2064 Federal

  15. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,2064

  16. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,2064 October 1,

  17. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,2064 October 1,

  18. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,2064 October

  19. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,2064 October57

  20. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,2064

  1. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,2064834 Federal

  2. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,2064834

  3. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,2064834

  4. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,20648346875

  5. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol. 72,206483468757006

  6. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.

  7. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.

  8. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.991 Federal

  9. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.991 Federal811

  10. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.991 Federal8112

  11. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.991 Federal8112416

  12. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.991 Federal81124160

  13. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.991

  14. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.991990 Federal

  15. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.991990 Federal784

  16. Document

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 Federal Register / Vol.991990

  17. Document

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunication | Department ofWORK FOR OTHERS

  18. Document

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunication | Department ofWORK FOR OTHERS

  19. Document

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunication | Department ofWORK FOR OTHERS

  20. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09