Sample records for radioisotope thermoelectric generator

  1. Alternative Fuel Sources for Radioisotope Thermoelectric Generators 

    E-Print Network [OSTI]

    Parker, Trevor Drake

    2014-09-18T23:59:59.000Z

    configurations and materials would ideally be examined as well. Possible fuel assembly designs have been hypothesized by Ambrosi at the Nuclear and Emerging Technologies for Space Conference (2012) [4]. Preliminary research has shown that Am-241, Cm-242, Po.... AMBROSI, et al., “Development and Testing of Americium-241 Radioisotope Thermoelectric Generator: Concept Designs and Breadboard System,” Nuclear and Emerging Technologies for Space, (2012). 5. M. RAGHEB, “Radioisotopes Power Production,” mragheb...

  2. Alternaive Fuel Sources For Radioisotope Thermoelectric Generators 

    E-Print Network [OSTI]

    Gonzalez, Evan Sebastain

    2015-04-23T23:59:59.000Z

    configurations and materials would ideally be examined as well. Possible fuel assembly designs have been hypothesized by Ambrosi at the Nuclear and Emerging Technologies for Space Conference (2012) [4]. Preliminary research has shown that Am-241, Cm-242, Po.... AMBROSI, et al., “Development and Testing of Americium-241 Radioisotope Thermoelectric Generator: Concept Designs and Breadboard System,” Nuclear and Emerging Technologies for Space, (2012). 5. M. RAGHEB, “Radioisotopes Power Production,” mragheb...

  3. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect (OSTI)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  4. Radioisotope thermoelectric generator reliability and safety

    SciTech Connect (OSTI)

    Campbell, R.; Klein, J.

    1989-01-01T23:59:59.000Z

    There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

  5. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Adkins, H.E.; Bearden, T.E. (Westinghouse Hanford Company, P.O. Box 1970, N1-42, Richland, Washington 99352 (US))

    1991-01-01T23:59:59.000Z

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable U.S. Department of Transportation regulations without the use of a DOE Alternative.'' The U.S. Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992.

  6. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Adkins, H.E.; Bearden, T.E.

    1990-10-01T23:59:59.000Z

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  7. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect (OSTI)

    King, D.A.

    1994-11-10T23:59:59.000Z

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  8. A facility to remotely assemble radioisotope thermoelectric generators

    SciTech Connect (OSTI)

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

  9. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect (OSTI)

    Pugh, Barry K. [EG and G Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio 45343-3000 (United States)

    1997-01-10T23:59:59.000Z

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  10. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect (OSTI)

    Pugh, B.K. [EGG Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio45343-3000 (United States)

    1997-01-01T23:59:59.000Z

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG{close_quote}s performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS. {copyright} {ital 1997 American Institute of Physics.}

  11. Radioisotope thermoelectric generator licensed hardware package and certification tests

    SciTech Connect (OSTI)

    Goldmann, L.H.; Averette, H.S. [Westinghouse Hanford Company, P.O. Box 1970, M/S R3-86 or N1-32, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    This paper presents the Licensed Hardware package and the Certification Test portions of the Radioisitope Themoelectric Generator Transportation System. This package has been designed to meet those portions of the {ital Code} {ital of} {ital Federal} {ital Regulations} (10 CFR 71) relating to ``Type B`` shipments of radioactive materials. The licensed hardware is now in the U. S. Department of Energy licensing process that certifies the packaging`s integrity under accident conditions. The detailed information for the anticipated license is presented in the safety analysis report for packaging, which is now in process and undergoing necessary reviews. As part of the licensing process, a full-size Certification Test Article unit, which has modifications slightly different than the Licensed Hardware or production shipping units, is used for testing. Dimensional checks of the Certification Test Article were made at the manufacturing facility. Leak testing and drop testing were done at the 300 Area of the U.S. Department of Energy`s Hanford Site near Richland, Washington. The hardware includes independent double containments to prevent the environmental spread of {sup 238}Pu, impact limiting devices to protect portions of the package from impacts, and thermal insulation to protect the seal areas from excess heat during accident conditions. The package also features electronic feed-throughs to monitor the Radioisotope Thermoelectric Generator`s temperature inside the containment during the shipment cycle. This package is designed to safely dissipate the typical 4,500 thermal watts produced in the largest Radioisotope Thermoelectric Generators. The package also contains provisions to ensure leak tightness when radioactive materials, such as a Radioisotope Thermoelectric Generator for the Cassini Mission, planned for 1997 by the National Aeronautics and Space Administration, are being prepared for shipment. (Abstract Truncated)

  12. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1998-12-31T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

  13. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

    1998-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel. {copyright} {ital 1998 American Institute of Physics.}

  14. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect (OSTI)

    Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory P.O. Box 1663, MS-E502 Los Alamos, New Mexico87545 (United States)

    1997-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

  15. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M. A. H.; Hinckley, J. E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

    1998-01-15T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  16. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  17. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    SciTech Connect (OSTI)

    McCoy, J.C.

    1995-10-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

  18. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    SciTech Connect (OSTI)

    McCoy, J.C.; Becker, D.L. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

    1996-03-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

  19. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    SciTech Connect (OSTI)

    Lin, E.I. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1997-12-31T23:59:59.000Z

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

  20. [Radioisotope thermoelectric generators and ancillary activities]. Monthly technical progress report, 1 April--28 April 1996

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    Tehnical progress achieved during this period on radioisotope thermoelectric generators is described under the following tasks: engineering support, safety analysis, qualified unicouple fabrication, ETG fabrication/assembly/test, RTG shipping/launch support, design/review/mission applications, and project management/quality assurance/reliability.

  1. EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

  2. Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Testing

    SciTech Connect (OSTI)

    Adkins, H.E.; Ferrell, P.C.; Knight, R.C.

    1994-09-30T23:59:59.000Z

    The Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Test was conducted to validate the use of the Butyl material as a primary seal throughout the required temperature range. Three tests were performed at (1) 233 K ({minus}40 {degrees}F), (2) a specified operating temperature, and (3) 244 K ({minus}20 {degrees}F) before returning to room temperature. Helium leak tests were performed at each test point to determine seal performance. The two major test objectives were to establish that butyl rubber material would maintain its integrity under various conditions and within specified parameters and to evaluate changes in material properties.

  3. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    SciTech Connect (OSTI)

    Satoh, J.A.

    1994-11-09T23:59:59.000Z

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

  4. A prototype on-line work procedure system for radioisotope thermoelectric generator production

    SciTech Connect (OSTI)

    Kiebel, G.R.

    1991-09-01T23:59:59.000Z

    An on-line system to manage work procedures is being developed to support radioisotope thermoelectric generator (RTG) assembly and testing in a new production facility. This system implements production work procedures as interactive electronic documents executed at the work site with no intermediate printed form. It provides good control of the creation and application of work procedures and provides active assistance to the worker in performing them and in documenting the results. An extensive prototype of this system is being evaluated to ensure that it will have all the necessary features and that it will fit the user's needs and expectations. This effort has involved the Radioisotope Power Systems Facility (RPSF) operations organization and technology transfer between Westinghouse Hanford Company (Westinghouse Hanford) and EG G Mound Applied Technologies Inc. (Mound) at the US Department of Energy (DOE) Mound Site. 1 ref.

  5. Radioisotope thermoelectric generator load and unload sequence from the licensed hardware package system and the trailer system

    SciTech Connect (OSTI)

    Reilly, M.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    The Radioisotope Thermoelectric Generator Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), including the Radioisotope Thermoelectric Generator Transportation System packaging is licensed (regularoty) hardware, certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. This paper focuses on the required interfaces and sequencing of events required by these systems and the shipping and receiving facilities in preparation of the Radioisotope Thermoelectric Generator for space flight. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  6. Radioisotope thermoelectric generator package o-ring seal material validation testing

    SciTech Connect (OSTI)

    Adkins, H.E.; Ferrell, P.C.; Knight, R.C. [Westinghouse Hanford Company, P. O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    The Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Test was conducted to validate the use of the Butyl material as a primary seal throughout the required temperature range. Three tests were performed at (I) 233 K ({minus}40 {degree}F), (2) a specified operating temperature, and (3) 244 K ({minus}20 {degree}F) before returning to room temperature. Helium leak tests were performed at each test point to determine seal performance. The two major test objectives were to establish that butyl rubber material would maintain its integrity under various conditions and within specified parameters and to evaluate changes in material properties. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  7. Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs

    SciTech Connect (OSTI)

    Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

    1995-03-16T23:59:59.000Z

    The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

  8. A compendium of the radioisotope thermoelectric generator transportation system and recent programmatic changes

    SciTech Connect (OSTI)

    Becker, D.L.; McCoy, J.C.

    1996-03-01T23:59:59.000Z

    Because RTGs contain significant quantities of radioactive materials, usually plutonium-238 and its decay products, they must be transported in packages built in accordance with 10 CFR 71 (1994). To meet these regulatory requirements, US DOE commissioned Westinghouse Hanford Co. in 1988 to develop a Radioisotope Thermoelectric Generator Transportation System (RTGTS) that would fully comply while protecting RTGs from adverse environmental conditions during normal transport conditions (eg, mainly shock and heat). RTGTS is scheduled for completion Dec. 1996 and will be available to support NASA`s Cassini mission to Saturn in Oct. 1997. This paper provides an overview of the RTGTS project, discusses the hardware being produced, and summarizes various programmatic and management innovations required by recent changes at DOE.

  9. Structural testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect (OSTI)

    Bronowski, D.R.; Madsen, M.M.

    1991-06-01T23:59:59.000Z

    The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in three orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.

  10. Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect (OSTI)

    Bronowski, D.R.; Madsen, M.M.

    1991-09-01T23:59:59.000Z

    The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

  11. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect (OSTI)

    Sherrell, D.L.

    1992-06-01T23:59:59.000Z

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  12. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect (OSTI)

    Sherrell, D.L.

    1992-06-01T23:59:59.000Z

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

  13. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect (OSTI)

    Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

    1993-01-15T23:59:59.000Z

    A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  14. System and method to improve the power output and longevity of a radioisotope thermoelectric generator

    SciTech Connect (OSTI)

    Mowery, A.L. Jr.

    1993-09-21T23:59:59.000Z

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload. 1 figures.

  15. System and method to improve the power output and longetivity of a radioisotope thermoelectric generator

    SciTech Connect (OSTI)

    Mowery, A.L. Jr.

    1992-12-31T23:59:59.000Z

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

  16. System and method to improve the power output and longetivity of a radioisotope thermoelectric generator

    DOE Patents [OSTI]

    Mowery, Jr., Alfred L. (Potomac, MD)

    1993-01-01T23:59:59.000Z

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

  17. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-05-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG`S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG`S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria.

  18. Electron-beam processing of kilogram quantities of iridium for radioisotope thermoelectric generator applications

    SciTech Connect (OSTI)

    Huxford, T.J.; Ohriner, E.K.

    1992-01-01T23:59:59.000Z

    Iridium alloys are used as fuel-cladding materials in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyagers I and 2, Galilee, and Ulysses spacecraft. An integral part of the production of iridium-sheet metal involves electron-beam (EB) processing. These processes include the degassing of powder-pressed compacts followed by multiple meltings in order to purify 500-g buttons of Ir-0.3% W alloy. Starting in 1972 and continuing into 1992, our laboratory EB processing was Performed (ca. 1970) in a 60-kW (20 kV at 3 A), two-gun system. In 1991, a new 150-kW EB gun facility was installed to complement the older unit. This paper describes how the newly installed system was qualified for production of RTG developmental work is discussed that will potentially improve the existing process by utilizing the capabilities of the new EB system.

  19. Electron-beam processing of kilogram quantities of iridium for radioisotope thermoelectric generator applications

    SciTech Connect (OSTI)

    Huxford, T.J.; Ohriner, E.K.

    1992-12-31T23:59:59.000Z

    Iridium alloys are used as fuel-cladding materials in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyagers I and 2, Galilee, and Ulysses spacecraft. An integral part of the production of iridium-sheet metal involves electron-beam (EB) processing. These processes include the degassing of powder-pressed compacts followed by multiple meltings in order to purify 500-g buttons of Ir-0.3% W alloy. Starting in 1972 and continuing into 1992, our laboratory EB processing was Performed (ca. 1970) in a 60-kW (20 kV at 3 A), two-gun system. In 1991, a new 150-kW EB gun facility was installed to complement the older unit. This paper describes how the newly installed system was qualified for production of RTG developmental work is discussed that will potentially improve the existing process by utilizing the capabilities of the new EB system.

  20. Thermoelectric Generators 1. Thermoelectric generator

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 effects are called the thermoelectric effects. The mechanisms of thermoelectricity were not understood. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large

  1. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect (OSTI)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A. [Pratt and Whitney Rocketdyne, 6633 Canoga Avenue, Canoga Park, CA 91309 (United States); Normand, Eugene [Boeing Radiation Effects Laboratory, P.O. Box 3707, M/S 2T-50, Seattle, WA 98124-22079 (United States)

    2006-01-20T23:59:59.000Z

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

  2. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    SciTech Connect (OSTI)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01T23:59:59.000Z

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  3. Synthesis and Characterization of 14-1-11 Ytterbium Manganese Antimonide Derivatives for Thermoelectric Applications

    E-Print Network [OSTI]

    Star, Kurt

    2013-01-01T23:59:59.000Z

    have made radioisotope thermoelectric generators (RTGs),Mission Radioisotope Thermoelectric Generator (MMRTG) used

  4. The Electrodeposition of PbTe Nanowires for Thermoelectric Applications

    E-Print Network [OSTI]

    Hillman, Peter

    2012-01-01T23:59:59.000Z

    of thermoelectrics. Radioisotope Thermoelectric Generatorthermoelectric generators use radiation from the sun instead of a radioisotope

  5. General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

    1996-07-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  6. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01T23:59:59.000Z

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  7. Mass Properties Testing and Evaluation for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect (OSTI)

    Felicione, Frank S.

    2009-12-01T23:59:59.000Z

    Mass properties (MP) measurements were performed for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), serial number (S/N) 0X730401, the power system designated for the Mars Science Laboratory (MSL) mission. Measurements were made using new mounting fixtures at the mass properties testing station in the Idaho National Laboratory (INL) Space and Security Power Systems Facility (SSPSF). The objective of making mass properties measurements was to determine the generator’s flight configured mass and center of mass or center of gravity (CG). Using an extremely accurate platform scale, the mass of the as-tested generator was determined to be 100.117 ± 0.007 lb. Weight accuracy was determined by checking the platform scale with calibrated weights immediately prior to weighing the MMRTG.a CG measurement accuracy was assessed by surrogate testing using an inert mass standard for which the CG could be readily determined analytically. Repeated testing using the mass standard enabled the basic measurement precision of the system to be quantified in terms of a physical confidence interval about the measured CG position. However, repetitious testing with the MMRTG itself was not performed in deference to the gamma and neutron radiation dose to operators and the damage potential to the flight unit from extra handling operations. Since the mass standard had been specially designed to have a total weight and CG location that closely matched the MMRTG, the uncertainties determined from its testing were assigned to the MMRTG as well. On this basis, and at the 99% confidence level, a statistical analysis found the direct, as-measured MMRTG-MSL CG to be located at 10.816 ± 0.0011 in. measured perpendicular from the plane of the lower surface of the generator’s mounting lugs (Z direction), and offset from the generator’s long axis centerline in the X and Y directions by 0.0968 ± 0.0040 in. and 0.0276 ± 0.0026 in., respectively. These uncertainties are based simply on the statistical treatment of results from repetitive testing performed with the mass standard and included position variations that may have occurred during several mounting/dismounting operations of both the mass standard and mounting fixtures. Because of the limited data available, the computed uncertainty intervals reported are likely, although not assuredly, wider than the intervals that would have been found had more extensive data been available. However, these uncertainties do not account for other contributors to measurement uncertainty that might be applicable. These include potential weighing errors, possible tilt of the as-mounted test article, or translation of the measurement results from the MP instrument coordinates to those of the test article. Furthermore, when testing heat producing test articles such as the MMRTG, measurement degradation can occur from thermal expansion/contraction of the mounting fixtures as they heat up or cool and cause a subtle repositioning of the test article. Analyses for such impacts were made and additional uncertainty allowances were conservatively assigned to account for these. A full, detailed description is provided in this report.

  8. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    SciTech Connect (OSTI)

    Glenn, J. [U.S. Department of Energy, Oak Ridge Operations Office, 200 Administrative Road, Oak Ridge, TN 37830 (United States); Patterson, J.; DeRoos, K. [SEC Federal Services Corporation (SEC), 2800 Solway Road, Knoxville, TN 37931 (United States); Patterson, J.E.; Mitchell, K.G. [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN 37932 (United States)

    2012-07-01T23:59:59.000Z

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and the entire SEC RTG team are nearing the conclusion of the Sr-90 RTG disposition challenge - a legacy now 50 years in the making. Over 600,000 Ci of Sr-90 waste await disposal and its removal from ORNL will mark an historical moment in the clean-up of the cold-war legacy in the ORNL central industrial area. Elimination (i.e., removal) of the RTGs will reduce security risks at ORNL and disposal will permanently eliminate security risks. The RTGs will eventually decay to benign levels within a reasonable timeframe relative to radiological risks posed by long-lived isotopes. The safety authorization basis at ORNL Building 3517 will be reduced enabling greater operational flexibility in future clean-out and D and D campaigns. Upon disposition the Department of Energy will realize reduced direct and indirect surveillance and maintenance costs that can be reapplied to accelerated and enhanced clean-up of the Oak Ridge Reservation. At present, waste profiles for the RTGs are developed and under review by NNSS RWAP staff and approval authorities. Disposition schedule is driven by the availability of compliant shipping casks necessary to safely transport the RTGs from ORNL to NNSS. The first disposal of the RCA RTG is expected in April 2012 and the remaining RTGs disposed in 2012 and 2013. (authors)

  9. Vibration Testing of the Pluto/New Horizons Radioisotope Thermoelectric Generator

    SciTech Connect (OSTI)

    Charles D. Griffin

    2006-06-01T23:59:59.000Z

    The Radioisotopic Thermal Generator (RTG) for the Pluto/New Horizons spacecraft was subjected to a flight dynamic acceptance test to demonstrate that it would perform successfully following launch. Seven RTGs of this type had been assembled and tested at Mound, Ohio from 1984 to 1997. This paper chronicles major events in establishing a new vibration test laboratory at the Idaho National Laboratory and the nineteen days of dynamic testing.

  10. High Temperature Experimental Characterization of Microscale Thermoelectric Effects

    E-Print Network [OSTI]

    Favaloro, Tela

    2014-01-01T23:59:59.000Z

    Mission Radioisotope Thermoelectric Generator (MMRTG) FactFigure 1.1: Radioisotope thermoelectric generator used byhand side radioisotope thermoelectric generator reflectivity

  11. Radioisotope Thermoelectric Generator Transporation System licensed hardware second certification test series and package shock mount system test

    SciTech Connect (OSTI)

    Ferrell, P.C.; Moody, D.A.

    1995-10-01T23:59:59.000Z

    This paper presents a summary of two separate drop test a e performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of Title 10, Code of Federal Regulations, ``Part 71`` (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, Transit Drop Procedure (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G`s at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G`s was not exceeded in any test from a free drop height of 457 mm (18 in.).

  12. Radioisotope Thermoelectric Generator Transportation System licensed hardware second certification test series and package shock mount system test

    SciTech Connect (OSTI)

    Ferrell, P.C.; Moody, D.A. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

    1996-03-01T23:59:59.000Z

    This paper presents a summary of two separate drop test activities that were performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of {ital Title} 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, {open_quote}{open_quote}Part 71{close_quote}{close_quote} (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the U.S. Department of Energy{close_quote}s (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, {ital Transit} {ital Drop} {ital Procedure} (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G{close_quote}s at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G{close_quote}s was not exceeded in any test from a free drop height of 457 mm (18 in.). {copyright} {ital 1996 American Institute of Physics.}

  13. Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place

    E-Print Network [OSTI]

    Chen, Alic

    2011-01-01T23:59:59.000Z

    Pu-238) radioisotope and a thermoelectric generator. The Pu-to radioisotopes. In designing thermoelectric generators for

  14. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  15. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  16. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  17. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01T23:59:59.000Z

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  18. High efficiency radioisotope thermophotovoltaic prototype generator

    SciTech Connect (OSTI)

    Avery, J.E.; Samaras, J.E.; Fraas, L.M.; Ewell, R. [JX Crystals, Inc., Issaquah, WA (United States)

    1995-10-01T23:59:59.000Z

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, the authors present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. They compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. They find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. The authors propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter.

  19. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05T23:59:59.000Z

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  20. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  1. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01T23:59:59.000Z

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  2. Thermoelectric Alloys and Devices for Radioisotope Space Power Systems: State of the Art and Current Developments

    SciTech Connect (OSTI)

    Barnett, W.; Dick, P.; Beaudry, B.; Gorsuch, P.; Skrabek, E.

    1989-01-01T23:59:59.000Z

    Lead telluride and silicon germanium type alloys have served over the past several decades as the preferred thermoelectric conversion materials for U. S. radioisotope thermoelectric generator (RTG) power systems for planetary deep space exploration missions. The Pioneer missions to Jupiter and Jupiter/Saturn and the Viking Mars Lander missions employed TAGS-2N (lead and germanium telluride derivatives) power conversion devices. Since 1976, silicon germanium (SiGe) alloys, incorporated into the unicouple device, have evolved as the thermoelectric materials of choice for U. S. RTG powered space missions. These include the U. S. Air Force Lincoln Experimental Satellites 8 & 9 for communications, in 1976, followed in 1977 by the National Aeronautics and Space Administration Voyager 1 and 2 planetary missions. In 1989, advanced SiGe RTGs were used to power the Galileo exploration of Jupiter and, in 1990, will be used to power the Ulysses investigation of the Sun. In addition, SiGe technology has been chosen to provide RTG power for the 1995 Comet Rendezvous and Asteroid Flyby mission and the 1996 Cassini Saturn orbiter mission. Summaries of the flight performance data for these systems are presented.; Current U. S. Department of Energy thermoelectric development activities include (1) the development of conversion devices based on hi-density, close packed couple arrays and (2) the development of improved performance silicon germanium type thermoelectric materials. The silicon germanium type "multicouple", being developed in conjunction with the Modular RTG program, is discussed in a companion paper. A lead telluride type close-packed module, discussed herein, offers the promise of withstanding high velocity impacts and, thus, is a candidate for a Mars Penetrator application.; Recent projects sponsored by the U. S. Department of Energy, including the Improved Thermoelectric Materials and Modular Radioisotope Thermoelectric Generator programs, have shown that improvements in silicon germanium thermoelectric energy conversion capabilities of at least 50 percent can be achieved by tailoring the characteristics of the silicon germanium alloy materials and devices. This paper compares the properties and characteristics of the SiGe alloys now being developed with those used in the operational space power system.

  3. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

  4. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Gregory P. Meisner General Motors Global Research & Development March 21, 2012 3rd Thermoelectric...

  5. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

    1997-04-29T23:59:59.000Z

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  6. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18T23:59:59.000Z

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  7. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations...

  8. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    1993-10-01T23:59:59.000Z

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 5 copies in the file.

  9. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    2012-01-19T23:59:59.000Z

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 2 copies in the file.

  10. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

  11. Thermoelectric Generator (TEG) Fuel Displacement Potential using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Thermoelectric Generator (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation...

  12. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  13. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and...

  14. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with...

  15. Status of Segmented Element Thermoelectric Generator for Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Discusses progress...

  16. A Thermoelectric Generator with an Intermediate Heat Exchanger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat Recovery System A Thermoelectric Generator with an Intermediate Heat Exchanger for...

  17. Low and high Temperature Dual Thermoelectric Generation Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery...

  18. Multi-physics modeling of thermoelectric generators for waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    physics modeling of thermoelectric generators for waste heat recovery applications Multi-physics modeling of thermoelectric generators for waste heat recovery applications Model...

  19. Feasibility of OnBoard Thermoelectric Generation for Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Poster presentation at the...

  20. System level modeling of thermoelectric generators for automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    level modeling of thermoelectric generators for automotive applications System level modeling of thermoelectric generators for automotive applications Uses a model to predict and...

  1. Development of a 100-Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat...

  2. Catalytic converter with thermoelectric generator

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  3. Improvements to solar thermoelectric generators through device design

    E-Print Network [OSTI]

    Weinstein, Lee A. (Lee Adragon)

    2013-01-01T23:59:59.000Z

    A solar thermoelectric generator (STEG) is a device which converts sunlight into electricity through the thermoelectric effect. A STEG is nominally formed when a thermoelectric generator (TEG), a type of solid state heat ...

  4. Proposed strontium radiosotope thermoelectric generator fuel encapsulation facility

    SciTech Connect (OSTI)

    Adkins, H.E. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

    1993-01-10T23:59:59.000Z

    The proposed Fuel Encapsulation Facility is a fully equipped facility for processing and encapsulating strontium Radioisotope Thermoelectric Generator (RTG) fuel from presently available Waste Encapsulation and Storage Facility (WESF) capsules. The facility location is on the second building level below ground of the Fuels and Materials Examination Facility (FMEF), Cells 142, 143, and 145. Capsules containing strontium fluoride (SrF[sub 2]) would be received from the WESF in Cell 145 and transferred to the three adjacent cells for processing and encapsulation into the final RTG fuel configuration.

  5. Development of Cost-Competitive Advanced Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric...

  6. Radioisotope Thermophotovoltaic (RTPV) Generator and Its Applicability to an Illustrative Space Mission

    SciTech Connect (OSTI)

    Schock, A.; Mukunda, M.; Or, T.; Kumar, V.; Summers, G.

    1994-02-14T23:59:59.000Z

    The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the author. Instead of conducting a generic study, it was decided to focus the design effort by directing it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a post-encounter cruise lasting up to one year.

  7. Theoretical efficiency of solar thermoelectric energy generators

    E-Print Network [OSTI]

    Chen, Gang

    This paper investigates the theoretical efficiency of solar thermoelectric generators (STEGs). A model is established including thermal concentration in addition to optical concentration. Based on the model, the maximum ...

  8. Modeling of concentrating solar thermoelectric generators

    E-Print Network [OSTI]

    Ren, Zhifeng

    The conversion of solar power into electricity is dominated by non-concentrating photovoltaics and concentrating solar thermal systems. Recently, it has been shown that solar thermoelectric generators (STEGs) are a viable ...

  9. Solar thermoelectrics for small scale power generation

    E-Print Network [OSTI]

    Amatya, Reja

    2012-01-01T23:59:59.000Z

    In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

  10. Radioisotope Thermophotovoltaic (RTPV) Generator and Its Application to the Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred; Mukunda, Meera; Or, Chuen T; Kumar, Vasanth; Summers, G.

    1994-01-16T23:59:59.000Z

    This paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator. Instead of conducting a generic study, it was decided to focus the design by directing it at a specific space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a one-year post-encounter cruise. Because of Pluto's long distance from the sun (30-50 A.U.) and the mission's large energy demand, JPL has baselined the use of a radioisotope power system for the PFF spacecraft. The chief advantage of Radioisotope Thermophotovoltaic (RTPV) power systems over current Radioisotope Thermoelectric Generators (RTGs) is their much higher conversion efficiency, which greatly reduces the mass and cost of the required radioisotope heat source. Those attributes are particularly important for the PFF mission, which - like all NASA missions under current consideration - is severely mass- and cost-limited. The paper describes the design of the radioisotope heat source, the thermophotovoltaic converter, and the heat rejection system; and presents the results of the thermal, electrical, and structural analysis and the design optimization of the integrated RTPV system. It briefly summarizes the RTPV system's current technology status, and lists a number of factors that my greatly reduce the need for long-term tests to demonstrate generator lifetime. Our analytical results show very substantial performance improvements over an RTG designed for the same mission, and suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the PFF mission but also for other future missions requiring small, long-lived, low-mass generators. There is a duplicate copy.

  11. Thermoelectric generator cooling system and method of control

    DOE Patents [OSTI]

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16T23:59:59.000Z

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  12. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21T23:59:59.000Z

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  13. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

    2009-10-27T23:59:59.000Z

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  14. Modeling of solar thermal selective surfaces and thermoelectric generators

    E-Print Network [OSTI]

    McEnaney, Kenneth

    2010-01-01T23:59:59.000Z

    A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a ...

  15. Method of operating a thermoelectric generator

    DOE Patents [OSTI]

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05T23:59:59.000Z

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  16. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  17. MoS2 Nanoribbons Thermoelectric Generators

    E-Print Network [OSTI]

    Arab, Abbas

    2015-01-01T23:59:59.000Z

    In this work, we have designed and simulated new thermoelectric generator based on monolayer and few-layer MoS2 nanoribbons. The proposed thermoelectric generator is composed of thermocouples made of both n-type and p-type MoS2 nanoribbon legs. Density Functional Tight-Binding Non-Equilibrium Green's Function (DFTB-NEGF) method has been used to calculate the transmission spectrum of MoS2 armchair and zigzag nanoribbons. Phonon transmission spectrum are calculated based on parameterization of Stillinger-Weber potential. Thermoelectric figure of merit, ZT, is calculated using these electronic and phonon transmission spectrum. Monolayer and bilayer MoS2 armchair nanoribbons are found to have the highest ZT value for p-type and n-type legs, repectively. Moreover, we have compared the thermoelectric current of doped monolayer MoS2 armchair nanoribbons and SZi thin films. Results indicate that thermoelectric current of MoS2 monolayer nanoribbons is several orders of magnitude higher than that of Si thin films.

  18. Titanium nitride electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Novak, Robert F. (Farmington Hills, MI); Schmatz, Duane J. (Dearborn Heights, MI); Hunt, Thomas K. (Ann Arbor, MI)

    1987-12-22T23:59:59.000Z

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

  19. Molybdenum oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1989-01-01T23:59:59.000Z

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.

  20. Thermoelectric Power Generation Allison Duh and Joel Dungan

    E-Print Network [OSTI]

    Lavaei, Javad

    Thermoelectric Power Generation Allison Duh and Joel Dungan May 15, 2013 #12;Introduction A thermoelectric generator (TEG) is a device that converts heat energy directly into electrical energy. Thermoelectric systems capitalize on semiconductor charge carriers excited by a temperature difference to convert

  1. Design, Analysis, and Optimization of a Radioisotope Thermophotovoltaic (RTPV) Generator, and its Applicability to an Illustrative Space Mission

    SciTech Connect (OSTI)

    Schock, Alfred; Mukunda, Meera; Or, Chuen T; Kumar, Vasanth; Summers, G.

    1994-10-01T23:59:59.000Z

    Paper presented at the 45th Congress of the IAF in Jerusalem, Israel, October 1994. The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the authors. To focus the design effort, it was decided to direct it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by the JPL, envisages a direct eight to nine-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a six-week post-encounter cruise.

  2. Integrated Design and Manufacturing of Thermoelectric Generator...

    Office of Environmental Management (EM)

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery High-Performance Thermoelectric Devices Based on Abundant Silicide...

  3. Design and development of thermoelectric generator

    SciTech Connect (OSTI)

    Prem Kumar, D. S., E-mail: rcmallik@physics.iisc.ernet.in; Mahajan, Ishan Vardhan, E-mail: rcmallik@physics.iisc.ernet.in; Anbalagan, R., E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in [Thermoelectric Materials and Devices Laboratory, Department of Physics, Indian Institute of Science, Bangalore-560012 (India)

    2014-04-24T23:59:59.000Z

    In this paper we discuss the fabrication, working and characteristics of a thermoelectric generator made up of p and n type semiconductor materials. The device consists of Fe{sub 0.2}Co{sub 3.8}Sb{sub 11.5}Te{sub 0.5} (zT = 1.04 at 818 K) as the n-type and Zn4Sb3 (zT=0.8 at 550 K) as the p-type material synthesized by vacuum hot press method. Carbon paste has been used to join the semiconductor legs to metal (Molybdenum) electrodes to reduce the contact resistance. The multi-couple (4 legs) generator results a maximum output power of 1.083 mW at a temperature difference of 240 K between the hot and cold sides. In this investigation, an I-V characteristic, maximum output power of the thermoelectric module is presented. The efficiency of thermoelectric module is obtained as ? = 0.273 %.

  4. BuildingaThermoelectricMug This rllorrfh,s

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    (Radioisotope Thermoelectric Generators), which are basically armored canisters holding plutonium dioxide fuel. Here, I will show how you can use these in reverseto generate electrical power. Thermoelectric Devicesfava Power BuildingaThermoelectricMug F This rllorrfh,s ?rcjae J a v a P o w e r. . . . . . . . 4 6

  5. Establishing Thermo-Electric Generator (TEG) Design Targets for...

    Broader source: Energy.gov (indexed) [DOE]

    for Hybrid Vehicles Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  6. Establishing Thermo-Electric Generator (TEG) Design Targets for...

    Broader source: Energy.gov (indexed) [DOE]

    Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 15th, 2013 R.Vijayagopal,...

  7. Overview of Thermoelectric Power Generation Technologies in Japan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting kajikawa.pdf...

  8. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion to Power Program...

  9. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

  10. Method and system for radioisotope generation

    DOE Patents [OSTI]

    Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.

    2014-07-15T23:59:59.000Z

    A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.

  11. Microscreen radiation shield for thermoelectric generator

    DOE Patents [OSTI]

    Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1990-01-01T23:59:59.000Z

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  12. Direct charge radioisotope activation and power generation

    DOE Patents [OSTI]

    Lal, Amit (Madison, WI); Li, Hui (Madison, WI); Blanchard, James P. (Madison, WI); Henderson, Douglass L. (Madison, WI)

    2002-01-01T23:59:59.000Z

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  13. Radioisotope Thermoelectric Generator F7 Flight Unit Acceptance Buy Off

    SciTech Connect (OSTI)

    none,

    1997-02-20T23:59:59.000Z

    These are viewgraphs from the subject presentation. The LMMS E-7 history is outlined; Qualification and use of the F-7 GPHS-RTG for the Cassini mission; and the F-7 acceptance test program and performance are described.

  14. Potential improvements in SiGe radioisotope thermoelectric generator performance

    SciTech Connect (OSTI)

    Mowery, A.L. [4 Myrtle Bank Lane, Hilton Head Island, South Carolina, 29926-2650 (United States)

    1999-01-01T23:59:59.000Z

    In accordance with NASA{close_quote}s slogan: {open_quotes}Better, Cheaper, Faster,{close_quotes} this paper will address potential improvements to SiGe RTG technology to make them Better. RTGs are doubtless cheaper than {open_quotes}paper designs{close_quotes} which are better and cheaper until development, performance and safety test costs are considered. RTGs have the advantage of being fully developed and tested in the rigors of space for over twenty years. Further, unless a new system can be accelerated tested, as were the RTGs, they cannot be deployed reliably unless a number of systems have succeeded for test periods exceeding the mission lifetime. Two potential developments are discussed that can improve the basic RTG performance by 10 to 40{sup +}{percent} depending on the mission profile. These improvements could be demonstrated in years. Accelerated testing could also be performed in this period to preserve existing RTG reliability. Data from a qualification tested RTG will be displayed, while not definitive, to support the conclusions. Finally, it is anticipated that other investigators will be encouraged to suggest further modifications to the basic RTG design to improve its performance. {copyright} {ital 1999 American Institute of Physics.}

  15. Modular Radioisotope Thermoelectric Generator (RTG) Program. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    Section 2.0 of this report summarizes the MOD-RTG reference flight design, and Section 3.0 discusses the Ground Demonstration System design. Multicouple technology development is discussed in Section 4.0, and Section 5.0 lists all published technical papers prepared during the course of the contract.

  16. Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmountCammie Croft Senior Advisor, DirectorDepartment

  17. Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and|Hours(5-Unit) AreaEnergyofN E R G Y

  18. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1993-01-01T23:59:59.000Z

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  19. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, Mark M. (Aiken, SC)

    1995-01-01T23:59:59.000Z

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  20. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  1. ANSYS Thermoelectric Generator (TEG) Preparing the ANSYS Workbench

    E-Print Network [OSTI]

    Lee, Ho Sung

    ANSYS Thermoelectric Generator (TEG) Tutorial Preparing the ANSYS Workbench 1) Go Start Menu All-click Thermal-Electric at the top of the Project Schematic pane and select Rename as TEG Ex 3.1 Tutorial. 4

  2. High-density thermoelectric power generation and nanoscale thermal metrology

    E-Print Network [OSTI]

    Mayer, Peter (Peter Matthew), 1978-

    2007-01-01T23:59:59.000Z

    Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

  3. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1995-04-18T23:59:59.000Z

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  4. Thermoelectric generator and method for the fabrication thereof

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1987-01-01T23:59:59.000Z

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.

  5. Thermoelectric generator and method for the fabrication thereof

    DOE Patents [OSTI]

    Benson, D.K.; Tracy, C.E.

    1984-08-01T23:59:59.000Z

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.

  6. Development of an Underamor 1-kW Thermoelectric Generator Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for...

  7. Thermoelectric generator fabricated via laser-induced forward transfer M.Feinaeugle1

    E-Print Network [OSTI]

    Thermoelectric generator fabricated via laser-induced forward transfer M.Feinaeugle1 , C.L. Sones1 of a thermoelectric generator with the rapid, lithography-less technique of laser-induced forward transfer (LIFT on one substrate. The design of the proposed thermoelectric generator was selected to demonstrate

  8. Molybdenum-platinum-oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1990-01-01T23:59:59.000Z

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a solid electrolyte carrying a thin film comprising molybdenum-platinum-oxide as an electrode deposited by physical deposition techniques. The invention is also directed to the method of making same.

  9. IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS

    E-Print Network [OSTI]

    IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de of thermoelectric genera- tors (TEGs) by using a lens to concentrate heat on the heat source of a TEG. Initial : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis

  10. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling (TEG) designed for automotive waste heat recovery systems. This model is capable of computing bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

  11. Stresa, Italy, 26-28 April 2006 ENERGY CONVERSION USING NEW THERMOELECTRIC GENERATOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stresa, Italy, 26-28 April 2006 ENERGY CONVERSION USING NEW THERMOELECTRIC GENERATOR G. Savelli1: photolithography and deposition methods allow to elaborate thin thermoelectric structures at the micro-scale level. Micro thermoelectric converters are a promising technology due to the high reliability, quiet operation

  12. Status of Segmented Element Thermoelectric Generator for Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Thermoelectric Solutions - 4 - Advanced Thermoelectric Solutions - 5 - High and medium temperature TE engines are shown in the photo-right The engines incorporate...

  13. High Reliability, High TemperatureThermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste...

  14. Optimal working conditions for thermoelectric generators with realistic thermal coupling

    E-Print Network [OSTI]

    Apertet, Y; Glavatskaya, O; Goupil, C; Lecoeur, P

    2011-01-01T23:59:59.000Z

    We study how maximum output power can be obtained from a thermoelectric generator(TEG) with nonideal heat exchangers. We demonstrate with an analytic approach based on a force-flux formalism that the sole improvement of the intrinsic characteristics of thermoelectric modules including the enhancement of the figure of merit is of limited interest: the constraints imposed by the working conditions of the TEG must be considered on the same footing. Introducing an effective thermal conductance we derive the conditions which permit maximization of both efficiency and power production of the TEG dissipatively coupled to heat reservoirs. Thermal impedance matching must be accounted for as well as electrical impedance matching in order to maximize the output power. Our calculations also show that the thermal impedance does not only depend on the thermal conductivity at zero electrical current: it also depends on the TEG figure of merit. Our analysis thus yields both electrical and thermal conditions permitting optima...

  15. The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Hi-Z Technology Inc. and...

  16. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOE Patents [OSTI]

    Jayadev, T.S.; Benson, D.K.

    1980-05-27T23:59:59.000Z

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  17. NASA Reference Publication 1036 ALSEP Termination Report

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ..................... Dust Detector ...................... Radioisotope Thermoelectric Generator .......... EASEPPassive

  18. Thermoelectric materials 1998 -- The next generation materials for small-scale refrigeration and power generation applications

    SciTech Connect (OSTI)

    Tritt, T.M. (ed.) (Clemson Univ., SC (United States)); Kanatzidis, M.G. (ed.) (Michigan State Univ., East Lansing, MI (United States)); Mahan, G.D. (ed.) (Univ. of Tennessee, Knoxville, TN (United States)); Lyon, H.B. Jr. (ed.) (Marlow Industries, Dallas, TX (United States))

    1999-01-01T23:59:59.000Z

    Thermoelectric materials are used in a wide variety of applications related to small-scale solid-state refrigeration or power generation. Over the past 30 years, alloys based on the Bi-Te compounds (refrigeration) [(Bi[sub 1[minus]x]Sb[sub x])[sub 2] (Te[sub 1[minus]x]Se[sub x])[sub 3

  19. An on-line information system for radioisotope thermal generator production

    SciTech Connect (OSTI)

    Kiebel, G.R.; Wiemers, M.J. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (US))

    1991-01-01T23:59:59.000Z

    An on-line production information system has been designed to support radioisotope thermal generator assembly and testing in a new facility being built at the Department of Energy Hanford Site in Washington State. This system is intended to make handling the large volumes of information associated with radioisotope thermal generator production and certification more efficient with less opportunity for error than traditional paper methods. It provides for tracking materials, implementing work procedures directly from computer terminals, and cross referencing among materials, procedures, and other documents related to production. This system will be implemented on a network of microcomputers using UNIX{sup TM} for its operating system. It has been designed to allow increased capabilities to be added as operating experience with the new facility dictates.

  20. Thermoelectric generators as self-oscillating heat engines

    E-Print Network [OSTI]

    Robert Alicki

    2015-05-30T23:59:59.000Z

    In the previous paper of Alicki et.al. a model of a solar cell has been proposed in which the non-periodic source of energy - photon flux - drives the collective periodic motion of electrons in a form of plasma oscillations. Subsequently, plasma oscillations are rectified by the p-n junction diode into the direct current (work). This approach makes a solar cell similar to standard macroscopic heat motors or turbines which always contain two heat baths, the working medium and the periodically moving piston or rotor. Here, a very similar model is proposed in order to describe the operation principles of thermoelectric generators based either on bimetallic or semiconductor p-n junctions. Again plasma oscillation corresponds to a piston and sunlight is replaced by a hot bath. The mathematical formalism is based on the Markovian master equations which can be derived in a rigorous way from the underlying Hamiltonian models and are consistent with the laws of thermodynamics.

  1. Commercialization of Bulk Thermoelectric Materials for Power Generation

    Broader source: Energy.gov [DOE]

    Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed

  2. Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams

    E-Print Network [OSTI]

    Latcham, Jacob G. (Jacob Greco)

    2009-01-01T23:59:59.000Z

    An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

  3. Thermoelectric Materials, Devices and Systems:

    Broader source: Energy.gov (indexed) [DOE]

    -DRAFT - FOR OFFICIAL USE ONLY - DRAFT Thermoelectric Materials, Devices and Systems: 1 Technology Assessment 2 Contents 3 1. Thermoelectric Generation ......

  4. Modular Isotopic Thermoelectric Generator (MITG) Design and Development, Part A-E. Original was presented at 1983 Intersociety Energy Conversion Engineering Conference (IECEC)

    SciTech Connect (OSTI)

    Schock, A.

    1983-04-29T23:59:59.000Z

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing 24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Detailed analysis indicates that the present generation of RTGs, using the same heat source modules. There is a duplicate copy of this document. OSTI has a copy of this paper.

  5. Oxide based thermoelectric materials for large scale power generation

    E-Print Network [OSTI]

    Song, Yang, M. Eng. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    The thermoelectric (TE) devices are based on the Seebeck and Peltier effects, which describe the conversion between temperature gradient and electricity. The effectiveness of the material performance can be described by ...

  6. Assembly of radioisotope power systems at Westinghouse Hanford Company

    SciTech Connect (OSTI)

    Alderman, C.J.

    1990-04-01T23:59:59.000Z

    Long-term space flight requires reliable long-term power sources. For the purpose of supplying a constant supply of power in deep space, the radioisotope thermoelectric generator has proven to be a successful power source. Westinghouse Hanford Company is installing the Radioisotope Power Systems Facility which is located in the Fuels and Material Examination Facility on the Hanford Site near Richland, Washington, for assembling the generators. The radioisotope thermoelectric generator assembly process is base upon one developed at Mound Laboratory in Miamisburg, Ohio (presently operated by EG G Mound Applied Technologies). Westinghouse Hanford Company is modernizing the process to ensure the heat source assemblies are produced in a manner that maximizes operator safety and is consistent with today's environmental and operational safety standards. The facility is being prepared to assemble the generators required by the National Aeronautics and Space Administration missions for CRAF (Comet Rendezvous Asteroid Flyby) in 1995 and Cassini, an investigation of Saturn and its moons, in 1996. The facility will also have the capability to assemble larger radioisotope power generators designed for dynamic power generation. 4 refs., 11 figs.

  7. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    DOE Patents [OSTI]

    Meisner, Gregory P; Yang, Jihui

    2014-02-11T23:59:59.000Z

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  8. Engineering Nanomaterials towards Energy Harvesting and Virological Applications

    E-Print Network [OSTI]

    Weng, Ding

    2012-01-01T23:59:59.000Z

    as radioisotope thermoelectric generators, extremely longsuch as radioisotope thermoelectric generators which are

  9. Space Technology and Applications International Forum Proceedings, Albuquerque, New Mexico, January 2000 Miniaturized Radioisotope Solid State Power Sources

    E-Print Network [OSTI]

    thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However 2000 Miniaturized Radioisotope Solid State Power Sources J.-P. Fleurial, G.J. Snyder, J. Patel, J-pierre.fleurial@jpl.nasa.gov Abstract. Electrical power requirements for the next generation of deep space missions cover a wide range

  10. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    SciTech Connect (OSTI)

    Ferrell, P.C.

    1996-04-18T23:59:59.000Z

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  11. Exhaust gas bypass valve control for thermoelectric generator

    DOE Patents [OSTI]

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter (Peter) Jacobus; Anderson, Todd Alan

    2012-09-04T23:59:59.000Z

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  12. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Thermoelectric Couple Demonstration of (In,...

  13. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric...

  14. Engineering and Materials for Automotive Thermoelectric Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Materials for Automotive Thermoelectric Applications Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator,...

  15. Complex oxides useful for thermoelectric energy conversion

    DOE Patents [OSTI]

    Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

    2012-07-17T23:59:59.000Z

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  16. Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S.

    SciTech Connect (OSTI)

    David Feldman; Amanda Slough; Gary Garrett

    2008-06-01T23:59:59.000Z

    There is a myriad of uses to which our country's freshwater supply is currently committed. Together with increasing quantities of consumption, there are growing constraints on water availability. In our future there will be two elements of consumption at the forefront of concern: availability and efficiency. Availability of freshwater is the most important of these and is the subject of this report. To use water efficiently, we must first have it. Efficiency is key to ensuring availability for future needs. As population grows and economic and technology demands increase - especially for thermoelectric power - needs for freshwater will also increase. Thus, using our limited supplies of freshwater must be done as efficiently as possible. Thermoelectric generating industry is the largest user of our nation's water resources, including fresh, surface, ground, and saline water. Saline water use accounts for approximately 30% of thermoelectric use, while the remaining 70% is from freshwater sources. The U.S. Geological Survey (USGS) estimates that thermoelectric generation accounts for roughly 136,000 million gallons per day (MGD), or 39% of freshwater withdrawals. This ranks slightly behind agricultural irrigation as the top source of freshwater withdrawals in the U.S. in 2000. For Americans to preserve their standard of living and maintain a thriving economy it is essential that greater attention be paid to freshwater availability in efforts to meet energy demands - particularly for electric power. According to projections by the Energy Information Administration's (EIA) Annual Energy Outlook 2006 (AEO 2006) anticipated growth of thermoelectric generating capacity will be 22% between 2005 and 2030. In the 2007 Report, EIA estimates that capacity to grow from approximately 709 GW in 2005 to 862 GW in 20303. These large increases in generating capacity will result in increased water demands by thermoelectric power plants and greater competition over water between the energy sector and domestic, commercial, agricultural, industrial, and instream use sectors. The implications of these increased demands have not been adequately researched. This report is a preliminary effort to explore these implications. In addition, since this report was completed in draft form in 2007, there have been several updates and important issues brought to bear on water for energy that should be mentioned. Uncertainties include drought and climate change impacts. Policies such as commitments to Coal-to-Liquids (CTL) quotas; Ethanol production requirements; Carbon Capture and Storage (CCS) mandates; increasing nuclear power plant construction; valuing carbon and carbon dioxide emissions all have significant implications on water use and on the need for water in the power sector by 2025.

  17. Development of a 100-Watt High Temperature Thermoelectric Generator

    Broader source: Energy.gov (indexed) [DOE]

    performance TEG thermal and electrical interfaces modified to withstand high temperature environment Development of a 100 watt High Temperature TE Generator DEER 2008 11 Prototype...

  18. Nanocomposites as thermoelectric materials

    E-Print Network [OSTI]

    Hao, Qing

    2010-01-01T23:59:59.000Z

    Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

  19. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

  20. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  1. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

  2. Individual Module Maximum Power Point Tracking for Thermoelectric Generator Systems

    E-Print Network [OSTI]

    Schaltz, Erik

    of Thermo Electric Generator (TEG) systems a power converter is often inserted between the TEG system that the TEG system produces the maximum power. However, if the conditions, e.g. temperature, health, age, etc find the best compromise of all modules. In order to increase the power production of the TEG system

  3. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive...

  4. Device for use in a furnace exhaust stream for thermoelectric generation

    DOE Patents [OSTI]

    Polcyn, Adam D.

    2013-06-11T23:59:59.000Z

    A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.

  5. Synthetic thermoelectric materials comprising phononic crystals

    DOE Patents [OSTI]

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13T23:59:59.000Z

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  6. Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

    E-Print Network [OSTI]

    Wang, Zhaojie

    2012-01-01T23:59:59.000Z

    RTG refers to radioisotope thermoelectric generator with aRTG refers to radioisotope thermoelectric generator with a

  7. Vehicular Thermoelectric Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules Available Energy in Engine Exhaust BMW Series 5 , Model Year 2011, 3.0 Liter Gasoline Engine w Thermoelectric Generator Funding Opportunity Announcement...

  8. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov [DOE]

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  9. Vehicular Applications of Thermoelectrics

    Broader source: Energy.gov (indexed) [DOE]

    gas. Thermoelectric Element at Toshiba Material Nov. 2007 Shuichi Hase Sango Co. Ltd. Heat-Recovery for ICE Automobiles and Thermal Electric Generation Komatsu Diesel Engine with...

  10. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect (OSTI)

    Xu, B., E-mail: bin.xu09@imperial.ac.uk; Fobelets, K. [Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, SW7 2BT London (United Kingdom)

    2014-06-07T23:59:59.000Z

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 ? cm resistivity n- and p-type bulk, converting ?4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  11. Variable cooling circuit for thermoelectric generator and engine and method of control

    DOE Patents [OSTI]

    Prior, Gregory P

    2012-10-30T23:59:59.000Z

    An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

  12. Method of controlling temperature of a thermoelectric generator in an exhaust system

    DOE Patents [OSTI]

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21T23:59:59.000Z

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  13. Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems

    Broader source: Energy.gov [DOE]

    Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

  14. Thermoelectric power generator module of 1616 Bi2Te3 and 0.6% ErAs:,,InGaAs...1-x,,InAlAs...x segmented elements

    E-Print Network [OSTI]

    Bowers, John

    Thermoelectric power generator module of 16Ã16 Bi2Te3 and 0.6% ErAs:,,InGaAs...1-x; published online 26 August 2009 We report the fabrication and characterization of thermoelectric power temperature was at 610 K. The thermoelectric properties of InGaAs 1-x InAlAs x were characterized from 300 up

  15. Test plan/procedure for the shock limiting device of the radioisotope thermoelectric generator package mounting subsystem 145. Revision 1

    SciTech Connect (OSTI)

    Satoh, J.A.

    1995-05-25T23:59:59.000Z

    This document defines the procedure to be used in the 18 inch drop test to be used for design verification of the RTG Transportation System Package Mounting.

  16. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect (OSTI)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University

    2013-12-02T23:59:59.000Z

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  17. National Aeronautics and Space Administration www.nasa.gov

    E-Print Network [OSTI]

    Waliser, Duane E.

    Radioisotope Power System -- a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Science Instruments

  18. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01T23:59:59.000Z

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  19. Large-dimension, high-ZT Thermoelectric Nanocomposites for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation Large-dimension, high-ZT Thermoelectric...

  20. Recent Progress in the Development of High Efficiency Thermoelectrics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up...

  1. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat. subramanian...

  2. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace067goodson2011o.pdf More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel...

  3. New materials and devices for thermoelectric applications

    SciTech Connect (OSTI)

    Fleurial, J.P.; Borshchevsky, A.; Caillat, T.; Ewell, R. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1997-12-31T23:59:59.000Z

    The development of new, more efficient materials and devices is the key to expanding the range of application of thermoelectric generators and coolers. In the last couple of years, efforts to discover breakthrough thermoelectric materials have intensified, in particular in the US. Recent results on novel materials have already demonstrated that dimensionless figure of merit ZT values 40 to 50% larger than 1.0, the current limit, could be obtained in the 475 to 950 K temperature range. New terrestrial power generation applications have been recently described in the literature. There exists a wide range of heat source temperatures for these applications, from low grade waste heat, at 325--350 K, up to 850 to 1,100 K, such as in the heat recovery from a processing plant of combustible solid waste. The automobile industry has also recently developed a strong interest in a waste exhaust heat recovery power source operating in the 375--750 K temperature range to supplement or replace the alternator and thus decrease fuel consumption. Based on results achieved to date at the Jet Propulsion Laboratory (JPL) on novel materials, the performance of an advanced segmented generator design operating in a large 300--945 K temperature gradient is predicted to achieve about 15% conversion efficiency. This would be a very substantial improvement over state-of-the-art (SOA) thermoelectric power converters. Such a terrestrial power generator could be using waste heat or liquid fuels as a heat source. High performance radioisotope generators (RTG) are still of interest for deep space missions but the shift towards small, light spacecraft has developed a need for advanced power sources in the watt to milliwatt range. The powerstick concept would provide a study, compact, lightweight and low cost answer to this need. The development of thin film thermoelectric devices also offer attractive possibilities. The combination of semiconductor technology, thermoelectric films and high thermal conductivity materials could lead to the fabrication of light weight, high voltage devices with high cooling or high electrical power density characteristics. The use of microcoolers for the thermal management of power electronics is of particular interest.

  4. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from 300K to 800K", International Conference of Thermoelectrics (ICT2007) Jeju Island, South Korea, June4-7 2007. 23. H. Wang, "Thermoelectrics Power Generation: A Review of DOE...

  5. Benefits of Thermoelectric Technology for the Automobile

    Broader source: Energy.gov [DOE]

    Discusses improved fuel efficiency and other benefits of automotive application of thermoelectric (power generation and heating/cooling) and the need for production quantities of high-efficiency thermoelectric modules

  6. High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

  7. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect (OSTI)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01T23:59:59.000Z

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  8. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2006 Through September 30, 2007

    SciTech Connect (OSTI)

    King, James F [ORNL

    2008-04-01T23:59:59.000Z

    The Office of Radioisotope Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Radioisotope Power Systems for fiscal year (FY) 2007. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  9. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    SciTech Connect (OSTI)

    None

    2010-03-01T23:59:59.000Z

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

  10. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sets used in the generator. This is the first launch using a new radioisotope thermoelectric generator, the Multi-Mission Radioisotope Thermoelectric Generator. "ORNL has been...

  11. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sets used in the generator. This is the first launch using a new radioisotope thermoelectric generator, the Multi-Mission Radioisotope Thermoelectric Generator." ORNL's...

  12. A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades.

    SciTech Connect (OSTI)

    Aselage, Terrence Lee; Siegal, Michael P.; Whalen, Scott; Frederick, Scott K.; Apblett, Christopher Alan; Moorman, Matthew Wallace

    2006-10-01T23:59:59.000Z

    We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a system size of 4.3cc, for a power density of 107 {micro}W/cc, which is denser than any system of this size previously reported. The system operates on 150mW of thermal input, which for this system was simulated with a resistive heater, but in application would be provided by a 0.4g source of {sup 238}Pu located at the center of the device. Output power from this device, while optimized for efficiency, was not optimized for form of the power output, and so the maximum power was delivered at only 41mV. An upconverter to 2.7V was developed concurrently with the power source to bring the voltage up to a usable level for microelectronics.

  13. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    SciTech Connect (OSTI)

    Carpenter, Robert; Kumar, V; Ore, C; Schock, Alfred

    2001-01-01T23:59:59.000Z

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.

  14. Milliwatt-Generator Project. Progress report, October 1981-March 1982

    SciTech Connect (OSTI)

    Maraman, W.J. (comp.)

    1983-03-01T23:59:59.000Z

    Los Alamos will fabricate the MC 3599 heat source (4.5 W) for the MC 3500 radioisotopic thermoelectric generator (RTG) in addition to the MC 2893A heat source (4.0 W) for the MC 2730A RTG. Progress on the following tasks is described in detail: /sup 238/Pu fuel processing and characterization, fabrication of test units, destructive testing, and quality assurance. (WHK)

  15. Analysis, Optimization, and Assessment of Radioisotope Thermophotovoltaic System Design for an Illustrative Space Mission

    SciTech Connect (OSTI)

    Schock, Alfred; Mukunda, Meera; Summers, G.

    1994-06-28T23:59:59.000Z

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPV's are of course much less mature than RTGs, but our results indicate that - when fully developed - they could result in a 60% reduction of the heat source's mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system's specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV's current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g. RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 degrees C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low mass generators. Another copy is in the Energy Systems files.

  16. Analysis, optimization, and assessment of radioisotope thermophotovoltaic system design for an illustrative space mission

    SciTech Connect (OSTI)

    Schock, A.; Mukunda, M.; Or, C.; Summers, G. [Fairchild Space and Defense Corporation, Germantown, Maryland 20874 (United States)

    1995-01-05T23:59:59.000Z

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPVs are of course much less mature than RTGs, but our results indicate that---when fully developed---they could result in a 60% reduction of the heat source`s mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system`s specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV`s current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g., RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 {degree}C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low-mass generators. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems

    SciTech Connect (OSTI)

    Jifeng Zhang; Jean Yamanis

    2007-09-30T23:59:59.000Z

    Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

  18. Thermoelectric module

    DOE Patents [OSTI]

    Kortier, William E. (Columbus, OH); Mueller, John J. (Columbus, OH); Eggers, Philip E. (Columbus, OH)

    1980-07-08T23:59:59.000Z

    A thermoelectric module containing lead telluride as the thermoelectric mrial is encapsulated as tightly as possible in a stainless steel canister to provide minimum void volume in the canister. The lead telluride thermoelectric elements are pressure-contacted to a tungsten hot strap and metallurgically bonded at the cold junction to iron shoes with a barrier layer of tin telluride between the iron shoe and the p-type lead telluride element.

  19. QUANTUM WELLS THERMOELECTRIC DEVICES FOR DIESEL ENGINES

    SciTech Connect (OSTI)

    Ghamaty, Saeid

    2000-08-20T23:59:59.000Z

    Thermoelectric materials are utilized for power generation in remote locations, on spacecraft used for interplanetary exploration, and in places where waste heat can be recovered.

  20. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

  1. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Distributed Bio-Oil...

  2. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. deer08gundlach.pdf More...

  3. Modeling the thermoelectric properties of bulk and nanocomposite thermoelectric materials

    E-Print Network [OSTI]

    Minnich, Austin (Austin Jerome)

    2008-01-01T23:59:59.000Z

    Thermoelectric materials are materials which are capable of converting heat directly into electricity. They have long been used in specialized fields where high reliability is needed, such as space power generation. Recently, ...

  4. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    SciTech Connect (OSTI)

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 301-445W, Pasadena, CA 91109-8099 (United States)

    2006-01-20T23:59:59.000Z

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to 'hop' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power ({>=}330 We at beginning of life) during the 10-year cruise and 1-year science mission ({approx}11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030.

  5. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of...

  6. Thermoelectrics run hot and cold

    SciTech Connect (OSTI)

    Tritt, T.M. [Naval Research Lab., Washington, DC (United States)

    1996-05-31T23:59:59.000Z

    Thermoelectricity, or the Seebeck effect, is the physical phenomenon used in thermocouples for temperature measurement. Over the past 2-3 years there has been renewed interest in the field for use in electronic refrigeration or power generation. This article summarizes information on new materials and new concepts for materials with some possibilities of higher performance than existing materials. Thermoelectric energy conversion utilizes the heat generated when an electric current is passed through a thermoelectric material to provide a temperature gradient. Advantages of thermoelectric solid state energy conversion are compactness, quietness, and localized heating or cooling. Possible automotive uses range from power generation to seat coolers. One group of materials receiving a lot of attention is the skutterudite materials. 8 refs., 1 fig.

  7. An air-breathing, portable thermoelectric power generator based on a microfabricated silicon combustor

    E-Print Network [OSTI]

    Marton, Christopher Henry

    2011-01-01T23:59:59.000Z

    The global consumer demand for portable electronic devices is increasing. The emphasis on reducing size and weight has put increased pressure on the power density of available power storage and generation options, which ...

  8. Efficient and Dynamic ? The BMW Group Roadmap for the Application of Thermoelectric Generators

    Broader source: Energy.gov [DOE]

    The diesel engine EGR system is a logical application of TE generators because the necessary system components are already available; transfer of module concepts is possible to other applications in the exhaust system with higher waste heat recovery potential

  9. Design and performance of radioisotope space power systems based on OSC multitube AMTEC converter designs

    SciTech Connect (OSTI)

    Schock, A.; Noravian, H.; Or, C. [Orbital Sciences Corp., Germantown, MD (United States)

    1997-12-31T23:59:59.000Z

    This paper extends the analytical procedure described in another paper in these proceedings to analyze a variety of compact and light-weight OSC-designed radioisotope-heated generators. Those generators employed General Purpose Heat Source (GPHS) modules and a converter containing sixteen AMTEC cells of OSC`s revised five-tube design with enhanced cell wall reflectivity described in a companion paper in these proceedings. OSC found that the performance of the generator is primarily a function of the thermal insulation between the outside of the generator`s 16 cells and the inside of its wall. After examining a variety of insulation options, it was found that the generator`s performance is optimized by employing a hybrid insulation system, in which the space between the cells is filled with fibrous Min-K insulation, and the generator walls are lined with tapered (i.e., graded-length) multifoil insulation. The OSC design results in a very compact generator, with eight AMTEC cells on each end of the heat source stack. The choice of the five-tube cells makes it possible to expand the BASE tube diameter without increasing the cell diameter. This is important because the eight cells mate well with the stacked GPHS modules. The OSC generator design includes a compliant heat source support and preload arrangement, to hold the heat source modules together during launch, and to maintain thermal contact conductance at the generator`s interfaces despite creep relaxation of its housing. The BOM and EOM (up to 15 years) performances of the revised generators were analyzed for two and three GPHS modules, both for fresh fuel and for aged fuel left over from a spare RTG (Radioisotope Thermoelectric Generator) fueled in 1982. The resulting power outputs were compared with JPL`s latest EOM power demand goals for the Pluto Express and Europa Orbiter missions, and with the generic goals of DOE`s Advanced Radioisotope Power System (ARPS) study. The OSC AMTEC designs yielded system efficiencies three to four times as high as present-generation RTGs.

  10. Thermoelectric system

    DOE Patents [OSTI]

    Reiners, Eric A. (Washington, IL); Taher, Mahmoud A. (Peoria, IL); Fei, Dong (Peoria, IL); McGilvray, Andrew N. (East Peoria, IL)

    2007-10-30T23:59:59.000Z

    In one particular embodiment, an internal combustion engine is provided. The engine comprises a block, a head, a piston, a combustion chamber defined by the block, the piston, and the head, and at least one thermoelectric device positioned between the combustion chamber and the head. In this particular embodiment, the thermoelectric device is in direct contact with the combustion chamber. In another particular embodiment, a cylinder head configured to sit atop a cylinder bank of an internal combustion engine is provided. The cylinder head comprises a cooling channel configured to receive cooling fluid, valve seats configured for receiving intake and exhaust valves, and thermoelectric devices positioned around the valve seats.

  11. Subsurface Ambient Thermoelectric Power for Moles and Penetrators1

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    1 Subsurface Ambient Thermoelectric Power for Moles and Penetrators1 Ralph D. Lorenz, Lunar for electrical power generation for planetary exploration applications using thermoelectric conversion of the vehicle. Proof-of-concept experiments are described using off-the-shelf thermoelectric CPU cooling plates

  12. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEM MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2005 THROUGH SEPTEMBER 30, 2006

    SciTech Connect (OSTI)

    King, James F [ORNL

    2007-04-01T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  13. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEMS MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2010 THROUGH SEPTEMBER 30, 2011

    SciTech Connect (OSTI)

    King, James F [ORNL

    2012-05-01T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, the Oak Ridge National Laboratory (ORNL) produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. These components were also produced for the Pluto New Horizons and Mars Science Lab missions launched in January 2006 and November 2011respectively. The ORNL has been involved in developing materials and technology and producing components for the DOE for nearly four decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2011. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS. Work has also been initiated to establish fabrication capabilities for the Light Weight Radioisotope Heater Units.

  14. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technical Program Tasks for October 1, 2005 through September 30, 2006

    SciTech Connect (OSTI)

    None

    2007-04-02T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  15. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2004 Through September 30, 2005

    SciTech Connect (OSTI)

    King, James F [ORNL

    2006-06-01T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  16. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2003 through September 30, 2004

    SciTech Connect (OSTI)

    None listed

    2005-06-01T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2004. Production and production maintenance activities for flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  17. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2004 through September 30, 2005

    SciTech Connect (OSTI)

    None listed

    2006-08-03T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  18. Imaging Narrow Angle The Voyager Spacecraft

    E-Print Network [OSTI]

    Waliser, Duane E.

    ) Radioisotope Thermoelectric Generator (3) Planetary Radio Astronomy and Plasma Wave Antenna (2) Optical

  19. Heliospheric Energetic Particle Reservoirs: Ulysses and ACE 175-315 keV Electron Observations

    E-Print Network [OSTI]

    Sanahuja, Blai

    there is also the additional and dominant contribution from the radioisotope thermoelectric generator (RTG

  20. One Hundred Eleventh Congress United States of America

    E-Print Network [OSTI]

    -going restoration of radioisotope thermoelectric generator material production. Sec. 807. Collaboration with ESMD

  1. Imaging Three-Dimensional Heliosphere in EUV Mike Gruntman1

    E-Print Network [OSTI]

    California at Berkeley, University of

    -2025 at the distance 150 AU because of the decreasing efficiency of its radioisotope thermoelectric generators

  2. What's so cool about Curiosity? Curiosity, the Mars Science Laboratory, is the largest and most complicated device we have ever landed on a

    E-Print Network [OSTI]

    National Laboratory. The Radioisotope Thermoelectric Generator supplies electricity and heat to the rover

  3. The Astrophysical Journal Supplement Series, 199:11 (6pp), 2012 March doi:10.1088/0067-0049/199/1/11 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

    E-Print Network [OSTI]

    Neptune encounter. Due to declining power from the radioisotope thermoelectric generators (RTG) which

  4. CONFERENCE PROCEEDINGS Low-dimensional thermoelectric materials

    E-Print Network [OSTI]

    Cronin, Steve

    be used in practical devices for cooling and for electrical power generation.1 This early work led as a thermoelectric material was discovered by H. J. Goldsmid and coworkers in the U.K.,2 and this material system- tivity in the field of thermoelectricity has been greatly re- duced, and only modest progress was made

  5. Nanostructures having high performance thermoelectric properties

    SciTech Connect (OSTI)

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20T23:59:59.000Z

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  6. Applied Mathematical Sciences, Vol. 4, 2010, no. 11, 505 -514 Efficiency of Inhomogeneous Thermoelectric

    E-Print Network [OSTI]

    Zhou, Hong

    Thermoelectric Generators Hong Zhou Department of Applied Mathematics Naval Postgraduate School, Monterey, CA thermoelectric generators. The effects of different physical parameters on the efficiency of a generator of a thermoelectric generator is insensitive to both the electrical resistivity and thermal conductivity. However

  7. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    SciTech Connect (OSTI)

    John Rodgers; James Castle

    2008-08-31T23:59:59.000Z

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury, chemical oxygen demand (COD), and zinc. Similar to FGD waters, produced waters contained contaminants of concern that are predominantly inorganic (arsenic, cadmium, chlorides, chromium, copper, lead, mercury, nickel, sulfide, zinc, total dissolved solids), but also contained some organics (benzene, PAHs, toluene, total organic carbon, total suspended solids, and oil and grease). Constituents of concern that may cause chemical scaling, biofouling and corrosion, such as pH, hardness and ionic strength, and nutrients (P, K, and N) may also be found in all four non-traditional waters. NPDES permits were obtained for these non-traditional waters and these permit limits are summarized in tabular format within this report. These limits were used to establish treatment goals for this research along with toxicity values for Ceriodaphnia dubia, water quality criteria established by the US EPA, irrigation standards established by the United States Department of Agriculture (USDA), and reuse standards focused on minimization of damage to the power plant by treated waters. Constructed wetland treatment systems were designed for each non-traditional water source based on published literature reviews regarding remediation of the constituents of concern, biogeochemistry of the specific contaminants, and previous research. During this study, 4 non-traditional waters, which included ash basin water, cooling water, FGD water and produced water (PW) were obtained or simulated to measure constructed wetland treatment system performance. Based on data collected from FGD experiments, pilot-scale constructed wetland treatment systems can decrease aqueous concentrations of elements of concern (As, B, Hg, N, and Se). Percent removal was specific for each element, including ranges of 40.1% to 77.7% for As, 77.6% to 97.8% for Hg, 43.9% to 88.8% for N, and no measureable removal to 84.6% for Se. Other constituents of interest in final outflow samples should have aqueous characteristics sufficient for discharge, with the exception of chlorides (<2000 mg/L). Based on total dissolved solids, co-

  8. High temperature thermoelectrics

    DOE Patents [OSTI]

    Moczygemba, Joshua E.; Biershcenk, James L.; Sharp, Jeffrey W.

    2014-09-23T23:59:59.000Z

    In accordance with one embodiment of the present disclosure, a thermoelectric device includes a plurality of thermoelectric elements that each include a diffusion barrier. The diffusion barrier includes a refractory metal. The thermoelectric device also includes a plurality of conductors coupled to the plurality of thermoelectric elements. The plurality of conductors include aluminum. In addition, the thermoelectric device includes at least one plate coupled to the plurality of thermoelectric elements using a braze. The braze includes aluminum.

  9. NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery NSFDOE Thermoelectric Partnership: High-Performance Thermoelectric...

  10. Measurement of Thermoelectric Properties of a Single Nanowire...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Add to Calendar SHARE With growing worldwide demand for energy harvesting, capturing waste heat with thermoelectric coolers and generators has driven the development of high...

  11. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    Thermoelectrics: Direct Solar Thermal Energy Conversion”,are working on solar thermal energy to generate electriccooling for CPUs, solar thermal energy harvesting, solid-

  12. Next Generation Radioisotope Generators | Department of Energy

    Energy Savers [EERE]

    methods as new information becomes available. Complete the upgrade of an environmental control system for power system assembly glovebox at INL. Continue to support development...

  13. Next Generation Radioisotope Generators | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2April 2013 ESH&SNext Big IdeaPower

  14. Heat Transfer in Thermoelectric Materials and Devices

    E-Print Network [OSTI]

    Tian, Zhiting

    Solid-state thermoelectric devices are currently used in applications ranging from thermocouple sensors to power generators in space missions, to portable air-conditioners and refrigerators. With the ever-rising demand ...

  15. Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program

    SciTech Connect (OSTI)

    S. G. Johnson; K. L. Lively

    2010-05-01T23:59:59.000Z

    This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type ‘B’ shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

  16. Radioisotopes: Energy for Space Exploration

    ScienceCinema (OSTI)

    Carpenter, Bob; Green, James; Bechtel, Ryan

    2013-05-29T23:59:59.000Z

    Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

  17. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01T23:59:59.000Z

    thermoelectric materials consisting of epitaxially-grownefficient thermoelectric materials," Nature, vol. 451, pp.superlattice thermoelectric materials and devices," Science,

  18. Energy-Harvesting Thermoelectric Sensing for Unobtrusive Water and Appliance Metering

    E-Print Network [OSTI]

    Dutta, Prabal

    Energy-Harvesting Thermoelectric Sensing for Unobtrusive Water and Appliance Metering Bradford that meters using the same thermoelectric generator with which it powers itself. In short, the rate at which be harvested with a thermoelectric generator (TEG) to power a sensor node. TEGs utilize the Seebeck effect

  19. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Broader source: Energy.gov [DOE]

    Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

  20. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  1. Bulk dimensional nanocomposites for thermoelectric applications

    DOE Patents [OSTI]

    Nolas, George S

    2014-06-24T23:59:59.000Z

    Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

  2. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output

  3. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2007 Through September 30,2008

    SciTech Connect (OSTI)

    King, James F [ORNL

    2009-04-01T23:59:59.000Z

    The Office of Radioisotope Power Systems (RPS) of the Department of Energy (DOE) provides RPS for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2008. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

  4. Thermoelectric Temperature Control

    E-Print Network [OSTI]

    Saffman, Mark

    NOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92-040000A © 1995 Wavelength Electronics, Inc. Thermoelectric coolers (TECs) are used in a variety understanding of thermal management techniques and carefully select the thermoelectric module, temperature

  5. Eur. Phys. J. Appl. Phys. 52, 11103 (2010) DOI: 10.1051/epjap/2010121 Thermoelectric generator placed on the human body: system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2010-01-01T23:59:59.000Z

    context. ator (TEG) with its environment, and also with the dc- dc converter connected to its output. Thus, we do not, as in the thermoelectric theory, consider a temperature gradient at the TEG terminals

  6. www.ceramics.org | American Ceramic Society Bulletin, Vol. 91, No. 334 thermoelectric

    E-Print Network [OSTI]

    McGaughey, Alan

    www.ceramics.org | American Ceramic Society Bulletin, Vol. 91, No. 334 Modeling thermoelectric. Thermoelectric devices have the advantage of containing no moving parts, making them quiet, durable and reliable that thermoelectric devic- es can compete with traditional refrigeration and power generation technologies.1

  7. Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering

    SciTech Connect (OSTI)

    Bathula, Sivaiah [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Department of Applied Physics, Delhi Technological University, Delhi (India); Gahtori, Bhasker; Tripathy, S. K.; Tyagi, Kriti; Srivastava, A. K.; Dhar, Ajay, E-mail: adhar@nplindia.org [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Jayasimhadri, M. [Department of Applied Physics, Delhi Technological University, Delhi (India)

    2014-08-11T23:59:59.000Z

    Owing to their high thermoelectric (TE) figure-of-merit, nanostructured Si{sub 80}Ge{sub 20} alloys are evolving as a potential replacement for their bulk counterparts in designing efficient radio-isotope TE generators. However, as the mechanical properties of these alloys are equally important in order to avoid in-service catastrophic failure of their TE modules, we report the strength, hardness, fracture toughness, and thermal shock resistance of nanostructured n-type Si{sub 80}Ge{sub 20} alloys synthesized employing spark plasma sintering of mechanically alloyed nanopowders of its constituent elements. These mechanical properties show a significant enhancement, which has been correlated with the microstructural features at nano-scale, delineated by transmission electron microscopy.

  8. Review of solar thermoelectric energy conversion and analysis of a two cover flat-plate solar collector

    E-Print Network [OSTI]

    Hasan, Atiya

    2007-01-01T23:59:59.000Z

    The process of solar thermoelectric energy conversion was explored through a review of thermoelectric energy generation and solar collectors. Existing forms of flat plate collectors and solar concentrators were surveyed. ...

  9. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05T23:59:59.000Z

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  10. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14T23:59:59.000Z

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  11. Rare earth thermoelectrics

    SciTech Connect (OSTI)

    Mahan, G.D.

    1997-07-01T23:59:59.000Z

    A review is presented of the thermoelectric properties of rare earth compounds: A discussion is presented of the prospects for future improvements in the figure of merit.

  12. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

  13. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06T23:59:59.000Z

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  14. Characterizing the thermal efficiency of thermoelectric modules

    E-Print Network [OSTI]

    Phillips, Samuel S

    2009-01-01T23:59:59.000Z

    An experimental setup was designed and utilized to measure the thermoelectric properties as functions of temperature of a commercially available, bismuth telluride thermoelectric module. Thermoelectric modules are solid ...

  15. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01T23:59:59.000Z

    P. D. Yang, "Enhanced thermoelectric performance of roughHigh efficiency thermoelectric materials consisting ofG. Chen, and Z. F. Ren, "High-thermoelectric performance of

  16. Holey Silicon as an Efficient Thermoelectric Material

    E-Print Network [OSTI]

    Tang, Jinyao

    2011-01-01T23:59:59.000Z

    Silicon as Efficient Thermoelectric Material Jinyao Tang 1,This work investigated the thermoelectric properties of thinat room temperature, the thermoelectric performance of HS is

  17. Determination of Thermoelectric Module Efficiency A Survey

    SciTech Connect (OSTI)

    Wang, Hsin [ORNL; McCarty, Robin [Marlow Industries, Inc; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yamamoto, Atsushi [AIST, Japan; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany

    2014-01-01T23:59:59.000Z

    The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

  18. Supplement Analysis for the Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory -- Recovery and Storage of Strontium-90 Fueled Radioisotope Thermal Electric Generators at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    N /A

    2004-01-22T23:59:59.000Z

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of recovery and storage for disposal of six strontium-90 (Sr-90) fueled radioisotope thermal electric generators (RTGs) at the Los Alamos National Laboratory (LANL) Technical Area (TA)-54, Area G, or if the SWEIS needs to be supplemented. DOE's National Nuclear Security Administration (NNSA) proposed to recover and store six Sr-90 RTGs from the commercial sector as part of its Offsite-Source Recovery Project (OSRP). The OSRP focuses on the proactive recovery and storage of unwanted radioactive sealed sources exceeding the US Nuclear Regulatory Commission (NRC) limits for Class C low-level waste (also known as Greater than Class C waste, or GTCC). In response to the events of September 11, 2001, NRC conducted a risk-based evaluation of potential vulnerabilities to terrorist threats involving NRC-licensed nuclear facilities and materials. NRC's evaluation concluded that possession of unwanted radioactive sealed sources with no disposal outlet presents a potential vulnerability (NRC 2002). In a November 25, 2003 letter to the manager of the NNSA's Los Alamos Site Office, the NRC Office of Nuclear Security and Incident Response identified recovery of several Sr-90 RTGs as the highest priority and requested that DOE take whatever actions necessary to recovery these sources as soon as possible. This SA specifically compares key impact assessment parameters of this proposal to the offsite source recovery program evaluated in the SWEIS and a subsequent SA that evaluated a change to the approach of a portion of the recovery program. It also provides an explanation of any differences between the Proposed Action and activities described in the previous SWEIS and SA analyses.

  19. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    for efficient solid state cooling and power generation, has1,2]. Such solid- state refrigeration and power generationpower by using solar energy [2]. Thermoelectric devices can also serve as a solid

  20. CEC-500-2010-FS-018 Automotive Thermoelectric

    E-Print Network [OSTI]

    will also be achieved by incorporating thermoelectric waste heat generators into the system design to convert waste heat (exhaust gas) into electrical energy. PIER Program Objectives and Anticipated Benefits

  1. Trends in Thermoelectric Properties with Nanostructure: Ferecrystals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Properties with Nanostructure: Ferecrystals with Designed Nanoarchitecture Trends in Thermoelectric Properties with Nanostructure: Ferecrystals with Designed...

  2. Ferecrystals: Thermoelectric Materials Poised Between the Crystalline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ferecrystals: Thermoelectric Materials Poised Between the Crystalline and Amorphous States Ferecrystals: Thermoelectric Materials Poised Between the Crystalline and Amorphous...

  3. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application...

  4. In-line thermoelectric module

    DOE Patents [OSTI]

    Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

    2000-01-01T23:59:59.000Z

    A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

  5. The thermoelectric process

    SciTech Connect (OSTI)

    Vining, C.B.

    1997-07-01T23:59:59.000Z

    The efficiency of thermoelectric technology today is limited by the properties of available thermoelectric materials and a wide variety of new approaches to developing better materials have recently been suggested. The key goal is to find a material with a large ZT, the dimensionless thermoelectric figure of merit. However, if an analogy is drawn between thermoelectric technology and gas-cycle engines then selecting different materials for the thermoelements is analogous to selecting a different working gas for the mechanical engine. And an attempt to improve ZT is analogous to an attempt to improve certain thermodynamic properties of the working-gas. An alternative approach is to focus on the thermoelectric process itself (rather than on ZT), which is analogous to considering alternate cycles such as Stirling vs. Brayton vs. Rankine etc., rather than merely considering alternative gases. Focusing on the process is a radically different approach compared to previous studies focusing on ZT. Aspects of the thermoelectric process and alternative approaches to efficient thermoelectric conversion are discussed.

  6. Automotive Thermoelectric Generators and HVAC

    Broader source: Energy.gov (indexed) [DOE]

    technologies including nanostructured interfaces, filled skutterudites, cold-side microfluidics. Practical TE characterization including interface effects and thermal...

  7. Increasing Thermoelectric Generation Water Use

    E-Print Network [OSTI]

    Keller, Arturo A.

    22-23, 2007 University of California, Santa Barbara #12;2© 2007 Electric Power Research Institute, Inc. All rights reserved. Energy/Water Nexus #12;3© 2007 Electric Power Research Institute, Inc. All and demand ­ Electricity grid topology ­ Societal and economic infrastructure sustainability #12;4© 2007

  8. Automotive Thermoelectric Generators and HVAC

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Bipolar thermoelectric devices

    E-Print Network [OSTI]

    Pipe, Kevin P. (Kevin Patrick), 1976-

    2004-01-01T23:59:59.000Z

    The work presented here is a theoretical and experimental study of heat production and transport in bipolar electrical devices, with detailed treatment of thermoelectric effects. Both homojunction and heterojunction devices ...

  10. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov (indexed) [DOE]

    SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

  11. Solar Thermoelectrics Mercouri Kanatzidis,

    E-Print Network [OSTI]

    Kanatzidis, Mercouri G

    Solar Thermoelectrics Mercouri Kanatzidis, Materials Science Division December 15, 2009 #12;2 Heat #12;13 What is the dot made of? Cook, Kramer #12;14 Nanostructures reduce the lattice thermal

  12. Milliwatt Generator Project

    SciTech Connect (OSTI)

    Latimer, T.W.; Rinehart, G.H.

    1992-05-01T23:59:59.000Z

    This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

  13. Thermoelectric transport in superlattices

    SciTech Connect (OSTI)

    Reinecke, T.L.; Broido, D.A.

    1997-07-01T23:59:59.000Z

    The thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi{sub 2}Te{sub 3} and for PbTe, and the results of recent experiments are discussed.

  14. ORNL's medical radioisotope project sees centennial campaign...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    actinium-225 processing, which provides radioisotopes for medical uses that include cancer treatment. Actinium-225 is a source for bismuth-213, a short-lived, alpha-emitting...

  15. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect (OSTI)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01T23:59:59.000Z

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  16. Withdrawal from Production and Distribution of the Radioisotope...

    Energy Savers [EERE]

    Withdrawal from Production and Distribution of the Radioisotope Germanium-68 Used for Calibration Sources Withdrawal from Production and Distribution of the Radioisotope...

  17. New Horizons Mission Powered by Space Radioisotope Power Systems...

    Energy Savers [EERE]

    New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems January 30, 2008 - 6:47pm Addthis Artist's concept...

  18. The thermoelectric properties of molecular junctions can now be investigated with scanning tunnelling microscopy. Such experiments provide insights into charge transport in single

    E-Print Network [OSTI]

    Heller, Eric

    The thermoelectric properties of molecular junctions can now be investigated with scanning . They used a scanning tunnelling microscope (STM) to investigate thermoelectricity -- the voltage generated that thermoelectric measurements by STM provide a solution to this problem MOLECULAR ELECTRONICS Charges feel the heat

  19. Large-scale Ocean-based or Geothermal Power Plants by Thermoelectric Effects

    E-Print Network [OSTI]

    Liu, Liping

    2012-01-01T23:59:59.000Z

    Heat resources of small temperature difference are easily accessible, free and unlimited on earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs of electricity generators based on thermoelectric effects and using heat resources of small temperature difference, e.g., ocean water at different depths and geothermal sources, and conclude that large-scale power plants based on thermoelectric effects are feasible and economically competitive. The key observation is that the power factor of thermoelectric materials, unlike the figure of merit, can be improved by orders of magnitude upon laminating good conductors and good thermoelectric materials. The predicted large-scale power plants based on thermoelectric effects, if validated, will have a global economic and social impact for its scalability, and the renewability, free and unlimited supply of heat resources of small temperature difference on earth.

  20. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H. (Concord, MA)

    2006-02-21T23:59:59.000Z

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  1. Thermoelectric powered wireless sensors for spent fuel monitoring

    SciTech Connect (OSTI)

    Carstens, T.; Corradini, M.; Blanchard, J. [Dept. of Engineering Physics, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States); Ma, Z. [Dept. of Electrical and Computer Engineering, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States)

    2011-07-01T23:59:59.000Z

    This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

  2. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    SciTech Connect (OSTI)

    None

    2012-01-31T23:59:59.000Z

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  3. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06T23:59:59.000Z

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  4. Powering a Cat Warmer Using Thin-Film Thermoelectric Conversion of Microprocessor

    E-Print Network [OSTI]

    Yang, Junfeng

    Powering a Cat Warmer Using ¾Ì ¿ Thin-Film Thermoelectric Conversion of Microprocessor Waste Heat- tracting waste heat from a high-end microprocessor, converting the heat to electricity using thin OF THERMOELECTRIC GENERATION First Waste Heat Recovery from Kerosene Lamp SiGe Nanowires 1822 Cardiac 1970s 2000

  5. Green thermoelectrics: Observation and analysis of plant thermoelectric response

    E-Print Network [OSTI]

    Goupil, C; Khamsing, A; Apertet, Y; Bouteau, F; Mancuso, S; Patino, R; Lecoeur, Ph

    2015-01-01T23:59:59.000Z

    Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant's electrophysiological response. Therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

  6. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1986

    SciTech Connect (OSTI)

    Lamar, D.A.

    1987-10-01T23:59:59.000Z

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1)isotope suppliers, facility contact, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers for fiscal year 1986.

  7. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Thermoelectric Energy Conversion for Efficient Waste Heat Recovery PI - Chris Caylor, GMZ Director of Thermoelectric Systems GMZ Team: Bed Poudel, Giri Joshi, Jonathan D'Angelo,...

  8. Correlation Between Structure and Thermoelectric Properties of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion Correlation Between Structure and Thermoelectric Properties of...

  9. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Device Developments with Advanced Bulk Thermoelectric Materials at RTI Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered...

  10. Development of Thermoelectric Technology for Automotive Waste...

    Energy Savers [EERE]

    Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S....

  11. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  12. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  13. Investigations of Interfacial Structure in Thermoelectric Tellurides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermoelectric Materials by Design, Computational Theory and Structure Strategies for High Thermoelectric zT in Bulk Materials Strategies for...

  14. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1987

    SciTech Connect (OSTI)

    Lamar, D.A.; Van Houten, N.C.

    1988-08-01T23:59:59.000Z

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms, including foreign and other DOE facilities. The information is divided into five sections: 1) isotope suppliers, facility contact, and isotopes or services supplied; 2) customers, suppliers, and isotopes purchased; 3) isotopes purchased cross- referenced with customer numbers; 4) geographic locations of radioisotope customers; and 5) radioisotope sales and transfers for fiscal year 1987.

  15. Parametric design study of ``mini-generator`` with 6-watt heat source

    SciTech Connect (OSTI)

    Schock, A.; Or, C.T. [Orbital Sciences Corporation, 20301 Century Blvd., Germantown, Maryland 20874 (United States)

    1995-01-20T23:59:59.000Z

    The Fairchild study showed that generator designs based on a single 1-watt RHU had very poor thermal efficiencies. At their optimum operating point, more than half of the generated heat was lost through the thermal insulation. This resulted in system efficiency of only 2.2%, compared to 7.2% for current Radioisotope Thermoelectric Generators (RTGs). Moreover, there were serious doubts about the fabricability of the required multicouples, particularly of the series/parallel connections between the large number (900) of thermoelectric legs of very small cross-section (0.21 mm square). All in all, the preceding paper showed that neither JPL`s Power Stick design nor the Fairchild-generated derivatives based on the 1-watt heat source looked promising. The present paper describes a similar parametric study of a mini-generator based on a 6-watt heat source, and compares its performance and fabricability to that of the optimum Power Stick derivative and of the current RTG design for the same mission. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  16. Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals

    E-Print Network [OSTI]

    Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals Louisiana New Hampshire Florida Idaho Washington Oregon Nevada California New,000 9,000 to 13,000 Thermoelectric-power withdrawals by water quality and State, 2005. Estimated Use

  17. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  18. Thermoelectric effect in very thin film Pt/Au thermocouples

    E-Print Network [OSTI]

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

    2006-01-01T23:59:59.000Z

    TABLE I. Measured thermoelectric power S for samples ofThermoelectric effect in very thin film Pt/Au thermocouplesthickness dependence of the thermoelectric power of Pt films

  19. Thermoelectric transport in the coupled valence-band model

    E-Print Network [OSTI]

    Ramu, Ashok; Cassels, Laura; Hackman, Nathan; Lu, Hong; Zide, Joshua; Bowers, John E.

    2011-01-01T23:59:59.000Z

    109, 033704 ?2011? Thermoelectric transport in the coupledapplied to the problem of thermoelectric transport in p-typeef?ciency p-type thermoelectric material, are calculated and

  20. Design of bulk thermoelectric modules for integrated circuit thermal management

    E-Print Network [OSTI]

    Fukutani, K; Shakouri, A

    2006-01-01T23:59:59.000Z

    cooling enhancement with thermoelectric coolers,” Trans.M. S. Dresselhaus, “Thermoelectric ?gure of merit of a one-A. Shakouri, “Improved thermoelectric power factor in metal-

  1. Effect of Nanoparticles on Electron and Thermoelectric Transport

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    on Electron and Thermoelectric Transport MONA ZEBARJADI, 1,5can enhance the thermoelectric performance by reducing thepredictions for the thermoelectric properties such as the

  2. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  3. NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purdue GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Purdue GM Partnership on Thermoelectrics for Automotive Waste...

  4. Understanding of the contact of nanostructured thermoelectric n-type Bi[subscript 2]Te[subscript 2.7]Se[subscript 0.3] legs for power generation applications

    E-Print Network [OSTI]

    Liu, Weishu

    Traditional processes of making contacts (metallization layer) onto bulk crystalline Bi2Te3-based materials do not work for nanostructured thermoelectric materials either because of weak bonding strength or an unstable ...

  5. Synthesis and Characterization of 14-1-11 Ytterbium Manganese Antimonide Derivatives for Thermoelectric Applications

    E-Print Network [OSTI]

    Star, Kurt

    2013-01-01T23:59:59.000Z

    for remote impoverished communities. [1] For heat rejection,heat generated by a decaying radioisotope to electrical power, well suited for deep space exploration as well as use in remote

  6. High performance thermoelectric nanocomposite device

    DOE Patents [OSTI]

    Yang, Jihui (Lakeshore, CA); Snyder, Dexter D. (Birmingham, MI)

    2011-10-25T23:59:59.000Z

    A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

  7. Novel thermoelectric materials development, existing and potential applications, and commercialization routes

    E-Print Network [OSTI]

    Bertreau, Philippe

    2006-01-01T23:59:59.000Z

    Thermoelectrics (TE) are devices which can convert heat in the form of a temperature gradient into electricity, or alternatively generate and absorb heat when an electrical current is run through them. It was established ...

  8. Geek-Up[6.10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's Nanostructure

    Broader source: Energy.gov [DOE]

    Advanced thermoelectric materials could be used to develop vehicle exhaust systems that convert exhaust heat into electricity, concentrate solar energy for power generation and recover waste heat from industrial processes.

  9. Thermoelectric system for an engine

    DOE Patents [OSTI]

    Mcgilvray, Andrew N.; Vachon, John T.; Moser, William E.

    2010-06-22T23:59:59.000Z

    An internal combustion engine that includes a block, a cylinder head having an intake valve port and exhaust valve port formed therein, a piston, and a combustion chamber defined by the block, the piston, and the head. At least one thermoelectric device is positioned within either or both the intake valve port and the exhaust valve port. Each of the valves is configured to move within a respective intake and exhaust valve port thereby causing said valves to engage the thermoelectric devices resulting in heat transfer from the valves to the thermoelectric devices. The intake valve port and exhaust valve port are configured to fluidly direct intake air and exhaust gas, respectively, into the combustion chamber and the thermoelectric device is positioned within the intake valve port, and exhaust valve port, such that the thermoelectric device is in contact with the intake air and exhaust gas.

  10. Overview of industry interest in new thermoelectric materials

    SciTech Connect (OSTI)

    Lyon, H.B. Jr.

    1997-07-01T23:59:59.000Z

    The technology base for air conditioning, refrigeration, component cooling below ambient temperatures and power generation will be required to meet several new challenges. The main lines of these challenges will be presented in a way which relates them to the several new thermoelectric materials and materials engineering options being pursued by the research community. The potential benefits of thermoelectric devices are only partially met by enhancing the figure of merit ZT, the nature of the design challenge and the resulting systems approach are presented. The research and the industry are entering into a new era.

  11. Proposal for a phase-coherent thermoelectric transistor

    SciTech Connect (OSTI)

    Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Robinson, J. W. A., E-mail: jjr33@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moodera, J. S. [Department of Physics and Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bergeret, F. S., E-mail: sebastian-bergeret@ehu.es [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel de Lardizabal 5, E-20018 San Sebastián (Spain)

    2014-08-11T23:59:59.000Z

    Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ?45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit.

  12. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications...

  13. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

  14. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

  15. Secretary's Honor Awards: Recognizing Employee Excellence | Department...

    Office of Environmental Management (EM)

    at a reduced cost to taxpayers. Mars Science Laboratory Multi-Mission Radioisotope Thermoelectric Generator team for delivering the Generator for the NASA's Mars Science laboratory...

  16. Thermoelectric materials -- New directions and approaches. Materials Research Society symposium proceedings, Volume 478

    SciTech Connect (OSTI)

    Tritt, T.M.; Kanatzidis, M.G.; Lyon, H.B. Jr.; Mahan, G.D. [eds.

    1997-07-01T23:59:59.000Z

    Thermoelectric materials are utilized in a wide variety of applications related to solid-state refrigeration or small-scale power generation. Thermoelectric cooling is an environmentally friendly method of small-scale cooling in specific applications such as cooling computer chips and laser diodes. Thermoelectric materials are used in a wide range of applications from beverage coolers to power generation for deep-space probes such as the Voyager missions. Over the past thirty years, alloys based on the Bi-Te systems {l{underscore}brace}(Bi{sub 1{minus}x}Sb{sub x}){sub 2} (Te{sub 1{minus}x}Se{sub x}){sub 3}{r{underscore}brace} and Si{sub 1{minus}x}Ge{sub x} systems have been extensively studied and optimized for their use as thermoelectric materials to perform a variety of solid-state thermoelectric refrigeration and power generation tasks. Despite this extensive investigation of the traditional thermoelectric materials, there is still a substantial need and room for improvement, and thus, entirely new classes of compounds will have to be investigated. Over the past two-to-three years, research in the field of thermoelectric materials has been undergoing a rapid rebirth. The enhanced interest in better thermoelectric materials has been driven by the need for much higher performance and new temperature regimes for thermoelectric devices in many applications. The essence of a good thermoelectric is given by the determination of the material's dimensionless figure of merit, ZT = ({alpha}{sup 2}{sigma}/{lambda})T, where {alpha} is the Seebeck coefficient, {sigma} the electrical conductivity and {lambda} the total thermal conductivity. The best thermoelectric materials have a value of ZT = 1. This ZT = 1 has been an upper limit for more than 30 years, yet no theoretical or thermodynamic reason exits for why it can not be larger. The focus of the symposium is embodied in the title, Thermoelectric Materials: New Directions and Approaches. Many of the researchers in the field believe that future advances in thermoelectric applications will come through research in new materials. The authors have many new methods of materials synthesis and much more rapid characterization of these materials than were available 20--30 years ago. They have tried to focus the symposium on new directions and new materials such as skutterudites, quantum well and superlattice structures, new metal chalcogenides, rare earth systems, and quasicrystals. Other new materials are also presented in these proceedings. Separate abstracts were prepared for all the papers in this volume.

  17. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    SciTech Connect (OSTI)

    Burlison, J.S. (comp.)

    1981-08-01T23:59:59.000Z

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.

  18. Thermoelectric device characterization and solar thermoelectric system modeling

    E-Print Network [OSTI]

    Muto, Andrew (Andrew Jerome)

    2011-01-01T23:59:59.000Z

    Recent years have witnessed a trend of rising electricity costs and an emphasis on energy efficiency. Thermoelectric (TE) devices can be used either as heat pumps for localized environmental control or heat engines to ...

  19. NASA's Planetary Science Program Support of Radioisotope

    E-Print Network [OSTI]

    Rathbun, Julie A.

    500 1000 1500 2000 MMRTG ASRG Total Thermal Power Waste Heat Electric power = 1 GPHS block 7 #12NASA's Planetary Science Program Support of Radioisotope Power Capability James L. Green, Director timeline · ASRG and MMRTG systems and plans · DoE Infrastructure Review · Summary 2 #12;Over 50 years

  20. Thermoelectric properties of nanoporous Ge

    E-Print Network [OSTI]

    Lee, Joo-Hyoung

    We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant ...

  1. A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites

    E-Print Network [OSTI]

    Liu, Liping

    A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites Science, 2012. Contents 1 Introduction 2 2 A continuum model for thermoelectric bodies 4 2.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A constitutive model for thermoelectric materials . . . . . . . . . . . . . . . . . . . . 6 2

  2. Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery

    SciTech Connect (OSTI)

    Love, Norman [University of Texas, El Paso; Szybist, James P [ORNL; Sluder, Scott [ORNL

    2011-01-01T23:59:59.000Z

    This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

  3. Thermoelectric energy conversion using nanostructured materials

    E-Print Network [OSTI]

    Chen, Gang

    High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

  4. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley...

  5. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and skutterudite...

  6. Projet TESEER Thermoelectric micro Energy Source

    E-Print Network [OSTI]

    Baudoin, Geneviève

    Projet TESEER Thermoelectric micro Energy Source Enhanced by Electromagnetic Radiation Participants of silicon to be used as a hot-spot for a thermoelectric element. Applications also exists for PV cells) Thermoelectric micro Energy Source Enhanced by Electromagnetic Radiation Objectifs Le projet TESEER consiste

  7. AbstractAbstract Improving efficiency of thermoelectric

    E-Print Network [OSTI]

    Walker, D. Greg

    AbstractAbstract · Improving efficiency of thermoelectric energy conversion devices is a major-classical transport models used to predict ZT can effectively predict thermoelectric performance of bulk materials method proposed to couple quantum and scattering effects to predict thermoelectric performance. · NEGF

  8. Enhanced thermoelectric performance of rough silicon nanowires

    E-Print Network [OSTI]

    Yang, Peidong

    LETTERS Enhanced thermoelectric performance of rough silicon nanowires Allon I. Hochbaum1 *, Renkun, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure

  9. NEW DIRECTIONS IN RADIOISOTOPE SPECTRUM IDENTIFICATION

    SciTech Connect (OSTI)

    Salaymeh, S.; Jeffcoat, R.

    2010-06-17T23:59:59.000Z

    Recent studies have found the performance of commercial handheld detectors with automatic RIID software to be less than acceptable. Previously, we have explored approaches rooted in speech processing such as cepstral features and information-theoretic measures. Scientific advances are often made when researchers identify mathematical or physical commonalities between different fields and are able to apply mature techniques or algorithms developed in one field to another field which shares some of the same challenges. The authors of this paper have identified similarities between the unsolved problems faced in gamma-spectroscopy for automated radioisotope identification and the challenges of the much larger body of research in speech processing. Our research has led to a probabilistic framework for describing and solving radioisotope identification problems. Many heuristic approaches to classification in current use, including for radioisotope classification, make implicit probabilistic assumptions which are not clear to the users and, if stated explicitly, might not be considered desirable. Our framework leads to a classification approach with demonstrable improvements using standard feature sets on proof-of-concept simulated and field-collected data.

  10. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect (OSTI)

    None

    2009-12-11T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren’t new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device’s efficiency and enable electronics manufacturers to more easily integrate them into their products.

  11. New Energy Storage and Energy Generation Materials from First...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage (Li ion and multivalent ion batteries) and energy generation (thermoelectric materials). The second part of this talk will focus on the Materials Project (MP),...

  12. '"''"'' SUBJECT: OPTIONAL FOIIM NO, 10

    E-Print Network [OSTI]

    Rathbun, Julie A.

    POWER SUBSYSTEM 4-1 4.1 SYSTEM DESCRIPTION 4-1 4.1.1 Radioisotope Thermoelectric Generator (RTG) 4-1 4

  13. DatosdelaNASA Plan de contingencias del lanzamiento

    E-Print Network [OSTI]

    termoeléctrico de radioisótopos multimisión (Multi-Mission Radioisotope Thermoelectric Generator, MMRTG). El

  14. PREPARED BY FUGHT CONTROL DIVISION

    E-Print Network [OSTI]

    Rathbun, Julie A.

    .1.1 Radioisotope Thermoelectric Generator 4.1.2 Power Conditioning Udt 4.1.3 Power Distribution Unit COMMrum

  15. ALIGNMENT, LEVELING AND DEPLOYMENT CONSTRAINTS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Thermoelectric Generator (RTG) Crew Deployment Description Passive Seismic Experiment (PSE) Crew Deployment and Alignment Central Station Antenna Crew Deployment Description Leveling, Alignment, and Pointing Radioisotope

  16. APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE SYSTEMS HANDBOOK This document has been prepared by the Flight Control Division, Manned

    E-Print Network [OSTI]

    Rathbun, Julie A.

    .1.1 Radioisotope Thermoelectric Generator (RTG) 4.1.2 Power Conditioning Unit (PCU) 4.1.3 Power Distribution Unit

  17. James A. Turi selected Site Manager for Jefferson Lab | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fusion energy to environmental management to the deployment of radioisotope thermoelectric generators for the NASA Galileo and Ulysses missions. Turi most recently completed...

  18. Curiosity rover zaps Mars for life signs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trio is an essential component of the heat-producing Multi-Mission Radioisotope Thermoelectric Generator unit. It powers the rover and keeps the instruments from freezing solid...

  19. Thermoelectric refrigerator having improved temperature stabilization means

    DOE Patents [OSTI]

    Falco, Charles M. (Woodridge, IL)

    1982-01-01T23:59:59.000Z

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  20. Thermoelectric effect in molecular electronics

    E-Print Network [OSTI]

    M. Paulsson; S. Datta

    2003-01-14T23:59:59.000Z

    We provide a theoretical estimate of the thermoelectric current and voltage over a Phenyldithiol molecule. We also show that the thermoelectric voltage is (1) easy to analyze, (2) insensitive to the detailed coupling to the contacts, (3) large enough to be measured and (4) give valuable information, which is not readily accessible through other experiments, on the location of the Fermi energy relative to the molecular levels. The location of the Fermi-energy is poorly understood and controversial even though it is a central factor in determining the nature of conduction (n- or p-type). We also note that the thermoelectric voltage measured over Guanine molecules with an STM by Poler et al., indicate conduction through the HOMO level, i.e., p-type conduction.

  1. Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL...

    Office of Science (SC) Website

    Excess pulses (90%) are diverted to BLIP for medical radioisotope research and production. Major current projects include large scale distribution of Sr-82 for heart scans,...

  2. High-Temperature Solar Thermoelectric Generators (STEG)

    Broader source: Energy.gov (indexed) [DOE]

    Zakutayev Paul Ndione Michele Olsen Funded: 212013 NREL Selective absorber and optics Fixture development and integration Testing and performance ---...

  3. Thermoelectric Generator Performance for Passenger Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    modeling and architecture evaluation * Phase 2: Subsystem design, build and bench test * Phase 3: System integration. Planar configuration TEG with primary HEX and secondary...

  4. High-Temperature Solar Thermoelectric Generators (STEG)

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  5. Thermoelectric Generator (TEG) Fuel Displacement Potential using...

    Broader source: Energy.gov (indexed) [DOE]

    Conclusions 3 TEG Device Located in the Heater Core Loop 4 Heater Core Thermostat Water Pump TEG Unit ( emulated) Exhaust Gas In Exhaust Gas Out Radiator Existing hardware...

  6. The Industrialization of Thermoelectric Power Generation Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentTheEnergyDepartment of Energy The

  7. Thermoelectric Generator (TEG) Fuel Displacement Potential using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of Energythe

  8. Waste Heat Recovery Opportunities for Thermoelectric Generators |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |toVEHICLEof EnergyPerformance |

  9. Medical Radioisotope Data Survey: 2002 Preliminary Results

    SciTech Connect (OSTI)

    Siciliano, Edward R.

    2004-06-23T23:59:59.000Z

    A limited, but accurate amount of detailed information about the radioactive isotopes used in the U.S. for medical procedures was collected from a local hospital and from a recent report on the U.S. Radiopharmaceutical Markets. These data included the total number of procedures, the specific types of procedures, the specific radioisotopes used in these procedures, and the dosage administered per procedure. The information from these sources was compiled, assessed, pruned, and then merged into a single, comprehensive and consistent set of results presented in this report. (PIET-43471-TM-197)

  10. TECHNOMETRICS@, VOL. 20, NO. 2, MAY 1978 A Bayesian Model for Determiningthe Optimal Test

    E-Print Network [OSTI]

    Waterman, Michael S.

    the case of a fuel container of a radioisotope thermoelectric generator (RTG) system, which is the power supply for a space satel- lite, The radioisotope fuel container is designed to withstand a certain impact

  11. Thermoelectric Transport in a ZrN/ScN Superlattice

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    at Springerlink.com Thermoelectric Transport in a ZrN/ScNthe potential for a high thermoelectric ?gure of merit. Theexperimental studies of the thermoelectric transport in ZrN/

  12. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    developments in bulk thermoelectric materials", M. Mater.and M. D. Drsselhaus, "Thermoelectric figure of merit of aO'Quinn, " Thin-film thermoelectric devices with high room-

  13. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect (OSTI)

    Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

    2009-03-16T23:59:59.000Z

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  14. Milliwatt Generator Project. Progress report, April 1986--March 1988

    SciTech Connect (OSTI)

    Latimer, T.W.; Rinehart, G.H.

    1992-05-01T23:59:59.000Z

    This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

  15. Actinium radioisotope products of enhanced purity

    DOE Patents [OSTI]

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15T23:59:59.000Z

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  16. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

  17. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a proprietary stack...

  18. Overview of Research on Thermoelectric Materials and Devices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research on Thermoelectric Materials and Devices in China Overview of Research on Thermoelectric Materials and Devices in China An overview presentation of R&D projects on...

  19. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction...

  20. Modeling study of thermoelectric SiGe nanocomposites

    E-Print Network [OSTI]

    Minnich, Austin Jerome

    Nanocomposite thermoelectric materials have attracted much attention recently due to experimental demonstrations of improved thermoelectric properties over those of the corresponding bulk material. In order to better ...

  1. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    in bulk thermoelectric materials", M. Mater. Res. Soc.Thermoelectricity", Materials Reserach Society Symposium,Johnson, D. C. , Eds. Materials Research Society: Boston,

  2. Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & DOS Engineering Innovative Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking &...

  3. An Overview of Thermoelectric Waste Heat Recovery Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

  4. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

  5. High-Performance Thermoelectric Devices Based on Abundant Silicide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric...

  6. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace049schock2011o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

  7. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

  8. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  9. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of progress...

  10. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  11. Review of Interests and Activities in Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for thermoelectric cooling...

  12. Thermoelectrics: From Space Power Systems to Terrestrial Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

  13. Development of a Thermoelectric Device for an Automotive Zonal...

    Energy Savers [EERE]

    Development of a Thermoelectric Device for an Automotive Zonal HVAC System Development of a Thermoelectric Device for an Automotive Zonal HVAC System Presents development of a...

  14. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications...

  15. Progress toward Development of a High-Efficiency Zonal Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

  16. Combustion Exhaust Gas Heat to Power usingThermoelectric Engines...

    Broader source: Energy.gov (indexed) [DOE]

    Solutions Combustion Exhaust Gas Heat to Power using Thermoelectric Engines John LaGrandeur October 5, 2011 Advanced Thermoelectric Solutions - 1 - Market motivation based on CO 2...

  17. Combustion Synthesis of Doped Thermoelectric Oxides

    SciTech Connect (OSTI)

    Selig, Jiri [Lamar University; Lin, Sidney [Lamar University; Lin, Hua-Tay [ORNL; Johnson, D Ray [ORNL

    2012-01-01T23:59:59.000Z

    Self-propagating high-temperature synthesis (SHS) was used to prepare silver doped calcium cobaltates (Ca1.24- xAgxCo1.62O3.86, x = 0.03 - 0.12) powders. SHS is a simple and economic process to synthesize ceramic materials with minimum energy requirements. The heat generated by the SHS reaction can sustain the propagation of the reaction front and convert reactants to desired products. The effect of doping level on thermoelectric properties was investigated in this study. Results show the substitution of calcium by silver decreases the thermal conductivity significantly. XRD and surface area measurements show synthesized powders are phase pure and have large specific surface areas.

  18. Comparison of different pressing techniques for the preparation of n-type silicon-germanium thermoelectric alloys

    SciTech Connect (OSTI)

    Harringa, J.L.; Cook, B.A.

    1996-06-01T23:59:59.000Z

    Improvements to state-of-the-art Si{sub 80}Ge{sub 20} thermoelectric alloys have been observed in laboratory-scale samples by the powder metallurgy techniques of mechanical alloying and hot pressing. Incorporating these improvements in large scale compacts for the production of thermoelectric generator elements is the next step in achieving higher efficiency RTGs. This paper discusses consolidation of large quantities of mechanically alloyed powders into production size compacts. Differences in thermoelectric properties are noted between the compacts prepared by the standard technique of hot uniaxial pressing and hot isostatic pressing. Most significant is the difference in carrier concentration between the alloys prepared by the two consolidation techniques.

  19. Recovery of radioisotopes from nuclear waste for radio-scintillator-luminescence energy applications

    E-Print Network [OSTI]

    Alfred Bennun

    2012-08-16T23:59:59.000Z

    Extraction of the light weight radioisotopes (LWR) 89Sr/90Sr, from the expended nuclear bars in the Fukushima reactor, should have decreased the extent of contamination during the course of the accident. 89Sr applications could pay for the extraction of 89Sr/90Sr from nuclear residues. Added value could be obtained by using 89Sr for cancer treatments. Known technologies could be used to relate into innovative ways LWR, to obtain nuclear energy at battery scale. LWR interact by contact with scintillators converting \\beta-radiation into light-energy. This would lead to manufacturing scintillator lamps which operate independently of other source of energy. These lamps could be used to generate photoelectric energy. Engineering of radioisotopes scintillator photovoltaic cells, would lead to devices without moving parts.

  20. Recovery of radioisotopes from nuclear waste for radio-scintillator-luminescence energy applications

    E-Print Network [OSTI]

    Bennun, Alfred

    2012-01-01T23:59:59.000Z

    Extraction of the light weight radioisotopes (LWR) 89Sr/90Sr, from the expended nuclear bars in the Fukushima reactor, should have decreased the extent of contamination during the course of the accident. 89Sr applications could pay for the extraction of 89Sr/90Sr from nuclear residues. Added value could be obtained by using 89Sr for cancer treatments. Known technologies could be used to relate into innovative ways LWR, to obtain nuclear energy at battery scale. LWR interact by contact with scintillators converting \\beta-radiation into light-energy. This would lead to manufacturing scintillator lamps which operate independently of other source of energy. These lamps could be used to generate photoelectric energy. Engineering of radioisotopes scintillator photovoltaic cells, would lead to devices without moving parts.

  1. A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices

    E-Print Network [OSTI]

    Ouerdane, H; Apertet, Y; Michot, A; Abbout, A

    2013-01-01T23:59:59.000Z

    Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.

  2. Thermoelectric Activities of European Community within Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of European Community within Framework Programme 7 and additional activities in Germany Thermoelectric Activities of European Community within Framework Programme 7 and...

  3. Microstructure and Thermoelectric Properties of Mechanically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites Home Author: J. R. Sootsman, J. He, V. P. Dravid, S. Ballikaya, D. Vermeulen, C....

  4. Thermoelectric Materials by Design: Computational Theory and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Design: Computational Theory and Structure Thermoelectric Materials by Design: Computational Theory and Structure Presentation from the U.S. DOE Office of Vehicle Technologies...

  5. High-Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  6. Thermoelectric Materials By Design: Mechanical Reliability (Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By Design: Mechanical Reliability (Agreement 14957) Thermoelectric Materials By Design: Mechanical Reliability (Agreement 14957) Presentation from the U.S. DOE Office of Vehicle...

  7. Thermoelectric Materials by Design, Computational Theory and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  8. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively...

  9. High Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  10. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional Scale: Phase III Report August 2010 DOE...

  11. Scientists Connect Thermoelectric Materials and Topological Insulators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that does not occur in normal semiconductors. Thermoelectric materials enable scalable direct conversion of heat to electricity in solid state devices, and have potential for...

  12. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01T23:59:59.000Z

    power, and recovering waste heat with thermoelectricexcellent fit for both waste-heat harvesting and high powerpush for thermoelectric waste heat recovery applications.

  13. Vehicular Thermoelectric Applications Session DEER 2009

    Broader source: Energy.gov (indexed) [DOE]

    Thermoelectric Applications Session DEER 2009 John W Fairbanks Department of Energy Vehicle Technologies Washington, D.C. August 5, 2009 Dearborn, Michigan Courtesy of DARPA 1903...

  14. Challenges and Opportunities in Thermoelectric Materials Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Research for Automotive Applications Challenges and Opportunities in Thermoelectric Materials Research for Automotive Applications Presentation given at the 2007 Diesel...

  15. Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting

    DOE Patents [OSTI]

    DeSteese, John G

    2010-11-16T23:59:59.000Z

    A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from temperature differences in an environment having a first and a second temperature region. A thermoelectric device having a first side and a second side wherein the first side is in communication with a means for transmitting ambient thermal energy collected or rejected in the first temperature region and the second side is in communication with the second temperature region thereby producing a temperature gradient across the thermoelectric device and in turn generating an electrical current.

  16. The potential impact of ZT=4 thermoelectric materials on solar thermal energy conversion technologies.

    SciTech Connect (OSTI)

    Xie, M.; Gruen, D. M.; Materials Science Division; Michigan Technological Univ.

    2010-03-02T23:59:59.000Z

    State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.

  17. Concentrated Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    electricity. Representing about 15% of the total system cost, power blocks include the steam turbine, generator, and associated equipment such as condensers and water treatment...

  18. A 5 MW TRIGA reactor design for radioisotope production

    SciTech Connect (OSTI)

    Veca, Anthony R.; Whittemore, William L. [General Atomics, San Diego, CA (United States)

    1994-07-01T23:59:59.000Z

    The production and preparation of commercial-scale quantities of radioisotopes has become an important activity as their medical and industrial applications continue to expand. There are currently various large multipurpose research reactors capable of producing ample quantities of radioisotopes. These facilities, however, have many competing demands placed upon them by a wide variety of researchers and scientific programs which severely limit their radioisotope production capability. A demonstrated need has developed for a simpler reactor facility dedicated to the production of radioisotopes on a commercial basis. This smaller, dedicated reactor could provide continuous fission and activation product radioisotopes to meet commercial requirements for the foreseeable future. The design of a 5 MW TRIGA reactor facility, upgradeable to 10 MW, dedicated to the production of industrial and medical radioisotopes is discussed. A TRIGA reactor designed specifically for this purpose with its demonstrated long core life and simplicity of operation would translate into increased radioisotope production. As an example, a single TRIGA could supply the entire US needs for Mo-99. The facility is based on the experience gained by General Atomics in the design, installation, and construction of over 60 other TRIGAs over the past 35 years. The unique uranium-zirconium hydride fuel makes TRIGA reactors inexpensive to build and operate, reliable in their simplicity, highly flexible due to unique passive safety, and environmentally friendly because of minimal power requirements and long-lived fuel. (author)

  19. Transport Properties of Bulk Thermoelectrics An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    SciTech Connect (OSTI)

    Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Senawiratne, Jayantha [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Gilbert, Partricia [Marlow Industries, Inc; Sharp, Jeff [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

    2013-01-01T23:59:59.000Z

    Recent research and development of high temperature thermoelectric materials has demonstrated great potential of converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as an important area for improving energy efficiency. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is Part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main focuses in Part I are on two electronic transport properties: Seebeck coefficient and electrical resistivity.

  20. Thermoelectric and electrical characterization of Si nanowires and GaNAs

    E-Print Network [OSTI]

    Pichanusakorn, Paothep

    2012-01-01T23:59:59.000Z

    1 Introduction to Thermoelectric phenomena and theory . . .1.1 Thermoelectric139 5.1.1 Thermoelectric application for highly-mismatch

  1. High-Temperature Thermoelectric Characterization of III–V Semiconductor Thin Films by Oxide Bonding

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    High-Temperature Thermoelectric Characterization of III–Vfor high-temperature thermoelectric charac- terization ofdiffusion barrier. A thermoelectric material, thin-?lm ErAs:

  2. Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc

    E-Print Network [OSTI]

    Lu, X; Morelli, DT; Morelli, DT; Xia, Y; Ozolins, V

    2015-01-01T23:59:59.000Z

    Increasing  the  Thermoelectric  Figure  of  Merit  of  increase   in   the   thermoelectric   figure   of   merit  coefficient  and  thermoelectric  power  factor;  and  2)  

  3. Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity

    SciTech Connect (OSTI)

    Mateeva, N.; Niculescu, H.; Schlenoff, J.; Testardi, L.

    1997-07-01T23:59:59.000Z

    Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal currents are orthogonal (off-diagonal thermoelectricity). The authors discuss the benefits of this form of thermoelectricity for devices and describe a search for suitable properties in the air-stable conducting polymers polyaniline and polypyrrole. They find the simple and general correlation that the logarithm of the electrical conductivity scales linearly with the Seebeck coefficient on doping but with proportionality in excess of the conventional prediction for thermoelectricity. The correlation is unexpected in its universality and unfavorable for thermoelectric applications. A simple model suggests that mobile charges of both signs exist in these polymers, and this leads to reduced thermoelectric efficiency. They also briefly discuss non air-stable polyacetylene, where ambipolar transport does not appear to occur, and where properties seem more favorable for thermoelectricity.

  4. Photo-controllable thermoelectric properties with reversibility and photo-thermoelectric effects of tungsten trioxide accompanied by its photochromic phenomenon

    SciTech Connect (OSTI)

    Azuma, Chiori [Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kawano, Takuto [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kakemoto, Hirofumi; Irie, Hiroshi, E-mail: hirie@yamanashi.ac.jp [Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2014-11-07T23:59:59.000Z

    The addition of photo-controllable properties to tungsten trioxide (WO{sub 3}) is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO{sub 3} thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W{sup 5+} ions. The thermoelectric properties (electrical conductivity (?) and Seebeck coefficient (S)) and coloration of WO{sub 3} could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, ? increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO{sub 3} after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, ?{sub photo}) and photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to visible-light irradiation of the colored WO{sub 3} thin films. Under visible-light irradiation, ?{sub photo} and the absolute value of S{sub photo} increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W{sup 5+} state) to the conduction band of WO{sub 3}. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO{sub 3} thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.

  5. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect (OSTI)

    J. C. Giglio; A. A. Jackson

    2012-03-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  6. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect (OSTI)

    Schmidt, George R.; Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  7. The New Horizons Spacecraft Glen H. Fountain a

    E-Print Network [OSTI]

    Stern, S. Alan

    /1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power thermoelectric generator (RTG), which uses the thermal energy created by the decay of plutonium 238 to produce, the spacecraft must carry its own energy source. The only currently available technology is the radioisotope

  8. Studying Thermoelectric Oxides using High-Resolution Scanning Transmission Electron Figure 4: a) Atomic resolution Z-

    E-Print Network [OSTI]

    Ben-Arie, Jezekiel

    the environmental impact, and deliver energy continuously, such as thermo-electric power generation, have often been as distinct peaks. The environmental impact of global climate change due to the combustion of fossil fuels is focused on either carbon-based fuels or wind and solar energy, approaches that are portable, minimize

  9. Radioisotope Power Sources for MEMS Devices,

    SciTech Connect (OSTI)

    Blanchard, J.P.

    2001-06-17T23:59:59.000Z

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a {sup 63}Ni liquid source. A source volume containing 64 {micro}Ci provided a power of {approx}0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications.

  10. Thermoelectric materials development. Final report

    SciTech Connect (OSTI)

    Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

    1998-09-01T23:59:59.000Z

    A systematic search for advanced thermoelectric materials was initiated at JPL several years ago to evaluate candidate materials which includes consideration of the following property attributes: (1) semiconducting properties; (2) large Seebeck coefficient; (3) high carrier mobility and high electrical conductivity; (4) low lattice thermal conductivity; and (5) chemical stability and low vapor pressure. Through this candidate screening process, JPL identified several families of materials as promising candidates for improved thermoelectric materials including the skutterudite family. There are several programs supporting various phases of the effort on these materials. As part of an ongoing effort to develop skutterudite materials with lower thermal conductivity values, several solid solutions and filled skutterudite materials were investigated under the effort sponsored by DOE. The efforts have primarily focused on: (1) study of existence and properties of solid solutions between the binary compounds CoSb{sub 3} and IrSb{sub 3}, and RuSb{sub 2}Te, and (2) CeFe{sub 4{minus}x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} filled compositions, the reduction would be caused by the rattling of Ce atoms located in the empty voids of the skutterudite structure and the substitution of Fe for Ru. The details of the sample preparation and characterization of their thermoelectric properties are reported in this report.

  11. Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions

    SciTech Connect (OSTI)

    None

    2010-03-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric devices—which convert heat into energy—that can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

  12. Increasing thermoelectric efficiency towards the Carnot limit

    E-Print Network [OSTI]

    Giulio Casati; Carlos Mejia-Monasterio; Tomaz Prosen

    2008-02-27T23:59:59.000Z

    We study the problem of thermoelectricity and propose a simple microscopic mechanism for the increase of thermoelectric efficiency. We consider the cross transport of particles and energy in open classical ergodic billiards. We show that, in the linear response regime, where we find exact expressions for all transport coefficients, the thermoelectric efficiency of ideal ergodic gases can approach Carnot efficiency for sufficiently complex charge carrier molecules. Our results are clearly demonstrated with a simple numerical simulation of a Lorentz gas of particles with internal rotational degrees of freedom.

  13. Methods for synthesis of semiconductor nanocrystals and thermoelectric compositions

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Chen, Gang (Carlisle, MA); Poudel, Bed (Watertown, MA); Kumar, Shankar (Watertown, MA); Wang, Wenzhong (Newton, MA); Dresselhaus, Mildred (Arlington, MA)

    2007-08-14T23:59:59.000Z

    The present invention provides methods for synthesis of IV VI nanostructures, and thermoelectric compositions formed of such structures. In one aspect, the method includes forming a solution of a Group IV reagent, a Group VI reagent and a surfactant. A reducing agent can be added to the solution, and the resultant solution can be maintained at an elevated temperature, e.g., in a range of about 20.degree. C. to about 360.degree. C., for a duration sufficient for generating nanoparticles as binary alloys of the IV VI elements.

  14. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  15. Photoacoustic measurement of bandgaps of thermoelectric materials

    E-Print Network [OSTI]

    Ni, George (George Wei)

    2014-01-01T23:59:59.000Z

    Thermoelectric materials are a promising class of direct energy conversion materials, usually consisting of highly doped semiconductors. The key to maximizing their thermal to electrical energy conversion lies in optimizing ...

  16. Device testing and characterization of thermoelectric nanocomposites

    E-Print Network [OSTI]

    Muto, Andrew (Andrew Jerome)

    2008-01-01T23:59:59.000Z

    It has become evident in recent years that developing clean, sustainable energy technologies will be one of the world's greatest challenges in the 21st century. Thermoelectric materials can potentially make a contribution ...

  17. Generalized drift-diffusion for microscopic thermoelectricity

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2009-01-01T23:59:59.000Z

    Although thermoelectric elements increasingly incorporate nano-scale features in similar material systems as other micro-electronic devices, the former are described in the language of irreversible thermodynamics while ...

  18. Probing thermoelectric transport with cold atoms

    E-Print Network [OSTI]

    Charles Grenier; Corinna Kollath; Antoine Georges

    2013-11-10T23:59:59.000Z

    We propose experimental protocols to reveal thermoelectric and thermal effects in the transport properties of ultracold fermionic atoms, using the two-terminal setup recently realized at ETH. We show in particular that, for two reservoirs having equal particle numbers but different temperatures initially, the observation of a transient particle number imbalance during equilibration is a direct evidence of thermoelectric (off-diagonal) transport coefficients. This is a time-dependent analogue of the Seebeck effect, and a corresponding analogue of the Peltier effect can be proposed. We reveal that in addition to the thermoelectric coupling of the constriction a thermoelectric coupling also arises due to the finite dilatation coefficient of the reservoirs. We present a theoretical analysis of the protocols, and assess their feasibility by estimating the corresponding temperature and particle number imbalances in realistic current experimental conditions.

  19. Thermoelectrics : material advancements and market applications

    E-Print Network [OSTI]

    Monreal, Jorge

    2007-01-01T23:59:59.000Z

    Thermoelectric properties have been known since the initial discovery in 1821 by Thomas Seebeck, who found that a current flowed at the junction of two dissimilar metals when placed under a temperature differential. This ...

  20. Modeling water use at thermoelectric power plants

    E-Print Network [OSTI]

    Rutberg, Michael J. (Michael Jacob)

    2012-01-01T23:59:59.000Z

    The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

  1. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01T23:59:59.000Z

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  2. Proposal for a phase-coherent thermoelectric transistor

    E-Print Network [OSTI]

    Giazotto, F.; Robinson, J. W. A.; Moodera, J. S.; Bergeret, F. S.

    2014-01-01T23:59:59.000Z

    solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ~ 45...

  3. Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes 

    E-Print Network [OSTI]

    Choi, Kyung Who

    2013-12-03T23:59:59.000Z

    There have been significant researches about thermoelectric behaviors by applying carbon nanotube (CNT)/polymer nanocomposites. Due to its thermally disconnected but electrically connected junctions between CNTs, the thermoelectric properties were...

  4. Synthesis and physical characterization of thermoelectric single crystals

    E-Print Network [OSTI]

    Porras Pérez Guerrero, Juan Pablo

    2012-01-01T23:59:59.000Z

    There is much current interest in thermoelectric devices for sustainable energy. This thesis describes a research project on the synthesis and physical characterization of thermoelectric single crystals. 1In?Se?-[delta] ...

  5. Segregated Network Polymer-Carbon Nanotubes Composites For Thermoelectrics

    E-Print Network [OSTI]

    Kim, Dasaroyong

    2010-10-12T23:59:59.000Z

    nanocomposites were measured for carbon nanotubes and the thermoelectric figure of merit, ZT, was calculated at room temperature. The influence on thermoelectric properties from filler concentration, stabilizer materials and drying condition are also discussed....

  6. advanced thermoelectric materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced thermoelectric materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Thermoelectrics :...

  7. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    be 500 oC deer09schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

  8. Enhancing the Thermoelectric Power Factor with Highly Mismatched Isoelectronic Doping

    E-Print Network [OSTI]

    Grossman, Jeffrey C.

    We investigate the effect of O impurities on the thermoelectric properties of ZnSe from a combination

  9. Thermoelectric Research Takes Spotlight Improvements in Efficiency Help Fuel Results

    E-Print Network [OSTI]

    Thermoelectric Research Takes Spotlight Improvements in Efficiency Help Fuel Results m i c h i g of alternative energy sources, thermoelectrics may not immediately come to mind, but MSU and the College interest in alternative energy sources certainly has helped to bring thermoelectrics into the limelight

  10. Engineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons

    E-Print Network [OSTI]

    Engineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons Hossein Karamitaheri1@iue.tuwien.ac.at (Dated: March 7, 2012) Abstract We theoretically investigate the thermoelectric properties of zigzag nanoribbon structure that exhibits very poor thermoelectric performance, we demonstrate how after a series

  11. Optimizing Thermoelectric Power Factor by Means of a Potential Barrier

    E-Print Network [OSTI]

    1 Optimizing Thermoelectric Power Factor by Means of a Potential Barrier Neophytos Neophytou}@iue.tuwien.ac.at Abstract Large efforts in improving thermoelectric energy conversion are devoted to energy filtering design, ~40% improvement in the thermoelectric power factor can be achieved if the following conditions

  12. Critical Behavior of the Thermoelectric Transport Properties in Amorphous Systems

    E-Print Network [OSTI]

    Chemnitz, Technische Universität

    Critical Behavior of the Thermoelectric Transport Properties in Amorphous Systems near the Metal., London SW7 2BZ, U.K. Abstract The scaling behavior of the thermoelectric trans- port properties;, the thermoelectric power S, the thermal conductivity K and the Lorenz number L0 obey scaling. The scaling description

  13. Profiling the Thermoelectric Power of Semiconductor Junctions with

    E-Print Network [OSTI]

    Profiling the Thermoelectric Power of Semiconductor Junctions with Nanometer Resolution Ho-Ki Lyeo,3 * We have probed the local thermoelectric power of semiconductor nanostruc- tures with the use of ultrahigh-vacuum scanning thermoelectric microscopy. When applied to a p-n junction, this method reveals

  14. Photo-Thermoelectric Effect at a Graphene Interface Junction

    E-Print Network [OSTI]

    McEuen, Paul L.

    Photo-Thermoelectric Effect at a Graphene Interface Junction Xiaodong Xu, Nathaniel M. Gabor increase at the cryogenic temperature as compared to room temperature. Assuming the thermoelectric power predictions. KEYWORDS Graphene, photocurrent, photo-thermoelectric effect D evices that convert photons

  15. Thermoelectric Properties of Superlattice Materials with Variably Spaced Layers

    E-Print Network [OSTI]

    Walker, D. Greg

    Thermoelectric Properties of Superlattice Materials with Variably Spaced Layers T.D. Musho of electronic level alignment. We have investigated the thermoelectric proper- ties of VSSL structures using leads to enhancement of thermoelectric properties. This presumption is based on electrical studies

  16. Project: Driver and controller for a thermoelectric cooler

    E-Print Network [OSTI]

    Project: Driver and controller for a thermoelectric cooler Supervisor: Prof. Sam Ben-Yaakov Year solutions. Based on one of the three thermoelectric phenomena ­ the Peltier effect ­ bi-directional control is achieved. The TEC (which is a Thermoelectric Cooler) uses this effect. The direction of the current through

  17. Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles

    E-Print Network [OSTI]

    Bowers, John

    Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles J. M, mobility, and Seebeck coefficient of these materials and discuss their potential for use in thermoelectric on thermoelectric materials has focused on the ability of heterostructures and quantum con- finement to increase

  18. Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1

    E-Print Network [OSTI]

    Chen, Gang

    Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1 conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices

  19. Glossary of ALSEP Terminology This ATM is prepared in response to Action Item B6-0921-01B

    E-Print Network [OSTI]

    Rathbun, Julie A.

    . Radioisotope thermoelectric generator, technicany is limited to the un- fueled generator assembly. General Electric prefers to call the fueled generator an IPU; however, this is confusing to most other people

  20. Future Supply of Medical Radioisotopes for the UK Report 2014

    E-Print Network [OSTI]

    Neilly, Brian; Ballinger, Jim; Buscombe, John; Clarke, Rob; Ellis, Beverley; Flux, Glenn; Fraser, Louise; Hall, Adrian; Owen, Hywel; Paterson, Audrey; Perkins, Alan; Scarsbrook, Andrew

    2015-01-01T23:59:59.000Z

    The UK has no research nuclear reactors and relies on the importation of 99Mo and other medical radioisotopes (e.g. Iodine-131) from overseas (excluding PET radioisotopes). The UK is therefore vulnerable not only to global shortages, but to problems with shipping and importation of the products. In this context Professor Erika Denton UK national Clinical Director for Diagnostics requested that the British Nuclear Medicine Society lead a working group with stakeholders including representatives from the Science & Technology Facilities Council (STFC) to prepare a report. The group had a first meeting on 10 April 2013 followed by a working group meeting with presentations on 9th September 2013 where the scope of the work required to produce a report was agreed. The objectives of the report are: to describe the status of the use of medical radioisotopes in the UK; to anticipate the potential impact of shortages for the UK; to assess potential alternative avenues of medical radioisotope production for the UK m...

  1. Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles

    SciTech Connect (OSTI)

    Smith, K.; Thornton, M.

    2009-04-01T23:59:59.000Z

    Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

  2. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    SciTech Connect (OSTI)

    Noble, Robert J.; /SLAC; Amini, Rashied; Beauchamp, Patricia M.; /Caltech, JPL; Bennett, Gary L.; /Metaspace Enterprises; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; /Caltech, JPL; Fernandez, Yan R.; /Central Florida U.; Grundy, Will; /Lowell Observ.; Khan, Mohammed Omair; /Caltech, JPL; King, David Q.; /Aerojet; Lang, Jared; /Caltech, JPL; Meech, Karen J.; /Hawaii U.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; /GRC; Spilker, Thomas; West, John L.; /Caltech, JPL; ,

    2010-05-26T23:59:59.000Z

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  3. New Perspectives in Thermoelectric Energy Recovery System Design Optimization

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Karri, Naveen K.; Hogan, Tim; Cauchy, Charles J.

    2013-02-12T23:59:59.000Z

    Abstract: Large amounts of waste heat are generated worldwide in industrial processes, automotive transportation, diesel engine exhaust, military generators, and incinerators because 60-70% of the fuel energy is typically lost in these processes. There is a strong need to develop technologies that recover this waste heat to increase fuel efficiency and minimize fuel requirements in these industrial processes, automotive and heavy vehicle engines, diesel generators, and incinerators. There are additional requirements to reduce CO2 production and environmental footprints in many of these applications. Recent work with the Strategic Environmental Research and Development Program office has investigated new thermoelectric (TE) materials and systems that can operate at higher performance levels and show a viable pathway to lightweight, small form-factor, advanced thermoelectric generator (TEG) systems to recover waste heat in many of these applications. New TE materials include nano-composite materials such as lead-antimony-silver-telluride (LAST) and lead-antimony-silver-tin-telluride (LASTT) compounds. These new materials have created opportunities for high-performance, segmented-element TE devices. New higher-performance TE devices segmenting LAST/LASTT materials with bismuth telluride have been designed and fabricated. Sectioned TEG systems using these new TE devices and materials have been designed. Integrated heat exchanger/TE device system analyses of sectioned TE system designs have been performed creating unique efficiency-power maps that provide better understandings and comparisons of design tradeoffs and nominal and off-nominal system performance conditions. New design perspectives in optimization of sectioned TE design approaches are discussed that provide insight on how to optimize such sectioned TE systems. System performance analyses using ANSYS® TE modeling capabilities have integrated heat exchanger performance models with ANSYS® TE models to extend its analysis capabilities beyond simple constant hot-side and cold-side temperature conditions . Analysis results portray external resistance effects, matched load conditions, maximum power vs. maximum efficiency points simultaneously.

  4. Measurement and characterization techniques for thermoelectric materials

    SciTech Connect (OSTI)

    Tritt, T.M.

    1997-07-01T23:59:59.000Z

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  5. Transport in Charged Colloids Driven by Thermoelectricity

    E-Print Network [OSTI]

    Alois Würger

    2014-01-29T23:59:59.000Z

    We study the thermal diffusion coefficient DT of a charged colloid in a temperature gradient, and find that it is to a large extent determined by the thermoelectric response of the electrolyte solution. The thermally induced salinity gradient leads in general to a strong increase with temperature. The difference of the heat of transport of coions and counterions gives rise to a thermoelectric field that drives the colloid to the cold or to the warm, depending on the sign of its charge. Our results provide an explanation for recent experimental findings on thermophoresis in colloidal suspensions.

  6. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOE Patents [OSTI]

    Singh, David Joseph

    2013-07-16T23:59:59.000Z

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  7. Holey Silicon as an Efficient Thermoelectric Material

    SciTech Connect (OSTI)

    Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

    2010-09-30T23:59:59.000Z

    This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

  8. Thermoelectric Properties of Some Cobalt Phosphide-Arsenide Compounds Anucha Watcharapasorn*

    E-Print Network [OSTI]

    Thermoelectric Properties of Some Cobalt Phosphide-Arsenide Compounds Anucha Watcharapasorn been synthesized and their thermoelectric properties measured. All three samples show semiconductingAsx system have also been synthesized and their thermoelectric properties are currently being investigated

  9. On the role of material property gradients in noncontacting thermoelectric NDE

    E-Print Network [OSTI]

    Nagy, Peter B.

    On the role of material property gradients in noncontacting thermoelectric NDE Hector Carreon that sense the thermoelectric currents produced by directional heating and cooling of the specimen and tangential magnetic fields produced by the resulting thermoelectric currents. Experimental results from

  10. Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices

    E-Print Network [OSTI]

    Bowers, John

    Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices for thermoelectric devices are presented. Inter- ference lithography was used to pattern square lattice photoresist device. Key words: Silicon nanowires, thermoelectrics, cross-plane measurements, nanowire composite

  11. Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique

    E-Print Network [OSTI]

    Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte The Monte Carlo technique is used to calculate electrical as well as thermoelectric transport properties ballistic thermionic transport and fully diffusive thermoelectric transport is also described. DOI: 10

  12. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    SciTech Connect (OSTI)

    S. Mukhopadhyay

    2003-06-01T23:59:59.000Z

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources.

  13. JUNE 8, 2011 AUDIT REPORT

    E-Print Network [OSTI]

    Christian, Eric

    Propulsion Laboratory MMRTG Multi-Mission Radioisotope Thermoelectric Generator MSL Mars Science Laboratory and interdependence of its 10 science instruments; and a new type of power generating system. Figure 1. Artist

  14. subject: Apollo 17 Lunar Surface Experiments '~su:mma'ry""" "'case 4oo5 s

    E-Print Network [OSTI]

    Rathbun, Julie A.

    of the lunar surface experiment package. The C/S distributes power generated by a Radioisotope Thermoelectric Generator to the experiments and subsystems. The C/S consists of the communication subsystem trans- mitters

  15. Thermoelectric devices and applications for the same

    DOE Patents [OSTI]

    DeSteese, John G [Kennewick, WA; Olsen, Larry C [Richland, WA; Martin, Peter M [Kennewick, WA

    2010-12-14T23:59:59.000Z

    High performance thin film thermoelectric couples and methods of making the same are disclosed. Such couples allow fabrication of at least microwatt to watt-level power supply devices operating at voltages greater than one volt even when activated by only small temperature differences.

  16. Thermoelectric cooling container for medical applications

    SciTech Connect (OSTI)

    Aivazov, A.A.; Shtern, Y.I.; Budaguan, B.G.; Makhrachev, K.B.; Pastor, M.

    1997-07-01T23:59:59.000Z

    In this work the thermoelectric cooling container for storing and transportation of the medicine, particularly for insulin, is discussed. In the working volume the temperature is supported on the level of +4 C. The container can work in two operating conditions: with the power supply and without the power supply. Two removable blocks are used for this purpose. One block (thermoelectric) is used for the work with the power supply and another (passive)-for the work without power supply. The thermoelectric block has a 12V power supply, which is used in the automobiles, yachts and other kinds of transport. The temperature in the working volume is supported by the use of the Peltier effect. An electronic device is used in this block and stabilizes temperature on the level of +4 C and indicates information about working conditions. The thermoelectric container has a power supply block for work at 220(110)V. The working temperature in the container can be maintained in the absence of the power supply. In this case the necessary temperature conditions are supported by melting of the crystallized salt. For this purpose the container has a hermetic volume containing this salt and contacting with the working volume.

  17. Design concepts for improved thermoelectric materials

    SciTech Connect (OSTI)

    Slack, G.A.

    1997-07-01T23:59:59.000Z

    Some new guidelines are given that should be useful in the search for thermoelectric materials that are better than those currently available. In particular, clathrate and cryptoclathrate compounds with filler atoms in their cages offer the ability to substantially lower the lattice thermal conductivity.

  18. Measurements and Standards for Thermoelectric Materials

    E-Print Network [OSTI]

    the development of these materials for applications involving waste heat recovery and solid-state cooling. Our for vehicular waste heat recovery would lead to a 10% improvement in fuel efficiency, translating to a fuel heat recovery and solid-state cooling applications. · The widespread use of thermoelectric converters

  19. Mission Overview Mars Science Laboratory

    E-Print Network [OSTI]

    Christian, Eric

    radioisotope power generator. The multi- mission radioisotope thermoelectric generator produces electricity an operating lifespan on Mars' surface of a full Mars year (687 Earth days) or more. At launch, the generator, computers and radio. Warm fluids heated by the generator's excess heat are plumbed throughout the rover

  20. DESIGN PROJECTS 2012-2013 1. Quantum Dot Light Emitting Diodes (Dr. K. Deshpande, Dow Chemical Company/Prof. M.

    E-Print Network [OSTI]

    Weaver, John H.

    by the radioactive decay of plutonium 238 to drive thermoelectric generators (radioisotope thermoelectric generators electricity generation from light hydrocarbon feedstocks. In this project, the team will design carries no solar panels on board. Instead these vehicles use the heat (energy) generated

  1. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative Research and Sharing Knowledge 2012 DOE...

  2. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE Hydrogen and Fuel...

  3. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research and sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge 2011 DOE...

  4. Characterization of thermoelectric elements and devices by impedance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of thermoelectric elements and devices by impedance spectroscopy Home Author: A. D. Downey, T. P. Hogan, B. Cook Year: 2007 Abstract: This article describes a new...

  5. Sandia Energy - Sandia Researchers Are First to Measure Thermoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and have no moving parts, making them extremely attractive for cooling and energy harvesting applications. Thermoelectric metal-organic frameworks (MOFs) could take these...

  6. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

  7. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  8. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions. deer09yang2.pdf More Documents & Publications...

  9. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland. merit08schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Efficiency Improvement in an...

  10. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most...

  11. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2006deerschock.pdf More Documents & Publications Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Development of Thermoelectric...

  12. Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite Materials for...

  13. Automotive Thermoelectric Moduleswith Scalable Thermo- andElectro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Interface materials based on...

  14. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery; Maassen, Joel R.; Engle, Jonathan W.; Batista, Enrique R.; Martin, Richard L.; Nortier, Francois M.; Fassbender, Michael E.; John, Kevin D.; et al

    2015-05-01T23:59:59.000Z

    The use of ?-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted ?-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³?, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (Lpy), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (Lpz), were prepared by a previously reported method and investigated here for their abilitiesmore »to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A??-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²??Bi (t1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³? and the generator parent ion Ac³?.In contrast to DOTA and CHX-A??-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³? in the presence of the parent isotope Ac³?. Among the four tested, Lpy was found to exhibit optimal Bi³?-binding kinetics and complex stability. Lpy complexes Bi³? more rapidly than DOTA, yet the resulting complexes are of similar stability. DFT calculations corroborate the experimentally observed selectivity of these ligands for Bi³? over Ac³?. Taken together, these data implicate Lpy as a valuable chelating agent for the delivery of ²¹³Bi. Its selectivity for Bi³? and rapid and stable labeling properties warrant further investigation and biological studies.« less

  15. Calculated thermoelectric properties of InxGa1-xN, InxAl1-xN, and AlxGa1-xN

    E-Print Network [OSTI]

    Sztein, Alexander; Haberstroh, John; Bowers, John E; DenBaars, Steven P; Nakamura, Shuji

    2013-01-01T23:59:59.000Z

    183707 (2013) Calculated thermoelectric properties of In xonline 10 May 2013) The thermoelectric properties of III-In order to predict thermoelectric performances and identify

  16. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect (OSTI)

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01T23:59:59.000Z

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  17. A microscopic mechanism for increasing thermoelectric efficiency

    E-Print Network [OSTI]

    Keiji Saito; Giuliano Benenti; Giulio Casati

    2010-05-26T23:59:59.000Z

    We study the coupled particle and energy transport in a prototype model of interacting one-dimensional system: the disordered hard-point gas, for which numerical data suggest that the thermoelectric figure of merit ZT diverges with the system size. This result is explained in terms of a microscopic mechanism, namely the local equilibrium is characterized by the emergence of a broad stationary "modified Maxwell-Boltzmann velocity distribution", of width much larger than the mean velocity of the particle flow.

  18. General Relativistic Thermoelectric Effects in Superconductors

    E-Print Network [OSTI]

    B. J. Ahmedov

    2007-01-13T23:59:59.000Z

    We discuss the general-relativistic contributions to occur in the electromagnetic properties of a superconductor with a heat flow. The appearance of general-relativistic contribution to the magnetic flux through a superconducting thermoelectric bimetallic circuit is shown. A response of the Josephson junctions to a heat flow is investigated in the general-relativistic framework. Some gravitothermoelectric effects which are observable in the superconducting state in the Earth's gravitational field are considered.

  19. A computational analysis of the evaporator/artery of an alkali metal thermal to electric conversion (AMTEC) PX series cell

    E-Print Network [OSTI]

    Pyrtle, Frank

    1999-01-01T23:59:59.000Z

    , while minimizing mass. Current technology, such as Radioisotope Thermoelectric Generators (RTG's) are reliable, but do not supply the power conversion efficiencies desired for future space missions. That leads to Alkali Metal Thermal to Electric...-series cells to generate electricity for the deep space vehicle. The higher efficiency of AMTEC compared to other conversion technologies, such as Radioisotope Thermoelectric Generators (RTG's), results in less energy source material being launched...

  20. Thermoelectric Potential of Bi and Bi1-x Sbx Nanowire M. S. Dresselhausa,b

    E-Print Network [OSTI]

    Cronin, Steve

    Thermoelectric Potential of Bi and Bi1-x Sbx Nanowire Arrays M. S. Dresselhausa,b , Y.-M. Lina , O for thermoelectric applications is discussed. The advantages of bismuth as a low dimensional thermoelectric material as the wire diameter as materials parameters for optimizing the thermoelectric performance of these nanowires

  1. Thermoelectric Transport Properties of Single Bismuth Nanowires S. B. Cronin1

    E-Print Network [OSTI]

    Cronin, Steve

    Thermoelectric Transport Properties of Single Bismuth Nanowires S. B. Cronin1 , Y.-M. Lin3 , M thermoelectric material. Bi nanowires, however, have been predicted to have a high thermoelectric efficiency [1,2]. The thermoelectric enhancement is based on the sharp features in the one-dimensional density of states

  2. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 1, JANUARY 2008 423 Quantum Modeling of Thermoelectric

    E-Print Network [OSTI]

    Walker, D. Greg

    of Thermoelectric Properties of Si/Ge/Si Superlattices Anuradha Bulusu and D. Greg Walker Abstract, thermoelectric. I. INTRODUCTION THE EFFICIENCY of thermoelectric materials is usually characterized by the dimensionless thermoelectric figure of merit ZT = (S2 T)/, where S is the Seebeck coefficient

  3. Intersociety Energy Conversion Engineering Conference Proc., Vancouver, BC, Canada, 992569 (1999) Miniaturized Thermoelectric Power Sources

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    is the discovery and infusion of novel thermoelectric materials more efficient above room temperature than

  4. Choosing the Right Electrical Power Supply Scientists could find clues for answering these and oth-

    E-Print Network [OSTI]

    lifetimes. An eighth RPS configuration, called the Multi-Mission Radioisotope Thermoelectric Generator a Radioisotope Power System (RPS). An RPS converts the heat generated by the natural decay of the radioactive in space and on plan- etary surfaces. Developing and Improving RPS Technology Seven generations of RPS have

  5. Radioisotope Electric Propulsion for Deep Space Sample Return

    SciTech Connect (OSTI)

    Noble, Robert J.; /SLAC

    2009-07-14T23:59:59.000Z

    The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

  6. Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes

    E-Print Network [OSTI]

    Choi, Kyung Who

    2013-12-03T23:59:59.000Z

    with ~100 S/m of electrical conductivity, resulting ~10,000 µW/m-K2 of power factor. The result of this study shows that organic thermoelectric materials would be a promising approach for thermoelectric applications with light-weight and non-toxic nature....

  7. 2014 NASA Planetary Science Summer School Applications Open NASA is accepting applications from science and engineering post-docs,

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Thermoelectric Generators (MMRTG). The session in August will have a targeted focus on spacecraft power systems power system trade-offs, including the use of solar electric vs. Multi-mission Radioisotope

  8. GPHS-RTGs in support of the Cassini mission. Semi-annual technical report, 30 March 1992--27 September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The technical progress achieved during the period 30 March through 27 September 1992 on Contract DE-AC03-91SF18852.000 Radioisotope Thermoelectric Generators and Acillary Activities is described herein.

  9. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOE Patents [OSTI]

    Knapp, Jr., Furn F. (Oak Ridge, TN); Lisic, Edward C. (Cookeville, TN); Mirzadeh, Saed (Knoxville, TN); Callahan, Alvin P. (Harriman, TN)

    1994-01-01T23:59:59.000Z

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  10. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOE Patents [OSTI]

    Knapp, Jr., Furn F. (Oak Ridge, TN); Lisic, Edward C. (Cookeville, TN); Mirzadeh, Saed (Knoxville, TN); Callahan, Alvin P. (Harriman, TN)

    1993-01-01T23:59:59.000Z

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  11. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOE Patents [OSTI]

    Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.

    1993-02-16T23:59:59.000Z

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  12. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOE Patents [OSTI]

    Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.

    1994-01-04T23:59:59.000Z

    A generator system has been invented for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form. 1 figure.

  13. Electronically and ionically conducting electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Novak, Robert F. (Farmington Hills, MI); Weber, Neill (Murray, UT)

    1987-01-01T23:59:59.000Z

    A composite article comprising a porous cermet electrode on a dense solid electrolyte and method of making same. The cerment electrode comprises beta-type-alumina and refractory metal.

  14. Cost-Competitive Advanced Thermoelectric Generators for Direct...

    Broader source: Energy.gov (indexed) [DOE]

    Accomplishments and Progress (cont.) 13 * We developed oxidation suppressing enamel coatings for skutterudite materials * We observed that enamel shows excellent protection...

  15. ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS

    E-Print Network [OSTI]

    efficiency, have had limited applications such as in wrist watch [1], vehicle exhaust [2], extraterrestrial ship [3] and autonomous sensors on the body [4]. In rare case, it is also observed for electronics

  16. Development of a 500 Watt High Temperature Thermoelectric Generator

    Broader source: Energy.gov (indexed) [DOE]

    * TEG thermal and electrical interfaces modified to withstand high temperature environment 8 5 August, 2009 Deer 2009 9 100 Watt High Temperature TEG 100 Watt High...

  17. Thermoelectric Generator Development at Renault Trucks-Volvo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of trucks and passenger cars, where relatively low exhaust temperature is challenging for waste heat recovery systems aixala.pdf More Documents & Publications RENOTER Project...

  18. Scaling Considerations for Thermoelectric Generators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess| Department of Energy

  19. Overview of Progress in Thermoelectric Power Generation Technologies in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmissionProgramTechnologiesCells

  20. Overview of Thermoelectric Power Generation Technologies in Japan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment of Energy Research|