Sample records for radioisotope power systems

  1. New Horizons Mission Powered by Space Radioisotope Power Systems...

    Energy Savers [EERE]

    New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems January 30, 2008 - 6:47pm Addthis Artist's concept...

  2. Assembly of radioisotope power systems at Westinghouse Hanford Company

    SciTech Connect (OSTI)

    Alderman, C.J.

    1990-04-01T23:59:59.000Z

    Long-term space flight requires reliable long-term power sources. For the purpose of supplying a constant supply of power in deep space, the radioisotope thermoelectric generator has proven to be a successful power source. Westinghouse Hanford Company is installing the Radioisotope Power Systems Facility which is located in the Fuels and Material Examination Facility on the Hanford Site near Richland, Washington, for assembling the generators. The radioisotope thermoelectric generator assembly process is base upon one developed at Mound Laboratory in Miamisburg, Ohio (presently operated by EG G Mound Applied Technologies). Westinghouse Hanford Company is modernizing the process to ensure the heat source assemblies are produced in a manner that maximizes operator safety and is consistent with today's environmental and operational safety standards. The facility is being prepared to assemble the generators required by the National Aeronautics and Space Administration missions for CRAF (Comet Rendezvous Asteroid Flyby) in 1995 and Cassini, an investigation of Saturn and its moons, in 1996. The facility will also have the capability to assemble larger radioisotope power generators designed for dynamic power generation. 4 refs., 11 figs.

  3. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect (OSTI)

    Schmidt, George R.; Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  4. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01T23:59:59.000Z

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  5. EIS-0373: Proposed Consolidation of Nuclear Operations Related to the Production of Radioisotope Power Systems

    Broader source: Energy.gov [DOE]

    NOTE: EIS-0373 has been cancelled. This EIS evaluates the environmental impacts of consolidating nuclear activities related to production of radioisotope power systems (RPS) for space and national security missions at a single DOE site: the preferred alternative is the Materials and Fuels Complex at Idaho National Laboratory.

  6. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    SciTech Connect (OSTI)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01T23:59:59.000Z

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  7. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    SciTech Connect (OSTI)

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 301-445W, Pasadena, CA 91109-8099 (United States)

    2006-01-20T23:59:59.000Z

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to 'hop' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power ({>=}330 We at beginning of life) during the 10-year cruise and 1-year science mission ({approx}11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030.

  8. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    SciTech Connect (OSTI)

    Carpenter, Robert; Kumar, V; Ore, C; Schock, Alfred

    2001-01-01T23:59:59.000Z

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.

  9. Status of an advanced radioisotope space power system using free-piston Stirling technology

    SciTech Connect (OSTI)

    White, M.A,; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-07-01T23:59:59.000Z

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel alternator electrical connections, thereby reducing vibration levels by more than an order of magnitude. It will also demonstrate use of an artificial neural network to monitor system health without invasive instrumentation. The second NASA contract, begun in January 1998, will develop an active adaptive vibration reduction system to be integrated with the DOE-funded TDC convertors. Preliminary descriptions and specifications of the Stirling convertor design, as well as program status and plans, are included.

  10. Design and performance of radioisotope space power systems based on OSC multitube AMTEC converter designs

    SciTech Connect (OSTI)

    Schock, A.; Noravian, H.; Or, C. [Orbital Sciences Corp., Germantown, MD (United States)

    1997-12-31T23:59:59.000Z

    This paper extends the analytical procedure described in another paper in these proceedings to analyze a variety of compact and light-weight OSC-designed radioisotope-heated generators. Those generators employed General Purpose Heat Source (GPHS) modules and a converter containing sixteen AMTEC cells of OSC`s revised five-tube design with enhanced cell wall reflectivity described in a companion paper in these proceedings. OSC found that the performance of the generator is primarily a function of the thermal insulation between the outside of the generator`s 16 cells and the inside of its wall. After examining a variety of insulation options, it was found that the generator`s performance is optimized by employing a hybrid insulation system, in which the space between the cells is filled with fibrous Min-K insulation, and the generator walls are lined with tapered (i.e., graded-length) multifoil insulation. The OSC design results in a very compact generator, with eight AMTEC cells on each end of the heat source stack. The choice of the five-tube cells makes it possible to expand the BASE tube diameter without increasing the cell diameter. This is important because the eight cells mate well with the stacked GPHS modules. The OSC generator design includes a compliant heat source support and preload arrangement, to hold the heat source modules together during launch, and to maintain thermal contact conductance at the generator`s interfaces despite creep relaxation of its housing. The BOM and EOM (up to 15 years) performances of the revised generators were analyzed for two and three GPHS modules, both for fresh fuel and for aged fuel left over from a spare RTG (Radioisotope Thermoelectric Generator) fueled in 1982. The resulting power outputs were compared with JPL`s latest EOM power demand goals for the Pluto Express and Europa Orbiter missions, and with the generic goals of DOE`s Advanced Radioisotope Power System (ARPS) study. The OSC AMTEC designs yielded system efficiencies three to four times as high as present-generation RTGs.

  11. Thermoelectric Alloys and Devices for Radioisotope Space Power Systems: State of the Art and Current Developments

    SciTech Connect (OSTI)

    Barnett, W.; Dick, P.; Beaudry, B.; Gorsuch, P.; Skrabek, E.

    1989-01-01T23:59:59.000Z

    Lead telluride and silicon germanium type alloys have served over the past several decades as the preferred thermoelectric conversion materials for U. S. radioisotope thermoelectric generator (RTG) power systems for planetary deep space exploration missions. The Pioneer missions to Jupiter and Jupiter/Saturn and the Viking Mars Lander missions employed TAGS-2N (lead and germanium telluride derivatives) power conversion devices. Since 1976, silicon germanium (SiGe) alloys, incorporated into the unicouple device, have evolved as the thermoelectric materials of choice for U. S. RTG powered space missions. These include the U. S. Air Force Lincoln Experimental Satellites 8 & 9 for communications, in 1976, followed in 1977 by the National Aeronautics and Space Administration Voyager 1 and 2 planetary missions. In 1989, advanced SiGe RTGs were used to power the Galileo exploration of Jupiter and, in 1990, will be used to power the Ulysses investigation of the Sun. In addition, SiGe technology has been chosen to provide RTG power for the 1995 Comet Rendezvous and Asteroid Flyby mission and the 1996 Cassini Saturn orbiter mission. Summaries of the flight performance data for these systems are presented.; Current U. S. Department of Energy thermoelectric development activities include (1) the development of conversion devices based on hi-density, close packed couple arrays and (2) the development of improved performance silicon germanium type thermoelectric materials. The silicon germanium type "multicouple", being developed in conjunction with the Modular RTG program, is discussed in a companion paper. A lead telluride type close-packed module, discussed herein, offers the promise of withstanding high velocity impacts and, thus, is a candidate for a Mars Penetrator application.; Recent projects sponsored by the U. S. Department of Energy, including the Improved Thermoelectric Materials and Modular Radioisotope Thermoelectric Generator programs, have shown that improvements in silicon germanium thermoelectric energy conversion capabilities of at least 50 percent can be achieved by tailoring the characteristics of the silicon germanium alloy materials and devices. This paper compares the properties and characteristics of the SiGe alloys now being developed with those used in the operational space power system.

  12. Assembly and Testing of a Radioisotope Power System for the New Horizons Spacecraft

    SciTech Connect (OSTI)

    Kenneth E. Rosenberg; Stephen G. Johnson

    2006-06-01T23:59:59.000Z

    The Idaho National Laboratory (INL) recently fueled and assembled a radioisotope power system (RPS) that was used upon the New Horizons spacecraft which was launched in January 2006. New Horizons is the first mission to the last planet - the initial reconnaissance of Pluto-Charon and the Kuiper Belt, exploring the mysterious worlds at the edge of our solar system. The RPS otherwise known as a "space battery" converts thermal heat into electrical energy. The thermal heat source contains plutonium dioxide in the form of ceramic pellets encapsulated in iridium metal. The space battery was assembled in a new facility at the Idaho National Laboratory site near Idaho Falls, Idaho. The new facility has all the fueling and testing capabilities including the following: the ability to handle all the shipping containers currently certified to ship Pu-238, the ability to fuel a variety of RPS designs, the ability to perform vibrational testing to simulate transportation and launch environments, welding systems, a center of mass determination device, and various other support systems.

  13. Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms

    SciTech Connect (OSTI)

    Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

    2011-02-01T23:59:59.000Z

    Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

  14. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    SciTech Connect (OSTI)

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01T23:59:59.000Z

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  15. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect (OSTI)

    J. C. Giglio; A. A. Jackson

    2012-03-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  16. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2006 Through September 30, 2007

    SciTech Connect (OSTI)

    King, James F [ORNL

    2008-04-01T23:59:59.000Z

    The Office of Radioisotope Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Radioisotope Power Systems for fiscal year (FY) 2007. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  17. Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program

    SciTech Connect (OSTI)

    S. G. Johnson; K. L. Lively

    2010-05-01T23:59:59.000Z

    This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type ‘B’ shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

  18. Radioisotope Power Sources for MEMS Devices,

    SciTech Connect (OSTI)

    Blanchard, J.P.

    2001-06-17T23:59:59.000Z

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a {sup 63}Ni liquid source. A source volume containing 64 {micro}Ci provided a power of {approx}0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications.

  19. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEM MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2005 THROUGH SEPTEMBER 30, 2006

    SciTech Connect (OSTI)

    King, James F [ORNL

    2007-04-01T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  20. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technical Program Tasks for October 1, 2005 through September 30, 2006

    SciTech Connect (OSTI)

    None

    2007-04-02T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  1. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2004 Through September 30, 2005

    SciTech Connect (OSTI)

    King, James F [ORNL

    2006-06-01T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  2. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2003 through September 30, 2004

    SciTech Connect (OSTI)

    None listed

    2005-06-01T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2004. Production and production maintenance activities for flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  3. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2004 through September 30, 2005

    SciTech Connect (OSTI)

    None listed

    2006-08-03T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  4. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEMS MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2010 THROUGH SEPTEMBER 30, 2011

    SciTech Connect (OSTI)

    King, James F [ORNL

    2012-05-01T23:59:59.000Z

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, the Oak Ridge National Laboratory (ORNL) produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. These components were also produced for the Pluto New Horizons and Mars Science Lab missions launched in January 2006 and November 2011respectively. The ORNL has been involved in developing materials and technology and producing components for the DOE for nearly four decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2011. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS. Work has also been initiated to establish fabrication capabilities for the Light Weight Radioisotope Heater Units.

  5. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2007 Through September 30,2008

    SciTech Connect (OSTI)

    King, James F [ORNL

    2009-04-01T23:59:59.000Z

    The Office of Radioisotope Power Systems (RPS) of the Department of Energy (DOE) provides RPS for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2008. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

  6. Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01T23:59:59.000Z

    This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.

  7. Application for approval for construction of the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01T23:59:59.000Z

    The following ''Application for Approval of Construction'' is being submitted by the US Department of Energy-Richland Operations Office, pursuant to 40 CFR 61.07, for three new sources of airborne radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were canceled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building and stack and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex. 2 refs., 16 figs., 12 tabs.

  8. Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01T23:59:59.000Z

    This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.

  9. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect (OSTI)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  10. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect (OSTI)

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01T23:59:59.000Z

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  11. Finding of No Significant Impact and Final Environmental Assessment for the Future Location of Heat Source/Radioisotope Power System Assembly and Testing and Operations Currently Located at the Mound Site

    SciTech Connect (OSTI)

    N /A

    2002-08-30T23:59:59.000Z

    The U.S. Department of Energy (the Department) has completed an Environmental Assessment for the Future Location of the Heat Source/Radioisotope Power System Assembly and Test. Operations Currently Located at the Mound Site. Based on the analysis in the environmental assessment, the Department has determined that the proposed action, the relocation of the Department's heat source and radioisotope power system operations, does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the ''National Environmental Policy Act'' of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (FONSI).

  12. Direct charge radioisotope activation and power generation

    DOE Patents [OSTI]

    Lal, Amit (Madison, WI); Li, Hui (Madison, WI); Blanchard, James P. (Madison, WI); Henderson, Douglass L. (Madison, WI)

    2002-01-01T23:59:59.000Z

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  13. Radioisotopes: Energy for Space Exploration

    ScienceCinema (OSTI)

    Carpenter, Bob; Green, James; Bechtel, Ryan

    2013-05-29T23:59:59.000Z

    Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

  14. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Adkins, H.E.; Bearden, T.E. (Westinghouse Hanford Company, P.O. Box 1970, N1-42, Richland, Washington 99352 (US))

    1991-01-01T23:59:59.000Z

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable U.S. Department of Transportation regulations without the use of a DOE Alternative.'' The U.S. Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992.

  15. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Adkins, H.E.; Bearden, T.E.

    1990-10-01T23:59:59.000Z

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  16. Radioisotope-powered cardiac pacemaker program. Clinical studies of the nuclear pacemaker model NU-5. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Beginning in February, 1970, the Nuclear Materials and Equipment Corporation (NUMEC) undertook a program to design, develop and manufacture a radioisotope powered cardiac pacemaker system. The scope of technical work was specified to be: establish system, component, and process cost reduction goals using the prototype Radioisotope Powered Cardiac Pacemaker (RCP) design and develop production techniques to achieve these cost reduction objectives; fabricate radioisotope powered fueled prototype cardiac pacemakers (RCP's) on a pilot production basis; conduct liaison with a Government-designated fueling facility for purposes of defining fueling requirements, fabrication and encapsulation procedures, safety design criteria and quality control and inspection requirements; develop and implement Quality Assurance and Reliability Programs; conduct performance, acceptance, lifetime and reliability tests of fueled RCP's in the laboratory; conduct liaison with the National Institutes of Health and with Government specified medical research institutions selected for the purpose of undertaking clinical evaluation of the RCP in humans; monitor and evaluate, on a continuing basis, all test data; and perform necessary safety analyses and tests. Pacemaker designs were developed and quality assurance and manufacturing procedures established. Prototype pacemakers were fabricated. A total of 126 radioisotope powered units were implanted and have been followed clinically for approximately seven years. Four (4) of these units have failed. Eighty-three (83) units remain implanted and satisfactorily operational. An overall failure rate of less than the target 0.15% per month has been achieved.

  17. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect (OSTI)

    King, D.A.

    1994-11-10T23:59:59.000Z

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  18. A prototype on-line work procedure system for radioisotope thermoelectric generator production

    SciTech Connect (OSTI)

    Kiebel, G.R.

    1991-09-01T23:59:59.000Z

    An on-line system to manage work procedures is being developed to support radioisotope thermoelectric generator (RTG) assembly and testing in a new production facility. This system implements production work procedures as interactive electronic documents executed at the work site with no intermediate printed form. It provides good control of the creation and application of work procedures and provides active assistance to the worker in performing them and in documenting the results. An extensive prototype of this system is being evaluated to ensure that it will have all the necessary features and that it will fit the user's needs and expectations. This effort has involved the Radioisotope Power Systems Facility (RPSF) operations organization and technology transfer between Westinghouse Hanford Company (Westinghouse Hanford) and EG G Mound Applied Technologies Inc. (Mound) at the US Department of Energy (DOE) Mound Site. 1 ref.

  19. Method and system for radioisotope generation

    DOE Patents [OSTI]

    Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.

    2014-07-15T23:59:59.000Z

    A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.

  20. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    SciTech Connect (OSTI)

    McCoy, J.C.

    1995-10-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

  1. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    SciTech Connect (OSTI)

    McCoy, J.C.; Becker, D.L. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

    1996-03-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

  2. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect (OSTI)

    Pugh, Barry K. [EG and G Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio 45343-3000 (United States)

    1997-01-10T23:59:59.000Z

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  3. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect (OSTI)

    Pugh, B.K. [EGG Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio45343-3000 (United States)

    1997-01-01T23:59:59.000Z

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG{close_quote}s performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS. {copyright} {ital 1997 American Institute of Physics.}

  4. Analysis, Optimization, and Assessment of Radioisotope Thermophotovoltaic System Design for an Illustrative Space Mission

    SciTech Connect (OSTI)

    Schock, Alfred; Mukunda, Meera; Summers, G.

    1994-06-28T23:59:59.000Z

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPV's are of course much less mature than RTGs, but our results indicate that - when fully developed - they could result in a 60% reduction of the heat source's mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system's specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV's current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g. RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 degrees C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low mass generators. Another copy is in the Energy Systems files.

  5. Analysis, optimization, and assessment of radioisotope thermophotovoltaic system design for an illustrative space mission

    SciTech Connect (OSTI)

    Schock, A.; Mukunda, M.; Or, C.; Summers, G. [Fairchild Space and Defense Corporation, Germantown, Maryland 20874 (United States)

    1995-01-05T23:59:59.000Z

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPVs are of course much less mature than RTGs, but our results indicate that---when fully developed---they could result in a 60% reduction of the heat source`s mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system`s specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV`s current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g., RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 {degree}C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low-mass generators. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect (OSTI)

    Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

    2009-03-16T23:59:59.000Z

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  7. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect (OSTI)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01T23:59:59.000Z

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  8. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    SciTech Connect (OSTI)

    Noble, Robert J.; /SLAC; Amini, Rashied; Beauchamp, Patricia M.; /Caltech, JPL; Bennett, Gary L.; /Metaspace Enterprises; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; /Caltech, JPL; Fernandez, Yan R.; /Central Florida U.; Grundy, Will; /Lowell Observ.; Khan, Mohammed Omair; /Caltech, JPL; King, David Q.; /Aerojet; Lang, Jared; /Caltech, JPL; Meech, Karen J.; /Hawaii U.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; /GRC; Spilker, Thomas; West, John L.; /Caltech, JPL; ,

    2010-05-26T23:59:59.000Z

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  9. advanced radioisotope power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  10. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    SciTech Connect (OSTI)

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01T23:59:59.000Z

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds to the complexity of the mission architecture.

  11. Space Technology and Applications International Forum Proceedings, Albuquerque, New Mexico, January 2000 Miniaturized Radioisotope Solid State Power Sources

    E-Print Network [OSTI]

    thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However 2000 Miniaturized Radioisotope Solid State Power Sources J.-P. Fleurial, G.J. Snyder, J. Patel, J-pierre.fleurial@jpl.nasa.gov Abstract. Electrical power requirements for the next generation of deep space missions cover a wide range

  12. Radioisotope thermoelectric generator load and unload sequence from the licensed hardware package system and the trailer system

    SciTech Connect (OSTI)

    Reilly, M.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    The Radioisotope Thermoelectric Generator Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), including the Radioisotope Thermoelectric Generator Transportation System packaging is licensed (regularoty) hardware, certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. This paper focuses on the required interfaces and sequencing of events required by these systems and the shipping and receiving facilities in preparation of the Radioisotope Thermoelectric Generator for space flight. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  13. Alternative Fuel Sources for Radioisotope Thermoelectric Generators 

    E-Print Network [OSTI]

    Parker, Trevor Drake

    2014-09-18T23:59:59.000Z

    configurations and materials would ideally be examined as well. Possible fuel assembly designs have been hypothesized by Ambrosi at the Nuclear and Emerging Technologies for Space Conference (2012) [4]. Preliminary research has shown that Am-241, Cm-242, Po.... AMBROSI, et al., “Development and Testing of Americium-241 Radioisotope Thermoelectric Generator: Concept Designs and Breadboard System,” Nuclear and Emerging Technologies for Space, (2012). 5. M. RAGHEB, “Radioisotopes Power Production,” mragheb...

  14. Alternaive Fuel Sources For Radioisotope Thermoelectric Generators 

    E-Print Network [OSTI]

    Gonzalez, Evan Sebastain

    2015-04-23T23:59:59.000Z

    configurations and materials would ideally be examined as well. Possible fuel assembly designs have been hypothesized by Ambrosi at the Nuclear and Emerging Technologies for Space Conference (2012) [4]. Preliminary research has shown that Am-241, Cm-242, Po.... AMBROSI, et al., “Development and Testing of Americium-241 Radioisotope Thermoelectric Generator: Concept Designs and Breadboard System,” Nuclear and Emerging Technologies for Space, (2012). 5. M. RAGHEB, “Radioisotopes Power Production,” mragheb...

  15. NASA's Planetary Science Program Support of Radioisotope

    E-Print Network [OSTI]

    Rathbun, Julie A.

    500 1000 1500 2000 MMRTG ASRG Total Thermal Power Waste Heat Electric power = 1 GPHS block 7 #12NASA's Planetary Science Program Support of Radioisotope Power Capability James L. Green, Director timeline · ASRG and MMRTG systems and plans · DoE Infrastructure Review · Summary 2 #12;Over 50 years

  16. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-05-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG`S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG`S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria.

  17. An on-line information system for radioisotope thermal generator production

    SciTech Connect (OSTI)

    Kiebel, G.R.; Wiemers, M.J. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (US))

    1991-01-01T23:59:59.000Z

    An on-line production information system has been designed to support radioisotope thermal generator assembly and testing in a new facility being built at the Department of Energy Hanford Site in Washington State. This system is intended to make handling the large volumes of information associated with radioisotope thermal generator production and certification more efficient with less opportunity for error than traditional paper methods. It provides for tracking materials, implementing work procedures directly from computer terminals, and cross referencing among materials, procedures, and other documents related to production. This system will be implemented on a network of microcomputers using UNIX{sup TM} for its operating system. It has been designed to allow increased capabilities to be added as operating experience with the new facility dictates.

  18. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    SciTech Connect (OSTI)

    Satoh, J.A.

    1994-11-09T23:59:59.000Z

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

  19. New Horizons Mission Powered by Space Radioisotope Power Systems |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNew

  20. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-03-18T23:59:59.000Z

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  1. The Mars Hopper: a radioisotope powered, impulse driven, long-range, long-lived mobile platform for exploration of Mars

    SciTech Connect (OSTI)

    Steven D. Howe; Robert C. O'Brien; William Taitano; Doug Crawford; Nathan Jerred; Spencer Cooley; John Crapeau; Steve Hansen; Andrew Klein; James Werner

    2011-02-01T23:59:59.000Z

    Planetary exploration mission requirements are becoming more demanding. Due to the increasing cost, the missions that provide mobile platforms that can acquire data at multiple locations are becoming more attractive. Wheeled vehicles such as the MER rovers have proven extremely capable but have very limited range and cannot traverse rugged terrain. Flying vehicles such as balloons and airplanes have been proposed but are problematic due to the very thin atmospheric pressure and the strong, dusty winds present on Mars. The Center for Space Nuclear Research has designed an instrumented platform that can acquire detailed data at hundreds of locations during its lifetime - a Mars Hopper. The Mars Hopper concept utilizes energy from radioisotopic decay in a manner different from any existing radioisotopic power sources—as a thermal capacitor. By accumulating the heat from radioisotopic decay for long periods, the power of the source can be dramatically increased for short periods. The platform will be able to "hop" from one location to the next every 5-7 days with a separation of 5-10 km per hop. Preliminary designs show a platform that weighs around 52 kgs unfueled which is the condition at deployment. Consequently, several platforms may be deployed on a single launch from Earth. With sufficient lifetime, the entire surface of Mars can be mapped in detail by a couple dozen platforms. In addition, Hoppers can collect samples from all over the planet, including gorges, mountains and crevasses, and deliver them to a central location for eventual pick-up by a Mars Sample Return mission. The status of the Mars Hopper development project at the CSNR is discussed.

  2. A compendium of the radioisotope thermoelectric generator transportation system and recent programmatic changes

    SciTech Connect (OSTI)

    Becker, D.L.; McCoy, J.C.

    1996-03-01T23:59:59.000Z

    Because RTGs contain significant quantities of radioactive materials, usually plutonium-238 and its decay products, they must be transported in packages built in accordance with 10 CFR 71 (1994). To meet these regulatory requirements, US DOE commissioned Westinghouse Hanford Co. in 1988 to develop a Radioisotope Thermoelectric Generator Transportation System (RTGTS) that would fully comply while protecting RTGs from adverse environmental conditions during normal transport conditions (eg, mainly shock and heat). RTGTS is scheduled for completion Dec. 1996 and will be available to support NASA`s Cassini mission to Saturn in Oct. 1997. This paper provides an overview of the RTGTS project, discusses the hardware being produced, and summarizes various programmatic and management innovations required by recent changes at DOE.

  3. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    SciTech Connect (OSTI)

    N. D. Jerred; T. M. Howe; S. D. Howe; A. Rajguru

    2014-02-01T23:59:59.000Z

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.

  4. Materials Technology Support for Radioisotope Power Systems Final Report

    SciTech Connect (OSTI)

    Daniel P. Kramer; Chadwick D. Barklay

    2008-10-07T23:59:59.000Z

    Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules.

  5. Audit of Funding for Advanced Radioisotope Power Systems, IG-0413

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName4Services Requirements Discussed In

  6. A facility to remotely assemble radioisotope thermoelectric generators

    SciTech Connect (OSTI)

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

  7. Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system

    SciTech Connect (OSTI)

    Szabo, Jeffrey G.; Impellitteri, Christopher A.; Govindaswamy, Shekar; Hall, John S.; (EPA); (Lakeshore)

    2010-01-12T23:59:59.000Z

    Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100 mg L{sup -1} solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5 M ammonia and 0.36 M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.

  8. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    SciTech Connect (OSTI)

    Greenfield, Bryce A.

    2009-12-20T23:59:59.000Z

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coverage in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.

  9. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2007-10-02T23:59:59.000Z

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  10. Radioisotope thermoelectric generator reliability and safety

    SciTech Connect (OSTI)

    Campbell, R.; Klein, J.

    1989-01-01T23:59:59.000Z

    There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

  11. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

  12. Radioisotope Thermoelectric Generator Transporation System licensed hardware second certification test series and package shock mount system test

    SciTech Connect (OSTI)

    Ferrell, P.C.; Moody, D.A.

    1995-10-01T23:59:59.000Z

    This paper presents a summary of two separate drop test a e performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of Title 10, Code of Federal Regulations, ``Part 71`` (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, Transit Drop Procedure (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G`s at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G`s was not exceeded in any test from a free drop height of 457 mm (18 in.).

  13. Radioisotope Thermoelectric Generator Transportation System licensed hardware second certification test series and package shock mount system test

    SciTech Connect (OSTI)

    Ferrell, P.C.; Moody, D.A. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

    1996-03-01T23:59:59.000Z

    This paper presents a summary of two separate drop test activities that were performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of {ital Title} 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, {open_quote}{open_quote}Part 71{close_quote}{close_quote} (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the U.S. Department of Energy{close_quote}s (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, {ital Transit} {ital Drop} {ital Procedure} (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G{close_quote}s at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G{close_quote}s was not exceeded in any test from a free drop height of 457 mm (18 in.). {copyright} {ital 1996 American Institute of Physics.}

  14. High efficiency radioisotope thermophotovoltaic prototype generator

    SciTech Connect (OSTI)

    Avery, J.E.; Samaras, J.E.; Fraas, L.M.; Ewell, R. [JX Crystals, Inc., Issaquah, WA (United States)

    1995-10-01T23:59:59.000Z

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, the authors present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. They compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. They find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. The authors propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter.

  15. Crowd-powered systems

    E-Print Network [OSTI]

    Bernstein, Michael Scott

    2012-01-01T23:59:59.000Z

    Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor ...

  16. Power System load management

    SciTech Connect (OSTI)

    Rudenko, Yu.N.; Semenov, V.A.; Sovalov, S.A.; Syutkin, B.D.

    1984-01-01T23:59:59.000Z

    The variation in demand nonuniformity is analyzed for the Unified Electric Power System of the USSR and certain interconnected power systems; the conditions for handling such nonuniformity with utilization of generating equipment having differing flexibility capabilities are also considered. On this basis approaches and techniques for acting on user loads, load management, in order to assure a balance between generated and consumed power are considered.

  17. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect (OSTI)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01T23:59:59.000Z

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  18. Power Systems Control Architecture

    SciTech Connect (OSTI)

    James Davidson

    2005-01-01T23:59:59.000Z

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  19. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    SciTech Connect (OSTI)

    Ferrell, P.C.

    1996-04-18T23:59:59.000Z

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  20. Radioisotope Thermophotovoltaic (RTPV) Generator and Its Application to the Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred; Mukunda, Meera; Or, Chuen T; Kumar, Vasanth; Summers, G.

    1994-01-16T23:59:59.000Z

    This paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator. Instead of conducting a generic study, it was decided to focus the design by directing it at a specific space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a one-year post-encounter cruise. Because of Pluto's long distance from the sun (30-50 A.U.) and the mission's large energy demand, JPL has baselined the use of a radioisotope power system for the PFF spacecraft. The chief advantage of Radioisotope Thermophotovoltaic (RTPV) power systems over current Radioisotope Thermoelectric Generators (RTGs) is their much higher conversion efficiency, which greatly reduces the mass and cost of the required radioisotope heat source. Those attributes are particularly important for the PFF mission, which - like all NASA missions under current consideration - is severely mass- and cost-limited. The paper describes the design of the radioisotope heat source, the thermophotovoltaic converter, and the heat rejection system; and presents the results of the thermal, electrical, and structural analysis and the design optimization of the integrated RTPV system. It briefly summarizes the RTPV system's current technology status, and lists a number of factors that my greatly reduce the need for long-term tests to demonstrate generator lifetime. Our analytical results show very substantial performance improvements over an RTG designed for the same mission, and suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the PFF mission but also for other future missions requiring small, long-lived, low-mass generators. There is a duplicate copy.

  1. Efficient Power System State Estimation

    E-Print Network [OSTI]

    Lavaei, Javad

    monitoring of power systems. 2. Background Power systems have four main components: transmission, sub-transmissionEfficient Power System State Estimation Zafirah Baksh Expected BS, Department of Electrical Engineering May 2013 ELEN E4511 Power Systems Analysis Professor Javad Lavaeiyanesi #12;1. Introduction Power

  2. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  3. Laser satellite power systems

    SciTech Connect (OSTI)

    Walbridge, E.W.

    1980-01-01T23:59:59.000Z

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  4. Power line detection system

    DOE Patents [OSTI]

    Latorre, V.R.; Watwood, D.B.

    1994-09-27T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  5. Power line detection system

    DOE Patents [OSTI]

    Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

    1994-01-01T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  6. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    1993-10-01T23:59:59.000Z

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 5 copies in the file.

  7. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    2012-01-19T23:59:59.000Z

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 2 copies in the file.

  8. Power System Dispatcher (Technical Writer)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Transmission Switching, (J4100) 5555...

  9. High power connection system

    DOE Patents [OSTI]

    Schaefer, Christopher E. (Warren, OH); Beer, Robert C. (Noblesville, IN); McCall, Mark D. (Youngstown, OH)

    2000-01-01T23:59:59.000Z

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  10. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  11. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  12. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis (Burnt Hills, NY) [Burnt Hills, NY; Anderson, Todd Alan (Niskayuna, NY) [Niskayuna, NY

    2008-02-19T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  13. Dynamic Reactive Power Control of Isolated Power Systems

    E-Print Network [OSTI]

    Falahi, Milad

    2012-10-03T23:59:59.000Z

    This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

  14. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of indirect...

  15. An Approach to Autonomous Control for Space Nuclear Power Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)

    2011-01-01T23:59:59.000Z

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  16. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01T23:59:59.000Z

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  17. CURENT Course Power System Toolbox

    E-Print Network [OSTI]

    Mitchell, John E.

    CURENT Course Power System Toolbox Prof. Joe H. Chow Rensselaer Polytechnic Institute ECSE Department August 25, 2014 #12;Power System Toolbox Developers: Joe Chow, Kwok Cheung, and Graham Rogers (Ontario Hydro and Cherry Tree Scientific Software) Power System Toolbox uses MATLAB code to perform (1

  18. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    are many solar photovoltaic power plants internationally andUSA, Blythe, CA Solar electric power plant, Blythe USA, SanTX Blue Wing solar electric power plant USA, Jacksonville,

  19. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2004-04-30T23:59:59.000Z

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  20. Heat and Power Systems Design

    E-Print Network [OSTI]

    Spriggs, H. D.; Shah, J. V.

    HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

  1. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-11-01T23:59:59.000Z

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  2. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  3. 2007 NET SYSTEM POWER REPORT STAFFREPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2007 NET SYSTEM POWER REPORT STAFFREPORT April 2008 CEC-200 .................................................................................................................. 1 Net System Power Findings.............................................................................................. 4 Net System Power and Sources of California Electric Generation

  4. Computing Criticality of Lines in Power Systems

    E-Print Network [OSTI]

    Pinar, Ali; Reichert, Adam; Lesieutre, Bernard

    2006-01-01T23:59:59.000Z

    sqopt snopt.html [8] “Power system test case archive. ” [IEEE Transactions on Power Systems, vol. 19, pp. [3] V.contingencies in electric power systems,” IEEE Transactions

  5. System and method to improve the power output and longevity of a radioisotope thermoelectric generator

    SciTech Connect (OSTI)

    Mowery, A.L. Jr.

    1993-09-21T23:59:59.000Z

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload. 1 figures.

  6. System and method to improve the power output and longetivity of a radioisotope thermoelectric generator

    SciTech Connect (OSTI)

    Mowery, A.L. Jr.

    1992-12-31T23:59:59.000Z

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

  7. System and method to improve the power output and longetivity of a radioisotope thermoelectric generator

    DOE Patents [OSTI]

    Mowery, Jr., Alfred L. (Potomac, MD)

    1993-01-01T23:59:59.000Z

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

  8. Body powered thermoelectric systems

    E-Print Network [OSTI]

    Settaluri, Krishna Tej

    2012-01-01T23:59:59.000Z

    Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

  9. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information ASD Groups ESHQA Operations Argonne Home > Advanced Photon Source > Power Systems Group This page is currently under construction. Old PS Group Site (visible...

  10. A 5 MW TRIGA reactor design for radioisotope production

    SciTech Connect (OSTI)

    Veca, Anthony R.; Whittemore, William L. [General Atomics, San Diego, CA (United States)

    1994-07-01T23:59:59.000Z

    The production and preparation of commercial-scale quantities of radioisotopes has become an important activity as their medical and industrial applications continue to expand. There are currently various large multipurpose research reactors capable of producing ample quantities of radioisotopes. These facilities, however, have many competing demands placed upon them by a wide variety of researchers and scientific programs which severely limit their radioisotope production capability. A demonstrated need has developed for a simpler reactor facility dedicated to the production of radioisotopes on a commercial basis. This smaller, dedicated reactor could provide continuous fission and activation product radioisotopes to meet commercial requirements for the foreseeable future. The design of a 5 MW TRIGA reactor facility, upgradeable to 10 MW, dedicated to the production of industrial and medical radioisotopes is discussed. A TRIGA reactor designed specifically for this purpose with its demonstrated long core life and simplicity of operation would translate into increased radioisotope production. As an example, a single TRIGA could supply the entire US needs for Mo-99. The facility is based on the experience gained by General Atomics in the design, installation, and construction of over 60 other TRIGAs over the past 35 years. The unique uranium-zirconium hydride fuel makes TRIGA reactors inexpensive to build and operate, reliable in their simplicity, highly flexible due to unique passive safety, and environmentally friendly because of minimal power requirements and long-lived fuel. (author)

  11. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, K.

    1983-08-09T23:59:59.000Z

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  12. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-05-01T23:59:59.000Z

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

  13. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, Kristian (Livermore, CA)

    1983-01-01T23:59:59.000Z

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  14. Power Systems of the Future

    E-Print Network [OSTI]

    Mario Rabinowitz

    2003-04-30T23:59:59.000Z

    Electric power is a vital ingredient of modern society. This paper in conjunction with previous papers was written to provide an insight into the physics and engineering that go into electric power systems and their modernization. Topics covered here are Direct Current; Superconducting Generators; Energy Storage; Voltage Sags; Grid Stability, Power System Planning and Operations; Biological Effects of Electromagnetic Fields; Dispersed Generation; Information Superhighway Synergy; Distribution Automation; Conclusion.

  15. Choosing the Right Electrical Power Supply Scientists could find clues for answering these and oth-

    E-Print Network [OSTI]

    lifetimes. An eighth RPS configuration, called the Multi-Mission Radioisotope Thermoelectric Generator a Radioisotope Power System (RPS). An RPS converts the heat generated by the natural decay of the radioactive in space and on plan- etary surfaces. Developing and Improving RPS Technology Seven generations of RPS have

  16. Power System Operator

    Broader source: Energy.gov [DOE]

    At Southeastern, you can make a direct impact by helping us deliver low-cost hydroelectric power to over one hundred electric cooperatives and municipal utilities, and over eight million end-use...

  17. Distributed Power Delivery for Energy Efficient and Low Power Systems

    E-Print Network [OSTI]

    Friedman, Eby G.

    Distributed Power Delivery for Energy Efficient and Low Power Systems Selc¸uk K¨ose Department throughout a power distribution system. Due to the parasitic impedances of the power distribution networks current to the load circuits [3]. The complexity of the high performance power delivery systems has

  18. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

  19. Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)

    SciTech Connect (OSTI)

    Barklay, Chadwick D.; Miller, Roger G.; Pugh, Barry K.; Howell, Edwin I. [EG and G Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio 45343-3000 (United States)

    1997-01-10T23:59:59.000Z

    Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been {sup 238}PuO{sub 2}, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the 'Pluto Express' mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS)

  20. Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)

    SciTech Connect (OSTI)

    Barklay, C.D.; Miller, R.G.; Pugh, B.K.; Howell, E.I. [EGG Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio45343-3000 (United States)

    1997-01-01T23:59:59.000Z

    Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been {sup 238}PuO{sub 2}, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the {open_quotes}Pluto Express{close_quotes} mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS). {copyright} {ital 1997 American Institute of Physics.}

  1. Reactive power compensating system

    DOE Patents [OSTI]

    Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

    1987-01-01T23:59:59.000Z

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  2. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04T23:59:59.000Z

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  3. Distributed vs. Centralized Power Systems Frequency Control

    E-Print Network [OSTI]

    Dimarogonas, Dimos

    Distributed vs. Centralized Power Systems Frequency Control Martin Andreasson12 , Dimos V control of electrical power systems. We propose a distributed controller which retains the reference class of large- scale systems are electrical power systems, which employ automatic generation control

  4. AUTOMATED FULL-SYSTEM POWER CHARACTERIZATION

    E-Print Network [OSTI]

    Eeckhout, Lieven

    FULL-SYSTEM POWER CHARACTERIZATION WITH DESIRED POWER CHARACTERISTICS ON MULTICORE SERVER PLATFORMS. THE FRAMEWORK CONSTRUCTS FULL-SYSTEM POWER MODELS WITH ERROR BOUNDS ON THE POWER ESTIMATES AND GUIDES THE DESIGN OF ENERGY-EFFICIENT AND COST

  5. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    PEC and PV system. The energy and area requirements for arequires the least energy and area. A MED desalination plantcompare the energy consumption and area of devices needed,

  6. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    direct solar radiation onto the PEC cell and tracking isTracking Concentration…………………….39 Figure 1.20: PV-RO System……………………………………………………………..42 Figure 1.21: Solar

  7. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2: dual bed colloidal suspension Type 3: fixed flat panel2: dual bed colloidal suspension Type 3: fixed flat panelBed Colloidal Suspension…………….37 Figure 1.18: Type 3 PEC System Reactor, Fixed

  8. Novette pulse-power-system description

    SciTech Connect (OSTI)

    Gritton, D.G.; Christie, D.J.; Holloway, R.W.; Merritt, B.T.; Oicles, J.A.; Whitham, K.; Wilcox, R.B.

    1983-01-01T23:59:59.000Z

    This paper is a summary of the pulse power systems for Novette; the flashlamp power system, the pulsers for the various optical shutters and the pulse power control system.

  9. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    www.lunera.com/. Nextek Power Systems. [cited 2010 Dec];data_files/. DC Power Systems. Wholesale Price List. [citedDUS103927W.pdf. Princeton Power Systems. GTIB-480-100 Grid-

  10. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-12-24T23:59:59.000Z

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  11. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

  12. Developing Secure Power Systems Professional Competence: Alignment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs - Phase 2 (JulyAugust 2013) Developing Secure Power Systems...

  13. Sandia National Laboratories: power flow control system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power flow control system ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

  14. Preventing power outages Power system contingency analysis on the GPU

    E-Print Network [OSTI]

    Vuik, Kees

    problem. Moreover, the power system has to keep functioning properly even when a transmission line failsPreventing power outages Power system contingency analysis on the GPU To provide electricity generators, nuclear power plants, wind turbines, etc.) and a network of lines and cables to transmit

  15. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1998-12-31T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

  16. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

    1998-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel. {copyright} {ital 1998 American Institute of Physics.}

  17. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M. A. H.; Hinckley, J. E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

    1998-01-15T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  18. Solar thermophotovoltaic space power system

    SciTech Connect (OSTI)

    Horne, W.E. (Boeing Aerospace Co., Seattle, WA); Day, A.C. (NASA, Marshall Space Flight Center, Huntsville, AL)

    1980-01-01T23:59:59.000Z

    A study has been performed on the technical feasibility and cost of a TPV system for an alternative space power supply. An analysis of six previous studies has been performed and a consistent optical, thermal, and electrical model developed. A search of the literature for materials data has been augmented by an experimental test program on materials and breadboard subsystems of the TPV. These data have been used in the model to determine the technical feasibility and the degree of performance that might be expected from such a system. A system design study was then conducted to optimize the launch configuration, the weight, and the cost of the TPV space power system. Results from this study were used to define a specific design which could be used in a detailed cost analysis. A cost analysis was then performed to determine the relative costs of the TPV power system. It appears that a system having a specific power greater than 150 W/kg can be produced for approximately 30 dollars per watt.

  19. Visualizing Power System Operationsin an Open Market

    E-Print Network [OSTI]

    Gross, George

    Visualizing Power System Operationsin an Open Market ThomasJ. Overbye',George Gross',Mark J in a revamping of the way power systems operate and the way power industry players are structured. These changes PowerWorld, a comprehensive power system simulation package developed to help meet this need

  20. Compatibility issues of potential payloads for the USA/9904/B(U)F-85 RTG transportation system (RTGTS) for the 'Pluto Express' mission

    SciTech Connect (OSTI)

    Miller, Roger G.; Barklay, Chadwick D.; Howell, Edwin I.; Frazier, Timothy A. [EG and G Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio 45343-3000 (United States); U.S. Department of Energy P.O. Box 66 Miamisburg, Ohio 45343-0066 (United States)

    1997-01-10T23:59:59.000Z

    The specific electric power system for the 'Pluto Express' mission has yet to be specified. However, electric power will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The selected radioisotopic power system will also be transported using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). As a result, all of the potential payloads present uniquely different environmental and physical configuration requirements. This paper presents the major compatibility issues of the potential payloads for the USA/9904/B(U)F-85 RTG Transportation System for the 'Pluto Express' mission.

  1. OE Power Systems Engineering Research & Development Program Partnershi...

    Office of Environmental Management (EM)

    Mission Power Systems Engineering Research and Development OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research &...

  2. Catalog of DC Appliances and Power Systems

    SciTech Connect (OSTI)

    Garbesi, Karina; Vossos, Vagelis; Shen, Hongxia

    2010-10-13T23:59:59.000Z

    This document catalogs the characteristics of current and potential future DC products and power systems.

  3. 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT April 2005 CEC-300 on net system power [Senate Bill 1305, (Sher), Chapter 796, Statute of 1997]1 . Net system power in California. Net system power plays a role in California's retail disclosure program, which requires every

  4. Accelerating the transformation of power systems

    E-Print Network [OSTI]

    Accelerating the transformation of power systems Introduction Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid

  5. Compatibility issues of potential payloads for the USA/9904/B(U)F-85 RTG transportation system (RTGTS) for the {open_quotes}Pluto Express{close_quotes} mission

    SciTech Connect (OSTI)

    Miller, R.G.; Barklay, C.D.; Howell, E.I. [EGG Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio45343-3000 (United States); Frazier, T.A. [U.S. Department of Energy P.O. Box 66 Miamisburg, Ohio45343-0066 (United States)

    1997-01-01T23:59:59.000Z

    The specific electric power system for the {open_quotes}Pluto Express{close_quotes} mission has yet to be specified. However, electric power will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The selected radioisotopic power system will also be transported using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). As a result, all of the potential payloads present uniquely different environmental and physical configuration requirements. This paper presents the major compatibility issues of the potential payloads for the USA/9904/B(U)F-85 RTG Transportation System for the {open_quotes}Pluto Express{close_quotes} mission. {copyright} {ital 1997 American Institute of Physics.}

  6. VirtualPower: Coordinated Power Management in Virtualized Enterprise Systems

    E-Print Network [OSTI]

    Yang, Junfeng

    VirtualPower: Coordinated Power Management in Virtualized Enterprise Systems Ripal Nathuji CERCS Institute of Technology Atlanta, GA 30032 schwan@cc.gatech.edu ABSTRACT Power management has become. This paper explores how to inte- grate power management mechanisms and policies with the virtualization

  7. POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

  8. Intelligent wind power prediction systems final report

    E-Print Network [OSTI]

    Intelligent wind power prediction systems ­ final report ­ Henrik Aalborg Nielsen (han (FU 4101) Ens. journal number: 79029-0001 Project title: Intelligent wind power prediction systems #12;#12;Intelligent wind power prediction systems 1/36 Contents 1 Introduction 6 2 The Wind Power Prediction Tool 7 3

  9. NET SYSTEM POWER: A SMALL SHARE OF

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NET SYSTEM POWER: A SMALL SHARE OF CALIFORNIA'S POWER MIX IN 2005 the California Energy Commission's annual calculation of net system power as required by state law (Public Utilities Code, § 398.1 - 398.5). The report also defines net system power and explains how

  10. Accelerating the transformation of power systems

    E-Print Network [OSTI]

    Accelerating the transformation of power systems Ancillary Services Peer Exchange with India in power system transformation is an increasingly vital resource for national and subnational decision of power systems. The Power Partnership is a multilateral effort of the Clean Energy Ministerial and serves

  11. Sandia National Laboratories: Concentrating Solar Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Systems Air Force Research Laboratory Testing On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News,...

  12. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle...

  13. System-level Max Power (SYMPO) -A Systematic Approach for Escalating System-level Power Consumption

    E-Print Network [OSTI]

    John, Lizy Kurian

    System-level Max Power (SYMPO) - A Systematic Approach for Escalating System-level Power a computer system for the worst case power consumption scenario, system architects often use hand-crafted max SYMPO, an automatic SYstem level Max POwer virus generation framework, which maximizes the power

  14. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    reliability evaluation of generation systems including Photovoltaic (PV) and Concentrated Solar Power (CSP) plants. Unit models of PV and CSP are developed first, and then generation system model is constructed to evaluate the reliability of generation systems...

  15. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect (OSTI)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30T23:59:59.000Z

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  16. Integration of Storage Devices into Power Systems

    E-Print Network [OSTI]

    Integration of Storage Devices into Power Systems with Renewable Energy Sources Final Project System #12;Integration of Storage Devices into Power Systems with Renewable Energy Sources Final Project report for the Power Systems Engineering Research Center (PSERC) research project titled "Integration

  17. Power Systems Stability Control : Reinforcement Learning Framework

    E-Print Network [OSTI]

    Wehenkel, Louis

    1 Power Systems Stability Control : Reinforcement Learning Framework Damien Ernst, Member, IEEE systems. We describe some challenges in power system control and discuss how some of those challenges with the real power system and the off-line mode in which the interaction occurs with a simulation model

  18. Power Systems Analysis ELEN4511 Spring 2013

    E-Print Network [OSTI]

    Lavaei, Javad

    Power Systems Analysis ELEN4511 Spring 2013 Project Paper: Communication Systems and Standards along the power grid. The grid comprised solely of electro- mechanical systems that could of communication systems on the power grid enables devices to communicate more efficiently, and also allows

  19. System and method for advanced power management

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

    2009-07-28T23:59:59.000Z

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  20. DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact - that have a special dynamic behaviour, and the wind turbines. Detailed models for each one of the power system components are developed. Emphasis is given in the representation of different hydro power plant

  1. Impact of Power Generation Uncertainty on Power System Static Performance

    E-Print Network [OSTI]

    Liberzon, Daniel

    in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

  2. Uninterruptible power supply (UPS) systems

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    Use of this purchase specification is not mandatory. User should review the document and determine if it meets the user`s purpose. This document contains a fill-in-the-blanks guide specification for the procurement of uninterruptible power supply (UPS) systems greater than 10 kVA, organized as follows: Parts 1 through 7--technical requirements; Appendix A--technical requirements to be included in the proposal; Appendix B--UPS system data sheets to be completed by each bidder (Seller) and submitted with the proposal; Appendix C--general guidelines giving the specifier parameters for selecting a UPS system; it should be read before preparing an actual specification, and is not attached to the specification; Attachment 1--sketches prepared by the purchaser (Owner); Attachment 2--sample title page.

  3. Wind Speed Forecasting for Power System Operation 

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  4. Wind Speed Forecasting for Power System Operation

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  5. Power Systems Integration Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

  6. SITE ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E.P. McCann

    1999-04-16T23:59:59.000Z

    The Site Electrical Power System receives and distributes utility power to all North Portal site users. The major North Portal users are the Protected Area including the subsurface facility and Balance of Plant areas. The system is remotely monitored and controlled from the Surface Operations Monitoring and Control System. The system monitors power quality and provides the capability to transfer between Off-Site Utility and standby power (including dedicated safeguards and security power). Standby power is only distributed to selected loads for personnel safety and essential operations. Security power is only distributed to essential security operations. The standby safeguards and security power is independent from all other site power. The system also provides surface lighting, grounding grid, and lightning protection for the North Portal. The system distributes power during construction, operation, caretaker, and closure phases of the repository. The system consists of substation equipment (disconnect switches, breakers, transformers and grounding equipment) and power distribution cabling from substation to the north portal switch gear building. Additionally, the system includes subsurface facility substation (located on surface), switch-gear, standby diesel generators, underground duct banks, power cables and conduits, switch-gear building and associated distribution equipment for power distribution. Each area substation distributes power to the electrical loads and includes the site grounding, site lighting and lightning protection equipment. The site electrical power system distributes power of sufficient quantity and quality to meet users demands. The Site Electrical Power System interfaces with the North Portal surface systems requiring electrical power. The system interfaces with the Subsurface Electrical Distribution System which will supply power to the underground facilities from the North Portal. Power required for the South Portal and development side activities of the subsurface facility will be provided at the South Portal by the Subsurface Electrical Distribution System. The Site Electrical Power System interfaces with the Off-Site Utility System for the receipt of power. The System interfaces with the Surface Operations Monitoring and Control System for monitoring and control. The System interfaces with MGR Site Layout System for the physical location of equipment and power distribution.

  7. Options for Affordable Fission Surface Power Systems

    SciTech Connect (OSTI)

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise [NASA Marshall Space Flight Center, VP31, MSFC, AL 35812 (United States)

    2006-07-01T23:59:59.000Z

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  8. Wind Power Systems 1.0 Overview

    E-Print Network [OSTI]

    Ding, Yu

    Wind Power Systems 1.0 Overview 2.0 Simulation model for wind farm operation 3.0 Research topics #12;Contents 1. Overview of wind power systems 2. Simulation model of wind farm operations 3. Research area of wind power systems 3.0 Overview 3.1 Economic dispatch 3.2 Correlation analysis 3.3 Energy

  9. 2006 NET SYSTEM POWER REPORT COMMISSIONREPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2006 NET SYSTEM POWER REPORT COMMISSIONREPORT April 2007 CEC-300 This report provides the California Energy Commission's annual calculation of net system power as required by state law (Public Utilities Code, § 398.1 - 398.5). The report also defines net system power

  10. Bifurcation Analysis of Various Power System Models

    E-Print Network [OSTI]

    Cańizares, Claudio A.

    modeling, voltage collapse. I. Introduction Voltage stability problems in power systems may occurBifurcation Analysis of Various Power System Models William D. Rosehart Claudio A. Ca This paper presents the bifurcation analysis of a detailed power system model composed of an aggregated

  11. Criteria for Practical Fusion Power Systems

    E-Print Network [OSTI]

    Criteria for Practical Fusion Power Systems: Report from the EPRI Fusion Panel By Jack Kaslow1 development of commercially vi- able fusion systems, the Electric Power Re- search Institute (EPRI) -- the R developers toward practical power systems that can obtain the financial, public, and regulatory support

  12. Power Spectra for Deterministic Chaotic Dynamical Systems

    E-Print Network [OSTI]

    Power Spectra for Deterministic Chaotic Dynamical Systems Ian Melbourne #3; Georg A. Gottwald y 8 observables. For slowly mixing systems such as Pomeau-Manneville intermittency maps, where the power spectrum done for mixing Axiom A systems [19] where the power spectrum is analytic apart from isolated

  13. Renewable and Efficient Electric Power Systems

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Renewable and Efficient Electric Power Systems Gilbert M. Masters Stanford University A JOHN WILEY & SONS, INC., PUBLICATION #12;#12;Renewable and Efficient Electric Power Systems #12;#12;Renewable and Efficient Electric Power Systems Gilbert M. Masters Stanford University A JOHN WILEY & SONS, INC

  14. Power Spectra for Deterministic Chaotic Dynamical Systems

    E-Print Network [OSTI]

    Gottwald, Georg A.

    Power Spectra for Deterministic Chaotic Dynamical Systems Ian Melbourne Georg A. Gottwald 23 July observables. For slowly mixing systems such as Pomeau-Manneville intermittency maps, where the power spectrum done for mixing Axiom A systems [19] where the power spectrum is analytic apart from isolated

  15. Agent Based Power System Transient Stability Enhancement

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Agent Based Power System Transient Stability Enhancement M. S. Rahman, Student Member, IEEE, M. J. Hossain and H. R. Pota Abstract--This paper describes an intelligent agent approach to power system fault electric power system is most capital investive and vast complex network with increasing interconnections

  16. Analysis of Power System Dynamics Subject to Stochastic Power Injections

    E-Print Network [OSTI]

    DeVille, Lee

    to the computation of long-term power system state statistics; and to short-term probabilistic dynamic performance/reliability of renewable re- sources such as wind energy conversion systems (WECS) and photovoltaic energy conversion

  17. AC system stability analysis and assessment for Shipboard Power Systems 

    E-Print Network [OSTI]

    Qi, Li

    2006-04-12T23:59:59.000Z

    The electric power systems in U.S. Navy ships supply energy to sophisticated systems for weapons, communications, navigation and operation. The reliability and survivability of a Shipboard Power System (SPS) are critical ...

  18. AC system stability analysis and assessment for Shipboard Power Systems

    E-Print Network [OSTI]

    Qi, Li

    2006-04-12T23:59:59.000Z

    The electric power systems in U.S. Navy ships supply energy to sophisticated systems for weapons, communications, navigation and operation. The reliability and survivability of a Shipboard Power System (SPS) are critical to the mission of a Navy...

  19. POWER GRID DYNAMICS: ENHANCING POWER SYSTEM OPERATION THROUGH PRONY ANALYSIS

    SciTech Connect (OSTI)

    Ray, C.; Huang, Z.

    2007-01-01T23:59:59.000Z

    Prony Analysis is a technique used to decompose a signal into a series consisting of weighted complex exponentials and promises to be an effi cient way of recognizing sensitive lines during faults in power systems such as the U.S. Power grid. Positive Sequence Load Flow (PSLF) was used to simulate the performance of a simple two-area-four-generator system and the reaction of the system during a line fault. The Dynamic System Identifi cation (DSI) Toolbox was used to perform Prony analysis and use modal information to identify key transmission lines for power fl ow adjustment to improve system damping. The success of the application of Prony analysis methods to the data obtained from PSLF is reported, and the key transmission line for adjustment is identifi ed. Future work will focus on larger systems and improving the current algorithms to deal with networks such as large portions of the Western Electricity Coordinating Council (WECC) power grid.

  20. Integrated Retail & Wholesale Power System Operation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Integrated Retail & Wholesale Power System Operation with Smart-Grid Functionality PIs: Dionysios Retail/Wholesale Power System Operation with Smart-Grid Functionality Project PIs: Dionysios Aliprantis (open-source release): AMES Wholesale Power Market Testbed (ISU) + GridLAB-D distribution platform (DOE

  1. Nova power systems: status and operating experience

    SciTech Connect (OSTI)

    Whitham, K.; Merritt, B.T.; Gritton, D.G.; Smart, A.J.; Holloway, R.W.; Oicles, J.A.

    1983-11-28T23:59:59.000Z

    This paper describes the pulse power systems that are used in these lasers; the status and the operating experiences. The pulsed power system for the Nova Laser is comprised of several distinct technology areas. The large capacitor banks for driving flashlamps that excite the laser glass is one area, the fast pulsers that drive pockels cell shutters is another area, and the contol system for the pulsed power is a third. This paper discusses the capacitor banks and control systems.

  2. Improved refractories for IGCC power systems

    SciTech Connect (OSTI)

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennet, James P.; Chinn, Richard E.; Dahlin, Cheryl L.

    2002-09-01T23:59:59.000Z

    Certain advantages make coal gasification a key element in the US Department of Energy's Vision 21 power system. However, issues of reliability and gasifier operation economics need to be resolved before gasification is widely adopted by the power generation industry.

  3. ORNL's medical radioisotope project sees centennial campaign...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    actinium-225 processing, which provides radioisotopes for medical uses that include cancer treatment. Actinium-225 is a source for bismuth-213, a short-lived, alpha-emitting...

  4. Visualizations for Power System Contingency Analysis Data

    E-Print Network [OSTI]

    whether the system is secure. With the global trend towards deregulation in the power system industry increasing. Not only has deregulation resulted in much larger system model sizes, but also CA is computed

  5. Flexibility in 21st Century Power Systems

    SciTech Connect (OSTI)

    Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; O'Malley, M.; Mueller, S.; Lannoye, E.; Tuohy, A.; Kujala, B.; Sommer, M.; Holttinen, H.; Kiviluoma, J.; Soonee, S. K.

    2014-05-01T23:59:59.000Z

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). This paper summarizes the analytic frameworks that have emerged to measure this characteristic and distills key principles of flexibility for policy makers.

  6. EIS-0299: Proposed Production of Plutonium-238 (Pu-238) for Use in Advanced Radioisotope Power Systems (RPS) for Space Missions

    Broader source: Energy.gov [DOE]

    This EIS is for the proposed production of plutonium-238 (Pu-238) using one or more DOE research reactors and facilities.

  7. Optimization Online - Stochastic Optimization for Power System ...

    E-Print Network [OSTI]

    Ludwig Kuznia

    2011-02-17T23:59:59.000Z

    Feb 17, 2011 ... Stochastic Optimization for Power System Configuration with Renewable Energy in Remote Areas. Ludwig Kuznia(lkuznia ***at*** mail.usf.edu)

  8. Sandia National Laboratories: Photovoltaic Power Systems Programme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Power Systems Programme Task 13 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in...

  9. Neutral Beam Power System for TPX

    SciTech Connect (OSTI)

    Ramakrishnan, S.; Bowen, O.N.; O`Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-11-01T23:59:59.000Z

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements.

  10. Identification of Severe Multiple Contingencies in Electric Power Systems

    E-Print Network [OSTI]

    Donde, Vaibhav; Lopez, Vanessa; Lesieutre, Bernard; Pinar, Ali; Yang, Chao; Meza, Juan

    2008-01-01T23:59:59.000Z

    collapse in electrical power systems,” IEEE Transactions onpower sys- tems,” International Journal of Electrical Power and Energy Systems,

  11. Identification of Severe Multiple Contingencies in Electric Power Systems

    E-Print Network [OSTI]

    Donde, Vaibhav

    2010-01-01T23:59:59.000Z

    collapse in electrical power systems,” IEEE Transactions onpower sys- tems,” International Journal of Electrical Power and Energy Systems,

  12. Power Systems Engineering Research Center Integration of Storage Devices into Power Systems

    E-Print Network [OSTI]

    Van Veen, Barry D.

    of storage technology have led to wider deployment of storage technologies. In this project we developed energy sources into a power system while improving overall system reliability. Storage also hasPower Systems Engineering Research Center Integration of Storage Devices into Power Systems

  13. ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM

    E-Print Network [OSTI]

    ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

  14. Distributed Power Control in Wireless Communication Systems

    E-Print Network [OSTI]

    Chronopoulos, Anthony T.

    Distributed Power Control in Wireless Communication Systems S. Jagannathan A. T. Chronopoulos, S layered structure in that we jointly address the issue of transmitted power levels in point to point commu the transmitter power at a given node increases not only the operating life of the bat- tery but also the overall

  15. New Approachesfor Bulk Power System Restoration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    New Approachesfor Bulk Power System Restoration by AbbasKETABI M.Sc in Electrical EngineeringUniversity of Technology Department of Electrical Engineering, Teheran, Iran Supervisors: SHARIF Professor: Ali M. RANJBAR and complexity. Both factors increase the risk of major power outages. After a blackout, power needs

  16. Optimal Power Management in Wireless Control Systems

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Optimal Power Management in Wireless Control Systems Konstantinos Gatsis, Student Member, IEEE to the controller over a wireless fading channel. The power allocated to these transmissions determines state. The goal is to design plant input and transmit power policies that minimize an infinite horizon

  17. Withdrawal from Production and Distribution of the Radioisotope...

    Energy Savers [EERE]

    Withdrawal from Production and Distribution of the Radioisotope Germanium-68 Used for Calibration Sources Withdrawal from Production and Distribution of the Radioisotope...

  18. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  19. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  20. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect (OSTI)

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31T23:59:59.000Z

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is dependent on the chemistry of the particle, it is possible to map chemically similar areas which can also be related to the viscosity of that compound at temperature. A second method was also developed to determine the elements associated with the organic matrix of the coals, which is currently determined by chemical fractionation. Mineral compositions and mineral densities can be determined for both included and excluded minerals, as well as the fraction of the ash that will be represented by that mineral on a frame-by-frame basis. The slag viscosity model was improved to provide improved predictions of slag viscosity and temperature of critical viscosity for representative Powder River Basin subbituminous and lignite coals.

  1. Electricity for road transport, flexible power systems and wind...

    Open Energy Info (EERE)

    for road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power systems and...

  2. Ocean Renewable Power Co (ORPC) (TRL 7 8 System)- TidGen (TM) Power System Commercialization Project

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project

  3. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  4. Modeling for ship power system emulation

    E-Print Network [OSTI]

    Leghorn, Jeremy T. (Jeremy Thomas)

    2009-01-01T23:59:59.000Z

    With the U.S. Navy's continued focus on Integrated Fight Thru Power (IFTP) there has been an ever increasing effort to ensure an electrical distribution system that maintains maximum capabilities in the event of system ...

  5. Consumers Power, Inc.- Solar Energy System Rebate

    Broader source: Energy.gov [DOE]

    Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The...

  6. Improved Power System of the Future

    E-Print Network [OSTI]

    Mario Rabinowitz

    2003-04-22T23:59:59.000Z

    This paper is intended to provide an insight into physics and engineering that can modernize electric power systems. Topics covered are Flexible ac transmission systems (FACTS), Custom Power, Greatly improved Capacitors, Electrical Insulation, Distribution Cables, Improved Polymeric Insulation, Underground Vault Explosions, Fault Location, Smart Cables, Neutral and Ground, Corrosion and Protection, Conventional Transformers, Compact Transformers, Ferroresonance, and Solid State Transformers.

  7. High power laser perforating tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22T23:59:59.000Z

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  8. Efficient Transmitters and Receivers for High-Power Wireless Powering Systems

    E-Print Network [OSTI]

    Popovic, Zoya

    Efficient Transmitters and Receivers for High-Power Wireless Powering Systems Zoya Popovic, Tibault of a wireless powering system is maximized when the power transmitter power-added efficiency (PAE), power system, which is valid for any type of wireless power coupling. Experimental results for high

  9. Power electronics in electric utilities: HVDC power transmission systems

    SciTech Connect (OSTI)

    Nozari, F.; Patel, H.S.

    1988-04-01T23:59:59.000Z

    High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

  10. Electronic power conditioning for dynamic power conversion in high-power space systems

    E-Print Network [OSTI]

    Hansen, James Michael

    1991-01-01T23:59:59.000Z

    . 55. 56. 57. Voltage and Current Waveforms for the Single-Phase PM System at Full Power ? w = v, z, z . Voltage and Current Waveforms f' or the Single-Phase PiVI System at Full Power ? ~ & cu, q, s, Compensated Voltage and Current Waveforms..., Compensated Voltage and Current Waveforms for the Single-Phase PM System at Half Power ? ~ & ~?, z, s, Compensated Voltage and Current Waveforms for the Three-Phase WF System at Full Power ? w: M, gtpd Voltage and Current Waveforms for the Three-Phase WF...

  11. Electric Power System Asset Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4:Administration Electric Power

  12. Multi-Megawatt Power System Trade Study

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

    2001-11-01T23:59:59.000Z

    As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but do not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.

  13. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect (OSTI)

    None

    2010-02-28T23:59:59.000Z

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  14. Next Generation Radioisotope Generators | Department of Energy

    Energy Savers [EERE]

    methods as new information becomes available. Complete the upgrade of an environmental control system for power system assembly glovebox at INL. Continue to support development...

  15. Dynamic Reactive Power Control of Isolated Power Systems 

    E-Print Network [OSTI]

    Falahi, Milad

    2012-10-03T23:59:59.000Z

    .................................................................................................... 175? 5.1.? Introduction ............................................................................................. 175? 5.2.? Photovoltaic Source ................................................................................. 176? 5.3.? DFIG... .............................................................................. 53 Figure 3-3 Discrete hybrid automata [78] ................................................................... 55 Figure 3-4 Injection and withdrawal of reactive power from bus n ............................ 69 Figure 3-5 Converting the system...

  16. NOAA Technical Memorandum GLERL-154 SYSTEM POWER CONTROLLER: A LOW POWER CIRCUIT BOARD

    E-Print Network [OSTI]

    NOAA Technical Memorandum GLERL-154 SYSTEM POWER CONTROLLER: A LOW POWER CIRCUIT BOARD FOR THE CONTROLAND MONITORING OF SUBSYSTEM POWER IN DATA COLLECTION SYSTEMS Ronald Muzzi Stephen Constant John LaneDesign...............................................................................................................................8 2.2.1Power

  17. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect (OSTI)

    Sherrell, D.L.

    1992-06-01T23:59:59.000Z

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  18. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect (OSTI)

    Sherrell, D.L.

    1992-06-01T23:59:59.000Z

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

  19. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect (OSTI)

    Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

    1993-01-15T23:59:59.000Z

    A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  20. Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs

    SciTech Connect (OSTI)

    Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

    1995-03-16T23:59:59.000Z

    The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

  1. Power Systems Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power ElectronicsPower Systems

  2. Centralized and Distributed Generated Power Systems -A Comparison Approach

    E-Print Network [OSTI]

    White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future ElectricCentralized and Distributed Generated Power Systems - A Comparison Approach Future Grid Initiative Energy System #12;Centralized and Distributed Generated Power Systems - A Comparison Approach Prepared

  3. Centralized and Decentralized Generated Power Systems -A Comparison Approach

    E-Print Network [OSTI]

    Electric Energy System #12;Centralized and Distributed Generated Power Systems - A Comparison ApproachCentralized and Decentralized Generated Power Systems - A Comparison Approach Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future

  4. Investigation of Multi-Frequency Power Transmission and System

    E-Print Network [OSTI]

    Barazarte Conte, Ronald

    2012-10-19T23:59:59.000Z

    This dissertation presents a new power system transmission concept based on frequency selectivity named Multi-Frequency Power System (MFPS). This system allows for selective power transmission among terminals in an interconnected system...

  5. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1986

    SciTech Connect (OSTI)

    Lamar, D.A.

    1987-10-01T23:59:59.000Z

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1)isotope suppliers, facility contact, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers for fiscal year 1986.

  6. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1987

    SciTech Connect (OSTI)

    Lamar, D.A.; Van Houten, N.C.

    1988-08-01T23:59:59.000Z

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms, including foreign and other DOE facilities. The information is divided into five sections: 1) isotope suppliers, facility contact, and isotopes or services supplied; 2) customers, suppliers, and isotopes purchased; 3) isotopes purchased cross- referenced with customer numbers; 4) geographic locations of radioisotope customers; and 5) radioisotope sales and transfers for fiscal year 1987.

  7. Load frequency control of interconnected power systems with system constraints

    E-Print Network [OSTI]

    Choudhury, Md Ershadul H

    1993-01-01T23:59:59.000Z

    -Line Power Pu? 3. Governor- Turbine System 4. Overall Single-Area System Model 5. Two-Area System B. IEEE Models of Turbines snd Boilers 1. Reheat Turbine Model . 2. Governor Representation with Deadband 3. Boiler System C. Factors in Generating Unit... fluctuations and major generation or load disturbances. The processes involved are the dynamics of boilers, governors, turbines and their interactions with the power system. Governors and boilers as primary control units are responsible for maintaining...

  8. TO APPEAR IN IEEE TRANSACTION ON POWER SYSTEMS 1 Effect of Reactive Power Limit Modeling on

    E-Print Network [OSTI]

    Cańizares, Claudio A.

    TO APPEAR IN IEEE TRANSACTION ON POWER SYSTEMS 1 Effect of Reactive Power Limit Modeling on Maximum System Loading and Active and Reactive Power Markets Behnam Tamimi, Student Member, IEEE, Claudio A. Ca- active power in electric power systems. Although there are other important reactive power sources

  9. Adaptive excitation control in power systems

    E-Print Network [OSTI]

    Chiu, Pei-Chen

    2006-08-16T23:59:59.000Z

    This thesis presents an adaptive excitation controller of power systems. The control law is derived by using model reference adaptive control (MRAC) or adaptive pole placement control (APPC) and an equilibrium tracking mechanism is implemented...

  10. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    main conclusions about off-grid markets for DC appliances,and power systems. Mature Off-Grid Markets for DC Appliancesapplications include off-grid residential, telecom, remote

  11. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01T23:59:59.000Z

    with widespread adoption of wind energy. The project hasProject: Low-Maintenance Wind Power System Summary of theImproved Vertical Axis Wind Turbine and Aerodynamic Control

  12. Renewable Energy Powered Water Treatment Systems 

    E-Print Network [OSTI]

    Richards, Bryce S.; Schäfer, Andrea

    2009-01-01T23:59:59.000Z

    There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

  13. Variable pressure power cycle and control system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1984-11-27T23:59:59.000Z

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  14. Recommended OSC design and analysis of AMTEC power system for outer-planet missions

    SciTech Connect (OSTI)

    Schock, A.; Noravian, H.; Or, C.; Kumar, V. [Orbital Sciences Corporation (OSC), 20301 Century Boulevard, Germantown, Maryland 20874 (United States)

    1999-01-01T23:59:59.000Z

    The paper describes OSC designs and analyses of AMTEC cells and radioisotope power systems for possible application to NASA{close_quote}s Europa Orbiter and Pluto Kuiper Express missions, and compares their predicted performance with JPL{close_quote}s preliminary mission goals. The latest cell and generator designs presented here were the culmination of studies covering a wide variety of generator configurations and operating parameters. The many steps and rationale leading to OSC{close_quote}s design evolution and materials selection were discussed in earlier publications and will not be repeated here except for a description of OSC{close_quote}s latest design, including a recent heat source support scheme and cell configuration that have not been described in previous publications. As shown, that heat source support scheme eliminates all contact between the heat source and the AMTEC (Alkali Metal Thermal-to-Electrical Conversion) cells, which simplifies the generator{close_quote}s structural design as well as its fabrication and assembly procedure. An additional purpose of the paper is to describe a revised cell design and fabrication procedure which represent a major departure from previous OSC designs. Previous cells had a uniform diameter, but in the revised design the cell wall beyond the BASE tubes has a greatly reduced diameter. The paper presents analytical performance predictions which show that the revised ({open_quotes}chimney{close_quotes}) cell design yields substantially higher efficiencies than the previous (cylindrical) design. This makes it possible to meet and substantially exceed the JPL-stipulated EOM power goal with four instead of six General Purpose Heat Source (GPHS) modules, resulting in a one-third reduction in the heat source mass, cost, and fuel requirements. OSC{close_quote}s performance predictions were based on its techniques for the coupled thermal, electrical, and fluid flow analyses of AMTEC generators. Those analytical techniques have been partially validated by tests of prototypic test assemblies designed by OSC, built by AMPS, and tested by AFRL. The analytical results indicate that the OSC power system design, operating within the stipulated evaporator and clad temperature limits and well within its mass goals, can yield EOM power outputs and system efficiencies that substantially exceed the JPL-specified goals for the Europa and Pluto missions. However, those results only account for radioisotope decay. Other degradation mechanisms are still under study, and their short-and long-term effects must be quantified and understood before final conclusions about the adequacy and competitiveness of the AMTEC system can be drawn. {copyright} {ital 1999 American Institute of Physics.}

  15. Direct current power transmission systems

    SciTech Connect (OSTI)

    Padiyar, K.R.

    1991-01-01T23:59:59.000Z

    This book represents text on HVDC transmission available. It deals with the various aspects of the state of the art in HVDC transmission technology. This book presents many aspects of interactions of AC/DC systems. Modeling and analysis of DC systems are also discussed in detail.

  16. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective

    E-Print Network [OSTI]

    Divakaruni, S. M.

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  17. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective 

    E-Print Network [OSTI]

    Divakaruni, S. M.

    1989-01-01T23:59:59.000Z

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  18. Subtask 3.12 - Small Power Systems

    SciTech Connect (OSTI)

    Sprynczynatyk, C.; Schmidt, L.; Kurz, M.D.; Mann, M.D.; Kjelden, M.

    1997-08-01T23:59:59.000Z

    The programmatic goal in advanced power systems is to develop small integrated waste treatment, water purification, and power systems in the range of 20 kW to 20 MW in cooperation with commercial vendors. These systems will be designed to incorporate the advanced technical capabilities of the Energy and Environmental Research Center (EERC) with the latest advancements in vendor-offered hardware and software. The primary objective for the work to be performed under this subtask is to develop a commercialization plan for small power systems, evaluate alternative design concepts, and select practical and economical designs for targeted development in upcoming years. A leading objective for the EERC will be to continue to form strong business partnerships with equipment manufacturers who can commercialize the selected power system and treatment design(s). FY95 activities were focused on collecting information from vendors and evaluating alternative design concepts. This year's activities began with the process of selecting one design for targeted development. A case study was performed to determine if the combination of water and waste treatment with power generation could improve the economics over a stand-alone power generation system.

  19. Space Power System Modeling with EBAL

    SciTech Connect (OSTI)

    Zillmer, Andrew; Hanks, David; Wen-Hsiung 'Tony' Tu [Pratt and Whitney Rocketdyne, 6633 Canoga Avenue MC LA 13, PO Box 7922, Canoga Park, CA 91309 (United States)

    2006-07-01T23:59:59.000Z

    Pratt and Whitney Rocket dyne's Engine Balance (EBAL) thermal/fluid system code has been expanded to model nuclear power closed Brayton cycle (CBC) power conversion systems. EBAL was originally developed to perform design analysis of hypersonic vehicle propellant and thermal management systems analysis. Later, it was adapted to rocket engine cycles. The new version of EBAL includes detailed, physics-based models of all key CBC system components. Some component examples are turbo-alternators, heat exchangers, heat pipe radiators, and liquid metal pumps. A liquid metal cooled reactor is included and a gas cooled reactor model is in work. Both thermodynamic and structural analyses are performed for each component. EBAL performs steady-state design analysis with optimization as well as off-design performance analysis. Design optimization is performed both at the component level by the component models and on the system level with a global optimizer. The user has the option to manually drive the optimization process or run parametric analysis to better understand system trade-off. Although recent EBAL developments have focused on a CBC conversion system, the code is easily extendible to other power conversion cycles. This new, more powerful version of EBAL allows for rapid design analysis and optimization of space power systems. A notional example of EBAL's capabilities is included. (authors)

  20. Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management

    E-Print Network [OSTI]

    Khadkikar, Vinod

    This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

  1. Stability-Constrained Optimal Power Flow and Its Application to Pricing Power System Stabilizers

    E-Print Network [OSTI]

    Cańizares, Claudio A.

    1 Stability-Constrained Optimal Power Flow and Its Application to Pricing Power System Stabilizers locational marginal prices. A power system stabilizer (PSS) is then introduced in the test system Terms-- Angle stability, power system oscillations, elec- tricity markets, optimal power flow

  2. IEEE TRANSACTIONS ON POWER SYSTEMS 1 MILP Formulation for Islanding of Power Networks

    E-Print Network [OSTI]

    Grothey, Andreas

    IEEE TRANSACTIONS ON POWER SYSTEMS 1 MILP Formulation for Islanding of Power Networks P. A. Trodden. Index Terms--Power system modeling, Power system security, Optimization, Integer programming, Blackouts factors emerge. Modern power systems are being operated closer to limits: liberaliza- tion of the markets

  3. Solar Power Systems Web Monitoring

    E-Print Network [OSTI]

    Kumar, Bimal Aklesh

    2011-01-01T23:59:59.000Z

    All over the world the peak demand load is increasing and the load factor is decreasing year-by-year. The fossil fuel is considered insufficient thus solar energy systems are becoming more and more useful, not only in terms of installation but monitoring of these systems is very crucial. Monitoring becomes very important when there are a large number of solar panels. Monitoring would allow early detection if the output falls below required level or one of the solar panel out of 1000 goes down. In this study the target is to monitor and control a developed solar panel by using available internet foundation. This web-enabled software will provide more flexibility over the system such as transmitting data from panel to the host computer and disseminating information to relevant stake holders barring any geographical barrier. The software would be built around web server with dynamic HTML and JAVA, this paper presents the preliminary design of the proposed system.

  4. Superconductivity for electric power systems: Program overview

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

  5. Multi Megawatt Power System Analysis Report

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Harvego, Edwin Allan; Schnitzler, Bruce Gordon; Seifert, Gary Dean; Sharpe, John Phillip; Verrill, Donald Alan; Watts, Kenneth Donald; Parks, Benjamin Travis

    2001-11-01T23:59:59.000Z

    Missions to the outer planets or to near-by planets requiring short times and/or increased payload carrying capability will benefit from nuclear power. A concept study was undertaken to evaluate options for a multi-megawatt power source for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Of the numerous options considered, two that appeared to have the greatest promise were a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and a molten lithium-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study examined the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. Though the gas-Brayton systems showed an apparent advantage in specific mass, differences in the degree of conservatism inherent in the models used suggests expectations for the two approaches may be similar. Brayton systems eliminate the need to deal with two-phase flows in the microgravity environment of space.

  6. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    -Disturbance Consequences: Uncertainty in Power System Dynamic Simulation Ian A. Hiskens, University of WisconsinPower Systems Engineering Research Center PSERC Background Paper Modeling Post-Madison Bernard C. Lesieutre, Lawrence Berkeley National Laboratory September 16, 2003 Power systems

  7. Comprehensive Diagnosis of Complex Electrical Power Distribution Systems

    E-Print Network [OSTI]

    Daigle, Matthew

    Comprehensive Diagnosis of Complex Electrical Power Distribution Systems Indranil Roychoudhury Abstract: Electrical power distribution systems are composed of heterogeneous components, which include and discrete faults in electrical power distribution systems that include dc and ac components. We use a hybrid

  8. Power System Extreme Event Detection: The Vulnerability Frontier

    E-Print Network [OSTI]

    Lesieutre, Bernard C.; Pinar, Ali; Roy, Sandip

    2007-01-01T23:59:59.000Z

    Screening in Electric Power Systems,” submitted to theIEEE Transactions on Power Systems. [3] Lesieutre, B.C. , S.Donde, and A. Pinar, “Power System Extreme Event Screening

  9. Identification of Severe Multiple Contingencies in Electric Power Systems

    E-Print Network [OSTI]

    Donde, Vaibhav

    2010-01-01T23:59:59.000Z

    Computation of closest bifurcations in power systems,” IEEETransactions on Power Systems, vol. 9, no. 2, pp. 918–928,IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 789–

  10. Identification of Severe Multiple Contingencies in Electric Power Systems

    E-Print Network [OSTI]

    Donde, Vaibhav; Lopez, Vanessa; Lesieutre, Bernard; Pinar, Ali; Yang, Chao; Meza, Juan

    2008-01-01T23:59:59.000Z

    Computation of closest bifurcations in power systems,” IEEETransactions on Power Systems, vol. 9, no. 2, pp. 918–928,IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 789–

  11. Visualization of Power System Data Thomas J. Overbye

    E-Print Network [OSTI]

    Visualization of Power System Data Thomas J. Overbye overbye@ece.uiuc.edu University of Illinois, IL 61801 USA Abstract Effective power system operation requires power system engineers and operators power flows, the scheduled power flows, and the capacity of the transmission system. With restructuring

  12. TidGen Power System Commercialization Project

    SciTech Connect (OSTI)

    Sauer, Christopher R. [President & CEO] [President & CEO; McEntee, Jarlath [VP Engineering & CTO] [VP Engineering & CTO

    2013-12-30T23:59:59.000Z

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

  13. Re-Dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus

    E-Print Network [OSTI]

    dynamic stability, power system reliability, power system scheduling, power system security, power transmission control, power transmission reliability I . INTRODUCTION Power system stability problems cause many stability problems. Between the power system generation pattern and the load pattern

  14. National Aeronautics and Space Administration www.nasa.gov

    E-Print Network [OSTI]

    Waliser, Duane E.

    Radioisotope Power System -- a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Science Instruments

  15. Electricity storage for short term power system service (Smart...

    Open Energy Info (EERE)

    storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark...

  16. DOE and Partners Demonstrate Mobile Geothermal Power System at...

    Energy Savers [EERE]

    DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy...

  17. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June...

  18. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Office of Environmental Management (EM)

    Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer...

  19. Future Power Systems 20: The Smart Enterprise, its Objective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise,...

  20. Thermoelectrics: From Space Power Systems to Terrestrial Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

  1. High Dielectric Constant Capacitors for Power Electronic Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dielectric Constant Capacitors for Power Electronic Systems High Dielectric Constant Capacitors for Power Electronic Systems 2009 DOE Hydrogen Program and Vehicle Technologies...

  2. High Dialectric Constant Capacitors for Power Electronic Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Dialectric Constant Capacitors for Power Electronic Systems High Dialectric Constant Capacitors for Power Electronic Systems 2012 DOE Hydrogen and Fuel Cells Program and...

  3. High-Dialectric-Constant Capacitors for Power Electronic Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Dialectric-Constant Capacitors for Power Electronic Systems High-Dialectric-Constant Capacitors for Power Electronic Systems 2011 DOE Hydrogen and Fuel Cells Program, and...

  4. High Dialectric Constant Capacitors for Power Electronic Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dialectric Constant Capacitors for Power Electronic Systems High Dialectric Constant Capacitors for Power Electronic Systems 2010 DOE Vehicle Technologies and Hydrogen Programs...

  5. Low Cost High Concentration PV Systems for Utility Power Generation...

    Energy Savers [EERE]

    Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief...

  6. Demonstration of a Variable Phase Turbine Power System for Low...

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources Demonstration of a Variable Phase Turbine Power System for Low Temperature...

  7. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

    2008-06-24T23:59:59.000Z

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  8. Naturalistic Decision Making For Power System Operators

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Podmore, Robin; Robinson, Marck; Ey, Pamela

    2009-06-23T23:59:59.000Z

    Abstract: Motivation -- As indicated by the Blackout of 2003, the North American interconnected electric system is vulnerable to cascading outages and widespread blackouts. Investigations of large scale outages often attribute the causes to the three T’s: Trees, Training and Tools. A systematic approach has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The approach has been developed and refined as part of a capability demonstration of a high-fidelity real-time power system simulator under normal and emergency conditions. To examine naturalistic decision making (NDM) processes, transcripts of operator-to-operator conversations are analyzed to reveal and assess NDM-based performance criteria. Findings/Design -- The results of the study indicate that we can map the Situation Awareness Level of the operators at each point in the scenario. We can also identify clearly what mental models and mental simulations are being performed at different points in the scenario. As a result of this research we expect that we can identify improved training methods and improved analytical and visualization tools for power system operators. Originality/Value -- The research applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message -- The NDM approach provides an ideal framework for systematic training management and mitigation to accelerate learning in team-based training scenarios with high-fidelity power grid simulators.

  9. Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power

    E-Print Network [OSTI]

    Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power Aidan Abstract-- Wind energy on a power system alters the unit commitment and dispatch problem, as it adds generation, Power system eco- nomics, Power generation dispatch, Unit Commitment, Wind Forecasting. I

  10. Operating the Irish Power System with Increased Levels of Wind Power

    E-Print Network [OSTI]

    Operating the Irish Power System with Increased Levels of Wind Power Aidan Tuohy, Student Member of Ireland. Using results from various studies performed on this system, it is shown that wind power of installed wind power will have implications for the operation of power systems. These will be seen

  11. Terrestrial applications of the heatpipe power system

    SciTech Connect (OSTI)

    Houts, M.G.; Poston, D.I.

    1997-02-01T23:59:59.000Z

    A terrestrial reactor that uses the same design approach as the Heatpipe Power System (HPS) may have applications both on earth and on other planetary surfaces. The baseline HPS is a potential, near-term, low-cost space fission power system. The system will be composed of independent modules, and all components operate within the existing database. The HPS has relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic, refractory-metal HPS module is being fabricated, and testing is scheduled to begin in November 1996. A successful test will provide high confidence that the HPS can achieve its predicted performance. An HPS incorporating superalloys will be better suited for some terrestrial or planetary applications. Fabrication and testing of a superalloy HPS module should be less challenging than that of the refractory metal module. A superalloy HPS core capable of delivering > 100 kWt to a power conversion subsystem could be fabricated for about $500k (unfueled). Tests of the core with electric heat (used to simulate heat from fission) could demonstrate normal and off-normal operation of the core, including the effects of heatpipe failure. A power conversion system also could be coupled to the core to demonstrate full system operation.

  12. A novel power block for CSP systems

    SciTech Connect (OSTI)

    Mittelman, Gur [ASP Ltd., Advanced Solar Power, Industrial Zone, Be'er Tuviyya (Israel); Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science (Israel)

    2010-10-15T23:59:59.000Z

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

  13. Radiation beam calorimetric power measurement system

    DOE Patents [OSTI]

    Baker, John (Livermore, CA); Collins, Leland F. (Pleasanton, CA); Kuklo, Thomas C. (Ripon, CA); Micali, James V. (Dublin, CA)

    1992-01-01T23:59:59.000Z

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  14. Demand Response For Power System Reliability: FAQ

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL

    2006-12-01T23:59:59.000Z

    Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

  15. Modeling Power System Operation with Intermittent Resources

    SciTech Connect (OSTI)

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

    2013-02-27T23:59:59.000Z

    Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

  16. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning 

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01T23:59:59.000Z

    In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. ...

  17. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01T23:59:59.000Z

    In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a...

  18. Issues in microwave power systems engineering

    SciTech Connect (OSTI)

    Dickinson, R.M. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1996-12-31T23:59:59.000Z

    The key issues in microwave power system engineering are beam safety, frequency allocation, and affordability. These major issues are presented, discussed, and suggestions for resolving them are offered. The issue of beam safety can be captured in the phrase ``Fear of Frying.`` Can a properly engineered beamed power safety system allay the public perception of microwave radiation dangers? Openness, visibility, and education may be keys to resolving this issue satisfactorily. ``Not in my Spectrum`` is a phrase that is frequently encountered in connection with the issue of where can the microwave power beam frequency be located. International cooperation may provide a part of the solution to this issue. ``Wow, that much?`` is a phrase encountered when dealing with the issue of economic affordability of large beamed power systems. A phased engineering approach for multiple uses even during construction is presented to aid in garnering revenue during the system build phase. Also, dual mode dc-RF converters are encouraged for bi-directional power flow utility and economies of scale in production.

  19. Managing power system security and optimization

    SciTech Connect (OSTI)

    O'Grady, M.J. (Potomac Electric Power Co., Washington, DC (United States)); Briggs, W.T.; Stadlin, W.O.

    1994-10-01T23:59:59.000Z

    Power system control objectives of energy management systems (EMSs) are well defined and understood: reliability, security, and optimization. However, the approaches to achieving these objectives have often resulted in disjointed solutions and poor acceptance by system operators. This article describes how the new PEPCO EMS provides unique system-wide (generation, transmission, distribution) security and optimization strategies via a coordinated suite of real-time closed-loop control functions. System operators played a key role in defining the application features and user interfaces, ensuring correct operating practices.

  20. Heatpipe power system and heatpipe bimodal system development status

    SciTech Connect (OSTI)

    Houts, Michael G.; Poston, David I.; Emrich, William J. Jr. [Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States); NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35758 (United States)

    1998-01-15T23:59:59.000Z

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is underway, and testing should begin in early 1998.

  1. Heatpipe power system and heatpipe bimodal system development status

    SciTech Connect (OSTI)

    Houts, M.G.; Poston, D.I. [Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States); Emrich, W.J. Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35758 (United States)

    1998-01-01T23:59:59.000Z

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is underway, and testing should begin in early 1998. {copyright} {ital 1998 American Institute of Physics.}

  2. Strategic planning for power system restorations

    SciTech Connect (OSTI)

    Bent, Russell W [Los Alamos National Laboratory; Van Hententyck, Pascal [BROWN UNIV.; Coffrin, Carleton [BROWN UNIV.

    2010-10-12T23:59:59.000Z

    This paper considers the power system restoration planning problem (PSRPP) for disaster recovery, a fundamental problem faced by all populated areas. PSRPPs are complex stochastic optimization problems that combine resource allocation, warehouse location, and vehicle routing considerations. Furthermore, electrical power systems are complex systems whose behavior can only be determined by physics simulations. Moreover, these problems must be solved under tight runtime constraints to be practical in real-world disaster situations. This work is three fold: (1) it formalizes the specification of PSRPPs; (2) introduces a simple optimization-simulation hybridization necessary for solving PSRPPs; and (3) presents a complete restoration algorithm that utilizes the strengths of mixed integer programming, constraint programming, and large neighborhood search. This paper studied a novel problem in the field of humanitarian logistics, the Power System Restoration Problem (PSRPP). The PSRPP models the strategic planning process for post disaster power system recovery. The paper proposed a multi-stage stochastic hybrid optimization algorithm that yields high quality solutions to real-world benchmarks provided by Los Alamos National Laboratory (LANL). The algorithm uses a variety of technologies, including MIP, constraint programming, and large neighborhood search, to exploit the structure of each individual optimization subproblem. The experimental results on hurricane disaster benchmarks indicate that the algorithm is practical from a computational standpoint and produce significant improvements over existing relief delivery procedures.

  3. Communication Simulations for Power System Applications

    SciTech Connect (OSTI)

    Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.; Fisher, Andrew R.; Hauer, Matthew L.

    2013-05-29T23:59:59.000Z

    New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systems will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.

  4. Incorporating HVDC's into monitoring and power system analysis

    E-Print Network [OSTI]

    Krishnaswamy, Vikram

    2002-01-01T23:59:59.000Z

    This thesis attempts to study the effect of incorporating HVDC's into monitoring and power system analysis. Power system analysis, including load flow and stability studies, and monitoring defines a complete cycle of the impact of HVDC in a power...

  5. LED lamp power management system and method

    DOE Patents [OSTI]

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19T23:59:59.000Z

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  6. The Applied Mathematics for Power Systems (AMPS)

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory

    2012-07-24T23:59:59.000Z

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  7. Smart Grid - Transforming Power System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Kirkham, Harold

    2010-04-28T23:59:59.000Z

    Abstract—Electric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER – generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  8. Optimization and Control of Electric Power Systems

    SciTech Connect (OSTI)

    Lesieutre, Bernard C.; Molzahn, Daniel K.

    2014-10-17T23:59:59.000Z

    The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.

  9. Fuel Cell Power Systems Analysis Patrick DavisPatrick Davis

    E-Print Network [OSTI]

    Power Systems · Balance-of-plant (compressors, humidifiers, heat exchangers, sensors, controls) · Cost

  10. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01T23:59:59.000Z

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  11. Robust Decentralized Switching Power System Stabilisers for Interconnected

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    ]. In these works, controllers are designed for multi-machine power systems using modern control techniques like system control design; Decentralized control; Switching control; Dwell time; Power system stabilizers. 1. INTRODUCTION The primary task of the power system control is to provide reliable and secure electric power

  12. Event-Driven Power Management of Portable Systems

    E-Print Network [OSTI]

    Simunic, Tajana

    in modeling real- life systems where transition times between power states are not geometrically distributed power management effi- ciently exploits system resources by controlling their mode of operation-level power management. The abstract model of the system re- sources adopted in system-level power management

  13. Power Systems Engineering Research Center Dennis Ray Ward Jewell

    E-Print Network [OSTI]

    Power Systems Engineering Research Center Dennis Ray Ward Jewell Executive Director, Power Systems an overview of the Power Systems Engineering Research Center (PSERC), a National Science Foundation Industry and ongoing projects in each of these stems will be outlined. INTRODUCTION Current electric-power systems

  14. Overview of M-C Power`s MCFC power generation system

    SciTech Connect (OSTI)

    Benjamin, T.G.; Woods, R.R.

    1993-11-01T23:59:59.000Z

    The IMHEX{reg_sign} fuel cell power generation system is a skid mounted power plant which efficiently generates electricity and useful thermal energy. The primary benefits are its high electric generation efficiency (50% or greater), modular capacities (500 kW to 3 MW per unit) and minimal environmental impacts (less than 1 ppM NO{sub x}). A cost effective, modular capacity fuel cell power plant provides the industry with an attractive alternative to large central station facilities, and its advantages have the potential to optimize the way electric power is generated and distributed to the users. Environmental issues are becoming the single most uncertain aspect of the power business. These issues may be manifested in air emissions permits or allowances for NO{sub x} or SO{sub 2}, energy taxes, CO{sub 2} limits, ``carbon taxes,`` etc. and may appear as siting permits for generation, transmission, or distribution facilities. Utilities are ``down-sizing`` with the goal of becoming the lowest cost supplier of electricity and are beginning to examine the concepts of ``energy service`` to improve their economic competitiveness. These issues are leading utilities to examine the benefits of distributed generation. Siting small capacity generation near the customer loads or at distribution substations can improve system efficiency and quality while reducing distribution system costs. The advantages that fuel cell power plants have over conventional technologies are critical to the success of these evolving opportunities in the power generation marketplace.

  15. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power

    E-Print Network [OSTI]

    Hu, Weihao

    Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power to wind speed variations, the wind shear and the tower shadow effects. The fluctuating power may be ableSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power systems

  16. Power-Invariant Magnetic System Modeling

    E-Print Network [OSTI]

    Gonzalez Dominguez, Guadalupe Giselle

    2012-10-19T23:59:59.000Z

    System Modeling. (August 2011) Guadalupe Giselle González Domínguez, B.S., Universidad Tecnológica de Panamá Chair of Advisory Committee: Dr. Mehrdad Ehsani In all energy systems, the parameters necessary to calculate power are the same..., Mr. R. Smith, Mr. S. Emani and Mr. R. Castillo, for making my time at Texas A&M University a great experience. I also want to extend my gratitude to Dr. Darío Solís and Dr. Edilberto Hall at the Universidad Tecnológica de Panamá for their guidance...

  17. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01T23:59:59.000Z

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  18. Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

  19. Power Systems of the Future: A 21st Century Power Partnership Thought Leadership Report (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    Powerful trends in technology, policy environments, financing, and business models are driving change in power sectors globally. In light of these trends, the question is no longer whether power systems will be transformed, but rather how these transformations will occur. Power Systems of the Future, a thought leadership report from the 21st Century Power Partnership, explores these pathways explores actions that policymakers and regulators can take to encourage desired power system outcomes.

  20. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect (OSTI)

    Sovie, R.J.; Bozek, J.M.

    1994-09-01T23:59:59.000Z

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  1. 888 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 2, MAY 2005 Model Reduction in Power Systems Using

    E-Print Network [OSTI]

    888 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 2, MAY 2005 Model Reduction in Power Systems Abstract--This paper describes the use of Krylov subspace methods in the model reduction of power systems. Additionally, a connection between the Krylov subspace model reduction and coherency in power systems

  2. Maximum-Power-Point Tracking Method of Photovoltaic Power System Using Single Transducer

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    Maximum-Power-Point Tracking Method of Photovoltaic Power System Using Single Transducer Toshihiko) method of a photovoltaic power system with less transducer count. A unique feature of this method concern on an environmental issue since 1990's. Above all, a photovoltaic power generation system is one

  3. Effect of Large Dynamic Loads on Interconnected Power Systems with Power Oscillation Damping

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Effect of Large Dynamic Loads on Interconnected Power Systems with Power Oscillation Damping.hossain and H.Pota)@adfa.edu.au Abstract--Power systems are composed of dynamic loads. In this paper presents an analysis to investigate the effects of large dynamic loads on interconnected power systems

  4. Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint

    SciTech Connect (OSTI)

    Ma, Z.; Turchi, C. S.

    2011-03-01T23:59:59.000Z

    The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

  5. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect (OSTI)

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30T23:59:59.000Z

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  6. A new power combining and outphasing modulation system for high-efficiency power amplification

    E-Print Network [OSTI]

    Perreault, David J.

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced ...

  7. A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification

    E-Print Network [OSTI]

    Perreault, David J.

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced ...

  8. Solar-powered turbocompressor heat pump system

    DOE Patents [OSTI]

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12T23:59:59.000Z

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  9. Probing Signal Design for Power System Identification

    SciTech Connect (OSTI)

    Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William

    2010-05-31T23:59:59.000Z

    This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.

  10. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14T23:59:59.000Z

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  11. Tokamak power systems studies, FY 1985

    SciTech Connect (OSTI)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01T23:59:59.000Z

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  12. Polk power station syngas cooling system

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-01-01T23:59:59.000Z

    Tampa Electric Company (TEC) is in the site development and construction phase of the new Polk Power Station Unit No. 1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) Technology. The unit will utilize Texaco`s oxygen-blown, entrained-flow coal gasification, along with combined cycle power generation, to produce nominal 260MW. Integral to the gasification process is the syngas cooling system. The design, integration, fabrication, transportation, and erection of this equipment have provided and continue to provide major challenges for this project.

  13. Proe Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,PowerInformationOpenProe Power Systems

  14. Naturalistic Decision Making for Power System Operators

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Podmore, Robin; Robinson, Marck; Ey, Pamela

    2010-02-01T23:59:59.000Z

    Motivation – Investigations of large-scale outages in the North American interconnected electric system often attribute the causes to three T’s: Trees, Training and Tools. To document and understand the mental processes used by expert operators when making critical decisions, a naturalistic decision making (NDM) model was developed. Transcripts of conversations were analyzed to reveal and assess NDM-based performance criteria. Findings/Design – An item analysis indicated that the operators’ Situation Awareness Levels, mental models, and mental simulations can be mapped at different points in the training scenario. This may identify improved training methods or analytical/ visualization tools. Originality/Value – This study applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message – The NDM approach provides a viable framework for systematic training management to accelerate learning in simulator-based training scenarios for power system operators and teams.

  15. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    SciTech Connect (OSTI)

    Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1991-12-31T23:59:59.000Z

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  16. Power system identification toolbox: Phase two progress

    SciTech Connect (OSTI)

    Trudnowski, D.J.

    1994-08-01T23:59:59.000Z

    This report describes current progress on a project funded by the Bonneville Power Administration (BPA) to develop a set of state-of-the-art analysis software (termed the Power System Identification [PSI] Toolbox) for fitting dynamic models to measured data. The project is being conducted as a three-phase effort. The first phase, completed in late 1992, involved investigating the characteristics of the analysis techniques by evaluating existing software and developing guidelines for best use. Phase Two includes extending current software, developing new analysis algorithms and software, and demonstrating and developing applications. The final phase will focus on reorganizing the software into a modular collection of documented computer programs and developing user manuals with instruction and application guidelines. Phase Two is approximately 50% complete; progress to date and a vision for the final product of the PSI Toolbox are described. The needs of the power industry for specialized system identification methods are particularly acute. The industry is currently pushing to operate transmission systems much closer to theoretical limits by using real-time, large-scale control systems to dictate power flows and maintain dynamic stability. Reliably maintaining stability requires extensive system-dynamic modeling and analysis capability, including measurement-based methods. To serve this need, the BPA has developed specialized system-identification computer codes through in-house efforts and university contract research over the last several years. To make full integrated use of the codes, as well as other techniques, the BPA has commissioned Pacific Northwest Laboratory (PNL) to further develop the codes and techniques into the PSI Toolbox.

  17. Computing GIC in large power systems

    SciTech Connect (OSTI)

    Prabhakara, F.S. (Power Technologies, Inc., Schenectady, NY (United States)); Ponder, J.Z.; Towle, J.N.

    1992-01-01T23:59:59.000Z

    On March 13, 1989, a severe geomagnetic disturbance affected power and communications systems in the North American continent. Since the geomagnetic disturbance, several other disturbances have occurred. The Pennsylvania, New Jersey, and Maryland (PJM) Interconnection system, its member companies, and some of the neighboring utilities experienced the geomagnetic induced current (GIC) effects on March 13, 1989, as well as during the subsequent geomagnetic disturbances. As a result, considerable effort is being focused on measurement, analysis, and mitigation of GIC in the PJM system. Some of the analytical and computational work completed so far is summarized in this article.

  18. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    SciTech Connect (OSTI)

    Burlison, J.S. (comp.)

    1981-08-01T23:59:59.000Z

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.

  19. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-07-31T23:59:59.000Z

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.

  20. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, Herbert S. (Asheville, NC)

    1984-01-01T23:59:59.000Z

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.

  1. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  2. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    Power Systems Engineering Research Center PSERC Background Paper The New Electric Power Business-tuned, economically efficient, and technically-reliable electric power system. The creation of new information system is outmoded and unprepared for the challenges of the new electric power business. A result

  3. System-Wide Emissions Implications of Increased Wind Power Penetration

    E-Print Network [OSTI]

    Kemner, Ken

    of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system

  4. Dynamic Power Management for Portable Systems Tajana Simunic

    E-Print Network [OSTI]

    De Micheli, Giovanni

    Dynamic Power Management for Portable Systems Tajana Simunic Computer Systems Laboratory Stanford delivering high performance. Dynamic power management (DPM) policies trade off the performance for the power by commands issued by a power manager (PM) that observes the workload of the system and decides when and how

  5. The Application of Robust Optimization in Power Systems

    E-Print Network [OSTI]

    unit commitment and robust corrective topology control. The optimal power flow models used within partThe Application of Robust Optimization in Power Systems Final Project Report Power Systems Application of Robust Optimization in Power Systems Final Project Report Dr. Kory W. Hedman, Project Leader

  6. Environmentally Sound Design and Recycling of Future Wind Power Systems

    E-Print Network [OSTI]

    Environmentally Sound Design and Recycling of Future Wind Power Systems Presentation at the IEA R state-of-the-art wind power system Mapping current trends of wind power technologies and concepts Expert wind power systems Expert panel brainstorm on environmental aspects of decommissioning current

  7. Power Optimization and Management in Embedded Systems1 Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Power Optimization and Management in Embedded Systems1 Massoud Pedram University of Southern on the system performance and quality of service (QoS). Power-aware high-level language compilers, dynamic power for understanding power- aware design methodologies and techniques targeted toward embedded systems. 1 Introduction

  8. Ris-R-1441 (EN) Power System Models

    E-Print Network [OSTI]

    Risř-R-1441 (EN) Power System Models A Description of Power Markets and Outline of Market Modelling that can handle system simulations for a larger geographical re- gion with an International power exchange Systems Integration 7 1.3 Objectives of Wilmar 8 1.4 The Aim of this Report 8 2 The Nordic Power Market 10

  9. Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications CX-004722: Categorical Exclusion Determination Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE Water Power...

  10. Power Systems Frequency Dynamic Monitoring System Design and Applications

    E-Print Network [OSTI]

    Schrijver, Karel

    Disturbance Recorder (FDR), Phasor Measurement Unit (PMU), Wide Area Measurement System, Under Frequency Load for the first time. The FNET system consists of Frequency Disturbance Recorders (FDR), which work as the sensor to process event detection, localization and unbalanced power estimation during frequency disturbances

  11. SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, FEBRUARY 2002 1 Quantifying Transmission Reliability Margin

    E-Print Network [OSTI]

    SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, FEBRUARY 2002 1 Quantifying Transmission, power transmission reliability, power system security, power system availability I. Introduction Bulk power transfer capability computations have many uses in electric power system operation and planning

  12. Direct conversion nuclear reactor space power systems

    SciTech Connect (OSTI)

    Britt, E.J.; Fitzpatrick, G.O.

    1982-08-01T23:59:59.000Z

    This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions.

  13. Reliability Evaluation of Electric Power Generation Systems with Solar Power

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  14. Sun powers Libya cathodic-protection system

    SciTech Connect (OSTI)

    Currer, G.W.

    1982-03-22T23:59:59.000Z

    Well castings and part of the main 300-mile-long, 32-in diameter pipeline from Sarir to Tobruk are cathodically protected by solar power, which prevents galvanic action by applying an electric direct current of appropriate magnitude and polarity to the steel structures. They then act as cathodes and become the recipients of metallic ions. At each cathodic-protection station, the solar-generaor system consists of solar-panel arrays, electronic controls, and batteries.

  15. Analysis of Power System Dynamics Subject to Stochastic Power Injections

    E-Print Network [OSTI]

    Liberzon, Daniel

    Abstract--We propose a framework to study the impact of stochastic active/reactive power injections. In this framework the active/reactive power injections evolve according to a continuous-time Markov chain (CTMC) model. The DAE model is linearized around a nominal set of active/reactive power injections

  16. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Concentrating Solar Combined Heat and Power Systemcombined heat and power systems . . . . . . . Verificationmyth eight – worldwide power systems are economically and

  17. Wind Farm Diversification and Its Impact on Power System Reliability 

    E-Print Network [OSTI]

    Degeilh, Yannick

    2010-10-12T23:59:59.000Z

    As wind exploitation gains prominence in the power industry, the extensive use of this intermittent source of power may heavily rely on our ability to select the best combination of wind farming sites that yields maximal reliability of power systems...

  18. Anti-Synchronization in Multiple Time Delay Power Systems

    E-Print Network [OSTI]

    E. M. Shahverdiev

    2010-08-23T23:59:59.000Z

    We investigate chaos antisynchronization between two uni-directionally coupled multiple time delay power systems.The results are of certain importance to prevent power black-out in the entire power grid.

  19. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01T23:59:59.000Z

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  20. An Optimal Power Flow (OPF) Method with Improved Power System Stability

    E-Print Network [OSTI]

    Chen, Zhe

    An Optimal Power Flow (OPF) Method with Improved Power System Stability Chi Su, Zhe Chen Department corresponding to certain critical oscillation modes. Power system stabilizer (PSS) and thyristor controlled an optimal power flow (OPF) method taking into account small signal stability as additional constraints

  1. 1 INRODUCTION Electric power system is an important lifeline engi-

    E-Print Network [OSTI]

    Spencer Jr., B.F.

    1 INRODUCTION Electric power system is an important lifeline engi- neering system that has much to do with the national economy and the people's livelihood. With social progress, electric power system and safety of electric power system become more and more important. Earthquake resistant analysis of electric

  2. THREE DIMENSIONAL VISUALIZATIONS FOR POWER SYSTEM CONTINGENCY ANALYSIS VOLTAGE DATA

    E-Print Network [OSTI]

    that the power systems are now often operated closer to their limits to maximum transmission system utilizationTHREE DIMENSIONAL VISUALIZATIONS FOR POWER SYSTEM CONTINGENCY ANALYSIS VOLTAGE DATA Y. Sun IEEE security assessment is critical for detecting underlying problems in a power system. More frequent CA

  3. Individual Module Maximum Power Point Tracking for Thermoelectric Generator Systems

    E-Print Network [OSTI]

    Schaltz, Erik

    of Thermo Electric Generator (TEG) systems a power converter is often inserted between the TEG system that the TEG system produces the maximum power. However, if the conditions, e.g. temperature, health, age, etc find the best compromise of all modules. In order to increase the power production of the TEG system

  4. Perturbations of Weakly Resonant Power System Electromechanical Modes

    E-Print Network [OSTI]

    instability. Index Terms-- power system dynamic stability, oscillations, resonance, root loci, eigenvalues of the system linearization and its associated eigenvector. Since the modes determine the power system stability1 Perturbations of Weakly Resonant Power System Electromechanical Modes Ian Dobson, Senior Member

  5. Generalized Lyapunov Function for Stability Analysis of Interconnected Power Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Generalized Lyapunov Function for Stability Analysis of Interconnected Power Systems M. A. Mahmud for formulating generalized Lyapunov function for the stability analysis of interconnected power systems. Lyapunov function is formulated based on the total energy of power system where the system is considered as a single

  6. Computing Criticality of Lines in Power Systems Computational Research Div.

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Computing Criticality of Lines in Power Systems Ali Pinar Computational Research Div. Lawrence. Planning and operating criteria are designed so that "the interconnected power system shall be operated a vulnerability in the a power system is im- portant, however, system robustness requires identifying all

  7. ECE 461/2: Power Systems I Calculus and algebra

    E-Print Network [OSTI]

    Schumacher, Russ

    ECE 461/2: Power Systems I Calculus and algebra - Learns basic capabilities of PSSE AC system billing structure of the power industry - Understands basic ideas in AC system synchronism and stability - Can analyze and determine V-I in phasor form at various points in a complex power system in both

  8. Energy management system functions in deregulated power systems

    E-Print Network [OSTI]

    Magnago, Fernando Hugo

    1997-01-01T23:59:59.000Z

    covariance matrix 8: E(uwr) = 8 = 0 0 . . cr This means that the measurement errors are independent with variances o;. As mentioned before, measurements are composed of power injections, power flows, and voltages. Vector h(z, ) represents the non linear..., nonetheless LAV reject INJ 4 if this injection measurement contains a bad data with 5 incident flows measurements. For INJ 10 in the 30-bus system, the cut oR' value is 16. 01 and again 24 Table II. IEEE 57-bus system: Variation of PS for INJ 13...

  9. System Study: Emergency Power System 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01T23:59:59.000Z

    This report presents an unreliability evaluation of the emergency power system (EPS) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. A statistically significant increasing trend was identified for unreliability (8 hour model) as a function of fiscal year. No statistically significant decreasing trend was identified in the EPS results.

  10. Radioisotope thermoelectric generator licensed hardware package and certification tests

    SciTech Connect (OSTI)

    Goldmann, L.H.; Averette, H.S. [Westinghouse Hanford Company, P.O. Box 1970, M/S R3-86 or N1-32, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    This paper presents the Licensed Hardware package and the Certification Test portions of the Radioisitope Themoelectric Generator Transportation System. This package has been designed to meet those portions of the {ital Code} {ital of} {ital Federal} {ital Regulations} (10 CFR 71) relating to ``Type B`` shipments of radioactive materials. The licensed hardware is now in the U. S. Department of Energy licensing process that certifies the packaging`s integrity under accident conditions. The detailed information for the anticipated license is presented in the safety analysis report for packaging, which is now in process and undergoing necessary reviews. As part of the licensing process, a full-size Certification Test Article unit, which has modifications slightly different than the Licensed Hardware or production shipping units, is used for testing. Dimensional checks of the Certification Test Article were made at the manufacturing facility. Leak testing and drop testing were done at the 300 Area of the U.S. Department of Energy`s Hanford Site near Richland, Washington. The hardware includes independent double containments to prevent the environmental spread of {sup 238}Pu, impact limiting devices to protect portions of the package from impacts, and thermal insulation to protect the seal areas from excess heat during accident conditions. The package also features electronic feed-throughs to monitor the Radioisotope Thermoelectric Generator`s temperature inside the containment during the shipment cycle. This package is designed to safely dissipate the typical 4,500 thermal watts produced in the largest Radioisotope Thermoelectric Generators. The package also contains provisions to ensure leak tightness when radioactive materials, such as a Radioisotope Thermoelectric Generator for the Cassini Mission, planned for 1997 by the National Aeronautics and Space Administration, are being prepared for shipment. (Abstract Truncated)

  11. Stochastic Power Control for Cellular Radio Systems \\Lambda

    E-Print Network [OSTI]

    Yates, Roy

    Stochastic Power Control for Cellular Radio Systems \\Lambda Sennur Ulukus Roy D. Yates July 11, iterative power control algorithms have been proposed to minimize transmitter powers while maintaining power control algorithms that use readily available measurements. Two classes of power control

  12. Transient modeling of thermionic space nuclear power systems

    E-Print Network [OSTI]

    Berge, Francoise M

    1991-01-01T23:59:59.000Z

    nuclear power system is based on static power conversion, heat transfer and waste heat rejection. The core is composed of annular Fuel rings. The thermionic power converters are located circumferentially around the core alternating with the radial... reflector segments. The radiator panels are attached to the axial rows of converters consti- tuting the power converter subassembly. A space nuclear power system can be described as an assembly of functional units such as the core, the heat removal system...

  13. The Power Systems Development Facility -- Current status

    SciTech Connect (OSTI)

    Pinkston, T.E.; Maxwell, J.D.; Leonard, R.F.; Vimalchand, P.

    1995-11-01T23:59:59.000Z

    Southern Company Services, Inc. (SCS) has entered into a cooperative agreement with the US Department of Energy (DOE) to build and operate the Power Systems Development Facility (PSDF), currently under construction in Wilsonville, Alabama, 40 miles southeast of Birmingham. The objectives of the PSDF are to develop advanced coal-fired power generation technologies through testing and evaluation of hot gas cleanup systems and other major components at the pilot scale. The performance of components will be assessed and demonstrated in an integrated mode of operation and at a component size readily scaleable to commercial systems. The facility will initially contain five modules: (1) a transport reactor gasifier and combustor, (2) an advanced pressurized fluidized-bed combustion (APFBC) system, (3) a particulate control module, (4) an advanced burner-gas turbine module, and (5) a fuel cell. The five modules will initially be configured into two separate test trains, the transport reactor train (2 tons/hour of coal feed) and the APFBC train (3 tons/hour of coal feed). In addition to a project description, the project design and construction status, preparations for operations, and project test plans are reported in this paper.

  14. PoL Vout 1Adapter Power Management System

    E-Print Network [OSTI]

    Prodić, Aleksandar

    Battery charger Vbatt Vbus PoL Vout 1Adapter Vout 2 Vout n PoL PoL Vadap SW1 SW2 Power Management System Bus Converter Fig.1: Conventional laptop power management system Power Management Architecture, Mor M. Peretz, and Aleksandar Prodi Laboratory for Power Management and Integrated SMPS, ECE

  15. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    of opportunities to produce and purchase generation cost-effectively. As a result, thousands of power transfersPower Systems Engineering Research Center PSERC Background Paper Power System Operations little thought to the source of the power that comes out of the electric outlet. And why should they

  16. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01T23:59:59.000Z

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  17. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  18. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    SciTech Connect (OSTI)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

    1993-01-01T23:59:59.000Z

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  19. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 19, NO. 1, FEBRUARY 2004 455 Transient Power System Analysis With

    E-Print Network [OSTI]

    Stanković, Aleksandar

    - timachine power system derived from the WSCC system. Index Terms--Black box models, gray box models, model planning, operation, and control of large in- terconnected power systems. Over the last several decades, in the development of adequate equivalents or lower order models for parts of the power system

  20. Radioisotope Electric Propulsion for Deep Space Sample Return

    SciTech Connect (OSTI)

    Noble, Robert J.; /SLAC

    2009-07-14T23:59:59.000Z

    The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

  1. Power System Market Implementation in a Deregulated Environment

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Power System Market Implementation in a Deregulated Environment A THESIS SUBMITTED TO THE FACULTY of this thesis. #12;i BSTRACT The opening of the power system markets (also known as deregulation) gives rise

  2. Hydrogen storage of energy for small power supply systems

    E-Print Network [OSTI]

    Monaghan, Rory F. D. (Rory Francis Desmond)

    2005-01-01T23:59:59.000Z

    Power supply systems for cell phone base stations using hydrogen energy storage, fuel cells or hydrogen-burning generators, and a backup generator could offer an improvement over current power supply systems. Two categories ...

  3. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Energy Savers [EERE]

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even...

  4. Utilizing the Traction Drive Power Electronics System to Provide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs 2009...

  5. Solid Oxide Fuel Cell and Power System Development at PNNL

    Broader source: Energy.gov (indexed) [DOE]

    Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development at PNNL System Development at PNNL Larry Chick Energy Materials...

  6. Radioisotope Detection Device and Methods of Radioisotope Collection

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Oertel, Christopher P. (Idaho Falls, ID); Giles, John R. (Pocatello, ID); Mann, Nicholas R. (Rigby, ID); McIlwain, Michael E. (Idaho Falls, ID)

    2011-04-12T23:59:59.000Z

    A device for collection of radionuclides includes a mixture of a polymer, a fluorescent organic scintillator and a chemical extractant. A radionuclide detector system includes a collection device comprising a mixture of a polymer, a fluorescent agent and a selective ligand. The system includes at least one photomultiplier tube (PMT). A method of detecting radionuclides includes providing a collector device comprising a mixture comprising a polymer, a fluorescent organic scintillator and a chemical extractant. An aqueous environment is exposed to the device and radionuclides are collected from the environment. Radionuclides can be concentrated within the device.

  7. Medical Radioisotope | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneoTechnologyCHPRC

  8. Deep Well #4 Backup Power Systems Project Closeout Report

    SciTech Connect (OSTI)

    Jeremy Westwood

    2010-04-01T23:59:59.000Z

    The project scope was to install a diesel generated power source to deep well 4 in addition to the existing commercial power source. The diesel power source and its fuel supply system shall be seismically qualified to withstand a Performance Category 4 (PC-4) seismic event. This diesel power source will permit the deep well to operate during a loss of commercial power. System design will incorporate the ability to select and transfer power between the new diesel power source and commercial power sources for the the deep well motor and TRA-672 building loads.

  9. Simulation of a Wireless Power Transfer System for Electric Vehicles with Power Factor Correction

    SciTech Connect (OSTI)

    Pickelsimer, Michael C [ORNL; Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL; Miller, John M [ORNL

    2012-01-01T23:59:59.000Z

    Wireless power transfer has been a popular topic of recent research. Most research has been done to address the limitations of coil-to-coil efficiency. However, little has been done to address the problem associated with the low input power factor with which the systems operate. This paper details the steps taken to analyze a wireless power transfer system from the view of the power grid under a variety of loading conditions with and without power factor correction.

  10. Isotopic power supplies for space and terrestrial systems: quality assurance by Sandia National Laboratories

    SciTech Connect (OSTI)

    Hannigan, R.L.; Harnar, R.R.

    1981-09-01T23:59:59.000Z

    The Sandia National Laboratories participation in Quality Assurance (QA) programs for Radioisotopic Thermoelectric Generators which have been used in space and terrestrial systems over the past 15 years is summarized. Basic elements of the program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are also presented. In addition, the outlook for Sandia participation in RTG programs for the next several years is noted.

  11. Jadoo Power Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to:Oregon:Jadoo Power Systems

  12. Princeton Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister AreaPrimePrincePower Systems

  13. Ballard Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower Systems Jump to: navigation, search

  14. Flexibility in 21st Century Power Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01T23:59:59.000Z

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). Sources of flexibility exist--and can be enhanced--across all of the physical and institutional elements of the power system, including system operations and markets, demand side resources and storage; generation; and transmission networks. Accessing flexibility requires significant planning to optimize investments and ensure that both short- and long-time power system requirements are met.

  15. Electromagnetic pulse (EMP) interaction with electric power systems. Power Systems Technology Program. Final report

    SciTech Connect (OSTI)

    Zaininger, H.W.

    1984-08-01T23:59:59.000Z

    A high altitude nuclear burst, detonated at a height of 50 km or more, causes two types of electromagnetic pulses (EMP) - high altitude EMP (HEMP) and magnetohydrodynamic EMP (MHD-EMP). This high altitude EMP scenario is of principal concern when assessing the effects of EMP on electric power systems, because the total United States can be simultaneously illuminated by HEMP and MHD-EMP can cover a large area of up to several hundred kilometers in diameter. The purpose of this project was first to define typical electrical power system characteristics for EMP analysis, and second, to determine reasonable worst case EMP induced surges on overhead electric power system transmission and distribution lines for reasonable assumptions, using unclassified HEMP and MHD-EMP electric field waveforms.

  16. NEW DIRECTIONS IN RADIOISOTOPE SPECTRUM IDENTIFICATION

    SciTech Connect (OSTI)

    Salaymeh, S.; Jeffcoat, R.

    2010-06-17T23:59:59.000Z

    Recent studies have found the performance of commercial handheld detectors with automatic RIID software to be less than acceptable. Previously, we have explored approaches rooted in speech processing such as cepstral features and information-theoretic measures. Scientific advances are often made when researchers identify mathematical or physical commonalities between different fields and are able to apply mature techniques or algorithms developed in one field to another field which shares some of the same challenges. The authors of this paper have identified similarities between the unsolved problems faced in gamma-spectroscopy for automated radioisotope identification and the challenges of the much larger body of research in speech processing. Our research has led to a probabilistic framework for describing and solving radioisotope identification problems. Many heuristic approaches to classification in current use, including for radioisotope classification, make implicit probabilistic assumptions which are not clear to the users and, if stated explicitly, might not be considered desirable. Our framework leads to a classification approach with demonstrable improvements using standard feature sets on proof-of-concept simulated and field-collected data.

  17. Sensitivity, Approximation and Uncertainty in Power System Dynamic Simulation

    E-Print Network [OSTI]

    1 Sensitivity, Approximation and Uncertainty in Power System Dynamic Simulation Ian A. Hiskens, Fellow, IEEE Jassim Alseddiqui Student Member, IEEE Abstract-- Parameters of power system models the influence of uncertainty in simulations of power system dynamic behaviour. It is shown that trajectory

  18. Power System Flexibility Summary of Council Staff Activities

    E-Print Network [OSTI]

    of wind power to the Northwest electricity system has raised issues regarding power system flexibility and balancing its variability with flexible hydro resources. They walked through an example day where windPower System Flexibility Summary of Council Staff Activities The addition of large amounts

  19. Electric Power System Anomaly Detection Using Neural Networks

    E-Print Network [OSTI]

    Tronci, Enrico

    Electric Power System Anomaly Detection Using Neural Networks Marco Martinelli1 , Enrico Tronci1. The aim of this work is to propose an approach to monitor and protect Electric Power System by learning of an Electric Power System. In this paper, a neural network based approach for novelty detection is presented

  20. Human Factors Aspects of Power System Flow Animation

    E-Print Network [OSTI]

    is to present the results of human factors experiments looking at the power system flow animation. IIHuman Factors Aspects of Power System Flow Animation Douglas A. Wiegmann, Gavin R. Essenberg experimental results associated with human factors aspects of using animation to display electric power system

  1. Intelligent Predictive Control Methods for Synchronous Power System

    E-Print Network [OSTI]

    Rizvi, Syed Z.

    Intelligent Predictive Control Methods for Synchronous Power System Muhammad S. Yousuf Electrical with the control of the system in case of perturbations. Optimal control theory for stabilizing SMIB power systems@kfupm.edu.sa Abstract--In this paper, an intelligent Model Predictive Con- troller (MPC) for a Synchronous Power Machine

  2. Model Predictive Control based Real Time Power System Protection Schemes

    E-Print Network [OSTI]

    Kumar, Ratnesh

    1 Model Predictive Control based Real Time Power System Protection Schemes Licheng Jin, Member by controlling the production, absorption as well as flow of reactive power at various locations in the system predictive control, trajectory sensitivity, voltage stabilization, switching control, power system I

  3. Contribution Allocation for Voltage Stability In Deregulated Power Systems

    E-Print Network [OSTI]

    Contribution Allocation for Voltage Stability In Deregulated Power Systems Garng M. Huang, Senior, stability margin I. INTRODUCTION The deregulated power system is based on transactions; each part Member, IEEE, Kun Men Abstract: With deregulation of power systems, it is of great importance to know who

  4. ARTICLE IN PRESS Controlling power systems with price signals

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    power and stability problems caused by market/system interactions. The results suggest that controlARTICLE IN PRESS Controlling power systems with price signals Fernando L. Alvarado ECE Department 53705, United States Abstract This paper revisits the possibility of controlling the power system

  5. Complete System Power Estimation using Processor Performance Events

    E-Print Network [OSTI]

    John, Lizy Kurian

    Complete System Power Estimation using Processor Performance Events W. Lloyd Bircher and Lizy K measurement of complete system power consumption. The approach takes advantage of the "trickle-down" effect and existing on-chip performance event counters, it is possible to estimate system power consumption without

  6. Sizing Storage and Wind Generation Capacities in Remote Power Systems

    E-Print Network [OSTI]

    Victoria, University of

    Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B Capacities in Remote Power Systems by Andy Gassner B.Sc., University of Wisconsin ­ Madison, 2003 Supervisory and small power systems. However, the variability due to the stochastic nature of the wind resource

  7. IBM Research -Ireland Polynomial Optimisation in Power Systems

    E-Print Network [OSTI]

    IBM Research - Ireland Polynomial Optimisation in Power Systems at IBM Research Jakub Marecek 1 Problems in Power Systems 2 Structural Results using Homotopy Continuation 3 Hierarchies of SDP Relaxations 4 Extensions #12;IBM Research - Ireland Optimisation in Power Systems: Motivation · World gross

  8. Reduced Peak Power Requirements in FDM and Related Systems

    E-Print Network [OSTI]

    Richardson, Thomas J.

    Reduced Peak Power Requirements in FDM and Related Systems Rajiv Laroia, Tom Richardson, R. This is especially true of communication systems for which the cost of peak transmitted power is critical. Often by the peak power required of the amplifier. On the other hand, the capacity of the system is proportional

  9. Full-System Power Analysis and Modeling for Server Environments

    E-Print Network [OSTI]

    Kozyrakis, Christos

    Full-System Power Analysis and Modeling for Server Environments Dimitris Economou, Suzanne Rivoire-density computer systems, have created a growing demand for better power management in server environments. Despite consumption trends and developing simple yet accurate models to predict full-system power. We study

  10. GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS for Certification of Combined Heat and Power Systems Pursuant to the Waste Heat and Carbon Emissions Reduction Act Heat and Power System Pursuant to the Waste Heat and Carbon Emissions Reduction Act, Public Utilities

  11. On the Power of Nonlinear Mappings in Switching Map Systems

    E-Print Network [OSTI]

    Sato, Yuzuru

    On the Power of Nonlinear Mappings in Switching Map Systems Yuzuru Sato 1 # , Makoto Taiji 2 operations would be allowed. It is also expected that the computational power of switching map systems stronger computational power than classical Turing machines. On the other hand, these dynamical systems

  12. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    Power Systems Engineering Research Center PSERC Background Paper What is Reactive Power? Peter W-Champaign September 16, 2003 Engineering talk Reactive power is a quantity that is normally only defined for alternating current (AC) electrical systems. Our U.S. interconnected grid is almost entirely an AC system

  13. Lessons Learned: Planning and Operating Power Systems with Large

    E-Print Network [OSTI]

    Lessons Learned: Planning and Operating Power Systems with Large Amounts of Renewable Energy agency thereof. #12;Lessons Learned: Planning and Operating Power Systems with Large Amounts of Renewable to their systems powered by as-available renewable energy sources (primarily wind and solar). The Big Island also

  14. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect (OSTI)

    Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory P.O. Box 1663, MS-E502 Los Alamos, New Mexico87545 (United States)

    1997-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

  15. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  16. Direct current uninterruptible power supply method and system

    DOE Patents [OSTI]

    Sinha, Gautam

    2003-12-02T23:59:59.000Z

    A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.

  17. Abstract Protection system hidden failures have been recognized as a contributing factor to power system cascading

    E-Print Network [OSTI]

    to power system cascading outages. However, in the current bulk power system reliability assessment to evaluate the effects of protection system hidden failures on bulk power system reliability in the general bulk power system reliability assessment procedure. In the proposed methodology, a breaker

  18. Robust Nonlinear State Feedback for Power Systems under Structured Uncertainty

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    , and highly nonlinear systems with constantly varying loads. Control of modern electric power systems becomes perturbations to the state model of power systems. The control law is applied through the excitation system, stability, uncertainty,. 1. INTRODUCTION For a control scheme to be effective, some details of the system

  19. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    at its maximum power output for the given solar conditions.Solar Electric Incentive Programs. [38] Module power outputs,power output (a) and voltages (b) of PV modules satisfying the Guidelines for California’s Solar

  20. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01T23:59:59.000Z

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  1. Global Wind Power Conference September 18-21, 2006, Adelaide, Australia Design and Operation of Power Systems with Large Amounts of Wind Power, first

    E-Print Network [OSTI]

    of Power Systems with Large Amounts of Wind Power, first results of IEA collaboration Hannele Holttinen1.holttinen@vtt.fi Abstract: An international forum for exchange of knowledge of power system impacts of wind power has been Systems with Large Amounts of Wind Power"will analyse existing case studies from different power systems

  2. Essential Power Systems Workshop - OEM Perspective

    SciTech Connect (OSTI)

    Bill Gouse

    2001-12-12T23:59:59.000Z

    In California, idling is largely done for climate control. This suggests that climate control devices alone could be used to reduce idling. Line-haul truck drivers surveyed require an average of 4-6 kW of power for a stereo, CB radio, light, refrigerator, and climate control found in the average truck. More power may likely be necessary for peak power demands. The amount of time line-haul trucks reported to have stopped is between 25 and 30 hours per week. It was not possible to accurately determine from the pilot survey the location, purpose, and duration of idling. Consulting driver logs or electronically monitoring trucks could yield more accurate data, including seasonal and geographic differences. Truck drivers were receptive to idling alternatives. Two-thirds of truck drivers surveyed support a program to reduce idling. Two-thirds of drivers reported they would purchase idling reduction technologies if the technology yielded a payback period of two years or less. Willingness to purchase auxiliary power units appears to be higher for owner-operators than for company drivers. With a 2-year payback period, 82% of owner- operators would be willing to buy an idle- reducing device, while 63% of company drivers thought their company would do the same. Contact with companies is necessary to discern whether this difference between owner- operators and companies is true or simply due to the perception of the company drivers. Truck stops appear to be a much more attractive option for electrification than rest areas by a 48% to 21% margin. Much of this discrepancy may be due to perceived safety problems with rest areas. This survey did not properly differentiate between using these areas for breaks or overnight. The next, full survey will quantify where the truck drivers are staying overnight, where they go for breaks, and the duration of time they spend at each place. The nationwide survey, which is in progress, will indicate how applicable the results are to the US in general. In addition to the survey, we believe data loggers and focus groups will be necessary to collect the idling duration and location data necessary to compare auxiliary power units to truck stop electrification. Focus groups are recommended to better understand the driver response to APUs and electrification. The appearance and perception of the new systems will need further clarification, which could be accomplished with a demonstration for truck drivers.

  3. PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau

    E-Print Network [OSTI]

    Ashley, Michael C. B.

    PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau the power generation and management system of PLATO. Two redundant arrays of solar panels and a multiply astronomical facilities on the Antarctic plateau, offering minimum environmental impact and requiring minimal

  4. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion was carried out in the 1960`s which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper. 8 refs.

  5. Power-Supply-Network Design in 3D Integrated Systems

    E-Print Network [OSTI]

    Lim, Sung Kyu

    Power-Supply-Network Design in 3D Integrated Systems Michael B. Healy and Sung Kyu Lim School power-supply noise in a layout- level 3D design prototype, and the impact of possible 3D-specific changes to the power-supply network design and topology. Our results show that distributing power-supply

  6. Effect of Mobility on Power Control and System Capacity

    E-Print Network [OSTI]

    Kumar, Anurag

    Effect of Mobility on Power Control and System Capacity in CDMA Cellular Wireless Networks Munish control, admission control and user mobility. We compare two methods for power control: Constant Re­ ceived Power Control (CRPC) in which the total power received at each base station (BS) is kept constant

  7. Event-Driven Power Management of Portable Systems

    E-Print Network [OSTI]

    De Micheli, Giovanni

    Event-Driven Power Management of Portable Systems Tajana Simunicy Luca Benini Giovanni De Micheliy Bologna, ITALY 40136 Abstract The policy optimization problem for dynamic power management has received. 1 Introduction Dynamic power management is a widely-employed low- power design technique. Dynamic

  8. Energy Storage System Sizing for Smoothing Power Generation , P. Bydlowski

    E-Print Network [OSTI]

    Boyer, Edmond

    Energy Storage System Sizing for Smoothing Power Generation of Direct J. Aubry1 , P. Bydlowski 1 E as the SEAREV. The ESS is to insure a smoothed output power profile. First, the output set point power) control strategies in order to maintain SOC between two limits and also two power quality criteria

  9. Advanced Power Systems and Controls Laboratory

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver] · 80% loss of power output in seconds · Ramp Rates >100 MW/min · Poses a threat to grid stability developed for wind and solar applications. The test platform can be run with up to four 1.5MVA power

  10. Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL...

    Office of Science (SC) Website

    Excess pulses (90%) are diverted to BLIP for medical radioisotope research and production. Major current projects include large scale distribution of Sr-82 for heart scans,...

  11. Nonlinear modal interaction in HVDC/AC power systems with dc power modulation

    SciTech Connect (OSTI)

    Ni, Y.X. [Tsinghua Univ., Beijing (China)] [Tsinghua Univ., Beijing (China); Vittal, V.; Kliemann, W.; Fouad, A.A. [Iowa State Univ., Ames, IA (United States)] [Iowa State Univ., Ames, IA (United States)

    1996-11-01T23:59:59.000Z

    In this paper investigation of nonlinear modal interaction using the normal form of vector fields technique is extended to HVDC/AC power systems with dc power modulation. The ac-dc interface equations are solved to form a state space model with second order approximation. Using the normal form technique, the system`s nonlinear dynamic characteristics are obtained. The proposed approach is applied to a 4-generator HVDC/AC test power system, and compare with the time domain solution.

  12. Control system and method for a universal power conditioning system

    DOE Patents [OSTI]

    Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang

    2014-09-02T23:59:59.000Z

    A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.

  13. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    computer models of the electric grid. In the present day power system, computer models are commonly usedPower Systems Engineering Research Center PSERC Background Paper Analyzing Blackout Events in planning and operation of the electric grid to determine secure operating limits for how much power can

  14. Exploring Power-Performance Tradeoffs in Database Systems

    E-Print Network [OSTI]

    Tu, Yicheng

    explore the potential of power conservation in relational database management systems. We hypothesize that, power management has become a critical issue in system design and implementation [26]. Various sources the above costs are calculated directly from energy consumption, power (i.e., energy consumption per unit

  15. Cyber-Vulnerability of Power Grid Monitoring and Control Systems

    E-Print Network [OSTI]

    Manimaran, Govindarasu

    Cyber-Vulnerability of Power Grid Monitoring and Control Systems Chee-Wooi Ten Iowa State, and power infrastructures due to the complexity of required compliances [5]. Although the complex outages. Three modes of malicious attacks on the power infrastructure are (i) attack upon the system, (ii

  16. Advanced PID type fuzzy logic power system stabilizer

    SciTech Connect (OSTI)

    Hiyama, Takashi; Kugimiya, Masahiko; Satoh, Hironori (Kumamoto Univ. (Japan). Dept. of Electrical Engineering and Computer Science)

    1994-09-01T23:59:59.000Z

    An advanced fuzzy logic control scheme has been proposed for a micro-computer based power system stabilizer to enhance the overall stability of power systems. The proposed control scheme utilizes the PID information of the generator speed. The input signal to the stabilizer is the real power output of a study unit. Simulations show the effectiveness of the advanced fuzzy logic control scheme.

  17. Prospects for attractive fusion power systems By Farrokh Najmabadi

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Prospects for attractive fusion power systems By Farrokh Najmabadi Department of Electrical, Robinson, Putvinski et al., all this issue). Section 3 reviews fusion power technology systems 92093-0417, USA As one of the alternative sources of energy for the future, fusion power must demon

  18. Ris-R-1257(EN) Isolated Systems with Wind Power

    E-Print Network [OSTI]

    energy in isolated communities. So far most studies of isolated systems with wind power have been case and economical feasibility of isolated power supply systems with wind energy. General guidelines and checklists project costs 24 5.5.2 Cost of Energy, COE 25 5.5.3 Value of Energy, VOE 25 Primary power supply 25

  19. Decentralized Control of Power Systems via Robust Control of Uncertain Markov Jump Parameter Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    are regulated by small disturbance controllers whose gains are adjusted for variations in power system model due control of small disturbances in interconnected power systems. The linearized power system dynamic modelDecentralized Control of Power Systems via Robust Control of Uncertain Markov Jump Parameter

  20. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  1. Prefire identification for pulse power systems

    DOE Patents [OSTI]

    Longmire, Jerry L. (Los Alamos, NM); Thuot, Michael E. (Espanola, NM); Warren, David S. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  2. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    Cooling Heat and Power (CCHP) systems are being installed atand heating loads. These CCHP systems can also act as backupgenerators. In all cases the CCHP systems are rated at a

  3. Options for Bulgaria power system extension planning

    SciTech Connect (OSTI)

    Vassilev, C.; Christov, C.

    1998-07-01T23:59:59.000Z

    Under the existing transition to market economy in Bulgaria, the planning of development of electricity generation is among the priorities of the national policy of restructuring and renovation of electricity system in the country. Optimal plans for development of the generation capacity are worked out by means of optimization procedure part of ENPEP package (ELECTRIC module) based on the dynamic programming technique. The optimal plans study three main strategies for development of energy capacities, which have to do with the priority of some type of natural resources--Coal, Natural Gas and Nuclear Energy. The Hydro Power Plant construction and loading schedule for each scenario is different and it harmonized with the maneuverability of other capacities. Coal scenario emphasizes the opportunities for the maximizing of local coal mining, substitution of black coal (energy and coke) import by mining of local coal fields and implementation of efficient and environmentally sound technologies when constructing new thermal power plants. Gas scenario envisages natural gas consumption within the limit of existing capacities of the national and transit pipelines. In this connection, the share of the new generating capacities using combined cycle increases their share. Nuclear scenario assumes increased share of the nuclear units at the expense of local coal mining and natural gas. This is due to the rehabilitation of 1,000 MW units in NPP Kozloduy, completion of a 1,000 MW unit in new NPP and construction of 1--2 new units 600 MW after 2010. The data obtained outlines the perspectives for development of energy generation capacities in Bulgaria for the period 2000--2020, tendencies in the generation structure and the share of each different type of generation units in the structure of electricity generation system. Output information serves as a sound base for conclusions on the advantages and disadvantages of the three strategies.

  4. Optimal monitoring and visualization of steady state power system operation

    E-Print Network [OSTI]

    Xu, Bei

    2009-06-02T23:59:59.000Z

    estimation becomes more critical. Recently, due to the development of new technology in high power electronics, new control and monitoring devices are becoming more popular in power systems. It is therefore necessary to investigate their models and integrate...

  5. Optimal Shipboard Power System Management via Mixed Integer Dynamic Programming

    E-Print Network [OSTI]

    Kwatny, Harry G.

    feedback controls is described. Examples are given. I. INTRODUCTION Maintaining power flow to vital loads following component failure(s) is a central goal of power system management including electric shipboard

  6. Some new applications of supercapacitors in power electronic systems 

    E-Print Network [OSTI]

    Palma Fanjul, Leonardo Manuel

    2004-09-30T23:59:59.000Z

    This thesis explores some new applications in power electronics for supercapacitors. This involves the design and development of dc-dc converters to interface the supercapacitor banks with the rest of the power electronic system. Two applications...

  7. Medical Radioisotope Data Survey: 2002 Preliminary Results

    SciTech Connect (OSTI)

    Siciliano, Edward R.

    2004-06-23T23:59:59.000Z

    A limited, but accurate amount of detailed information about the radioactive isotopes used in the U.S. for medical procedures was collected from a local hospital and from a recent report on the U.S. Radiopharmaceutical Markets. These data included the total number of procedures, the specific types of procedures, the specific radioisotopes used in these procedures, and the dosage administered per procedure. The information from these sources was compiled, assessed, pruned, and then merged into a single, comprehensive and consistent set of results presented in this report. (PIET-43471-TM-197)

  8. Pool power control in remelting systems

    DOE Patents [OSTI]

    Williamson, Rodney L. (Albuquerque, NM); Melgaard, David K. (Albuquerque, NM); Beaman, Joseph J. (Austin, TX)

    2011-12-13T23:59:59.000Z

    An apparatus for and method of controlling a remelting furnace comprising adjusting current supplied to an electrode based upon a predetermined pool power reference value and adjusting the electrode drive speed based upon the predetermined pool power reference value.

  9. Outphase power amplifiers in OFDM systems

    E-Print Network [OSTI]

    Ph?m, Anh D., 1974-

    2006-01-01T23:59:59.000Z

    A trade-off between linearity and efficiency exists in conventional power amplifiers. The outphase amplifying concept overcomes this trade-off by enabling the use of high efficiency, non-linear power amplifiers for linear ...

  10. Conic optimization of electric power systems

    E-Print Network [OSTI]

    Taylor, Joshua Adam

    2011-01-01T23:59:59.000Z

    The electric power grid is recognized as an essential modern infrastructure that poses numerous canonical design and operational problems. Perhaps most critically, the inherently large scale of the power grid and similar ...

  11. Analysis and design of power conditioning systems 

    E-Print Network [OSTI]

    Harfman Todorovic, Maja

    2009-05-15T23:59:59.000Z

    power conditioner consisting of DC-DC and DC-AC converters is required for load interface. The design of power conditioners is driven by the application. This dissertation presents several different solutions for applications ranging from low...

  12. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    energy efficient products that utilize DC power internally; the demonstrated energy savings of direct-DC in commercial data centers;energy efficient products that utilize DC power internally, the demonstrated energy savings of direct-DC power use in commercial data centers,

  13. Remote grounding device for subterranean power systems

    SciTech Connect (OSTI)

    Wilson, D.P.

    1987-04-28T23:59:59.000Z

    A remote grounding device is described for subterranean power cable of an insulated conducting cable which comprises: a grounding module and a grounding mechanism; the grounding module is an assembly of a power buss, an insulation sheath, a reducing tap plug and an insulating receptacle cap. The power buss is intimately connected to the conducting cable by a means of an attachment. The reducing tap plug fits concentrically over the power buss and has a tubular probe path void contiguous and in-line to the power buss and a lip around the outer periphery of the reducing tap plug. The insulating receptacle cap covers the tubular void. The insulating sheath covers and holds reducing tap plug and power cable by a multiplicity of locking means and a grounding mechanism assembly of a frame, a probe, a power drive means, a grounding means, a handle means.

  14. System-wide emissions implications of increased wind power penetration.

    SciTech Connect (OSTI)

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G. (Decision and Information Sciences); (Univ. of Illinois, Champaign/Urbana); (Georgia Institute of Technology)

    2012-01-01T23:59:59.000Z

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  15. An investigation of simple nonsmooth power system models

    SciTech Connect (OSTI)

    Mantri, R.; Venkatasubramanian, V.; Saberi, A. [Washington State Univ., Pullman, WA (United States)

    1994-12-31T23:59:59.000Z

    Recently new notions of solutions and equilibrium points have been proposed for analyzing nonsmooth system descriptions. This paper observes certain new phenomena in simple nonsmooth power system models presenting a preliminary analysis. The results include an investigation of new Hopf-like bifurcations related to the birth of limit cycles in two dimensional non-Lipschitzian power system models.

  16. Actinium radioisotope products of enhanced purity

    DOE Patents [OSTI]

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15T23:59:59.000Z

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  17. Design of power systems for extensible surface mobility systems on the Moon and Mars

    E-Print Network [OSTI]

    Hong, SeungBum, S.M. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    This thesis presents the power system model description and sample studies for extensible surface mobility systems on the Moon and Mars. The mathematical model of power systems for planetary vehicles was developed in order ...

  18. IEEE TRANSACTIONS ON POWER SYSTEMS (ACCEPTED NOVEMBER 8, 2014) 1 Stochastic Reactive Power Management

    E-Print Network [OSTI]

    Giannakis, Georgios

    IEEE TRANSACTIONS ON POWER SYSTEMS (ACCEPTED NOVEMBER 8, 2014) 1 Stochastic Reactive Power response, and electric vehicles. Advances in photovoltaic (PV) inverters offer new opportunities for reactive power management provided PV owners have the right invest- ment incentives. In this context

  19. Hybrid robust predictive optimization method of power system dispatch

    DOE Patents [OSTI]

    Chandra, Ramu Sharat (Niskayuna, NY); Liu, Yan (Ballston Lake, NY); Bose, Sumit (Niskayuna, NY); de Bedout, Juan Manuel (West Glenville, NY)

    2011-08-02T23:59:59.000Z

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  20. Microsoft Word - Future Power Systems 21 - The Smart Customer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    world of 'customer participation'; albeit managed automatically by intelligent premises control. Future Power Systems 21 - The Smart Customer Steve Browning Page 3...

  1. Optimization of Multiple Receivers Solar Power Tower systems

    E-Print Network [OSTI]

    2015-04-08T23:59:59.000Z

    Apr 8, 2015 ... Solar Power Tower (SPT) systems are known as one of the most promising ...... An appropriate control is required to adapt the mass flow in the ...

  2. Real-Time Dispatchability of Bulk Power Systems with Volatile ...

    E-Print Network [OSTI]

    2015-03-16T23:59:59.000Z

    the concept of real-time dispatchability (RTDA) of power systems with variable energy resources .... eration control, economic dispatch and unit commitment. Ref

  3. AFTER A Framework for electrical power sysTems vulnerability...

    Open Energy Info (EERE)

    sysTems vulnerability identification, dEfense and Restoration (Smart Grid Project) (Germany) Jump to: navigation, search Project Name AFTER A Framework for electrical power...

  4. FERC Presendation: Demand Response as Power System Resources...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as...

  5. Submerged Medium Voltage Cable Systems at Nuclear Power Plants...

    Office of Scientific and Technical Information (OSTI)

    Submerged Medium Voltage Cable Systems at Nuclear Power Plants: A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring. Re-direct Destination: In a...

  6. Visualization of Electric Power System Information: Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Komomua, C.

    2013-01-01T23:59:59.000Z

    This report summarizes the workshop entitled: Visualization of Electric Power System Information. The workshop was held on September 11, 2012 on NREL's campus in Golden, Colorado.

  7. Optimization of Multiple Receivers Solar Power Tower systems

    E-Print Network [OSTI]

    Emilio Carrizosa

    2015-03-26T23:59:59.000Z

    Mar 26, 2015 ... Abstract: In this article a new procedure to optimize the design of a Multiple Receivers Solar Power Tower system is presented. The proposed ...

  8. Microsoft Word - Future Power Systems 20 - The Smart Enterprise...

    Office of Environmental Management (EM)

    all gives inefficient burn which costs more in fuel and emissions per kWh. Future Power Systems 20 The Smart Enterprise, its Objective and Forecasting. Steve...

  9. AFTER A Framework for electrical power sysTems vulnerability...

    Open Energy Info (EERE)

    United Kingdom) Jump to: navigation, search Project Name AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration Country United Kingdom...

  10. Systems for Electrical Power from Coproduced and Low Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion....

  11. AFTER A Framework for electrical power sysTems vulnerability...

    Open Energy Info (EERE)

    AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration (Smart Grid Project) (Norway) Jump to: navigation, search Project Name AFTER A...

  12. AFTER A Framework for electrical power sysTems vulnerability...

    Open Energy Info (EERE)

    Ireland) Jump to: navigation, search Project Name AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration Country Ireland Coordinates...

  13. AFTER A Framework for electrical power sysTems vulnerability...

    Open Energy Info (EERE)

    Belgium) Jump to: navigation, search Project Name AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration Country Belgium Coordinates...

  14. AFTER A Framework for electrical power sysTems vulnerability...

    Open Energy Info (EERE)

    Czech Republic) Jump to: navigation, search Project Name AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration Country Czech Republic...

  15. Power Systems Integration Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from fundamental research to applications engineering. Partners at the ESIF's Power Systems Integration Laboratory may include: * Manufacturers of distributed generation and...

  16. Tokamak power system studies at ANL

    SciTech Connect (OSTI)

    Baker, C.C.; Ehst, D.A.; Brooks, J.N.; Evans, K. Jr.

    1986-06-01T23:59:59.000Z

    The following features, in particular, have been examined: (a) large aspect ratio (A approx. = 6), which may ease maintenance; (b) high beta (..beta.. greater than or equal to 0.20) without indentation, which brings the maximum toroidal field down to about 6 to 7 T; (c) low toroidal current (I approx. = 4MA), which reduces the cost of the current drive and equilibrium field system; and (d) steady state operation with current density control via fast and slow wave current drive. The key to high beta operation with low toroidal current lies in utilizing second stability regime equilibria with the required current distributions produced by an appropriate selection of wave driver frequencies and power spectra. The ray tracing and current drive calculation is self-consistent with the actual magnetic fields they produce in the plasma. The impurity control activities in TPSS have emphasized the self-pumping concept as applied to using the entire first wall or ''slot'' limiters. The blanket design effort has emphasized liquid metal and Flibe concepts. The reference concept is a liquid lithium/vanadium, self-cooled configuration. Overall, there exists a number of major design improvements which will substantially improve the attractiveness of tokamak reactors.

  17. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12T23:59:59.000Z

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  18. Power Systems Technician | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power ElectronicsPower

  19. Brayton Cycle Baseload Power Tower CSP System

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  20. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    I. , and M Sagrillo, 2010 Wind Generator buyer's guide. HomePower magazine’s 2010 Wind Generator Buyer’s guide compares

  1. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    with deep- cycle lead-acid batteries being virtually theindustry norm remains lead-acid batteries, due to their lowthis discussion on lead-acid batteries. Description Power

  2. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ape016bennion2010o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric...

  3. Efficient Power Control for Broadcast in Wireless Communication Systems

    E-Print Network [OSTI]

    Chronopoulos, Anthony T.

    Efficient Power Control for Broadcast in Wireless Communication Systems A. T. Chronopoulos Computer. Therefore, controlling the transmitter power at a given node increases not only the operating life and a destination. It is essential to find effective means of power control of point-to-point, broadcasting

  4. Power Control and Utility Optimization in Wireless Communication Systems

    E-Print Network [OSTI]

    Chronopoulos, Anthony T.

    Power Control and Utility Optimization in Wireless Communication Systems Dimitrie C. Popescu@cs.utsa.edu Abstract-- In this paper we present an analysis of power control algorithms established over the past with power control algorithms based on game theory established relatively recently. The analysis shows

  5. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  6. Power System Level Impacts of Plug-In Hybrid Vehicles

    E-Print Network [OSTI]

    (PSERC) is a multi-university Center conducting research on challenges facing the electric power industry to the electric power industry. The impact of PHEVs on the power grid is investigated. The methodology electric and gas, (b) simulation of the electric infrastructure (distribution systems) and the loading

  7. CyberPhysical System Security for the Electric Power Grid

    E-Print Network [OSTI]

    Manimaran, Govindarasu

    INVITED P A P E R Cyber­Physical System Security for the Electric Power Grid Control in power of cyber infrastructure security in conjunction with power application security to pre- vent, mitigate on its cyber infrastructure and its ability to tolerate potential failures. A further exploration

  8. THE JET PULSE POWER SUPPLY SYSTEM J. B. HICKS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    between the two major components of the power supply (flywheel-generator-convertors (FGC) and transformer between the two possible components of the power supply, i. e. flywheel. generator-convertors and transformer-controlled-convertors. The proposed JET power supply system is described, together with an outline

  9. StochasticStochasticStochasticStochasticStochasticStochasticStochasticStochastic Modeling of a PowerModeling of a PowerModeling of a PowerModeling of a PowerModeling of a PowerModeling of a PowerModeling of a PowerModeling of a Power--------Managed System

    E-Print Network [OSTI]

    Pedram, Massoud

    Modeling of a PowerModeling of a Power-------- Managed System: Construction andManaged System: Construction andManaged managementDynamic power management !! Simple systemsSimple systems "" Continuous Time Markov Decision Process designaware compiler and architecture design !! Power control and management techniquesPower control

  10. A NEW ALGORITHM FOR RADIOISOTOPE IDENTIFICATION OF SHIELDED AND MASKED SNM/RDD MATERIALS

    SciTech Connect (OSTI)

    Jeffcoat, R.

    2012-06-05T23:59:59.000Z

    Detection and identification of shielded and masked nuclear materials is crucial to national security, but vast borders and high volumes of traffic impose stringent requirements for practical detection systems. Such tools must be be mobile, and hence low power, provide a low false alarm rate, and be sufficiently robust to be operable by non-technical personnel. Currently fielded systems have not achieved all of these requirements simultaneously. Transport modeling such as that done in GADRAS is able to predict observed spectra to a high degree of fidelity; our research is focusing on a radionuclide identification algorithm that inverts this modeling within the constraints imposed by a handheld device. Key components of this work include incorporation of uncertainty as a function of both the background radiation estimate and the hypothesized sources, dimensionality reduction, and nonnegative matrix factorization. We have partially evaluated performance of our algorithm on a third-party data collection made with two different sodium iodide detection devices. Initial results indicate, with caveats, that our algorithm performs as good as or better than the on-board identification algorithms. The system developed was based on a probabilistic approach with an improved approach to variance modeling relative to past work. This system was chosen based on technical innovation and system performance over algorithms developed at two competing research institutions. One key outcome of this probabilistic approach was the development of an intuitive measure of confidence which was indeed useful enough that a classification algorithm was developed based around alarming on high confidence targets. This paper will present and discuss results of this novel approach to accurately identifying shielded or masked radioisotopes with radiation detection systems.

  11. System model Scope of Work Short term power constraint Long term power constraint Imperfect CSIR Prediction Summary Spatial and Temporal Power Allocation for MISO

    E-Print Network [OSTI]

    Bhashyam, Srikrishna

    System model Scope of Work Short term power constraint Long term power constraint Imperfect CSIR Prediction Summary Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback Srikrishna) feedback #12;System model Scope of Work Short term power constraint Long term power constraint Imperfect

  12. ECE 418/618 Power System Analysis

    E-Print Network [OSTI]

    Bolding, M. Chad

    will be given during the semester as bonus*. * Bonus includes: Power Seminars, in class pop quizzes, power field trip and announced bonus homework. Final Grades: 90% and above A 80% - 89.9 % B 65% - 79.9 % C 50% - 64

  13. An Integrated Security-constrained Model-based Dynamic Power Management Approach for Isolated Microgrid Power Systems

    E-Print Network [OSTI]

    Mashayekh, Salman

    2013-11-22T23:59:59.000Z

    Prime Mover and Control GeneratorExcitation System and Control Shaft Power Field Current Voltage Speed / Power Speed Generating Unit Controls – Unit 1 Reactive Power and Voltage Control HVDC Transmission and Associated Controls System Generation...

  14. TEST OF THE PERFORMANCE AND CHARACTERISTICS OF A PROTOTYPE INDUCTIVE POWER COUPLING FOR ELECTRIC HIGHWAY SYSTEMS

    E-Print Network [OSTI]

    Bolger, J.G.

    2010-01-01T23:59:59.000Z

    operation of an electric vehicle's power system. The 1.30power source Figure 1. Roadway-powered system for electric vehicles.

  15. A Model Checking Approach to Evaluating System Level Dynamic Power Management Policies for Embedded Systems

    E-Print Network [OSTI]

    Gupta, Rajesh

    A Model Checking Approach to Evaluating System Level Dynamic Power Management Policies for Embedded, and laptops, controlling power dissipation is an important system design issue [2]. This is either because enforced at the system level. In [3], a system modeling ap- proach for dynamic power management strategy

  16. Impacts of Control and Communication System Vulnerabilities on Power Systems Under

    E-Print Network [OSTI]

    Hayat, Majeed M.

    1 Impacts of Control and Communication System Vulnerabilities on Power Systems Under Contingencies, NM, USA Abstract--Modern power grids rely heavily on their control systems operating over and blackouts remain possible if the initial disturbances in the power grid are accompanied by other system

  17. Power System Probabilistic and Security Analysis on Commodity High Performance Computing Systems

    E-Print Network [OSTI]

    Franchetti, Franz

    power system infrastructures also requires merging of offline security analyses into on- line operationPower System Probabilistic and Security Analysis on Commodity High Performance Computing Systems tools for power system probabilistic and security analysis: 1) a high performance Monte Carlo simulation

  18. Development status of the heatpipe power and bimodal systems

    SciTech Connect (OSTI)

    Poston, David I.; Houts, Michael G. [Nuclear Systems Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] Emrich, William J., Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35738 (United States)

    1999-01-01T23:59:59.000Z

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power ({gt}1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999. {copyright} {ital 1999 American Institute of Physics.}

  19. Development status of the heatpipe power and bimodal systems

    SciTech Connect (OSTI)

    Poston, David I.; Houts, Michael G. [Nuclear Systems Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Emrich, William J. Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35738 (United States)

    1999-01-22T23:59:59.000Z

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.

  20. Design of control for efficiency of AUV power systems

    E-Print Network [OSTI]

    Ware, Laura M. (Laura Marie)

    2012-01-01T23:59:59.000Z

    The MIT Rapid Development Group designed and built an internal combustion hybrid recharging system for the REMUS 600 Autonomous Underwater Vehicle (AUV) in collaboration with the MIT Lincoln Laboratory. This power system ...

  1. Shipboard condition based maintenance and integrated power system initiatives

    E-Print Network [OSTI]

    Barber, Darrin E. (Darrin Eugene)

    2011-01-01T23:59:59.000Z

    With the U.S. Navy's continued focus on developing and implementing a robust integrated power system aboard future combatants, there has been an ever increasing effort to guarantee an electrical distribution system that ...

  2. Model Abstraction Techniques for Large-Scale Power Systems

    E-Print Network [OSTI]

    Report on System Simulation using High Performance Computing Prepared by New Mexico Tech New Mexico: Application of High Performance Computing to Electric Power System Modeling, Simulation and Analysis Task Two

  3. Decomposition algorithms for multi-area power system analysis

    E-Print Network [OSTI]

    Min, Liang

    2007-09-17T23:59:59.000Z

    A power system with multiple interconnected areas needs to be operated coordinately for the purposes of the system reliability and economic operation, although each area has its own ISO under the market environment. In consolidation of different...

  4. Photovoltaic-powered desalination system for remote Australian communities 

    E-Print Network [OSTI]

    Richards, B.S.; Schäfer, Andrea

    2003-01-01T23:59:59.000Z

    This paper reports on the design and successful field testing of a photovoltaic (PV)-powered desalination system. The system described here is intended for use in remote areas of the Australian outback, where fresh water ...

  5. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 2, MAY 2000 535 Stability-Constrained Optimal Power Flow

    E-Print Network [OSTI]

    IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 2, MAY 2000 535 Stability-Constrained Optimal Abstract--Stability is an important constraint in power system operation. Often trial and error heuristics in the context of a 162-bus system. Index Terms--Power System, Transient Stability, Optimal Power Flow, Numerical

  6. Flight-systems-safety program. Progress report, May 1982

    SciTech Connect (OSTI)

    Bronisz, S.E. (comp.)

    1982-10-01T23:59:59.000Z

    This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Space Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

  7. iPower: An Energy Conservation System for

    E-Print Network [OSTI]

    Tseng, Yu-Chee

    iPower: An Energy Conservation System for Intelligent Buildings by Wireless Sensor Networks Lun. Exploiting the context-aware capability of WSN to achieve energy conservation in intelligent buildings is an attractive direction. We thus propose an iPower (intelligent and personalized energy-conservation system

  8. The dynamics of power system markets Fernando L. Alvarado

    E-Print Network [OSTI]

    The dynamics of power system markets Fernando L. Alvarado Department of Electrical and Computer describing the marketplace. Dynamic market equations provide additional insights into the behavior studies the impact of various policies on the dynamic behavior of power system markets. The impact

  9. Braess' Paradox in a simple electric power system

    E-Print Network [OSTI]

    Blumsack, Seth

    at bus i; Fij = Real power flow between buses i and j; i = Locational marginal price at bus i in $/MW lines in the system are upgraded. In these systems, locational prices (as currently used electric power network. The load at bus 4 is assumed to have a totally price- inelastic demand of 100 MW

  10. Wojciech.Wiechowski@wtwps.com POWER SYSTEM TECHNICAL PERFORMANCE ISSUES

    E-Print Network [OSTI]

    Bak, Claus Leth

    Wojciech.Wiechowski@wtwps.com POWER SYSTEM TECHNICAL PERFORMANCE ISSUES RELATED TO THE APPLICATION of work of Cigre Working Group C4.502 "Power system technical performance issues related underground transmission project are identified. Cable line modeling and model verification techniques

  11. Reliability assessment of electrical power systems using genetic algorithms

    E-Print Network [OSTI]

    Samaan, Nader Amin Aziz

    2004-11-15T23:59:59.000Z

    of the dissertation, a GA based method for state sampling of composite generation-transmission power systems is introduced. Binary encoded GA is used as a state sampling tool for the composite power system network states. A linearized optimization load flow model...

  12. Genetic Algorithm Based Damage Control For Shipboard Power Systems

    E-Print Network [OSTI]

    Amba, Tushar

    2010-07-14T23:59:59.000Z

    The work presented in this thesis was concerned with the implementation of a damage control method for U.S. Navy shipboard power systems (SPS). In recent years, the Navy has been seeking an automated damage control and power system management...

  13. Dynamic wind turbine models in power system simulation tool

    E-Print Network [OSTI]

    Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

  14. A New Methodology for Aircraft HVDC Power Systems design

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A New Methodology for Aircraft HVDC Power Systems design D. Hernández, M. Sautreuil, N. Retière, D-mail: olivier.sename@gipsa-lab.inpg.fr Abstract ­ A new methodology for aircraft HVDC power systems design

  15. Nuclear Power - System Simulations and Operation 

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    A&M University United States of America 1 Simulation and Simulators for Nuclear Power Generation J a n o s Sebe s ty e n Janos y MTA KFKI Atomic Energy Research Institute Hungary 1. Introduction T h i s chapte r deals with simula... t i o n , a very po werfu l tool in designi n g , constru c t i n g and operat i n g nuclea r power genera t i n g facili ti es . There are very differ e n t types of power plants , and the exampl e s mentio n e d in this chapte r or igin a t e from...

  16. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01T23:59:59.000Z

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  17. Combustion systems for power-MEMS applications

    E-Print Network [OSTI]

    Spadaccini, Christopher M. (Christopher Michael), 1974-

    2004-01-01T23:59:59.000Z

    As part of an effort to develop a micro-scale gas turbine engine for power generation and micro-propulsion applications, this thesis presents the design, fabrication, experimental testing, and modeling of the combustion ...

  18. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    DC solar-powered DC air-conditioning heat pump produced byRoom Air Conditioners Geothermal Heat Pumps Lighting-efficiency of an air source electric heat-pump water heater

  19. A portable power system using PEM fuel cells

    SciTech Connect (OSTI)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31T23:59:59.000Z

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  20. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher

    2014-07-21T23:59:59.000Z

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.