Sample records for radioactive waste generated

  1. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form · Separate liquid from solid · Radionuclide · Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to

  2. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    SciTech Connect (OSTI)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

    1991-07-01T23:59:59.000Z

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  3. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    SciTech Connect (OSTI)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

    1991-07-01T23:59:59.000Z

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  4. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  5. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  6. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06T23:59:59.000Z

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  7. The Management of the Radioactive Waste Generated by Cernavoda NPP, Romania, an Example of International Cooperation - 13449

    SciTech Connect (OSTI)

    Barariu, Gheorghe [National Authority for Nuclear Activities - Subsidiary of Technology and Engineering for Nuclear Projects - SITON, 409 Atomistilor Str., P.O. Box 5204, Mg4, Magurele (Romania)] [National Authority for Nuclear Activities - Subsidiary of Technology and Engineering for Nuclear Projects - SITON, 409 Atomistilor Str., P.O. Box 5204, Mg4, Magurele (Romania)

    2013-07-01T23:59:59.000Z

    The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)

  8. Radioactive Waste Management (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

  9. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives. (DMC)

  10. National profile on commercially generated low-level radioactive mixed waste

    SciTech Connect (OSTI)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

    1992-12-01T23:59:59.000Z

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  11. Radioactive and chemotoxic wastes: Only radioactive wastes?

    SciTech Connect (OSTI)

    Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

    1993-12-31T23:59:59.000Z

    Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

  12. Gas generation from low-level radioactive waste: Concerns for disposal

    SciTech Connect (OSTI)

    Siskind, B.

    1992-01-01T23:59:59.000Z

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

  13. Gas generation from low-level radioactive waste: Concerns for disposal

    SciTech Connect (OSTI)

    Siskind, B.

    1992-04-01T23:59:59.000Z

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

  14. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.

  15. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03T23:59:59.000Z

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  16. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01T23:59:59.000Z

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  17. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  18. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  19. Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3

    SciTech Connect (OSTI)

    Albert, R.

    1996-06-01T23:59:59.000Z

    This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellite Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.

  20. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01T23:59:59.000Z

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  1. RADIOACTIVE WASTE DISPOSAL IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

  2. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  3. Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario Hydro`s Bruce Nuclear Generating Station `A`

    SciTech Connect (OSTI)

    Day, J.E.; Baker, R.L.

    1995-05-01T23:59:59.000Z

    Ontario Hydro at the Bruce Nuclear Generating Station `A` has undertaken a program to render the station`s liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants to satisfy regulatory requirements for emissions. The system will remove radionuclide and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology.

  4. Thermal treatment of organic radioactive waste

    SciTech Connect (OSTI)

    Chrubasik, A.; Stich, W. [NUKEM GmbH, Alzenau (Germany)

    1993-12-31T23:59:59.000Z

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste.

  5. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 3. Public comments hearing board report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.

  6. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  7. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  8. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  9. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  10. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report

    SciTech Connect (OSTI)

    Luke, D.E. (INEEL); Hamp, S. (DOE-Albuquerque Operations Office)

    2002-01-04T23:59:59.000Z

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

  11. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report

    SciTech Connect (OSTI)

    Luke, Dale Elden; Hamp, S.

    2002-02-01T23:59:59.000Z

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen- containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organizations to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

  12. Greater-than-Class C low-level radioactive waste characterization. Appendix D-3: Characterization of greater-than-Class C low-level radioactive waste from other generators

    SciTech Connect (OSTI)

    Fish, L.W.

    1994-09-01T23:59:59.000Z

    The Other Generators category includes all greater-than-Class C low-level radioactive waste (GTCC LLW) that is not generated or held by nuclear utilities or sealed sources licensees or that is not stored at Department of Energy facilities. To determine the amount of waste within this category, 90 LLW generators were contacted; 13 fit the Other Generators category. Based on information received from the 13 identified Other Generators, the GTCC LLW Management Program was able to (a) characterize the nature of industries in this category, (b) estimate the 1993 inventory of Other Generator waste for high, base, and low cases, and (c) project inventories to the year 2035 for high, base, and low cases. Assumptions were applied to each of the case estimates to account for generators who may not have been identified in this study.

  13. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01T23:59:59.000Z

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

  14. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

    1987-01-01T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  15. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  16. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  17. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  18. Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario hydro`s Bruce nuclear generating station {open_quotes}A{close_quotes}

    SciTech Connect (OSTI)

    Day, J.E.; Baker, R.L. [ADTECHS Corporation, Herndon, VA (United States)

    1994-12-31T23:59:59.000Z

    Ontario Hydro at the Bruce Nuclear Generating Station {open_quotes}A{close_quotes} has undertaken a program to render the station`s liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology.

  19. ESTIMATION OF RADIOLYTIC GAS GENERATION RATE FOR CYLINDRICAL RADIOACTIVE WASTE PACKAGES - APPLICATION TO SPENT ION EXCHANGE RESIN CONTAINERS

    SciTech Connect (OSTI)

    Husain, A.; Lewis, Brent J.

    2003-02-27T23:59:59.000Z

    Radioactive waste packages containing water and/or organic substances have the potential to radiolytically generate hydrogen and other combustible gases. Typically, the radiolytic gas generation rate is estimated from the energy deposition rate and the radiolytic gas yield. Estimation of the energy deposition rate must take into account the contributions from all radionuclides. While the contributions from non-gamma emitting radionuclides are relatively easy to estimate, an average geometry factor must be computed to determine the contribution from gamma emitters. Hitherto, no satisfactory method existed for estimating the geometry factors for a cylindrical package. In the present study, a formulation was developed taking into account the effect of photon buildup. A prototype code, called PC-CAGE, was developed to numerically solve the integrals involved. Based on the selected dimensions for a cylinder, the specified waste material, the photon energy of interest and a value for either the absorption or attenuation coefficient, the code outputs values for point and average geometry factors. These can then be used to estimate the internal dose rate to the material in the cylinder and hence to calculate the radiolytic gas generation rate. Besides the ability to estimate the rates of radiolytic gas generation, PC-CAGE can also estimate the dose received by the container material. This is based on values for the point geometry factors at the surface of the cylinder. PC-CAGE was used to calculate geometry factors for a number of cylindrical geometries. Estimates for the absorbed dose rate in container material were also obtained. The results for Ontario Power Generation's 3 m3 resin containers indicate that about 80% of the source gamma energy is deposited internally. In general, the fraction of gamma energy deposited internally depends on the dimensions of the cylinder, the material within it and the photon energy; the fraction deposited increases with increasing dimensions of the cylinder and decreases with increasing photon energy.

  20. DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

  1. Apparatus and method for radioactive waste screening

    DOE Patents [OSTI]

    Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

    2012-09-04T23:59:59.000Z

    An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

  2. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  3. EIS-0046: Management of Commercially Generated Radioactive Waste, Washington, D.C.

    Broader source: Energy.gov [DOE]

    This statement analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented.

  4. RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK-RESULTS OF FIELD INVESTIGATIONS AT STRIPA, SWEDEN

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    the presence of heat-generating, radioactive wastes, and theBecause the heat output of radioactive waste decays withthe heat produced by the decay of radioactive wastes. Full-

  5. Low Level Radioactive Waste Authority (Michigan)

    Broader source: Energy.gov [DOE]

    Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority ...

  6. Radioactive waste treatment technologies and environment

    SciTech Connect (OSTI)

    HORVATH, Jan; KRASNY, Dusan [JAVYS, PLc. - Nuclear and Decommisioning Company, PLc. (Slovakia)

    2007-07-01T23:59:59.000Z

    The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

  7. Future radioactive liquid waste streams study

    SciTech Connect (OSTI)

    Rey, A.S.

    1993-11-01T23:59:59.000Z

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  8. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01T23:59:59.000Z

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

  9. Radioactive Waste Management BasisSept 2001

    SciTech Connect (OSTI)

    Goodwin, S S

    2011-08-31T23:59:59.000Z

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  10. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A. (ed.)

    1991-01-01T23:59:59.000Z

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  11. A compilation of the electricity generated and low-level radioactive wastes shipped for disposal by US nuclear power plants, 1959-1985

    SciTech Connect (OSTI)

    Kibbey, A.H.; DePaoli, S.M.

    1987-12-01T23:59:59.000Z

    The LWRDATA data base contains both volume and radioactivity data on nearly all the low-level radioactive waste (LLW) shipments from commercial boiling-water reactor (BWR) and pressurized-water reactor (PWR) nuclear power plants from 1959 through 1985. The corresponding net electrical output is also included in the data base. This report compares the various physical forms of LLW (i.e., wet; dry, compressible; irradiated, non-fuel core component; and miscellaneous) generated by BWR and PWR plants on the basis of their annual net electricity generation. Further comparisons are made of three specific categories of BWRs based on their size and condensate polishing systems: (1) small deep-bed plants, (2) large deep-bed plants, and (3) filter-demineralizer plants. The various types and volumes of PWR wastes generated per net megawatt (electrical)-year are also compared by nuclear steam supply system manufacturer. Limitations of the available data are discussed. 25 refs., 30 figs., 5 tabs.

  12. Radioactive Waste Management, Inspection Criteria; Approach,...

    Broader source: Energy.gov (indexed) [DOE]

    except for storage for decay or otherwise authorized by the Field Element Manager? Are radioactive waste storage, treatment, and disposal activities performed in a manner that...

  13. Sandia National Laboratories: radioactive waste solution cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solution cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  14. Office of Civilian Radioactive Waste Management Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    Jay Jones Office of Civilian Radioactive Waste Management April 22, 2004 Albuquerque, New Mexico 2 Session Overview * Meeting objectives and expectations * Topic Group...

  15. Flowsheets and source terms for radioactive waste projections

    SciTech Connect (OSTI)

    Forsberg, C.W. (comp.)

    1985-03-01T23:59:59.000Z

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

  16. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    SciTech Connect (OSTI)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01T23:59:59.000Z

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  17. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

    1982-01-01T23:59:59.000Z

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  18. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23T23:59:59.000Z

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  19. Low-level radioactive waste regulation: Science, politics and fear

    SciTech Connect (OSTI)

    Burns, M.E. (ed.)

    1988-01-01T23:59:59.000Z

    An inevitable consequence of the use of radioactive materials is the generation of radioactive wastes and the public policy debate over how they will be managed. In 1980, Congress shifted responsibility for the disposal of low-level radioactive wastes from the federal government to the states. This act represented a sharp departure from more than 30 years of virtually absolute federal control over radioactive materials. Though this plan had the enthusiastic support of the states in 1980, it now appears to have been at best a chimera. Radioactive waste management has become an increasingly complicated and controversial issue for society in recent years. This book discusses only low-level wastes, however, because Congress decided for political reasons to treat them differently than high-level wastes. The book is based in part on three symposia sponsored by the division of Chemistry and the Law of the American Chemical Society. Each chapter is derived in full or in part from presentations made at these meetings, and includes: (1) Low-level radioactive wastes in the nuclear power industry; (2) Low-level radiation cancer risk assessment and government regulation to protect public health; and (3) Low-level radioactive waste: can new disposal sites be found.

  20. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema (OSTI)

    None

    2014-10-28T23:59:59.000Z

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  1. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  2. Office of Civilian Radioactive Waste Management-Quality Assurance...

    Broader source: Energy.gov (indexed) [DOE]

    Civilian Radioactive Waste Management-Quality Assurance Requirements and Description Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description...

  3. Portsmouth Site Delivers First Radioactive Waste Shipment to...

    Office of Environmental Management (EM)

    Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

  4. Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste....

  5. Radioactive Waste Management in Non-Nuclear Countries - 13070

    SciTech Connect (OSTI)

    Kubelka, Dragan; Trifunovic, Dejan [SORNS, Frankopanska 11, HR-10000 Zagreb (Croatia)] [SORNS, Frankopanska 11, HR-10000 Zagreb (Croatia)

    2013-07-01T23:59:59.000Z

    This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services, comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)

  6. Radioactive waste management strategy in the Republic of Croatia

    SciTech Connect (OSTI)

    Subasic, D.; Saler, A.; Skanata, D. [Javno poduzece za zbrinjavanje radioaktivnog otpada, Zagreb (Croatia)

    1993-12-31T23:59:59.000Z

    Environmental preservation and human health protection have been proclaimed by the Croatian Government as priority actions. Hence, all organized actions toward this aim are expected to be supported by the State. Radioactive waste management plays a significant role in controlling materials that could harm the environment. Strategy in handling radioactive wastes is a prerequisite for well-organized radwaste management. It should be applied to all radioactive wastes that have already been produced in various industries, medical institutions, and scientific laboratories. Additionally, radioactive wastes that are being generated in the Krsko NPP must not be neglected, as well as possible future nuclear program needs in Croatia. For all considered actions, world-wide experiences and safety requirements should be strictly respected.

  7. Nondestructive assay of boxed radioactive waste

    SciTech Connect (OSTI)

    Gilles, W.P.; Jasen, W.G.; Roberts, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    Solid radioactive waste must be classified before treatment and disposal methods can be chosen. After treatment and before disposal, the radionuclide contents of a container must be certified. This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford Company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

  8. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect (OSTI)

    Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01T23:59:59.000Z

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  9. Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    public, and environment through specific requirements for the generation, treatment, storage, and disposal of US DOE radioactive waste. The Order is divided into four...

  10. Sorting and disposal of hazardous laboratory Radioactive waste

    E-Print Network [OSTI]

    Maoz, Shahar

    Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel into the solid biological waste. Formalin should be disposed off as Chemical Waste. Carcasses of experimental

  11. RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL

    E-Print Network [OSTI]

    Slatton, Clint

    . Properly labeled containers with lids, covers, or seals. B. Labels, tape, plastic bags, plastic jugs or suitable liquid containers, corrugated cardboard boxes. C. Note: Liquid Waste containers are provided radioactive waste containing different radionuclides. C. Minimize radioactive waste by preventing unnecessary

  12. Public Invited to Comment on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared, for a proposal to provide a replacement capability for continued disposal of remote-handled low-level radioactive waste that is generated at the Idaho National Laboratory site.

  13. Incineration of radioactive waste in shaft furnace

    SciTech Connect (OSTI)

    Dmitriev, S.A.; Knyasev, I.A.; Kobelev, A.P. [Moscow SIA Radon, Sergiev Posad (Russian Federation). Dept. of Engineering Supply

    1993-12-31T23:59:59.000Z

    Development of nuclear technology depends greatly on solving the problems, concerning the treatment of waste, arising from power station activity. A great deal of waste will arise in the process of atomic power station decommissioning. One of the methods for radioactive waste treatment is a method of combustion. The volume reduction factor of the final product is 60--100. In the process of combustion, the organic radwaste is transported into gaseous wastes and ash. For better environmental protection, one must achieve the minimal release of nuclides from partially burned products in the gaseous phase, and maximize the waste in ash form suitable for final disposal.

  14. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

  15. Public involvement in radioactive waste management decisions

    SciTech Connect (OSTI)

    NONE

    1994-04-01T23:59:59.000Z

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  16. Radioactive waste management in the former USSR

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01T23:59:59.000Z

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  17. Annual report of waste generation and pollution prevention progress 1995

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995.

  18. Pump station for radioactive waste water

    DOE Patents [OSTI]

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18T23:59:59.000Z

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  19. annual radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  20. activity radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  1. aqueous radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  2. acidic radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  3. activities radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  4. activity radioactive wastes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  5. alkaline radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  6. UOP, A Honewell Company CSTs Clean Radioactive Waste in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive Waste in Fukushima and Worldwide Radiation waste cleanup was in the public eye this year following the huge earthquake and tsunami in Fukushima, Japan. Sandia...

  7. EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program

    Broader source: Energy.gov [DOE]

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

  8. Geological challenges in radioactive waste isolation: Third worldwide review

    E-Print Network [OSTI]

    Witherspoon editor, P.A.; Bodvarsson editor, G.S.

    2001-01-01T23:59:59.000Z

    Radioactive Waste Long-Term Storage Piero Risoluti ENEA,The National Agency for New Technologies, Energy and Environment,environment, and the tech- nology for shutting down radioactive waste storage

  9. Radioactive waste disposal in thick unsaturated zones

    SciTech Connect (OSTI)

    Winograd, I.J.

    1981-06-26T23:59:59.000Z

    Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolation is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of $0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere. 4 figures.

  10. DOE Media Advisory- DOE extends public comment period on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    In response to requests from people interested in National Environmental Policy Act activities occurring at the U.S. Department of Energy’s Idaho Operations Office, the department has extended the public comment period that began September 1 on the Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site.

  11. High-level radioactive wastes. Supplement 1

    SciTech Connect (OSTI)

    McLaren, L.H. (ed.)

    1984-09-01T23:59:59.000Z

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  12. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22T23:59:59.000Z

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  13. Annual radioactive waste tank inspection program - 1996

    SciTech Connect (OSTI)

    McNatt, F.G.

    1997-04-01T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  14. Annual Radioactive Waste Tank Inspection Program - 1998

    SciTech Connect (OSTI)

    McNatt, F.G.

    1999-10-27T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  15. Annual radioactive waste tank inspection program - 1999

    SciTech Connect (OSTI)

    Moore, C.J.

    2000-04-14T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  16. Mobile plant for low-level radioactive waste reprocessing

    SciTech Connect (OSTI)

    Sobolev, I.A.; Panteleyev, V.I.; Demkin, V.I. [Government of Moscow (Russian Federation). Dept. of Engineering Supply

    1993-12-31T23:59:59.000Z

    Along with nuclear power plants, many scientific and industrial enterprises generate radioactive wastes, especially low-level liquid wastes. Some of these facilities generate only small amounts on the order of several dozen cubic meters per year. The Moscow scientific industrial association, Radon, developed a mobile pilot system, EKO, for the processing of LLW with a low salt content. The plant consists of three modules: ultrafiltration module; electrodialysis module; and filtration module. The paper describes the technical parameters and test results from the plant on real LLW.

  17. Handbook of high-level radioactive waste transportation

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-10-01T23:59:59.000Z

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

  18. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    DOTSON,PATRICK WELLS; GALLOWAY,ROBERT B.; JOHNSON JR,CARL EDWARD

    1999-11-03T23:59:59.000Z

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where direct measurement is not technically feasible, from accumulated PK of the excavated materials.

  19. Radioactive Waste Management in Central Asia - 12034

    SciTech Connect (OSTI)

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid [Norwegian Radiation Protection Authority (Norway)

    2012-07-01T23:59:59.000Z

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so called 'Threat assessment' in each CA country which revealed additional problems in the existing regulatory documents beyond those described at the start of our ongoing bilateral projects in Kazakhstan, Kirgizistan Tajikistan and Uzbekistan. (authors)

  20. Annual report of waste generation and pollution prevention progress 1997

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    This sixth Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 36 reporting sites from 1993 through 1997. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, to be achieved by December 31, 1999. Excluding sanitary waste, routine operations waste generation increased three percent from 1996 to 1997, and decreased 61 percent overall from 1993 to 1997. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1997 waste generation to the 1993 baseline. However, it is important to note that increases in low-level radioactive and low-level mixed waste generation could reverse this achievement. From 1996 to 1997, low-level radioactive waste generation increased 10 percent, and low-level mixed waste generation increased slightly. It is critical that DOE sites continue to reduce routine operations waste generation for all waste types, to ensure that DOE`s Complex-Wide Waste Reduction Goals are achieved by December 31, 1999.

  1. Combustible radioactive waste treatment by incineration and chemical digestion

    SciTech Connect (OSTI)

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-05-28T23:59:59.000Z

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

  2. Geological challenges in radioactive waste isolation: Third worldwide review

    E-Print Network [OSTI]

    Witherspoon editor, P.A.; Bodvarsson editor, G.S.

    2001-01-01T23:59:59.000Z

    waste or spent-nuclear- fuel management. Hence, in the long-radioactive waste or spent-nuclear-fuel management. Last buttive waste and spent-nuclear-fuel management. The Concept is

  3. Hazardous and Radioactive Mixed Waste

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-12-31T23:59:59.000Z

    To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

  4. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19T23:59:59.000Z

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  5. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

    1984-01-01T23:59:59.000Z

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  6. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2012-06-21T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  7. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2010-06-21T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  8. CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT

    SciTech Connect (OSTI)

    Marra, J.

    2010-05-05T23:59:59.000Z

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

  9. Annual radioactive waste tank inspection program -- 1993

    SciTech Connect (OSTI)

    McNatt, F.G. Sr.

    1994-05-01T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

  10. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2011-06-23T23:59:59.000Z

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  11. MANAGEMENT OF SOLID RADIOACTIVE WASTE Revised August 2008

    E-Print Network [OSTI]

    Davidson, Fordyce A.

    k MANAGEMENT OF SOLID RADIOACTIVE WASTE Revised August 2008 Safety Services #12;MANAGEMENT OF SOLID for Appendices 4 and 5 22 Appendix 10 Flow chart of waste-streaming 23 #12;1 MANAGEMENT OF SOLID RADIOACTIVE WASTE The aims of the procedures described here are: To minimise the volumes and activities of solid

  12. 1 INSTRODUCTION In the concept of geological radioactive waste disposal,

    E-Print Network [OSTI]

    Boyer, Edmond

    , thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being elements from the waste package towards the environment. During the construction and exploitation phase

  13. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  14. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  15. Reportable Nuclide Criteria for ORNL Radioactive Waste Management Activities - 13005

    SciTech Connect (OSTI)

    McDowell, Kip; Forrester, Tim [Oak Ridge National Laboratory, PO Box 2008 MS-6322, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, PO Box 2008 MS-6322, Oak Ridge, TN 37831 (United States); Saunders, Mark [Fairfield Services Group, PO Box 31468, KNOxville, TN 37930 (United States)] [Fairfield Services Group, PO Box 31468, KNOxville, TN 37930 (United States)

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of these criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration. (authors)

  16. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    SciTech Connect (OSTI)

    Jantzen, C.

    2010-03-18T23:59:59.000Z

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  17. Ultimate disposal of low and medium radioactive waste in France

    SciTech Connect (OSTI)

    Ringeard, C. [National Radioactive Waste Management Agency, Fontenay aux Roses (France). Environmental, Safety, Quality Dept.

    1993-12-31T23:59:59.000Z

    The National Radioactive Waste Management Agency (ANDRA) has been entrusted with the long-term management of radioactive waste. This paper presents the methodology of safety assessment used by ANDRA for a land disposal facility of radioactive waste with short or medium half-life and with low or medium specific activity. This methodology was used in the design of ``the Centre de stockage de l`Aube``.

  18. Chemical species of plutonium in Hanford radioactive tank waste

    SciTech Connect (OSTI)

    Barney, G.S.

    1997-10-22T23:59:59.000Z

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other potential complexants. The sodium nitrate and sodium phosphate salts that form most of the salt cake layers have little interaction with plutonium in the wastes and contain relatively small plutonium concentrations. For these reasons the authors consider plutonium species in the sludges and supernate solutions only. The low concentrations of plutonium in waste tank supernate solutions and in the solid sludges prevent identification of chemical species of plutonium by ordinary analytical techniques. Spectrophotometric measurements are not sensitive enough to identify plutons oxidation states or complexes in these waste solutions. Identification of solid phases containing plutonium in sludge solids by x-ray diffraction or by microscopic techniques would be extremely difficult. Because of these technical problems, plutonium speciation was extrapolated from known behavior observed in laboratory studies of synthetic waste or of more chemically simple systems.

  19. Waste generator services implementation plan

    SciTech Connect (OSTI)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01T23:59:59.000Z

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  20. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  1. Huizenga leads safety of spent fuel management, radioactive waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Huizenga leads safety of spent fuel management, radioactive waste management meeting in Vienna | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  2. South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

  3. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

  4. Appalachian States Low-Level Radioactive Waste Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

  5. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    SciTech Connect (OSTI)

    Ross, W.A.; Kindle, C.H.

    1992-06-01T23:59:59.000Z

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity.

  6. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    SciTech Connect (OSTI)

    Ross, W.A.; Kindle, C.H.

    1992-06-01T23:59:59.000Z

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency`s (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity.

  7. Maine State Briefing Book on low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

  8. Standard guide for sampling radioactive tank waste

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2011-01-01T23:59:59.000Z

    1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. New Jersey State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

  10. Ohio State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.

  11. Oregon State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon.

  12. Connecticut State Briefing Book for low-level radioactive-waste management

    SciTech Connect (OSTI)

    none,

    1981-06-01T23:59:59.000Z

    The Connecticut State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Connecticut. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Connecticut. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Connecticut.

  13. Puerto Rico State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

  14. North Dakota State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  15. Florida State Briefing Book for low-level radioactive-waste management

    SciTech Connect (OSTI)

    none,

    1981-06-01T23:59:59.000Z

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

  16. Utah State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  17. Wyoming State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  18. North Carolina State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

  19. Pennsylvania State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania.

  20. South Carolina State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

  1. Massachusetts State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-03-12T23:59:59.000Z

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

  2. Washington State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

  3. Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan

    SciTech Connect (OSTI)

    Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

    2007-07-01T23:59:59.000Z

    Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

  4. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

  5. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    SciTech Connect (OSTI)

    Jooho, W.; Baldwin, G. T.

    2005-04-01T23:59:59.000Z

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

  6. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect (OSTI)

    Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01T23:59:59.000Z

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  7. Quality assurance for radioactive waste packages -- A general approach

    SciTech Connect (OSTI)

    Martens, B.R. [Bundesamt fuer Strahlenschutz, Saltzgitter (Germany)

    1993-12-31T23:59:59.000Z

    Radioactive waste packages must fulfill the requirements resulting from regulations concerning handling, treatment, conditioning, transportation, storage and disposal so that the goal of radioactive waste management can be achieved. Usually in different parts of waste management different quality systems are used, and different quality assurance measures are performed. In the paper, these problems ar elucidated and it is explained by means of the quality assurance performed for the disposal of radioactive waste in Germany how the fulfillment of the requirements of the repository can be ensured.

  8. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01T23:59:59.000Z

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ``unpackaged`` volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste.

  9. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2003-04-11T23:59:59.000Z

    This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS.

  10. Greater-than-Class C low-level radioactive waste characterization. Appendix H: Packaging factors for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Quinn, G.; Grant, P.

    1991-08-01T23:59:59.000Z

    This report develops and presents estimates for a set of three values that represent a reasonable range for the packaging factors for several waste streams that are potential greater-than-Class C low-level radioactive waste. The packaging factor is defined as the volume of a greater-than-Class C low-level waste disposal container divided by the original, as-generated or ``unpackaged,`` volume of the wastes loaded into the disposal container. Packaging factors take into account any processes that reduce or increase an original unpackaged volume of a greater-than-Class C low-level radioactive waste, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. The three values developed represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated volume of waste for disposal, and (c) a low case packaging factor for the smallest volume expected. Three categories of greater-than-Class C low-level waste are evaluated in this report: activated metals, sealed sources, and all other wastes. Estimates of reasonable packaging factors for the low, base, and high cases for the specific waste streams in each category are shown in Table H-1.

  11. Waste Generated from LMR-AMTEC Reactor Concept

    SciTech Connect (OSTI)

    Hasan, Ahmed; Mohamed, Yasser, T.; Mohammaden, Tarek, F.

    2003-02-25T23:59:59.000Z

    The candidate Liquid Metal Reactor-Alkali Metal Thermal -to- Electric Converter (LMR-AMTEC) is considered to be the first reactor that would use pure liquid potassium as a secondary coolant, in which potassium vapor aids in the conversion of thermal energy to electric energy. As with all energy production, the thermal generation of electricity produces wastes. These wastes must be managed in ways which safeguard human health and minimize their impact on the environment. Nuclear power is the only energy industry, which takes full responsibility for all its wastes. Based on the candidate design of the LMR-AMTEC components and the coolant types, different wastes will be generated from LMR. These wastes must be classified and characterized according to the U.S. Code of Federal Regulation, CFR. This paper defines the waste generation and waste characterization from LMR-AMTEC and reviews the applicable U.S. regulations that govern waste transportation, treatment, storage and final disposition. The wastes generated from LMR-AMTEC are characterized as: (1) mixed waste which is generated from liquid sodium contaminated by fission products and activated corrosion products; (2) hazardous waste which is generated from liquid potassium contaminated by corrosion products; (3) spent nuclear fuel; and (4) low-level radioactive waste which is generated from the packing materials (e.g. activated carbon in cold trap and purification units). The regulations and management of these wastes are summarized in this paper.

  12. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect (OSTI)

    Jantzen, Carol M. [Savannah River National Lab., Aiken SC (United States); Lee, William E. [Imperial College, London (United Kingdom). Dept. of Materials; Ojovan, Michael I. [Univ. of Sheffield (United Kingdom). Dept. of Materials Science and Engineering

    2012-10-19T23:59:59.000Z

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.

  13. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    SciTech Connect (OSTI)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25T23:59:59.000Z

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  14. Solid low-level radioactive waste radiation stability studies 

    E-Print Network [OSTI]

    Williams, Arnold Andre?

    1989-01-01T23:59:59.000Z

    importance to good site selection. The combination of a properly operated site having good geologic and hydrologic characteristics were considered the only barriers necessary to isolate low-level radioactive waste from the environment (Pollard 1986... of the waste. The only means of ultimate disposal is to allow time for the radioactivity to decay (Cember 1983), while providing adequate pmtection against dispersal to the environment. Low-level wastes may be defined as those which would have to be diluted...

  15. Solid low-level radioactive waste radiation stability studies

    E-Print Network [OSTI]

    Williams, Arnold Andre?

    1989-01-01T23:59:59.000Z

    importance to good site selection. The combination of a properly operated site having good geologic and hydrologic characteristics were considered the only barriers necessary to isolate low-level radioactive waste from the environment (Pollard 1986... of the waste. The only means of ultimate disposal is to allow time for the radioactivity to decay (Cember 1983), while providing adequate pmtection against dispersal to the environment. Low-level wastes may be defined as those which would have to be diluted...

  16. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    SciTech Connect (OSTI)

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  17. Texas State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

  18. Fifty years of federal radioactive waste management: Policies and practices

    SciTech Connect (OSTI)

    Bradley, R.G.

    1997-04-01T23:59:59.000Z

    This report provides a chronological history of policies and practices relating to the management of radioactive waste for which the US Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy, have been responsible since the enactment of the Atomic Energy Act in 1946. The defense programs and capabilities that the Commission inherited in 1947 are briefly described. The Commission undertook a dramatic expansion nationwide of its physical facilities and program capabilities over the five years beginning in 1947. While the nuclear defense activities continued to be a major portion of the Atomic Energy Commission`s program, there was added in 1955 the Atoms for Peace program that spawned a multiplicity of peaceful use applications for nuclear energy, e.g., the civilian nuclear power program and its associated nuclear fuel cycle; a variety of industrial applications; and medical research, diagnostic, and therapeutic applications. All of these nuclear programs and activities generated large volumes of radioactive waste that had to be managed in a manner that was safe for the workers, the public, and the environment. The management of these materials, which varied significantly in their physical, chemical, and radiological characteristics, involved to varying degrees the following phases of the waste management system life cycle: waste characterization, storage, treatment, and disposal, with appropriate transportation linkages. One of the benefits of reviewing the history of the waste management program policies and practices if the opportunity it provides for identifying the lessons learned over the years. Examples are summarized at the end of the report and are listed in no particular order of importance.

  19. Assessment of public perception of radioactive waste management in Korea.

    SciTech Connect (OSTI)

    Trone, Janis R.; Cho, SeongKyung (Myongji University, Korea); Whang, Jooho (Kyung Hee University, Korea); Lee, Moo Yul

    2011-11-01T23:59:59.000Z

    The essential characteristics of the issue of radioactive waste management can be conceptualized as complex, with a variety of facets and uncertainty. These characteristics tend to cause people to perceive the issue of radioactive waste management as a 'risk'. This study was initiated in response to a desire to understand the perceptions of risk that the Korean public holds towards radioactive waste and the relevant policies and policy-making processes. The study further attempts to identify the factors influencing risk perceptions and the relationships between risk perception and social acceptance.

  20. RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.

    2011-10-01T23:59:59.000Z

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures of fuel containing materials can be fairly useful for the entire world's nuclear community and can help make nuclear energy safer.

  1. State-of-the-art report on low-level radioactive waste treatment

    SciTech Connect (OSTI)

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01T23:59:59.000Z

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  2. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    SciTech Connect (OSTI)

    NONE

    1993-09-01T23:59:59.000Z

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

  3. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01T23:59:59.000Z

    Spent  Nuclear   Fuel,”   Integrated   Radioactive   Waste   Management  spent  nuclear  fuel”  [42  USC  10101]   as   high-­?level   waste   potentially   neglects   the   waste   management  

  4. Characterization of a ceramic waste form encapsulating radioactive electrorefiner salt

    SciTech Connect (OSTI)

    Moschetti, T. L.; Sinkler, W.; DiSanto, T.; Noy, M.; Warren, A. R.; Cummings, D. G.; Johnson, S. G.; Goff, K. M.; Bateman, K. J.; Frank, S. M.

    1999-11-11T23:59:59.000Z

    Argonne National Laboratory has developed a ceramic waste form to immobilize radioactive waste salt produced during the electrometallurgical treatment of spent fuel. This study presents the first results from electron microscopy and durability testing of a ceramic waste form produced from that radioactive electrorefiner salt. The waste form consists of two primary phases: sodalite and glass. The sodalite phase appears to incorporate most of the alkali and alkaline earth fission products. Other fission products (rare earths and yttrium) tend to form a separate phase and are frequently associated with the actinides, which form mixed oxides. Seven-day leach test results are also presented.

  5. New York State Low-Level Radioactive Waste Status Report for 1992

    SciTech Connect (OSTI)

    Attridge, T.; Rapaport, S.; Yang, Qian

    1993-06-01T23:59:59.000Z

    This report summarizes data on low-level radioactive waste (LLRW) generation in New York State for calendar year 1992. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (Energy Authority) and on data from the US Department of Energy. The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the seventh year generators have been required to submit reports on their waste to the Energy Authority. The data are summarized in a series of tables and figures. There are three sections in the report. Section 1 covers volume, radioactivity and other characteristics of waste generated in 1992. Section 2 shows historical LLRW generation over the years and includes generators` projections for the next five years. Section 3 provides a list of all facilities for which 1992 LLRW reports were received.

  6. The High-Level Radioactive Waste Act (Manitoba, Canada)

    Broader source: Energy.gov [DOE]

    Manitoba bars the storage of high-level radioactive wastes from spent nuclear fuel, not intended for research purposes, that was produced at a nuclear facility or in a nuclear reactor outside the...

  7. account radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Derek 2012-06-07 49 NRC INSPECTION MANUAL FSMEDWMEP INSPECTION PROCEDURE 84900 LOW-LEVEL RADIOACTIVE WASTE STORAGE CiteSeer Summary: To determine whether fuel cycle and materials...

  8. Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental...

  9. Microbial degradation of low-level radioactive waste. Final report

    SciTech Connect (OSTI)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

    1996-06-01T23:59:59.000Z

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

  10. Conceptual approach to radioactive waste management in Czech Republic

    SciTech Connect (OSTI)

    Marek, J. [Ministry of Industry and Trade of the Czech Republic, Prague (Czech Republic)

    1993-12-31T23:59:59.000Z

    The need, initiation and commencing of work on the creation of the Czech national policy and strategy of radioactive waste management is presented in this paper. The main steps of the national concept are defined in agreement with the worldwide approved approach, keeping the goal to reach all international standards in radioactive waste management. The description of the financial expenses of radwaste activities is also briefly discussed.

  11. New York State low-level radioactive waste status report for 1998

    SciTech Connect (OSTI)

    Voelk, H.

    1999-06-01T23:59:59.000Z

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs.

  12. Gas generation from Tank 241-SY-103 waste

    SciTech Connect (OSTI)

    Bryan, S.A.; King, C.M.; Pederson, L.R.; Forbes, S.V.; Sell, R.L.

    1996-04-01T23:59:59.000Z

    This report summarizes progress made in evaluating mechanisms by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using actual waste from Tank 241-SY-103. The objective of this work is to establish the identity and stoichiometry of degradation products formed in actual tank wastes by thermal and radiolytic processes as a function of temperature. The focus of the gas generation tests on Tank 241-SY-103 samples is first the effect of temperature on gas generation (volume and composition). Secondly, gas generation from irradiation of Tank 241-SY-103 samples at the corresponding temperatures as the thermal-only treatments will be measured in the presence of an external radiation source (using a {sup 137}Cs capsule). The organic content will be measured on a representative sample prior to gas generation experiments and again at the termination of heating and irradiation. The gas generation will be related to the extent of organic species consumption during heating. Described in this report are experimental methods used for producing and measuring gases generated at various temperatures from highly radioactive actual tank waste, and results of gas generation from Tank 241-SY-103 waste taken from its convective layer. The accurate measurement of gas generation rates from actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from the convective layer of Tank 241-SY-103, a waste tank listed on the Flammable Gas Watch List due to its potential for flammable gas accumulation above the flammability limit.

  13. New York State low-level radioactive waste status report for 1997

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received.

  14. Cross flow filtration of aqueous radioactive tank wastes

    SciTech Connect (OSTI)

    McCabe, D.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Reynolds, B.A. [Battelle Pacific Northwest Lab., Richland, WA (United States); Todd, T.A. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Wilson, J.H. [Oak Ridge National Lab., TN (United States)

    1997-02-01T23:59:59.000Z

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Science and Technology addresses remediation of radioactive waste currently stored in underground tanks. Baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment, and (c) volume reduction of sludge and wash water. Solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. This basic process is used for decontamination of tank waste at the Savannah River Site (SRS). Ion exchange of radioactive ions has been proposed for other tank wastes, requiring removal of insoluble solids to prevent bed fouling and downstream contamination. Additionally, volume reduction of washed sludge solids would reduce the tank space required for interim storage of High Level Wastes. The scope of this multi-site task is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. Testing has emphasized cross now filtration with metal filters to pretreat tank wastes, due to tolerance of radiation and caustic.

  15. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24T23:59:59.000Z

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  16. ICPP radioactive liquid and calcine waste technologies evaluation. Interim report

    SciTech Connect (OSTI)

    Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

    1994-06-01T23:59:59.000Z

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

  17. Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory

    SciTech Connect (OSTI)

    Mazer, J.J.; No, Hyo J.

    1995-08-01T23:59:59.000Z

    Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

  18. Spanish high level radioactive waste management system issues

    SciTech Connect (OSTI)

    Ulibarri, A.; Veganzones, A. [ENRESA, Madrid (Spain)

    1993-12-31T23:59:59.000Z

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included.

  19. RCRA Part B Permit Application for the Idaho National Engineering Laboratory - Volume 5 Radioactive Waste Management Complex

    SciTech Connect (OSTI)

    Pamela R. Cunningham

    1992-07-01T23:59:59.000Z

    This section of the Radioactive Waste Management Complex (RWMC) Part B permit application describes the waste characteristics Of the transuranic (TRU) mixed wastes at the RWMC waste management units to be permitted: the Intermediate-Level Transuranic Storage Facility (ILTSF) and the Waste Storage Facility (WSF). The ILTSF is used to store radioactive remote-handled (RH) wastes. The WSF will be used to store radioactive contact-handled (CH) wastes. The Transuranic Storage Area (TSA) was established at the RWMC to provide interim storage of TRU waste. Department of Energy (DOE) Order 5820.2A defines TRU waste as waste contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years in concentrations greater than 100 nanocuries per gram (nCi/g) o f waste material. The TSA serves generators both on and off the Idaho National Engineering Laboratory (INEL). The ILTSF is located at the TSA, and the WSF will be located there also. Most of the wastes managed at the TSA are mixed wastes, which are radioactive wastes regulated under the Atomic Energy Act (AEA) that also contain hazardous materials regulated under the Resource Conservation and Recovery Act (RCRA) and the Idaho Hazardous Waste Management Regulations. These wastes include TRU mixed wastes and some low-level mixed wastes. Accordingly, the TSA is subject to the permitting requirements of RCRA and the Idaho Administrative Procedures Act (IDAPA). Prior to 1982, DOE orders defined TRU wastes as having transuranium radionuclides in concentrations greater than 10 nCi/g, The low-level mixed wastes managed at the TSA are those wastes with 10 to 100 nCi/g of TRU radionuclides that prior to 1982 were considered TRU waste.

  20. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    SciTech Connect (OSTI)

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12T23:59:59.000Z

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  1. System for chemically digesting low level radioactive, solid waste material

    DOE Patents [OSTI]

    Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

    1982-01-01T23:59:59.000Z

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  2. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

    2006-10-03T23:59:59.000Z

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  3. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  4. Low-level radioactive waste disposal facility closure

    SciTech Connect (OSTI)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01T23:59:59.000Z

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  5. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    SciTech Connect (OSTI)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01T23:59:59.000Z

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  6. The EU Approach for Responsible and Safe Management of Spent Fuel and Radioactive Waste - 12118

    SciTech Connect (OSTI)

    Blohm-Hieber, Ute; Necheva, Christina [European Commission, Directorate-General for Energy, Luxembourg L-2920 (Luxembourg)

    2012-07-01T23:59:59.000Z

    In July 2011 legislation on responsible and safe management of spent fuel and radioactive waste was adopted in the European Union (EU). It aims at ensuring a high level of safety, avoiding undue burdens on future generations and enhancing transparency. EU Member States are responsible for the management of their spent fuel and/or radioactive waste. Each Member State remains free to define its fuel cycle policy. The spent fuel can be regarded either as a valuable resource that may be reprocessed or as radioactive waste that is destined for direct disposal. Whatever option is chosen, the disposal of high level waste, separated at reprocessing, or of spent fuel regarded as waste should be considered. The storage of radioactive waste, including long-term storage, is an interim solution, but not an alternative to disposal. To this end, each Member State has to establish, maintain and implement national policy, framework and programme for management of spent fuel and/or radioactive waste in the long term. Member States will invite international peer reviews to ensure that high safety standards are achieved. The EU approach is anchored in internationally endorsed principles and requirements of the IAEA safety standards and the Joint Convention and in this context makes them legally binding and enforceable in the EU. The EU approach of regulating the management of spent fuel and radioactive waste is anchored in the competence of the national regulatory authorities and in the internationally endorsed principles and requirements of the IAEA Safety Standards and the Joint Convention. Member States have to report to the Commission on the implementation of Directive 2011/70/Euratom for the first time by 23 August 2015, and every 3 years thereafter, taking advantage of the review and reporting under the Joint Convention. On the basis of the Member States' reports, the Commission will submit to the European Parliament and the Council a report on progress made and an inventory of radioactive waste and spent fuel present in the EU territory and the future prospects. Directive 2011/70/Euratom is a logical next step after the Council Directive 2009/71/Euratom on the nuclear safety of nuclear installations. The EU is the first major regional actor providing a binding legal framework on nuclear safety and on responsible and safe management of spent fuel and radioactive waste, and thus is a real model to progress spent fuel and waste management in a safe and responsible manner. (authors)

  7. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, L.A.; Burger, L.L.

    1994-03-29T23:59:59.000Z

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  8. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA); Burger, Leland L. (Richland, WA)

    1994-01-01T23:59:59.000Z

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  9. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02T23:59:59.000Z

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  10. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    SciTech Connect (OSTI)

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin [THOR Treatment Technologies, LLC - 106 Newberry St. SW, Aiken, SC 29801 (United States); Jantzen, Carol; Crawford, Charles [Savannah River Nuclear Solutions (SRNL), LLC, Aiken, SC 29808 (United States)

    2012-07-01T23:59:59.000Z

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  11. The basics in transportation of low-level radioactive waste

    SciTech Connect (OSTI)

    Allred, W.E.

    1998-06-01T23:59:59.000Z

    This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin.

  12. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M [Los Alamos National Laboratory

    2010-11-09T23:59:59.000Z

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  13. Radioactive waste management in the former USSR. Volume 3

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01T23:59:59.000Z

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  14. CONCEPTUAL DATA MODELING OF THE INTEGRATED DATABASE FOR THE RADIOACTIVE WASTE MANAGEMENT

    SciTech Connect (OSTI)

    Park, H.S; Shon, J.S; Kim, K.J; Park, J.H; Hong, K.P; Park, S.H

    2003-02-27T23:59:59.000Z

    A study of a database system that can manage radioactive waste collectively on a network has been carried out. A conceptual data modeling that is based on the theory of information engineering (IE), which is the first step of the whole database development, has been studied to manage effectively information and data related to radioactive waste. In order to establish the scope of the database, user requirements and system configuration for radioactive waste management were analyzed. The major information extracted from user requirements are solid waste, liquid waste, gaseous waste, and waste related to spent fuel. The radioactive waste management system is planning to share information with associated companies.

  15. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    SciTech Connect (OSTI)

    Wasan, Darsh T.

    2007-10-09T23:59:59.000Z

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

  16. Long-term management of high-level radioactive waste (HLW) and...

    Office of Environmental Management (EM)

    Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)...

  17. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect (OSTI)

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)] [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)

    2013-07-01T23:59:59.000Z

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  18. Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina)

    Broader source: Energy.gov [DOE]

    The Atlantic (Northeast) Interstate Low-Level Radioactive Waste Management Compact is a cooperative effort to plan, regulate, and administer the disposal of low-level radioactive waste in the...

  19. Annual report of waste generation and pollution prevention progress 1998

    SciTech Connect (OSTI)

    NONE

    1999-09-01T23:59:59.000Z

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  20. Low-level radioactive waste technology: a selected, annotated bibliography

    SciTech Connect (OSTI)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01T23:59:59.000Z

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  1. Method for solidification of radioactive and other hazardous waste

    DOE Patents [OSTI]

    Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Voskresenskaya, Elena N. (Krasnoyarsk, RU); Kostin, Eduard M. (Zheleznogorsk, RU); Pavlov, Vyacheslav F. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Sapozhnikova, Natalia V. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  2. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Not Listed

    2011-09-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  3. Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-11-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  4. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-09-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  5. Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    L. Harvego; Brion Bennett

    2011-11-01T23:59:59.000Z

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  6. Commercial low-level radioactive waste transportation liability and radiological risk

    SciTech Connect (OSTI)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01T23:59:59.000Z

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  7. Cesium removal from Savannah River Site radioactive waste using crystalline silicotitanate (IONSIV(R) IE-911)

    SciTech Connect (OSTI)

    Walker, D.D.

    1999-12-15T23:59:59.000Z

    This study measured the ability of crystalline silicotitanate to remove cesium from Savannah River Site radioactive waste.

  8. Stability of High Level Radioactive Waste Forms

    SciTech Connect (OSTI)

    Besmann, T.M.; Kulkarni, N.S.; Spear, K.E.; Vienna, J.D.; Hanni, J.B.; Crum, J.D.; Hrma, P.

    2005-01-20T23:59:59.000Z

    This presentation was given at the DOE Office of Science-Environmental Management Science Program (EMSP) High-Level Waste Workshop held on January 19-20, 2005 at the Savannah River Site.

  9. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    SciTech Connect (OSTI)

    Bayrakal, S.

    1993-09-30T23:59:59.000Z

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  10. Method of storing radioactive wastes using modified tobermorite

    DOE Patents [OSTI]

    Komarneni, Sridhar (State College, PA); Roy, Della M. (State College, PA)

    1985-01-01T23:59:59.000Z

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatable with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  11. Proceedings: EPRI International Decommissioning and Radioactive Waste Workshop at Dounreay

    SciTech Connect (OSTI)

    None

    2003-01-01T23:59:59.000Z

    This report presents the proceedings of an EPRI international workshop on decommissioning and radioactive waste management. EPRI initiated this continuing workshop series to aid utility personnel in assessing the technologies utilized in the decommissioning of nuclear power plants and facilities. The information presented will help individual utilities assess the benefits of the various programs, including their potential to reduce decommissioning costs.

  12. Ion-exchange material and method of storing radioactive wastes

    DOE Patents [OSTI]

    Komarneni, S.; Roy, D.M.

    1983-10-31T23:59:59.000Z

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  13. Radioactive Waste Management Information for 1991 and Record-to-Date

    SciTech Connect (OSTI)

    Litteer, D.L.; Peterson, C.N.; Sims, A.M.

    1993-04-01T23:59:59.000Z

    This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and decay status of radioactive waste for the calendar year 1991. It also summarizes the radiative waste data records compiled from 1952 to present for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Radioactive Waste Management Information System.

  14. Annual Transportation Report for Radioactive Waste Shipments...

    National Nuclear Security Administration (NNSA)

    Generators Shipping ToFromOn the NTS APPROVED GENERATOR, STATE GENERATOR CODE 1 ARGONNE NATIONAL LABORATORY, IL AE 2 BECHTEL JACOBS OAK RIDGE, TN OR 3 BOEING ROCKETDYNE, CA...

  15. Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site

    SciTech Connect (OSTI)

    Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

    2007-11-01T23:59:59.000Z

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, or hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste management at the reactor site and in the Exclusion Zone, and especially for high-level and long-lived waste, has not been developed.

  16. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect (OSTI)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

    2011-10-01T23:59:59.000Z

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  17. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect (OSTI)

    Fox, K.

    2010-09-07T23:59:59.000Z

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  18. Disposal of radioactive waste from nuclear research facilities

    E-Print Network [OSTI]

    Maxeiner, H; Kolbe, E

    2003-01-01T23:59:59.000Z

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  19. Advanced radioactive waste-glass melters

    SciTech Connect (OSTI)

    Bickford, D.F.

    1990-12-31T23:59:59.000Z

    During pilot scale operations of the Scale Glass Melter for the US Department of Energy a team of engineers and scientists was formed to assess the need for continued melter design development to support the Defense Waste Processing Facility (DWPF), and prioritize future efforts. Recently this has taken on new importance because of selection of the DWPF Melter design as the reference for the Hanford Waste Vitrification Project (HWVP), and increased interest at the West Valley Demonstration Project on melter life and replacement. Results of the study are summarized, and goals produced by the study are compared to the results of current programs at the Savannah River Laboratory (SRL).

  20. Advanced radioactive waste-glass melters

    SciTech Connect (OSTI)

    Bickford, D.F.

    1990-01-01T23:59:59.000Z

    During pilot scale operations of the Scale Glass Melter for the US Department of Energy a team of engineers and scientists was formed to assess the need for continued melter design development to support the Defense Waste Processing Facility (DWPF), and prioritize future efforts. Recently this has taken on new importance because of selection of the DWPF Melter design as the reference for the Hanford Waste Vitrification Project (HWVP), and increased interest at the West Valley Demonstration Project on melter life and replacement. Results of the study are summarized, and goals produced by the study are compared to the results of current programs at the Savannah River Laboratory (SRL).

  1. Waste Disposal Site and Radioactive Waste Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

  2. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A. [ed.

    1996-09-01T23:59:59.000Z

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  3. Determination of Iodine-129 in Low Level Radioactive Wastes - 13334

    SciTech Connect (OSTI)

    Choi, K.C.; Ahn, J.H.; Park, Y.J.; Song, K.S. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)] [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    For the radioactivity determination of {sup 129}I in the radioactive wastes, alkali fusion and anion-exchange resin separation methods, which are sample pretreatment methods, have been investigated in this study. To separate and quantify the {sup 129}I radionuclide in an evaporator bottom and spent resin, the radionuclide was chemically leached from the wastes and adsorbed on an anion exchange resin at pH 4, 7, 9. In the case of dry active waste and another solid type, the alkali fusion method was applied. KNO{sub 3} was added as a KOH and oxidizer to the wastes. It was then fused at 450 deg. C for 1 hour. The radioactivity of the separated iodine was measured with a low energy gamma spectrometer after the sample pretreatment. Finally, it was confirmed that the recovery rate of the iodine for the alkali fusion method was 83.6±3.8%, and 86.4±1.6% for the anionic exchange separation method. (authors)

  4. Radioactive Waste Management information for 1994 and record-to-date

    SciTech Connect (OSTI)

    French, D.L.; Lisee, D.J.; Taylor, K.A.

    1995-07-01T23:59:59.000Z

    This document, Radioactive Waste Management Information for 1994 and Record-To-Date, contains computerized radioactive waste data records from the Idaho National Engineering Laboratory (INEL). Data are compiled from information supplied by the US Department of Energy (DOE) contractors. Data listed are on airborne and liquid radioactive effluents and solid radioactive waste that is stored, disposed, and sent to the INEL for reduction. Data are summarized for the years 1952 through 1993. Data are detailed for the calendar year 1994.

  5. Summary of radioactive solid waste received in the 200 Areas during calendar year 1994

    SciTech Connect (OSTI)

    Anderson, J.D.; Hagel, D.L.

    1995-08-01T23:59:59.000Z

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

  6. Summary of radioactive solid waste received in the 200 Areas during calendar year 1993

    SciTech Connect (OSTI)

    Anderson, J.D.; Hagel, D.L.

    1994-09-01T23:59:59.000Z

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

  7. Transportation functions of the Civilian Radioactive Waste Management System

    SciTech Connect (OSTI)

    Shappert, L.B. [ed.; Attaway, C.R.; Pope, R.B. [Oak Ridge National Lab., TN (United States); Best, R.E.; Danese, F.L. [Science Applications International Corp., Oak Ridge, TN (United States); Dixon, L.D. [Dixon (L.D.), Martinez, GA (United States); Jones, R.H. [Jones (R.H.), Los Gatos, CA (United States); Klimas, M.J. [USDOE Chicago Operations Office, Argonne, IL (United States); Peterson, R.W. [Bentz (E.J.) and Associates, Inc., Alexandria, VA (United States)

    1992-03-01T23:59:59.000Z

    Within the framework of Public Law 97.425 and provisions specified in the Code of Federal Regulations, Title 10 Part 961, the US Department of Energy has the responsibility to accept and transport spent fuel and high-level waste from various organizations which have entered into a contract with the federal government in a manner that protects the health and safety of the public and workers. In implementing these requirements, the Office of Civilian Radioactive Waste Management (OCRWM) has, among other things, supported the identification of functions that must be performed by a transportation system (TS) that will accept the waste for transport to a federal facility for storage and/or disposal. This document, through the application of system engineering principles, identifies the functions that must be performed to transport waste under this law.

  8. Radioactive waste management approaches for developed countries

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; Anthony Hechanova; Catherine Riddle

    2013-07-01T23:59:59.000Z

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (70% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, ALSEP, EXAM, or LUCA are pursued worldwide and their approaches will be highlighted.

  9. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12T23:59:59.000Z

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  10. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1998-05-12T23:59:59.000Z

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  11. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    SciTech Connect (OSTI)

    Skidmore, E.; Fondeur, F.

    2013-04-15T23:59:59.000Z

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  12. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Gregory P. Meisner General Motors Global Research & Development March 21, 2012 3rd Thermoelectric...

  13. [Board on Radioactive Waste Managements action on progress toward objectives

    SciTech Connect (OSTI)

    Not Available

    1994-11-28T23:59:59.000Z

    This report is a progress report to the US DOE from the Board on Radioactive Waste Management (BRWM), which summarizes the activities of the board during the period December 1, 1993 to May 2, 1994. The report summarizes the meetings of the board as a whole, of various of its subcommittees, and of activities it has undertaken to further its original mission. This board is associated with the National Research Council to give advice to US DOE.

  14. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23T23:59:59.000Z

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  15. Nuclear waste: our radioactive hot potato

    SciTech Connect (OSTI)

    Conselman, F.B.

    1984-01-01T23:59:59.000Z

    Nuclear industry inevitably produces nuclear waste, whose prudent, prompt and economic disposal is important to the national welfare. Technological problems of containment and isolation have apparently been solved. Underground or geologic disposal sites have the potential form permanent isolation, with salt, basalt, granite, shale, and tuff currently receiving principal attention as repository host rocks. Bedded salt deposits may offer the principal mechanical advantages, but in the northwestern United States the abundance of basalt at existing test sites has made it the subject of experimentation. However, psychological, political, and allegedly environmental obstructionism have stalled the process and virtually immobilized current construction. A program is suggested with the purpose of satisfying technical requirements for public protection while allaying the exaggerated fears of anti-nuclear factions.

  16. Medical and biohazardous waste generator`s guide: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Guide describes the procedures required to comply with all federal and state laws and regulations and Lawrence Berkeley Laboratory (LBL) policy applicable to medical and biohazardous waste. The members of the LBL Biological Safety Subcommittee participated in writing these policies and procedures. The procedures and policies in this Guide apply to LBL personnel who work with infectious agents or potentially infectious agents, publicly perceived infectious items or materials (e.g., medical gloves, culture dishes), and sharps (e.g., needles, syringes, razor blades). If medical or biohazardous waste is contaminated or mixed with a hazardous chemical or material, with a radioactive material, or with both, the waste will be handled in accordance with the applicable federal and State of California laws and regulations for hazardous, radioactive, or mixed waste.

  17. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    SciTech Connect (OSTI)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-04-03T23:59:59.000Z

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

  18. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    SciTech Connect (OSTI)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)] [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01T23:59:59.000Z

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  19. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    SciTech Connect (OSTI)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-05-09T23:59:59.000Z

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  20. Civilian radioactive waste management program plan. Revision 2

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

  1. Thermal and Radiolytic Gas Generation in Hanford High-Level Waste

    SciTech Connect (OSTI)

    Bryan, Samuel A.; Pederson, Larry R.; King, C. M.

    2000-01-31T23:59:59.000Z

    The Hanford Site has 177 underground storage tanks containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate and retain large quantities of flammable gases consisting of hydrogen, nitrous oxide, nitrogen, and ammonia. Because these gases are flammable and have the potential for rapid release, the gas generation rate for each tank must be determined to establish the flammability hazard (Johnson et al. 1997). An understanding of gas generation is important to operation of the waste tanks for several reasons. First, knowledge of the overall rate of generation is needed to verify that any given tank has sufficient ventilation to ensure that flammable gases are maintained at a safe level within the dome space. Understanding the mechanisms for production of the various gases is important so that future waste operations do not create conditions that promote the production of hydrogen, ammonia, and nitrous oxide. Studying the generation of gases also provides important data for the composition of the gas mixture, which in turn is needed to assess the flammability characteristics. Finally, information about generation of gases, including the influence of various chemical constituents, temperature, and dose, would aid in assessing the future behavior of the waste during interim storage, implementation of controls, and final waste treatment. This paper summarizes the current knowledge of gas generation pathways and discusses models used in predicting gas generation rates from actual Hanford radioactive wastes. A comparison is made between measured gas generation rates and rates by the predictive models.

  2. Sequential Thermo-Hydraulic Modeling of Variably Saturated Flow in High-Level Radioactive Waste Repository

    E-Print Network [OSTI]

    Boyer, Edmond

    Sequential Thermo-Hydraulic Modeling of Variably Saturated Flow in High-Level Radioactive Waste-Malabry, France Key words: waste repository, geological disposal, thermo- hydraulic modeling Introduction The most long-lived radioactive wastes must be managed in a safe way for human health and for the environment

  3. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    SciTech Connect (OSTI)

    B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

    1999-08-01T23:59:59.000Z

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

  4. CHARACTERIZATION OF HIGH PHOSPHATE RADIOACTIVE TANK WASTE AND SIMULANT DEVELOPMENT

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; McNamara, Bruce K.; Buck, Edgar C.; Fiskum, Sandra K.; Snow, Lanee A.

    2009-10-15T23:59:59.000Z

    A sample of high-level radioactive tank waste was characterized to provide a basis for developing a waste simulant. The simulant is required for engineered-scaled testing of pretreatment processes in a non-radiological facility. The waste material examined was derived from the bismuth phosphate process, which was the first industrial process implemented to separate plutonium from irradiated nuclear fuel. The bismuth phosphate sludge is a complex mixture rich in bismuth, iron, sodium, phosphorus, silicon, and uranium. The form of phosphorus in this particular tank waste material is of specific importance because that is the primary component (other than water-soluble sodium salts) that must be removed from the high-level waste solids by pretreatment. This work shows unequivocally that the phosphorus present in this waste material is not present as bismuth phosphate. Rather, the phosphorus appears to be incorporated mostly into an amorphous iron(III) phosphate species. The bismuth in the sludge solids is best described as bismuth ferrite, BiFeO3. Infrared spectral data, microscopy, and thermal analysis data are presented to support these conclusions. The behavior of phosphorus during caustic leaching of the bismuth phosphate sludge solids is also discussed.

  5. A MODULAR STORE FOR DRUMS OF RADIOACTIVE WASTE

    SciTech Connect (OSTI)

    Sims, J.; Holden, G.

    2003-02-27T23:59:59.000Z

    Currently, the United Kingdom has no facility for the disposal of any waste above the low level category, indicating that all intermediate and high level waste, apart from spent fuel, has to be stored on the site of origin. To meet this storage requirement, nuclear sites are resorting to converting existing buildings or contemplating the construction of dedicated facilities, resulting in considerable cost implications. These financing aspects not only concern the construction strategy but also impinge on the ultimate decommissioning costs associated with each particular nuclear site. This paper reports on an investigation to apply the commercially available interlocking hollow block system to the design of a store for drums of radioactive waste. This block system can be quickly, and cost effectively, erected and filled with a choice of dense material. Later, the store can be dismantled with a minimum of disposable radioactive waste and the complete facility re - erected at another location if required, considerably reducing both capital construction and decommissioning costs. The investigation also encompassed a detailed review of the equipment required to place the drums of waste into the store, resulting in a scheme for a remotely operated vehicle that did not rely on umbilical control cables. The drum handler design included for 100% redundancy of all functions, meaning that whichever component failed, the handler was always recoverable to effect the necessary repair. The ultimate aim of the waste drum store review was to produce a facility that was as safe as a conventionally constructed unit, but at a lower overall building and decommissioning cost.

  6. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

    1999-01-01T23:59:59.000Z

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  7. Radioactive Waste Storage Facility at the Armenian NPP - 12462

    SciTech Connect (OSTI)

    Grigoryan, G.; Amirjanyan, A.; Gondakyan, Y. [Nuclear and Radiation Safety Center (NRSC), 4 Tigran Mets, 375010 Yerevan (Armenia); Stepanyan, A. [Armenian Nuclear Regulatory Authority(ANRA), 4 Tigran Mets, 375010 Yerevan (Armenia)

    2012-07-01T23:59:59.000Z

    We present a detailed contaminant transfer dynamics model for radionuclide in geosphere and biosphere medium. The model describes the transport of radionuclides using full equation for the processes of advection, diffusion, decay and sorption. The overall objective is to establish, from a post-closure radiological safety point of view, whether it is practical to convert an existing radioactive waste storage facility at Armenian NPP, to a waste disposal facility. The calculation includes: - Data sources for: the operational waste-source term; options for refurbishment and completion of the waste storage facility as a waste disposal facility; the site and its environs; - Development of an assessment context for the safety assessment, and identification of waste treatment options; - A description of the conceptual and mathematical models, and results calculated for the base case scenario relating to the release of contaminants via the groundwater pathway and also precipitation especially important for this site. The results of the calculations showed that the peak individual dose is < 7 E-8 Sv/y arising principally from I-129 after 700 years post closure. Other significant radionuclides, in terms of their contribution to the total dose are I-129, Tc-99 and in little C-14 (U- 234 and Po-210 are not relevant). The study does not explore all issues that might be expected to be presented in a safety case for a near surface disposal facility it mainly focuses on post- closure dose impacts. Most emphasis has been placed on the development of scenarios and conceptual models rather than the presentation and analyses of results and confidence building (only deterministic results are presented). The calculations suggest that, from a perspective the conversion of the waste-storage facility is feasible such that all the predicted doses are well below internationally recognized targets, as well as provisional Armenian regulatory objectives. This conclusion applies to the disposal of the ANPP present and future arising of L/ILW operating wastes. (authors)

  8. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    SciTech Connect (OSTI)

    Kirner, N.P. [Ebasco Environmental, Idaho Falls, ID (United States)

    1994-09-01T23:59:59.000Z

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m{sup 3} to 187 m{sup 3}, depending on assumptions and treatments applied to the wastes.

  9. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01T23:59:59.000Z

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  10. Regulatory Approaches for Solid Radioactive Waste Storage in Russia

    SciTech Connect (OSTI)

    Griffith, A.; Testov, S.; Diaschev, A.; Nazarian, A.; Ustyuzhanin, A.

    2003-02-26T23:59:59.000Z

    The Russian Navy under the Arctic Military Environmental Cooperation (AMEC) Program has designated the Polyarninsky Shipyard as the regional recipient for solid radioactive waste (SRW) pretreatment and storage facilities. Waste storage technologies include containers and lightweight modular storage buildings. The prime focus of this paper is solid radioactive waste storage options based on the AMEC mission and Russian regulatory standards. The storage capability at the Polyarninsky Shipyard in support of Mobile Pretreatment Facility (MPF) operations under the AMEC Program will allow the Russian Navy to accumulate/stage the SRW after treatment at the MPF. It is anticipated that the MPF will operate for 20 years. This paper presents the results of a regulatory analysis performed to support an AMEC program decision on the type of facility to be used for storage of SRW. The objectives the study were to: analyze whether a modular storage building (MSB), referred in the standards as a lightweight building, would comply with the Russian SRW storage building standard, OST 95 10517-95; analyze the Russian SRW storage pad standard OST 95 10516-95; and compare the two standards, OST 95 10517-95 for storage buildings and OST 95 10516-95 for storage pads.

  11. Introduction to Nuclear Waste Management Nuclear Waste is a type of radioactive waste that is usually the by-product of

    E-Print Network [OSTI]

    Auerbach, Scott M.

    Introduction to Nuclear Waste Management Nuclear Waste is a type of radioactive waste Meltdowns Bad? - Nuclear Fallout -Water Pollution - Human Health Nuclear Waste Management The following examples are from our own exploration of the impact of nuclear waste... Brainstorm: What Do You

  12. REVISED INDEPENDENT VERIFICATION SURVEY OF A AND B RADIOACTIVE WASTE TRANSFER LINES TRENCH BROOKHAVEN NATIONAL LABORATORY

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-02-10T23:59:59.000Z

    REVISED INDEPENDENT VERIFICATION SURVEY OF THE A AND B RADIOACTIVE WASTE TRANSFER LINES TRENCH, BROOKHAVEN NATIONAL LABORATORY 5062-SR-01-1

  13. alpha-bearing radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radioactive wastes. This paper reviews the past three decades, and identifies lessons learned which might be applied to future transportation planning for geologic repositories...

  14. Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

  15. Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state)

    Broader source: Energy.gov [DOE]

    The Southeast Interstate Low-Level Radioactive Waste Management Compact is administered by the Compact Commission. The Compact provides for rotating responsibility for the region's low-level...

  16. Thirty-year solid waste generation forecast for facilities at SRS

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.

  17. 1994 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Many Waste Minimization/Pollution Prevention successes at the Hanford Site occur every day without formal recognition. A few of the successful projects are: T-Plant helps facilities reuse equipment by offering decontamination services for items such as gas cylinders, trucks, and railcars, thus saving disposal and equipment replacement costs. Custodial Services reviewed its use of 168 hazardous cleaning products, and, through a variety of measures, replaced them with 38 safer substitutes, one for each task. Scrap steel contaminated with low level radioactivity from the interim stabilization of 107-K and 107-C was decontaminated and sold to a vendor for recycling. Site-wide programs include the following: the Pollution Prevention Opportunity Assessment (P2OA) program at the Hanford site was launched during 1994, including a training class, a guidance document, technical assistance, and goals; control over hazardous materials purchased was achieved by reviewing all purchase requisitions of a chemical nature; the Office Supply Reuse Program was established to redeploy unused or unwanted office supply items. In 1994, pollution prevention activities reduced approximately 274,000 kilograms of hazardous waste, 2,100 cubic meters of radioactive and mixed waste, 14,500,000 kilograms of sanitary waste, and 215,000 cubic meters off liquid waste and waste water. Pollution Prevention activities also saved almost $4.2 million in disposal, product, and labor costs. Overall waste generation increased in 1994 due to increased work and activity typical for a site with an environmental restoration mission. However, without any Waste Minimization/Pollution Prevention activities, solid radioactive waste generation at Hanford would have been 25% higher, solid hazardous waste generation would have been 30% higher, and solid sanitary waste generation would have been 60% higher.

  18. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect (OSTI)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01T23:59:59.000Z

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  19. Naturally occurring crystalline phases: analogues for radioactive waste forms

    SciTech Connect (OSTI)

    Haaker, R.F.; Ewing, R.C.

    1981-01-01T23:59:59.000Z

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  20. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect (OSTI)

    Perkins, B.L.

    1982-01-01T23:59:59.000Z

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  1. DOE Comments on Radioactive Waste | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentIOffshoreDepartmentBeginson Radioactive Waste

  2. Design, optimization, and selectivity of inorganic ion-exchangers for radioactive waste remediation 

    E-Print Network [OSTI]

    Medvedev, Dmitry Gennadievich

    2005-11-01T23:59:59.000Z

    The processes of development of nuclear weapons resulted in accumulation of thousands of curies of high-level radioactive waste. Liquid waste produced in the US has been stored in carbon steel tanks in highly alkaline (1-3 ...

  3. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    SciTech Connect (OSTI)

    Hulse, R.A.

    1991-08-01T23:59:59.000Z

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.

  4. Generating Steam by Waste Incineration

    E-Print Network [OSTI]

    Williams, D. R.; Darrow, L. A.

    1981-01-01T23:59:59.000Z

    Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

  5. Update on Radioactive Waste Management in the UK

    SciTech Connect (OSTI)

    Dalton, John; McCall, Ann

    2003-02-24T23:59:59.000Z

    This paper provides a brief background to the current position in the United Kingdom (UK) and provides an update on the various developments and initiatives within the field of radioactive waste management that have been taking place during 2002/03. These include: The UK Government's Department of Trade and Industry (DTi) review of UK energy policy; The UK Government's (Department of Environment, Food and Rural Affairs (Defra) and Devolved Administrations*) consultation program; The UK Government's DTi White Paper, 'Managing the Nuclear Legacy: A Strategy for Action'; Proposals for improved regulation of Intermediate Level Waste (ILW) conditioning and packaging. These various initiatives relate, in Nirex's opinion, to the three sectors of the industry and this paper will provide a comment on these initiatives in light of the lessons that Nirex has learnt from past events and suggest some conclusions for the future.

  6. Sulfate Retention and Segregation in Simulated Radioactive Waste Borosilicate Glasses

    SciTech Connect (OSTI)

    Li, Hong; Hrma, Pavel R.; Vienna, John D.

    2000-04-19T23:59:59.000Z

    Sulfate segregation from processing radioactive waste glasses causes an acceleration of the melter refractory corrosion and partitioning of radionuclides in the segregated layer. A sulfate retention (SR)-composition relationship has been established for various simulated high-level and low-activity waste glass compositions in terms of the relative non-bridging oxygen (NBO) concentration in the melt. Phosphate was found to significantly increase sulfate retention. However, the correlation between SR and NBO could not explain the sulfate segregation tendency. For instance, glasses with a higher ratio of boron to sodium suppress sulfate segreation in the melt in which SR is expected to be lower. As sulfate segregation is a kinetic process, occurring in the batch to glass conversion process, initial reactions of the batch materials are considered to have stronger effects on the sulfate segregation tendency, pointing out the need to study the impact of batch materials on sulfate segregation.

  7. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

  8. 1989 Annual report on low-level radioactive waste management progress

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs.

  9. Low and high Temperature Dual Thermoelectric Generation Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery...

  10. Multi-physics modeling of thermoelectric generators for waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    physics modeling of thermoelectric generators for waste heat recovery applications Multi-physics modeling of thermoelectric generators for waste heat recovery applications Model...

  11. Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J

    SciTech Connect (OSTI)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01T23:59:59.000Z

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  12. Characterization of Class A low-level radioactive waste 1986--1990. Volume 2: Main report -- Part A

    SciTech Connect (OSTI)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01T23:59:59.000Z

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the, waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  13. Characterization of Class A low-level radioactive waste 1986--1990. Volume 4: Appendices A--E

    SciTech Connect (OSTI)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01T23:59:59.000Z

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information.

  14. Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P

    SciTech Connect (OSTI)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01T23:59:59.000Z

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  15. Geological problems in radioactive waste isolation - A world wide review

    SciTech Connect (OSTI)

    Witherspoon, P.A. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01T23:59:59.000Z

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  16. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01T23:59:59.000Z

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  17. Generational Garbage Collection and the Radioactive Decay Model

    E-Print Network [OSTI]

    Clinger, William D.

    Generational Garbage Collection and the Radioactive Decay Model William D Clinger and Lars T Hansen a rational basis for deciding how many objects to promote, when to collect garbage, and which generations to collect. Analysis of the model leads to a new kind of gen- erational garbage collector whose effectiveness

  18. Particle beam generator using a radioactive source

    DOE Patents [OSTI]

    Underwood, David G. (Naperville, IL)

    1993-01-01T23:59:59.000Z

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  19. Particle beam generator using a radioactive source

    DOE Patents [OSTI]

    Underwood, D.G.

    1993-03-30T23:59:59.000Z

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  20. Geological challenges in radioactive waste isolation: Third worldwide review

    SciTech Connect (OSTI)

    Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

    2001-12-01T23:59:59.000Z

    The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all stakeholders fully informed of project plans and hold periodic meetings to brief the public, especially in the vicinity of the selected site. This procedure has now been widely adopted and represents one of the most important developments in the Third Worldwide Review.

  1. Impact assessment of draft DOE Order 5820.2B. Radioactive Waste Technical Support Program

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared a revision to DOE Order 5820.2A, entitled ``Radioactive Waste Management.`` DOE issued DOE Order 5820.2A in September 1988 and, as the title implies, it covered only radioactive waste forms. The proposed draft order, entitled ``Waste Management,`` addresses the management of both radioactive and nonradioactive waste forms. It also includes spent nuclear fuel, which DOE does not consider a waste. Waste forms covered include hazardous waste, high-level waste, transuranic (TRU) waste, low-level radioactive waste, uranium and thorium mill tailings, mixed waste, and sanitary waste. The Radioactive Waste Technical Support Program (TSP) of Leached Idaho Technologies Company (LITCO) is facilitating the revision of this order. The EM Regulatory Compliance Division (EM-331) has requested that TSP estimate the impacts and costs of compliance with the revised order. TSP requested Dames & Moore to aid in this assessment by comparing requirements in Draft Order 5820.2B to ones in DOE Order 5820.2A and other DOE orders and Federal regulations. The assessment started with a draft version of 5820.2B dated January 14, 1994. DOE has released three updated versions of the draft order since then (dated May 20, 1994; August 26, 1994; and January 23, 1995). Each time DOE revised the order, Dames and Moore updated the assessment work to reflect the text changes. This report reflects the January 23, 1995 version of the draft order.

  2. Microbial degradation of low-level radioactive waste. Volume 2, Annual report for FY 1994

    SciTech Connect (OSTI)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-08-01T23:59:59.000Z

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program is to develop modified microbial degradation test procedures that will be more appropriate than the existing procedures for evaluating the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms indigenous to LLW disposal sites are being employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results over the past year on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of the annual report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides has been developed during this study.

  3. 2005 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2006-02-01T23:59:59.000Z

    This report is a compilation of the calendar year 2005 groundwater sampling results from the Area 5 Radioactive Waste Management Site. In additon to providing groundwater monitoring results, this report also includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Ny County, Nevada.

  4. Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-11-01T23:59:59.000Z

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  5. Low-temperature ceramic radioactive waste form characteriztion of supercalcine-based monazite-cement composites

    SciTech Connect (OSTI)

    Roy, D.M.; Wakeley, L.D.; Atkinson, S.D.

    1980-04-18T23:59:59.000Z

    Simulated radioactive waste solidification by a lower temperature ceramic (cement) process is being investigated. The monazite component (simulated by NdPO/sub 4/) of supercalcine-ceramic has been solidified in cement and found to generate a solid form with low leachability. Several types of commercial cements and modifications thereof were used. No detectable release of Nd or P was found through characterizing the products of accelerated hydrothermal leaching at 473/sup 0/K (200/sup 0/C) and 30.4 MPa (300 bars) pressure.

  6. Public and political issues in radioactive waste management in the Federal Republic of Germany

    SciTech Connect (OSTI)

    Neis, A. [Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Bonn (Germany)

    1993-12-31T23:59:59.000Z

    The Federal Government`s radioactive waste management concept and regulations governing formal public participation in licensing procedures for radioactive waste management facilities are presented. The paper focuses on public and political issues arising from widely diverging views in different social groups on nuclear energy and on radioactive waste management. The resulting conflict between Federal and Laender (Federal constituent states) authorities and the actual course of public participation in a licensing procedure are illustrated with the example of planned final disposal of radioactive waste in the Konrad mine. Major national efforts to overcome the unsatisfying present situation are presented and the role of international consensus is briefly touched. Concluding remarks will particularly justify admissibility and emphasize the need to discuss and eventually decide on radioactive waste management issues regardless of diverging views on nuclear energy.

  7. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  8. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

    1999-03-09T23:59:59.000Z

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  9. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

    1998-11-24T23:59:59.000Z

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  10. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOE Patents [OSTI]

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11T23:59:59.000Z

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  11. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09T23:59:59.000Z

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  12. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24T23:59:59.000Z

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  13. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    SciTech Connect (OSTI)

    Casey, C.; Heath, B.A.

    1992-11-01T23:59:59.000Z

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  14. Development of long-term performance models for radioactive waste forms

    SciTech Connect (OSTI)

    Bacon, Diana H.; Pierce, Eric M.

    2011-03-22T23:59:59.000Z

    The long-term performance of solid radioactive waste is measured by the release rate of radionuclides into the environment, which depends on corrosion or weathering rates of the solid waste form. The reactions involved depend on the characteristics of the solid matrix containing the radioactive waste, the radionuclides of interest, and their interaction with surrounding geologic materials. This chapter describes thermo-hydro-mechanical and reactive transport models related to the long-term performance of solid radioactive waste forms, including metal, ceramic, glass, steam reformer and cement. Future trends involving Monte-Carlo simulations and coupled/multi-scale process modeling are also discussed.

  15. Slovak Nuclear Regulatory Body Position in the Transport of Radioactive Waste

    SciTech Connect (OSTI)

    Homola, J.

    2003-02-27T23:59:59.000Z

    This paper describes safety requirements for transport of radioactive waste in Slovakia and the role of regulatory body in the transport licensing and assessment processes. Importance of radioactive waste shipments have been increased since 1999 by starting of NPP A-1 decommissioning and operation of near surface disposal facility. Also some information from history of shipment as well as future activities are given. Legal basis for radioactive waste transport is resulting from IAEA recommendations in this area. Different types of transport equipment were approved by regulatory body for both liquid and solid waste and transportation permits were issued to their shipment. Regulatory body attention during evaluation of transport safety is focused mainly on ability of individual packages to withstand different transport conditions and on safety analyses performed for transport equipment for liquid waste with high frequency of shipments. During past three years no event was occurred in connection with radioactive waste transport in Slovakia.

  16. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KOZLOWSKI, S.D.

    2007-05-30T23:59:59.000Z

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  17. Sintered Bentonite Ceramics for the Immobilization of Cesium- and Strontium-Bearing Radioactive Waste

    E-Print Network [OSTI]

    Ortega, Luis H.

    2010-07-14T23:59:59.000Z

    with kaolin clays to produce feldspars [3]. Spitsyn looked at roasting bentonite specifically for the immobilization of stron- tium [4]. Investigations by Strachan and Shultz done on pollucite, a cesium bearing alumino-silicate, for radioactive waste storage... is 1050?C [44]. 3.2 Other Waste Forms Spent fuel and radioactive waste must be isolated from the environment. In the following sections a brief review of engineered barriers that will be employed in conjunction with sequestration. Sequestration may...

  18. DEVELOPMENT OF A ROTARY MICROFILTER FOR RADIOACTIVE WASTE APPLICATIONS

    SciTech Connect (OSTI)

    Poirier, M; David Herman, D; Samuel Fink, S

    2008-02-25T23:59:59.000Z

    The processing rate of Savannah River Site (SRS) high-level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross-flow filter, produces {approx}0.02 gpm/sq. ft. of filtrate under expected operating conditions. Savannah River National Laboratory (SRNL) demonstrated significantly higher filter flux for actual waste samples using a small-scale rotary filter. With funding from the U. S. Department of Energy Office of Cleanup Technology, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. The authors improved the design for the disks and filter unit to make them suitable for high-level radioactive service. They procured two units using the new design, tested them with simulated SRS wastes, and evaluated the operation of the units. Work to date provides the following conclusions and program status: (1) The authors modified the design of the filter disks to remove epoxy and Ryton{reg_sign}. The new design includes welding both stainless steel and ceramic coated stainless steel filter media to a stainless steel support plate. The welded disks were tested in the full-scale unit. They showed good reliability and met filtrate quality requirements. (2) The authors modified the design of the unit, making installation and removal easier. The new design uses a modular, one-piece filter stack that is removed simply by disassembly of a flange on the upper (inlet) side of the filter housing. All seals and rotary unions are contained within the removable stack. (3) While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service conditions is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement of the current seal with an air seal could increase the lifetime to 5 years and is undergoing testing in the current work. (4) The bottom bushing showed wear due to a misalignment during the manufacture of the filter tank. Replacing the graphite bushing with a more wear resistant material such as a carbide material will increase the lifetime of the bushing. This replacement requires a more wear resistant part or coating to prevent excessive wear of the shaft. The authors are currently conducting testing with the more wear resistant bushing. (5) The project team plans to use the rotary microfilter as a filter in advance of an ion exchange process under development for potential deployment in SRS waste tank risers.

  19. Potential radiation damage: Storage tanks for liquid radioactive waste

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.

    1992-08-21T23:59:59.000Z

    High level waste at SRS is stored in carbon steel tanks constructed during the period 1951 to 1981. This waste contains radionuclides that decay by alpha, beta, or gamma emission or are spontaneous neutronsources. Thus, a low intensity radiation field is generated that is capable of causing displacement damage to the carbon steel. The potential for degradation of mechanical properties was evaluated by comparing the estimated displacement damage with published data relating changes in Charpy V-notch (CVN) impact energy to neutron exposure. Experimental radiation data was available for three of the four grades of carbonsteel from which the tanks were constructed and is applicable to all four steels. Estimates of displacement damage arising from gamma and neutron radiation have been made based on the radionuclide contents for high level waste that are cited in the Safety Analysis Report (SAR) for the Liquid Waste Handling Facilities in the 200-Area. Alpha and beta emissions do not penetrate carbon steel to a sufficient depth to affect the bulk properties of the tank walls but may aggravate corrosion processes. The damage estimates take into account the source of the waste (F- or H-Area), the several types of tank service, and assume wateras an attenuating medium. Estimates of displacement damage are conservative because they are based on the highest levels of radionuclide contents reported in the SAR and continuous replenishment of the radionuclides.

  20. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    SciTech Connect (OSTI)

    Clauss, S.A.; Bean, R.M.

    1993-02-01T23:59:59.000Z

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  1. Clustering of radioactive tank waste data and comparison to historical models

    SciTech Connect (OSTI)

    Simpson, B.C.

    1998-06-10T23:59:59.000Z

    The US Department of Energy (DOE) has initiated remediation for stored high-level radioactive wastes. At the DOE Hanford site in southeastern Washington, 149 large underground tanks contain such wastes, generated by various chemical processes during the manufacture of plutonium for nuclear weapons. One of the key steps in this remediation effort is to characterize the waste stored in these tanks so that it can be treated properly and safely. A number of samples have been extracted from a subset of the tanks and analyzed for various chemical and radiological constituents. The analytical results were used to cluster tanks into groups with similar waste compositions. The tank groups determined by clustering of the analytical data are compared to tank groups determined using process-based historical models. Agreement between the two grouping strategies may reduce the number of samples required to characterize the waste in a tank, and perhaps support the use of the historical models to characterize tanks that have not been sampled. A successful implementation of this approach with one tank group is described here. This particular case yielded DOE significant savings of characterization resources.

  2. Thermal and radiolytic gas generation from Tank 241-S-102 waste

    SciTech Connect (OSTI)

    King, C.M.; Pederson, L.R.; Bryan, S.A.

    1997-07-01T23:59:59.000Z

    This report summarizes progress in evaluating thermal and radiolytic rate parameters for flammable gas generation in Hanford single-shell tank wastes based on the results of laboratory tests using actual waste from Tank 241-S-102 (S-102). Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, whose purpose is to develop information to support Fluor Daniel Hanford (FDH) and its Project Management Hanford Contract (PHMC) subcontractors in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT) under subcontract to PNNL, using simulated wastes, and to studies being performed at Numatec Hanford Corporation (formerly Westinghouse Hanford Company) using actual wastes. The results of gas generation from Tank S-102 waste under thermal and radiolytic conditions are described in this report. The accurate measurement of gas generation rates in actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from Tank S-102, a waste tank listed as high priority by the Flammable Gas Safety Program due to its potential for flammable gas accumulation above the flammability limit.

  3. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1999-07-20T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  4. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1998-03-24T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  5. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

    1998-03-24T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  6. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1997-07-15T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  7. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (21 Barnes Road, Wading River, NY 11792); Colombo, Peter (44 N. Pinelake Dr., Patchogue, NY 11772)

    1997-01-01T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  8. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

    1999-07-20T23:59:59.000Z

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  9. SRS: Site ranking system for hazardous chemical and radioactive waste

    SciTech Connect (OSTI)

    Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.

    1988-05-01T23:59:59.000Z

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs.

  10. Selected radionuclides important to low-level radioactive waste management

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  11. Radioactive waste management in the USSR: A review of unclassified sources. Volume 2

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01T23:59:59.000Z

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  12. Radioactive waste management in the USSR: A review of unclassified sources

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01T23:59:59.000Z

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  13. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    lived medium level waste (MLW), heat producing vitri- fiedpackage spacing, and waste package heat output, will resultdisposal gallery for heat-emitting waste and to quantify the

  14. Waste in a land of plenty -Solid waste generation and management

    E-Print Network [OSTI]

    Columbia University

    Waste in a land of plenty - Solid waste generation and management in the US The US generates solid waste generation and management Nickolas J. Themelis and Scott M. Kaufman Article by N.J. Themelis, the generation of municipal solid waste (MSW) was much higher than that reported annually by the US Environmental

  15. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  16. Greater-than-Class C low-level radioactive waste characterization. Appendix E-5: Impact of the 1993 NRC draft Branch Technical Position on concentration averaging of greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Tuite, P.; Tuite, K.; Harris, G. [Waste Management Group, Inc., Peekskill, NY (United States)

    1994-09-01T23:59:59.000Z

    This report evaluates the effects of concentration averaging practices on the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) generated by the nuclear utility industry and sealed sources. Using estimates of the number of waste components that individually exceed Class C limits, this report calculates the proportion that would be classified as GTCC LLW after applying concentration averaging; this proportion is called the concentration averaging factor. The report uses the guidance outlined in the 1993 Nuclear Regulatory Commission (NRC) draft Branch Technical Position on concentration averaging, as well as waste disposal experience at nuclear utilities, to calculate the concentration averaging factors for nuclear utility wastes. The report uses the 1993 NRC draft Branch Technical Position and the criteria from the Barnwell, South Carolina, LLW disposal site to calculate concentration averaging factors for sealed sources. The report addresses three waste groups: activated metals from light water reactors, process wastes from light-water reactors, and sealed sources. For each waste group, three concentration averaging cases are considered: high, base, and low. The base case, which is the most likely case to occur, assumes using the specific guidance given in the 1993 NRC draft Branch Technical Position on concentration averaging. To project future GTCC LLW generation, each waste category is assigned a concentration averaging factor for the high, base, and low cases.

  17. PEGASUS, a European research project on the effects of gas in underground storage facilities for radioactive waste

    SciTech Connect (OSTI)

    Haijtink, B.; McMenamin, T. [Commission of the European Communities, Brussels (Belgium)

    1993-12-31T23:59:59.000Z

    Whereas the subject of gas generation and possible gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular in the 4th five year R and D program on Management and Storage of Radioactive Waste (1990--1994), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called PEGASUS, Project on the Effects of GAS in Underground Storage facilities for radioactive waste, about 20 organizations and research institutes from 7 European countries are involved. The project covers both experimental and theoretical studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations as clay, salt and granite. In this paper an overview is given of the various studies undertaken in the project as well as some first results presented.

  18. Integrated Waste Management Strategy and Radioactive Waste Forms for the 21st Century

    SciTech Connect (OSTI)

    Dirk Gombert; Jay Roach

    2007-03-01T23:59:59.000Z

    The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilization and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.

  19. Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320

    SciTech Connect (OSTI)

    Mueth, Joachim [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)] [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2013-07-01T23:59:59.000Z

    The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials, and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)

  20. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  1. What are Spent Nuclear Fuel and High-Level Radioactive Waste ?

    SciTech Connect (OSTI)

    DOE

    2002-12-01T23:59:59.000Z

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

  2. DIRECT DISPOSAL OF A RADIOACTIVE ORGANIC WASTE IN A CEMENTITIOUS WASTE FORM

    SciTech Connect (OSTI)

    Zamecnik, J; Alex Cozzi, A; Russell Eibling, R; Jonathan Duffey, J; Kim Crapse, K

    2007-02-22T23:59:59.000Z

    The disposition of {sup 137}Cs-containing tetraphenylborate (TPB) waste at the Savannah River Site (SRS) by immobilization in the cementitious waste form, or grout called ''saltstone'' was proposed as a straightforward, cost-effective method for disposal. Tests were performed to determine benzene release due to TPB decomposition in saltstone at several initial TPB concentrations and temperatures. The benzene release rates for simulants and radioactive samples were generally comparable at the same conditions. Saltstone monoliths with only the top surface exposed to air at 25 and 55 C at any tetraphenylborate concentration or at any temperature with 30 mg/L TPB gave insignificant releases of benzene. At higher TPB concentrations and 75 and 95 C, the benzene release could result in exceeding the Lower Flammable Limit in the saltstone vaults.

  3. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect (OSTI)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P. [and others

    1995-09-01T23:59:59.000Z

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  4. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Brown, A.

    2014-04-27T23:59:59.000Z

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  5. Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Office of Civilian Radioactive Waste Management Fee Adequacy Assessment Report is to present an analysis of the adequacy of the fee being paid by nuclear power utilities...

  6. Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)

    Broader source: Energy.gov [DOE]

    The Northwest Interstate Compact on Low-Level Radioactive Waste Management, enacted in 1981, was ratified by Congress in 1985. The Compact is a cooperative effort of the party states to protect...

  7. Midwest Interstate Compact on Low-Level Radioactive Waste (Multiple States)

    Broader source: Energy.gov [DOE]

    The Midwest Interstate Low-Level Radioactive Waste Compact is an agreement between the states of Indiana, Iowa, Minnesota, Missouri, Ohio, and Wisconsin that provides for the cooperative and safe...

  8. s.haszeldine@ed.ac.uk Radioactive waste Cumbria: Maryport, Silloth 21, 22 Nov 2012 1 Geological disposal of radioactive

    E-Print Network [OSTI]

    -Gas and Coal-Bed-Methane exploration. That excludes the rest of the coastal zone for a 5x5km Repository 2010 ore. Groundwater is opposite to needs #12;Oxidising: uranium can dissolve s.haszeldine@ed.ac.uk Radioactive waste Cumbria: Maryport, Silloth 21, 22 Nov 2012 12 Uranium (spent fuel) can dissolve in oxidising

  9. s.haszeldine@ed.ac.uk Radioactive waste Cumbria 6, 7 Sept 2012 1 Geological disposal of radioactive

    E-Print Network [OSTI]

    have offered Shale-Gas and Coal-Bed-Methane exploration. That excludes the rest of the coastal zone to needs #12;Oxidising: uranium can dissolve s.haszeldine@ed.ac.uk Radioactive waste Cumbria 6, 7 Sept 2012 13 Uranium (spent fuel) can dissolve in oxidising groundwater OxidisingReducing West Cumbria water

  10. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13T23:59:59.000Z

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

  11. Greater-than-Class C low-level waste characterization. Appendix I: Impact of concentration averaging low-level radioactive waste volume projections

    SciTech Connect (OSTI)

    Tuite, P.; Tuite, K.; O`Kelley, M.; Ely, P.

    1991-08-01T23:59:59.000Z

    This study provides a quantitative framework for bounding unpackaged greater-than-Class C low-level radioactive waste types as a function of concentration averaging. The study defines the three concentration averaging scenarios that lead to base, high, and low volumetric projections; identifies those waste types that could be greater-than-Class C under the high volume, or worst case, concentration averaging scenario; and quantifies the impact of these scenarios on identified waste types relative to the base case scenario. The base volume scenario was assumed to reflect current requirements at the disposal sites as well as the regulatory views. The high volume scenario was assumed to reflect the most conservative criteria as incorporated in some compact host state requirements. The low volume scenario was assumed to reflect the 10 CFR Part 61 criteria as applicable to both shallow land burial facilities and to practices that could be employed to reduce the generation of Class C waste types.

  12. Managing low-level radioactive waste in a democratic society: Requirements and accommodations

    SciTech Connect (OSTI)

    Ortciger, T. [Illinois Dept. of Nuclear Safety, Springfield, IL (United States); Ayers, M. [Sangamon State Univ., Springfield, IL (United States)

    1993-12-31T23:59:59.000Z

    This paper will focus on public policy needs to ensure the involvement of the general public in effective decision-making related to the handling of low-level radioactive waste. It highlights difficulties experienced in involving the public in siting low-level radioactive waste disposal facilities. It reviews the process recently developed by Illinois to locate a disposal facility and discusses that process`s potential as a general model for siting such facilities and involving citizens in a democratic fashion.

  13. Fire hazard analysis of the radioactive mixed waste trenchs

    SciTech Connect (OSTI)

    McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-04-27T23:59:59.000Z

    This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

  14. Process waste assessment for solid low-level radioactive waste and solid TRU waste

    SciTech Connect (OSTI)

    Haney, L. [Westinghouse Savannah River Co., Aiken, SC (United States); Gamble, G.S. [Law Environmental, Inc., Kennesaw, GA (United States)

    1994-04-01T23:59:59.000Z

    Process Waste Assessments (PWAs) are a necessary and important part of a comprehensive waste management plan. PWAs are required by Federal RCRA regulations, certain state regulations and Department of Energy Orders. This paper describes the assessment process and provides examples used by Law Environmental, Inc., in performing numerous PWAs at the Savannah River Site in Aiken, SC.

  15. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    DOE Patents [OSTI]

    Brassell, Gilbert W. (13237 W. 8th Ave., Golden, CO 80401); Brugger, Ronald P. (Lafayette, CO)

    1985-02-19T23:59:59.000Z

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  16. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  17. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect (OSTI)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq)] [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)] [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01T23:59:59.000Z

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  18. Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG&G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report.

  19. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2010-01-01T23:59:59.000Z

    sorption including waste heat, hyperalkaline solutions frome.g. , heat production from the decay of the waste, re-waste packages along the tunnels, to achieve a distributed heat

  20. WASTE CONTAINER AND WASTE PACKAGE PERFORMANCE MODELING TO SUPPORT SAFETY ASSESSMENT OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL.

    SciTech Connect (OSTI)

    SULLIVAN, T.

    2004-06-30T23:59:59.000Z

    Prior to subsurface burial of low- and intermediate-level radioactive wastes, a demonstration that disposal of the wastes can be accomplished while protecting the health and safety of the general population is required. The long-time frames over which public safety must be insured necessitates that this demonstration relies, in part, on computer simulations of events and processes that will occur in the future. This demonstration, known as a Safety Assessment, requires understanding the performance of the disposal facility, waste containers, waste forms, and contaminant transport to locations accessible to humans. The objective of the coordinated research program is to examine the state-of-the-art in testing and evaluation short-lived low- and intermediate-level waste packages (container and waste form) in near surface repository conditions. The link between data collection and long-term predictions is modeling. The objective of this study is to review state-of-the-art modeling approaches for waste package performance. This is accomplished by reviewing the fundamental concepts behind safety assessment and demonstrating how waste package models can be used to support safety assessment. Safety assessment for low- and intermediate-level wastes is a complicated process involving assumptions about the appropriate conceptual model to use and the data required to support these models. Typically due to the lack of long-term data and the uncertainties from lack of understanding and natural variability, the models used in safety assessment are simplistic. However, even though the models are simplistic, waste container and waste form performance are often central to the case for making a safety assessment. An overview of waste container and waste form performance and typical models used in a safety assessment is supplied. As illustrative examples of the role of waste container and waste package performance, three sample test cases are provided. An example of the impacts of distributed container failure times on cumulative release and peak concentration is provided to illustrate some of the complexities in safety assessment and how modeling can be used to support the conceptual approach in safety assessment and define data requirements. Two examples of the role of the waste form in controlling release are presented to illustrate the importance of waste form performance to safety assessment. These examples highlight the difficulties in changing the conceptual model from something that is conservative and defensible (such as instant release of all the activity) to more representative conceptual models that account for known physical and chemical processes (such as diffusion), The second waste form example accounts for the experimental observation that often a thin film with low diffusion properties forms on the waste form surface. The implications of formation of such a layer on release are investigated and the implications of attempting to account for this phenomena in a safety assessment are addressed.

  1. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    SciTech Connect (OSTI)

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29T23:59:59.000Z

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  2. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01T23:59:59.000Z

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  3. Radioactive Waste Management in Hungary at the Turn of the Millennium 1

    SciTech Connect (OSTI)

    Pellet, S.; Temesi, A.; Fritz, A.

    2003-02-25T23:59:59.000Z

    The paper deals with the Hungarian radioactive waste management practice from the beginning up to now. It gives a historical overview which is extended with the detailed description of activity of the present temporary waste disposal facility in Puespoekszilagy. In addition the plan for improving of the facility is also discussed.

  4. Creep of ocean sediments resulting from the isolation of radioactive wastes

    SciTech Connect (OSTI)

    Dawson, P.R.; Chavez, P.F.; Lipkin, J.; Silva, A.J.

    1980-01-01T23:59:59.000Z

    Predictive models for the creep of deep ocean sediments resulting from the disposal of radioactive wastes are presented and preliminary observations of a program for evaluation of creep constitutive equation parameters are discussed. The models are used to provide calculated response of sediments under waste disposal conditions.

  5. PROGRAMMATIC ASSESSMENT OF RADIOACTIVE WASTE MANAGEMENT NUCLEAR FUEL AND WASTE PROGRAMS. Operational Planning and Development (Activity No. AR OS 10 05 K; ONL-WN06)

    SciTech Connect (OSTI)

    None

    1980-06-30T23:59:59.000Z

    Gilbert/Commonwealth (G/C) has performed an assessment of the waste management operations at Oak Ridge National Laboratory (ORNL). The objective of this study was to review radioactive waste management as practiced at ORNL and to recommend improvements or alternatives for further study. The study involved: 1) an on-site survey of ORNL radioactive waste management operations; 2) a review of radioactive waste source data, records, and regulatory requirements; 3) an assessment of existing and planned treatment, storage, and control facilities; and 4) identification of alternatives for improving waste management operations. Information for this study was obtained from both personal interviews and written reports. The G/C suggestions for improving ORNL waste management operations are summarized. Regulatory requirements governing ORNL waste management operations are discussed. Descriptions and discussions of the radioactive liquid, solid, and gaseous waste systems are presented. The waste operations control complex is discussed.

  6. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect (OSTI)

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E. [SUE MosSIA 'Radon', 7th Rostovsky lane 2/14, Moscow 119121 (Russian Federation)

    2012-07-01T23:59:59.000Z

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  7. Building of multilevel stakeholder consensus in radioactive waste repository siting

    SciTech Connect (OSTI)

    Dreimanis, A. [Radiation Safety Centre, Riga LV (Latvia)

    2007-07-01T23:59:59.000Z

    This report considers the problem of multilevel consensus building for siting and construction of shared multinational/regional repositories for radioactive waste (RW) deep disposal. In the siting of a multinational repository there appears an essential innovative component of stakeholder consensus building, namely: to reach consent - political, social, economic, ecological - among international partners, in addition to solving the whole set of intra-national consensus building items. An entire partnering country is considered as a higher-level stakeholder - the national stakeholder, represented by the national government, being faced to simultaneous seeking an upward (international) and a downward (intra-national) consensus in a psychologically stressed environment, possibly being characterized by diverse political, economic and social interests. The following theses as a possible interdisciplinary approach towards building of shared understanding and stakeholder consensus on the international scale of RW disposal are forwarded and developed: a) building of international stakeholder consensus would be promoted by activating and diversifying on the international scale multilateral interactions between intra- and international stakeholders, including web-based networks of the RW disposal site investigations and decision-making, as well as networks for international cooperation among government authorities in nuclear safety, b) gradual progress in intergovernmental consensus and reaching multilateral agreements on shared deep repositories will be the result of democratic dialogue, via observing the whole set of various interests and common resolving of emerged controversies by using advanced synergetic approaches of conflict resolution, c) cross-cultural thinking and world perception, mental flexibility, creativity and knowledge are considered as basic prerogatives for gaining a higher level of mutual understanding and consensus for seeking further consensus, for advancing the preparedness to act together, and ultimately - for achieving desired shared goals. It is proposed that self-organized social learning will make it possible to promote adequate perception of risk and prevent, by diminishing uncertainties and unknown factors, social amplification of an imagined risk, as well as to increase the trust level and facilitate more adequate equity perception. The proposed approach to the multilevel stakeholder consensus building on international scale is extrapolated to the present-day activities of siting of such near-surface RW disposal facilities which supposedly could have non-negligible trans-boundary impact. A multilevel stakeholder interaction process is considered for the case of resolving of emerged problems in site selection for the planned near-surface RW repository in vicinity of the Lithuanian-Latvian border foreseen for disposal of short lived low- and intermediate level waste arising from the decommissioning of the Ignalina Nuclear Power Plant. (authors)

  8. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22T23:59:59.000Z

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  9. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    SciTech Connect (OSTI)

    Boe, Timothy [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States)] [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States); Lemieux, Paul [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)] [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Washington, DC 20460 (United States)] [U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Hayes, Colin [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)] [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)

    2013-07-01T23:59:59.000Z

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  10. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    SciTech Connect (OSTI)

    Biggs, J.

    1995-12-31T23:59:59.000Z

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  11. The LAW Library -- A multigroup cross-section library for use in radioactive waste analysis calculations

    SciTech Connect (OSTI)

    Greene, N.M.; Arwood, J.W.; Wright, R.Q.; Parks, C.V.

    1994-08-01T23:59:59.000Z

    The 238-group LAW Library is a new multigroup neutron cross-section library based on ENDF/B-V data, with five sets of data taken from ENDF/B-VI ({sup 14}N{sub 7}, {sup 15}N{sub 7}, {sup 16}O{sub 8}, {sup 154Eu}{sub 63}, and {sup 155}Eu{sub 63}). These five nuclides are included because the new evaluations are thought to be superior to those in Version 5. The LAW Library contains data for over 300 materials and will be distributed by the Radiation Shielding Information Center, located at Oak Ridge National Laboratory. It was generated for use in neutronics calculations required in radioactive waste analyses, although it has equal utility in any study requiring multigroup neutron cross sections.

  12. Safety-Related Activities of the IAEA for Radioactive Waste, Decommissioning and Remediation - 13473

    SciTech Connect (OSTI)

    Hahn, Pil-Soo; Vesterlind, Magnus [Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria)] [Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria)

    2013-07-01T23:59:59.000Z

    To fulfil its mandate and serve the needs of its Member States, the IAEA is engaged in a wide range of safety-related activities pertaining to radioactive waste management, decommissioning and remediation. One of the statutory obligations of the IAEA is to establish safety standards and to provide for the application of these standards. The present paper describes recent developments in regard to the IAEA's waste safety standards, and some of the ways the IAEA makes provision for their application. The safety standards and supporting safety demonstration projects seek to establish international consensus on methodologies and approaches for dealing with particular subject areas, for example, safety assessment for radioactive waste disposal. (authors)

  13. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07T23:59:59.000Z

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

  14. EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017.

  15. State of the art review of radioactive waste volume reduction techniques for commercial nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    A review is made of the state of the art of volume reduction techniques for low level liquid and solid radioactive wastes produced as a result of: (1) operation of commercial nuclear power plants, (2) storage of spent fuel in away-from-reactor facilities, and (3) decontamination/decommissioning of commercial nuclear power plants. The types of wastes and their chemical, physical, and radiological characteristics are identified. Methods used by industry for processing radioactive wastes are reviewed and compared to the new techniques for processing and reducing the volume of radioactive wastes. A detailed system description and report on operating experiences follow for each of the new volume reduction techniques. In addition, descriptions of volume reduction methods presently under development are provided. The Appendix records data collected during site surveys of vendor facilities and operating power plants. A Bibliography is provided for each of the various volume reduction techniques discussed in the report.

  16. Enhancements to System for Tracking Radioactive Waste Shipments...

    Energy Savers [EERE]

    Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access...

  17. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    SciTech Connect (OSTI)

    Hochel, R.C. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-03-01T23:59:59.000Z

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility.

  18. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Tyacke, M.

    1993-08-01T23:59:59.000Z

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  19. IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD

    SciTech Connect (OSTI)

    UYTIOCO EM

    2007-11-14T23:59:59.000Z

    The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation & Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington, the Department of Energy, and the Environmental Protection Agency. These commitments require waste containers to be shipped off site for disposal and/or treatment within a certain time frame. Because the program was struggling to meet production demands, the Production and Planning group was tasked with developing a method to assist the LLW Program in fulfilling its requirements. Using existing databases for container management, a single electronic spreadsheet was created to visually map every waste container within the CWC. The file displays the exact location (e.g., building, module, tier, position) of each container in a format that replicates the actual layout in the facility. In addition, each container was placed into a queue defined by the LLW and TRU waste management programs. The queues were developed based on characterization requirements, treatment type and location, and potential final disposition. This visual aid allows the user to select containers from similar queues and view their location within the facility. The user selects containers in a centralized location, rather than random locations, to expedite shipments out of the facility. This increases efficiency for generating the shipments, as well as decreasing worker exposure and container handling time when gathering containers for shipment by reducing movements of waste container. As the containers are collected for shipment, the remaining containers are segregated by queue, which further reduces future container movements.

  20. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long- term management of the high- level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant a t the Idaho National Engineering Laboratory.

  1. Public acceptance activities for the development of new commercial low-level radioactive waste disposal capacity in the United States of America

    SciTech Connect (OSTI)

    Ozaki, C.B.; Scott, R.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1993-12-31T23:59:59.000Z

    In the US, the states are responsible for providing disposal capability for commercial low-level radioactive waste generated within their borders. Public acceptance of state activities toward developing this capability is a key factor in the ultimate success of state efforts. The states are using several different approaches to gain public acceptance for the location and development of new low-level radioactive waste disposal facilities. This presentation describes state efforts to gain public acceptance for siting and developing activities and discusses the lessons learned from these state experiences.

  2. Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Kalb, P.D.; Milian, L.W. [Brookhaven National Lab., Upton, NY (United States). Environmental and Waste Technology Center; Yim, S.P. [Korea Atomic Energy Research Inst. (Korea, Republic of); Dyer, R.S.; Michaud, W.R. [Environmental Protection Agency (United States)

    1997-12-01T23:59:59.000Z

    The Republic of Kazakhstan generates significant quantities of excess elemental sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the US and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loadings of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing.

  3. Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Yim, Sung Paal; Kalb, P.D.; Milian, L.W.

    1997-08-01T23:59:59.000Z

    The Republic of Kazakhstan generates significant quantities of excess sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the U.S. and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loading of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing. 14 refs., 7 figs., 6 tabs.

  4. Stakeholder Engagement on the Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste -12565

    SciTech Connect (OSTI)

    Gelles, Christine; Joyce, James; Edelman, Arnold [Office of Environmental Management, Office of Disposal Operations-EM-43 (United States)

    2012-07-01T23:59:59.000Z

    The Department of Energy's (DOE) Office of Disposal Operations is responsible for developing a permanent disposal capability for a small volume, but highly radioactive, class of commercial low-level radioactive waste, known as Greater-Than-Class C (GTCC) low-level radioactive waste. DOE has issued a draft environmental impact statement (EIS) and will be completing a final EIS under the National Environmental Policy Act (NEPA) that evaluates a range of disposal alternatives. Like other classes of radioactive waste, proposing and evaluating disposal options for GTCC waste is highly controversial, presents local and national impacts, and generates passionate views from stakeholders. Recent national and international events, such as the cancellation of the Yucca Mountain project and the Fukushima Daiichi nuclear accident, have heighten stakeholder awareness of everything nuclear, including disposal of radioactive waste. With these challenges, the Office of Disposal Operations recognizes that informed decision-making that will result from stakeholder engagement and participation is critical to the success of the GTCC EIS project. This paper discusses the approach used by the Office of Disposal Operations to engage stakeholders on the GTCC EIS project, provides advice based on our experiences, and proffers some ideas for future engagements in today's open, always connected cyber environment. (authors)

  5. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    for the Management and Disposal of Spent Nuclear Fuel, High-SPENT FUEL Per-Eric Ahlstróm Swedish Nuclear Fuel and Waste Managementing "Spent fuel processing and waste management of nuclear

  6. Low-Level Radioactive Waste Disposal Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and...

  7. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-04-18T23:59:59.000Z

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  8. Annual report of waste generation and pollution prevention progress 1999

    SciTech Connect (OSTI)

    NONE

    2000-09-01T23:59:59.000Z

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments.

  9. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-21T23:59:59.000Z

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

  10. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    SciTech Connect (OSTI)

    Yvonne Townsend

    2000-05-01T23:59:59.000Z

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste.

  11. COMPLIANCE FOR HANFORD WASTE RETRIEVAL RADIOACTIVE AIR EMISSIONS

    SciTech Connect (OSTI)

    FM SIMMONS

    2009-06-30T23:59:59.000Z

    {sm_bullet} Since 1970, approximately 38,000 suspect transuranic (TRU) and TRU waste cont{approx}iners have been placed in retrievable storage on the Hanford Site in the 200Area's burial grounds. {sm_bullet} TRU waste is defined as waste containing greater than 100 nanocuries/gram of alpha emitting transuranic isotopes with half lives greater than 20 years. {sm_bullet} The United States currentl{approx}permanently disposes of TRU waste at the Waste Isolation Pilot Plant (WIPP).

  12. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect (OSTI)

    Watkins, R; Leduc, D; Askew, N

    2009-06-25T23:59:59.000Z

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  13. Vitrification of Low-Activity Radioactive Waste Streams and a High-Level Radioactive Waste Stream in Support of the Hanford River Protection Program

    SciTech Connect (OSTI)

    Crawford, C.L.

    2002-07-10T23:59:59.000Z

    Hanford tank waste consists of about 190 million curies in 54 million gallons of highly radioactive and mixed hazardous waste stored in underground storage tanks at the Hanford Site in Washington State. The tank waste includes solids (sludge), liquids (supernatant), and salt cake (dried salts that dissolve in water to form supernatant). The tank waste will be remediated through treatment and immobilization to protect the environment and meet regulatory requirements. The U.S. Department of Energy's (DOE's) preferred alternative to remediate the Hanford tank waste is to pretreat the waste by separating it into low-activity waste (LAW) and high-level waste (HLW), followed by immobilization of the LAW for on-site disposal and immobilization of the HLW for ultimate disposal in a national repository. This paper describes the crucible-scale vitrification and associated wasteform product tests in support of the WTP at Hanford. The two different LAW glasses produced in this study were from pretreated Envelope A (Tank 241-AN-103) and Envelope C (Tank 241-AN-102) waste. The HLW glass was produced from Tank C-106 HLW sludge and the HLW radionuclide products separated from Hanford Site tank samples AN-103, AN-102 and AZ-102. Pretreatment of these three supernates consisted of characterization, strontium and transuranics removal by precipitation and filtration, and final Cs-137 and Tc-99 removal by ion exchange (IX). The glasses were produced from formulations supplied by Vitreous State Laboratory of the Catholic University of America (CUA). Formulations were based on previous surrogate testing and the actual characterization data from the radioactive feed streams. Crucible-scale vitrifications were performed in platinum/gold crucibles in a custom-designed furnace fit with an offgas containment system. Both LAW and HLW melter feed slurries were evaporated, calcined, and then melted at 1150 degrees C. The LAW and HLW glasses were heat-treated per a modeled centerline cooling curve for the LAW canister and HLW canister, respectively.

  14. Nevada Test Site Waste Acceptance Criteria, December 2000

    SciTech Connect (OSTI)

    NONE

    2000-12-01T23:59:59.000Z

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  15. Municipal Solid Waste Generation: Feasibility of Reconciling Measurement Methods

    E-Print Network [OSTI]

    Schneider, Shelly H.

    2014-07-25T23:59:59.000Z

    to be measured. This research investigates the reconciliation of results from two methodologies for estimating municipal solid waste (MSW) generation, and assessing the potential for solid waste planners to combine the two methods in a cost-effective manner...

  16. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    SciTech Connect (OSTI)

    R.A. Levich; J.S. Stuckless

    2006-09-25T23:59:59.000Z

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  17. Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area

    SciTech Connect (OSTI)

    Keck, K.A.; Seitz, R.R.

    2002-09-26T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

  18. Earning public trust and confidence: Requisites for managing radioactive wastes. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Task Force on Radioactive Waste Management was created in April 1991 by former Secretary James D. Watkins, who asked the group to analyze the critical institutional question of how the Department of Energy (DOE) might strengthen public trust and confidence in the civilian radioactive waste management program. The panel met eight times over a period of 27 months and heard formal presentations from nearly 100 representatives of state and local governments, non-governmental organizations, and senior DOE Headquarters and Field Office managers. The group also commissioned a variety of studies from independent experts, contracted with the National Academy of Sciences and the National Academy of Public Administration to hold workshops on designing and leading trust-evoking organizations, and carried out one survey of parties affected by the Department`s radioactive waste management activities and a second one of DOE employees and contractors.

  19. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program

    SciTech Connect (OSTI)

    NONE

    1989-05-01T23:59:59.000Z

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 -- a fee levied on electricity generated in commercial nuclear power plants -- is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee and is consistent with the program strategy and plans contained in the DOE`s Draft 1988 Mission Plan Amendment. The total-system cost for the system with a repository at Yucca Mountain, Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $24 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $31 to $33 billion, depending on the quantity of spent fuel to be disposed of. The $7 billion cost savings for the single-repository system in comparison with the two-repository system is due to the elimination of $3 billion for second-repository development and $7 billion for the second-repository facility. These savings are offset by $2 billion in additional costs at the first repository and $1 billion in combined higher costs for the MRS facility and transportation. 55 refs., 2 figs., 24 tabs.

  20. The use of glass matrices for solidification of radioactive wastes

    SciTech Connect (OSTI)

    Gromov, V.V.; Minaev, A.A. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry

    1993-12-31T23:59:59.000Z

    The physico-chemical aspects of the solidification of nuclear wastes have been studied at the Institute of Physical Chemistry of the Russian Academy of Sciences for a number of years. This method is viewed as the most reliable method of storage of nuclear wastes. Various glass systems have been studied, including phosphate, borosilicate glasses etc. The data obtained allow optimal glass compositions to be chosen for solidification of various nuclear wastes.

  1. Lab obtains approval to begin design on new radioactive waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    complex will include multiple staging buildings plus an operations center and a concrete pad for mobile waste characterization equipment. September 1, 2010 Los Alamos...

  2. Low Level Radioactive Wastes Conditioning during Decommissioning of Salaspils Research Reactor

    SciTech Connect (OSTI)

    Abramenkova, G.; Klavins, M. [Faculty of Geographical and Earth Sciences, University of Latvia, 19 Rainis Boulevard, Riga, LV-1586 (Latvia); Abramenkovs, A. [Ministry of Environment, Hazardous Wastes Management State Agency, 31 Miera Street, Salaspils, LV-2169 (Latvia)

    2008-01-15T23:59:59.000Z

    The decommissioning of Salaspils research reactor is connected with the treatment of 2200 tons different materials. The largest part of all materials ({approx}60 % of all dismantled materials) is connected with low level radioactive wastes conditioning activities. Dismantled radioactive materials were cemented in concrete containers using water-cement mortar. According to elaborated technology, the tritiated water (150 tons of liquid wastes from special canalization tanks) was used for preparation of water-cement mortar. Such approach excludes the emissions of tritiated water into environment and increases the efficiency of radioactive wastes management system for decommissioning of Salaspils research reactor. The Environmental Impact Assessment studies for Salaspils research reactor decommissioning (2004) and for upgrade of repository 'Radons' for decommissioning purposes (2005) induced the investigations of radionuclides release parameters from cemented radioactive waste packages. These data were necessary for implementation of quality assurance demands during conditioning of radioactive wastes and for safety assessment modeling for institutional control period during 300 years. Experimental studies indicated, that during solidification of water- cement samples proceeds the increase of temperature up to 81 deg. C. It is unpleasant phenomena since it can result in damage of concrete container due to expansion differences for mortar and concrete walls. Another unpleasant factor is connected with the formation of bubbles and cavities in the mortar structure which can reduce the mechanical stability of samples and increase the release of radionuclides from solidified cement matrix. The several additives, fly ash and PENETRON were used for decrease of solidification temperature. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature up to 62 deg. C. Addition of PENETRON results in increasing of solidification temperature up to 83 deg. C. Experimental data shows, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas. Significant reduction of viscosity is an important factor, which facilitates the fulfillment all gaps and cavities with the mortar during conditioning of solid radioactive wastes in containers. On the other hand, increase water ratio from 0.45 up to 0.65 decreases mechanical stability of water-cement samples from 23 N/mm{sup 2} to the 12 N/mm{sup 2}. It means that water-cement bulk stability significantly decreases with increasing of water content. Technologically is important to increase the tritiated water content in container with cemented radioactive wastes. It gives a possibility to increase the fulfillment of container with radioactive materials. On the other hand, additional water significantly reduces bulk stability of containers with cemented radioactive wastes, which can result in disintegration of radioactive wastes packages in repository during 300 years. Taking into account the experimental results, it is not recommended to exceed the water/cement ratio more than 0.60. Tritium and Cs{sup 137} leakage tests show, that radionuclides release curves has a complicate structure. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium release in water phase. This is unpleasant factor, which significantly decreases the safety of disposed radioactive wastes. Despite the positive impact on solidification temperature drop, the addition of fly ash to the cement-water mortar is not recommended in case of cementation of radionuclides in concrete containers. In conclusion: The cementation processes of solid radioactive wastes in concrete containers were investigated. The influence of additives on cementation processes was studied. It was shown, that the increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar

  3. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOE Patents [OSTI]

    Romanovskiy, Valeriy Nicholiavich (St. Petersburg, RU); Smirnov, Igor V. (St. Petersburg, RU); Babain, Vasiliy A. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID)

    2001-01-01T23:59:59.000Z

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  4. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOE Patents [OSTI]

    Romanovskiy, Valeriy Nicholiavich (St. Petersburg, RU); Smirnov, Igor V. (St. Petersburg, RU); Babain, Vasiliy A. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID)

    2002-01-01T23:59:59.000Z

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  5. Documentation on currently operating low-level radioactive waste treatment systems: National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Not Available

    1987-11-01T23:59:59.000Z

    In May 1985, the US Department of Energy issued a Program Research and Development Announcement requesting documentation on currently operating low-level radioactive waste treatment systems. Six grants were awarded to support that documentation. Final reports for the following grants and grantees are compiled in this document: Shredder/Compactor Report by Impell Corp., Volume Reduction and Solidification System for Low-Level Radwaste Treatment by Waste Chem Corp., Low-Level Radioactive Waste Treatment Systems in Northern Europe by Pacific Nuclear Services/Nuclear Packaging Inc., The University of Missouri Research Reactor Facility Can Melter System by the University of Missouri, Drying of Ion-Exchange Resin and Filter Media by Nuclear Packaging Inc., and Operational Experience with Selective Ion-Exchange Media in Sluiceable Pressurized Demineralizers at Nuclear Power Plants by Analytical Resources Inc. 65 refs., 4 figs., 7 tabs.

  6. Numerical estimation on free electrons generated by shielded radioactive materials under various gaseous environments

    SciTech Connect (OSTI)

    Kim, D. S. [Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Lee, W. S.; So, J. H. [Agency for Defence Development (ADD), Daejeon 305-152 (Korea, Republic of); Choi, E. M. [Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2013-06-15T23:59:59.000Z

    We report simulation results on generation of free electrons due to the presence of radioactive materials under controlled pressure and gases using a general Monte Carlo transport code (MCNPX). A radioactive material decays to lower atomic number, simultaneously producing high energy gamma rays that can generate free electrons via various scattering mechanisms. This paper shows detailed simulation works for answering how many free electrons can be generated under the existence of shielded radioactive materials as a function of pressure and types of gases.

  7. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    SciTech Connect (OSTI)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01T23:59:59.000Z

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  8. Geological challenges in radioactive waste isolation: Third worldwide review

    E-Print Network [OSTI]

    Witherspoon editor, P.A.; Bodvarsson editor, G.S.

    2001-01-01T23:59:59.000Z

    and more recently Ontario Power Generation (OPG) have beenIn April 1996, Ontario Power Generation (OPG, for- merly

  9. 2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    Y. E. Townsend

    2003-06-01T23:59:59.000Z

    Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

  10. Summary report. Low-level radioactive waste management activities in the states and compacts. Volume 4, No. 2

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    `Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  11. Summary report, low-level radioactive waste management activities in the states and compacts. Vol. 4. No. 1

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    `Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  12. Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)

    Broader source: Energy.gov [DOE]

    This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also establishes recordkeeping and reporting standards....

  13. Detection of free liquid in containers of solidified radioactive waste

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O. (Richland, WA)

    1985-01-01T23:59:59.000Z

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  14. Radioactive Waste Management Information for 1992 and record-to-date

    SciTech Connect (OSTI)

    Litteer, D.L.; Randall, V.C.; Sims, A.M.; Taylor, K.A.

    1993-07-01T23:59:59.000Z

    This document provides detailed data and graphics on air borne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  15. Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-01-01T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

  16. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    -labeled oligonucleotides Waste minimization 3,144 Radiological waste (396 ft3 ); Mixed waste (35 gallons); Hazardous Waste of radioactivity, thus avoiding radiological waste generation. This process won a 2008 DOE P2 Star Award environmentally friendly manor. BNL pays shipping fees to the recycling facility. Building demolition recycling

  17. The Mochovce final treatment center for liquid radioactive waste introduced to active trial operation

    SciTech Connect (OSTI)

    Krajc, T.; Stubna, M.; Kravarik, K.; Zatkulak, M. [VUJE Trnava, Inc. (Slovakia); Slezak, M.; Remias, V. [Javys - Jadrova a vyradovacia spolocnost, a.s. - Nuclear and Decommissioning Company, plc., Tomasikova 22, 821 02 Bratislava (Slovakia)

    2007-07-01T23:59:59.000Z

    The Final Treatment Centre (FTC) for Mochovce Nuclear Power Plant (NPP) have been designed for treatment and final conditioning of radioactive liquid and wet waste produced by named NPP equipped with Russian VVER-440 type of reactors. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. During the realisation of project the future operator of Centre required the contractor to solve the treatment of wastes produced in the process of NPP A-1 decommissioning. On the basis of this requirement the project was modified in order to enable manipulations with waste products from A-1 NPP transported to Centre in steel drums. The initial project was prepared in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC civil works started in August 2004. Initial nonradioactive testing of the system parts were carried out from April to September 2006, then the tests of systems started with model concentrates and non-radioactive resins. After the processes evaluation the radioactive test performed from February 2007. A one-year trial operation of facility is planned for completion during 2007 and 2008. The company JAVYS, Inc. is responsible for radioactive waste and spent fuel treatment in the Slovak republic and will operate the FTC during trial operation and after its completion. This Company has also significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 820 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization on Thin Film Evaporator with rotating wiping blades. Spent resin and sludge are decanted, dried and mixed with bitumen in blade homogeniser. The bitumen product is discharged into 200 dm{sup 3} steel drums. Drums with bitumen product or drums originated from A-1 NPP are loaded into Fibre Reinforced Concrete containers (FRC) and grouted with cement. Cement grout is prepared from the mixture of cement, additive and radioactive over-concentrate. By formulating the cement grout with evaporator concentrates the maximum radioactivity is fixed in cement matrix and volume of final waste product is minimized. A batch mixer with rotating blades is used to produce the cement grout. The grouted FRC containers are stored in the expedition hall and after 28 days of curing are transported to final disposal. After the start of routine operation, the FTC provides treatment for all liquid and wet LLW produced from the operation of the Mochovce NPP. The final product of the FTC is a FRC loaded with bitumen product in drums and filled with radioactive cement product. This container meets all limits for final disposal in the National Radioactive Waste Repository at Mochovce. This paper introducing the main parts of FTC and describes the technological procedures including the basic technological parameters for both used technologies, their working capacity and the overall waste flow. The evaluation of experience gained in the phases of Centre construction and commissioning and partially trial operation as well is a part of this paper (Evaluation of completion works process and time schedule, the process of individual system parts testing, testing of systems using model media, radioactive testing and trial operation). (authors)

  18. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12T23:59:59.000Z

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  19. A model approach to radioactive waste disposal at Sellafield

    E-Print Network [OSTI]

    Haszeldine, Stuart

    of the BorrowdaleVolcanic Group (BVG).Nirex plan to site their nuclear waste Repository at 650 m below sea- level, and value in producing a numerical safety target which can be compared to field measurements. APPROACH

  20. The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model

    SciTech Connect (OSTI)

    Djokic, D. [Department of Nuclear Engineering, University of California, Berkeley, 3115B Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, S.; Pincock, L.; Soelberg, N. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01T23:59:59.000Z

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

  1. Repository disposal requirements for commercial transuranic wastes (generated without reprocessing)

    SciTech Connect (OSTI)

    Daling, P.M.; Ludwick, J.D.; Mellinger, G.B.; McKee, R.W.

    1986-06-01T23:59:59.000Z

    This report forms a preliminary planning basis for disposal of commercial transuranic (TRU) wastes in a geologic repository. Because of the unlikely prospects for commercial spent nuclear fuel reprocessing in the near-term, this report focuses on TRU wastes generated in a once-through nuclear fuel cycle. The four main objectives of this study were to: develop estimates of the current inventories, projected generation rates, and characteristics of commercial TRU wastes; develop proposed acceptance requirements for TRU wastes forms and waste canisters that ensure a safe and effective disposal system; develop certification procedures and processing requirements that ensure that TRU wastes delivered to a repository for disposal meet all applicable waste acceptance requirements; and identify alternative conceptual strategies for treatment and certification of commercial TRU first objective was accomplished through a survey of commercial producers of TRU wastes. The TRU waste acceptance and certification requirements that were developed were based on regulatory requirements, information in the literature, and from similar requirements already established for disposal of defense TRU wastes in the Waste Isolation Pilot Plant (WIPP) which were adapted, where necessary, to disposal of commercial TRU wastes. The results of the TRU waste-producer survey indicated that there were a relatively large number of producers of small quantities of TRU wastes.

  2. EIS-0084: Incineration Facility for Radioactively Contaminated PCBs and Other Wastes, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Uranium Enrichment and Assessment prepared this statement to assess the environmental impacts of the construction and operation of the proposed Oak Ridge Gaseous Diffusion Plant, an incineration facility to dispose of radioactively contaminated polychlorinated biophenyls, as well as combustible waste from the Paducah, Portsmouth and Oak Ridge facilities.

  3. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

  4. Radioactive Waste Management on Hungary at the Turn of the Millennium II

    SciTech Connect (OSTI)

    Temesi, A.; Pellet, S.; Fritz, A.

    2003-02-24T23:59:59.000Z

    The paper describes the challenging situation related to the radioactive waste management in Hungary. It is also discussing the legal and financial background and overviewing the developed strategy and the steps to be taken to find a reliable and safe disposal for L/ILW.

  5. Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks

    SciTech Connect (OSTI)

    CW Enderlin; DG Alberts; JA Bamberger; M White

    1998-09-25T23:59:59.000Z

    This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

  6. Treatment of liquid radioactive waste using combination of chemical processes with ultrafiltration

    SciTech Connect (OSTI)

    Zabrodsky, V.N.; Davidov, Y.P.; Toropov, I.G.; Glushko, A.S. [Academy of Sciences of Belarus, Minsk (Belarus). Inst. of Radioecological Problems; Efremenkov, V.M. [State Committee on Supervision of Industrial and Nuclear Safety, Minsk (Belarus)

    1993-12-31T23:59:59.000Z

    A combination of chemical processes and ultrafiltration was used for treatment of liquid radioactive wastes containing Cs, Sr, Pu by using large amounts of surfactants and complexing substances. The nature of carriers and conditions of complete separation of Cs and Sr are reported. The mechanisms of the processes are discussed.

  7. Ion exchange columns for selective removal of cesium from aqueous radioactive waste using hydrous crystalline silico-titanates

    E-Print Network [OSTI]

    Ricci, David Michael

    1995-01-01T23:59:59.000Z

    conscious society. In Hanford, WA, hundreds of underground storage tanks hold tens of millions of gallons of aqueous radioactive waste. This liquid waste, which has a very high sodium content, contains trace amounts of radioactive cesium 137. Since... the material for batch ion exchange of the nuclear waste solution. More research was needed to investigate the material's effectiveness in a column operation. An ion exchange column system was developed to study column performance. The column design...

  8. Current Regulations and Guidance - New Approaches for Risk-Informed Low-Level Radioactive Waste Management

    SciTech Connect (OSTI)

    Ryan, M.T. Ph.D.; CHP [Advisory Committee on Nuclear Waste and Materials, U.S. Nuclear Regulatory Commission, Washington, D.C. (United States)

    2008-07-01T23:59:59.000Z

    This paper presents the historical foundations and future challenges for commercial low-level radioactive waste (LLRW) management in the United States. LLRW has been managed at government facilities since the beginning of the nuclear age and in the commercial sector since the early 1960's. Over the intervening years many technical, management and regulatory changes have occurred. Significant progress has been made in waste form, waste packaging and in recognizing radionuclides important to performance of disposal technologies and disposal facilities. This presentation will examine approaches using existing regulations and risk-informed approaches to improve guidance, licensing and management of LLRW. (authors)

  9. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  10. Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

    1997-11-14T23:59:59.000Z

    The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

  11. Information management for the Department of Energy Office of Civilian Radioactive Waste Management

    SciTech Connect (OSTI)

    Cerny, B.A. [Dept. of Energy, Washington, DC (United States)

    1992-12-31T23:59:59.000Z

    This presentation is an introduction to the session on the management of information within the Department of Energy`s office of Civilian Radioactive waste Management (OCRWM). OCRWM`S mission will take decades to fulfill, and its success will leave a legacy of implications for millennia to come. The effective management of information during the life span of such a large and long term endeavor is critical. Without adequate collection, analysis, storage and dissemination of technical data, the scientific basis of the program could be jeopardized. The programmatic information also takes other forms: reports are written; policy documents are produced; correspondence is generated; and the daily flow of information through the program presses on staff as they sort, create, and respond to its demands. These diverse forms of information serve many needs, including mangagement accountability, operational continuity, legal evidence and institutional memory. While some information is still generated on paper, more and more is produced electronically. This presents both problems and opportunities. The major problem with electronic information generation within the public sector was aptly expressed at the beginning of the 1985 blue panel report of the Committee on the Records of Government: the United States is losing its institutional memory. This thought has been a major driver in our technical strategic planning and implementation. while the diffusion of electronic workstations at the level of individual employees may lead to productivity gains, it also impacts how an organization retains, retrieves and archives its critical information. Much is lost as computer files that was once retained on paper. On the flip side, the maturation of computer and telecommunications technologies, has given us opportunities to generate, capture, process, store and archive the daily information flow, as well as the institutional record, with increasing efficiency and precision.

  12. Bagless transfer process and apparatus for radioactive waste confinement

    DOE Patents [OSTI]

    Maxwell, D.N.; Hones, R.H.; Rogers, M.L.

    1998-04-14T23:59:59.000Z

    A process and apparatus are provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox. 7 figs.

  13. Bagless transfer process and apparatus for radioactive waste confinement

    DOE Patents [OSTI]

    Maxwell, David N. (Aiken, SC); Hones, Robert H. (Evans, GA); Rogers, M. Lane (Aiken, SC)

    1998-01-01T23:59:59.000Z

    A process and apparatus is provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox.

  14. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect (OSTI)

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26T23:59:59.000Z

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  15. ADVANCES IN SE-79 ANALYSES ON SAVANNAH RIVER SITE RADIOACTIVE WASTE MATRICES

    SciTech Connect (OSTI)

    Diprete, D; C Diprete, C; Ned Bibler, N; Cj Bannochie, C; Michael Hay, M

    2009-03-16T23:59:59.000Z

    Waste cleanup efforts underway at the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina, as well as other DOE nuclear sites, have created a need to characterize {sup 79}Se in radioactive waste inventories. Successful analysis of {sup 79}Se in high activity waste matrices is challenging for a variety of reasons. As a result of these unique challenges, the successful quantification of {sup 79}Se in the types of matrices present at SRS requires an extremely efficient and selective separation of {sup 79}Se from high levels of interfering radionuclides. A robust {sup 79}Se radiochemical separation method has been developed at the Savannah River National Laboratory (SRNL) which is routinely capable of successfully purifying {sup 79}Se from a wide range of interfering radioactive species. In addition to a dramatic improvements in the Kd, ease, and reproducibility of the analysis, the laboratory time has been reduced from several days to only 6 hours.

  16. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    SciTech Connect (OSTI)

    Abotsi, G.M.K. [Clark Atlanta Univ., GA (United States); Bostick, D.T.; Beck, D.E. [Oak Ridge National Lab., TN (United States)] [and others

    1996-05-01T23:59:59.000Z

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

  17. Safety Assessment for VLLW Disposal at the National Radioactive Waste Repository Mochovce in Slovakia - 13508

    SciTech Connect (OSTI)

    Biurrun, E.; Haverkamp, B. [DBE TECHNOLOGY GmbH, Eschenstr. 55, D-31224 Peine (Germany)] [DBE TECHNOLOGY GmbH, Eschenstr. 55, D-31224 Peine (Germany); Lazaro, A.; Miralles, A. [Westinghouse Electric Spain SAR, Padilla 17, E-28006 Madrid (Spain)] [Westinghouse Electric Spain SAR, Padilla 17, E-28006 Madrid (Spain)

    2013-07-01T23:59:59.000Z

    Recent developments in the Slovak Republic have prompted the need to introduce the new category of very low level waste (VLLW) in the operation of the country's repository for low and intermediate level radioactive waste (LILW). By doing this, significant savings are expected to be achieved while disposing the waste resulting from early decommissioning of older, Soviet type reactors. To study the feasibility and the likely impact of such introduction, a project was launched and assigned in international competition to a German-Spanish consortium. The study confirmed by means of a safety assessment the feasibility of this waste category in the specific context of the Slovakian repository. Moreover, the advantages that such new waste category would render were stressed and the best option for enlargement of the repository, the construction of a module for LILW disposal within the limits of the existing repository, was identified. (authors)

  18. Office of Civilian Radioactive Waste Management fiscal year 1996 annual report to Congress

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    In Fiscal Year 1996 a revised program strategy was developed that reflects Administration policy and responds to sharply reduced funding and congressional guidance while maintaining progress toward long-term objectives. The program is on track, working toward an early, comprehensive assessment of the viability of the Yucca Mountain site; more closely determining what will be required to incorporate defense waste into the waste management system; pursuing a market-driven strategy for waste acceptance, storage, and transportation; and preserving the core capability to respond to an interim storage contingency. Overall, the elements of an integrated system for managing the Nation`s spent fuel and high-level radioactive waste are emerging, more soundly conceived, and more modestly designed, as the OCRWM works toward the physical reality of waste shipments to Federal facilities.

  19. Leaching scale effect for radioactive wastes encapsulated in cement, bitumen or polymer

    SciTech Connect (OSTI)

    Nomine, J.C.; Ferriot, J.F. [CEA Centre d`Etude de Saclay, Gif-sur-Yvette (France); Girard, J.; Montigon, J.F. [CEA Centre d`Etude de Cadarache, St. Paul-lez-Durance (France)

    1993-12-31T23:59:59.000Z

    An effective method to determine of the radioactive waste package s acceptable for a final disposal and in accordance with the requirements is by leaching tests. For many reasons the leaching tests are conducted on small size samples rather than full scale blocks. Nevertheless, it is necessary to demonstrate that laboratory or cored samples are representative of real form-scale embedding (in accordance with the specific activity, the chemical composition of the waste, the matrix and structure) for the leaching tests. This paper gives the results of studies on the leaching behavior of waste embeddings in three different cases (hydraulic binder, bitumen and polymer matrices). For cesium, even if no scale effect on its leaching mechanism has been shown, it is difficult to prove before testing that small samples are representative of the real waste forms. For cobalt, results on bitumen or polymer embedded waste show no scale effect on its leaching mechanism.

  20. Process for immobilizing radioactive boric acid liquid wastes

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O. (Richland, WA)

    1986-01-01T23:59:59.000Z

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  1. Process for immobilizing radioactive boric acid liquid wastes

    DOE Patents [OSTI]

    Greenhalgh, W.O.

    1984-05-10T23:59:59.000Z

    Disclosed is a method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  2. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01T23:59:59.000Z

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

  3. Guidelines for developing certification programs for newly generated TRU waste

    SciTech Connect (OSTI)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.; Geoffrion, R.R.

    1983-05-01T23:59:59.000Z

    These guidelines were prepared with direction from the US Department of Energy (DOE) Transuranic (TRU) Waste Management Program in support of the DOE effort to certify that newly generated TRU wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The guidelines provide instructions for generic Certification Program preparation for TRU-waste generators preparing site-specific Certification Programs in response to WIPP requirements. The guidelines address all major aspects of a Certification Program that are necessary to satisfy the WIPP Waste Acceptance Criteria and their associated Compliance Requirements and Certification Quality Assurance Requirements. The details of the major element of a Certification Program, namely, the Certification Plan, are described. The Certification Plan relies on supporting data and control documentation to provide a traceable, auditable account of certification activities. Examples of specific parts of the Certification Plan illustrate the recommended degree of detail. Also, a brief description of generic waste processes related to certification activities is included.

  4. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    SciTech Connect (OSTI)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01T23:59:59.000Z

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 {times} 10{sup {minus}7} cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination.

  5. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-02-01T23:59:59.000Z

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  6. Final Treatment Center Project for Liquid and Wet Radioactive Waste in Slovakia

    SciTech Connect (OSTI)

    Kravarik, K.; Stubna, M.; Pekar, A.; Krajc, T.; Zatkulak, M.; Holicka, Z. [VUJE, Inc., Okruzna 5, 918 64 Trnava (Slovakia); Slezak, M. [SE - VYZ, 919 31 Jaslovske Bohunice (Slovakia)

    2006-07-01T23:59:59.000Z

    The Final Treatment Center (FTC) for Mochovce nuclear power plant (NPP) is designed for treatment and final conditioning of radioactive liquid and wet waste produced from plant operation. Mochovce NNP uses a Russian VVER-440 type reactor. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. This paper describes the capacity, flow chart, overall waste flow and parameters of the main components in the FTC. The initial project was submitted for approval to the Slovak Electric plc. in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC construction work started early in 2004. Initial non-radioactive testing of the system is planned for summer 2006 and then radioactive tests are to be followed. A one-year trial operation of facility is planned for completion in 2007. SE - VYZ will be operates the FTC during trial operation and after its completion. SE - VYZ is subsidiary company of Slovak Electric plc. and it is responsible for treatment with radioactive waste and spent fuel in the Slovak republic. SE - VYZ has, besides of other significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 870 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization. Concentrate and bitumen are metered into a thin film evaporator with rotating wiping blades. Surplus water is evaporated and concentrate salts are embedded in bitumen. Bitumen product is discharged into 200 l steel drums. Spent resin and sludge are decanted, dried and mixed with bitumen. These mixtures are also discharged into 200 l steel drums. Drums are moved along bituminization line on a roller conveyor. After the drums cool, they are capped and removed from the conveyor and placed in a storage hall. Drums with bitumen product are loaded into Fiber Reinforced Concrete containers (FRC) and grouted with cement. Cement grout is prepared from mixture of cement, additive and radioactive concentrates. By formulating the cement grout with evaporator concentrates the maximum radioactivity is fixed in cement matrix and volume of final waste product is minimized. A batch mixer with rotating blades is used produce the cement grout. FRCs loaded with bitumen drums are placed on roller conveyor and moved along the cementation line. Grouted FRCs are stored in the expedition hall for 28 days of curing and then transported to final disposal. After placed in operation the FTC provides treatment for all liquid and wet LLW produced from the operation of the Mochovce NPP. The final product of the FTC is a FRC loaded with 7 drums of waste fixed in bitumen and the space between the drums is grouted with cement. This container meets all limits for final disposal in the National Radioactive Waste Repository at Mochovce. (authors)

  7. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01T23:59:59.000Z

    Lying Repositories for Nuclear Waste, NAGRA Technical Reporthost rock formation for nuclear waste storage. EngineeringGas Generation in a Nuclear Waste Repository: Reactive

  8. Guidance document for prepermit bioassay testing of low-level radioactive waste

    SciTech Connect (OSTI)

    Anderson, S.L.; Harrison, F.L.

    1990-11-01T23:59:59.000Z

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

  9. New Waste Calcining Facility Non-Radioactive Process Decontamination

    SciTech Connect (OSTI)

    Swenson, Michael C.

    2001-09-30T23:59:59.000Z

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  10. New Waste Calcining Facility Non-radioactive Process Decontamination

    SciTech Connect (OSTI)

    Swenson, Michael Clair

    2001-09-01T23:59:59.000Z

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre-decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with hotographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  11. Certification document for newly generated contact-handled transuranic waste

    SciTech Connect (OSTI)

    Box, W.D.; Setaro, J.

    1984-01-01T23:59:59.000Z

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

  12. Low-level radioactive waste source terms for the 1992 integrated data base

    SciTech Connect (OSTI)

    Loghry, S L; Kibbey, A H; Godbee, H W; Icenhour, A S; DePaoli, S M

    1995-01-01T23:59:59.000Z

    This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF{sub 6}) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and {open_quotes}other{close_quotes}. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF{sub 6} conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992.

  13. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1994-03-02T23:59:59.000Z

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

  14. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

  15. Low-level radioactive waste technology: a selected, annotated bibliography. [416 references

    SciTech Connect (OSTI)

    Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

    1981-10-01T23:59:59.000Z

    This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas.

  16. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12T23:59:59.000Z

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  17. Retrieval Of Final Stored Radioactive Waste Resumes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof EnhancedRestructuring

  18. Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125Energy ServicesReportingWaste Management » TankSenior

  19. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01T23:59:59.000Z

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

  20. Summary of national and international fuel cycle and radioactive waste management programs, 1984

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-07-01T23:59:59.000Z

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

  1. DISSOLUTION & RESUSPENSION OF STORED RADIOACTIVE WASTE & ON SITE TRANSPORT & HANDLING FOR CONDITIONING FOR WASTE RETRIEVAL

    SciTech Connect (OSTI)

    GIBBONS, P.W.

    2001-08-13T23:59:59.000Z

    The four primary functions in a waste retrieval system are as follows: accessing all of the waste within the tank configuration; mobilizing all of the waste, which can have varying physical properties; removing the bulk and residual mobilized waste; and transferring the waste to storage or processing equipment. Selection of retrieval and transfer systems must include all of these functions. Limitations on any one of these areas affect the whole process. This section categorizes according to function many available retrieval and transfer processes, with positive attributes and limitations. Additional information on these systems is referenced in the annexes.

  2. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16T23:59:59.000Z

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  3. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1999-03-16T23:59:59.000Z

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  4. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

  5. Nevada National Security Site 2013 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David B

    2014-02-13T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2013 results. Beginning with this report, analysis results for leachate collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included.

  6. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    SciTech Connect (OSTI)

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27T23:59:59.000Z

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  7. State of the art review of alternatives to shallow land burial of low level radioactive waste

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    A review of alternatives to shallow land burial for disposal of low level radioactive waste was conducted to assist ORNL in developing a program for the evaluation, selection, and demonstration of the most acceptable alternatives. The alternatives were categorized as follows: (1) near term isolation concepts, (2) far term isolation concepts, (3) dispersion concepts, and (4) conversion concepts. Detailed descriptions of near term isolation concepts are provided. The descriptions include: (1) method of isolation, (2) waste forms that can be accommodated, (3) advantages and disadvantages, (4) facility and equipment requirements, (5) unusual operational or maintenance requirements, (6) information/technology development requirements, and (7) related investigations of the concept.

  8. Capping as an alternative for remediating radioactive and mixed waste landfills

    SciTech Connect (OSTI)

    Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1994-03-01T23:59:59.000Z

    This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

  9. Result Summary for the Area 5 Radioactive Waste Management Site Performance Assessment Model Version 4.113

    SciTech Connect (OSTI)

    Shott, G. J.

    2012-04-15T23:59:59.000Z

    Preliminary results for Version 4.113 of the Nevada National Security Site Area 5 Radioactive Waste Management Site performance assessment model are summarized. Version 4.113 includes the Fiscal Year 2011 inventory estimate.

  10. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, T.L.

    1994-06-28T23:59:59.000Z

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

  11. Siting of low-level radioactive waste disposal facilities in Texas

    E-Print Network [OSTI]

    Isenhower, Daniel Bruce

    1982-01-01T23:59:59.000Z

    University property was evaluated for suitability for disposal of low-level radioactive waste. This site was evaluated to demonstrate, briefly, the site characterization process and to determine the ability of the statewide study to accurately predict... these boreholes. Literature review was an additional method employed to characterize the site. The results of this site characterization reveal that a more extensive investigation would be necessary to completely evaluate the site and that the state- wide...

  12. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Y. E.Townsend

    2001-02-01T23:59:59.000Z

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  13. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    SciTech Connect (OSTI)

    Quinn, G.J. [Wastren, Inc. (United States)

    1992-01-01T23:59:59.000Z

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement.

  14. OCRWM annual report to Congress FY 1999 [USDOE Office of Civilian Radioactive Waste Management

    SciTech Connect (OSTI)

    None

    2000-05-01T23:59:59.000Z

    During Fiscal Year 1999, the Office of Civilian Radioactive Waste Management (OCRWM) continued to make significant progress in its characterization of the Yucca Mountain, Nevada, candidate geologic repository site. Although OCRWM's appropriation for Fiscal Year 1999 was lower than requested, the Program accomplished all three success measures in the Secretary's Fiscal Year 1999 Performance Agreement with the President and completed important work in many other areas. This Annual Report reviews this work and looks toward future activities.

  15. Operational experience of the Juelich incineration system in the treatment of radioactive waste

    SciTech Connect (OSTI)

    Halaszovich, S.; Jablonski, W. [Forschungszentrum Juelich (Germany); Lins, W.; Wurster, W.; Kaufmann, K.H. [Kraftanlagen Aktiengesellschaft, Heidelberg (Germany)

    1993-12-31T23:59:59.000Z

    After ten years spent on development and testing of a prototype incinerator in the Juelich Research Center, a new industrial scale unit has been built. The paper gives a short description of the plant design and operation characteristics. The major part of the paper deals with the experience gained from the treatment of 355 Mg low-level radioactive waste during the last four years.

  16. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31T23:59:59.000Z

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.

  17. Thermal testing of packages for transport of radioactive wastes

    SciTech Connect (OSTI)

    Koski, J.A.

    1994-12-31T23:59:59.000Z

    Shipping containers for radioactive materials must be shown capable of surviving tests specified by regulations such as Title 10, Code of Federal Regulations, Part 71 (called 10CFR71 in this paper) within the United States. Equivalent regulations hold for other countries such as Safety Series 6 issued by the International Atomic Energy Agency. The containers must be shown to be capable of surviving, in order, drop tests, puncture tests, and thermal tests. Immersion testing in water is also required, but must be demonstrated for undamaged packages. The thermal test is intended to simulate a 30 minute exposure to a fully engulfing pool fire that could occur if a transport accident involved the spill of large quantities of hydrocarbon fuels. Various qualification methods ranging from pure analysis to actual pool fire tests have been used to prove regulatory compliance. The purpose of this paper is to consider the alternatives for thermal testing, point out the strengths and weaknesses of each approach, and to provide the designer with the information necessary to make informed decisions on the proper test program for the particular shipping container under consideration. While thermal analysis is an alternative to physical testing, actual testing is often emphasized by regulators, and this report concentrates on these testing alternatives.

  18. A Short History of Hanford Waste Generation, Storage, and Release

    SciTech Connect (OSTI)

    Gephart, Roy E.

    2003-10-01T23:59:59.000Z

    Nine nuclear reactors and four reprocessing plants at Hanford produced nearly two-thirds of the plutonium used in the United States for government purposes . These site operations also created large volumes of radioactive and chemical waste. Some contaminants were released into the environment, exposing people who lived downwind and downstream. Other contaminants were stored. The last reactor was shut down in 1987, and the last reprocessing plant closed in 1990. Most of the human-made radioactivity and about half of the chemicals remaining onsite are kept in underground tanks and surface facilities. The rest exists in the soil, groundwater, and burial grounds. Hanford contains about 40% of all the radioactivity that exists across the nuclear weapons complex. Today, environmental restoration activities are under way.

  19. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Radioactive Waste

    2010-10-12T23:59:59.000Z

    Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products.

  20. The Environmental Protection Agency`s proposed regulation of low level radioactive waste (40 CFR Part 193): A Department of Energy overview

    SciTech Connect (OSTI)

    Frangos, T.G. [Dept. of Energy, Washington, DC (United States)

    1989-11-01T23:59:59.000Z

    The Department of Energy (DOE) manages one of the world`s largest programs for storage, treatment, and disposal of low-level radioactive wastes. This system with facilities located at sites across the nation has evolved over some forty years in response to changing needs, technologies, and increasing public awareness and concerns for environmental protection. The DOE has operated in a self regulatory mode in most aspects of its low-level waste (LLW) programs. It has been DOE`s policy and practice to provide at least the same level of safety and protection for the public, DOE and contractor employees, and the general environment, as that required by the Nuclear Regulatory Commission for commercial operations. DOE`s policies have been implemented through a management system that historically has been highly decentralized so as to be responsive to the needs of DOE sites which generate a wide variety of wastes at some 25 locations. In addition to concerns with the LLW that it manages, DOE has an interest in the US Environmental Protection Agency`s (EPA) promulgation of 40 CFR Part 193 because of its responsibilities under the Low Level Radioactive Waste Policy Amendments Act (LLRWPAA) to manage certain classes of waste and to assist and encourage the development of interstate compact-managed regional low-level waste disposal sites.

  1. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2010-02-01T23:59:59.000Z

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  2. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    M.S. Collins C.M. Borgstrom

    2004-01-01T23:59:59.000Z

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices at the Hanford Site. The HSW EIS updates analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS) Records of Decision (RODs). Waste types considered in the HSW EIS include operational low-level radioactive waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and transuranic (TRU) waste (including TRU mixed waste). MLLW contains chemically hazardous components in addition to radionuclides. Alternatives for management of these wastes at the Hanford Site, including the alternative of No Action, are analyzed in detail. The LLW, MLLW, and TRU waste alternatives are evaluated for a range of waste volumes, representing quantities of waste that could be managed at the Hanford Site. A single maximum forecast volume is evaluated for ILAW. The No Action Alternative considers continuation of ongoing waste management practices at the Hanford Site and ceasing some operations when the limits of existing capabilities are reached. The No Action Alternative provides for continued storage of some waste types. The other alternatives evaluate expanded waste management practices including treatment and disposal of most wastes. The potential environmental consequences of the alternatives are generally similar. The major differences occur with respect to the consequences of disposal versus continued storage and with respect to the range of waste volumes managed under the alternatives. DOE's preferred alternative is to dispose of LLW, MLLW, and ILAW in a single, modular, lined facility near PUREX on Hanford's Central Plateau; to treat MLLW using a combination of onsite and offsite facilities; and to certify TRU waste onsite using a combination of existing, upgraded, and mobile facilities. DOE issued the Notice of Intent to prepare the HSW EIS on October 27, 1997, and held public meetings during the scoping period that extended through January 30, 1998. In April 2002, DOE issued the initial draft of the EIS. During the public comment period that extended from May through August 2002, DOE received numerous comments from regulators, tribal nations, and other stakeholders. In March 2003, DOE issued a revised draft of the HSW EIS to address those comments, and to incorporate disposal of ILAW and other alternatives that had been under consideration since the first draft was published. Comments on the revised draft were received from April 11 through June 11, 2003. This final EIS responds to comments on the revised draft and includes updated analyses to incorporate information developed since the revised draft was published. DOE will publish the ROD(s) in the ''Federal Register'' no sooner than 30 days after publication of the Environmental Protection Agency's Notice of Availability of the final HSW EIS.

  3. Annual report of waste generation and pollution prevention progress, 1994

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report.

  4. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  5. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    SciTech Connect (OSTI)

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy; Markley, Chris; Andersson, Eva; Beuth, Thomas

    2014-01-09T23:59:59.000Z

    The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.

  6. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    SciTech Connect (OSTI)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01T23:59:59.000Z

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  7. EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste

    Broader source: Energy.gov [DOE]

    This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS.

  8. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2004-02-13T23:59:59.000Z

    This Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) ongoing and proposed waste management practices at the Hanford Site in Washington State. The HSW EIS updates some analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS; DOE 1997c) Records of Decision (RODs). The draft HSW EIS was initially issued in April 2002 for public comment (DOE 2002b). A revised draft HSW EIS was issued in March 2003 to address new waste management alternatives that had been proposed since the initial draft HSW EIS was prepared, and to address comments received during the public review period for the first draft (DOE 2003d). The revised draft HSW EIS also incorporated alternatives for disposal of immobilized low-activity waste (ILAW) from treatment of Hanford Site tank waste in the waste treatment plant (WTP) currently under construction, an activity that was not included in the first draft (68 FR 7110). This final HSW EIS describes the DOE preferred alternative, and in response to public comments received on the March 2003 revised draft, provides additional analyses for some environmental consequences associated with the preferred alternative, with other alternatives, and with cumulative impacts. Public comments on the revised draft HSW EIS are addressed in the comment response document (Volume III of this final EIS). This HSW EIS describes the environmental consequences of alternatives for constructing, modifying, and operating facilities to store, treat, and/or dispose of low-level (radioactive) waste (LLW), transuranic (TRU) waste, ILAW, and mixed low-level waste (MLLW) including WTP melters at Hanford. In addition, the potential long-term consequences of LLW, MLLW, and ILAW disposal on groundwater and surface water are evaluated for a 10,000-year period, although the DOE performance standards only require assessment for the first 1000 years after disposal (DOE 2001f). This document does not address non-radioactive waste that contains ''hazardous'' or ''dangerous'' waste, as defined under the Resource Conservation and Recovery Act (RCRA) of 1976 (42 USC 6901) and Washington State Dangerous Waste regulations (WAC 173-303). Following a previous National Environmental Policy Act (NEPA, 42 USC 4321) review (DOE 1997d), DOE decided to dispose of TRU waste in New Mexico at the Waste Isolation Pilot Plant (WIPP), a repository that meets the requirements of 40 CFR 191 (63 FR 3623). This HSW EIS has been prepared in accordance with NEPA, the DOE implementing procedures for NEPA 10 CFR 1021, and the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR 1500-1508).

  9. Greater-Than-Class C low-level radioactive waste treatment technology evaluation

    SciTech Connect (OSTI)

    Garrison, T W; Fischer, D K

    1993-01-01T23:59:59.000Z

    This report was developed to provide the Greater-Than-Class C Low-Level Radioactive Waste Management Program with criteria and a methodology to select candidate treatment technologies for Greater-Than-Class C low-level radioactive waste (GTCC LLW) destined for dedicated storage and ultimately disposal. The technology selection criteria are provided in a Lotus spreadsheet format to allow the methodology to evolve as the GTCC LLW Program evolves. It is recognized that the final disposal facility is not yet defined; thus, the waste acceptance criteria and other facility-specific features are subject to change. The spreadsheet format will allow for these changes a they occur. As additional treatment information becomes available, it can be factored into the analysis. The technology selection criteria were established from program goals, draft waste acceptance criteria for dedicated storage (including applicable regulations), and accepted remedial investigation methods utilized under the Comprehensive Environmental Response, Compensation, and Liability Act. Kepner-Tregoe decisionmaking techniques are used to compare and rank technologies against the criteria.

  10. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    SciTech Connect (OSTI)

    Swift, Peter N.

    2013-01-01T23:59:59.000Z

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  11. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01T23:59:59.000Z

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  12. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01T23:59:59.000Z

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  13. International program to study subseabed disposal of high-level radioactive wastes

    SciTech Connect (OSTI)

    Carlin, E.M.; Hinga, K.R.; Knauss, J.A.

    1984-01-01T23:59:59.000Z

    This report provides an overview of the international program to study seabed disposal of nuclear wastes. Its purpose is to inform legislators, other policy makers, and the general public as to the history of the program, technological requirements necessary for feasibility assessment, legal questions involved, international coordination of research, national policies, and research and development activities. Each of these major aspects of the program is presented in a separate section. The objective of seabed burial, similar to its continental counterparts, is to contain and to isolate the wastes. The subseabed option should not be confuesed with past practices of ocean dumping which have introduced wastes into ocean waters. Seabed disposal refers to the emplacement of solidified high-level radioactive waste (with or without reprocessing) in certain geologically stable sediments of the deep ocean floor. Specially designed surface ships would transport waste canisters from a port facility to the disposal site. Canisters would be buried from a few tens to a few hundreds of meters below the surface of ocean bottom sediments, and hence would not be in contact with the overlying ocean water. The concept is a multi-barrier approach for disposal. Barriers, including waste form, canister, ad deep ocean sediments, will separate wastes from the ocean environment. High-level wastes (HLW) would be stabilized by conversion into a leach-resistant solid form such as glass. This solid would be placed inside a metallic canister or other type of package which represents a second barrier. The deep ocean sediments, a third barrier, are discussed in the Feasibility Assessment section. The waste form and canister would provide a barrier for several hundred years, and the sediments would be relied upon as a barrier for thousands of years. 62 references, 3 figures, 2 tables.

  14. Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization

    SciTech Connect (OSTI)

    Jantzen, C.M.

    2001-10-05T23:59:59.000Z

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

  15. EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

  16. EIS-0109: Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on-site, and two off-site management alternatives.

  17. Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407

    SciTech Connect (OSTI)

    Walker, Stuart [U.S. Environmental Protection Agency (United States)] [U.S. Environmental Protection Agency (United States)

    2013-07-01T23:59:59.000Z

    This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

  18. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01T23:59:59.000Z

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  19. Long-term durability of polyethylene for encapsulation of low-level radioactive, hazardous, and mixed wastes

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H.; Colombo, P.

    1991-01-01T23:59:59.000Z

    The durability of polyethylene waste forms for treatment of low-level radioactive, hazardous, and mixed wastes is examined. Specific potential failure mechanisms investigated include biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation. These data are supported by results from waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. Polyethylene was found to be extremely resistant to each of these potential failure modes under anticipated storage and disposal conditions. 16 refs., 3 figs., 1 tab.

  20. Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts.

  1. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    SciTech Connect (OSTI)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01T23:59:59.000Z

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  2. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    SciTech Connect (OSTI)

    Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

    1994-03-01T23:59:59.000Z

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  3. Installing and Commissioning a New Radioactive Waste Tracking System - Lessons Learned

    SciTech Connect (OSTI)

    Robert S. Anderson; Miklos Garamszeghy; Fred Rodrigues; Ed Nicholls

    2005-05-01T23:59:59.000Z

    Ontario Power Generation (OPG) recognizes the importance of information management particularly with regards to its low and intermediate level waste program. Various computer based waste tracking systems have been used in OPG since the 1980s. These systems tracked the physical receipt, processing, storage, and inventory of the waste. As OPG moved towards long-term management (e.g. disposal), it was recognized that tracking of more detailed waste characterization information was important. This required either substantial modification of the existing system to include a waste characterization module or replacing it entirely with a new system. After a detailed review of available options, it was decided that the existing waste tracking application would be replaced with the Idaho National Laboratory’s (INL) Integrated Waste Tracking System (IWTS). Installing and commissioning a system which must receive historical operational waste management information (data) and provide new features, required much more attention than was originally considered. The operational readiness of IWTS required extensive vetting and preparation of historic data (which itself had been created from multiple databases in varied formats) to ensure a consistent format for import of some 30,000-container records, and merging and linking these container records to a waste stream based characterization database. This paper will discuss some of the strengths and weaknesses contributing to project success or hindrance so that others can understand and minimize the difficulties inherent in a project of this magnitude.

  4. ENVIRONMENTAL IMPACTS ASSOCIATED WITH STORAGE, TREATMENT, AND DISPOSAL OF SOLID RADIOACTIVE AND CHEMICALLY HAZARDOUS WASTE AT THE HANFORD SITE, RICHLAND, WASHINGTON

    SciTech Connect (OSTI)

    Johnson, Wayne L.; Nelson, Iral C.; Payson, David R.; Rhoads, Kathleen

    2004-03-01T23:59:59.000Z

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices for certain solid radioactive wastes at the Hanford Site through the year 2046. The HSW EIS covers four primary aspects of waste management at Hanford – storage, treatment, transportation, and disposal. It also addresses four types of solid waste – low-level waste, mixed low-level waste that contains both radioactive and chemically hazardous constituents, immobilized low-activity waste from processing Hanford tank waste, and transuranic waste. The HSW EIS was prepared to assist DOE in determining which specific Hanford Site facilities will continue to be used, will be modified, or need to be constructed, to safely treat, store, and dispose of these wastes.

  5. Waste Heat Recovery Power Generation with WOWGen

    E-Print Network [OSTI]

    Romero, M.

    applications of heat recovery power generation can be found in Industry (e.g. steel, glass, cement, lime, pulp and paper, refining and petrochemicals), Power Generation (CHP, biomass, biofuel, traditional fuels, gasifiers, diesel engines) and Natural Gas...

  6. Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report is submitted in response to Title 1 of the 1980 Low-Level Radioactive Waste Policy Act, as amended, (the Act). The report summarizes expenditures made by compact regions and unaffiliated states during calendar year 1995 of surcharge rebates from the July 1, 1986, January 1, 1988, and January 1, 1990, milestones, and the January 1, 1993, deadline. Section 5(d)(2)(A) of the Act requires the Department of Energy (DOE) to administer a surcharge escrow account. This account consists of a portion of the surcharge fees paid by generators of low-level radioactive waste in nonsited compact regions (compact regions currently without disposal sites) and nonmember states (states without disposal sites that are not members of compact regions) to the three sited states (states with operating disposal facilities--Nevada, South Carolina, and Washington) for the use of facilities in sited states through the end of 1992. In administering the surcharge escrow account, the Act requires DOE to: (1) Invest the funds in interest-bearing United States Government securities with the highest available yield; (2) Determine eligibility for rebates of the funds by evaluating compact region and state progress toward developing new disposal sites against the milestone requirements set forth in the Act; (3) Disburse the collected rebates and accrued interest to eligible compact regions, states, or generators; (4) Assess compliance of rebate expenditures in accordance with the conditions and limitations prescribed in the Act; and (5) Submit a report annually to Congress summarizing rebate expenditures by state and compact region and assessing the compliance of each such state or compact region with the requirement for expenditure of the rebates as provided in section 5(d)(2)(E) of the Act.

  7. The effects of hazardous waste taxes on generation and disposal of chlorinated solvent waste

    E-Print Network [OSTI]

    Sigman, Hilary

    1992-01-01T23:59:59.000Z

    In 1989, 30 states levied taxes on e generation or management of hazardous waste. These taxes constitute one of the broadest applications of an emissions tax in U.S. environmental policy and provide a natural experiment ...

  8. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C

    2008-12-26T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to date and how they compare to testing performed on LAW glasses. Other details about vitreous waste form durability and impacts of REDuction/OXidation (REDOX) on durability are given in Appendix A. Details about the FBSR process, various pilot scale demonstrations, and applications are given in Appendix B. Details describing all the different leach tests that need to be used jointly to determine the leaching mechanisms of a waste form are given in Appendix C. Cautions regarding the way in which the waste form surface area is measured and in the choice of leachant buffers (if used) are given in Appendix D.

  9. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  10. EIS-0110: Central Waste Disposal Facility for Low-Level Radioactive Waste, Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EIS assesses the environmental impacts of alternatives for the disposal of low-level waste and by-product materials generated by the three major plants on the Oak Ridge Reservation (ORR). In addition to the no-action alternative, two classes of alternatives are evaluated: facility design alternatives and siting alternatives.

  11. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect (OSTI)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01T23:59:59.000Z

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  12. The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective

    SciTech Connect (OSTI)

    Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States); Galson, D.A. [Galson Sciences Ltd., (United Kindgom); Patera, E.S. [Nuclear Energy Agency, 75 - Paris (France)

    1994-04-01T23:59:59.000Z

    For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.

  13. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-09-01T23:59:59.000Z

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  14. Unrestricted disposal of minimal activity levels of radioactive wastes: exposure and risk calculations

    SciTech Connect (OSTI)

    Fields, D.E.; Emerson, C.J.

    1984-08-01T23:59:59.000Z

    The US Nuclear Regulatory Commission is currently considering revision of rule 10 CFR Part 20, which covers disposal of solid wastes containing minimal radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. Monetary consequences of minimal activity waste disposal are briefly discussed. The PRESTO methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. Pathways and processes of transit from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 12 references, 2 figures, 8 tables.

  15. Historical perspective, economic analysis, and regulatory analysis of the impacts of waste partitioning-transmutation on the disposal of radioactive wastes

    SciTech Connect (OSTI)

    Forsberg, C.W.; Croff, A.G.; Kocher, D.C.

    1990-10-01T23:59:59.000Z

    Partitioning-transmutation, sometimes called actinide burning, is an alternative approach to high-level radioactive waste management. It consists of removing long-lived radionuclides from wastes and destroying those radionuclides, thus reducing the long-term hazards of radioactive waste. It was studied in detail in the 1970's. New developments in technology and other factors are resulting in a reexamination of this waste management option. This report consists of three papers which summarize the historical work, update the analysis of the costs of waste disposal, and describe current regulatory requirements which might be impacted by P-T. The papers provide a starting point for future research on P-T. 152 refs., 2 figs., 19 tabs.

  16. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-06-01T23:59:59.000Z

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

  17. Figure-of-merit analysis and cost effectiveness of low-level radioactive waste treatment systems

    SciTech Connect (OSTI)

    Cox, N.D.; Falconer, K.L.; McCormack, M.D.; Hootman, H.D.; Thompson, T.K.

    1982-01-01T23:59:59.000Z

    Two studies were performed to assess low-level waste treatment systems that are available commercially for volume reduction and/or solidification. In the first, a Figure-of-Merit (FOM) decision analysis technique was used to evaluate fourteen low-level radioactive waste processing systems on their ability to treat power reactor wastes. The assessment of the various processing systems was accomplished using a five member task force. The systems were judged on eleven major criteria and twenty subcriteria. The system judged superior to all the others was compaction of dry wastes with liquid wastes and sludges being directly incorporated into concrete. This was also the lowest cost system. The controlled air incinerator was judged the preferred incineration process. The Werner-Pfleider bitumen extruder was the preferred liquid waste treatment system. In the second study, the cost economy of volume reduction measured in land disposal dollars was investigated. The greatest cost savings with volume reduction were realized with a BWR using a deep bed condensate polishing system; the least with a PWR with condensate polishing. For both BWR systems and PWRs without condensate cleanup, over 80% of the savings in land disposal dollars resulted from volume reduction of liquid waste streams (concentrated liquids and filter sludge). For a PWR with a condensate polishing system, which had the least cost effective system for volume reduction, about one-third of the savings resulting from incineration of spent resin and compactible trash was offset by the increased expense of casks required for transporting concentrated liquids which have undergone additional volume reduction.

  18. Power Generation From Waste Heat Using Organic Rankine Cycle Systems

    E-Print Network [OSTI]

    Prasad, A.

    1980-01-01T23:59:59.000Z

    universal bottoming cycle that can convert the energy in waste heat streams into usable shaft power. The nominal rating of the unit is 600 KWe or 900 SHP. The basic bottoming cycle concept is shown in Figure I. GAS TURBINE -, Y. DIESEL PROCESS HEAT... in Figure 2. The diverter valve directs the waste heat stream through the vaporizer. The working fluid is boiled and slightly superheated in the vaporizer. The superheated vapor expands through the turbine, generating mechanical power. This expansion...

  19. Radioactive waste management integrated data base: a bibliography. [Approximately 1100 references

    SciTech Connect (OSTI)

    Johnson, C.A.; Garland, P.A.

    1980-09-01T23:59:59.000Z

    The purpose of this indexed bibliography is to organize and collect the literature references on waste generation and treatment, characteristics, inventories, and costs. The references were captured into a searchable information file, and the information file was sorted, indexed, and printed for this bibliography. A completion of approximately 1100 references to nuclear waste management, the first of a series, is completed. Each reference is categorized by waste origin (commercial, defense, institutional, and foreign) and by subject area: (1) high-level wastes, (2) low-level wastes, (3) TRU wastes, (4) airborne wastes, (5) remedial action (formerly utilized sites, surplus facilities, and mill tailings), (6) isolation, (7) transportation, (8) spent fuel, (9) fuel cycle centers, and (10) a general category that covers nonspecific wastes. Five indexes are provided to assist the user in locating documents of interest: author, author affiliation (corporate authority), subject category, keyword, and permuted title. Machine (computer) searches of these indexes can be made specifying multiple constraints if so desired. This bibliography will be periodically updated as new information becomes available. In addition to being used in searches for specific data, the information file can also be used for resource document collection, names and addresses of contacts, and identification of potential sources of data.

  20. Developing operating procedures for a low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01T23:59:59.000Z

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.