Powered by Deep Web Technologies
Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOEE A-1059 Environmental Assessment Radioactive Source Recovery...  

Broader source: Energy.gov (indexed) [DOE]

unwanted radioactive sources cannot be disposed as waste because of restrictions in the Low-Level Radioactive Waste Policy Amendments Act of 1985 (Title I of Public Law 99-240);...

2

Dynamic radioactive particle source  

DOE Patents [OSTI]

A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

2012-06-26T23:59:59.000Z

3

Sealed Radioactive Source Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) interim policy and to provide guidance for sealed radioactive source accountability. The directive does not cancel any directives. Extended by DOE N 5400.10 to 12-24-93 & Extended by DOE N 5400.12 to 12-24-94.

1991-12-24T23:59:59.000Z

4

Sealed Radioactive Source Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Notice extends DOE N 5400.9, Sealed Radioactive Source Accountability, of 12-24-91, until 12-24-95, unless sooner superseded or rescinded. The contents of DOE N 5400.9 will be updated and incorporated in the revised DOE O 5480.11, Radiation Protection for Occupational Workers.

1994-12-22T23:59:59.000Z

5

Reporting of Radioactive Sealed Sources  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish U.S. Department of Energy requirements for inventory reporting, transaction reporting, verification of reporting, and assign responsibilities for reporting of radioactive sealed sources. DOE N 251.86 extends this notice until 5-6-11. No cancellations. Canceled by DOE O 231.1B

2008-02-27T23:59:59.000Z

6

Radiation Sources and Radioactive Materials (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

7

The IAEA and Control of Radioactive SourcesThe  

SciTech Connect (OSTI)

This presentation discusses the International Atomic Energy Agency (IAEA) and the control of radioactive sources.

Dodd, B.

2004-10-03T23:59:59.000Z

8

Recovery Act - Geothermal Technologies Program:Ground Source...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

9

Particle beam generator using a radioactive source  

DOE Patents [OSTI]

The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

Underwood, David G. (Naperville, IL)

1993-01-01T23:59:59.000Z

10

Particle beam generator using a radioactive source  

DOE Patents [OSTI]

The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

Underwood, D.G.

1993-03-30T23:59:59.000Z

11

Sealed Radioactive Source Accountability and Control Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

For use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. This Guide provides an acceptable methodology for establishing and operating a sealed radioactive source accountability and control program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart M of 10 CFR 835. Canceled by DOE G 441.1-1B.

1999-04-15T23:59:59.000Z

12

10 years and 20,000 sources: the offsite source recovery project  

SciTech Connect (OSTI)

The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources. This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Sealed source recovery was initially considered a waste management activity, as evidenced by its initial organization under the Department of Energy's (DOE's) Environmental Management (EM) program. After the terrorist attacks of 2001, however, the interagency community began to recognize the threat posed by excess and unwanted radiological material, particularly those that could not be disposed at the end of their useful life. After being transferred to the National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as Greater-than-Class-C (GTCC) when it became waste, but also any other materials that might be a 'national security consideration.' This paper discusses OSRP's history, recovery operations, expansion to accept high-activity beta-gamma-emitting sealed sources and devices and foreign-possessed sources, and more recent efforts such as cooperative projects with the Council on Radiation Control Program Directors (CRCPD) and involvement in GTRI's Search and Secure project. Current challenges and future work will also be discussed.

Whitworth, Julia R [Los Alamos National Laboratory; Abeyta, Cristy L [Los Alamos National Laboratory; Pearson, Michael W [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

13

Management of Disused Radioactive Sealed Sources in Egypt - 13512  

SciTech Connect (OSTI)

The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Egypt depends on the safe and secure management of disused radioactive sealed sources. In the past years have determined the necessity to formulate and apply the integrated management program for radioactive sealed sources to assure harmless and ecological rational management of disused sealed sources in Egypt. The waste management system in Egypt comprises operational and regulatory capabilities. Both of these activities are performed under legislations. The Hot Laboratories and Waste Management Center HLWMC, is considered as a centralized radioactive waste management facility in Egypt by law 7/2010. (authors)

Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F. [Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

14

Energy Recovery Linacs for Light Source Applications  

SciTech Connect (OSTI)

Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

George Neil

2011-04-01T23:59:59.000Z

15

Offsite Source Recovery Program (OSRP) Workshop Module: Tianjin, China, July 16-July 17, 2012  

SciTech Connect (OSTI)

Recovering and disposal of radioactive sources that are no longer in service in their intended capacity is an area of high concern Globally. A joint effort to recover and dispose of such sources was formed between the US Department of Energy and the Chinese Ministry of Environmental Protection (MEP), in preparation for the 2008 Beijing Olympics. LANL involvement in this agreement continues today under the DOE-Global Threat Reduction Initiative (GTRI) program. LANL will be presenting overview information on their Offsite Source Recovery (OSRP) and Source Disposal programs, in a workshop for the Ministry of Environmental Protection (MEP) at Tianjin, China, on July 16 and 17, 2012.

Houlton, Robert J. [Los Alamos National Laboratory

2012-07-11T23:59:59.000Z

16

PROCESS MODELING AND ANALYSIS FOR RECOVERY OF PUBE SOURCES AT LOS ALAMOS  

SciTech Connect (OSTI)

Los Alamos National Laboratory maintains one of the premier plutonium processing facilities in the country. The plutonium facility supports several defense- and nondefense-related missions. This paper describes process-modeling efforts focused on the operations related to the Radioactive Source Recovery Program, which recovers the plutonium from plutonium-beryllium neutron sources. This program accomplishes at least two goals: it is evidence of good stewardship of a national resource, plutonium, and destroys a potential health hazard, the neutron source, by separating the plutonium from the beryllium in sources that are no longer being used in various industries or the military. We examine the processes related to source recovery operations in terms of throughput, ionizing radiation exposure to workers, and mass balances using two discrete-event simulation tools: Extend{trademark}, which is commercially available; and ProMoS, which is in-house software specifically tailored for modeling nuclear-materials operations.

D. KORNREICH; ET AL

2000-11-01T23:59:59.000Z

17

Integrated Management Program for Radioactive Sealed Sources in EgyptIMPRSS  

SciTech Connect (OSTI)

This presentation discusses the Integrated Management Program for Radioactive Realed Sources (IMPRSS) in Egypt.

Hasan, A.; El-Adham, K.

2004-10-03T23:59:59.000Z

18

The New Orphaned Radioactive Sources Program in the United States International Conference on the Safety of Radiation Sources and the Security of Radioactive  

E-Print Network [OSTI]

of contamination in metals: contaminated metal from foreign countries, and sealed radioactive sources, both1 The New Orphaned Radioactive Sources Program in the United States International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials. September 14-18, 1998 Neil Naraine

19

Surface Contamination Surface contamination from radioactive isotopes is a source of background in the Borex-  

E-Print Network [OSTI]

Chapter 5 Surface Contamination Surface contamination from radioactive isotopes is a source contamination is primarily a problem because the radioactive contaminants can be trans- ferred from the surfaces detector components that come in contact with the scintillator. Preventing radioactive contamination

20

Underground Sources of Radioactive Noble Gas  

SciTech Connect (OSTI)

It is well known that radon is present in relatively high concentrations below the surface of the Earth due to natural decay of uranium and thorium. However, less information is available on the background levels of other isotopes such as 133Xe and 131mXe produced via spontaneous fission of either manmade or naturally occurring elements. The background concentrations of radioxenon in the subsurface are important to understand because these isotopes potentially can be used to confirm violations of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) during an On-Site Inspection (OSI). Recently, Pacific Northwest National Laboratory (PNNL) measured radioxenon concentrations from the subsurface at the Nevada Nuclear Security Site (NNSS—formerly known as the Nevada Test Site) to determine whether xenon isotope background levels could be detected from spontaneous fission of naturally occurring uranium or legacy 240Pu as a result of historic nuclear testing. In this paper, we discuss the results of those measurements and review the sources of xenon background that must be taken into account during OSI noble gas measurements.

Hayes, James C.; Bowyer, Ted W.; Cordova, Elsa A.; Kirkham, Randy R.; Misner, Alex C.; Olsen, Khris B.; Woods, Vincent T.; Emer, Dudley

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integrated Management Program Radioactive Sealed Sources in Egypt  

SciTech Connect (OSTI)

The radioactive materials in ''public'' locations are typically contained in small, stainless steel capsules known as sealed radiation sources (RS). These capsules seal in the radioactive materials, but not the radiation, because it is the radiation that is needed for a wide variety of applications at hospitals, medical clinics, manufacturing plants, universities, construction sites, and other facilities in the public sector. Radiation sources are readily available, and worldwide there are hundreds of thousands of RS. The IMPRSS Project is a cooperative development between the Egyptian Atomic Energy Authority (EAEA), Egyptian Ministry of Health (MOH), Sandia National Laboratories (SNL), New Mexico Tech University (NMT), and Agriculture Cooperative Development International (ACDI/VOCA). SNL will coordinate the work scope between the participant organizations.

Hasan, A.; Cochran, J. R.; El-Adham, K.; El-Sorougy, R.

2003-02-26T23:59:59.000Z

22

Cable attachment for a radioactive brachytherapy source capsule  

DOE Patents [OSTI]

In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.

Gross, Ian G; Pierce, Larry A

2006-07-18T23:59:59.000Z

23

Flowsheets and source terms for radioactive waste projections  

SciTech Connect (OSTI)

Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

Forsberg, C.W. (comp.)

1985-03-01T23:59:59.000Z

24

2011 Radioactive Materials Usage Survey for Unmonitored Point Sources  

SciTech Connect (OSTI)

This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

Sturgeon, Richard W. [Los Alamos National Laboratory

2012-06-27T23:59:59.000Z

25

EA-1059: Radioactive Source Recovery Program, Los Alamos, New Mexico  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to establish a program to accept and recover surplus americium-241 mixed with beryllium metal (Be) and plutonium-238 mixed with Be sealed...

26

Experiments with radioactive samples at the Advanced Photon Source.  

SciTech Connect (OSTI)

The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented.

Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

2000-11-01T23:59:59.000Z

27

Probing New Physics with Underground Accelerators and Radioactive Sources  

E-Print Network [OSTI]

New light, weakly coupled particles can be efficiently produced at existing and future high-intensity accelerators and radioactive sources in deep underground laboratories. Once produced, these particles can scatter or decay in large neutrino detectors (e.g Super-K and Borexino) housed in the same facilities. We discuss the production of weakly coupled scalars $\\phi$ via nuclear de-excitation of an excited element into the ground state in two viable concrete reactions: the decay of the $0^+$ excited state of $^{16}$O populated via a $(p,\\alpha)$ reaction on fluorine and from radioactive $^{144}$Ce decay where the scalar is produced in the de-excitation of $^{144}$Nd$^*$, which occurs along the decay chain. Subsequent scattering on electrons, $e(\\phi,\\gamma)e$, yields a mono-energetic signal that is observable in neutrino detectors. We show that this proposed experimental set-up can cover new territory for masses $250\\, {\\rm keV}\\leq m_\\phi \\leq 2 m_e$ and couplings to protons and electrons, $10^{-11} new physics component to the neutrino and nuclear astrophysics programs at underground facilities.

Eder Izaguirre; Gordan Krnjaic; Maxim Pospelov

2014-05-19T23:59:59.000Z

28

Blind Source Recovery: Some Implementation and Performance Issues Khurram Waheed and Fathi M. Salam  

E-Print Network [OSTI]

Blind Source Recovery: Some Implementation and Performance Issues Khurram Waheed and Fathi M. Salam of our proposed algorithms for Blind source Recovery based on constrained optimization using the state in various practical problems. 1: Introduction Blind Source Recovery (BSR), or Multi-channel Blind

Salem, Fathi M.

29

The Global Threat Reduction Initiative's Orphan Source Recovery Project in the Russian Federation  

SciTech Connect (OSTI)

After 9/11, officials at the United States Department of Energy (DOE), National Nuclear Security Administration (NNSA) grew more concerned about radiological materials that were vulnerable to theft and illicit use around the world. The concern was that terrorists could combine stolen radiological materials with explosives to build and detonate a radiological dispersal device (RDD), more commonly known as a “dirty bomb.” In response to this and other terrorist threats, the DOE/NNSA formed what is now known as the Global Threat Reduction Initiative (GTRI) to consolidate and accelerate efforts to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. Although a cooperative program was already underway in the Russian Federation to secure nuclear materials at a range of different facilities, thousands of sealed radioactive sources remained vulnerable at medical, research, and industrial sites. In response, GTRI began to focus efforts on addressing these materials. GTRI’s Russia Orphan Source Recovery Project, managed at the Nevada National Security Site’s North Las Vegas facility, was initiated in 2002. Throughout the life of the project, Joint Stock Company “Isotope” has served as the primary Russian subcontractor, and the organization has proven to be a successful partner. Since the first orphan source recovery of an industrial cobalt-60 irradiator with 647 curies (Ci) at an abandoned facility in Moscow in 2003, the GTRI Orphan Source Recovery Project in the Russian Federation has accomplished substantial levels of threat reduction. To date, GTRI has recovered and securely disposed of more than 5,100 sources totaling more that 628,000 Ci. This project serves as an extraordinary example of how international cooperation can be implemented by partners with mutual interests to achieve significant goals.

Russell, J. W. [NSTec; Ahumada, A. D. [NSTec; Blanchard, T. A. [NNSA

2012-06-04T23:59:59.000Z

30

E-Print Network 3.0 - activity radioactive sources Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sealed ... Source: Lawrence Berkeley National Laboratory, High Redshift Supernova Search Collection: Physics 3 Radioactive Waste Guidance PAGE * MERGEFORMAT June 10, 2011...

31

MARSAME Appendix B B. SOURCES OF BACKGROUND RADIOACTIVITY  

E-Print Network [OSTI]

: · The Nuclear Regulatory Commission (NRC) provides information concerning background radioactivity in Background as a Residual Radioactivity Criterion for Decommissioning NUREG-1501 (NRC 1994). · The United Nations Scientific

32

Reconstruction of Fluxes of Radioactive Sources with a Medipix2 Pixel Detector using Track Recognition  

SciTech Connect (OSTI)

A Medipix2 device was exposed to radioactive sources ({sup 241}Am, {sup 137}Cs and {sup 106}Ru). To test the reliability of track recognition with this device, the activities of the radioactive sources were extracted from the experimental data and compared to the expected activities.

Bouchami, J.; Gutierrez, A.; Houdayer, A.; Lebel, C.; Leroy, C.; Macana, J.; Martin, J. P.; Prak, S.; Sabella, P.; Teyssier, C. [Universite de Montreal, Montreal (Quebec) H3C 3J7 (Canada); Holy, T.; Jakubek, J.; Pospisil, S. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic)

2010-01-05T23:59:59.000Z

33

Recovery of a source term or a speed with one measurement and  

E-Print Network [OSTI]

Apr 3, 2013 ... version, of the problem of recovery a sound speed, given the source. It has applications to thermoacoustic tomography. We are also inspired by ...

2013-04-03T23:59:59.000Z

34

Import and Export of Category 1 and 2 Radioactive Sources and Aggregated Quantities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order has been developed to provide requirements and responsibilities pertaining to the International Atomic Energy Agency CODEOC/2004, Code of Conduct on the Safety and Security of Radioactive Sources. No cancellation. Admin Chg 1, 7-10-13.

2008-11-10T23:59:59.000Z

35

Import and Export of Category 1 and 2 Radioactive Sources Aggregated Quantities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To formalize relevant guidance contained in the International Atomic Energy Agency (IAEA) CODEOC 2004, Code of Conduct on the Safety and Security of Radioactive Sources, January 2004 and IAEA CODEOC IMP-EXP 2005, Guidance on the Import and Export of Radioactive Sources, March 2005 and to assign responsibilities and prescribe procedures for DOE elements and contractors in support of the Import-Export Guidance. Admin Chg 1, 7-10-2013. Certified 12-3-14.

2008-11-10T23:59:59.000Z

36

Calibration of a DSSSD detector with radioactive sources  

SciTech Connect (OSTI)

The energy calibration of a DSSSD is carried out with the spectra produced by a {sup 207}Bi conversion electron source, a {sup 137}Cs gamma source and a {sup 239}Pu/{sup 241}Am/{sup 244}Cm triple alpha source, as well as employing a precision pulse generator in the whole dynamic range. Multiplicity and coincidence of signals in different strips for the same event are also studied.

Guadilla, V.; Tain, J. L.; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Rubio, B. [Instituto de Fisica Corpuscular, C.S.I.C.-Univ. Valencia, Ap 22085, E-46071, Valencia (Spain)

2013-06-10T23:59:59.000Z

37

Conditioning and Repackaging of Spent Radioactive Cs-137 and Co-60 Sealed Sources in Egypt - 13490  

SciTech Connect (OSTI)

Radioactive Sealed sources (RSSs) are widely use all over the world in medicine, agriculture, industry, research, etc. The accidental misuse and exposure to RSSs has caused significant environmental contamination, serious injuries and many deaths. The high specific activity of the materials in many RSSs means that the spread of as little as microgram quantities can generate significant risk to human health and inhibit the use of buildings and land. Conditioning of such sources is a must to protect humans and environment from the hazard of ionizing radiation and contamination. Conditioning is also increase the security of these sources by decreasing the probability of stolen and/or use in terrorist attacks. According to the law No.7/2010, Egyptian atomic energy authority represented in the hot laboratories and waste management center (centralized waste facility, HLWMC) has the responsibility of collecting, conditioning, storing and management of all types of radioactive waste from all Egyptian territory including spent radioactive sealed sources (SRSSs). This paper explains the conditioning procedures for two of the most common SRSSs, Cs{sup 137} and Co{sup 60} sources which make up more than 90% of the total spent radioactive sealed sources stored in our centralized waste facility as one of the major activities of hot laboratories and waste management center. Conditioning has to meet three main objectives, be acceptable for storage, enable their safe transport, and comply with disposal requirements. (authors)

Hasan, M.A.; Selim, Y.T.; El-Zakla, T. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

38

Benefits of PositionSensitive Detectors for Radioactive Source Detection  

E-Print Network [OSTI]

radiation portal monitors [1], coded aperture imaging systems [2], arrays of scintillating detectors [3, such as using images reconstructed from a coded aperture system to detect a point­source [2]. A mean difference, Senior Member, IEEE Abstract--There are many systems for counting photons such as gamma­rays emitted from

Scott, Clayton

39

Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent  

DOE Patents [OSTI]

The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

Romanovskiy, Valeriy Nicholiavich (St. Petersburg, RU); Smirnov, Igor V. (St. Petersburg, RU); Babain, Vasiliy A. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID)

2001-01-01T23:59:59.000Z

40

Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes  

DOE Patents [OSTI]

The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

Romanovskiy, Valeriy Nicholiavich (St. Petersburg, RU); Smirnov, Igor V. (St. Petersburg, RU); Babain, Vasiliy A. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Management of Disused Radioactive Sealed Sources in the Slovak Republic - 12100  

SciTech Connect (OSTI)

After splitting-up the Czechoslovak Federation in 1993, the system of management of institutional radioactive waste, where disused sources represent its significant part, had had to build from beginning, since all corresponding activities had remained in the Czech part of the Federation. The paper presents the development of legislative and institutional framework of the disused radioactive sealed source management, development of the national inventory and development of management practices. According the Governmental decision (1994), the management of disused sealed sources and institutional radioactive waste at whole was based on maximal utilization of facilities inside nuclear facilities, particularly in the NPP A1 (shut down in the past, currently under decommissioning). This approach has been recently changing by Governmental decision (2009) to construct 'non-nuclear facility' - central storage for remained disused sealed sources collected from the places of use, where they were stored in some cases for tens of years. The approaches to siting and construction of this storage facility will be presented, as well as the current approaches to solution of the disused radioactive sources final disposal. Environmental impact assessment process in regard to the given facility/activity is slowly drawing to a close. The final statement of the Ministry of Environment can be expected in January or February 2012, probably recommending option 1 as preferred [6]. According to the Slovak legislation, the final statement has a status of recommendation for ongoing processes leading to the siting license. Very recently, in December 2012, Government of the Slovak republic decided to postpone putting the facility into operation by the end of June, 2014. (author)

Salzer, Peter [DECOM, a.s., 91901 Trnava (Slovakia)

2012-07-01T23:59:59.000Z

42

Methods for chemical recovery of non-carrier-added radioactive tin from irradiated intermetallic Ti-Sb targets  

DOE Patents [OSTI]

The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

Lapshina, Elena V. (Troitsk, RU); Zhuikov, Boris L. (Troitsk, RU); Srivastava, Suresh C. (Setauket, NY); Ermolaev, Stanislav V. (Obninsk, RU); Togaeva, Natalia R. (Obninsk, RU)

2012-01-17T23:59:59.000Z

43

A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector  

E-Print Network [OSTI]

We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

T. I. Banks; S. J. Freedman; J. Wallig; N. Ybarrolaza; A. Gando; Y. Gando; H. Ikeda; K. Inoue; Y. Kishimoto; M. Koga; T. Mitsui; K. Nakamura; I. Shimizu; J. Shirai; A. Suzuki; Y. Takemoto; K. Tamae; K. Ueshima; H. Watanabe; B. D. Xu; H. Yoshida; S. Yoshida; A. Kozlov; C. Grant; G. Keefer; A. Piepke; T. Bloxham; B. K. Fujikawa; K. Han; K. Ichimura; H. Murayama; T. O'Donnell; H. M. Steiner; L. A. Winslow; D. A. Dwyer; R. D. McKeown; C. Zhang; B. E. Berger; C. E. Lane; J. Maricic; T. Miletic; M. Batygov; J. G. Learned; S. Matsuno; M. Sakai; G. A. Horton-Smith; K. E. Downum; G. Gratta; Y. Efremenko; O. Perevozchikov; H. J. Karwowski; D. M. Markoff; W. Tornow; K. M. Heeger; J. A. Detwiler; S. Enomoto; M. P. Decowski

2014-07-01T23:59:59.000Z

44

A Low-Tech, Low-Budget Storage Solution for High Level Radioactive Sources  

SciTech Connect (OSTI)

The need for safe, secure, and economical storage of radioactive material becomes increasingly important as beneficial uses of radioactive material expand (increases inventory), as political instability rises (increases threat), and as final disposal and treatment facilities are delayed (increases inventory and storage duration). Several vendor-produced storage casks are available for this purpose but are often costly — due to the required design, analyses, and licensing costs. Thus the relatively high costs of currently accepted storage solutions may inhibit substantial improvements in safety and security that might otherwise be achieved. This is particularly true in areas of the world where the economic and/or the regulatory infrastructure may not provide the means and/or the justification for such an expense. This paper considers a relatively low-cost, low-technology radioactive material storage solution. The basic concept consists of a simple shielded storage container that can be fabricated locally using a steel pipe and a corrugated steel culvert as forms enclosing a concrete annulus. Benefits of such a system include 1) a low-tech solution that utilizes materials and skills available virtually anywhere in the world, 2) a readily scalable design that easily adapts to specific needs such as the geometry and radioactivity of the source term material), 3) flexible placement allows for free-standing above-ground or in-ground (i.e., below grade or bermed) installation, 4) the ability for future relocation without direct handling of sources, and 5) a long operational lifetime . ‘Le mieux est l’ennemi du bien’ (translated: The best is the enemy of good) applies to the management of radioactive materials – particularly where the economic and/or regulatory justification for additional investment is lacking. Development of a low-cost alternative that considerably enhances safety and security may lead to a greater overall risk reduction than insisting on solutions that remain economically and/or politically ‘out of reach’.

Brett Carlsen; Ted Reed; Todd Johnson; John Weathersby; Joe Alexander; Dave Griffith; Douglas Hamelin

2014-07-01T23:59:59.000Z

45

Ion source developments for the production of radioactive isotope beams at TRIUMF  

SciTech Connect (OSTI)

At the ISAC facility at TRIUMF radioactive ions are produced by bombarding solid targets with up to 100 ?A of 500 MeV protons. The reaction products have to diffuse out of the hot target into an ion source. Normally, singly charged ions are extracted. They can be transported either directly to experiments or via an ECR charge state breeder to a post accelerator. Several different types of ion sources have to be used in order to deliver a large variety of rare isotope beams. At ISAC those are surface ion sources, forced electron beam arc discharge (FEBIAD) ion sources and resonant laser ionization sources. Recent development activities concentrated on increasing the selectivity for the ionization to suppress isobaric contamination in the beam. Therefore, a surface ion rejecting resonant laser ionization source (SIRLIS) has been developed to suppress ions from surface ionization. For the FEBIAD ion source a cold transfer line has been introduced to prevent less volatile components from reaching the ion source.

Ames, F., E-mail: ames@triumf.ca; Bricault, P.; Heggen, H.; Kunz, P.; Lassen, J.; Mjøs, A.; Raeder, S.; Teigelhöfer, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3 (Canada)] [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3 (Canada)

2014-02-15T23:59:59.000Z

46

PHOTOINJECTED ENERGY RECOVERY LINAC UPGRADE FOR THE NATIONAL SYNCHROTRON LIGHT SOURCE.  

SciTech Connect (OSTI)

We describe a major paradigm shift in the approach to the production of synchrotron radiation This change will considerably improve the scientific capabilities of synchrotron light sources. We introduce plans for an upgrade of the National Synchrotron Light Source (NSLS). This upgrade will be based on the Photoinjected Energy Recovering Linac (PERL). This machine emerges from the union of two technologies, the laser-photocathode RF gun (photoinjector) and superconducting linear accelerators with beam energy recovery (Energy Recovering Linac). The upgrade will bring the NSLS users many new insertion device beam lines, brightness greater than 3rd generation lightsource's and ultra-short pulse capabilities, not possible with storage ring light sources.

BEN-ZVI,I.; BABZIEN,M.; BLUM,E.; CASEY,W.; CHANG,X.; GRAVES,W.; HASTINGS,J.; HULBERT,S.; JOHNSON,E.; KAO,C.C.; KRAMER,S.; KRINSKY,S.; MORTAZAVI,P.; MURPHY,J.; OZAKI,S.; PJEROV,S.; PODOBEDOV,B.; RAKOWSKY,G.; ROSE,J.; SHAFTAN,T.; SHEEHY,B.; SIDDONS,D.; SMEDLEY,J.; SRINIVASAN-RAO,T.; TOWNE,N.; WANG,J.M.; WANG,X.; WU,J.; YAKIMENKO,V.; YU,L.H.

2001-06-18T23:59:59.000Z

47

WM'05 Conference, February 27 March 3, 2005, Tucson, AZ WM-5278 IDENTIFYING RADIOACTIVE SOURCES AT THE DEMOLITION SITE  

E-Print Network [OSTI]

), in a cooperative partnership with the scrap metal industry, developed a CD ROM based training program to provide's scrap metal supply. In order to prevent this unwanted radioactive material from entering metal will be detected in scrap metal loads. Shielding of the sources by the metal scrap, location of the source within

48

Present and Future Optics Challenges at CHESS and for Proposed Energy Recovery Linac Source of Synchrotron Radiation  

E-Print Network [OSTI]

Present and Future Optics Challenges at CHESS and for Proposed Energy Recovery Linac Source-ray optics, energy-recovery linac, high brilliance 1. INTRODUCTION As one of the pioneer synchrotron in the area of high heat load and high x-ray flux optics [1-5] since the high critical-energy wigglers

Shen, Qun

49

Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)  

SciTech Connect (OSTI)

The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

Penner, S.S.

1982-03-01T23:59:59.000Z

50

Effect of geometrical configuration of radioactive sources on radiation intensity in beta-voltaic nuclear battery system: A preliminary result  

SciTech Connect (OSTI)

It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.

Basar, Khairul, E-mail: khbasar@fi.itb.ac.id; Riupassa, Robi D., E-mail: khbasar@fi.itb.ac.id; Bachtiar, Reza, E-mail: khbasar@fi.itb.ac.id; Badrianto, Muldani D., E-mail: khbasar@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

2014-09-30T23:59:59.000Z

51

The Effect of Gamma-ray Detector Energy Resolution on the Ability to Identify Radioactive Sources  

SciTech Connect (OSTI)

This report describes the results of an initial study on radiation detector spectral resolution, along with the underlying methodology used. The study was done as part of an ongoing effort in Detection Modeling and Operational Analysis (DMOA) for the DNDO System Architecture Directorate. The study objective was to assess the impact of energy resolution on radionuclide identification capability, measured by the ability to reliably discriminate between spectra associated with 'threats' (defined as fissile materials) and radioactive 'non-threats' that might be present in the normal stream of commerce. Although numerous factors must be considered in deciding which detector technology is appropriate for a specific application, spectral resolution is a critical one for homeland security applications in which a broad range of non-threat sources are present and very low false-alarm rates are required. In this study, we have proposed a metric for quantifying discrimination capability, and have shown how this metric depends on resolution. In future work we will consider other important factors, such as efficiency and volume, and the relative frequency of spectra known to be discrimination challenges in practical applications.

Nelson, K E; Gosnell, T B; Knapp, D A

2009-03-05T23:59:59.000Z

52

Characteristics and sources of intermediate size particles in recovery boilers : final project report.  

SciTech Connect (OSTI)

As part of the U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) Industries of the Future (IOF) Forest Products research program, a collaborative investigation was conducted on the sources, characteristics, and deposition of particles intermediate in size between submicron fume and carryover in recovery boilers. Laboratory experiments on suspended-drop combustion of black liquor and on black liquor char bed combustion demonstrated that both processes generate intermediate size particles (ISP), amounting to 0.5-2% of the black liquor dry solids mass (BLS). Measurements in two U.S. recovery boilers show variable loadings of ISP in the upper furnace, typically between 0.6-3 g/Nm{sup 3}, or 0.3-1.5% of BLS. The measurements show that the ISP mass size distribution increases with size from 5-100 {micro}m, implying that a substantial amount of ISP inertially deposits on steam tubes. ISP particles are depleted in potassium, chlorine, and sulfur relative to the fuel composition. Comprehensive boiler modeling demonstrates that ISP concentrations are substantially overpredicted when using a previously developed algorithm for ISP generation. Equilibrium calculations suggest that alkali carbonate decomposition occurs at intermediate heights in the furnace and may lead to partial destruction of ISP particles formed lower in the furnace. ISP deposition is predicted to occur in the superheater sections, at temperatures greater than 750 C, when the particles are at least partially molten.

Baxter, Larry L. (Brigham Young University, Provo, UT); Shaddix, Christopher R.; Verrill, Christopher L. (Georgia Institute of Technology, Institute of Paper Science and Technology, Atlanta, GA); Wessel, Richard A. (Babcock & Wilcox Company, Barberton, OH)

2005-02-01T23:59:59.000Z

53

User`s Manual for the SOURCE1 and SOURCE2 Computer Codes: Models for Evaluating Low-Level Radioactive Waste Disposal Facility Source Terms (Version 2.0)  

SciTech Connect (OSTI)

The SOURCE1 and SOURCE2 computer codes calculate source terms (i.e. radionuclide release rates) for performance assessments of low-level radioactive waste (LLW) disposal facilities. SOURCE1 is used to simulate radionuclide releases from tumulus-type facilities. SOURCE2 is used to simulate releases from silo-, well-, well-in-silo-, and trench-type disposal facilities. The SOURCE codes (a) simulate the degradation of engineered barriers and (b) provide an estimate of the source term for LLW disposal facilities. This manual summarizes the major changes that have been effected since the codes were originally developed.

Icenhour, A.S.; Tharp, M.L.

1996-08-01T23:59:59.000Z

54

RADIOACTIVE WASTE MANAGEMENT IN THE USSR: A REVIEW OF UNCLASSIFIED SOURCES, 1963-1990  

SciTech Connect (OSTI)

The Soviet Union operates a vast and growing radioactive waste management system. Detailed information on this system is rare and a general overall picture only emerges after a review of a great deal of literature. Poor waste management practices and slow implementation of environmental restoration activities have caused a great deal of national concern. The release of information on the cause and extent of an accident involving high-level waste at the Kyshtym production reactor site in 1957, as well as other contamination at the site, serve to highlight past Soviet waste management practices. As a result, the area of waste management is now receiving greater emphasis, and more public disclosures. Little is known about Soviet waste management practices related to uranium mining, conversion, and fuel fabrication processes. However, releases of radioactive material to the environment from uranium mining and milling operations, such as from mill tailings piles, are causing public concern. Official Soviet policy calls for a closed fuel cycle, with reprocessing of power reactor fuel that has been cooled for five years. For power reactors, only VVER-440 reactor fuel has been reprocessed in any significant amount, and a decision on the disposition of RBMK reactor fuel has been postponed indefinitely. Soviet reprocessing efforts are falling behind schedule; thus longer storage times for spent fuel will be required, primarily at multiple reactor stations. Information on reprocessing in the Soviet Union has been severely limited until 1989, when two reprocessing sites were acknowledged by the Soviets. A 400-metric ton (MT) per year reprocessing facility, located at Kyshtym, has been operational since 1949 for reprocessing production reactor fuel. This facility is reported to have been reprocessing VVER-440 and naval reactor fuel since 1978, with about 2000 MT of VVER-440 fuel being reprocessed by July 1989. A second facility, located near Krasnoyarsk and having a 1500 MT per year capacity as the first of several modules, was about 30% completed by July 1989. The completion of this plant was subsequently "indefinitely postponed." The initial reprocessing scheme at the Kyshtym site used sodium uranyl acetate precipitation from fuel dissolved in nitric acid solutions. The basic method~ ology now appears to be based on the conventional PUREX process. Dry reprocessing on a pilot or laboratory scale has been under way in Dimitrovgrad since 1984, and a larger unit is now being built, according to the French CEA. Perhaps significantly, much research is being done on partitioning high-level waste into element fractions. The Soviets appear to have the technology to remove radioactive noble gases released during reprocessing operations; however, there are no indications of its implementation. Millions of curies of liquid low- and intermediate-level wastes have been disposed of by well injection into underground areas where they were supposedly contained by watertight rock strata. Some gaseous wastes were also disposed of by well injection. This practice is not referred to in recent literature and thus may not be widely used today. Rather, it appears that these waste streams are now first treated to reduce volume, and then solidified using bitumen or concrete. These solidified liquid wastes from Soviet nuclear power reactor operations, along with solid wastes, are disposed of in shallow-land burial sites located at most large power reactor stations. In addition, 35 shallow-land burial sites have been alluded to by the Soviets for disposal of industrial, medical, and research low-level wastes as well as ionization sources. Research on tritium-bearing and other gaseous wastes is mentioned, as well as a waste minimization program aimed at reducing the volume of waste streams by 30%. The Soviets have announced that their high-level waste management plan is to 1) store liquid wastes for 3-5 years; 2) incorporate the waste into glass (at a final glass volume of 100-150 liters/MT of fuel reprocessed); 3) set it aside in air-cooled storage

Bradley, D. J.; Schneider, K. J.

1990-03-01T23:59:59.000Z

55

Recovery of energy from geothermal brine and other hot water sources  

DOE Patents [OSTI]

Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

1981-01-01T23:59:59.000Z

56

WM'05 Conference, February 27 -March 3, 2005, Tucson, AZ TRACKING RADIOACTIVE SOURCES IN COMMERCE  

E-Print Network [OSTI]

Identification [RFID] tags). Preliminary pseudo-random testing results have been very positive. Once we have radiological and nuclear material tracking and monitoring in commerce and is part of a larger program entitled in proximity to radioactive materials. Current candidate technologies include, (1) Satellite, (2) Radio

57

SHyPIE A NEW SOURCE FOR ON LINE PRODUCTION OF MULTICHARGED RADIOACTIVE CONDENSABLE ION BEAMS  

E-Print Network [OSTI]

Chouaib Doukkali, Faculte des Sciences, 24000 El ladida Morocco In order to define the future intensity and reliability of the on line radioactive beams for the SPIRAL project, an intense activity of research, with energies up to 95.A MeV and intensities up to 6 1012 particles/s for the lightest elements. The primary

Paris-Sud XI, Université de

58

Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste  

DOE Patents [OSTI]

Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

Zaitsev, Boris N. (St. Petersburg, RU); Esimantovskiy, Vyacheslav M. (St. Petersburg, RU); Lazarev, Leonard N. (St. Petersburg, RU); Dzekun, Evgeniy G. (Ozersk, RU); Romanovskiy, Valeriy N. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID); Herbst, Ronald S. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID)

2001-01-01T23:59:59.000Z

59

Design, construction, and use of a shipping case for radioactive sources used in the calibration of portal monitors in the radiation portal monitoring project  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory is working with US Customs and Border Protection to assist in the installation of radiation portal monitors. We need to provide radioactive sources – both gamma- and neutron-emitting – to ports of entry where the monitors are being installed. The monitors must be calibrated to verify proper operation and detection sensitivity. We designed a portable source-shipping case using numerical modeling to predict the neutron dose rate at the case’s surface. The shipping case including radioactive sources meets the DOT requirements for “limited quantity.” Over 300 shipments, domestic and international, were made in FY2008 using this type of shipping case.

Lepel, Elwood A.; Hensley, Walter K.

2009-12-01T23:59:59.000Z

60

Radiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material &  

E-Print Network [OSTI]

quarterly · Radioactive waste retrieval, storage, disposal · Dosimetry exchange · Leak tests of sealedRadiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material, Chemistry, Physics, Applied Physiology · Radioactive Material ­ Sealed Sources, Unsealed Sources (liquid

Sherrill, David

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Study finds radioactivity around Los Alamos largely due to natural sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »Lab (Newport News PublicMolecule andRadioactivity

62

Disposal Process for High Activity Sources by a University through the U.S. Dept. of Energy's Off-Site Source Recovery Project - 12076  

SciTech Connect (OSTI)

Sealed radioactive sources are used in a wide variety of applications by a large number of license holders in the Unites States. Applications range from low-activity calibration sources to high-activity irradiators for engineering, research, or medical purposes. This paper describes and evaluates the safety and security measures in place for disused sealed sources, in particular of high activity sealed sources at the end of their operational life-time. The technical, radiation protection, and financial challenges for licensees and the Competent Authorities are reviewed from the point of view of the license holder. As an example, the waste management processes and the chain of custody for disused research irradiator sources are followed from extraction from the irradiator facility to the source disposal or recycling contractor. Possible safety and security concern in the waste disposal process are investigated in order to identify improvement potential for radiation protection or source security. Two shipments of disused sealed sources from Colorado State University (CSU) have been conducted through the CSU Radiation Control Office (RCO) in the last two years, with a third shipment expected to be completed by the end of November 2011. Two of the sources shipped are considered 'high' activity and exceed the U.S. NRC limits requiring increased controls for security purposes. Three sources were shipped in 2009 and ten more are expected in 2011. A total activity of 117.3 GBq was shipped in 2009. Nine sources were recently shipped in October 2011 through a third party waste broker where the total activity was 96.34 GBq. The last source is scheduled for shipment no later than 30 November 2011 and contains an activity of 399.96 GBq. Radiation waste disposal of high activity sources in large shields with unknown manufacturers, serial numbers, or model numbers is an arduous process requiring multiple contacts with various state and federal agencies. DOE's OSRP has made it possible for CSU to dispose of older unused sources in an economically viable way. Disposal of multiple sources all at once was not an option prior to the establishment of the SCATR program. While CSU was able to dispose of sealed sources when funds were available, the cost to the University would have been prohibitive for this type of mass removal and disposal of radiation sources initiated within this initiative. Where we estimate a cost of about $130 k to ship these sources otherwise, CSU's contribution of $21 k realized a significant savings in what would have been an impossible disposal cost. Removing unused radiation sources from CSU has realized a cost savings while removing a potential security threat. (authors)

Abraham, James P. [Colorado State University Radiation Control Office, Department of Environmental Health Services, Fort Collins, CO. 80523-6021 (United States); Brandl, Alexander [Colorado State University, Department of Environmental and Radiological Health Sciences, Fort Collins CO. 80523-1618 (United States)

2012-07-01T23:59:59.000Z

63

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

64

Energy recovery linacs as synchrotron radiation sources ,,invited... Sol M. Grunera)  

E-Print Network [OSTI]

, Cornell University, Ithaca, New York 14853 Don Bilderback Cornell High Energy Synchrotron Source York 14853 Ken Finkelstein Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York, Ithaca, New York 14853 Qun Shen Cornell High Energy Synchrotron Source and Department of Materials

Shen, Qun

65

Recovery Act  

Broader source: Energy.gov [DOE]

Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

66

Pure radioactive Ga ion beams provided by new laser ion source for nuclear research at ORNL  

E-Print Network [OSTI]

with 2nd, 3rd, and 4th harmonic generation capability. It can provide up to three-step, three- photon · A highly-selective laser ion source based on multi-step resonant photo-ionization has been successfully have been developed. In studies with stable isotopes, up to 40% ionization efficiency ­ the highest

67

Burnup estimation of fuel sourcing radioactive material based on monitored Cs and Pu isotopic activity ratios in Fukushima N. P. S. accident  

SciTech Connect (OSTI)

After the severe core damage of Fukushima Dai-Ichi Nuclear Power Station, radioactive material leaked from the reactor buildings. As part of monitoring of radioactivity in the site, measurements of radioactivity in soils at three fixed points have been performed for {sup 134}Cs and {sup 137}Cs with gamma-ray spectrometry and for Pu, Pu, and {sup 240}Pu with {alpha}-ray spectrometry. Correlations of radioactivity ratios of {sup 134}Cs to {sup 137}Cs, and {sup 238}Pu to the sum of {sup 239}Pu and {sup 240}Pu with fuel burnup were studied by using theoretical burnup calculations and measurements on isotopic inventories, and compared with the Cs and Pu radioactivity rations in the soils. The comparison indicated that the burnup of the fuel sourcing the radioactivity was from 18 to 38 GWd/t, which corresponded to that of the fuel in the highest power and, therefore, the highest decay heat in operating high-burnup fueled BWR cores. (authors)

Yamamoto, T.; Suzuki, M.; Ando, Y. [Japan Nuclear Energy Safety Organization, Toranomon Towers Office, 14F, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

2012-07-01T23:59:59.000Z

68

A Comparison of Simple Algorithms for Gamma-ray Spectrometers in Radioactive Source Search Applications  

SciTech Connect (OSTI)

Large variation in time-dependent ambient gamma-ray radiation challenges the search for radiation sources. A common strategy to reduce the effects of background variation is to raise detection thresholds, but at the price of reduced detection sensitivity. We present simple algorithms that both reduce background variation and maintain trip-wire detection sensitivity with gamma-ray spectrometry. The best-performing algorithms focus on the spectral shape over several energy bins using Spectral Comparison Ratios and dynamically predict background with the Kalman Filter.

Jarman, Kenneth D.; Runkle, Robert C.; Anderson, Kevin K.; Pfund, David M.

2008-03-01T23:59:59.000Z

69

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

DOE Patents [OSTI]

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

70

Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design  

SciTech Connect (OSTI)

The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

Jurns, John M. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden); Bäck, Harald [Sweco Industry AB, P.O. Box 286, 201 22 Malmö (Sweden); Gierow, Martin [Lunds Energikoncernen AB, P.O. Box 25, 221 00 Lund (Sweden)

2014-01-29T23:59:59.000Z

71

Waste Steam Recovery  

E-Print Network [OSTI]

applicable to other sources of steam. The interaction of the recovery system with the plant's steam/power system has been included. Typical operating economics have been prepared. It was found that the profitability of most recovery schemes is generally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

72

Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems  

SciTech Connect (OSTI)

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ���¢��������Finite Volume Based Computer Program for Ground Source Heat Pump Systems.���¢������� The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

James A Menart, Professor

2013-02-22T23:59:59.000Z

73

Problems with packaged sources in foreign countries  

SciTech Connect (OSTI)

The Global Threat Reduction Initiative's (GTRI) Off-Site Source Recovery Project (OSRP), which is administered by the Los Alamos National Laboratory (LANL), removes excess, unwanted, abandoned, or orphan radioactive sealed sources that pose a potential threat to national security, public health, and safety. In total, GTRI/OSRP has been able to recover more than 25,000 excess and unwanted sealed sources from over 825 sites. In addition to transuranic sources, the GTRI/OSRP mission now includes recovery of beta/gamma emitting sources, which are of concern to both the U.S. government and the International Atomic Energy Agency (IAEA). This paper provides a synopsis of cooperative efforts in foreign countries to remove excess and unwanted sealed sources by discussing three topical areas: (1) The Regional Partnership with the International Atomic Energy Agency; (2) Challenges in repatriating sealed sources; and (3) Options for repatriating sealed sources.

Abeyta, Cristy L [Los Alamos National Laboratory; Matzke, James L [Los Alamos National Laboratory; Zarling, John [Los Alamos National Laboratory; Tompkin, J. Andrew [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

74

Experimental demonstration of differing impacts of pulsed and continuous operation of a deuterium-tritium neutron source on induced radioactivity in the context of ITER  

SciTech Connect (OSTI)

The work reported herein was conducted in response to an ITER Task to demonstrate experimentally that pulsed and continous operations of a D-T neutron source lead, in general, to differing impacts on inventory of induced radioactivity, on one hand, and to verify calculational methods, on the other. In a series of experiments conducted for the purpose, half lives of observed radioisotopes varied from 1 minute ({sup 25}Na) to 271 days ({sup 57}Co). Relatively short pulse lengths, 1 minute to 3 minute duration, were chosen. A pneumatic transport system was employed to transport foils of niobium, iron, aluminum, vanadium, nickel, and magnesium for irradiation close to the D-T neutron source. Three duty factors and two kinds of power levels were used for various neutron pulse trains. The experimental data was processed to obtain ratio of inventories in pulsed to continuous operation scenarios for each of the observed radioisotope. We observe a large reduction in radioactive inventories for values of t{sub 1/2}/p (half life/pulse duration) lying in the range of 1 to 10. Interestingly, random power pulse trains show even larger reduction in radioactive inventory: the ratio of inventories drops to approx.0.14 for t{sub 1/2}/p = 3.15 ({sup 27}Mg) for a duty factor of 20% and a train of 10 pulses, whereas it would have hit a minimum of 0.33 for t{sub 1/2}/p = 3.53 for constant power level. 14 refs., 10 figs., 1 tab.

Kumar, A.; Youssef, M.Z.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States); Ikeda, Yujiro; Uno, Yoshitomo; Maekawa, Hiroshi [Japan Atomic Energy Research Inst., Ibaraki (Japan)

1996-12-31T23:59:59.000Z

75

Radioactive mixed waste disposal  

SciTech Connect (OSTI)

Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

Jasen, W.G.; Erpenbeck, E.G.

1993-02-01T23:59:59.000Z

76

E-Print Network 3.0 - artificial radioactive isotopes Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from an artificial source or from a radioactive substance containing naturally occurring... . This includes work with radioactive materials and that involving sources of...

77

Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory

2014-08-31T23:59:59.000Z

78

One million curies of radioactive material recovered  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Removal Program and OSRP mission includes removal and disposal of excess, unwanted, abandoned, or orphan radioactive sealed sources that pose a potential risk to national...

79

Switchable radioactive neutron source device  

DOE Patents [OSTI]

This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

1987-11-06T23:59:59.000Z

80

Tracking Radioactive Sources in Commerce  

E-Print Network [OSTI]

Area Network­mobile phone, ethernet and/or satellite � security--encryption, short broadcast bursts Randy Walker, Robert Abercrombie, Rocky Cline, Sabrina Phillips; Oak Ridge National Laboratory Frederick security by commercial shippers � Knowledge of routes routinely taken � Inability to track location

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use  

SciTech Connect (OSTI)

field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.

Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

2012-07-31T23:59:59.000Z

82

Treasury, Energy Announce More Than $2 Billion in Recovery Act...  

Energy Savers [EERE]

Recovery Act to increase US manufacturing output, improve energy efficiency, and develop alternative sources of energy." The Recovery Act created a new tax credit program by...

83

Air Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division: Best Management Practice Case Study #14; Alternate Water Sources (Fact Sheet)  

SciTech Connect (OSTI)

FEMP Water Efficiency Best Management Practice #14 Case Study: Overview of the air handler condensate recovery program at the Environmental Protection Agency's Science and Ecosystem Support Division.

Not Available

2010-02-01T23:59:59.000Z

84

BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL  

SciTech Connect (OSTI)

Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.

Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

2003-02-27T23:59:59.000Z

85

SOURCE?  

Energy Savers [EERE]

Department of Energy (DOE) in partnership with Lawrence Berkeley National Laboratory (LBNL), is an open-source code package designed to be a common, low-cost, standardized tool...

86

E-Print Network 3.0 - account radioactive waste Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

42 U... of repositories for high-level radioactive waste and spent nuclear fuel. Low Level Radioactive Waste Policy Act... adequate disposal ... Source: Yucca Mountain...

87

(Revised May 25, 2012) Radioactivity  

E-Print Network [OSTI]

(Revised May 25, 2012) Radioactivity GOALS (1) To gain a better understanding of naturally-occurring. (3) To measure the amount of "background radiation" from natural sources. (4) To test whether and man-made radiation sources. (2) To use a Geiger-Mueller tube to detect both beta and gamma radiation

Collins, Gary S.

88

Sealed source peer review plan  

SciTech Connect (OSTI)

Sealed sources are known quantities of radioactive materials that have been encapsulated in quantities that produce known radiation fields. Sealed sources have multiple uses ranging from instrument calibration sources to sources that produce radiation fields for experimental applications. The Off-Site Source Recovery (OSR) Project at Los Alamos National Laboratory (LANL), created in 1999, under the direction of the Waste Management Division of the U.S. Department of Energy (DOE) Albuquerque has been assigned the responsibility to recover and manage excess and unwanted radioactive sealed sources from the public and private sector. LANL intends to ship drums containing qualified sealed sources to the Waste Isolation Pilot Plant (WIPP) for disposal. Prior to shipping, these drums must be characterized with respect to radiological content and other parameters. The U. S. Environmental Protection Agency (EPA) requires that ten radionulcides be quantified and reported for every container of waste to be disposed in the WIPP. The methods traditionally approved by the EPA include non-destructive assay (NDA) in accordance with Appendix A of the Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (DOE, 2002) (CH WAC). However, because of the nature and pedigree of historical records for sealed sources and the technical infeasibility of performing NDA on these sources, LANL proposes to characterize the content of these waste drums using qualified existing radiological data in lieu of direct measurement. This plan describes the process and documentation requirements for the use of the peer review process to qualify existing data for sealed radiological sources in lieu of perfonning radioassay. The peer review process will be performed in accordance with criteria provided in 40 CFR {section} 194.22 which specifies the use of the NUREG 1297 guidelines. The plan defines the management approach, resources, schedule, and technical requirements for the subject peer review.

Feldman, Alexander [Los Alamos National Laboratory; Leonard, Lee [RETIRED; Burns, Ron [CONTRACTOR

2009-01-01T23:59:59.000Z

89

Power Recovery  

E-Print Network [OSTI]

.POWER RECOVERY Fletcher Mlirray Monsanto Chemical Company AB5'-:::0 p.p., will ??vi.w 'h. '.ohnnln,y nf 'h.::v,n. T:X:~~T ~ methods for estimating the power recovery potential from fluid streams. The ideal gas law formula for expanding gases.... Gas Law Estimation Power recovery estimates from a vapor stream can be made using the formula: which is derived from the Ideal Gas Law. At first glance the. formula seems imposing and perhaps difficult to occasionally use. If however; the formula...

Murray, F.

90

Management of disused plutonium sealed sources  

SciTech Connect (OSTI)

The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources since 1999, including more than 2,400 Plutonium (Pu)-238 sealed sources and 653 Pu-239-bearing sources that represent more than 10% of the total sources recovered by GTRI/OSRP to date. These sources have been recovered from hundreds of sites within the United States (US) and around the world. OSRP grew out of early efforts at the Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program, a loan-lease program that serviced 31 countries, as well as domestic users. In the conduct of these recovery operations, GTRI/OSRP has been required to solve problems related to knowledge-of-inventory, packaging and transportation of fissile and heat-source materials, transfer of ownership, storage of special nuclear material (SNM) both at US Department of Energy (DOE) facilities and commercially, and disposal. Unique issues associated with repatriation from foreign countries, including end user agreements required by some European countries and denials of shipment, will also be discussed.

Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Michael W [Los Alamos National Laboratory; Abeyta, Cristy [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

91

Hazardous and Radioactive Mixed Waste Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

1989-02-22T23:59:59.000Z

92

Radioactivity in man: levels, effects and unknowns  

SciTech Connect (OSTI)

The report discusses the potential for significant human exposure to internal radiation. Sources of radiation considered include background radiation, fallout, reactor accidents, radioactive waste, and occupational exposure to various radioisotopes. (ACR)

Rundo, J.

1980-01-01T23:59:59.000Z

93

Radioactive Material Transportation Practices  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

2002-09-23T23:59:59.000Z

94

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

1984-02-06T23:59:59.000Z

95

RADIOACTIVITY 1997 BNL Site Environmental Report 4 -1  

E-Print Network [OSTI]

of a few inches. Naturally occurring radioactive elements such as potassium-40 emit beta radiation. Gamma by materials such as paper and have a range in air of only an inch or so. Naturally occurring radioactive 4.3 Sources of Radiation Radioactivity and radiation are part of the earth's natural environment

96

activity radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

97

aqueous radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

98

acidic radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

99

activities radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

100

activity radioactive wastes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - artificial radioactive aerosols Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... Source: Ecole Polytechnique, Centre de mathmatiques Collection: Mathematics 4 Spatial Data Analysis and Modeling of Radioactively-Contaminated Territories: Lessons...

102

Recovery Act: State Assistance for Recovery Act Related Electricity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Center Recovery Act Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity...

103

CARD No. 53 Consideration of Underground Sources of Drinking Water  

E-Print Network [OSTI]

exposure of individuals and the possible levels of radioactive contamination of ground water due resulting from exposure to radioactive contaminants in underground sources of drinking water (USDWs.34, which implement the general containment requirements of the radioactive waste disposal regulations

104

Recovering Radioactive Materials with OSRP team  

ScienceCinema (OSTI)

The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

None

2010-01-08T23:59:59.000Z

105

B-1 2001 SITE ENVIRONMENTAL REPORT APPENDIX B: CONCEPTS OF RADIOACTIVITY  

E-Print Network [OSTI]

such as paper and have a range in air of only an inch or so. Naturally occurring radioactive elements a range in air of several feet. Naturally occurring radioactive elements such as potassium- 40 (K-40) emit: CONCEPTS OF RADIOACTIVITY SOURCES OF RADIATION Radioactivity and radiation are part of the earths natural

Homes, Christopher C.

106

Radioactive Waste Management (Minnesota)  

Broader source: Energy.gov [DOE]

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

107

Radioactive Materials License Commitments  

E-Print Network [OSTI]

Radioactive Materials License Commitments for The University of Texas at Austin May 2009 July 2009 in the use of radioactive materials. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means

108

Criticality & Recovery Preparedness: ePHI Systems Criticality Designation  

E-Print Network [OSTI]

Criticality & Recovery Preparedness: ePHI Systems 5100 EX.A Criticality Designation 1. Primary source of PHI for pre-research; or secondary source of PHI for research/pre-research; secondary source of PHI for treatment, payment or healthcare operations; or teaching Criticality mapped to Recovery

109

Radioactive and chemotoxic wastes: Only radioactive wastes?  

SciTech Connect (OSTI)

Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

1993-12-31T23:59:59.000Z

110

Recovery FAQ - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act of 2009 > Hanford ARRA FAQ Recovery Act of 2009 Hanford ARRA FAQ Hanford ARRA Weekly Reports Hanford ARRA News Hanford ARRA Photogallery Hanford ARRA Videos Hanford...

111

Recovering Radioactive Materials with ORSP Team  

ScienceCinema (OSTI)

The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered more than 16,000 orphan sources as of 2008.

LANL

2009-09-01T23:59:59.000Z

112

Thin californium-containing radioactive source wires  

DOE Patents [OSTI]

A cermet wire includes at least 1% californium-252 and is characterized by a diameter of no more than 0.0225 inch.

Gross, Ian G (Clinton, TN); Pierce, Larry A (Kingston, TN)

2012-01-03T23:59:59.000Z

113

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network [OSTI]

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid frequently and change them if contaminated. 5. Use radioactive waste container to collect the waste. 6. Check

Jia, Songtao

114

Radioactive Waste Management Basis  

SciTech Connect (OSTI)

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

115

Radioactivity in Food and the Environment, 2005  

E-Print Network [OSTI]

.............................................................................................. 0 .. Radioactive waste disposal from nuclear sites ........................................................................................................................... 9 . Disposals of radioactive waste............................................ .. Radioactive waste disposal at sea

116

Naturally Occurring Radioactive Materials in Cargo at US Borders  

SciTech Connect (OSTI)

In the U.S. and other countries, large numbers of vehicles pass through border crossings each day. The illicit movement of radioactive sources is a concern that has resulted in the installation of radiation detection and identification instruments at border crossing points. This activity is judged to be necessary because of the possibility of an act of terrorism involving a radioactive source that may include any number of dangerous radionuclides. The problem of detecting, identifying, and interdicting illicit radioactive sources is complicated by the fact that many materials present in cargo are somewhat radioactive. Some cargo contains naturally occurring radioactive material or technologically-enhanced naturally occurring radioactive material that may trigger radiation portal monitor alarms. Man-made radioactive sources, especially medical isotopes, are also frequently observed and produce alarms. Such nuisance alarms can be an operational limiting factor for screening of cargo at border crossings. Information about the nature of the radioactive materials in cargo that can interfere with the detection of radionuclides of concern is necessary. This paper provides such information for North American cargo, but the information may also be of use to border control officials in other countries. (PIET-43741-TM-361)

Kouzes, Richard T.; Ely, James H.; Evans, John C.; Hensley, Walter K.; Lepel, Elwood A.; McDonald, Joseph C.; Schweppe, John E.; Siciliano, Edward R.; Strom, Daniel J.; Woodring, Mitchell L.

2006-01-01T23:59:59.000Z

117

Cosmic radioactivity and INTEGRAL results  

SciTech Connect (OSTI)

Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ?My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

Diehl, Roland [Max Planck Institut für Extraterrestrische Physik, D-85748 Garching, Germany and Excellence Cluster Origin and Evolution of the Universe', D-85748 Garching (Germany)

2014-05-02T23:59:59.000Z

118

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

119

High-level radioactive wastes. Supplement 1  

SciTech Connect (OSTI)

This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

McLaren, L.H. (ed.)

1984-09-01T23:59:59.000Z

120

The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment  

SciTech Connect (OSTI)

This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity.

Ross, W.A.; Kindle, C.H.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment  

SciTech Connect (OSTI)

This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency`s (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity.

Ross, W.A.; Kindle, C.H.

1992-06-01T23:59:59.000Z

122

RADIOACTIVE WASTE DISPOSAL IN GRANITE  

E-Print Network [OSTI]

RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

123

Enhanced oil recovery in Rumania  

SciTech Connect (OSTI)

The paper describes the application of the fire-floods to a broad range of Romanian oil reservoirs and crude properties and reviews the field tests of polymer flooding, surfactant flooding and alkaline flooding. A commercial scale project with cyclic steam injection is presented and also the use of the domestic CO/sub 2/ sources to enhanced oil recovery. The results and the difficulties encountered are briefly discussed and also the potential of EOR methods in Romania are presented. 17 refs.

Carcoana, A.N.

1982-01-01T23:59:59.000Z

124

E-Print Network 3.0 - artificial radioactive substances Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from an artificial source or from a radioactive substance containing naturally occurring... : Getting Started: The Legislative Framework, Roles and Responsibilities The...

125

E-Print Network 3.0 - accelerated radioactive ion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactive Ion Beam Facility A leading international facility with unique... light-ion beams from the Oak Ridge Isochronous Cyclotron and ... Source: Controlled Fusion Atomic Data...

126

E-Print Network 3.0 - atmospheric radioactivity madrid Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

elements "decay." Decay occurs as an element changes to another element, e... .g. uranium to lead. The parent element is radioactive, the daughter element is ... Source:...

127

One million curies of radioactive material recovered  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOil inventoriesquasicrystalsRadioactive

128

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

1999-07-09T23:59:59.000Z

129

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

Waterland, A. F.

1981-01-01T23:59:59.000Z

130

Recovery Act Milestones  

ScienceCinema (OSTI)

Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

Rogers, Matt

2013-05-29T23:59:59.000Z

131

State-of-the-art report on low-level radioactive waste treatment  

SciTech Connect (OSTI)

An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

Kibbey, A.H.; Godbee, H.W.

1980-09-01T23:59:59.000Z

132

Understanding radioactive waste  

SciTech Connect (OSTI)

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

133

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

1999-07-09T23:59:59.000Z

134

Battleground Energy Recovery Project  

SciTech Connect (OSTI)

In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ï?· Create a Showcase Waste Heat Recovery Demonstration Project.

Daniel Bullock

2011-12-31T23:59:59.000Z

135

Radioactivity in food crops  

SciTech Connect (OSTI)

Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

1983-05-01T23:59:59.000Z

136

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

1999-07-09T23:59:59.000Z

137

Container for radioactive materials  

DOE Patents [OSTI]

A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

Fields, S.R.

1984-05-30T23:59:59.000Z

138

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

139

Recovery Act Project Stories  

Broader source: Energy.gov [DOE]

Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

140

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

1999-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

1999-07-09T23:59:59.000Z

142

Transporting radioactive materials: Q & A to your questions  

SciTech Connect (OSTI)

Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet.

Not Available

1993-04-01T23:59:59.000Z

143

Enhanced oil recovery in Rumania  

SciTech Connect (OSTI)

The wide oil field experience of the Romanian oil men in producing hydrocarbon reservoirs is based on an old tradition, but only after 1945 reservoir engineering studies were started in Romania. Beginning with 1950 conventional recovery methods expanded continually. During the last 10 years, however, the crude oil, as energy resource, has become of tremendous importance. The need for increasing the ultimate oil recovery has been felt in Romania as everywhere else. To attain this goal EOR methods were and are tested and expanded on a commercial scale. The paper describes the application of the fire-floods to a broad range of Romanian oil reservoirs and crude properties and reviews the field tests of polymer flooding, surfactant flooding and alkaline flooding. A commercial scale project with cyclic steam injection is presented and also the use of the domestic CO/sub 2/ sources to enhance oil recovery. The results and the diffuculties encountered are briefly discussed and also the potential of EOR methods in Romania are presented.

Carcoana, A.N.

1982-01-01T23:59:59.000Z

144

Model-Driven Business Process Recovery , Terence C. Lau2  

E-Print Network [OSTI]

Model-Driven Business Process Recovery Ying Zou1 , Terence C. Lau2 , Kostas Kontogiannis3 , Tack. In this paper, we propose a model-driven business process recovery framework that captures the essential-to-date linkage between business tasks and their implementation in source code, we propose a model-driven business

Zou, Ying

145

One Classic and Two Classical The Recovery and Transmission  

E-Print Network [OSTI]

#12;One Classic and Two Classical Traditions The Recovery and Transmission of a Lost Edition primary and secondary sources in Japan. Wu Ge , curator of the rare books collection at Fudan University that various ironies attended the process of recovery and transmission. The text in question is Huang Kan

Elman, Benjamin

146

Properties of Natural Radiation and Radioactivity  

SciTech Connect (OSTI)

Ubiquitous natural sources of radiation and radioactive material (naturally occurring radioactive material, NORM) have exposed humans throughout history. To these natural sources have been added technologically-enhanced naturally occurring radioactive material (TENORM) sources and human-made (anthropogenic) sources. This chapter describes the ubiquitous radiation sources that we call background, including primordial radionuclides such as 40K, 87Rb, the 232Th series, the 238U series, and the 235U series; cosmogenic radionuclides such as 3H and 14C; anthropogenic radionuclides such as 3H, 14C, 137Cs, 90Sr, and 129I; radiation from space; and radiation from technologically-enhanced concentrations of natural radionuclides, particularly the short-lived decay products of 222Rn ("radon") and 220Rn ("thoron") in indoor air. These sources produce radiation doses to people principally via external irradiation or internal irradiation following intakes by inhalation or ingestion. The effective doses from each are given, with a total of 3.11 mSv y-1 (311 mrem y-1) to the average US resident. Over 2.5 million US residents receive over 20 mSv y-1 (2 rem y-1), primarily due to indoor radon. Exposure to radiation from NORM and TENORM produces the largest fraction of ubiquitous background exposure to US residents, on the order of 2.78 mSv (278 mrem) or about 89%. This is roughly 45% of the average annual effective dose to a US resident of 6.2 mSv y-1 (620 mrem y-1) that includes medical (48%), consumer products and air travel (2%), and occupational and industrial (0.1%). Much of this chapter is based on National Council on Radiation Protection and Measurements (NCRP) Report No. 160, "Ionizing Radiation Exposure of the Population of the United States," for which the author chaired the subcommittee that wrote Chapter 3 on "Ubiquitous Background Radiation."

Strom, Daniel J.

2009-07-13T23:59:59.000Z

147

Small Business Administration Recovery Act Implementation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small...

148

Radioactive Contamination of Danish Territory  

E-Print Network [OSTI]

Risø-R-462 Radioactive Contamination of Danish Territory after Core-melt Accidents at the Barsebäck;#12;RIS0-R-462 RADIOACTIVE CONTAMINATION OF DANISH TERRITORY AFTER CORE-MELT ACCIDENTS AT THE BARSEBACK. An assessment is made of the radioactive contamination of Danish territory in the event of a core-melt accident

149

Radioactive Contamination of Danish Territory  

E-Print Network [OSTI]

» & Risø-R-462 Radioactive Contamination of Danish Territory after Core-melt Accidents 1982 Risø National Laboratory, DK-4000 Roskilde, Denmark #12;RIS�-R-462 RADIOACTIVE CONTAMINATION. Heikel Vinther, L. Warming and A. Aarkrog Abstract. An assessment is made of the radioactive

150

Recovery Boiler Corrosion Chemistry  

E-Print Network [OSTI]

11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

Das, Suman

151

Mass and Heat Recovery  

E-Print Network [OSTI]

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

Hindawai, S. M.

2010-01-01T23:59:59.000Z

152

Jobs Creation Economic Recovery  

E-Print Network [OSTI]

Commission (Energy Commission) collects the American Recovery and Reinvestment Act of 2009 (ARRA) jobs creation and retention data (jobs data) from its subrecipients through the Energy Commission's ARRAJobs Creation and Economic Recovery Prompt, Fair, and Reasonable Use of ARRA Funds Subrecipient

153

Recovery Act-Funded Geothermal Heat Pump projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) was allocated funding from the American Recovery and Reinvestment Act to conduct research into ground source heat pump technologies and applications. Projects...

154

Recovery Act Funds at Work  

Broader source: Energy.gov [DOE]

Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Here are case studies from a variety of Recovery Act programs.

155

Radioactive ion detector  

DOE Patents [OSTI]

Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

Bower, K.E.; Weeks, D.R.

1997-08-12T23:59:59.000Z

156

Radioactive ion detector  

DOE Patents [OSTI]

Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

1997-01-01T23:59:59.000Z

157

E-Print Network 3.0 - ambient ionization source Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: ionization present due to ambient sources such as radioactive materials in buildings, see discussion... be an efficient source of ionization ahead of a streamer, but...

158

E-Print Network 3.0 - actinides recovery rar Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radionuclide Generators: Portable Sources of Medical Isotopes 15 Recovery and Uses of Americium... AAAS Fellows 37 ARQ Wins Technical Communication Award 38 Highlights from the...

159

Solvent recycle/recovery  

SciTech Connect (OSTI)

This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

1990-09-01T23:59:59.000Z

160

Standard guide for sampling radioactive tank waste  

E-Print Network [OSTI]

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Imbibition assisted oil recovery  

E-Print Network [OSTI]

analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length...

Pashayev, Orkhan H.

2004-11-15T23:59:59.000Z

162

Standard Model tests with trapped radioactive atoms  

E-Print Network [OSTI]

We review the use of laser cooling and trapping for Standard Model tests, focusing on trapping of radioactive isotopes. Experiments with neutral atoms trapped with modern laser cooling techniques are testing several basic predictions of electroweak unification. For nuclear $\\beta$ decay, demonstrated trap techniques include neutrino momentum measurements from beta-recoil coincidences, along with methods to produce highly polarized samples. These techniques have set the best general constraints on non-Standard Model scalar interactions in the first generation of particles. They also have the promise to test whether parity symmetry is maximally violated, to search for tensor interactions, and to search for new sources of time reversal violation. There are also possibilites for exotic particle searches. Measurements of the strength of the weak neutral current can be assisted by precision atomic experiments using traps of small numbers of radioactive atoms, and sensitivity to possible time-reversal violating electric dipole moments can be improved.

J. A. Behr; G. Gwinner

2009-03-04T23:59:59.000Z

163

ambient ion sources: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an...

164

Magnesium fluoride recovery method  

DOE Patents [OSTI]

A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

Gay, Richard L. (Canoga Park, CA); McKenzie, Donald E. (Woodland Hills, CA)

1989-01-01T23:59:59.000Z

165

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

166

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

167

Coil spring conveyor for positioning an external radioactive standard in a liquid scintillation counter  

SciTech Connect (OSTI)

This patent describes a liquid scintillation counter having a counting chamber for receiving a liquid sample containing a liquid scintillator and a sample of a radioactive substance to be counted. An improved apparatus is described for positioning a radioactive source in an operating location to irradiate the liquid sample in the counting chamber comprising the combination of: (1) a flexible conveyor including an elongate, generally tubular coil spring section having an interior tubular bore configured to receive the radioactive source; (2) means for retaining the radioactive source in a predetermined axial position within the coil spring; (3) means supporting the coil spring for movement along a conveyor path between a storage location for the radioactive source remote from the counting chamber and an operating location for the radioactive source proximate the counting chamber; and (4) drive means coupled to the coil spring and operative to drive the coil spring along the conveyor path for conveying the radioactive source between the storage and operating locations.

Kampf, R.S.

1986-03-04T23:59:59.000Z

168

Radioactive waste processing apparatus  

DOE Patents [OSTI]

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01T23:59:59.000Z

169

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network [OSTI]

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

170

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

171

Enhanced coalbed methane recovery  

SciTech Connect (OSTI)

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

172

Radioactive waste management in the former USSR  

SciTech Connect (OSTI)

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01T23:59:59.000Z

173

CHERNOBYL DATA BASE ENVIRONMENTAL RADIOACTIVITY  

E-Print Network [OSTI]

MAY 1990 THE NORDIC CHERNOBYL DATA BASE ENVIRONMENTAL RADIOACTIVITY MEASUREMENTS Nordic liaison CHERNOBYL DATA BASE ENVIRONMENTAL RADIOACTIVITY MEASUREMENTS Final Report of the NKA Project AKT 242 Edited the members of the working group. Graphic Systems AB, Malmo 1990 #12;111 ABSTRACT. The NORDIC CHERNOBYL DATA

174

Radioactive Material Transportation Practices Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Cancels DOE M 460.2-1.

2008-06-04T23:59:59.000Z

175

ICPP radioactive liquid and calcine waste technologies evaluation. Interim report  

SciTech Connect (OSTI)

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

1994-06-01T23:59:59.000Z

176

Radioactivity in Food and the Environment, 2009  

E-Print Network [OSTI]

................................................................................................................22 1.2.1 Radioactive waste disposal from nuclear sites ............................................................................................................................22 1.2 Disposals of radioactive waste ..............................................................................................................27 1.2.5 Solid radioactive waste disposal at sea

177

Radioactivity in Food and the Environment, 2006  

E-Print Network [OSTI]

................................................................................................................22 1.2.1 Radioactive waste disposal from nuclear sites .............................................................................................................................22 1.2 Disposals of radioactive waste.......................................................................................................25 1.2.5 Solid radioactive waste disposal at sea

178

Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment  

SciTech Connect (OSTI)

This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

2012-11-01T23:59:59.000Z

179

Development of iron phosphate ceramic waste form to immobilize radioactive waste solution  

SciTech Connect (OSTI)

The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

2014-05-09T23:59:59.000Z

180

Recovery Act Recipient Data | Department of Energy  

Office of Environmental Management (EM)

Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls More Documents &...

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Some Thoughts on Econometric Information Recovery  

E-Print Network [OSTI]

Paper 1135 Some Thoughts on Econometric Information Recoverys). Some Thoughts on Econometric Information Recovery GeorgeTheoretic Approach To Econometric Information Recovery

Judge, George G.

2013-01-01T23:59:59.000Z

182

Priorities for technology development and policy to reduce the risk from radioactive materials.  

SciTech Connect (OSTI)

The Standing Committee on International Security of Radioactive and Nuclear Materials in the Nonproliferation and Arms Control Division conducted its fourth annual workshop in February 2010 on Reducing the Risk from Radioactive and Nuclear Materials. This workshop examined new technologies in real-time tracking of radioactive materials, new risks and policy issues in transportation security, the best practices and challenges found in addressing illicit radioactive materials trafficking, industry leadership in reducing proliferation risk, and verification of the Nuclear Nonproliferation Treaty, Article VI. Technology gaps, policy gaps, and prioritization for addressing the identified gaps were discussed. Participants included academia, policy makers, radioactive materials users, physical security and safeguards specialists, and vendors of radioactive sources and transportation services. This paper summarizes the results of this workshop with the recommendations and calls to action for the Institute of Nuclear Materials Management (INMM) membership community.

Duggan, Ruth Ann

2010-06-01T23:59:59.000Z

183

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect (OSTI)

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

184

Challenges in Industrial Heat Recovery  

E-Print Network [OSTI]

This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

Dafft, T.

2007-01-01T23:59:59.000Z

185

Can You Afford Heat Recovery?  

E-Print Network [OSTI]

many companies to venture into heat recovery projects without due consideration of the many factors involved. Many of these efforts have rendered less desirable results than expected. Heat recovery in the form of recuperation should be considered...

Foust, L. T.

1983-01-01T23:59:59.000Z

186

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

SciTech Connect (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

187

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

188

Memorandum, Reporting of Radiological Sealed Sources Transactions  

Broader source: Energy.gov [DOE]

The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the Office of Information Management, within the Office of Environment, Health, Safety and Security.

189

Spent Sealed Sources Management in Switzerland - 12011  

SciTech Connect (OSTI)

Information is provided about the international recommendations for the safe management of disused and spent sealed radioactive sources wherein the return to the supplier or manufacturer is encouraged for large radioactive sources. The legal situation in Switzerland is described mentioning the demand of minimization of radioactive waste as well as the situation with respect to the interim storage facility at the Paul Scherrer Institute (PSI). Based on this information and on the market situation with a shortage of some medical radionuclides the management of spent sealed sources is provided. The sources are sorted according to their activity in relation to the nuclide-specific A2-value and either recycled as in the case of high active sources or conditioned as in the case for sources with lower activity. The results are presented as comparison between recycled and conditioned activity for three selected nuclides, i.e. Cs-137, Co-60 and Am-241. (author)

Beer, H.F. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

2012-07-01T23:59:59.000Z

190

Radioactive decay data tables  

SciTech Connect (OSTI)

The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

Kocher, D.C.

1981-01-01T23:59:59.000Z

191

Elemental sulfur recovery process  

DOE Patents [OSTI]

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

192

Radioactive waste material melter apparatus  

DOE Patents [OSTI]

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

193

Radioactive waste material melter apparatus  

DOE Patents [OSTI]

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

Newman, D.F.; Ross, W.A.

1990-04-24T23:59:59.000Z

194

Recovery Boiler Modeling  

E-Print Network [OSTI]

, east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

Abdullah, Z.; Salcudean, M.; Nowak, P.

195

The Radioactivity Characteristics of the NPP Charcoal Sample Contaminated by Carbon-14 - 13531  

SciTech Connect (OSTI)

The radioactivity of {sup 14}C-contaminated charcoal sample was analyzed by using a high temperature oxidation and liquid scintillation counting method. The radioactivity of the sample was monotonically increased according to the increase of the combustion time at each temperature where the experimental uncertainty was calculated in the 95 % confidence level. It showed that the {sup 14}C radioactivity was not completely extracted from the sample by simply increasing the combustion time unless the combustion temperature was high enough. The higher the combustion temperature was, the higher the recovery during the first 30 minutes was. The first 30 minute recoveries were 100 % at a temperature equal to or greater than 450 deg. C. The ratios of the recovery during the first 30 minutes to the total recovery during whole duration were more than 90 % at each experiment temperature. It was understood that the temperature was a critical factor for the complete removal of the {sup 14}C from the waste sample. (authors)

Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of)] [Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of)

2013-07-01T23:59:59.000Z

196

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

197

Storage depot for radioactive material  

DOE Patents [OSTI]

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

198

Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities  

SciTech Connect (OSTI)

One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

Jooho, W.; Baldwin, G. T.

2005-04-01T23:59:59.000Z

199

Experiences in the field of radioactive materials seizures in the Czech Republic  

SciTech Connect (OSTI)

In recent years, the amount of radioactive materials seizures (captured radioactive materials) has been rising. It was above all due to newly installed detection facilities that were able to check metallic scrap during its collection in scrap yards or on the entrance to iron-mills, checking municipal waste upon entrance to municipal disposal sites, even incineration plants, or through checking vehicles going through the borders of the Czech Republic. Most cases bore a relationship to secondary raw materials or they were connected to the application of machines and installations made from contaminated metallic materials. However, in accordance to our experience, the number of cases of seizures of materials and devices containing radioactive sources used in the public domain was lower, but not negligible, in the municipal storage yards or incineration plants. Atomic Act No. 18/1997 Coll. will apply to everybody who provides activities leading to exposure, mandatory assurance as high radiation safety as risk of the endangering of life, personal health and environment is as low as reasonably achievable in according to social and economic aspects. Hence, attention on the examination of all cases of the radioactive material seizure based on detection facilities alarm or reasonably grounds suspicion arising from the other information is important. Therefore, a service carried out by group of workers who ensure assessment of captured radioactive materials and eventual retrieval of radioactive sources from the municipal waste has come into existence in the Nuclear Research Institute Rez plc. This service has covered also transport, storage, processing and disposal of found radioactive sources. This service has arisen especially for municipal disposal sites, but later on even other companies took advantage of this service like incineration plants, the State Office for Nuclear Safety, etc. Our experience in the field of ensuring assessment of captured radioactive materials and eventual retrieval of radioactive sources will be presented in the paper. (authors)

Svoboda, Karel; Podlaha, Josef; Sir, David; Mudra, Josef [Nuclear Research Institute Rez plc (Czech Republic)

2007-07-01T23:59:59.000Z

200

ARM - Recovery Act  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncementsgovMeasurementsgovPublicationsPublicgovAboutRecovery

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ARM - Recovery Act Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstruments Related Links RelatedActRecovery

202

Determination of Iodine-129 in Low Level Radioactive Wastes - 13334  

SciTech Connect (OSTI)

For the radioactivity determination of {sup 129}I in the radioactive wastes, alkali fusion and anion-exchange resin separation methods, which are sample pretreatment methods, have been investigated in this study. To separate and quantify the {sup 129}I radionuclide in an evaporator bottom and spent resin, the radionuclide was chemically leached from the wastes and adsorbed on an anion exchange resin at pH 4, 7, 9. In the case of dry active waste and another solid type, the alkali fusion method was applied. KNO{sub 3} was added as a KOH and oxidizer to the wastes. It was then fused at 450 deg. C for 1 hour. The radioactivity of the separated iodine was measured with a low energy gamma spectrometer after the sample pretreatment. Finally, it was confirmed that the recovery rate of the iodine for the alkali fusion method was 83.6±3.8%, and 86.4±1.6% for the anionic exchange separation method. (authors)

Choi, K.C.; Ahn, J.H.; Park, Y.J.; Song, K.S. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)] [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)

2013-07-01T23:59:59.000Z

203

Electrostatics and radioactive aerosol behavior  

SciTech Connect (OSTI)

Radioactive aerosols differ from their nonradioactive counterparts by their ability to charge themselves by emitting charged particles during the radioactive decay process. Evidence that electrostatics, including this charging process, can affect the transport of the aerosols was summarized previously. Charge distributions and the mean charge for a monodisperse radioactive aerosol have been considered in detail. The principal results of theory to calculate charge distributions on a aerosol with a size distribution, changes to Brownian coagulation rates for an aerosol in a reactor containment, and possible changes to aerosol deposition resulting from the charging will be presented. The main purpose of the work has been to improve calculations of aerosol behavior in reactor containments, but behavior in less ionizing environments will be affected more strongly, and some problems remain to be solved in performing reliable calculations.

Clement, C.F.

1994-12-31T23:59:59.000Z

204

Introduction to naturally occurring radioactive material  

SciTech Connect (OSTI)

Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to! We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these radionuclides. We will then review some of the industrial sectors affected by TENORM, followed by a brief discussion on regulatory aspects of the issue.

Egidi, P.

1997-08-01T23:59:59.000Z

205

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

three Recovery Act-funded Smart Grid Investment Grant (SGIG) projects. February 28, 2014 Smart Meter Investments Yield Positive Results in Maine Central Maine Power's (CMP) SGIG...

206

Economic Recovery Loan Program (Maine)  

Broader source: Energy.gov [DOE]

The Economic Recovery Loan Program provides subordinate financing to help businesses remain viable and improve productivity. Eligibility criteria are based on ability to repay, and the loan is...

207

Maine State Briefing Book on low-level radioactive waste management  

SciTech Connect (OSTI)

The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

Not Available

1981-08-01T23:59:59.000Z

208

Evaluation of radioactive scrap metal recycling  

SciTech Connect (OSTI)

This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1995-12-01T23:59:59.000Z

209

Storage containers for radioactive material  

DOE Patents [OSTI]

A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

Groh, Edward F. (Naperville, IL); Cassidy, Dale A. (Valparaiso, IN); Dates, Leon R. (Elmwood Park, IL)

1981-01-01T23:59:59.000Z

210

Storage containers for radioactive material  

DOE Patents [OSTI]

A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

Groh, E.F.; Cassidy, D.A.; Dates, L.R.

1980-07-31T23:59:59.000Z

211

Unconventional gas recovery program. Semi-annual report for the period ending September 30, 1979  

SciTech Connect (OSTI)

This document is the third semi-annual report describing the technical progress of the US DOE projects directed at gas recovery from unconventional sources. Currently the program includes Methane Recovery from Coalbeds Project, Eastern Gas Shales Project, Western Gas Sands Project, and Geopressured Aquifers Project.

Manilla, R.D. (ed.)

1980-04-01T23:59:59.000Z

212

Monitoring aquifer storage and recovery using multiple geophysical methods , Kristofer Davis  

E-Print Network [OSTI]

-gravity methods to monitor an aquifer storage recovery (ASR) project. An abandoned coal mine has been developed into an underground water reservoir in Leyden, Colorado. Excess water from surface sources is injected into the reservoir during winter and then retrieved for use in the summer. Understanding the storage-recovery process

213

Energy recovery system  

DOE Patents [OSTI]

The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

1980-01-01T23:59:59.000Z

214

Enhanced oil recovery system  

DOE Patents [OSTI]

All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

Goldsberry, Fred L. (Spring, TX)

1989-01-01T23:59:59.000Z

215

Hydraulic waste energy recovery  

SciTech Connect (OSTI)

Water distribution systems are typically a municipality's largest consumer of energy and greatest expense. The water distribution network has varying pressure requirements due to the age of the pipeline and topographical differences. Certain circumstances require installation of pressure reducing devices in the pipeline to lower the water pressure in the system. The consequence of this action is that the hydraulic energy supplied by the high lift or booster pumps is wasted in the process of reducing the pressure. A possible solution to capture the waste hydraulic energy is to install an in-line electricity generating turbine. Energy recovery using in-line turbine systems is an emerging technology. Due to the lack of technical and other relevant information on in-line turbine system installations, questions of constructability and legal issues over the power service contract have yet to be answered. This study seeks to resolve these questions and document the findings so that other communities may utilize this information. 10 figs.

Lederer, C.C.; Thomas, A.H.; McGuire, J.L. (Detroit Buildings and Safety Engineering Dept., MI (USA))

1990-12-01T23:59:59.000Z

216

Speech recovery device  

DOE Patents [OSTI]

There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

Frankle, Christen M.

2004-04-20T23:59:59.000Z

217

RISG-M-2482 COMPUTER MODELLING OF RADIOACTIVE SOURCE TERMS  

E-Print Network [OSTI]

/INTOR workshops. INIS descriptors: M CODES; MATHEMATICAL MODELS; MONTE CARLO METHOD; NEUTRON TRANSPORT; TOKAMAK

218

Stabilization of scintillation detector by reference signal from radioactive source  

SciTech Connect (OSTI)

This paper examines the possibility of stabilization of a scintillation detector using an additional detector whose scintillator with respect to the former performs the function of a target, which generates secondary radiation. It is experimentally established that a regulation time constant of 10 sec ensures constancy of the transfer characteristic of the detector with an error of about 1.5% for disturbing effects that correspond to 20% of this characteristic.

Nedavnii, O.I.

1985-05-01T23:59:59.000Z

219

Nuclear Batteries with Tritium and Promethium-147 Radioactive Sources.  

E-Print Network [OSTI]

??Long-lived power supplies for remote and even hostile environmental conditions are needed for space and sea missions. Nuclear batteries can uniquely serve this role. In… (more)

Yakubova, Galina N.

2010-01-01T23:59:59.000Z

220

Disused Radioactive Sources Secured in Georgia | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates The Office

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Metal recovery from porous materials  

DOE Patents [OSTI]

The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Sturcken, E.F.

1991-01-01T23:59:59.000Z

222

The Radioactive Beam Program at Argonne  

E-Print Network [OSTI]

In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

B. B. Back

2006-06-06T23:59:59.000Z

223

Low Level Radioactive Waste Authority (Michigan)  

Broader source: Energy.gov [DOE]

Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority ...

224

Internal and External Radioactive Backgrounds  

E-Print Network [OSTI]

Chapter 3 Internal and External Radioactive Backgrounds New physics is often discovered by pushing energies. With the current large mixing angle-MSW oscillation parameters, Borexino expects to observe 0.35 neutrino events per day per ton from 7Be in the energy window. Because there are so few events

225

SRP RADIOACTIVE WASTE RELEASES S  

Office of Scientific and Technical Information (OSTI)

. . . . . -- SRP RADIOACTIVE WASTE RELEASES S t a r t u p t h r o u g h 1 9 5 9 September 1 9 6 0 - R E C O R D - W O R K S T E C H N I C A L D E P A R T M E N T 1 J. E. C o l e ,...

226

CRAD, Radioactive Waste Management- June 22, 2009  

Broader source: Energy.gov [DOE]

Radioactive Waste Management, Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-33, Rev. 0)

227

Method for magnesium sulfate recovery  

DOE Patents [OSTI]

A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

Gay, Richard L. (Canoga Park, CA); Grantham, LeRoy F. (Calabasas, CA)

1987-01-01T23:59:59.000Z

228

Method for magnesium sulfate recovery  

DOE Patents [OSTI]

A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

Gay, R.L.; Grantham, L.F.

1987-08-25T23:59:59.000Z

229

Uranium Recovery Surface Activities (Texas)  

Broader source: Energy.gov [DOE]

This section of the Texas Commission on Environmental Quality enforces and makes the rules and regulations for handling and recovering radioactive materials associated with in situ mining in Texas....

230

Recovery of cesium  

DOE Patents [OSTI]

A process of recovering cesium ions from mixtures of ions containing them and other ions, e.g., a solution of nuclear waste materials, which comprises establishing a separate source phase containing such a mixture of ions, establishing a separate recipient phase, establishing a liquid membrane phase in interfacial contact with said source and recipient phases, said membrane phase containing a ligand, preferably a selected calixarene as depicted in the drawing, maintaining said interfacial contact for a period of time long enough to transport by said ligand a substantial portion of the cesium ion from the source phase to the recipient phase, and recovering the cesium ion from the recipient phase. The separation of the source and recipient phases may be by the membrane phase only, e.g., where these aqueous phases are emulsified as dispersed phases in a continuous membrane phase, or may include a physical barrier as well, e.g., an open-top outer container with an inner open-ended container of smaller cross-section mounted in the outer container with its open bottom end spaced from and above the closed bottom of the outer container so that the membrane phase may fill the outer container to a level above the bottom of the inner container and have floating on its upper surface a source phase and a recipient phase separated by the wall of the inner container as a physical barrier. A preferred solvent for the ligand is a mixture of methylene chloride and carbon tetrachloride.

Izatt, Reed M. (Provo, UT); Christensen, James J. (Provo, UT); Hawkins, Richard T. (Orem, UT)

1984-01-01T23:59:59.000Z

231

Spills of Radioactive Materials -Emergency Procedures  

E-Print Network [OSTI]

to radioactive waste container. For surface decontamination, use soap and water and cleansers appropriateSpills of Radioactive Materials - Emergency Procedures Procedure: 7.53 Created: 1/16/2014 Version for injured personnel. B. Applicability/scope This policy applies to all facilities where radioactive

Jia, Songtao

232

Laboratory Surveys when Working with Radioactive Materials  

E-Print Network [OSTI]

radioactive materials (RAM) are used or stored, including waste areas. Negative results should be clearlyLaboratory Surveys when Working with Radioactive Materials Procedure: 7.546 Created: 9/25/14 Version: 1.0 Revised: Environmental Health & Safety Page 1 of 6 A. Purpose Radioactive contamination and

Jia, Songtao

233

Environmental Radioactivity in Greenland in 1981  

E-Print Network [OSTI]

Ris«-R-471 v Environmental Radioactivity in Greenland in 1981 A. Aarkrog, Henning Dahlgaard, Elis July 1962 #12;Risø-R-471 ENVIRONMENTAL RADIOACTIVITY IN GREENLAND IN 1981 A. Aarkrog, Henning Dahlgaard. Measurements of fallout radioactivity in Greenland in 1981 are reported. Strontium-90 (and Cesium-137 in most

234

Environmental Radioactivity in Greenland in 1978  

E-Print Network [OSTI]

·ft I la 0 0 0 0 Risn-R-405 Environmental Radioactivity in Greenland in 1978 A. Aarkrog, Heinz ENVIRONMENTAL RADIOACTIVITY IN GREENLAND IN 1978 A. Aarkrog, Heinz Hansen and J. Lippert Abstract. Heasureaents of fallout radioactivity in Greenland in 1978 are reported. Strontium-90 (and Cesium-137 in most cases

235

Radioactivity in Food and the Environment, 1997  

E-Print Network [OSTI]

Radioactivity in Food and the Environment, 1997 RIFE - 3 1998 SCOTTISH ENVIRONMENT PROTECTION SCOTTISH ENVIRONMENT PROTECTION AGENCY Radioactivity in Food and the Environment, 1997 September 1998 #12 Environment Protection Agency in 1997. Measurements of radioactivity have been carried out in a range

236

Radioactive isotopes in Danish drinking water  

E-Print Network [OSTI]

Radioactive isotopes in Danish drinking water Sven P. Nielsen Risø National Laboratory Working OF INVESTIGATION 11 3 DESCRIPTION OF INVESTIGATION 12 4 RADIOACTIVITY IN DRINKING WATER 13 5 SAMPLING 15 6 27 #12;4 #12;5 Preface This project for investigation of radioactivity in drinking water shall

237

Absolute Time Radiometric Dating: the source of the dates on  

E-Print Network [OSTI]

Absolute Time Radiometric Dating: the source of the dates on the Geologic Time Scale Radiometric.g. uranium to lead. · The parent element is radioactive, the daughter element is stable. · The decay rate nucleosynthesis. Common Radioactive Elements, Parents and Daughters · Carbon-14, C14 Nitrogen-14, N14 · Uranium

Kammer, Thomas

238

Recovery Act Milestones | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation. Speakers Matt Rogers...

239

Recovery Act?Transportation Electrification Education Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery ActTransportation Electrification Education Partnership for Green Jobs and Sustainable Mobility Recovery ActTransportation Electrification Education Partnership for...

240

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Bonneville Power Administration Program Specific Recovery Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bonneville Power Administration Program Specific Recovery Plan Bonneville Power Administration Program Specific Recovery Plan Microsoft Word - PSRP May 15 2009 BPA Final.docx...

242

Radioactive waste treatment technologies and environment  

SciTech Connect (OSTI)

The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

HORVATH, Jan; KRASNY, Dusan [JAVYS, PLc. - Nuclear and Decommisioning Company, PLc. (Slovakia)

2007-07-01T23:59:59.000Z

243

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

244

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

245

Type B package for the transport of large medical and industrial sources  

SciTech Connect (OSTI)

AREVA Federal Services LLC, under contract to the Los Alamos National Laboratory's Offsite Source Recovery Project, is developing a new Type B(U)-96 package for the transport of unwanted or abandoned high activity gamma and neutron radioactive sealed sources (sources). The sources were used primarily in medical or industrial devices, and are of domestic (USA) or foreign origin. To promote public safety and mitigate the possibility of loss or misuse, the Offsite Source Recovery Project is recovering and managing sources worldwide. The package, denoted the LANL-B, is designed to accommodate the sources within an internal gamma shield. The sources are located either in the IAEA's Long Term Storage Shield (LTSS), or within intact medical or industrial irradiation devices. As the sources are already shielded separately, the package does not include any shielding of its own. A particular challenge in the design of the LANL-B has been weight. Since the LTSS shield weighs approximately 5,000 lb [2,270 kg], and the total package gross weight must be limited to 10,000 lb [4,540 kg], the net weight of the package was limited to 5,000 lb, for an efficiency of 50% (i.e., the payload weight is 50% of the gross weight of the package). This required implementation of a light-weight bell-jar concept, in which the containment takes the form of a vertical bell which is bolted to a base. A single impact limiter is used on the bottom, to protect the elastomer seals and bolted joint. A top-end impact is mitigated by the deformation of a tori spherically-shaped head. Impacts in various orientations on the bottom end are mitigated by a cylindrical, polyurethane foam-filled impact limiter. Internally, energy is absorbed using honeycomb blocks at each end, which fill the torispherical head volumes. As many of the sources are considered to be in normal form, the LANL-B package offers leak-tight containment using an elastomer seal at the joint between the bell and the base, as well as on the single vent port. Leak testing prior to transport may be either using helium mass spectrometry or the pressure-rise concept.

Brown, Darrell Dwaine [Los Alamos National Laboratory; Noss, Philip W [AREVA FEDERAL SERVICES

2010-09-14T23:59:59.000Z

246

Heat Recovery Steam Generator Simulation  

E-Print Network [OSTI]

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

247

Recovery Act Funding Opportunities Webcast  

Broader source: Energy.gov [DOE]

As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

248

Recovery and purification of ethylene  

SciTech Connect (OSTI)

A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

Reyneke, Rian (Katy, TX); Foral, Michael J. (Aurora, IL); Lee, Guang-Chung (Houston, TX); Eng, Wayne W. Y. (League City, TX); Sinclair, Iain (Warrington, GB); Lodgson, Jeffery S. (Naperville, IL)

2008-10-21T23:59:59.000Z

249

Olefin recovery via chemical absorption  

SciTech Connect (OSTI)

The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

Barchas, R. [Stone & Webster Engineering Corporation, Houston, TX (United States)

1998-06-01T23:59:59.000Z

250

Low Level Heat Recovery Technology  

E-Print Network [OSTI]

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

251

Waste Heat Recovery from Refrigeration  

E-Print Network [OSTI]

heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

Jackson, H. Z.

1982-01-01T23:59:59.000Z

252

Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator  

SciTech Connect (OSTI)

Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

Deckers, Jan; Mols, Ludo [Belgoprocess NV, Operations Department, Gravenstraat 73, B-2480 Dessel (Belgium)

2007-07-01T23:59:59.000Z

253

Developing a Regional Recovery Framework  

SciTech Connect (OSTI)

Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

2011-09-01T23:59:59.000Z

254

Method for the removal and recovery of mercury  

DOE Patents [OSTI]

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

1997-01-28T23:59:59.000Z

255

Method for the removal and recovery of mercury  

DOE Patents [OSTI]

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, Clay E. (Knoxville, TN); Vass, Arpad A. (Oak Ridge, TN); Tyndall, Richard L. (Clinton, TN)

1997-01-01T23:59:59.000Z

256

System for recovery of daughter isotopes from a source material  

DOE Patents [OSTI]

A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

Tranter, Troy J. (Idaho Falls, ID) [Idaho Falls, ID; Todd, Terry A. (Aberdeen, ID) [Aberdeen, ID; Lewis, Leroy C. (Idaho Falls, ID) [Idaho Falls, ID; Henscheid, Joseph P. (Idaho Falls, ID) [Idaho Falls, ID

2009-08-04T23:59:59.000Z

257

Recovery Act Helps GE in-source Manufacturing | Department of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

interior and making a modern, efficient space inside the existing 1950s shell. The hybrid water heaters, which had previously been manufactured in China, will go into production at...

258

INEL metal recycle radioactive scrap metal survey report  

SciTech Connect (OSTI)

DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed doing in-field measurements to ascertain the amount of RSM actually available. This information was necessary to determine the economic viability of recycling and to identify feed stock that could be used to produce containers for radioactive waste. This inventory measured the amount of RSM available at the selected DOE sites. Information gathered included radionuclide content and chemical form, general radiation field, alloy type, and mass of metal.

Funk, D.M.

1994-09-01T23:59:59.000Z

259

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.  

SciTech Connect (OSTI)

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

2011-10-01T23:59:59.000Z

260

Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371  

SciTech Connect (OSTI)

SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E. [SUE MosSIA 'Radon', 7th Rostovsky lane 2/14, Moscow 119121 (Russian Federation)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Florida State Briefing Book for low-level radioactive-waste management  

SciTech Connect (OSTI)

The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

none,

1981-06-01T23:59:59.000Z

262

Wyoming State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

Not Available

1981-10-01T23:59:59.000Z

263

North Carolina State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

Not Available

1981-08-01T23:59:59.000Z

264

Puerto Rico State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

Not Available

1981-10-01T23:59:59.000Z

265

South Carolina State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

Not Available

1981-08-01T23:59:59.000Z

266

New Jersey State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

Not Available

1981-04-01T23:59:59.000Z

267

Massachusetts State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

Not Available

1981-03-12T23:59:59.000Z

268

North Dakota State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

none,

1981-10-01T23:59:59.000Z

269

Utah State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

Not Available

1981-10-01T23:59:59.000Z

270

E-Print Network 3.0 - actinide source term Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radionuclide Generators: Portable Sources of Medical Isotopes 15 Recovery and Uses of Americium... AAAS Fellows 37 ARQ Wins Technical Communication Award 38 Highlights from the...

271

Radioactive Waste Management BasisSept 2001  

SciTech Connect (OSTI)

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31T23:59:59.000Z

272

Material and energy recovery in integrated waste management systems: The potential for energy recovery  

SciTech Connect (OSTI)

Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).

Consonni, Stefano [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy); Vigano, Federico, E-mail: federico.vigano@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP -Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy)

2011-09-15T23:59:59.000Z

273

Shock recovery experiments: An assessment  

SciTech Connect (OSTI)

Systematic shock recovery experiments, in which microstructural and mechanical property effects are characterized quantitatively, constitute an important means of increasing our understanding of shock processes. Through studies of the effects of variations in metallurgical and shock loading parameters on structure/property relationships, the micromechanisms of shock deformation, and how they differ from conventional strain rate processes, are beginning to emerge. This paper will highlight the state-of-the-art in shock recovery of metallic and ceramic materials. Techniques will be described which are utilized to ''soft'' recover shock-loaded metallic samples possessing low residual strain; crucial to accurate ''post-mortem'' metallurgical investigations of the influence of shock loading on material behavior. Illustrations of the influence of shock assembly design on the structure/property relationships in shock-recovered copper samples including such issues as residual strain and contact stresses, and their consequences are discussed. Shock recovery techniques used on brittle materials will be reviewed and discussed in light of recent experimental results. Finally, shock recovery structure/property results and VISAR data on the /alpha/--/omega/ shock-induced phase transition in titanium will be used to illustrate the beneficial link between shock recovery and ''real-time'' shock data. 26 refs., 3 figs.

Gray, G.T. III

1989-01-01T23:59:59.000Z

274

Annual Transportation Report for Radioactive Waste Shipments...  

National Nuclear Security Administration (NNSA)

ANNUAL TRANSPORTATION REPORT FY 2008 Radioactive Waste Shipments to and from the Nevada Test Site (NTS) February 2009 United States Department of Energy National Nuclear Security...

275

Office of Civilian Radioactive Waste Management Transportation...  

Broader source: Energy.gov (indexed) [DOE]

Jay Jones Office of Civilian Radioactive Waste Management April 22, 2004 Albuquerque, New Mexico 2 Session Overview * Meeting objectives and expectations * Topic Group...

276

Radiation Machines and Radioactive Materials (Iowa)  

Broader source: Energy.gov [DOE]

These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

277

Radioactive Material Declaration Form Exhibit to the Radioactive Waste Manual (RWM)  

E-Print Network [OSTI]

Radioactive Material Declaration Form Exhibit to the Radioactive Waste Manual (RWM) 12/5/2013 (form Declaration Form Exhibit to the Radioactive Waste Manual (RWM) 12/5/2013 (form date) SLAC-I-760-2A08Z-001 (RWM date) SLAC-I-760-2A08Z-001 (RWM number) Page 1 of 2 RADIOACTIVE MATERIAL DECLARATION FORM For RP use

Wechsler, Risa H.

278

Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities  

SciTech Connect (OSTI)

The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassembling and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.

Dragolici, F.; Turcanu, C. N.; Rotarescu, G.; Paunica, I.

2003-02-25T23:59:59.000Z

279

Low-temperature waste-heat recovery in the food and paper industries  

SciTech Connect (OSTI)

The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

1980-11-01T23:59:59.000Z

280

Restoration of water environment contaminated by radioactive cesium released from Fukushima Daiichi NPP  

SciTech Connect (OSTI)

In the Fukushima Daiichi NPP Accident, large amounts of volatile radioactive nuclides, such as {sup 131}I, {sup 134}Cs and {sup 137}Cs, were released to the atmosphere and huge areas surrounding the nuclear site were contaminated by the radioactive fallout. In this study, a combined process with a hydrothermal process and a coagulation settling process was proposed for the separation of radioactive Cs from contaminated soil and sewage sludge. The coagulation settling operation uses Prussian Blue (Ferric ferrocyanide) and an inorganic coagulant. The recovery of Cs from sewage sludge sampled at Fukushima city (100.000 Bq/kg) and soil at a nearby village (55.000 Bq/kg), was tested. About 96% of Cs in the sewage sludge was removed successfully by combining simple hydrothermal decomposition and coagulation settling. However, Cs in the soil was not removed sufficiently by the combined process (Cs removal is only 56%). The hydrothermal decomposition with blasting was carried out. The Cs removal from the soil was increased to 85%. When these operations were repeated twice, the Cs recovery was over 90%. The combined process with hydrothermal blasting and coagulation settling is applicable to the removal of Cs from highly contaminated soil.

Takeshita, K.; Takahashi, H. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 157-8550 (Japan); Jinbo, Y. [CDM Cosulting Co.Ltd., 1-13-13 Tsukiji Chuo-ku Tokyo 104-0045 (Japan); Ishido, A. [Radwaste and Decommissioning Center, 1-7-6 Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thermal expansion recovery microscopy: Practical design considerations  

SciTech Connect (OSTI)

A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

Mingolo, N., E-mail: nmingol@fi.uba.ar; Martínez, O. E. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

2014-01-15T23:59:59.000Z

282

Radioactive material package seal tests  

SciTech Connect (OSTI)

General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

1990-01-01T23:59:59.000Z

283

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network [OSTI]

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

284

HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)  

SciTech Connect (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

S. K. Evans

2006-08-15T23:59:59.000Z

285

Gasoline vapor recovery  

SciTech Connect (OSTI)

In a gasoline distribution network wherein gasoline is drawn from a gasoline storage tank and pumped into individual vehicles and wherein the gasoline storage tank is refilled periodically from a gasoline tanker truck, a method of recovering liquid gasoline from gasoline vapor that collects in the headspace of the gasoline storage tank as the liquid gasoline is drawn therefrom, said method comprising the steps of: (a) providing a source of inert gas; (b) introducing inert gas into the gasoline storage tank as liquid gasoline is drawn therefrom so that liquid gasoline drawn from the tank is displaced by inert gas and gasoline vapor mixes with the inert gas in the headspace of the tank; (c) collecting the inert gas/gasoline vapor mixture from the headspace of the gasoline storage tank as the tank is refilled from a gasoline tanker truck; (d) cooling the inert gas/gasoline vapor mixture to a temperature sufficient to condense the gasoline vapor in the mixture to liquid gasoline but not sufficient to liquify the inert gas in the mixture; (e) separating the condensed liquid gasoline from the inert gas; and delivering the condensed liquid gasoline to a remote location for subsequent use.

Lievens, G.; Tiberi, T.P.

1993-06-22T23:59:59.000Z

286

Recovery | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SREL ReprintsHeaviestRecoveryRecovery |

287

Road to Recovery: Bringing Recovery to Small Town America  

ScienceCinema (OSTI)

The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

Nettamo, Paivi

2012-06-14T23:59:59.000Z

288

Hazardous and Radioactive Mixed Waste  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

1982-12-31T23:59:59.000Z

289

Radioactive waste management in the former USSR. Volume 3  

SciTech Connect (OSTI)

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01T23:59:59.000Z

290

The Bayo Canyon/radioactive lanthanum (RaLa) program  

SciTech Connect (OSTI)

LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3 miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.

Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

1996-04-01T23:59:59.000Z

291

Bioindicators for Monitoring Radioactive Pollution of the  

E-Print Network [OSTI]

* IK s Dfc2looX|o Risø-R-443 Bioindicators for Monitoring Radioactive Pollution of the Marine-R-443 BIOINDICATORS FOR MONITORING RADIOACTIVE POLLUTION OF THE MARINE ENVIRONMENT Experiments Dahlgaard Abstract. Mussels (Mytilus edulis) are globally used as bio- indicators for pollution of coastal

292

4. Nuclei and Radioactivity Paradoxes and Puzzles  

E-Print Network [OSTI]

, and Firearms tests wine, gin, whisky, and vodka for radioactivity. If the product does not have sufficient. The key feature of radioactivity that makes it so fascinating is that the energy released is enormous-- at least when compared to typical chemical energies. The typical energy release in the explosion of one

Browder, Tom

293

Radioactivity in Food and the Environment, 2004  

E-Print Network [OSTI]

Radioactivity in Food and the Environment, 2004 RIFE - 10 2005 #12;Food Standards Agency Emergency Planning, Radiation and Incidents Division Aviation House 125 Kingsway London WC2B 6NH RadioactivityinFoodandtheEnvironment,2004 Scottish Environment ProtectionAgency Radioactive Substances Unit Erskine Court The Castle

294

Radioactivity in Food and the Environment, 2002  

E-Print Network [OSTI]

Radioactivity in Food and the Environment, 2002 RIFE - 8 2003 #12;1 ENVIRONMENT AGENCY ENVIRONMENT AND HERITAGE SERVICE FOOD STANDARDS AGENCY SCOTTISH ENVIRONMENT PROTECTION AGENCY Radioactivity in Food and the Environment, 2002 RIFE - 8 October 2003 #12;2 This report was compiled by the Centre for Environment

295

Rev August 2006 Radiation Safety Manual Section 14 Radioactive Waste  

E-Print Network [OSTI]

Rev August 2006 Radiation Safety Manual Section 14 ­ Radioactive Waste Page 14-1 Section 14 Radioactive Waste Contents A. Proper Collection, Disposal, and Packaging and Putrescible Animal Waste.........................14-8 a. Non-Radioactive Animal Waste

Wilcock, William

296

Apparatus and method for radioactive waste screening  

DOE Patents [OSTI]

An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

2012-09-04T23:59:59.000Z

297

Thermal treatment of organic radioactive waste  

SciTech Connect (OSTI)

The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste.

Chrubasik, A.; Stich, W. [NUKEM GmbH, Alzenau (Germany)

1993-12-31T23:59:59.000Z

298

Biosurfactant and enhanced oil recovery  

DOE Patents [OSTI]

A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

1985-06-11T23:59:59.000Z

299

Absolute Time Radiometric Dating: the source  

E-Print Network [OSTI]

Absolute Time Radiometric Dating: the source of the dates on the Geologic Time Scale #12 as an element changes to another element, e.g. uranium to lead. · The parent element is radioactive · Carbon-14, C14 Nitrogen-14, N14 · Uranium-235, U235 Lead-207, Pb207 · Potassium-40, K40 Argon-40, Ar40

Kammer, Thomas

300

Department of Energy Recovery Act Investment in Biomass Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery...

302

Department of Energy Completes Five Recovery Act Projects - Moves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Five Recovery Act Projects - Moves Closer to Completing Recovery Act Funded Work at Oak Ridge Site Department of Energy Completes Five Recovery Act Projects - Moves Closer to...

303

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

304

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

305

Low-level radioactive mixed waste land disposal facility -- Permanent disposal  

SciTech Connect (OSTI)

Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 {times} 10{sup {minus}7} cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination.

Erpenbeck, E.G.; Jasen, W.G.

1993-03-01T23:59:59.000Z

306

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

307

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network [OSTI]

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery...

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

308

Automated intrusion recovery for web applications  

E-Print Network [OSTI]

In this dissertation, we develop recovery techniques for web applications and demonstrate that automated recovery from intrusions and user mistakes is practical as well as effective. Web applications play a critical role ...

Chandra, Ramesh, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

309

HVAC Energy Recovery Design and Economic Evaluation  

E-Print Network [OSTI]

ENRECO has prepared this paper on HVAC energy recovery to provide the engineer with an overview of the design engineering as well as the economic analysis considerations necessary to evaluate the potential benefits of energy recovery....

Kinnier, R. J.

1979-01-01T23:59:59.000Z

310

2010 Annual Planning Summary for Civilian Radioactive Waste Management...  

Broader source: Energy.gov (indexed) [DOE]

Civilian Radioactive Waste Management (CRWM) 2010 Annual Planning Summary for Civilian Radioactive Waste Management (CRWM) Annual Planning Summaries briefly describe the status of...

311

Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy...  

Broader source: Energy.gov (indexed) [DOE]

Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report U.S....

312

Office of Civilian Radioactive Waste Management-Quality Assurance...  

Office of Environmental Management (EM)

Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and...

313

Lab obtains approval to begin design on new radioactive waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New radioactive waste staging facility Lab obtains approval to begin design on new radioactive waste staging facility The 4-acre complex will include multiple staging buildings...

314

Letter to Congress RE: Office of Civilian Radioactive Waste Management...  

Broader source: Energy.gov (indexed) [DOE]

to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report Letter to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial...

315

Radioactive Material Use at the EMSL Radiochemistry Annex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dispersible radioactive material must be placed in rigid, leak- tight inner containers (e.g., durable screw-top sample jars). Non-dispersible radioactive material may...

316

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste....

317

Portsmouth Site Delivers First Radioactive Waste Shipment to...  

Office of Environmental Management (EM)

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

318

RESRAD Computer Code- Evaluation of Radioactively Contaminated Sites  

Broader source: Energy.gov [DOE]

The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989.

319

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

320

DE-AI26-06NT42878 - Bottom Source Task | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bottom Source Task Unconventional Resources Enhanced Oil Recovery Deepwater Tech Methane Hydrate Gas Hydrate Research in Deep Sea Sediments DE-AI26-06NT42878 - Bottom Source Task...

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Recovery Act | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Launches theResidentialRecovery Act State SummariesPast

322

State Agency Recovery Act Funding  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview *Agency Recovery Act Funding .Alabama

323

Small plasma focus as neutron pulsed source for nuclides identification  

SciTech Connect (OSTI)

In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the “in situ” analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

Milanese, M.; Moroso, R.; Barbaglia, M. [Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CONICET-UNCPBA), Pinto 399, Tandil 7000, Buenos Aires (Argentina) [Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CONICET-UNCPBA), Pinto 399, Tandil 7000, Buenos Aires (Argentina); Universidad del Centro de la Provincia de Buenos Aires (CONICET-UNCPBA), Pinto 399, Tandil 7000, Buenos Aires (Argentina); Niedbalski, J. [CONICET(Consejo Nacional de Investigaciones Científicas y Técnicas), Rivadavia 1917, Buenos Aires (Argentina)] [CONICET(Consejo Nacional de Investigaciones Científicas y Técnicas), Rivadavia 1917, Buenos Aires (Argentina); Mayer, R. [CNEA (Comisión Nacional de Energía Atómica), Av. Bustillo 9500, San Carlos de Bariloche, Rio Negro (Argentina)] [CNEA (Comisión Nacional de Energía Atómica), Av. Bustillo 9500, San Carlos de Bariloche, Rio Negro (Argentina); Castillo, F. [UNAM (Universidad Nacional Autónoma de México)–Circuito Exterior s/n, Ciudad Universitaria, Delg. Coyoacán, P.O. Box 70-543, México DF (Mexico)] [UNAM (Universidad Nacional Autónoma de México)–Circuito Exterior s/n, Ciudad Universitaria, Delg. Coyoacán, P.O. Box 70-543, México DF (Mexico); Guichón, S. [Universidad del Centro de la Provincia de Buenos Aires (CONICET-UNCPBA), Pinto 399, Tandil 7000, Buenos Aires (Argentina)] [Universidad del Centro de la Provincia de Buenos Aires (CONICET-UNCPBA), Pinto 399, Tandil 7000, Buenos Aires (Argentina)

2013-10-15T23:59:59.000Z

324

Recovery Act ? An Interdisciplinary Program for Education and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Act An Interdisciplinary Program for Education and Outreach in Transportation Electrification Recovery Act An Interdisciplinary Program for Education and...

325

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric...

326

Kraft recovery boiler physical and chemical processes  

SciTech Connect (OSTI)

The focus of this book is on the recent research into the physical and chemical processes occurring in and around a black liquor recovery boiler. Almost all of the detailed technical information in this book has previously appeared in the open literature. The purpose here is not to present research for the first time, but to present it in a context of the other processes occurring in recovery boilers. Topics covered include: general characteristics of recovery boilers; black liquor thermal and transport properties; black liquor droplet formation and combustion; recovery boiler char bed processes; flow and mixing in Kraft recovery boilers; entrainment and carryover in recovery furnaces; fume formation and dust chemistry; deposits and boiler plugging; and recovery boiler thermal performance. 257 refs., 102 figs., 38 tabs.

Adams, T.N.; Frederick, W.J. (Adams (Terry N.), Tacoma, WA (USA); Oregon State Univ., Corvallis, OR (USA). Dept. of Chemical Engineering)

1988-01-01T23:59:59.000Z

327

Principles for Sampling Airborne Radioactivity from Stacks  

SciTech Connect (OSTI)

This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

Glissmeyer, John A.

2010-10-18T23:59:59.000Z

328

1969 AUDIT OF SRP RADIOACTIVE WASTE  

Office of Scientific and Technical Information (OSTI)

969 AUDIT OF SRP RADIOACTIVE WASTE bY C . Ashley A p r i l 1970 Radiological Sciences Division Savannah River Laboratory E. 1. du Pont de Nemours & Co. Aiken, South Carolina 29801...

329

Radioactive materials shipping cask anticontamination enclosure  

DOE Patents [OSTI]

An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

Belmonte, Mark S. (Irwin, PA); Davis, James H. (Pittsburgh, PA); Williams, David A. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

330

Nondestructive assay of boxed radioactive waste  

SciTech Connect (OSTI)

Solid radioactive waste must be classified before treatment and disposal methods can be chosen. After treatment and before disposal, the radionuclide contents of a container must be certified. This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford Company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

Gilles, W.P.; Jasen, W.G.; Roberts, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-31T23:59:59.000Z

331

Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)  

SciTech Connect (OSTI)

The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.

Jantzen, Carol M. [Savannah River National Lab., Aiken SC (United States); Lee, William E. [Imperial College, London (United Kingdom). Dept. of Materials; Ojovan, Michael I. [Univ. of Sheffield (United Kingdom). Dept. of Materials Science and Engineering

2012-10-19T23:59:59.000Z

332

Radioactivity and X-rays Applications and health effects  

E-Print Network [OSTI]

as the release of radioactivity from reactor accidents and fallout from nuclear explosions in the atmosphereRadioactivity and X-rays Applications and health effects by Thormod Henriksen #12;Preface ­ 7 Chapter 2. What is radioactivity page 8 ­ 27 Chapter 3. Radioactive decay laws page 28 ­ 35

Sahay, Sundeep

333

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

334

Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216  

SciTech Connect (OSTI)

Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq)] [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)] [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

2013-07-01T23:59:59.000Z

335

Environmental regulations handbook for enhanced oil recovery. Final report  

SciTech Connect (OSTI)

A guide to environmental laws and regulations which have special significance for enhanced oil recovery (EOR) is presented. The Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, Resource Conservation and Recovery Act, federal regulations, and state regulations are discussed. This handbook has been designed as a planning tool and a convenient reference source. The 16 states included comprise the major oil-producing states in various regions of the state. The major topics covered are: general guidelines for complying with environmental laws and regulations; air pollution control; water pollution control; protecting drinking water: underground injection control; hazardous waste management; and federal laws affecting siting or operation of EOR facilities. (DMC)

Wilson, T.D.

1980-08-01T23:59:59.000Z

336

Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

NSTec Environmental Management

2008-01-01T23:59:59.000Z

337

Texas State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

Not Available

1981-08-01T23:59:59.000Z

338

Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469  

SciTech Connect (OSTI)

The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

339

REMOTE DETECTION OF RADIOACTIVE PLUMES USING MILLIMETER WAVE TECHNOLOGY  

SciTech Connect (OSTI)

The reprocessing of spent nuclear fuel, a common method for manufacturing weapons-grade special nuclear materials, is accompanied by the release of fi ssion products trapped within the fuel. One of these fi ssion products is a radioactive isotope of Krypton (Kr-85); a pure ?- emitter with a half-life of 10.72 years. Due to its chemical neutrality and relatively long half life, nearly all of the Kr-85 is released into the surrounding air during reprocessing, resulting in a concentration of Kr-85 near the source that is several orders of magnitude higher than the typical background (atmospheric) concentrations. This high concentration of Kr-85 is accompanied by a proportionately high increase in air ionization due to the release of beta radiation from Kr-85 decay. Millimeter wave (MMW) sensing technology can be used to detect the presence of Kr-85 induced plumes since a high concentration of ions in the air increases the radar cross section due to a combination of atmospheric phenomena. Possible applications for this technology include the remote sensing of reprocessing activities across national borders bolstering global anti-proliferation initiatives. The feasibility of using MMW radar technology to uniquely detect the presence of Kr-85 can be tested using commercial ion generators or sealed radioactive sources in the laboratory. In this paper we describe our work to derive an ion dispersion model that will describe the spatial distribution of ions from Kr-85 and other common lab sources. The types and energies of radiation emitted by isotopes Co-60 and Cs-137 were researched, and these parameters were incorporated into these dispersion models. Our results can be compared with the results of MMW detection experiments in order to quantify the relationship between radar cross section and air ionization as well as to further calibrate the MMW detection equipment.

Barnowski, R.; Chien; H.; Gopalsami, N.

2009-01-01T23:59:59.000Z

340

The Hanford Story: Recovery Act  

Broader source: Energy.gov [DOE]

This is the third chapter of The Hanford Story. This chapter is a tribute to the thousands of workers and representatives of regulatory agencies, neighboring states, Tribes, stakeholders, and surrounding communities who came together to put stimulus funding to work at Hanford. The video describes how the Department of Energy and its contractors turned a nearly $2 billion investment of American Recovery and Reinvestment Act funding in 2009 into nearly $4 billion worth of environmental cleanup work over the past two years. At the same time, Hanford workers have reduced the cleanup footprint of the Hanford Site by more than half (586 square miles to 241 sq. mi. through August -- 59 percent).

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1995-09-01T23:59:59.000Z

342

Public involvement in radioactive waste management decisions  

SciTech Connect (OSTI)

Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

NONE

1994-04-01T23:59:59.000Z

343

Recovery from chemical, biological, and radiological incidents :  

SciTech Connect (OSTI)

To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

2012-06-01T23:59:59.000Z

344

CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT  

SciTech Connect (OSTI)

The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

Marra, J.

2010-05-05T23:59:59.000Z

345

Fire hazard analysis of the radioactive mixed waste trenchs  

SciTech Connect (OSTI)

This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

1995-04-27T23:59:59.000Z

346

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect (OSTI)

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

347

Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513  

SciTech Connect (OSTI)

The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

348

CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

349

Clean Cities Recovery Act: Vehicle & Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

project through collection of vehicle, infrastructure and training information. RELEVANCE Alternative Fuel & Advance Technology Vehicles Pilot Program Clean Cities Recovery Act:...

350

American Recovery and Reinvestment Act, Financial Assistance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- ARRAAttachment3.rtf FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) Financial Assistance Funding Opportunity Announcement...

351

Faces of the Recovery Act: 1366 Technologies  

Broader source: Energy.gov [DOE]

LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

352

Weatherization Formula Grants - American Recovery and Reinvestment...  

Energy Savers [EERE]

Act of 2009 waprecoveryactfoa.pdf More Documents & Publications Microsoft Word - nDE-FOA-0000051.rtf Weatherization Formula Grants - American Recovery and Reinvestment Act...

353

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

354

Recovery Act Progress Update: Reactor Closure Feature  

SciTech Connect (OSTI)

A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

Cody, Tom

2010-01-01T23:59:59.000Z

355

Recovery Act Progress Update: Reactor Closure Feature  

ScienceCinema (OSTI)

A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

Cody, Tom

2012-06-14T23:59:59.000Z

356

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields...

357

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect (OSTI)

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01T23:59:59.000Z

358

Control system for the Holifield Radioactive Ion Beam Facility  

SciTech Connect (OSTI)

A new accelerator control system is being implemented as part of the development of the Holifield Radioactive Ion Beam Facility (HRIBF), a first generation radioactive ion beam (RIB) facility. The pre- existing accelerator control systems are based on 1970`s technology and addition or alteration of controls is cumbersome and costly. A new, unified control system for the cyclotron and tandem accelerators, the RIB injector, ion sources, and accelerator beam lines is based on a commercial product from Vista Control Systems, Inc. Several other accelerator facilities, as well as numerous industrial sites, are now using this system. The control system is distributed over a number of computers which communicate over Ethernet and is easily extensible. Presently, implementation at the HRIBF is based on VAX/VMS, VAX/ELN, VME, and Allen-Bradley PLC5 programmable logic controller architectures. Expansion to include UNIX platforms and CAMAC hardware support is planned. Operator interface is via X- terminals. The system has proven to be quite powerful, yet is has been easy to implement with a small staff. A Vista users group has resulted in shared software to implement specific controls. This paper details present system features and future implementations at the HRIBF.

Tatum, B.A.; Juras, R.C.; Meigs, M.J.

1995-12-31T23:59:59.000Z

359

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect (OSTI)

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

360

2003 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site, Nevada Test Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2003 groundwater sampling results from the Area 5 Radioactive Waste Management Site, Nevada Test Site. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semi-annually for the required analytes: pH, specific conductance, total organic carbon (TOC), total organic halides (TOX), tritium, and major cations/anions. Results from all samples collected in 2003 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 Radioactive Waste Management Site and confirm that any previous detections of TOC and TOX were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevations. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes a Cumulative Chronology for the Area 5 Radioactive Waste Management Site Groundwater Monitoring Program, a brief description of the site hydrogeology, and the current groundwater sampling procedure.

Bechtel Nevada

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Radioactive tank waste remediation focus area  

SciTech Connect (OSTI)

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

NONE

1996-08-01T23:59:59.000Z

362

Wide range radioactive gas concentration detector  

DOE Patents [OSTI]

A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

Anderson, David F. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

363

Completion of the Radioactive Materials Packaging Handbook  

SciTech Connect (OSTI)

The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance, which will serve as a replacement for the Cask Designers Guide (Shappert, 1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US Department of Energy (DOE) and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials.

Shappert, L.B.

1998-02-01T23:59:59.000Z

364

INT. J. CONTROL, 1989, VOL. 49, NO. 4, 1249 1271 Loop recovery via Hm/* sensitivity recovery  

E-Print Network [OSTI]

;1250 J. B. Moore and T T Tay context of Anderson and Moore ( 1971 ) and Kwakernaak and Sivan ( 1972INT. J. CONTROL, 1989, VOL. 49, NO. 4, 1249­ 1271 Loop recovery via Hm/* sensitivity recovery J. B. MOOREt and T. T. TAY~ Loop transfer recovery (LTR) techniques are known to enhance the input or output

Moore, John Barratt

365

Anomaly metrics to differentiate threat sources from benign sources in primary vehicle screening.  

SciTech Connect (OSTI)

Discrimination of benign sources from threat sources at Port of Entries (POE) is of a great importance in efficient screening of cargo and vehicles using Radiation Portal Monitors (RPM). Currently RPM's ability to distinguish these radiological sources is seriously hampered by the energy resolution of the deployed RPMs. As naturally occurring radioactive materials (NORM) are ubiquitous in commerce, false alarms are problematic as they require additional resources in secondary inspection in addition to impacts on commerce. To increase the sensitivity of such detection systems without increasing false alarm rates, alarm metrics need to incorporate the ability to distinguish benign and threat sources. Principal component analysis (PCA) and clustering technique were implemented in the present study. Such techniques were investigated for their potential to lower false alarm rates and/or increase sensitivity to weaker threat sources without loss of specificity. Results of the investigation demonstrated improved sensitivity and specificity in discriminating benign sources from threat sources.

Cohen, Israel Dov; Mengesha, Wondwosen

2011-09-01T23:59:59.000Z

366

Heat Source Identification Based on L1 Constrained Minimization  

E-Print Network [OSTI]

problem, which was shown to be very efficient for sparse recovery. For the heat source identificationHeat Source Identification Based on L1 Constrained Minimization Yingying Li Stanley Osher Richard to the heat equation is considered. The initial data is assumed to be a sum of an unknown but finite number

Soatto, Stefano

367

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

Anthony R. Kovscek; William E. Brigham

1999-06-01T23:59:59.000Z

368

Disposal of radioactive waste from nuclear research facilities  

E-Print Network [OSTI]

Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

Maxeiner, H; Kolbe, E

2003-01-01T23:59:59.000Z

369

Pump station for radioactive waste water  

DOE Patents [OSTI]

A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

2003-11-18T23:59:59.000Z

370

Method for enhanced oil recovery  

DOE Patents [OSTI]

The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

1980-01-01T23:59:59.000Z

371

Radioactivity and health: A history  

SciTech Connect (OSTI)

This book is designed to be primarily a history of research facts, measurements, and ideas and the people who developed them. ''Research'' is defined very broadly to include from bench-top laboratory experiments to worldwide environmental investigations. The book is not a monograph or a critical review. The findings and conclusions are presented largely as the investigators saw and reported them. Frequently, the discussion utilizes the terminology and units of the time, unless they are truly antiquated or potentially unclear. It is only when the work being reported is markedly iconoclastic or obviously wrong that I chose to make special note of it or to correct it. Nevertheless, except for direct quotations, the language is mine, and I take full responsibility for it. The working materials for this volume included published papers in scientific journals, books, published conferences and symposia, personal interviews with over 100 individuals, some of them more than once (see Appendix A), and particularly for the 1940--1950 decade and for the large government-supported laboratories to the present day, ''in-house'' reports. These reports frequently represent the only comprehensive archive of what was done and why. Unfortunately, this source is drying up because of storage problems and must be retrieved by ever more complex and inconvenient means. For this reason, special efforts have been taken to review and document these sources, though even now some sections of the field are partially inaccessible. Nevertheless, the volume of all materials available for this review was surprisingly large and the quality much better than might have been expected for so complex and disparate a fields approached under conditions of considerable urgency.

Stannard, J.N.; Baalman, R.W. Jr. (ed.)

1988-10-01T23:59:59.000Z

372

Time-lapse gravity monitoring of an aquifer storage recovery project in Leyden, Colorado Kristofer Davis*  

E-Print Network [OSTI]

on using time-lapse micro-gravity surveying to monitor an aquifer storage recovery project. An abandoned coal mine is being developed into an underground water reservoir in Leyden, Colorado. Excess water from surface sources is poured into the reservoir during winter and then retrieved for use in the summer

373

Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat  

E-Print Network [OSTI]

The recovery and reuse of industrial waste heat may be limited if an energy source cannot be fully utilized in an otherwise available out of phase or unequal capacity end-use process. This paper summarizes the results of a technical and economic...

McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

1982-01-01T23:59:59.000Z

374

DESIGN FOR A 1.3 MW, 13 MEV BEAM DUMP FOR AN ENERGY RECOVERY LINAC*  

E-Print Network [OSTI]

an Energy Recovery Linac (ERL) is dumped at an energy close to the injection energy. This energy is chosen a 100 mA average current ERL as a synchrotron radiation source. The 13 MeV optimum injection energy resulting from the abrupt thermal cycles associated with beam trips is a potential failure mechanism. We

375

The Role of Concrete Marine Structures in the Recovery of Energy and Natural Resources from the  

E-Print Network [OSTI]

The Role of Concrete Marine Structures in the Recovery of Energy and Natural Resources from Concrete materials are derived from some of the most abundant and economically available sources on this planet. Recent advancements in the development of concrete technology related to the durability, strength

Frandsen, Jannette B.

376

Enhanced oil recovery using hydrogen peroxide injection  

SciTech Connect (OSTI)

NOVATEC received an US Patent on a novel method to recovery viscous oil by hydrogen peroxide injection. The process appears to offer several significant improvements over existing thermal methods of oil recovery. Tejas joined NOVATEC to test the process in the laboratory and to develop oil field applications and procedures.

Moss, J.T. Jr.; Moss, J.T.

1995-02-01T23:59:59.000Z

377

Thermal recovery of oil and bitumen  

SciTech Connect (OSTI)

This book is organized into the following chapters: Introduction to Thermal Recovery; Conduction of Heat Within Solids; Convective Heating within Reservoirs; Steamfloodings; The Displacement of Heavy Oil; Cyclic Steam Simulation; Steam-Assisted Gravity Drainage; Steam Recovery Equipment and Facilities; and In Situ Combustion.

Butler, R.M. (Dept. of Chemical and Petroleum Engineering, Univ. of Calgary, Calgary, Alberta (CA))

1991-01-01T23:59:59.000Z

378

Faces of the Recovery Act: Sun Catalytix  

ScienceCinema (OSTI)

BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

Nocera, Dave

2013-05-29T23:59:59.000Z

379

Optimize carbon dioxide sequestration, enhance oil recovery  

E-Print Network [OSTI]

- 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

380

The effects of using Cesium-137 teletherapy sources as a radiological weapon (dirty bomb)  

E-Print Network [OSTI]

While radioactive sources used in medical diagnosis do not pose a great security risk due to their low level of radioactivity, therapeutic sources are extremely radioactive and can presumably be used as a radiological weapon. Cobalt-60 and Cesium-137 sources are the most common ones used in radiotherapy with over 10,000 of such sources currently in use worldwide, especially in the developing world, which cannot afford modern accelerators. The present study uses computer simulations to investigate the effects of using Cesium-137 sources from teletherapy devices as a radiological weapon. Assuming a worst-case terrorist attack scenario, we estimate the ensuing cancer mortality, land contamination, evacuation area, as well as the relevant evacuation, decontamination, and health costs in the framework of the linear risk model. The results indicate that an attack with a Cesium-137 dirty bomb in a large metropolitan city (especially one that would involve several teletherapy sources) although would not cause any sta...

Liolios, Theodore

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Review of {sup 222}Rn in natural gas produced from unconventional sources  

SciTech Connect (OSTI)

A review of the literature on trace radioactivity in natural gas and natural gas products has been performed and the consequent radioactivity concentrations and dose rates due to natural radioactive elements in natural gas produced from Devonian shale wells, western tight gas sands, geo-pressurized aquifiers and coal beds have been studied. Preliminary data on {sup 222}Rn concentrations from these energy sources fall within the range observed for more conventional sources. Gas produced from reservoirs with higher than average natural /sup 238/U higher than average levels of {sup 222}Rn. Massive fracturing techniques do not appear to raise the relative concentration of radon in natural gas.

Gogolak, C.V.

1980-11-01T23:59:59.000Z

382

Determination of Dose from the Disposal of Radioactive Waste Related with TENORM using Residual Radioactivity (RESRAD) Monte Carlo Code  

SciTech Connect (OSTI)

The working procedures in the RESRAD for specific evaluations of environmental pollutants are briefly mentioned. The risk of human health associated with Naturally Occurring Radioactive Materials (NORM) who are working in the Malaysian oil and gas industry are analyzed. The sources of NORM and Technologically Enhanced NORM (TENORM) in the oil and gas industry are described. Some measurements for the external and internal effective dose equivalent on the workers will be described. These data are entered into the RESRAD software program and the output reports are taken. Long-term effects of TENORM to the industrial workers are also discussed with graphical illustrations. These results are compared with previous research work within the same field to validate and verify.

Lwin, Maung Tin Moe; Kassim, Hassan Abu; Amin, Yusoff Mohd. [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lampur (Malaysia)

2008-05-20T23:59:59.000Z

383

Recovery Act Progress Update: HWCTR Tapping  

ScienceCinema (OSTI)

Closure activity at the half-century old heavy water components reactor. Decommissioning is kicked off with the grouting of the basin to further protect the environment from radioactive waste.

Tire, Brian

2012-06-14T23:59:59.000Z

384

Recovery Act Progress at Idaho National Lab  

Broader source: Energy.gov [DOE]

North Wind Services will be constructing several new structures at the INL Radioactive Waste Management Complex -- facilities that will provide important protection from the elements and minimize the spread of contamination during buried waste excavation, retrieval and packaging operations.

385

Recovery Act Progress Update: HWCTR Tapping  

SciTech Connect (OSTI)

Closure activity at the half-century old heavy water components reactor. Decommissioning is kicked off with the grouting of the basin to further protect the environment from radioactive waste.

Tire, Brian

2010-01-01T23:59:59.000Z

386

SciTech Connect: Radioactive decay data tables  

Office of Scientific and Technical Information (OSTI)

Radioactive decay data tables Citation Details In-Document Search Title: Radioactive decay data tables You are accessing a document from the Department of Energy's (DOE) SciTech...

387

Annual radioactive waste tank inspection program - 1996  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1997-04-01T23:59:59.000Z

388

Annual Radioactive Waste Tank Inspection Program - 1998  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1999-10-27T23:59:59.000Z

389

Annual radioactive waste tank inspection program - 1999  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

Moore, C.J.

2000-04-14T23:59:59.000Z

390

Chapter 25: Radioactivity, Nuclear Processes, and Applications  

E-Print Network [OSTI]

Chapter 25: Radioactivity, Nuclear Processes, and Applications 1 The discovery of nuclear chain only must do everything in our power to safeguard against its abuse. ~ Albert Einstein Did you read · Contains positively charged protons. · Held together by the Nuclear Strong ForceNuclear Strong Force. James

Hart, Gus

391

Physics with energetic radioactive ion beams  

SciTech Connect (OSTI)

Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized.

Henning, W.F.

1996-12-31T23:59:59.000Z

392

Method for decontamination of radioactive metal surfaces  

DOE Patents [OSTI]

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, L.A.

1996-08-13T23:59:59.000Z

393

TRESS: A Transportable Radioactive Effluent Solidification System  

SciTech Connect (OSTI)

This paper describes an attempt to produce a totally new concept for a transportable plant capable of encapsulating radioactive sludges and ion exchange resins, employing recently developed dewatering and mixing techniques. One of the prime aims of the investigation was to produce a plant which could handle both beta/gamma and alpha-bearing materials.

Sims, J. [BBN Environmental Management Ltd., Bramhall (United Kingdom). WasteChem Div.; Schneider, K. [NUKEM GmbH, Alzenau (Germany)

1993-12-31T23:59:59.000Z

394

Canister arrangement for storing radioactive waste  

DOE Patents [OSTI]

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

1982-01-01T23:59:59.000Z

395

Canister arrangement for storing radioactive waste  

DOE Patents [OSTI]

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, D.K.; Van Cleve, J.E. Jr.

1980-04-23T23:59:59.000Z

396

Method for decontamination of radioactive metal surfaces  

DOE Patents [OSTI]

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, Lane A. (Richland, WA)

1996-01-01T23:59:59.000Z

397

An algorithm for recovery of distributed applications with directed dependencies  

E-Print Network [OSTI]

recovery. The thesis proposes a distributed algorithm which coordinates management entities, called agents, to monitor the managed resources (which have directed failure and recovery dependencies among them) and perform recovery actions once failures have...

Yang, Jiantian

1996-01-01T23:59:59.000Z

398

Hanford Information Related to the American Recovery and Reinvestment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act of 2009 Recovery Act of 2009 Recovery Act of 2009 Hanford ARRA FAQ Hanford ARRA Weekly Reports Hanford ARRA News Hanford ARRA Photogallery Hanford ARRA Videos Hanford...

399

Radioactive Waste Management in Central Asia - 12034  

SciTech Connect (OSTI)

After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so called 'Threat assessment' in each CA country which revealed additional problems in the existing regulatory documents beyond those described at the start of our ongoing bilateral projects in Kazakhstan, Kirgizistan Tajikistan and Uzbekistan. (authors)

Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid [Norwegian Radiation Protection Authority (Norway)

2012-07-01T23:59:59.000Z

400

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network [OSTI]

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MANAGEMENT OF SOLID RADIOACTIVE WASTE Revised August 2008  

E-Print Network [OSTI]

k MANAGEMENT OF SOLID RADIOACTIVE WASTE Revised August 2008 Safety Services #12;MANAGEMENT OF SOLID RADIOACTIVE WASTES Page Minimisation 1 Streaming 2 Procedures 2 Keeping track of the activities placed for Appendices 4 and 5 22 Appendix 10 Flow chart of waste-streaming 23 #12;1 MANAGEMENT OF SOLID RADIOACTIVE

Davidson, Fordyce A.

402

Survey of National Programs for Managing High-Level Radioactive  

E-Print Network [OSTI]

Survey of National Programs for Managing High-Level Radioactive Waste and Spent Nuclear Fuel-Level Radioactive Waste and Spent Nuclear Fuel A Report to Congress and the Secretary of Energy October 2009 #12 Safety (Germany) Peter De Preter: National Agency for Radioactive Waste and Enriched Fissile Materials

403

Film Badge Application Radioactive Material Package Receipt Log  

E-Print Network [OSTI]

;RADIOACTIVE MATERIAL PACKAGE RECEIPT LOG DATE: DELIVERED BY: AUTHORIZED BY: Contamination Check DPM/100 cm2APPENDIX A Film Badge Application Radioactive Material Package Receipt Log Radioactive Material Package Receipt Form (Off-Campus Locations) Radiation / Contamination Survey Form #12;PERSONNEL MONITORING

Slatton, Clint

404

August 2010 American Recovery and  

E-Print Network [OSTI]

project was narrowed to cover 1) the feasibility study for Ground Source Heat Pump (GSHP) system. The current proposed Heating, Ventilating and Air Conditioning (HVAC) system for the building heat pump systems to provide both space cooling and heating. The simulation result shows

Oak Ridge National Laboratory

405

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to...

406

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...  

Office of Environmental Management (EM)

50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of...

407

Energy Secretary Chu Announces $138 Million in Recovery Act Funding...  

Energy Savers [EERE]

38 Million in Recovery Act Funding for Environmental Cleanup in Ohio Energy Secretary Chu Announces 138 Million in Recovery Act Funding for Environmental Cleanup in Ohio March 31,...

408

Energy Secretary Chu Announces $148 million in Recovery Act Funding...  

Energy Savers [EERE]

48 million in Recovery Act Funding for Environmental Cleanup in New York Energy Secretary Chu Announces 148 million in Recovery Act Funding for Environmental Cleanup in New York...

409

Energy Secretary Chu Announces $384 Million in Recovery Act Funding...  

Energy Savers [EERE]

384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces 384 Million in Recovery Act Funding for Environmental Cleanup in New...

410

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

411

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

412

Recovery Act, Office of the Biomass Program,Funding Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

413

"Recovery Act: Training Program Development for Commercial Building...  

Broader source: Energy.gov (indexed) [DOE]

"Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning AgentsAuditors" "Recovery Act: Training...

414

addiction recovery principles: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

management, and recovery coaching helped, or are now helping, transform addiction treatment into a more person-centered, holistic, family-centered, and recovery-focused system...

415

Amino acid treatment enhances protein recovery from sediment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treatment enhances protein recovery from sediment and soils for metaproteomic studies . Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic...

416

Ab Initio Atomic Simulations of Antisite Pair Recovery in Cubic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atomic Simulations of Antisite Pair Recovery in Cubic Silicon Carbide. Ab Initio Atomic Simulations of Antisite Pair Recovery in Cubic Silicon Carbide. Abstract: The thermal...

417

Post-Shred Materials Recovery Technology Development and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration 2009 DOE Hydrogen Program and Vehicle...

418

Post-Shred Materials Recovery Technology Development and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Post-Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration Presentation from the U.S. DOE Office...

419

Vehicle Technologies Office: Materials for Energy Recovery Systems...  

Energy Savers [EERE]

Energy Recovery Systems and Controlling Exhaust Gases Vehicle Technologies Office: Materials for Energy Recovery Systems and Controlling Exhaust Gases The typical internal...

420

Department of Energy Issues Loan Guarantee Supported by Recovery...  

Office of Environmental Management (EM)

Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project September...

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Department of Energy Issues Loan Guarantee Supported by Recovery...  

Energy Savers [EERE]

Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada...

422

Mineral Recovery Creates Revenue Stream for Geothermal Energy...  

Energy Savers [EERE]

Mineral Recovery Creates Revenue Stream for Geothermal Energy Development Mineral Recovery Creates Revenue Stream for Geothermal Energy Development January 21, 2014 - 12:00am...

423

CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION...  

Broader source: Energy.gov (indexed) [DOE]

CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM This...

424

Treasury, Energy Surpass $1 Billion Milestone in Recovery Act...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Secretary Steven Chu hosted a group of clean energy developers and manufacturers at the White House to discuss how the American Recovery and Reinvestment Act (Recovery Act) is...

425

American Recovery and Reinvestment Act General Guidelines for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

White House American Recovery and Reinvestment Act General Guidelines for Emblem and Logo Applications Page 1 American Recovery and Reinvestment Act General Guidelines for...

426

High Efficiency Microturbine with Integral Heat Recovery - Presentatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery -...

427

FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act...  

Energy Savers [EERE]

FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated...

428

Office of Electricity Delivery and Energy Reliability Recovery...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Delivery and Energy Reliability Recovery Program Plan Office of Electricity Delivery and Energy Reliability Recovery Program Plan Microsoft Word - OE PSRP June 5 2009...

429

Recovery Act: Wind Energy Consortia between Institutions of Higher...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry A...

430

American Recovery & Reinvestment Act, ARRA, clean energy projects...  

Energy Savers [EERE]

Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA, clean...

431

abnormal metabolic recovery: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 140 Key recovery in a business environment Computer Technologies...

432

advanced secondary recovery: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 116 Key recovery in a business environment Computer Technologies...

433

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

434

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

435

President Obama Announces Over $467 Million in Recovery Act Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

436

President Obama Announces Over $467 Million in Recovery Act Funding...  

Energy Savers [EERE]

Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and...

437

Cumulative Federal Payments to OE Recovery Act Recipients, through...  

Broader source: Energy.gov (indexed) [DOE]

September 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through September 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through...

438

Cumulative Federal Payments to OE Recovery Act Recipients, through...  

Broader source: Energy.gov (indexed) [DOE]

3 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013. OE...

439

Cumulative Federal Payments to OE Recovery Act Recipients, through...  

Broader source: Energy.gov (indexed) [DOE]

4 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2014. OE ARRA...

440

Secretary Chu Announces More than $57 Million in Recovery Act...  

Broader source: Energy.gov (indexed) [DOE]

57 Million in Recovery Act Funding to Advance Smart Grid Development Secretary Chu Announces More than 57 Million in Recovery Act Funding to Advance Smart Grid Development July...

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Recovery Act Selections for Smart Grid Investment Grant Awards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated...

442

Synchrophasor Technologies and their Deployment in the Recovery...  

Energy Savers [EERE]

Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

443

Recovery Act Selections for Smart Grid Invesment Grant Awards...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July...

444

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

445

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

446

Energy Secretary Chu Announces $79 Million in Recovery Act Funding...  

Broader source: Energy.gov (indexed) [DOE]

79 Million in Recovery Act Funding for Environmental Cleanup in Kentucky Energy Secretary Chu Announces 79 Million in Recovery Act Funding for Environmental Cleanup in Kentucky...

447

LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...  

Energy Savers [EERE]

LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 mineral-webinar.pdf More Documents & Publications LOW...

448

Dynamic Recovery in Silicate-Apatite Structures Under Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery in Silicate-Apatite Structures Under Irradiation and Implications for Long-Term Immobilization of Actinides. Dynamic Recovery in Silicate-Apatite Structures Under...

449

Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and installed with DOE Recovery Act Funding. Blast Furnace Gas Recovery Boiler Provides Steam and Power at Steel Mill More Documents & Publications Capturing Waste Gas: Saves...

450

Laboratories for the 21st Century Best Practices: Energy Recovery...  

Broader source: Energy.gov (indexed) [DOE]

Laboratories for the 21st Century Best Practices: Energy Recovery in Laboratory Facilities Laboratories for the 21st Century Best Practices: Energy Recovery in Laboratory...

451

Audit Report: The Department of Energy's American Recovery and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy's American Recovery and Reinvestment Act - California State Energy Program Audit Report: The Department of Energy's American Recovery and Reinvestment Act - California...

452

E-Print Network 3.0 - agent-based national radioactive Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The United Nations Scientific... 's Guidelines for Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM). d National... Radioactive Materials Board on...

453

Comments on a paper tilted `The sea transport of vitrified high-level radioactive wastes: Unresolved safety issues`  

SciTech Connect (OSTI)

The cited paper estimates the consequences that might occur should a purpose-built ship transporting Vitrified High Level Waste (VHLW) be involved in a severe collision that causes the VHLW canisters in one Type-B package to spill onto the floor of a major ocean fishing region. Release of radioactivity from VHLW glass logs, failure of elastomer cask seals, failure of VHLW canisters due to stress corrosion cracking (SCC), and the probabilities of the hypothesized accident scenario, of catastrophic cask failure, and of cask recovery from the sea are all discussed.

Sprung, J.L.; McConnell, P.E.; Nigrey, P.J.; Ammerman, D.J. [and others

1997-05-01T23:59:59.000Z

454

REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION  

SciTech Connect (OSTI)

Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field using gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.

XU, X. George; Zhang, X.C.

2002-05-10T23:59:59.000Z

455

Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559  

SciTech Connect (OSTI)

Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

Schmitz, Mark A.; Crouse, Thomas N. [Savannah River Remediation, Aiken, South Carolina 29808 (United States)

2012-07-01T23:59:59.000Z

456

Civilian Radioactive Waste Management System Requirements Document  

SciTech Connect (OSTI)

The CRD addresses the requirements of Department of Energy (DOE) Order 413.3-Change 1, ''Program and Project Management for the Acquisition of Capital Assets'', by providing the Secretarial Acquisition Executive (Level 0) scope baseline and the Program-level (Level 1) technical baseline. The Secretarial Acquisition Executive approves the Office of Civilian Radioactive Waste Management's (OCRWM) critical decisions and changes against the Level 0 baseline; and in turn, the OCRWM Director approves all changes against the Level 1 baseline. This baseline establishes the top-level technical scope of the CRMWS and its three system elements, as described in section 1.3.2. The organizations responsible for design, development, and operation of system elements described in this document must therefore prepare subordinate project-level documents that are consistent with the CRD. Changes to requirements will be managed in accordance with established change and configuration control procedures. The CRD establishes requirements for the design, development, and operation of the CRWMS. It specifically addresses the top-level governing laws and regulations (e.g., ''Nuclear Waste Policy Act'' (NWPA), 10 Code of Federal Regulations (CFR) Part 63, 10 CFR Part 71, etc.) along with specific policy, performance requirements, interface requirements, and system architecture. The CRD shall be used as a vehicle to incorporate specific changes in technical scope or performance requirements that may have significant program implications. Such may include changes to the program mission, changes to operational capability, and high visibility stakeholder issues. The CRD uses a systems approach to: (1) identify key functions that the CRWMS must perform, (2) allocate top-level requirements derived from statutory, regulatory, and programmatic sources, and (3) define the basic elements of the system architecture and operational concept. Project-level documents address CRD requirements by further defining system element functions, decomposing requirements into significantly greater detail, and developing designs of system components, facilities, and equipment. The CRD addresses the identification and control of functional, physical, and operational boundaries between and within CRWMS elements. The CRD establishes requirements regarding key interfaces between the CRWMS and elements external to the CRWMS. Project elements define interfaces between CRWMS program elements. The Program has developed a change management process consistent with DOE Order 413.3-Change 1. Changes to the Secretarial Acquisition Executive and Program-level baselines must be approved by a Program Baseline Change Control Board. Specific thresholds have been established for identifying technical, cost, and schedule changes that require approval. The CRWMS continually evaluates system design and operational concepts to optimize performance and/or cost. The Program has developed systems analysis tools to assess potential enhancements to the physical system and to determine the impacts from cost saving initiatives, scientific and technological improvements, and engineering developments. The results of systems analyses, if appropriate, are factored into revisions to the CRD as revised Programmatic Requirements.

C.A. Kouts

2006-05-10T23:59:59.000Z

457

Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies  

SciTech Connect (OSTI)

This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost avoidance benefit associated to what would have been the added municipal (community) management costs involved with maintaining closed landfills. (2) With greater quantities of recovered material being returned to and integrated into manufacturing and the marketplace, reduced demand upon virgin wood sources could help lead the way to promoting improved relations and environmental balance between producers and consumers further expanding the value of our natural resource without adding environmental burden.

Auburn Machinery, Inc.

2004-07-15T23:59:59.000Z

458

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect (OSTI)

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

459

Recovery Act-Funded HVAC projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

460

Autonomous thruster failure recovery for underactuated spacecraft  

E-Print Network [OSTI]

Thruster failures historically account for a large percentage of failures that have occurred on orbit. Therefore, autonomous thruster failure detection, isolation, and recovery (FDIR) is an essential component to any robust ...

Pong, Christopher Masaru

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE  

SciTech Connect (OSTI)

Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

Paul Tran; 293 Highway 740; Baden, NC 28009

2013-02-28T23:59:59.000Z

462

Use Feedwater Economizers for Waste Heat Recovery  

SciTech Connect (OSTI)

This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

463

Industrial Heat Recovery with Organic Rankine Cycles  

E-Print Network [OSTI]

Rising energy costs are encouraging energy intensive industries to investigate alternative means of waste heat recovery from process streams. The use of organic fluids in Rankine cycles offers improved potential for economical cogeneration from...

Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

1982-01-01T23:59:59.000Z

464

Recovery Act-Funded Working Fluid Projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into working fluid technologies and applications. Projects funded by the...

465

Autonomous Thruster Failure Recovery for Underactuated Spacecraft  

E-Print Network [OSTI]

. Miller September 2010 SSL #13­10 #12;2 #12;Autonomous Thruster Failure Recovery for Underactuated Spacecraft Christopher Masaru Pong, David W. Miller September 2010 SSL #12­11 This work is based

466

Gravity Recovery and Interior Laboratory (GRAIL) Launch  

E-Print Network [OSTI]

Gravity Recovery and Interior Laboratory (GRAIL) Launch Press Kit/AUGUst 2011 #12;http of its four channels to AC-3, making each channel's secondary audio MPEG 1 Layer II. For digital downlink

467

Pennsylvania Solid Waste- Resource Recovery Development Act  

Broader source: Energy.gov [DOE]

This act promotes the construction and the application of solid waste disposal/processing and resource recovery systems that preserve and enhance the quality of air, water, and land resources. The...

468

Heat Recovery Design Considerations for Cogeneration Systems  

E-Print Network [OSTI]

The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

Pasquinelli, D. M.; Burns, E. D.

469

Recovery Act-Funded Water Heating Projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into water heating technologies and applications. Projects funded by the...

470

Recovery Act Worker Update: Mike Gunnels  

SciTech Connect (OSTI)

Mike Gunnels at the Savannah River Site tells how the Recovery Act got him out of unemployment and the benefits of training and teamwork in his new job with the Department of Energy.

Tire, Brian

2010-01-01T23:59:59.000Z

471

Energy Recovery from Potato Chip Fryers  

E-Print Network [OSTI]

The design, operating characteristics, and energy savings from an energy recovery system employed on a potato chip fryer which became operational in December, 1979, is discussed. The design incorporates a modification to an odor control system which...

McKee, H. B.; Kympton, H. W.; Arnold, J. W.; Paisan, J. J.

1980-01-01T23:59:59.000Z

472

An Introduction to Waste Heat Recovery  

E-Print Network [OSTI]

our dependence on petroleum-based fuels, paper, glass, and agricultural and automotive and hence improve our merchandise .trade balance. equipment industries have all had proven success with heat recovery projects. Solar, wind, geothermal, oil shale...

Darby, D. F.

473

Handbook of high-level radioactive waste transportation  

SciTech Connect (OSTI)

The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

Sattler, L.R.

1992-10-01T23:59:59.000Z

474

Nuisance Source Population Modeling for Radiation Detection System Analysis  

SciTech Connect (OSTI)

A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial source frequencies, but leave the task of estimating these frequencies for future work. Modeling of nuisance source populations is only useful if it helps in understanding detector system performance in real operational environments. Examples of previous studies in which nuisance source models played a key role are briefly discussed. These include screening of in-bound urban traffic and monitoring of shipping containers in transit to U.S. ports.

Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

2009-10-05T23:59:59.000Z

475

Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium  

SciTech Connect (OSTI)

On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

Lesperance, Ann M.

2008-06-30T23:59:59.000Z

476

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect (OSTI)

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

477

Radioactive hot cell access hole decontamination machine  

DOE Patents [OSTI]

Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

Simpson, William E. (Richland, WA)

1982-01-01T23:59:59.000Z

478

Pressure swing adsorption with intermediate product recovery  

SciTech Connect (OSTI)

A pressure swing adsorption process is used to achieve intermediate product recovery by the introduction of a gas displacement step before, simultaneous with or subsequent to pressure equalization between beds of a multi-bed adsorption system. A cocurrent depressurization step is then employed to achieve intermediate product recovery. A portion of said intermediate product or of the more readily adsorbable component recovered from a bed advantageously being employed to provide displacement gas for another bed in the adsorption system.

Fuderer, A.

1985-04-23T23:59:59.000Z

479

Modeling Dynamics of Post Disaster Recovery  

E-Print Network [OSTI]

Subject: Civil Engineering iii ABSTRACT Modeling Dynamics of Post Disaster Recovery. (August 2011) Ali Nejat, B.S., Zanjan University, Zanjan, Iran; M.S., Islamic Azad University, Tehran, Iran Chair of Advisory Committee: Dr. Ivan Damnjanovic... MODELING DYNAMICS OF POST DISASTER RECOVERY A Dissertation by ALI NEJAT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Nejat, Ali

2012-10-19T23:59:59.000Z

480

Faces of the Recovery Act: 1366 Technologies  

SciTech Connect (OSTI)

LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

Sachs, Ely; Mierlo, Frank van; Obama, Barack

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive source recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Exhaust Gas Energy Recovery Technology Applications  

SciTech Connect (OSTI)

Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

Wagner, Robert M [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

482

Biochemically enhanced oil recovery and oil treatment  

SciTech Connect (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

483

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

484

Faces of the Recovery Act: 1366 Technologies  

ScienceCinema (OSTI)

LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

Sachs, Ely; Mierlo, Frank van; Obama, Barack

2013-05-29T23:59:59.000Z

485

Recovery of tritium from tritiated molecules  

DOE Patents [OSTI]

This invention relates to the recovery of tritium from various tritiated molecules by reaction with uranium. More particularly, the invention relates to the recovery of tritium from tritiated molecules by reaction with uranium wherein the reaction is conducted in a reactor which permits the reaction to occur as a moving front reaction from the point where the tritium enters the reactor charged with uranium down the reactor until the uranium is exhausted.

Swansiger, W.A.

1984-10-17T23:59:59.000Z

486

Recovery Act State Summaries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Launches theResidentialRecovery Act State Summaries Recovery

487

Electrically Driven Technologies for Radioactive Aerosol Abatement  

SciTech Connect (OSTI)

The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

2003-01-28T23:59:59.000Z

488

Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

None

2010-01-01T23:59:59.000Z

489

LOWER COLUMBIA SALMON RECOVERY & SUBBASIN PLAN December 2004 RECOVERY GOALS 5-1  

E-Print Network [OSTI]

." This vision for recovery encompasses ESA de-listing goals in the sense that ESA de-listing could be achieved

490

Future radioactive liquid waste streams study  

SciTech Connect (OSTI)

This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

Rey, A.S.

1993-11-01T23:59:59.000Z

491

Geological problems in radioactive waste isolation  

SciTech Connect (OSTI)

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

492

Waste minimization for commercial radioactive materials users generating low-level radioactive waste  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

1991-07-01T23:59:59.000Z

493

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01T23:59:59.000Z

494

Evaluate Supply and Recovery of Woody Biomass for Energy  

E-Print Network [OSTI]

Biomass Recovery DataContrasting Woody Biomass Recovery Data Forest Biomass Supply in the Southeastern4/11/2011 1 Evaluate Supply and Recovery of Woody Biomass for Energy Production from Natural. Other studies of biomass supply have supply have assumedassumed a technical recovery rate

Gray, Matthew

495

Guidance document for prepermit bioassay testing of low-level radioactive waste  

SciTech Connect (OSTI)

In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

Anderson, S.L.; Harrison, F.L.

1990-11-01T23:59:59.000Z

496

TEI Piraeus students' knowledge on the beneficial applications of nuclear physics: Nuclear energy, radioactivity - consequences  

E-Print Network [OSTI]

The recent nuclear accident in Japan revealed the confusion and the inadequate knowledge of the citizens about the issues of nuclear energy, nuclear applications, radioactivity and their consequences In this work we present the first results of an ongoing study which aims to evaluate the knowledge and the views of Greek undergraduate students on the above issues. A web based survey was conducted and 131 students from TEI Piraeus answered a multiple choice questionnaire with questions of general interest on nuclear energy, nuclear applications, radioactivity and their consequences. The survey showed that students, like the general population, have a series of faulty views on general interest nuclear issues. Furthermore, the first results indicate that our educational system is not so effective as source of information on these issues in comparison to the media and internet

Pilakouta, Mirofora

2011-01-01T23:59:59.000Z

497

Cask for radioactive material and method for preventing release of neutrons from radioactive material  

SciTech Connect (OSTI)

A cask for radioactive material, such as nuclear reactor fuel or spent nuclear reactor fuel, includes a plurality of associated walled internal compartments for containing such radioactive material, with neutron absorbing material present to absorb neutrons emitted by the radioactive material, and a plurality of thermally conductive members, such as longitudinal copper or aluminum castings, about the compartment and in thermal contact with the compartment walls and with other such thermally conductive members and having thermal contact surfaces between such members extending, preferably radially, from the compartment walls to external surfaces of the thermally conductive members, which surfaces are preferably in the form of a cylinder. The ends of the shipping cask also preferably include a neutron absorber and a conductive metal covering to dissipate heat released by decay of the radioactive material. A preferred neutron absorber utilized is boron carbide, preferably as plasma sprayed with metal powder or as particles in a matrix of phenolic polymer, and the compartment walls are preferably of stainless steel, copper or other corrosion resistant and heat conductive metal or alloy. The invention also relates to shipping casks, storage casks and other containers for radioactive materials in which a plurality of internal compartments for such material, e.g., nuclear reactor fuel rods, are joined together, preferably in modular construction with surrounding heat conductive metal members, and the modules are joined together to form a major part of a finished shipping cask, which is preferably of cylindrical shape. Also within the invention are methods of safely storing radioactive materials which emit neutrons, while dissipating the heat thereof, and of manufacturing the present shipping casks.

Gaffney, M.F.; Shaffer, P.T.

1981-09-29T23:59:59.000Z

498

Resource Recovery Opportunities at America’s Water Resource Recovery Facilities  

Broader source: Energy.gov [DOE]

Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Resource Recovery Opportunities at America’s Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

499

Precious Metal Recovery from Fuel Cell MEA's  

SciTech Connect (OSTI)

One of the next-generation power sources is the proton exchange membrane (PEM) fuel cell, which runs on pure hydrogen or hydrogen-rich reformate. At the heart of the PEM fuel cell is a membrane electrode assembly (MEA). The MEA is a laminate composed of electrode layers sandwiched between outer layers, fabricated from either carbon fiber or fabric and which control the diffusion of reactant gases, and the inner polymer mebrane. Hydrogen is oxidized at the anode to form protons, which migrate through the membrane and react with oxygen at the cathode to form water. In this type of fuel cell, platinum catalyzes the reactions at both electrodes. Realization of a future that includes ubiquitous use of hydrogen fuel cell-powered vehicles will be partially contingent on a process for recycling components of the fuel cell membrane electrode assemblies. In aggregate, the platinum used for the fuel cell will represent a large pool of this precious metal, and the efficient recycling of Pt from MEA's will be a cost-enabling factor for success of this technology. Care must be taken in the reclamation process because of the presence of fluoropolymers in the MEA. While Pt is normally recovered with high yield, the combustion process commonly applied to remove an organic matrix will also liberate a large volume of HF, a gas which is both toxic and corrosive. Carbonyl fluoride, which has a recommended exposure limit of 2ppmv, is another undesirable product of fluoroploymer combustion. In 2003, the Department of Energy awarded Engelhard Corporation an 80% cost share grant for a five-year project budgeted at $5.9MM. The principal objective is reclaiming platinum from fuel cell MEA's without producing fluorine-containing emissions. Over the last three years, Engelhard has approached the problem from several directions in balancing the two goals: a commercially-viable recycling process and an environmentally favorable one. Working with both fresh and aged fuel cells, it has been shown that precious metals can be liberated at high yield using microwave assisted acid digestion, but exposure of the gas diffusion electrode surfaces is required. A low-cost solvent-stripping process has been identified for two geometries of fuel cell MEA's: GDL and GDE. This paper will detail progress made in realizing a practical, "green" process for recovery of Pt from PEM fuel cell MEA's

Lawrence Shore

2006-11-16T23:59:59.000Z

500

ORISE: Radiation and Radioactive Contamination FAQ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK MappingHistoryMedicalInternational Training