Powered by Deep Web Technologies
Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Safety and Security Technologies for Radioactive Material Shipments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Security Technologies for and Security Technologies for Radioactive Material Shipments Safety & Security Technologies Study Started in 2005 with OCRWM Funding. OCRWM funding ended in 2009. EM gave CVSA funding to finish the report. CVSA Ad Hoc RAM/Security/ITS Committee Examined current and emerging technologies for safety and security of radioactive material shipments Site visits Product reviews HMCRP HM-04 report on emerging technologies Safety & Security Technologies Study Completed several site visits to look at current technologies being used. Technologies were broken down into five categories. 1. Inspection Technologies 2. Security Technologies 3. Radioactive Material Dose Rate Measurement and

2

Enhancements to System for Tracking Radioactive Waste Shipments Benefit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhancements to System for Tracking Radioactive Waste Shipments Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access transportation information on mobile devices. Transportation Tracking and Communication System users can now track shipments of radioactive materials and access transportation information on mobile devices. CARLSBAD, N.M. - EM's Carlsbad Field Office (CBFO) recently deployed a new version of the Transportation Tracking and Communication System (TRANSCOM) that is compatible with mobile devices, including smartphones. The recent enhancement, TRANSCOM version 3.0, improves the user interface

3

Shipment of Small Quantities of Unspecified Radioactive Material in Chalfant Packagings  

SciTech Connect

In the post 6M era, radioactive materials package users are faced with the disciplined operations associated with use of Certified Type B packagings. Many DOE, commercial and academic programs have a requirement to ship and/or store small masses of poorly characterized or unspecified radioactive material. For quantities which are small enough to be fissile exempt and have low radiation levels, the materials could be transported in a package which provides the required containment level. Because their Chalfant type containment vessels meet the highest standard of containment (helium leak-tight), the 9975, 9977, and 9978 are capable of transporting any of these contents. The issues associated with certification of a high-integrity, general purpose package for shipping small quantities of unspecified radioactive material are discussed and certification of the packages for this mission is recommended.

Smith, Allen; Abramczyk, Glenn; Nathan, Steven; Bellamy, Steve

2009-06-12T23:59:59.000Z

4

A SUMMARY OF INCIDENTS INVOLVING USAEC SHIPMENTS OF RADIOACTIVE MATERIAL, 1957-1961  

SciTech Connect

Data are summarized on incidents that have been sustained by the AEC in the transport of radioactive materials from 1957 through 1981. In the period covered by this report there were 47 incidents reported. Twenty-nine did not result in the release of radioactive materials. Of the remaining 18 cases there was none that involved any serious radiological consequences or involved costly cleanup. Six of the incidents involved onsite movements of materials. The incidents are classified in accordance with the type of radiation release that occurred, mode of transport, and type of incident. Photographs are included for a number of the incidents. (C.H.)

Patterson, D.E.; DeFatta, V.P.

1963-10-31T23:59:59.000Z

5

Enhancements to System for Tracking Radioactive Waste Shipments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users...

6

Portsmouth Site Delivers First Radioactive Waste Shipment to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eckert, Anthony Howard and Chris Ashley. These drums containing radioactive waste from uranium enrichment operations were included in the Portsmouth site's first shipment to...

7

Criticality control in shipments of fissile materials  

SciTech Connect

This paper describes a procedure for finite-array criticality analysis to ensure criticality safety of shipments of fissile materials in US DOE-certified packages. After the procedure has been performed, one can obtain the minimum transport index and determine the maximum number of fissile packages allowable in a shipment that meets the 10 CFR 71 criticality safety requirements.

Liaw, J. R.; Liu, Y. Y.

2000-03-14T23:59:59.000Z

8

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivers First Radioactive Waste Shipment to Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott Fraser, Joe Hawes, Craig Herrmann, Jim Book, John Lee, John Perry, Josh Knipp, Melissa Dunsieth, Randy Barr, Rick Williams, Janet Harris, Maureen Fischels, Cecil McCoy, Trent Eckert, Anthony Howard and Chris Ashley. Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and

9

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Site Delivers First Radioactive Waste Shipment to Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott Fraser, Joe Hawes, Craig Herrmann, Jim Book, John Lee, John Perry, Josh Knipp, Melissa Dunsieth, Randy Barr, Rick Williams, Janet Harris, Maureen Fischels, Cecil McCoy, Trent Eckert, Anthony Howard and Chris Ashley. Waste management and transportation personnel worked late to complete the

10

Safety evaluation for packaging 222-S laboratory cargo tank for onetime type B material shipment  

Science Conference Proceedings (OSTI)

The purpose of this Safety Evaluation for Packaging (SEP) is to evaluate and document the safety of the onetime shipment of bulk radioactive liquids in the 222-S Laboratory cargo tank (222-S cargo tank). The 222-S cargo tank is a US Department of Transportation (DOT) MC-312 specification (DOT 1989) cargo tank, vehicle registration number HO-64-04275, approved for low specific activity (LSA) shipments in accordance with the DOT Title 49, Code of Federal Regulations (CFR). In accordance with the US Department of Energy, Richland Operations Office (RL) Order 5480.1A, Chapter III (RL 1988), an equivalent degree of safety shall be provided for onsite shipments as would be afforded by the DOT shipping regulations for a radioactive material package. This document demonstrates that this packaging system meets the onsite transportation safety criteria for a onetime shipment of Type B contents.

Nguyen, P.M.

1994-08-19T23:59:59.000Z

11

Ensuring Safe Shipment of Hazardous Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring Safe Shipment of Hazardous Materials Ensuring Safe Shipment of Hazardous Materials Ensuring Safe Shipment of Hazardous Materials March 28, 2013 - 12:00pm Addthis A truck carries a waste shipment from Brookhaven National Laboratory in New York. EM completed legacy cleanup activities at the site last year. A truck carries a waste shipment from Brookhaven National Laboratory in New York. EM completed legacy cleanup activities at the site last year. Emergency responders participate in a training exercise in the Transportation Emergency Preparedness Program (TEPP), which also recently released its annual report. Administered by EM’s Office of Packaging and Transportation, TEPP ensures federal, state, tribal and local responders have access to the plans, training and technical assistance necessary to safely, efficiently and effectively respond to radiological transportation accidents.

12

Transporting & Shipping Hazardous Materials at LBNL: Radioactive Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials Radioactive Materials Refer to transportation guidelines in the applicable Radioactive Work Authorization (RWA). Contact the Radiation Protection Group (x7652) if transportation assistance is needed or if radioactive materials need to be shipped. Refer to RPG's Zone sheet to identifying the RCT or HP for your building: https://ehswprod.lbl.gov/rpg/who_to_call.shtml Need radioactive material shipped from LBNL? Please complete the request for shipment form online, print, sign, and forward to your building assigned RPG support person: RPG Transportation - Request for Shipment Form: http://www.lbl.gov/ehs/rpg/assets/docs/Transportation4.pdf Receiving radioactive material at LBNL? If receiving radioactive material at LBNL; radioactive material should be sent to the following address:

13

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record Radioactive materials are carried by road, rail, water, and air. There are strict regulations that originate from the International Atomic Energy Agency (IAEA) which cover the packaging and transportation of radioactive materials. Road Rail Water Air [Road transport] Click to view picture [Rail transport] Click to view picture [Sea transport] Click to view picture [Air transport] Click to view picture 1998 DOE Radioactive Shipments in the United States Out of the 3 million hazardous material shipments are made each year, DOE accounts for less than 1% of all radioactive materials shipments and 75% of the total curies shipped in the United States Ship 0 Train 308

14

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are the requirements? What are the requirements? Safety Record Radioactive material has been shipped in the U. S. for more than 50 years with no occurrences of death or serious injury from exposure of the contents of these shipments. Hazardous Material Shipments for 1 Year Internationally 300 million United States 3 million DOE <1% or 5,000 (out of 3 million) [U.S. DOE NTP, 1999, Transporting Radioactive Materials] All radioactive shipments are regulated by the Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC). Since transport accidents cannot be prevented, the regulations are primarily designed to: Insure safety in routine handling situations for minimally hazardous material Insure integrity under all circumstances for highly dangerous materials

15

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

How are they moved? What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record Packagings are used to safely transport radioactive materials across the United States in over 1.6 million shipments per year. [Weiner et. al., 1991, Risk Analysis, Vol. 11, No. 4, p. 663] Most shipments are destined for hospitals and medical facilities. Other destinations include industrial, research and manufacturing plants, nuclear power plants and national defense facilities. The last comprehensive survey showed that less than 1 percent of these shipments involve high-level radioactive material. [Javitz et. al., 1985, SAND84-7174, Tables 4 and 8] The types of materials transported include: Surface Contaminated Object (SCO) Low Specific Activity (LSA) materials, Low-Level Waste (LLW),

16

U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy to Host Press Call on Radioactive Waste U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal November 12, 2013 - 10:26am Addthis NEWS MEDIA CONTACT (202) 586-4940 LAS VEGAS, NV - On Tuesday, November 12, 2013, the U.S. Department of Energy (DOE) will host a press call to discuss Consolidated Edison Uranium Solidification Project (CEUSP) shipment and disposal plans in Nevada. Energy Chief of Staff Kevin Knobloch will host the call and will be joined by issue experts to address any questions. This press call is taking place the day before DOE starts public meetings on this issue in Las Vegas (Nov. 13 at Cashman Center) and Pahrump (Nov. 14 at NV Treasure RV Resort). More details on those meetings can be found

17

Midwestern Radioactive Materials Transportation Committee Agenda...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

18

Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments  

SciTech Connect

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Haffner, D. R.

1988-06-01T23:59:59.000Z

19

RH_SRS_Shipment  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP Trucks Delivering First Remote-Handled Transuranic Waste WIPP Trucks Delivering First Remote-Handled Transuranic Waste from the Savannah River Site CARLSBAD, N.M., June 11, 2012- Photo caption: On June 7, 2012, Waste Isolation Pilot Plant (WIPP) trucks approach the WIPP facility near Carlsbad, New Mexico, with the first shipment of defense- related remote-handled transuranic (TRU) waste from Savannah River Site (SRS), near Aiken, South Carolina. TRU waste consists of materials contaminated with radioactive elements that have atomic numbers greater than uranium, including tools, rags, protective clothing, sludge and soil. That shipment and two contact- handled TRU waste shipments were released by SRS at the same time The three shipments consisted of (left to right) a TRUPACT-III, a RH-72B and one with

20

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

When are they used? How are they moved? What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record A radioactive material (RAM) packaging is a container that is used to safely transport radioactive material from one location to another. In RAM transportation the container alone is called the Packaging. The packaging together with its contents is called the Package. Basic types of radioactive material packagings are: Excepted Packaging Industrial Packaging Type A Packaging Type B Packaging [EXCEPTED] Click to view picture [IP] Click to view picture [TYPE A] Click to view picture [TYPE B] Click to view picture Excepted Packagings are designed to survive normal conditions of transport. Excepted packagings are used for transportation of materials that are either Low Specific Activity (LSA) or Surface Contaminated Objects (SCO) and that are limited quantity shipments, instruments or articles, articles manufactured from natural or depleted uranium or natural thorium; empty packagings are also excepted (49CFR 173.421-428).

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The radioactive materials packaging handbook: Design, operations, and maintenance  

Science Conference Proceedings (OSTI)

As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

Shappert, L.B.; Bowman, S.M. [Oak Ridge National Lab., TN (United States); Arnold, E.D. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)] [and others

1998-08-01T23:59:59.000Z

22

Container for radioactive materials  

DOE Patents (OSTI)

A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

Fields, Stanley R. (Richland, WA)

1985-01-01T23:59:59.000Z

23

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

24

Experiment Hazard Class 8.1 - Radioactive Materials/Samples  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Radioactive Materials 1 - Radioactive Materials Applicability This hazard classification applies to all experiments involving radioactive materials as samples. The requirements of this hazard class also apply to sealed radioactive sources that are used as a sample (i.e. a target for x-ray radiation). Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. The current requirements can be found in the APS Policy for Conducting Radioactive Sample Experiments in APS Experiment Enclosures. NOTE: The APS must be notified of shipment of any radioactive materials to the site well in advance of the proposed experiment. All radioactive materials must arrive through Argonne Receiving in Building 46 and the Argonne Materials Control & Accountability group (MC&A). Please contact

25

Oak Ridge National Laboratory shipping containers for radioactive materials  

Science Conference Proceedings (OSTI)

The types of containers used at ORNL for the transport of radioactive materials are described. Both returnable and non-returnable types are included. Containers for solids, liquids and gases are discussed. Casks for the shipment of uranium, irradiated fuel elements, and non-irradiated fuel elements are also described. Specifications are provided. (DC)

Schaich, R.W.

1980-05-01T23:59:59.000Z

26

Container for radioactive materials  

DOE Patents (OSTI)

A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

Fields, S.R.

1984-05-30T23:59:59.000Z

27

DOE O 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest  

Directives, Delegations, and Requirements

The purpose of this Order is to make clear that the packaging and transportation of all offsite shipments of materials of national security interest for DOE ...

2010-12-20T23:59:59.000Z

28

Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California  

SciTech Connect

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

29

Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2006  

SciTech Connect

In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMS) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2006.

DOE /NNSA NSO

2007-01-01T23:59:59.000Z

30

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report  

SciTech Connect

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Miller, R. L.; Scotti, K. S.

1986-05-01T23:59:59.000Z

31

Radioactive waste material melter apparatus  

DOE Patents (OSTI)

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

Newman, D.F.; Ross, W.A.

1990-04-24T23:59:59.000Z

32

Radioactive waste material melter apparatus  

DOE Patents (OSTI)

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

33

Storage depot for radioactive material  

Science Conference Proceedings (OSTI)

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

34

Storage depot for radioactive material  

SciTech Connect

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, M.J.

1983-10-18T23:59:59.000Z

35

WIPP Receives 200th Shipment  

NLE Websites -- All DOE Office Websites (Extended Search)

of defense- generated transuranic radioactive waste. The shipment came from DOE's Rocky Flats Environmental Technology Site (RFETS) in Colorado. "The arrival of the 200 th...

36

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

37

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

38

Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania  

Science Conference Proceedings (OSTI)

During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D&D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews.

Duncan, D. [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S. [Los Alamos Technical Associates, Inc., NM (United States)

1994-04-01T23:59:59.000Z

39

Emergency Responder Radioactive Material Quick Reference Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet...

40

Storage containers for radioactive material  

DOE Patents (OSTI)

A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

Groh, E.F.; Cassidy, D.A.; Dates, L.R.

1980-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NNSA: Securing Domestic Radioactive Material | National Nuclear...  

National Nuclear Security Administration (NNSA)

Securing Domestic Radioactive Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

42

PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment and receipt of materials and reviews specific documents to determine compliance with requirements imposed by DOE and by applicable regulations from the U.S. Nuclear Regulatory Commission and the Department of Transportation. PTS13-01.doc More Documents & Publications Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY, DOE O

43

Scrap metal management issues associated with naturally occurring radioactive material  

Science Conference Proceedings (OSTI)

Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

Smith, K.P.; Blunt, D.L.

1995-08-01T23:59:59.000Z

44

Surveillance Guides - PTS 13.2 Packaging and Preparation for Shipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PACKAGING AND PREPARATION FOR SHIPMENT PACKAGING AND PREPARATION FOR SHIPMENT 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's programs for packaging radioactive and hazardous wastes for shipment. The Facility Representative examines packages ready for shipment, observes preparation of packages, and reviews documents that establish the acceptability of packages. The Facility Representative verifies compliance with DOE requirements including requirements established by the Department of Transportation and the U.S. Nuclear Regulatory Commission. 2.0 References 2.1 DOE 5480.3, Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes

45

Surveillance Guides - PTS 13.1 Radioactive And Hazardous Material Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOACTIVE AND HAZARDOUS MATERIALS TRANSPORTATION RADIOACTIVE AND HAZARDOUS MATERIALS TRANSPORTATION 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment and receipt of materials and reviews specific documents to determine compliance with requirements imposed by DOE and by applicable regulations from the U.S. Nuclear Regulatory Commission and the Department of Transportation. 2.0 References DOE O 460.1A, Packaging and Transportation Safety DOE O 460.2, Chg1, Departmental Materials Transportation and Packaging

46

Rocky Flats resumes shipments to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy (DOE) has resumed transuranic radioactive waste shipments from DOE's Rocky Flats Environmental Technology Site (RFETS) to the Waste Isolation Pilot Plant (WIPP). A...

47

Diverter assembly for radioactive material  

DOE Patents (OSTI)

A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

Andrews, K.M.; Starenchak, R.W.

1988-04-11T23:59:59.000Z

48

USING A RISK-BASED METHODOLOGY FOR THE TRANSFER OF RADIOACTIVE MATERIAL WITHIN THE SAVANNAH RIVER SITE BOUNDARY  

SciTech Connect

Shipment of radioactive materials (RAM) is discussed in the Code of Federal Regulations in parts of both 49 CFR and 10 CFR. The regulations provide the requirements and rules necessary for the safe shipment of RAM across public highways, railways, waterways, and through the air. These shipments are sometimes referred to as in-commerce shipments. Shipments of RAM entirely within the boundaries of Department of Energy sites, such as the Savannah River Site (SRS), can be made using methodology allowing provisions to maintain equivalent safety while deviating from the regulations for in-commerce shipments. These onsite shipments are known as transfers at the SRS. These transfers must follow the requirements approved in a site-specific Transportation Safety Document (TSD). The TSD defines how the site will transfer materials so that they have equivalence to the regulations. These equivalences are documented in an Onsite Safety Assessment (OSA). The OSA can show how a particular packaging used onsite is equivalent to that which would be used for an in-commerce shipment. This is known as a deterministic approach. However, when a deterministic approach is not viable, the TSD allows for a risk-based OSA to be written. These risk-based assessments show that if a packaging does not provide the necessary safety to ensure that materials are not released (during normal or accident conditions) then the worst-case release of materials does not result in a dose consequence worse than that defined for the SRS. This paper will discuss recent challenges and successes using this methodology at the SRS.

Loftin, B.; Watkins, R.; Loibl, M.

2010-06-03T23:59:59.000Z

49

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

of radioactive material are determined by the Nuclear Regulatory Commission (NRC), Department of Transportation (DOT), Department of Energy (DOE), and U.S. Postal...

50

Radiation Machines and Radioactive Materials (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

51

Radiation Sources and Radioactive Materials (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

52

Radioactive Materials Transportation and Incident Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEMA 358, 0510 Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q...

53

PTS 13.2 Packaging and Preparation for Shipment 4/10/95 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PTS 13.2 Packaging and Preparation for Shipment 4/10/95 PTS 13.2 Packaging and Preparation for Shipment 4/10/95 PTS 13.2 Packaging and Preparation for Shipment 4/10/95 The objective of this surveillance is to evaluate the effectiveness of the contractor's programs for packaging radioactive and hazardous wastes for shipment. The Facility Representative examines packages ready for shipment, observes preparation of packages, and reviews documents that establish the acceptability of packages. The Facility Representative verifies compliance with DOE requirements including requirements established by the Department of Transportation and the U.S. Nuclear Regulatory Commission. PTS13-02.doc More Documents & Publications PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 CMS 3.4 Temporary Changes, 4/10/95

54

Radioactive Material or Multiple Hazardous Materials Decontamination  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this procedure is to provide guidance for performing decontamination ofindividuals who have entered a hot zone during transportation incidents involving radioactive.

55

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

SAFE are radioactive material transportations packages? SAFE are radioactive material transportations packages? RAM PACKAGES TESTING & CERTIFICATION REGULATIONS & GUIDANCE SITE MAP This graphic was generated from a computer analysis and shows the results from a regulatory puncture test of a stainless steel packaging dropping 40 inches (10 MPH) onto a 6 inch diameter steel spike. U.S. DOE | Office of Civilian Radioactive Waste Management (OCRWM) Sandia National Laboratories | Nuclear Energy & Fuel Cucle Programs © Sandia Corporation | Site Contact | Sandia Site Map | Privacy and Security An internationally recognized web-site from PATRAM 2001 - the 13th International Symposium on the Packaging and Transportation of Radioactive Material. Recipient of the AOKI AWARD. PATRAM, sponsored by the U.S. Department of Energy in cooperation with the International Atomic Energy Agency brings government and industry leaders together to share information on innovations, developments, and lessons learned about radioactive materials packaging and transportation.

56

Using Neutrons to Study Radioactive Materials  

Science Conference Proceedings (OSTI)

Symposium, Applied Neutron Scattering in Engineering and Materials Science Research ... to the unique infrastructure and specialized staff of the Nuclear Laboratory. Shielded cells enable neutron diffraction studies on highly radioactive...

57

Radioactive materials shipping cask anticontamination enclosure  

DOE Patents (OSTI)

An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

Belmonte, Mark S. (Irwin, PA); Davis, James H. (Pittsburgh, PA); Williams, David A. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

58

Radioactive Samples / Materials at the APS  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Radioactive Samples / Materials at the APS Using Radioactive Samples / Materials at the APS The use of radioactive samples requires additional information for review and approval. All proposed experiments involving radioactive samples will be reviewed by the APS Radioactive Sample Safety Review Committee (RSSRC). The review will be on a graded basis. Hence, the experimenters are strongly advised to send in the experiment proposal in detail at least 2 months before the expected scheduled date of the experiment. Previously approved containment, isotopes and weights can be submitted as late as 2 weeks in advance. If your ESAF was submitted less than seven (7) days in advance of its scheduled start date you may be delayed to allow time for a safety review. The following guidelines are to be followed for all experiments with

59

Low level waste shipment accident lessons learned  

SciTech Connect

On October 1, 1994 a shipment of low-level waste from the Fernald Environmental Management Project, Fernald, Ohio, was involved in an accident near Rolla, Missouri. The accident did not result in the release of any radioactive material. The accident did generate important lessons learned primarily in the areas of driver and emergency response communications. The shipment was comprised of an International Standards Organization (ISO) container on a standard flatbed trailer. The accident caused the low-level waste package to separate from the trailer and come to rest on its top in the median. The impact of the container with the pavement and median inflicted relatively minor damage to the container. The damage was not substantial enough to cause failure of container integrity. The success of the package is attributable to the container design and the packaging procedures used at the Fernald Environmental Management Project for low-level waste shipments. Although the container survived the initial wreck, is was nearly breached when the first responders attempted to open the ISO container. Even though the container was clearly marked and the shipment documentation was technically correct, this information did not identify that the ISO container was the primary containment for the waste. The lessons learned from this accident have DOE complex wide applicability. This paper is intended to describe the accident, subsequent emergency response operations, and the lessons learned from this incident.

Rast, D.M.; Rowe, J.G.; Reichel, C.W.

1995-02-01T23:59:59.000Z

60

Radioactivity Standard Reference Material Program  

Science Conference Proceedings (OSTI)

... Summary: The Standard Reference Materials Program of the National Institute of Standards and Technology (NIST) provides science, industry, and ...

2013-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are the requirements? Safety Record The Agencies that Generate Rules that Promulgate the Transport of Radioactive Materials: Regulations to control the transport of radioactive material were initiated about 1935 by the Postal Service. Over the years, the Interstate Commerce Commission (ICC) became involved and in 1948 promulgated regulations as Title 49 of the Code of Federal Regulations. In 1966, DOT received hazardous materials regulatory authority that had been exercised by the ICC, Federal Aviation Administration (FAA) and United States Costal Guard (USCG). Currently, five groups generate rules governing the transport of radioactive material -- the DOT, NRC, USPS, DOE, and various State agencies. Among these, DOT and NRC are the primary agencies issuing regulations based on the model regulations developed by the International Atomic Energy Agency (IAEA).

62

ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES  

SciTech Connect

This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

Blanton, P.; Eberl, K.

2010-07-09T23:59:59.000Z

63

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Specific Activity Specific Activity Low Specific Activity (LSA) material means Class 7 (radioactive) material with limited specific activity which satisfies the descriptions and limits set forth below. Shielding materials surrounding the LSA material may not be considered in determining the estimated average specific activity of the package contents. LSA material must be in one of three groups: LSA-I (i) Ores containing only naturally occurring radionuclides (e.g., uranium, thorium) and uranium or thorium concentrates of such ores; or (ii) Solid unirradiated natural uranium or depleted uranium or natural thorium or their solid or liquid compounds or mixtures; or (iii) Class 7 (radioactive) material, other than fissile material, for which the A2 value is unlimited; or

64

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Response Effects of Radiation History Gallery Glossary of Nuclear Terms [Majority from NRC] Contacts Comments & Questions Agencies U. S. Department of Transportation (DOT), U. S. Nuclear Regulatory Commission (NRC) Postal Services (USPS) U. S. Department of Energy (DOE), National Conference of State Legislatures - Environment, Energy and Transportation Program, Hazardous and Radioactive Materials International Atomic Energy Agency (IAEA) U. S. Environmental Protection Agency (EPA) Regulations Code of Federal Regulations: Title 10 - Energy Code of Federal Regulations: Title 10, PART 71 - Packaging and Transportation of Radioactive Material Code of Federal Regulations: Title 49 - Transportation Code of Federal Regulations: Title 49, PART 173 - Shippers - General

65

DISCHARGE DEVICE FOR RADIOACTIVE MATERIAL  

DOE Patents (OSTI)

A device is described fur unloading bodies of fissionable material from a neutronic reactor. It is comprised essentially of a wheeled flat car having a receptacle therein containing a liquid coolant fur receiving and cooling the fuel elements as they are discharged from the reactor, and a reciprocating plunger fur supporting the fuel element during discharge thereof prior to its being dropped into the coolant. The flat car is adapted to travel along the face of the reactor adjacent the discharge ends of the coolant tubes.

Ohlinger, L.A.

1958-09-23T23:59:59.000Z

66

Industry Survey of Radioactive Material Control Practices  

Science Conference Proceedings (OSTI)

Workers and materials entering and exiting the radiation control areas (RCAs) of nuclear power plants are carefully monitored for radioactivity. This report documents a survey developed to evaluate the range of instrumentation and practices used by the industry for performing such measurements.

2003-11-26T23:59:59.000Z

67

EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emer Emer Emer Emer Emer Emergency Response to a T gency Response to a T gency Response to a T gency Response to a T gency Response to a Transportation ransportation ransportation ransportation ransportation Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional

68

Hanford Shipment Arrives Safely At Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

transuranic radioactive waste from the U.S. Department of Energy's (DOE's) Hanford Site arrived safely today at the Waste Isolation Pilot Plant (WIPP). The shipment...

69

Radioactive Material Use at the EMSL Radiochemistry Annex  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Use at the EMSL Radiochemistry Annex Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located in the 3410 Material Science and Technology Building, is authorized to work with small to moderate amounts of radioactive material. In order to work within 3410 facility radiological limits, potential users must provide detailed information about the type and quantity of radioactive material, the form and packaging of the material and the type of work that will be performed at the EMSL Radiochemistry Annex. Radioactive material includes both purchased radioactive material and samples that contain concentrations of radioactive material in excess of normal background levels. Please realize that some samples that may not be considered to be radioactive material at your institution will be managed as radioactive material at

70

Radioactive Materials Transportation and Incident Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEMA 358, 05/10 FEMA 358, 05/10 Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q Q Law Enforcement ____________________________________ Fire ___________________________________________ Medical ____________________________________________ State Radiological Assistance ___________________________ Local Government Official ______________________________ Local Emergency Management Agency ___________________ State Emergency Management Agency ___________________ HAZMAT Team ______________________________________ Water Pollution Control ________________________________ CHEMTEL (Toll-free US & Canada) 1-800-255-3924 _________ CHEMTREC (Toll-free US & Canada) 1-800-424-9300 _______

71

RadTrac: Portable and Compact Tracking Radioactive Materials  

Hot cell exits where radioactive materials are used, or at nonproliferation sites Defense companies and airport security equipment manufacturers

72

Corrosion resistant storage container for radioactive material  

DOE Patents (OSTI)

A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

Schweitzer, D.G.; Davis, M.S.

1984-08-30T23:59:59.000Z

73

"TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"TRU" Success: SRS Recovery Act Prepares to Complete Shipment of "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to analyze, measure, and then carefully cleanup or dispose of legacy transuranic (TRU) waste remaining at SRS after the lengthy nuclear arms race. "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than

74

"TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"TRU" Success: SRS Recovery Act Prepares to Complete Shipment of "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to analyze, measure, and then carefully cleanup or dispose of legacy transuranic (TRU) waste remaining at SRS after the lengthy nuclear arms race. "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than

75

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources of Radiation Biological Responses Other Effects History Gallery Glossary of Nuclear Terms [Majority from NRC] Contacts Comments & Questions Radiation is all around us, occurring naturally in the environment. We are always exposed to radiation from: radon in the air uranium, radium and thorium in the earth cosmic rays from outer space and the sun radioactive potassium in our food and water naturally occuring radioactive material within our own bodies. This is commonly called "naturally-occurring background radiation." TYPES OF IONIZING RADIATION Alpha Alpha particles can be shielded by a sheet of paper or by human skin. If alpha emitters are inhaled, ingested, or enter the body through a cut, they can cause cancer. Beta Beta radiation can be stopped by a shield like aluminum foil or wood. If beta emitters are inhaled, ingested, or enter the body through a cut, they can cause cancer.

76

Midwestern Radioactive Materials Transportation Committee Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Council of State Governments Council of State Governments Midwestern Radioactive Materials Transportation Committee May 15, 2012 Knoxville, Tennessee Revised Agenda 9 - 9:45 am Welcome, Introductions, and Committee Reports Report from co-chairs Tim Runyon (Illinois) Project update Lisa Janairo, CSG Midwest Work group reports Integrated Spent Fuel Management Work Group Teri Engelhart (Wisconsin) NTSF-related reports Planning Committee Tim Runyon (Illinois) Communications Ad Hoc Working Group Jane Beetem (Missouri) WIPP Security Communications Protocol Major Lance Evans (Iowa) Ad Hoc Working Group Information and Communications Work Group Lisa Janairo 9:45 - 10:45 am Committee Discussion Blue Ribbon Commission final report: state reactions, next steps

77

RECLAMATION OF RADIOACTIVE MATERIAL PACKAGING COMPONENTS  

SciTech Connect

Radioactive material packages are withdrawn from use for various reasons; loss of mission, decertification, damage, replacement, etc. While the packages themselves may be decertified, various components may still be able to perform to their required standards and find useful service. The Packaging Technology and Pressurized Systems group of the Savannah River National Laboratory has been reducing the cost of producing new Type B Packagings by reclaiming, refurbishing, and returning to service the containment vessels from older decertified packagings. The program and its benefits are presented.

Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

2011-06-06T23:59:59.000Z

78

Materials Sustainability: Digital Resource Center - Radioactivity in ...  

Science Conference Proceedings (OSTI)

Jun 26, 2008 ... This video introduces terms and concepts associated with radioactivity and shows how to identify radioactive substances that might enter a...

79

Radiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material &  

E-Print Network (OSTI)

;Regulatory Agencies · Radioactive Materials ­ Broad Scope License ­ Issued by GA Department of Natural Resources · X-Ray Machines ­ Units registered with the GA Department of Human Resources ­ They regulate x) · Sealed sources ­ Nickel-63 (Gas chromatograph) ­ Cesium-137 (Liquid Scintillation Counter) ­ Neutron

Löffler, Frank E.

80

Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis  

Science Conference Proceedings (OSTI)

The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

2003-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. and Bahamian Governments to Cooperate on Detecting Illicit Shipments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bahamian Governments to Cooperate on Detecting Illicit Bahamian Governments to Cooperate on Detecting Illicit Shipments of Nuclear Material U.S. and Bahamian Governments to Cooperate on Detecting Illicit Shipments of Nuclear Material January 11, 2005 - 9:46am Addthis Bahamas to Become First Caribbean Country to Use Detection Equipment NASSAU, BAHAMAS -- In an effort to work together in the war on terrorism, the United States and the Commonwealth of the Bahamas recently signed an agreement to install special equipment at one of the Bahamas' busiest seaports to detect hidden shipments of nuclear and other radioactive material, Secretary of Energy Spencer Abraham announced today. The Bahamas will be the first country in the Caribbean to deploy this type of detection system. "Helping better protect the world's maritime shipping network from

82

Introduction to naturally occurring radioactive material  

SciTech Connect

Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to! We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these radionuclides. We will then review some of the industrial sectors affected by TENORM, followed by a brief discussion on regulatory aspects of the issue.

Egidi, P.

1997-08-01T23:59:59.000Z

83

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are full-scale tests? What are scale-model tests? What is computer analysis? What are examples of severe testing? How do the certification tests compare to real-life accidents? Demonstrating target hardness. A packaging is certified when it can survive a sequence of impact, crush, puncture, fire, and immersion tests designed to replicate transport accident conditions. Type B Packages must meet the testing requirements of: Compliance Testing, as defined in 10 CFR Part 71.85 and 10 CFR Part 71.87 Normal Conditions of Transport, Ten tests as defined in 10 CFR Part 71.71 Hypothetical Accident Conditions, Six tests as defined in 10 CFR Part 71.73 The ability of radioactive material packages to withstand testing environments can be demonstrated by full-scale testing, scale-model

84

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Effects History Gallery Glossary of Nuclear Terms [Majority from NRC] Contacts Comments & Questions Dose Rate Calculator Click to use calculator. This tool calculates a dose rate (DR) at 2 meters (about 6 ft) from the surface of a package containing radioactive material IF you know the dose rate at 1 meter (about 3 ft). It will also calculate the reverse; DR at 1 meter if you know the DR at 2 meters. These two distances are used by the Nuclear Regulatory Commission to define acceptable dose rates for packages. Dose (Rad) Biological Effect < 5 rad No immediate observable effects 5 - 50 rad Slight blood changes may be detected by medical evaluation 50 - 150 rad Slight blood changes will be noted and likely symptoms of nausea, fatigue, vomiting, etc.

85

RADIOACTIVE MATERIAL PACKAGING TORQUE REQUIREMENTS COMPLIANCE  

Science Conference Proceedings (OSTI)

Shipping containers used to transport radioactive material (RAM) in commerce employ a variety of closure mechanisms. Often, these closure mechanisms require a specific amount of torque be applied to a bolt, nut or other threaded fastener. It is important that the required preload is achieved so that the package testing and analysis is not invalidated for the purpose of protecting the public. Torque compliance is a means of ensuring closure preload, is a major factor in accomplishing the package functions of confinement/containment, sub-criticality, and shielding. This paper will address the importance of applying proper torque to package closures, discuss torque value nomenclature, and present one methodology to ensure torque compliance is achieved.

Watkins, R.; Leduc, D.

2011-03-24T23:59:59.000Z

86

DECONTAMINATION DRESSDOWN AT A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Video User' s Guide Video User' s Guide DECONTAMINATION DRESSDOWN AT A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond

87

Sandia technology used to remove radioactive material at Fukushima...  

National Nuclear Security Administration (NNSA)

technology used to remove radioactive material at Fukushima | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

88

Radioactive Materials at SSRL | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials at SSRL Radioactive Materials at SSRL Contact Information SSRL Safety Officer (650) 926-3861 SSRL Radiation Protection Group (650) 926-4299 SSRLRadMat@SLAC.STANFORD.EDU Throughout the course of an SSRL Experimental Run, there are requests from users to transport and use small amounts of radioactive material in their experiments, either as stand alone samples or in a matrix of other materials. There is no minimum quantity for declaring the use of radioactive samples at SSRL. The purpose of this procedure is to enable Users, SSRL and SLAC staff to know what radiological controls will be implemented for these materials, based on the isotope, its toxicity risk and radiological controls. Radioactive materials at SSRL are classified into 4 classification Groups based on the radiotoxicity tables, see below.

89

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are examples of severe testing? What are examples of severe testing? How do the certification tests compare to real-life accidents? Demonstrating target hardness. These full-scale tests, conducted at Sandia National Laboratories Transportation Programs, demonstrate how spent fuel casks perform in accident environments that are more similar to what may happen during actual shipments. Each of the tests included the transportation vehicle as well as the cask. The damage to the casks from these tests was less than the damage during the regulatory hypothetical accident tests, demonstrating that the regulatory tests are more severe. DESCRIPTION PHOTO DURING TEST PHOTO AFTER TEST PHOTO OF PACKAGE AFTER TEST VIDEO OF TEST CRASH TEST Cask rail car with a 74 ton Type B Package on it crashing into a 690 ton concrete block at 81 miles per hour [photo]

90

Naturally Occurring Radioactive Materials in Cargo at US Borders  

Science Conference Proceedings (OSTI)

In the U.S. and other countries, large numbers of vehicles pass through border crossings each day. The illicit movement of radioactive sources is a concern that has resulted in the installation of radiation detection and identification instruments at border crossing points. This activity is judged to be necessary because of the possibility of an act of terrorism involving a radioactive source that may include any number of dangerous radionuclides. The problem of detecting, identifying, and interdicting illicit radioactive sources is complicated by the fact that many materials present in cargo are somewhat radioactive. Some cargo contains naturally occurring radioactive material or technologically-enhanced naturally occurring radioactive material that may trigger radiation portal monitor alarms. Man-made radioactive sources, especially medical isotopes, are also frequently observed and produce alarms. Such nuisance alarms can be an operational limiting factor for screening of cargo at border crossings. Information about the nature of the radioactive materials in cargo that can interfere with the detection of radionuclides of concern is necessary. This paper provides such information for North American cargo, but the information may also be of use to border control officials in other countries. (PIET-43741-TM-361)

Kouzes, Richard T.; Ely, James H.; Evans, John C.; Hensley, Walter K.; Lepel, Elwood A.; McDonald, Joseph C.; Schweppe, John E.; Siciliano, Edward R.; Strom, Daniel J.; Woodring, Mitchell L.

2006-01-01T23:59:59.000Z

91

A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?  

SciTech Connect

Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called direct-use material which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

Mark Schanfein

2009-07-01T23:59:59.000Z

92

High-Activity Radioactive Materials Removed From Mexico | National Nuclear  

National Nuclear Security Administration (NNSA)

High-Activity Radioactive Materials Removed From Mexico | National Nuclear High-Activity Radioactive Materials Removed From Mexico | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > High-Activity Radioactive Materials Removed From Mexico Press Release High-Activity Radioactive Materials Removed From Mexico Nov 15, 2013 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA)

93

Sandia technology used to remove radioactive material at Fukushima |  

NLE Websites -- All DOE Office Websites (Extended Search)

technology used to remove radioactive material at Fukushima | technology used to remove radioactive material at Fukushima | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Sandia technology used to remove radioactive material ... Sandia technology used to remove radioactive material at Fukushima Posted By Office of Public Affairs

94

High-Activity Radioactive Materials Removed From Mexico | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Activity Radioactive Materials Removed From Mexico | National Nuclear High-Activity Radioactive Materials Removed From Mexico | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > High-Activity Radioactive Materials Removed From Mexico Press Release High-Activity Radioactive Materials Removed From Mexico Nov 15, 2013 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA)

95

NNSA: Securing Domestic Radioactive Material | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA: Securing Domestic Radioactive Material | National Nuclear Security NNSA: Securing Domestic Radioactive Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > NNSA: Securing Domestic Radioactive Material Fact Sheet NNSA: Securing Domestic Radioactive Material Apr 12, 2013 The Department of Energy's National Nuclear Security Administration (NNSA),

96

Radioactive-materials shipping-cask anticontamination enclosure  

DOE Patents (OSTI)

An anticontamination device for use in storing shipping casks for radioactive materials comprises (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

Belmonte, M.S.; Davis, J.H.; Williams, D.A.

1981-08-18T23:59:59.000Z

97

Safety philosophy in the transportation of radioactive material  

SciTech Connect

From Winter meeting of American Society of Mechanical Engineers; Detroit, Michigan, USA (11 Nov 1973). The radiological'' and common cause risks'' involved in transporting radioactive materials are briefly discussed. (TFD)

Langhaar, J.W.

1974-04-30T23:59:59.000Z

98

NNSA Removes High-Activity Radioactive Materials from Boston | National  

National Nuclear Security Administration (NNSA)

Removes High-Activity Radioactive Materials from Boston | National Removes High-Activity Radioactive Materials from Boston | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Removes High-Activity Radioactive Materials from Boston Press Release NNSA Removes High-Activity Radioactive Materials from Boston Nov 22, 2013

99

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials  

DOE Green Energy (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing materials. Transportation regulations prohibit shipment of explosives and radioactive materials together. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials (NM), and spent nuclear fuels (SNF) programs within DOEs Environmental Management (EM) organization to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This "program level" roadmapping involves linking technology development (and deployment) efforts to the programs needs and requirements for dispositioning the material/waste that generates combustible gas through radiolysis and chemical decomposition. The roadmapping effort focused on needed technical & programmatic support to the baselines (and to alternatives to the baselines) where the probability of success is low (i.e., high uncertainty) and the consequences of failure are relatively high (i.e., high programmatic risk). A second purpose for roadmapping was to provide the basis for coordinating sharing of "lessons learned" from research and development (R&D) efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues.

Luke, Dale Elden; Rogers, Adam Zachary; Hamp, S.

2001-03-01T23:59:59.000Z

100

SGP Shipment Notification Form  

NLE Websites -- All DOE Office Websites (Extended Search)

PlainsShipment Notification Form PlainsShipment Notification Form SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Shipment Notification Form Note: Red text indicates a required field. Your Notification Form has been submitted. Section 1 : Initiator Information Date Afilliation Name Phone Number Email Section 2 : Vendor Information Ship From Point of Contact Address Phone Section 3 : Carrier Information Shipping Company Tracking/AWB Number Number of Boxes Approximate Weight for EACH BOX Expected Ship Date Section 4 : Shipment List Description System/Instrument

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development and implementation of automated radioactive materials handling systems  

SciTech Connect

Material handling of radioactive and hazardous materials has forced the need to pursue remotely operated and robotic systems in light of operational safety concerns. Manual maneuvering, repackaging, overpacking and inspecting of containers which store radioactive and hazardous materials is the present mode of operation at the Department of Energy (DOE) Fernald Environmental Management Project (FEMP) in Fernald Ohio. The manual methods are unacceptable in the eyes of concerned site workers and influential community oversight committees. As an example to respond to the FEMP material handling needs, design efforts have been initiated to provide a remotely operated system to repackage thousands of degradated drums containing radioactive Thorium: Later, the repackaged Thorium will be shipped offsite to a predesignated repository again requiring remote operation.

Jacoboski, D.L.

1992-12-01T23:59:59.000Z

102

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

part. It may consist of one or more receptacles, absorbent materials, spacing structures, thermal insulation, radiation shielding, and devices for cooling or absorbing mechanical...

103

NNSA: Securing Domestic Radioactive Material | National Nuclear...  

National Nuclear Security Administration (NNSA)

Feb 1, 2011 The Department of Energy's National Nuclear Security Administration (NNSA), which has unique expertise in nuclear weapons and nuclear material, plays a key role in the...

104

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01T23:59:59.000Z

105

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents (OSTI)

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

106

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

DOE Green Energy (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, D.E. (INEEL); Hamp, S. (DOE-Albuquerque Operations Office)

2002-01-04T23:59:59.000Z

107

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

SciTech Connect

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, D.E. (INEEL); Hamp, S. (DOE-Albuquerque Operations Office)

2002-01-04T23:59:59.000Z

108

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

SciTech Connect

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen- containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOEs Environmental Management (EM) organizations to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, Dale Elden; Hamp, S.

2002-02-01T23:59:59.000Z

109

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Who makes rules? What are the requirements? Safety Record USERS OF PACKAGINGS CARRIER PACKAGE TYPE Hospitals and their suppliers common carrier Type A Industrial radiography companies private carrier Type B Soil testing laboratories private carrier Type B Food irradiators contract carrier Type B Medical supply sterilizers contract carrier Type B Academic research institutes common & contract carrier all types Nuclear energy fuel cycle facilities common & contract carrier all types Nuclear weapons complex contract & government carrier all types An agency or company that wants to ship RAM (shipper) often makes arrangements with a common or contract carrier or (where appropriate) a private carrier may transport the material. Packagings may be procured or

110

Radioactive Material Transportation Requirements for the Department of Energy  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) created the National Transportation Program (NTP) whose goal is to ensure the availability of safe, efficient, and timely transportation of DOE materials. The Integration and Planning Group of the NTP, assisted by Global Technologies Incorporated (GTI), was tasked to identify requirements associated with the transport of DOE Environmental Management (EM) radiological waste/material. A systems engineering approach was used to identify source documents, extract requirements, perform a functional analysis, and set up a transportation requirements management database in RDD-100. Functions and requirements for transporting the following DOE radioactive waste/material are contained in the database: high level radioactive waste (HLW), low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), nuclear materials (NM), spent nuclear fuel (SNF), and transuranic waste (TRU waste). The requirements will be used in the development of standard transportation protocols for DOE shipping. The protocols will then be combined into a DOE Transportation Program Management Guide, which will be used to standardize DOE transportation processes.

John, Mark Earl; Fawcett, Ricky Lee; Bolander, Thane Weston

2000-07-01T23:59:59.000Z

111

Self-closing shielded container for use with radioactive materials  

DOE Patents (OSTI)

A container is described for storage of radioactive material comprising a container body and a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open). 1 fig.

Smith, J.E.

1984-10-16T23:59:59.000Z

112

Guidelines for the Use of Radioactive Materials in Research  

E-Print Network (OSTI)

Definition of a Radiation Worker 6 Instruction 6 Exposure Monitoring 8 Radiation Exposure Limits 8 Radiation Exposure During Pregnancy 8 Dosimeters 9 Internal Monitoring 10 Radioactive Work Areas 12 Posting Material NCRP National Council on Radiation Protection and Measurements ICRP International Council

113

A manual for implementing residual radioactive material guidelines  

Science Conference Proceedings (OSTI)

This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

1989-06-01T23:59:59.000Z

114

Shipments in Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Training for Radiological Training for Emergency Responders in Idaho Doug Walker Senior Health Physicist Idaho Department of Environmental Quality Radiation Control Program 2 Initial Assessment * Evaluation of state-wide resources * Consideration for instrumentation * Implementation of state-based training 3 State - Wide Resources State - Wide Resources * Regional Haz-Mat Response Teams * Idaho State Police CVSA/Haz-Mat Radiation Control Program 4 Response Instrumentation * Standardized instrumentation * Annual calibration schedule 5 State Emergency Response Commission * Approval for standardizing instrumentation within the regional response structure * Adopted the DOE-MERRTT as the core training for radioactive materials * Assigned Radiation Control Program to manage the training program

115

RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING  

SciTech Connect

The Model 9977 Packaging was initially issued a Certificate of Compliance (CoC) by the Department of Energys Office of Environmental Management (DOE-EM) for the transportation of radioactive material (RAM) in the Fall of 2007. This first CoC was for a single radioactive material and two packing configurations. In the five years since that time, seven Addendums have been written to the Safety Analysis Report for Packaging (SARP) and five Letter Amendments have been written that have authorized either new RAM contents or packing configurations, or both. This paper will discuss the process of updating the 9977 SARP to include all the contents and configurations, including the addition of a new content, and its submittal for recertification.

Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

2013-06-05T23:59:59.000Z

116

January 23, 2007: WIPP receives first shipment of waste | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 23, 2007: WIPP receives first shipment of waste January 23, 2007: WIPP receives first shipment of waste January 23, 2007: WIPP receives first shipment of waste January 23, 2007: WIPP receives first shipment of waste January 23, 2007 The Department's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, receives (pdf) its first shipment of remote-handled (RH) transuranic (TRU) radioactive waste. The waste, which consisted of three 30-gallon drums of radioactive debris waste and originated at DOE's Idaho National Laboratory, was transported inside a shielded RH-72B shipping cask, providing the same low radiation levels as the contact-handled (CH) TRU wastes that have been shipped to WIPP since 1999. "This first shipment of RH-TRU waste is particularly significant to DOE," notes DOE Assistant

117

Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q Q Law Enforcement ____________________________________ Fire ___________________________________________ Medical ____________________________________________ State Radiological Assistance ___________________________ Local Government Official ______________________________ Local Emergency Management Agency ___________________ State Emergency Management Agency ___________________ HAZMAT Team ______________________________________ Water Pollution Control ________________________________ CHEMTEL (Toll-free US & Canada) 1-800-255-3924 _________ CHEMTREC (Toll-free US & Canada) 1-800-424-9300 _______

118

Method of encapsulating solid radioactive waste material for storage  

DOE Patents (OSTI)

High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.

Bunnell, Lee Roy (Kennewick, WA); Bates, J. Lambert (Richland, WA)

1976-01-01T23:59:59.000Z

119

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12T23:59:59.000Z

120

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

System for chemically digesting low level radioactive, solid waste material  

DOE Patents (OSTI)

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01T23:59:59.000Z

122

Final Transuranic Waste Shipment Leaves Rocky Flats | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Transuranic Waste Shipment Leaves Rocky Flats Final Transuranic Waste Shipment Leaves Rocky Flats Final Transuranic Waste Shipment Leaves Rocky Flats April 19, 2005 - 12:23pm Addthis Cleanup Ahead of Schedule, On Track to Save Taxpayers Billions GOLDEN, CO. - A major environmental victory was achieved at the Rocky Flats Site in Golden, Colo., today when the final remaining shipment of radioactive, transuranic (TRU) waste left the property on a truck bound for an underground waste repository in New Mexico. This major milestone is another step toward the final conversion of the site to a National Wildlife Refuge managed by the U.S. Fish and Wildlife Service. "This is great news for all of Colorado, and would not have been possible without hand-in-glove cooperation between the Department of Energy, the

123

WIPP Receives 100th Shipment  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). The shipment came from DOE's Rocky Flats Environmental Technology Site (RFETS) in Colorado. "This is a major milestone for...

124

Best Practices for the Security of Radioactive Materials  

Science Conference Proceedings (OSTI)

This work is funded under a grant provided by the US Department of Health and Human Services, Centers for Disease Control. The Department of Health and Mental Hygiene (DOHMH) awarded a contract to Brookhaven National Laboratory (BNL) to develop best practices guidance for Office of Radiological Health (ORH) licensees to increase on-site security to deter and prevent theft of radioactive materials (RAM). The purpose of this document is to describe best practices available to manage the security of radioactive materials in medical centers, hospitals, and research facilities. There are thousands of such facilities in the United States, and recent studies suggest that these materials may be vulnerable to theft or sabotage. Their malevolent use in a radiological-dispersion device (RDD), viz., a dirty bomb, can have severe environmental- and economic- impacts, the associated area denial, and potentially large cleanup costs, as well as other effects on the licensees and the public. These issues are important to all Nuclear Regulatory Commission and Agreement State licensees, and to the general public. This document outlines approaches for the licensees possessing these materials to undertake security audits to identify vulnerabilities in how these materials are stored or used, and to describe best practices to upgrade or enhance their security. Best practices can be described as the most efficient (least amount of effort/cost) and effective (best results) way of accomplishing a task and meeting an objective, based on repeatable procedures that have proven themselves over time for many people and circumstances. Best practices within the security industry include information security, personnel security, administrative security, and physical security. Each discipline within the security industry has its own 'best practices' that have evolved over time into common ones. With respect to radiological devices and radioactive-materials security, industry best practices encompass both physical security (hardware and engineering) and administrative procedures. Security regimes for these devices and materials typically use a defense-in-depth- or layered-security approach to eliminate single points of failure. The Department of Energy, the Department of Homeland Security, the Department of Defense, the American Society of Industrial Security (ASIS), the Security Industry Association (SIA) and Underwriters Laboratory (UL) all rovide design guidance and hardware specifications. With a graded approach, a physical-security specialist can tailor an integrated security-management system in the most appropriate cost-effective manner to meet the regulatory and non-regulatory requirements of the licensee or client.

Coulter, D.T.; Musolino, S.

2009-05-01T23:59:59.000Z

125

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.

Ethan W. Brown

2001-09-01T23:59:59.000Z

126

DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY  

SciTech Connect

In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

Blanton, P.; Eberl, K.

2008-09-14T23:59:59.000Z

127

LANL reaches waste shipment milestone  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL reaches waste shipment milestone LANL reaches waste shipment milestone LANL reaches waste shipment milestone The Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total. May 31, 2011 A shipment of transuranic waste on its way to the WIPP repository A shipment of transuranic waste on its way to the WIPP repository. Contact Fred deSousa Communicatons Office (505) 665-3430 Email LOS ALAMOS, New Mexico, May 31, 2011 - Los Alamos National Laboratory has reached an important milestone in its campaign to ship transuranic (TRU) waste from Cold War-era nuclear operations to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This month, the Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total.

128

THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE  

Science Conference Proceedings (OSTI)

The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

Gupta, N.; Abramczyk, G.

2012-03-26T23:59:59.000Z

129

2011 Radioactive Materials Usage Survey for Unmonitored Point Sources  

SciTech Connect

This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

Sturgeon, Richard W. [Los Alamos National Laboratory

2012-06-27T23:59:59.000Z

130

2011 Radioactive Materials Usage Survey for Unmonitored Point Sources  

SciTech Connect

This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

Sturgeon, Richard W. [Los Alamos National Laboratory

2012-06-27T23:59:59.000Z

131

Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations  

SciTech Connect

Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging not exceed the regulatory limits prescribed by 10 CFR 71 for non-exclusive shipments. The mass of each radioisotope presented in this paper is limited by the radiation dose rate on the external surface of the package, which per the regulatory limit should not exceed 200 mrem/hr. The results presented are a compendium of allowable masses of a variety of different isotopes (with varying impurity levels of beryllium in some of the actinide isotopes) that, when loaded in an unshielded packaging, do not result in an external dose rate on the surface of the package that exceeds 190 mrem/hr (190 mrem/hr was chosen to provide 5% conservatism relative to the regulatory limit). These mass limits define the term 'Small Gram Quantity' (SGQ) contents in the context of radioactive material transportation packages. The term SGQ is isotope-specific and pertains to contents in radioactive material transportation packages that do not require shielding and still satisfy the external dose rate requirements. Since these calculated mass limits are for contents without shielding, they are conservative for packaging materials that provide some limited shielding or if the contents are placed into a shielded package. The isotopes presented in this paper were chosen as the isotopes that Department of Energy (DOE) sites most likely need to ship. Other more rarely shipped isotopes, along with industrial and medical isotopes, are planned to be included in subsequent extensions of this work.

Sitaraman, S; Kim, S; Biswas, D; Hafner, R; Anderson, B

2010-10-27T23:59:59.000Z

132

Fast Neutron Radioactivity and Damage Studies on Materials  

SciTech Connect

Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) to improve reliability and longevity since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and gammas. Examples include NdFeB magnets, considered for the damping rings, injection and extraction lines and final focus, electronic and electro-optic devices to be utilized in detector readout, accelerator controls and the CCDs required for the vertex detector, as well as high and low temperature superconducting materials (LTSMs) because some magnets will be superconducting. Our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented for NdFeB materials at EPAC04 where the damage appeared proportional to the distances between the effective operating point and Hc. We have extended those doses, included other manufacturer's samples and measured induced radioactivities. We have also added L and HTSMs as well as a variety of relevant semiconductor and electro-optic materials including PBG fiber that we studied previously only with gamma rays.

Anderson, S.; Spencer, J.; Wolf, Z.; /SLAC; Gallagher, G.; Pellett, D.; Boussoufi, M.; /UC, Davis; Volk, J.; /Fermilab

2007-07-23T23:59:59.000Z

133

SEM Facility for Examination of Reactive and Radioactive Materials  

SciTech Connect

A scanning electron microscope (SEM) facility for the examination of tritium-containing materials is operational at Mound Laboratory. The SEM is installed with the sample chamber incorporated as an integral part of an inert gas glovebox facility to enable easy handling of radioactive and pyrophoric materials. A standard SEM (ETEC Model B-1) was modified to meet dimensional, operational, and safety-related requirements. A glovebox was designed and fabricated which permitted access with the gloves to all parts of the SEM sample chamber to facilitate detector and accessory replacement and repairs. A separate console combining the electron optical column and specimen chamber was interfaced to the glovebox by a custom-made, neoprene bellows so that the vibrations normally associated with the blowers and pumps were damped. Photomicrographs of tritiated pyrophoric materials show the usefulness of this facility. Some of the difficulties involved in the investigation of these materials are also discussed. The SEM is also equipped with an energy dispersive X-ray detector (ORTEC) and a Secondary Ion Mass Spectrometer (3M) attachments. This latter attachment allows analysis of secondary ions with masses ranging from 1-300 amu.

Downs, G. L.; Tucker, P. A.

1973-06-01T23:59:59.000Z

134

Priorities for technology development and policy to reduce the risk from radioactive materials.  

Science Conference Proceedings (OSTI)

The Standing Committee on International Security of Radioactive and Nuclear Materials in the Nonproliferation and Arms Control Division conducted its fourth annual workshop in February 2010 on Reducing the Risk from Radioactive and Nuclear Materials. This workshop examined new technologies in real-time tracking of radioactive materials, new risks and policy issues in transportation security, the best practices and challenges found in addressing illicit radioactive materials trafficking, industry leadership in reducing proliferation risk, and verification of the Nuclear Nonproliferation Treaty, Article VI. Technology gaps, policy gaps, and prioritization for addressing the identified gaps were discussed. Participants included academia, policy makers, radioactive materials users, physical security and safeguards specialists, and vendors of radioactive sources and transportation services. This paper summarizes the results of this workshop with the recommendations and calls to action for the Institute of Nuclear Materials Management (INMM) membership community.

Duggan, Ruth Ann

2010-06-01T23:59:59.000Z

135

Is anyone regulating naturally occurring radioactive material? A state survey  

SciTech Connect

As far as we know, naturally occurring radioactive material (NORM) has surrounded humankind since the beginning of time. However, recent data demonstrating that certain activities concentrate NORM have increased concern regarding its proper handling and disposal and precipitated the development of new NORM-related regulations. The regulation of NORM affects the management of government facilities as well as a broad range of industrial processes. Recognizing that NORM regulation at the federal level is extremely limited, Argonne National Laboratory (ANL) conducted a 50-state survey to determine the extent to which states have assumed the responsibility for regulating NORM as well as the NORM standards that are currently being applied at the state level. Though the survey indicates that NORM regulation comprises a broad spectrum of controls from full licensing requirements to virtually no regulation at afl, a trend is emerging toward recognition of the need for increased regulation of potential NORM hazards, particularly in the absence of federal standards.

Gross, E.M.; Barisas, S.G.

1993-08-01T23:59:59.000Z

136

THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL PACKAGES IN TRANSPORT CONFIGURATION  

SciTech Connect

Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) seals and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.

Gupta, N.

2010-03-04T23:59:59.000Z

137

Numerical estimation on free electrons generated by shielded radioactive materials under various gaseous environments  

SciTech Connect

We report simulation results on generation of free electrons due to the presence of radioactive materials under controlled pressure and gases using a general Monte Carlo transport code (MCNPX). A radioactive material decays to lower atomic number, simultaneously producing high energy gamma rays that can generate free electrons via various scattering mechanisms. This paper shows detailed simulation works for answering how many free electrons can be generated under the existence of shielded radioactive materials as a function of pressure and types of gases.

Kim, D. S. [Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Lee, W. S.; So, J. H. [Agency for Defence Development (ADD), Daejeon 305-152 (Korea, Republic of); Choi, E. M. [Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

2013-06-15T23:59:59.000Z

138

Development of U.S. Regulations for the Transportation of Radioactive Materials - A Look Back Over the Past 40 Years  

SciTech Connect

The discussion in this Chapter is a relatively straightforward, chronological description of the development of U.S. transportation regulations for radioactive materials over the past 40 years. Although primarily based on the development of U.S. regulations for the shipment of what is now known as Type B quantities of radioactive materials, the information presented details the interactions between a number of U.S. governmental agencies, commissions, and departments, and the International Atomic Energy Agency (IAEA). For the most part, the information that follows was taken directly from the Federal Register, between 1965 and 2004, which, within the boundaries of the U.S., is considered law, or at least policy at the federal level. Starting in 1978, however, the information presented also takes a look at a series of so-called Guidance Documents, including Regulatory Guides (Reg. Guides), NUREGs, and NUREG/CRs. Developed originally by the U.S. Atomic Energy Agency (AEC), and later adapted by the U.S. Nuclear Regulatory Commission (NRC), the NUREGs and NUREG/CRs cited in this Chapter clearly specify a preferred methodology that can be used to meet the regulatory requirements of Title 10 of the Code of Federal Regulations, Part 71 (10 CFR Part 71, or, more simply, 10 CFR 71). As is appropriate for the discussion in this Chapter, the methodology preferred by the NRC, not as law but as guidance, was adapted directly from the requirements of the ASME's Boiler & Pressure Vessel Code. The information provided below is provided with little embellishment. By taking the information directly from the Federal Register, it becomes a story that tells itself. The information is self-consistent, and it provides all of the details behind the numerous policy decisions that led to the development of the U.S. regulations, as they were in their time, and as they are now.

Hafner, R S

2005-08-29T23:59:59.000Z

139

Operations start and shipments begin  

NLE Websites -- All DOE Office Websites (Extended Search)

problems encountered during the attempts to start up the calutrons. The first shipment of uranium 235 (200 grams of 12% enrichment) from Y-12 in March, 1944, proved that the...

140

LANL Resumes Shipments to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

For Immediate Release LANL Resumes Shipments to WIPP CARLSBAD, N.M., April 17, 2001 - On April 19, the U.S. Department of Energy's (DOE) Los Alamos National Laboratory (LANL) will...

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Idaho Site Achieves Successful Nuclear Shipment on Newly Constructed Haul  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieves Successful Nuclear Shipment on Newly Achieves Successful Nuclear Shipment on Newly Constructed Haul Road Idaho Site Achieves Successful Nuclear Shipment on Newly Constructed Haul Road May 1, 2012 - 12:00pm Addthis The HFEF-6 cask is transported on the haul road. The HFEF-6 cask is transported on the haul road. IDAHO FALLS, Idaho - Close coordination among operations, security and transportation teams at the Idaho site helped ensure the recent success of the first nuclear shipment on a newly constructed haul road. The new road located between the Critical Infrastructure Test Range Complex (CITRC) and the Materials and Fuels Complex (MFC) is expected to help save significant time and cost over the life of the project by avoiding traffic disruptions on the public highway and increased cost associated with

142

Source holder collimator for encapsulating radioactive material and collimating the emanations from the material  

DOE Patents (OSTI)

This invention provides a transportable device capable of detecting normal levels of a trace element, such as lead in a doughnutshaped blood sample by x-ray fluorescence with a minimum of sample preparation in a relatively short analyzing time. In one embodiment, the blood is molded into a doughnut-shaped sample around an annular array of low-energy radioactive material that is at the center of the doughnut-shaped sample but encapsulated in a collimator, the latter shielding a detector that is close to the sample and facing the same so that the detector receives secondary emissions from the sample while the collimator collimates ths primary emissions from the radioactive material to direct these emissions toward the sample around 360 deg and away from the detector. (Official Gazette)

Laurer, G.R.

1974-01-22T23:59:59.000Z

143

Inelastic analysis acceptance criteria for radioactive material transportation containers  

SciTech Connect

The design criteria currently used in the design of radioactive material (RAM) transportation containers are taken from the ASME Boiler and Pressure Vessel Code (ASME, 1992). These load-based criteria are ideally suited for pressure vessels where the loading is quasistatic and all stresses are in equilibrium with externally applied loads. For impact events, the use of load-based criteria is less supportable. Impact events tend to be energy controlled, and thus, energy-based acceptance criteria would appear to be more appropriate. Determination of an ideal design criteria depends on what behavior is desired. Currently there is not a design criteria for inelastic analysis for RAM nation packages that is accepted by the regulatory agencies. This lack of acceptance criteria is one of the major factors in limiting the use of inelastic analysis. In this paper inelastic analysis acceptance criteria based on stress and strain-energy density will be compared for two stainless steel test units subjected to impacts onto an unyielding target. Two different material models are considered for the inelastic analysis, a bilinear fit of the stress-strain curve and a power law hardening model that very closely follows the stress-strain curve. It is the purpose of this paper to stimulate discussion and research into the area of strain-energy density based inelastic analysis acceptance criteria.

Ammerman, D.J.; Ludwigsen, J.S.

1993-06-01T23:59:59.000Z

144

Lab sets new record for waste shipments  

NLE Websites -- All DOE Office Websites (Extended Search)

New record for waste shipments New record for waste shipments Lab sets new record for waste shipments LANL completing its 132nd transuranic (TRU) waste shipment of fiscal year 2010 to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. August 20, 2010 LANL's shipment of transuranic waste leaves Los Alamos. LANL's shipment of transuranic waste leaves Los Alamos. Contact Fred deSousa Communications Office (505) 500-5672 Email "Removing this waste from Los Alamos is crucial to our plans for overall cleanup." Each shipment moves LANL closer to cleanup LOS ALAMOS, New Mexico, August 20, 2010-Los Alamos National Laboratory set a new LANL record on Friday by completing its 132nd transuranic (TRU) waste shipment of fiscal year 2010 to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The shipment eclipsed last year's

145

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from May 1, 1999, through July 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and Secretary Richardson.

Ann M. Beauchesne

1999-07-30T23:59:59.000Z

146

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from February 1, 1999, through April 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and continued to serve as a liaison between the NGA FFCA Task Force states and the Department.

Ann M. Beauchesne

1999-04-30T23:59:59.000Z

147

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from December 31, 1997 through April 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions in preparation for the March 30-31, 1998 NGA Federal Facilities Compliance Task Force Meeting with DOE. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.

NONE

1998-04-01T23:59:59.000Z

148

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors Association (NGA) project ``Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from October 1, 1999 through January 31, 2000, under the NGA grant. The work accomplished by the NGA project team during the past three months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; convened and facilitated the October 6--8 NGA FFCA Task Force Meeting in Oak Ridge, Tennessee; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and the Department.

Ann M. Beauchesne

2000-01-01T23:59:59.000Z

149

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.

NONE

1998-07-01T23:59:59.000Z

150

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

Science Conference Proceedings (OSTI)

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1998 through January 31, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.

Ann M. Beauchesne

1999-01-31T23:59:59.000Z

151

THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES  

SciTech Connect

Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from June 1, 1998 through September 30, 1998, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.

Ann B. Beauchesne

1998-09-30T23:59:59.000Z

152

Naval Spent Fuel Rail Shipment Accident Exercise Objectives ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives...

153

Milestone reached: Waste shipment leaves Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste shipment leaves LANL Waste shipment leaves LANL Milestone reached: Waste shipment leaves Los Alamos National Laboratory The material, known as "remote-handled transuranic waste" (RH-TRU), has been stored at the Laboratory since 1995. June 2, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

154

U.S. Department of Energy Guidelines for Residual Radioactive Material at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Guidelines for Residual Radioactive U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) More Documents & Publications

155

U.S. Department of Energy Guidelines for Residual Radioactive Material at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Guidelines for Residual Radioactive U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) More Documents & Publications

156

RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT  

Science Conference Proceedings (OSTI)

This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

KOZLOWSKI, S.D.

2007-05-30T23:59:59.000Z

157

Offsite Shipment Campaign Readiness Assessment (OSCRA): A tool for offsite shipment campaigns  

SciTech Connect

The Offsite Shipment Campaign Readiness Assessment (OSCRA) tool is designed to assist program managers in identifying, implementing, and verifying applicable transportation and disposal regulatory requirements for specific shipment campaigns. OSCRA addresses these issues and provides the program manager with a tool to support planning for safe and compliant transportation of waste and other regulated materials. Waste transportation and disposal requirements must be identified and addressed in the planning phase of a waste management project. In the past, in some cases, transportation and disposal requirements have not been included in overall project plans. These planning deficiencies have led to substantial delays and cost impacts. Additionally, some transportation regulatory requirements have not been properly implemented, resulting in substantial fines and public embarrassment for the U.S. Department of Energy (DOE). If a material has been processed and packaged for onsite storage (prior to offsite disposal) in a package that does not meet transportation requirements, it must be repackaged in U.S. Department of Transportation (DOT)-compliant packaging for transport. This repackaging can result in additional cost, time, and personnel radiation exposure. The original OSCRA concept was developed during the Pond Waste Project at the K-25 Site in Oak Ridge, Tennessee. The continued development of OSCRA as a user-friendly tool was funded in 1995 by the DOE Office of Environmental Management, Transportation Management Division (TMD). OSCRA is designed to support waste management managers, site remediation managers, and transportation personnel in defining applicable regulatory transportation and disposal requirements for offsite shipment of hazardous waste and other regulated materials. The need for this tool stems from increasing demands imposed on DOE and the need to demonstrate and document safe and compliant packaging and shipment of wastes from various DOE sites.

Michelhaugh, R.D.; Pope, R.B. [Oak Ridge National Lab., TN (United States); Bisaria, A. [Science Applications International Corp., Oak Ridge, TN (United States)

1995-12-31T23:59:59.000Z

158

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

Science Conference Proceedings (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

159

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

160

Ion-exchange material and method of storing radioactive wastes  

DOE Patents (OSTI)

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, S.; Roy, D.M.

1983-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

162

Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials  

Science Conference Proceedings (OSTI)

This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials.

Moore, F.S.

1999-10-07T23:59:59.000Z

163

Compilation of current literature on seals, closures, and leakage for radioactive material packagings  

SciTech Connect

This report presents an overview of the features that affect the sealing capability of radioactive material packagings currently certified by the US Nuclear Regulatory Commission. The report is based on a review of current literature on seals, closures, and leakage for radioactive material packagings. Federal regulations that relate to the sealing capability of radioactive material packagings, as well as basic equations for leakage calculations and some of the available leakage test procedures are presented. The factors which affect the sealing capability of a closure, including the properties of the sealing surfaces, the gasket material, the closure method and the contents are discussed in qualitative terms. Information on the general properties of both elastomer and metal gasket materials and some specific designs are presented. A summary of the seal material, closure method, and leakage tests for currently certified packagings with large diameter seals is provided. 18 figs., 9 tabs.

Warrant, M.M.; Ottinger, C.A.

1989-01-01T23:59:59.000Z

164

U.S. Works With Kazakhstan to Stop Nuclear and Radioactive Material  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Works With Kazakhstan to Stop Nuclear and Radioactive Material Works With Kazakhstan to Stop Nuclear and Radioactive Material Smuggling U.S. Works With Kazakhstan to Stop Nuclear and Radioactive Material Smuggling May 6, 2006 - 10:34am Addthis WASHINGTON, DC - As part of the overall U.S. strategy to prevent nuclear and dangerous radiological materials from falling into the hands of terrorists, the Department of Energy's National Nuclear Security Administration (NNSA) announced today that an agreement with the government of Kazakhstan had been signed to create a partnership under the Second Line of Defense program. U.S. Ambassador Ordway joined Kazakhstan Customs Control Committee Chairman Askar Shakirov in signing the accord. The agreement will pave the way for NNSA to work collaboratively with the Kazakhstan Customs Control Committee

165

U.S. DEPARTMENT OF ENERGY GUIDELINES FOR RESIDUAL RADIOACTIVE MATERIAL AT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I U.S. DEPARTMENT OF ENERGY GUIDELINES FOR RESIDUAL RADIOACTIVE MATERIAL AT FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM AHD REMOTE SURPLUS FACILITIES MANAGEMENT PROGRAM SITES (Revision 2, March 1987) A. INTRODUCTION This document presents U.S. Department of Energy (DOE) radiological protection guidelines for cleanup of residual radioactive material and management of the resulting wastes and residues. It is applicable to si~es - "C-- identified by the Formerly Utilized Sites l{emedia1 Ac:tionProgram (FUSRAP) .and remote sites identified by the Surplus Facilities Management Program (SFMP).* The topics covered are basic dose limits, guidelines and authorized limits for allowable levels of residual radioactive material, and requirements for

166

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

DOE Patents (OSTI)

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

1999-01-01T23:59:59.000Z

167

Radiological surveys of properties contaminated by residual radioactive materials from uranium processing sites  

Science Conference Proceedings (OSTI)

This report examines methods for determining the extent and nature of contamination on properties contaminated by residual radioactive materials from uranium processing sites. Methods are also examined for verifying the success of remedial actions in removing the residual radioactive materials. Using literature review and practical experiences from the Edgemont, South Dakota survey program a critical review is made of sampling programs, instrumentation, analytical procedures, data reporting format, and statistical analyses of data. Protocols are recommended for measuring indoor and outdoor gamma-ray exposure rates, surface and subsurface Radium-226 concentrations in soil, and radon daughter concentrations.

Young, J.A.; Jackson, P.O.; Thomas, V.W.

1983-06-01T23:59:59.000Z

168

Health Physics Society Specialists in Radiation Safety Consumer Products Containing Radioactive Materials  

E-Print Network (OSTI)

Everything we encounter in our daily lives contains some radioactive material, some naturally occurring and some man-made: the air we breathe, the water we drink, the food we eat, the ground we walk upon, and the consumer products we purchase and use. Although many might be familiar with the use of radiation to diagnose disease and treat cancer, some people, when they hear the terms radioactive and radiation, might recall images of mushroom clouds or monster mutants that inhabit the world of science fiction movies and comic books. Unfortunately, those false images can cause inordinate fear that is not justified regarding low levels of radioactive material. Many consumer items containing naturally occurring radioactivity can be safely used. This fact sheet describes a photo courtesy of Ray Johnson few of the more commonly encountered and familiar consumer products. Included are the items that can contain sufficient radioactive material to be distinguished from the general environmental background radiation with a simple handheld radiation survey meter. Smoke Detectors Most residential smoke detectors contain a low-activity

unknown authors

2010-01-01T23:59:59.000Z

169

Milestone Shipment Arrives at WIPP | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Shipment Arrives at WIPP Milestone Shipment Arrives at WIPP September 30, 2013 - 12:00pm Addthis WIPP's 700th defense-related RH-TRU waste shipment was transported in an...

170

Removing nuclear waste, one shipment at a time  

NLE Websites -- All DOE Office Websites (Extended Search)

Stories Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos,...

171

REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION  

SciTech Connect

Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field using gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.

XU, X. George; Zhang, X.C.

2002-05-10T23:59:59.000Z

172

Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction  

Science Conference Proceedings (OSTI)

Mesoporous silica with covalently bound salicylic acid molecules incorporated in the structure was synthesized with a one-pot, co-condensation reaction at room temperature. The as-synthesized material has a large surface area, uniform particle size, and an ordered pore structure as determined by characterization with transmission electron microscopy, thermal gravimetric analysis, and infrared spectra, etc. Using the strong fluorescence and metal coordination capability of salicylic acid, functionalized mesoporous silica (FMS) was developed to track and extract radionuclide contaminants, such as uranyl [U(VI)] ions encountered in subsurface environments. Adsorption measurements showed a strong affinity of the FMS toward U(VI) with a Kd value of 105 mL/g, which is four orders of magnitude higher than the adsorption of U(VI) onto most of the sediments in natural environments. The new materials have a potential for synergistic environmental monitoring and remediation of the radionuclide U(VI) from contaminated subsurface environments.

Li, Juan; Zhu, Kake; Shang, Jianying; Wang, Donghai; Nie, Zimin; Guo, Ruisong; Liu, Chongxuan; Wang, Zheming; Li, Xiaolin; Liu, Jun

2012-08-01T23:59:59.000Z

173

Gamma motes for detection of radioactive materials in shipping containers  

Science Conference Proceedings (OSTI)

Shipping containers can be effectively monitored for radiological materials using gamma (and neutron) motes in distributed mesh networks. The mote platform is ideal for collecting data for integration into operational management systems required for efficiently and transparently monitoring international trade. Significant reductions in size and power requirements have been achieved for room-temperature cadmium zinc telluride (CZT) gamma detectors. Miniaturization of radio modules and microcontroller units are paving the way for low-power, deeply-embedded, wireless sensor distributed mesh networks.

Harold McHugh; William Quam; Stephan Weeks; Brendan Sever

2007-04-13T23:59:59.000Z

174

RADIOACTIVE MATERIALS LABORATORY SAFETY REPORT, MARTIN NUCLEAR FACILITY, QUEHANNA SITE  

SciTech Connect

A description is given of the safety features and the major alterations to be performed prior to occupancy. The evaluation was made in support of fubrication work on the production of safe isotopic power sources from Cm/sup 242/ and Sr/sup 90/. The chemical, nuclear, and radiobiological properties of Cm/sup 242/ and Sr/sup 90/ are outlined. The projected physical fiow of materials for production of the isotopic power souroes is schematically given. An evaluation of the malfunctions, operational hazards, and remedial health physics procedures is presented. The analysis and evaluation of postulated maximum credible incidents are demonstrated. (B.O.G.)

1960-09-01T23:59:59.000Z

175

The First Recovery Act Funded Waste Shipment depart from the...  

NLE Websites -- All DOE Office Websites (Extended Search)

The First Recovery Act Funded Waste Shipment departs from the Advanced Mixed Waste Treatment Facility A shipment of mixed low-level waste left DOEs Advanced Mixed Waste...

176

EIA Renewable Energy- Shipments of Photovoltaic Cells and Modules ...  

U.S. Energy Information Administration (EIA)

Renewables and Alternate Fuels > Solar Photovoltaic Cell/Module Annual Report > Annual Shipments of Photovoltaic Cells and Modules by Source: Shipments of ...

177

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho...

178

Radiological dose assessment related to management of naturally occurring radioactive materials generated by the petroleum industry  

Science Conference Proceedings (OSTI)

A preliminary radiological dose assessment related to equipment decontamination, subsurface disposal, landspreading, equipment smelting, and equipment burial was conducted to address concerns regarding the presence of naturally occurring radioactive materials in production waste streams. The assessment evaluated the relative dose of these activities and included a sensitivity analysis of certain input parameters. Future studies and potential policy actions are recommended.

Smith, K.P.; Blunt, D.L.; Williams, G.P.; Tebes, C.L. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1995-05-01T23:59:59.000Z

179

VALIDATION OF COMPUTER MODELS FOR RADIOACTIVE MATERIAL SHIPPING PACKAGES  

Science Conference Proceedings (OSTI)

Computer models are abstractions of physical reality and are routinely used for solving practical engineering problems. These models are prepared using large complex computer codes that are widely used in the industry. Patran/Thermal is such a finite element computer code that is used for solving complex heat transfer problems in the industry. Finite element models of complex problems involve making assumptions and simplifications that depend upon the complexity of the problem and upon the judgment of the analysts. The assumptions involve mesh size, solution methods, convergence criteria, material properties, boundary conditions, etc. that could vary from analyst to analyst. All of these assumptions are, in fact, candidates for a purposeful and intended effort to systematically vary each in connection with the others to determine there relative importance or expected overall effect on the modeled outcome. These kinds of models derive from the methods of statistical science and are based on the principles of experimental designs. These, as all computer models, must be validated to make sure that the output from such an abstraction represents reality [1,2]. A new nuclear material packaging design, called 9977, which is undergoing a certification design review, is used to assess the capability of the Patran/Thermal computer model to simulate 9977 thermal response. The computer model for the 9977 package is validated by comparing its output with the test data collected from an actual thermal test performed on a full size 9977 package. Inferences are drawn by performing statistical analyses on the residuals (test data--model predictions).

Gupta, N; Gene Shine, G; Cary Tuckfield, C

2007-05-07T23:59:59.000Z

180

First of Hanford's Highly Radioactive Sludge Moved Away from River |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First of Hanford's Highly Radioactive Sludge Moved Away from First of Hanford's Highly Radioactive Sludge Moved Away from River First of Hanford's Highly Radioactive Sludge Moved Away from River July 13, 2012 - 12:00pm Addthis Media Contacts Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov 509-376-4171 Dee Millikin, CH2M HILL Dee_Millikin@rl.doe.gov 509-376-1297 RICHLAND, Wash. - Workers have started moving highly radioactive material, called sludge, away from the Columbia River, marking a significant milestone in the U. S. Department of Energy (DOE)'s cleanup of the Hanford Site in Washington State. Today, DOE contractor CH2M HILL Plateau Remediation Company (CH2M HILL) safely transferred the first large container of highly radioactive sludge from a basin next to a former plutonium production reactor to dry storage in the center of the site. Today's transfer is the first of six shipments

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Data collection handbook to support modeling the impacts of radioactive material in soil  

SciTech Connect

A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Loureiro, C. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Engenharia; Chia, Y.P. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Geology

1993-04-01T23:59:59.000Z

182

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

183

AGING PERFORMANCE OF VITON GLT O-RINGS IN RADIOACTIVE MATERIAL PACKAGES  

Science Conference Proceedings (OSTI)

Radioactive material packages used for transportation of plutonium-bearing materials often contain multiple O-ring seals for containment. Packages such as the Model 9975 are also being used for interim storage of Pu-bearing materials at the Savannah River Site (SRS). One of the seal materials used in such packages is Viton{reg_sign} GLT fluoroelastomer. The aging behavior of containment vessel O-rings based on Viton{reg_sign} GLT at long-term containment term storage conditions is being characterized to assess its performance in such applications. This paper summarizes the program and test results to date.

Skidmore, E; Kerry Dunn, K; Elizabeth Hoffman, E; Elise Fox, E; Kathryn Counts, K

2007-05-07T23:59:59.000Z

184

Hydro-mechanical behaviour of bentonite-based materials used for high-level radioactive waste disposal.  

E-Print Network (OSTI)

??This study deals with the hydro-mechanical behaviour of compacted bentonite-based materials used as sealing materials in high-level radioactive waste repositories. The pure MX80 bentontie, mixtures (more)

Wang, Qiong

2012-01-01T23:59:59.000Z

185

APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS  

SciTech Connect

This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels.

Blanton, P.; Eberl, K.; Abramczyk, G.

2012-07-11T23:59:59.000Z

186

HOW MANY DID YOU SAY? HISTORICAL AND PROJECTED SPENT NUCLEAR FUEL SHIPMENTS IN THE UNITED STATES, 1964 - 2048  

Science Conference Proceedings (OSTI)

No comprehensive, up-to-date, official database exists for spent nuclear fuel shipments in the United States. The authors review the available data sources, and conclude that the absence of such a database can only be rectified by a major research effort, similar to that carried out by Oak Ridge National Laboratory (ORNL) in the early 1990s. Based on a variety of published references, and unpublished data from the U.S. Nuclear Regulatory Commission (NRC), the authors estimate cumulative U.S. shipments of commercial spent fuel for the period 1964-2001. The cumulative estimates include quantity shipped, number of cask-shipments, and shipment-miles, by truck and by rail. The authors review previous estimates of future spent fuel shipments, including contractor reports prepared for the U.S. Department of Energy (DOE), NRC, and the State of Nevada. The DOE Final Environmental Impact Statement (FEIS) for Yucca Mountain includes projections of spent nuclear fuel and high-level radioactive was te shipments for two inventory disposal scenarios (24 years and 38 years) and two national transportation modal scenarios (''mostly legal-weight truck'' and ''mostly rail''). Commercial spent fuel would compromise about 90 percent of the wastes shipped to the repository. The authors estimate potential shipments to Yucca Mountain over 38 years (2010-2048) for the DOE ''mostly legal-weight truck'' and ''mostly rail'' scenarios, and for an alternative modal mix scenario based on current shipping capabilities of the 72 commercial reactor sites. The cumulative estimates of future spent fuel shipments include quantity shipped, number of cask-shipments, and shipment-miles, by legal-weight truck, heavy-haul truck, rail and barge.

Halstead, Robert J.; Dilger, Fred

2003-02-27T23:59:59.000Z

187

First Savannah River Shipment Arrives At WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

First Savannah River Site Shipment Arrives At WIPP CARLSBAD, N.M., May 10, 2001 - The U.S. Department of Energy's (DOE) Carlsbad Field Office today announced that the first...

188

Radioactive material package closures with the use of shape memory alloys  

SciTech Connect

When heated from room temperature to 165 C, some shape memory metal alloys such as titanium-nickel alloys have the ability to return to a previously defined shape or size with dimensional changes up to 7%. In contrast, the thermal expansion of most metals over this temperature range is about 0.1 to 0.2%. The dimension change of shape memory alloys, which occurs during a martensite to austenite phase transition, can generate stresses as high as 700 MPa (100 kspi). These properties can be used to create a closure for radioactive materials packages that provides for easy robotic or manual operations and results in reproducible, tamper-proof seals. This paper describes some proposed closure methods with shape memory alloys for radioactive material packages. Properties of the shape memory alloys are first summarized, then some possible alternative sealing methods discussed, and, finally, results from an initial proof-of-concept experiment described.

Koski, J.A.; Bronowski, D.R.

1997-11-01T23:59:59.000Z

189

Legal aspects of the maritime transport of radioactive materials its regulation in Mexico  

E-Print Network (OSTI)

This work has the object to analyse the International as much as National legal frameworks, the scopes and limits of the instruments which form it as well as the congruous that exist between them and the situation which actually prevails in the maritime transport field of radioactive materials in worldwide level and in Mexico taking into account the technical advances, the operational experience and radiological protection principles. In the chapter 1, the background on the uses of nuclear energy are described and its development by more of fifty years. The chapter 2 analyses about the establishment of nuclear technologies in Mexico as well as their evolution in medicine, agriculture, research and electric power generation areas. In chapter 3 it was analysed the role what the International Organizations have been playing for the establish of an International legal framework in the maritime transport of radioactive materials field. In the chapter 4, the International legal framework was analysed which is appli...

Aguilar, S

2001-01-01T23:59:59.000Z

190

Behavior of radioactive species during water injection into alloy breeder material  

Science Conference Proceedings (OSTI)

A fusion safety experiment was conducted to determine the consequences of water injection into lead-lithium alloy under postulated reactor accident conditions. The fraction of water reacted, quantity of hydrogen produced, and behavior of radioactive species associated with the use of this alloy as a breeder material were determined. The reaction products were identified, and the aerosol was characterized for particle size, chemical composition, and deposition rate. 2 refs., 3 figs., 7 tabs.

Jeppson, D.W.; Serinni, G. (Westinghouse Hanford Co., Richland, WA (USA); Commission of the European Communities, Ispra (Italy))

1989-09-01T23:59:59.000Z

191

Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials  

Science Conference Proceedings (OSTI)

This report recornmenrls instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two rnonth measurement rnethodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

Young,, J. A.; Thomas, V. W.; Jackson, P. 0.

1983-03-01T23:59:59.000Z

192

Lessons Learned from a Regional Approach to Route Selection for Spent Nuclear Fuel Shipments to Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwestern Route Identification Project Midwestern Route Identification Project Sarah K. Wochos Policy Analyst Council of State Governments - Midwest Approach Why Regional? * States need to know the routes as soon as possible * Regions develop and use the criteria that is important to them * States have a better feel for routes that run through their jurisdictions * States felt that EIS routes were a poor starting point for discussions * Regional framework has worked well on other issues Why a Suite of Routes? * Better variety and thus perhaps better security? * Flexibility during construction, bad weather or special events * Inevitable further winnowing through national discussion Methodology Primary Factors - from U.S. DOT's Guidelines for Selecting Preferred Highway Routes for Highway Route Controlled Shipments of Radioactive Materials

193

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1999-03-16T23:59:59.000Z

194

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1999-03-16T23:59:59.000Z

195

Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy  

DOE Patents (OSTI)

A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

2007-10-23T23:59:59.000Z

196

CLOSURE WELDING RADIOACTIVE MATERIALS CONTAINERS AT THE DEPARTMENT OF ENERGY (DOE) HANFORD SITE  

SciTech Connect

The Department of Energy's (DOE) responsibility for the disposition of radioactive materials has given rise to several unique welding applications. Many of these materials require packaging into containers for either Interim or long-term storage. It is not uncommon that final container fabrication, i.e., closure welding, is performed with these materials already placed into the container. Closure welding is typically performed remote to the container, and routine post-weld testing and nondestructive examination (NDE) are often times not feasible. Fluor Hanford has packaged many such materials in recent years as park of the Site's cleanup mission. In lieu of post-weld testing and NDE, the Fluor-Hanford approach has been to establish weld quality through ''upfront'' development and qualification of welding parameters, and then ensure parameter compliance during welding. This approach requires a rigor not usually afforded to typical welding development activities, and may involve statistical analysis and extensive testing, including burst, drop, sensitive leak testing, etc. This paper provides an instructive review of the development and qualification activities associated with the closure of radioactive materials containers, including a brief report on activities for closure welding research reactor, spent nuclear fuel (SNF) overpacks at the Hanford Site.

CANNELL, G.R.

2006-09-01T23:59:59.000Z

197

Radioactive waste processing apparatus  

DOE Patents (OSTI)

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01T23:59:59.000Z

198

Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine  

DOE Patents (OSTI)

Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

Krumhansl, James L; Nenoff, Tina M

2013-02-26T23:59:59.000Z

199

Microsoft Word - 10000th_shipment.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

For Immediate Release For Immediate Release The Department of Energy Announces Major Cold War Legacy Waste Cleanup Milestone Waste Isolation Pilot Plant Receives 10,000th Shipment CARLSBAD, N.M., September 28, 2011 - The U.S. Department of Energy today announced that the Waste Isolation Pilot Plant (WIPP) received its 10,000th shipment of transuranic (TRU) waste over the weekend. This marks an important milestone in DOE's mission to clean up the country's Cold War legacy. "This accomplishment reflects the hard work and dedication of our workers and contractors," said Energy Secretary Steven Chu. "It also demonstrates the Department's commitment to future generations as we continue our cleanup mission as safely and quickly as possible." The 10,000th shipment, which consisted of defense-generated contact-handled

200

Alternatives for the disposal of NORM (naturally occurring radioactive materials) wastes in Texas  

SciTech Connect

Some of the Texas wastes containing naturally occurring radioactive materials (NORM) have been disposed of in a uranium mill tailings impoundment. There is currently no operating disposal facility in Texas to accept these wastes. As a result, some wastes containing extremely small amounts of radioactivity are sent to elaborate disposal sites at extremely high costs. The Texas Low-Level Radioactive Waste Disposal Authority has sponsored a study to investigate lower cost, alternative disposal methods for certain wastes containing small quantities of NORM. This paper presents the results of a multipathway safety analysis of various scenarios for disposing of wastes containing limited quantities of NORM in Texas. The wastes include pipe scales and sludges from oil and gas production, residues from rare-earth mineral processing, and water treatment resins, but exclude large-volume, diffuse wastes (coal fly ash, phosphogypsum). The purpose of the safety analysis is to define concentration and quantity limits for the key nuclides of NORM that will avoid dangerous radiation exposures under different waste disposal scenarios.

Nielson, K.K.; Rogers, V.C. (Rogers Associates Engineering Corporation, Salt Lake City, UT (USA)); Pollard, C.G. (Texas Low-Level Radioactive Waste Disposal Authority, Austin (USA))

1989-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

THE USE OF DIGITAL RADIOGRAPHY IN THE EVALUATION OF RADIOACTIVE MATERIALS PACKAGING PERFORMANCE TESTING  

Science Conference Proceedings (OSTI)

New designs of radioactive material shipping packages are required to be evaluated in accordance with 10 CFR Part 71, ''Packaging and Transportation of Radioactive Material''. This paper will discuss the use of digital radiography to evaluate the effects of the tests required by 10 CFR 71.71, Normal Conditions of Transport (NCT), and 10 CFR 71.73, Hypothetical Accident Conditions (HAC). One acceptable means of evaluating packaging performance is to subject packagings to the series of NCT and HAC tests. The evaluation includes a determination of the effect on the packaging by the conditions and tests. That determination has required that packagings be cut and sectioned to learn the actual effects on internal components. Digital radiography permits the examination of internal packaging components without sectioning a package. This allows a single package to be subjected to a series of tests. After each test, the package is digitally radiographed and the effects of particular tests evaluated. Radiography reduces the number of packages required for testing and also reduces labor and materials required to section and evaluate numerous packages. This paper will include a description of the digital radiography equipment used in the testing and evaluation of the 9977 and 9978 packages at SRNL. The equipment is capable of making a single radiograph of a full-sized package in one exposure. Radiographs will be compared to sectioned packages that show actual conditions compared to radiographic images.

May, C; Lawrence Gelder, L; Boyd Howard, B

2007-03-22T23:59:59.000Z

202

Critically safe vacuum pickup for use in wet or dry cleanup of radioactive materials  

DOE Patents (OSTI)

A vacuum pickup of critically safe quantity and geometric shape is used in cleanup of radioactive materials. Collected radioactive material is accumulated in four vertical, parallel, equally spaced canisters arranged in a cylinder configuration. Each canister contains a filter bag. An upper intake manifold includes four 90 degree spaced, downward facing nipples. Each nipple communicates with the top of a canister. The bottom of each canister communicates with an exhaust manifold comprising four radially extending tubes that meet at the bottom of a centrally located vertical cylinder. The top of the central cylinder terminates at a motor/fan power head. A removable HEPA filter is located intermediate the top of the central cylinder and the power head. Four horizontal bypass tubes connect the top of the central cylinder to the top of each of the canisters. Air enters the vacuum cleaner via a hose connected to the intake manifold. Air then travels down the canisters, where particulate material is accumulated in generally equal quantities in each filter bag. Four air paths of bag filtered air then pass radially inward to the bottom of the central cylinder. Air moves up the central cylinder, through the HEPA filter, through a vacuum fan compartment, and exits the vacuum cleaner. A float air flow valve is mounted at the top of the central cylinder. When liquid accumulates to a given level within the central cylinder, the four bypass tubes, and the four canisters, suction is terminated by operation of the float valve.

Zeren, Joseph D. (390 Forest Ave., Boulder, CO 80304)

1994-01-01T23:59:59.000Z

203

Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Tebes is affiliated with the University of Illinois. Tebes is affiliated with the University of Illinois. ANL/EAD-2 Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry by K.P. Smith, D.L. Blunt, G.P. Williams, and C.L. Tebes * Environmental Assessment Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 September 1996 Work sponsored by the United States Department of Energy, Office of Policy iii CONTENTS ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

204

Bibliography of reports, papers, and presentations on naturally occurring radioactive material (NORM) in petroleum industry wastes  

Science Conference Proceedings (OSTI)

This bibliography was created to support projects conducted by Argonne National Laboratory (ANL) addressing issues related to naturally occurring radioactive material (NORM) in petroleum industry wastes. The bibliography provides citations for many of the available published reports, papers, articles, and presentations on petroleum industry NORM. In the past few years, the rapid expansion of NORM treatment and disposal technologies, the efforts to characterize NORM wastes and their associated potential risks, and the promulgation of state-level NORM regulatory programs have been well-documented in project reports and in papers presented at technical conferences and symposia. There are 221 citations.

Smith, K.P.; Wilkey, M.L.; Hames, R.D.

1997-07-01T23:59:59.000Z

205

NR-SRS TRU Waste Shipments Milestone June 4 2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

June 4, 2013 June 4, 2013 Bill Taylor, DOE-SR, (803) 952-8564 bill.taylor@srs.gov DT Townsend, SRNS, (803) 952-7566 Dt-lawrence.townsend@srs.gov Savannah River Site Exceeds Waste Shipment Goals AIKEN, S.C. - During the month of April, the Savannah River Site met two new milestone records towards analyzing, preparing, packaging and shipping radioactive transuranic (TRU) waste bound for a

206

"TRU" Success: SRS Recovery Act Prepares to Complete Shipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic...

207

Moab Mill Tailings Removal Project Plans to Resume Train Shipments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return Moab Mill Tailings Removal Project Plans to Resume Train Shipments in March; All of the Laid Off...

208

Table 10.7 Solar Thermal Collector Shipments by Market ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Table 10.7 Solar Thermal Collector Shipments by Market Sector, ... Special collectors are evacuated tube ...

209

APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR GENERAL PURPOSE RADIOACTIVE MATERIALS PACKAGINGS  

Science Conference Proceedings (OSTI)

Polyurethane foam has been employed in impact limiters for large radioactive materials packagings since the early 1980's. Its consistent crush response, controllable structural properties and excellent thermal insulating characteristics have made it attractive as replacement for the widely used cane fiberboard for smaller, drum size packagings. Accordingly, polyurethane foam was chosen for the overpack material for the 9977 and 9978 packagings. The study reported here was undertaken to provide data to support the analyses performed as part of the development of the 9977 and 9978, and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation.

Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

2009-02-18T23:59:59.000Z

210

THERMAL EVALUATION OF DRUM TYPE RADIOACTIVE MATERIAL PACKAGING ARRAYS IN STORAGE  

SciTech Connect

Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR 71.[1] In recent years, there has been a greater need to use these packagings to store the excess fissile material, especially plutonium for long term storage. While the design requirements for safe transportation of these packagings are well defined, the requirements for safe long term storage are not well established. Since the RAM contents in the packagings produce decay heat, it is important that they are stored carefully to prevent overheating of the containment vessel (CV) seals to prevent any leakage and the impact limiter to maintain the package structural integrity. This paper analyzes different storage arrays for a typical 9977 packaging for thermal considerations and makes recommendations for their safe storage under normal operating conditions.

Gupta, N

2009-04-27T23:59:59.000Z

211

Test methods for selection of materials of construction for high-level radioactive waste vitrification. Revision  

Science Conference Proceedings (OSTI)

Candidate materials of construction were evaluated for a facility at the Department of Energy's Savannah River Plant to vitrify high-level radioactive waste. Limited operating experience was available under the corrosive conditions of the complex vitrification process. The objective of the testing program was to provide a high degree of assurance that equipment will meet or exceed design lifetimes. To meet this objective in reasonable time and minimum cost, a program was designed consisting of a combination of coupon immersion and electrochemical laboratory tests and pilot-scale tests. Stainless steels and nickel-based alloys were tested. Alloys that were most resistant to general and local attack contained nickel, molybdenum (>9%), and chromium (where Cr + Mo > 30%). Alloy C-276 was selected as the reference material for process equipment. Stellite 6 was selected for abrasive service in the presence of formic acid. Alloy 690 and ALLCORR were selected for specific applications.

Bickford, D F; Corbett, R A; Morrison, W S

1986-01-01T23:59:59.000Z

212

Compendium of federal and state radioactive materials transportation laws and regulations: Transportation Legislative Database (TLDB)  

SciTech Connect

The Transportation Legislative Database (TLDB) is an on-line information service containing detailed information on legislation and regulations regarding the transportation of radioactive materials in the United States. The system is dedicated to serving the legislative and regulatory information needs of the US Department of Energy and other federal agencies; state, tribal, and local governments; the hazardous materials transportation industry; and interested members of the general public. In addition to the on-line information service, quarterly and annual Legal Developments Reports are produced using information from the TLDB. These reports summarize important changes in federal and state legislation, regulations, administrative agency rulings, and judicial decisions over the reporting period. Information on significant legal developments at the tribal and local levels is also included on an as-available basis. Battelle's Office of Transportation Systems and Planning (OTSP) will also perform customized searches of the TLDB and produce formatted printouts in response to specific information requests.

Not Available

1989-10-01T23:59:59.000Z

213

Derivation of guidelines for uranium residual radioactive material in soil at the New Brunswick Site, Middlesex County, New Jersey  

SciTech Connect

Residual radioactive material guidelines for uranium in soil were derived for the New Brunswick Site, located in Middlesex County, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). Residual radioactive material guidelines for individual radionuclides of concern and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the New Brunswick Site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. The guidelines derived in this report are intended to apply to the remediation of these remaining residual radioactive materials at the site. The primary radionuclides of concern in these remaining materials are expected to be radium-226 and, to a lesser extent, natural uranium and thorium. The DOE has established generic cleanup guidelines for radium and thorium in soil; however, cleanup guidelines for other radionuclides must be derived on a site-specific basis.

Dunning, D.; Kamboj, S.; Nimmagadda, M.; Yu, C. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1996-02-01T23:59:59.000Z

214

In-situ remediation of naturally occurring radioactive materials with high-permeability hydraulic fracturing  

E-Print Network (OSTI)

This thesis addresses the problem of removal of Naturally Occurring Radioactive Materials, NORM, and describes an effective alternative to the current treatment method for their removal. High-pen-meability fracturing, recently established in the petroleum industry, is the recommended technique. NORM are found throughout subterranean formations. Whenever fluids from petroleum or water reservoirs are produced NORM are present in varying quantities. NORM can only be sensed with radiation detectors. However, they have proven carcinogens, and the US Environmental Protection Agency has set a limit on the maximum contaminated level of any stream. Until now, the preferred method of treatment was to remove NORM from contaminated waters with specially designed filters, which in turn create a new problem. The same filters that are used to treat the water themselves become highly radioactive with a considerable disposal problem. In the petroleum industry, NORM become concentrated in the scale that is deposited inside the well or surface pipes. When scale is removed, it can be so radioactive that it can only be stored in toxic sites. Additionally, as water is produced along with oil, so are NORM. Until now, for the Gulf of Mexico at least, produced water has been released into the ocean, but the Environmental Protection Agency (EPA) is threatening to change this. In the North Sea the regulations are already stricter. There is then a compelling motivation to remove NORM before they are produced, and thus, eliminate the disposal problem. A high-permeability fracture design is presented which modifies existing petroleum practices by introducing within the proppant pack highly selective radionuclide sorbents. These sorbents, at calculated concentrations, can remove NORM readily for several years from typical flow rates containing typical NORM concentrations.

Demarchos, Andronikos Stavros

1998-01-01T23:59:59.000Z

215

Instrumentation, Equipment and Methods for the In Vivo Measurement of Radioactive Material in the Body  

SciTech Connect

The current applications for the in vivo measurement of radioactive material can be divided into three broad categories: (1) occupational exposure monitoring, (2) monitoring of the public, and (3) medical monitoring. The focus of this chapter is on occupational exposure monitoring that is part of an internal dosimetry program for monitoring workers for intakes and assessing the dose consequences of an intake. In the 1920's when electroscopes were first used to measure radium in the body of dial painters issues affecting the measurement accuracy were identified related to external contamination interferences, properly measuring the instrument background, need for measurement QC, microphonic interferences, shielding and others. The sophistication of the radiation detection instrumentation has evolved to the point where most systems today employ one or more detectors primarily either sodium iodide or germanium. Many different styles of detectors and cryostat designs are used at different facilities. However, the same issues identified in the 1920's are still issues today. The in vivo measurement systems are calibrated with anthropometric phantoms that simulate the body or parts of the body. Whole body phantoms, torso phantoms, lung phantoms, thyroid phantoms and skeletal phantoms are just some of the different types used.The systems are typically shielded with low background materials such as pre-World War II steel from battleships. Interferences can come from naturally occurring radioactive material, medically administered radiopharmaceuticals, equipment instability, non-ionizing electromagnetic radiation and other sources. These contribute to the uncertainties in measurement results that can range from 10% to 1000% or more depending on the measurement system, the energy of the radiation associated with the radionuclide to be measured, the accuracy of the phantom versus the person especially how well the distributions of activity match.

Lynch, Timothy P.

2005-07-01T23:59:59.000Z

216

Estimates of fire environments in ship holds containing radioactive material packages  

SciTech Connect

Fire environments that occur on cargo ships differ significantly from the fire environments found in land transport. Cargo ships typically carry a large amount of flammable fuel for propulsion and shipboard power, and may transport large quantities of flammable cargo. As a result, sea mode transport accident records contain instances of long lasting and intense fires. Since Irradiated Nuclear Fuel (INF) casks are not carried on tankers with large flammable cargoes, most of these dramatic, long burning fires are not relevant threats, and transport studies must concentrate on those fires that are most likely to occur. By regulation, INF casks must be separated from flammable cargoes by a fire-resistant, liquid-tight partition. This makes a fire in an adjacent ship hold the most likely fire threat. The large size of a cargo ship relative to any spent nuclear fuel casks on board, however, may permit a severe, long lasting fire to occur with little or no thermal impact on the casks. Although some flammable materials such as shipping boxes or container floors may exist in the same hold with the cask, the amount of fuel available may not provide a significant threat to the massive transport casks used for radioactive materials. This shipboard fire situation differs significantly from the regulatory conditions specified in 10 CFR 71 for a fully engulfing pool fire. To learn more about the differences, a series of simple thermal analyses has been completed to estimate cask behavior in likely marine and land thermal accident situations. While the calculations are based on several conservative assumptions, and are only preliminary, they illustrate that casks are likely to heat much more slowly in shipboard hold fires than in an open pool fire. The calculations also reinforce the basic regulatory concept that for radioactive materials, the shipping cask, not the ship, is the primary protection barrier to consider.

Koski, J.A.; Cole, J.K.; Hohnstreiter, G.F. [Sandia National Labs., Albuquerque, NM (United States); Wix, S.D. [GRAM, Inc., Albuquerque, NM (United States)

1995-12-31T23:59:59.000Z

217

Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania  

SciTech Connect

In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

2010-03-01T23:59:59.000Z

218

Manual for implementing residual radioactive material guidelines using RESRAD, Version 5.0  

Science Conference Proceedings (OSTI)

This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material. It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating doses, risks, and guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. Two new pathways, radon inhalation and soil ingestion, have been added to RESRAD. Twenty-seven new radionuclides have also been added, and the cutoff half-life for associated radionuclides has been reduced to six months. Other major improvements to the RESRAD code include the ability to run sensitivity analyses, the addition of graphical output, user-specified dose factors, updated databases, an improved groundwater transport model, optional input of a groundwater concentration and a solubility constant, special models for tritium and carbon-14, calculation of cancer incidence risk, and the use of a mouse with menus.

Yu, C.; Zielen, A.J.; Cheng, J.J. [and others

1993-09-01T23:59:59.000Z

219

Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers  

Science Conference Proceedings (OSTI)

Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of containers for disposal of high-level radioactive waste. This waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, they must be retrievable from the disposal site. Shortly after the containers are emplaced in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of the high-level waste. This volume surveys the available data on oxidation and corrosion of the iron- to nickel-based austenitic materials (Types 304L and 316L stainless steels and Alloy 825) and the copper-based alloy materials (CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni)), which are the present candidates for fabrication of the containers. Studies that provided a large amount of data are highlighted, and those areas in which little data exists are identified. Examples of successful applications of these materials are given. On the basis of resistance to oxidation and general corrosion, the austenitic materials are ranked as follows: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is as follows: CDA 715 and CDA 613 (both best), and CDA 102 (worst). 110 refs., 30 figs., 13 tabs.

Gdowski, G.E.; Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

1988-08-01T23:59:59.000Z

220

INVESTIGATION OF THE PRESENCE OF DRUGSTORE BEETLES WITHIN CELOTEX ASSEMBLIES IN RADIOACTIVE MATERIAL PACKAGINGS  

Science Conference Proceedings (OSTI)

During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles, (Stegobium paniceum (L.) Coleoptera: Anobiidae), were found within the fiberboard subassemblies of two 9975 Shipping Packages. Initial indications were that the beetles were feeding on the Celotex{trademark} assemblies within the package. Celotex{trademark} fiberboard is used in numerous radioactive material packages serving as both a thermal insulator and an impact absorber for both normal conditions of transport and hypothetical accident conditions. The Department of Energy's Packaging Certification Program (EM-63) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex{trademark}. The Savannah River National Laboratory is conducting the investigation with entomological expertise provided by Clemson University. The two empty 9975 shipping packages were transferred to the Savannah River National Laboratory in the fall of 2007. This paper will provide details and results of the ongoing investigation.

Loftin, B; Glenn Abramczyk, G

2008-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Balancing health effects and economics in the management of radioactive materials  

SciTech Connect

The public perception of the benefits offered by nuclear energy and the risks to health and safety from ionizing radiation has dramatically altered over the fifty years since the advent of nuclear fission. The {open_quotes}Atomic Age{close_quotes} is seldom mentioned anymore. The attitudinal change from the acceptance of nuclear energy as an essential component of national defense, {open_quotes}Atoms for Peace,{close_quotes} and a new, abundant, and clean energy source for mankind to the perception of it as an object of protest and fear has resulted from events that included nuclear fallout from atmospheric weapons testing, Three Mile Island, Chernobyl, classified radiation experiments, and a generally hostile news media. As a reflection of public concerns over radiation, federal, state, and local regulations have greatly multiplied in both the types of radioactive materials addressed and the threshold activity levels at which these regulations become effective.

Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

1994-12-31T23:59:59.000Z

222

Regulatory analysis on criteria for the release of patients administered radioactive material  

SciTech Connect

The Nuclear Regulatory Commission (NRC) has received two petitions to amend its regulations in 10 CFR Parts 20 and 35 as they apply to doses received by members of the public exposed to patients released from a hospital after they have been administered radioactive material. While the two petitions are not identical they both request that the NRC establish a dose limit of 5 millisieverts (0.5 rem) per year for individuals exposed to patients who have been administered radioactive materials. This Regulatory Analysis evaluates three alternatives. Alternative 1 is for the NRC to amend its patient release criteria in 10 CFR 35.75 to use the more stringent dose limit of 1 millisievert per year in 10 CFR 20.1301(a) for its patient release criteria. Alternative 2 is for the NRC to continue using the existing patient release criteria in 10 CFR 35.75 of 1,110 megabecquerels of activity or a dose rate at one meter from the patient of 0.05 millisievert per hour. Alternative 3 is for the NRC to amend the patient release criteria in 10 CFR 35.75 to specify a dose limit of 5 millisieverts for patient release. The evaluation indicates that Alternative 1 would cause a prohibitively large increase in the national health care cost from retaining patients in a hospital longer and would cause significant personal and psychological costs to patients and their families. The choice of Alternatives 2 or 3 would affect only thyroid cancer patients treated with iodine-131. For those patients, Alternative 3 would result in less hospitalization than Alternative 2. Alternative 3 has a potential decrease in national health care cost of $30,000,000 per year but would increase the potential collective dose from released therapy patients by about 2,700 person-rem per year, mainly to family members.

Schneider, S.; McGuire, S.A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Behling, U.H.; Behling, K.; Goldin, D. [Cohen (S.) and Associates, Inc., McLean, VA (United States)

1994-05-01T23:59:59.000Z

223

Microsoft Word - ORNL_first_shipment  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP Receives First Shipment From Oak Ridge National Laboratory CARLSBAD, N.M., September 25, 2008 - Oak Ridge National Laboratory (ORNL) in Tennessee has become the latest site to ship defense-related transuranic waste directly to the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). A truck with three loaded TRUPACT-II shipping containers departed ORNL yesterday and arrived at WIPP this morning - the 6,894th safe shipment to WIPP since the project opened in 1999. "Safe, responsible cleanup is the bottom line," said DOE Carlsbad Field Office Manager Dr. Dave Moody. "While we make steady progress every day at WIPP, it is milestones like this that highlight the overall success of the DOE clean-up effort. I applaud

224

APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR RADIOACTIVE MATERIALS PACKAGINGS.  

Science Conference Proceedings (OSTI)

Polyurethane foam has been widely used as an impact absorbing and thermal insulating material for large radioactive materials packages, since the 1980's. With the adoption of the regulatory crush test requirement, for smaller packages, polyurethane foam has been adopted as a replacement for cane fiberboard, because of its ability to withstand the crush test. Polyurethane foam is an engineered material whose composition is much more closely controlled than that of cane fiberboard. In addition, the properties of the foam can be controlled by controlling the density of the foam. The conditions under which the foam is formed, whether confined or unconfined have an affect on foam properties. The study reported here reviewed the application of polyurethane foam in RAM packagings and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation.

Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

2007-05-15T23:59:59.000Z

225

IMPACT OF TARGET MATERIAL ACTIVATION ON PERSONNEL EXPOSURE AND RADIOACTIVE CONTAMINATION IN THE NATIONAL IGNITION FACILITY  

Science Conference Proceedings (OSTI)

Detailed activation analyses are performed for the different materials under consideration for use in the target capsules and hohlraums used during the ignition campaign on the National Ignition Facility. Results of the target material activation were additionally used to estimate the levels of contamination within the NIF target chamber and the workplace controls necessary for safe operation. The analysis examined the impact of using Be-Cu and Ge-doped CH capsules on the external dose received by workers during maintenance activities. Five days following a 20 MJ shot, dose rates inside the Target Chamber (TC) due to the two proposed capsule materials are small ({approx} 1 {micro}rem/h). Gold and depleted-uranium (DU) are considered as potential hohlraum materials. Following a shot, gold will most probably get deposited on the TC first wall. On the other hand, while noble-gas precursors from the DU are expected to stay in the TC, most of the noble gases are pumped out of the chamber and end up on the cryopumps. The dose rates inside the TC due to activated gold or DU, at 5 days following a 20 MJ shot, are about 1 mrem/h. Dose rates in the vicinity of the cryo-pumps (containing noble 'fission' gases) drop-off to about 1 mrem/h during the first 12 hours following the shot. Contamination from activation of NIF targets will result in the NIF target chamber exceeding DOE surface contamination limits. Objects removed from the TC will need to be managed as radioactive material. However, the results suggest that airborne contamination from resuspension of surface contamination will not be significant and is at levels that can be managed by negative ventilation when accessing the TC attachments.

Khater, H; Epperson, P; Thacker, R; Beale, R; Kohut, T; Brereton, S

2009-06-30T23:59:59.000Z

226

Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers  

Science Conference Proceedings (OSTI)

Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of high-level radioactive-waste disposal containers. The waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The copper-based alloy materials are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The austenitic materials are Types 304L and 316L stainless steels and Alloy 825. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr, and they must be retrievable from the disposal site during the first 50 yr after emplacement. The containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This volume surveys the available data on the phase stability of both groups of candidate alloys. The austenitic alloys are reviewed in terms of the physical metallurgy of the iron-chromium-nickel system, martensite transformations, carbide formation, and intermetallic-phase precipitation. The copper-based alloys are reviewed in terms of their phase equilibria and the possibility of precipitation of the minor alloying constituents. For the austenitic materials, the ranking based on phase stability is: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is: CDA 102 (oxygen-free copper) (best), and then both CDA 715 and CDA 613. 75 refs., 24 figs., 6 tabs.

Bullen, D.B.; Gdowski, G.E. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

1988-08-01T23:59:59.000Z

227

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

228

Regulatory Initiatives for Control and Release of Technologically Enhanced Naturally-Occurring Radioactive Materials  

Science Conference Proceedings (OSTI)

Current drafts of proposed standards and suggested State regulations for control and release of technologically-enhanced naturally-occurring radioactive material (TENORM), and standards for release of volumetrically-contaminated material in the US are reviewed. These are compared to the recommendations of the International Atomic Energy Association (IAEA) Safety Series and the European Commission (EC) proposals. Past regulatory efforts with respect to TENORM in the US dealt primarily with oil-field related wastes. Currently, nine states (AK, GA, LA, MS, NM, OH, OR SC, TX) have specific regulations pertaining to TENORM, mostly based on uranium mill tailings cleanup criteria. The new US proposals are dose- or risk-based, as are the IAEA and EC recommendations, and are grounded in the linear no threshold hypothesis (LNT). TENORM wastes involve extremely large volumes, particularly scrap metal and mine wastes. Costs to control and dispose of these wastes can be considerable. The current debate over the validity of LNT at low doses and low dose rates is particularly germane to this discussion. Most standards setting organizations and regulatory agencies base their recommendations on the LNT. The US Environmental Protection Agency has released a draft Federal Guidance Report that recommends calculating health risks from low-level exposure to radionuclides based on the LNT. However, some scientific and professional organizations are openly questioning the validity of LNT and its basis for regulations, practices, and costs to society in general. It is not clear at this time how a non-linear regulatory scheme would be implemented.

Egidi, P.V.

1999-03-02T23:59:59.000Z

229

Radioactive waste processing apparatus  

DOE Patents (OSTI)

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

1985-08-30T23:59:59.000Z

230

Removing nuclear waste, one shipment at a time  

NLE Websites -- All DOE Office Websites (Extended Search)

Stories » Stories » Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos, on its way to a permanent repository near Carlsbad, NM. June 26, 2012 Governor Martinez applauding the 1014th TRU waste shipment New Mexico Governor Susana Martinez and other dignitaries applaud as the 1,014th shipment of transuranic waste leaves Los Alamos National Laboratory. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "The milestone we're celebrating is one that has been a long-term environmental commitment." Removing nuclear waste, one shipment at a time Elected officials and other dignitaries recently gathered at Los Alamos

231

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of AMWTP's nearly 3,900 shipments. Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of

232

LANL celebrates 1000th transuranic waste shipment | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Follow this link to skip to the main content Facebook Flickr RSS Twitter YouTube LANL celebrates 1000th transuranic waste shipment | National Nuclear Security Administration Our...

233

Enhanced Driver Requirements for WIPP Shipments - Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

. a critical step toward solving the nation's nuclear waste disposal problem Enhanced Driver Requirements for WIPP Shipments Waste Isolation Pilot Plant (WIPP), Driver Hiring...

234

Figure 65. Cumulative growth in value of shipments from energy ...  

U.S. Energy Information Administration (EIA)

Cumulative growth in value of shipments from energy-intensive industries in three cases, 2011-2040 ... Iron and steel Bulk Chemicals Glass Paper products Food products

235

Figure 67. Cumulative growth in value of shipments from energy ...  

U.S. Energy Information Administration (EIA)

Cumulative growth in value of shipments from energy-intensive industries, 2011-2040, 2011-2025, and 2025 ... Iron and steel Bulk chemicals Glass Paper products Food ...

236

WIPP Receives First Shipment | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > WIPP Receives First Shipment WIPP Receives...

237

Solar Photovoltaic Cell/Module Shipments Report 2011  

U.S. Energy Information Administration (EIA)

September 2012 U.S. Energy Information Administration | Solar Photovoltaic Cell/Module Shipments Report 2011 7 Table 2. Value, average price, and average efficiency ...

238

IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES  

Science Conference Proceedings (OSTI)

This paper presents a feasibility study to improve thermal loading of existing radioactive material packages by using heat pipes. The concept could be used to channel heat in certain directions and dissipate to the environment. The concept is applied to a drum type package because the drum type packages are stored and transported in an upright position. This orientation is suitable for heat pipe operation that could facilitate the heat pipe implementation in the existing well proven package designs or in new designs where thermal loading is high. In this position, heat pipes utilize gravity very effectively to enhance heat flow in the upward direction Heat pipes have extremely high effective thermal conductivity that is several magnitudes higher than the most heat conducting metals. In addition, heat pipes are highly unidirectional so that the effective conductivity for heat transfer in the reverse direction is greatly reduced. The concept is applied to the 9977 package that is currently going through the DOE certification review. The paper presents computer simulations using typical off-the-shelf heat pipe available configurations and performance data for the 9977 package. A path forward is outlined for implementing the concepts for further study and prototype testing.

Gupta, N

2007-03-06T23:59:59.000Z

239

Enhancing Railroad Hazardous Materials Transportation Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Railroad Hazardous g Railroad Hazardous g Materials Transportation Safety Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Radioactive Materials Program Manager Radioactive Materials Program Manager H d M t i l Di i i H d M t i l Di i i Hazmat Hazardous Materials Division Hazardous Materials Division Federal Railroad Administration Federal Railroad Administration Presentation for the Presentation for the DOE NTSF Meeting DOE NTSF Meeting May 10 May 10- -12, 2011 12, 2011 Our Regulated Community * More than 550 l d railroads * 170,000 miles of track * 220,000 employees * 1.3 million railcars * 20,000 locomotives Hazmat * 3,500 chemical shippers * Roughly 2 Million Roughly 2 Million annual HM shipments HM-232E Introduction * Notice of Proposed Rulemaking d b * Issued December 21, 2006 * Interim Final Rule

240

Argonne CNM: Shipping MaterialsM  

NLE Websites -- All DOE Office Websites (Extended Search)

CNM General In general, users are not permitted to transport hazardous material on the Argonne site or arrange for shipment directly to the CNM. Hazardous materials must be...

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

WIPP Receives First Shipment | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP Receives First Shipment | National Nuclear Security Administration WIPP Receives First Shipment | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > WIPP Receives First Shipment WIPP Receives First Shipment March 26, 1999 Carlsbad, NM WIPP Receives First Shipment After more than two decades of political, legal, and bureaucratic delays,

242

Application of ALARA principles to shipment of spent nuclear fuel  

SciTech Connect

The public exposure from spent fuel shipment is very low. In view of this low exposure and the perfect safety record for spent fuel shipment, existing systems can be considered satisfactory. On the other hand, occupational exposure reduction merits consideration and technology improvement to decrease dose should concentrate on this exposure. Practices that affect the age of spent fuel in shipment and the number of times the fuel must be shipped prior to disposal have the largest impact. A policy to encourage a 5-year spent fuel cooling period prior to shipment coupled with appropriate cask redesign to accommodate larger loads would be consistent with ALARA and economic principles. And finally, bypassing high population density areas will not in general reduce shipment dose.

Greenborg, J.; Brackenbush, L.W.; Murphy, D.W. Burnett, R.A.; Lewis, J.R.

1980-05-01T23:59:59.000Z

243

Portsmouth, Paducah Project Leaps Past Shipment Milestone, Delivering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth, Paducah Project Leaps Past Shipment Milestone, Portsmouth, Paducah Project Leaps Past Shipment Milestone, Delivering Economic Benefit to U.S. Portsmouth, Paducah Project Leaps Past Shipment Milestone, Delivering Economic Benefit to U.S. September 1, 2012 - 12:00pm Addthis Pictured here are railcars carrying tanks of hydrofluoric acid for shipment from the Portsmouth site to Solvay Fluorides for industrial use. Pictured here are railcars carrying tanks of hydrofluoric acid for shipment from the Portsmouth site to Solvay Fluorides for industrial use. LEXINGTON, Ky. - The company that operates DOE's depleted uranium hexafluoride (DUF6) conversion facilities marked a milestone in September when it shipped the one millionth gallon of hydrofluoric acid. Babcock & Wilcox Conversion Services (BWCS) continues to deliver more of

244

Confidentiality and the Desire for Open Communication in the Transport of Radioactive Material to a National Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Confidentiality, Security and Confidentiality, Security and Confidentiality, Security and Confidentiality, Security and the Desire for Open the Desire for Open Communication in the Communication in the Transport of Radioactive Transport of Radioactive Material to a National Material to a National Repository Repository A presentation to the A presentation to the DOE Transportation External Coordination (TEC) DOE Transportation External Coordination (TEC) Working Group Meeting Working Group Meeting Albuquerque, NM Albuquerque, NM 21 21 - - 23 April 2004 23 April 2004 Ronald B. Pope Consultant April 2004 April 2004 Confidentiality Confidentiality - - TEC Working TEC Working Group Group - - Albuquerque Albuquerque 2 2 Objectives Objectives Address and prompt TEC discussion on issues Address and prompt TEC discussion on issues

245

Method for making a low density polyethylene waste form for safe disposal of low level radioactive material  

DOE Patents (OSTI)

In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

Colombo, P.; Kalb, P.D.

1984-06-05T23:59:59.000Z

246

Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)  

SciTech Connect

Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

Estrella, R.

1994-10-01T23:59:59.000Z

247

A workshop on developing risk assessment methods for medical use of radioactive material. Volume 2: Supporting documents  

SciTech Connect

A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.

Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-08-01T23:59:59.000Z

248

Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) is involved in a program to apply a molten salt oxidation (MSO) process to the treatment of mixed wastes at Oak Ridge and other Department of Energy (DOE) sites. Mixed wastes are defined as those wastes that contain both radioactive components, which are regulated by the atomic energy legislation, and hazardous waste components, which are regulated under the Resource Conservation and Recovery Act (RCRA). A major part of our ORNL program involves the development of separation technologies that are necessary for the complete treatment of mixed wastes. The residues from the MSO treatment of the mixed wastes must be processed further to separate the radioactive components, to concentrate and recycle residues, or to convert the residues into forms acceptable for final disposal. This paper is a review of the MSO requirements for separation technologies, the information now available, and the concepts for our development studies.

Bell, J.T.; Haas, P.A.; Rudolph, J.C.

1993-12-01T23:59:59.000Z

249

Radioactivity in consumer products  

SciTech Connect

Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

1978-08-01T23:59:59.000Z

250

Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

NONE

1994-12-31T23:59:59.000Z

251

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

Science Conference Proceedings (OSTI)

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

252

Los Alamos National Laboratory Accelerates Transuranic Waste Shipments:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory Accelerates Transuranic Waste Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan July 2, 2012 - 12:00pm Addthis New Mexico Governor Susana Martinez greets Terry Aguilar, governor of San Ildefonso Pueblo, while Frank Marcinowski (lower right), EM deputy assistant secretary of waste management, and Dan Cox, LANL associate deputy director for environmental affairs, look on.

253

Naval Spent Fuel Rail Shipment Accident Exercise Objectives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAVAL SPENT FUEL RAIL SHIPMENT NAVAL SPENT FUEL RAIL SHIPMENT ACCIDENT EXERCISE OBJECTIVES * Familiarize stakeholders with the Naval spent fuel ACCIDENT EXERCISE OBJECTIVES Familiarize stakeholders with the Naval spent fuel shipping container characteristics and shipping practices * Gain understanding of how the NNPP escorts who accompany the spent fuel shipments will interact with civilian emergency services representatives g y p * Allow civilian emergency services agencies the opportunity to evaluate their response to a pp y p simulated accident * Gain understanding of how the communications links that would be activated in an accident involving a Naval spent fuel shipment would work 1 NTSF May 11 ACCIDENT EXERCISE TYPICAL TIMELINE * Conceptual/Organizational Meeting - April 6 E R T i d it t t d TYPICAL TIMELINE

254

Megatons to Megawatts Final Shipment | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Megawatts Program, with this week's off-loading of the final shipment of low enriched uranium (LEU) at the Port of Baltimore in Baltimore, Maryland, from Russia. Facebook Twitter...

255

Microsoft Word - INL Waste Stream Cleared for Shipment to WIPP...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory Waste Stream Cleared For Shipment to WIPP CARLSBAD, N.M., December 12, 2006 - The U.S. Department of Energy (DOE) has authorized the Idaho National...

256

Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network  

Science Conference Proceedings (OSTI)

Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

2010-10-28T23:59:59.000Z

257

Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network  

Science Conference Proceedings (OSTI)

Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

258

Nearly 50,000 m{sup 3} of Waste and More Than 5000 Shipments to WIPP: What Does it All Mean?  

Science Conference Proceedings (OSTI)

In 1962, the U.S. Atomic Energy Commission (AEC) began removing radioactive waste from defense facilities across the nation with the first disposal of low-level waste. Thirty-seven years later, transuranic (TRU) waste began making its way toward permanent isolation in the excavated salt drifts at the Waste Isolation Pilot Plant (WIPP) repository. Ever since, close tallies have been assigned to track the volume removed, shipped, and disposed at WIPP. In 2007, DOE will move past the 45-year mark of progress toward meeting a much improved environmental stewardship mission. At the end of January 2007, WIPP's contribution to this mission totals 45,214 m{sup 3} and 5,413 shipments of TRU waste. This equates to approximately 8.5 m{sup 3} per shipment and an average of seven hundred shipments per year since opening. Considering that the actual annual rates have consistently climbed, this appears to be very good progress since WIPP opened, and especially for the past five years. The numbers from 2006 were record setting, at over 10,000 m{sup 3} and more than 1100 shipments. While these numbers share information on the volume received at WIPP, they do not fully portray the actual waste volume of any shipment. This paper provides an expanded view of the differences in how volume values are tracked and reported. (authors)

Casey, S.C. [U.S. Department of Energy, Carlsbad Field Office (United States)

2007-07-01T23:59:59.000Z

259

Transporting & Shipping Hazardous Materials at LBNL: Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Batteries Lithium batteries are considered hazardous materials when shipped by air. Notify Shipping for any shipments that include lithium batteries. Note: If you need to...

260

WNA Working Group Position Statement on Removal from Regulatory Control of Material Containing Radioactivity - Exemption and Clearance  

SciTech Connect

The removal from regulatory control of materials containing trace levels of radioactivity, often referred to as 'exemption' or 'clearance', is of considerable importance to the nuclear industry and is subject to ongoing international debate. Its significance is indeed increasing as some sites move towards decommissioning, with much material being capable of recovery, recycling and re-use or simple disposal while maintaining the highest levels of public safety. This Statement outlines the key issues under consideration within the regulatory framework. Moreover, it identifies those aspects necessary for the successful application of a practical system of control. In this regard, the recent IAEA safety guide called Application of the Concept of Exclusion, Exemption and Clearance (RS-G-1.7) is paving the way towards implementing greater international convergence and consistency. (authors)

Saint-Pierre, S.; Coates, R. [World Nuclear Association (WNA), 22a St. James's Square London SWIY 4JH (United Kingdom)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A guide for the ASME code for austenitic stainless steel containment vessels for high-level radioactive materials  

Science Conference Proceedings (OSTI)

The design and fabrication criteria recommended by the US Department of Energy (DOE) for high-level radioactive materials containment vessels used in packaging is found in Section III, Division 1, Subsection NB of the ASME Boiler and Pressure Vessel Code. This Code provides material, design, fabrication, examination, and testing specifications for nuclear power plant components. However, many of the requirements listed in the Code are not applicable to containment vessels made from austenitic stainless steel with austenitic or ferritic steel bolting. Most packaging designers, engineers, and fabricators are intimidated by the sheer volume of requirements contained in the Code; consequently, the Code is not always followed and many requirements that do apply are often overlooked during preparation of the Safety Analysis Report for Packaging (SARP) that constitutes the basis to evaluate the packaging for certification.

Raske, D.T.

1995-06-01T23:59:59.000Z

262

Evaluation of solid-based separation materials for the pretreatment of radioactive wastes  

SciTech Connect

Separation science will play an important role in pretreating nuclear wastes stored at various US Department of Energy Sites. The application of separation processes offers potential economic and environmental benefits with regards to remediating these sites. For example, at the Hanford Site, the sizeable volume of radioactive wastes stored in underground tanks could be partitioned into a small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). After waste separation, only the smaller volume of HLW would require costly vitrification and geologic disposal. Furthermore, the quality of the remaining LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. This report investigates extraction chromatography as a possible separation process for Hanford wastes.

Lumetta, G.J.; Wagner, M.J.; Wester, D.W.; Morrey, J.R.

1993-05-01T23:59:59.000Z

263

Derivation of guidelines for uranium residual radioactive material in soil at the former Baker Brothers, Inc., Site, Toledo, Ohio  

SciTech Connect

Residual radioactive material guidelines for uranium in soil were derived for the former Baker Brothers, Inc., site in Toledo, Ohio. This site has been identified for remedial action under the U.S. Department of Energy`s (DOE`s) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that following remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed a dose constraint of 30 mrem/yr for the current use and likely future use scenarios or a dose limit of 100 mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. Three scenarios were considered; each assumed that for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The three scenarios varied with regard to the type of site use, time spent at the site by the exposed individual, and sources of food and water consumed. The evaluation indicates that the dose constraint of 30 mrem/yr would not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1,000 years, provided that the soil concentration of total combined uranium (uranium-234, uranium-235, and uranium-238) at the former Baker Brothers site did not exceed 710 pCi/g for Scenario A (industrial worker, current use) or 210 pCi/g for Scenario B (resident - municipal water supply, a likely future use). The dose limit of 100 mrem/yr would not be exceeded at the site if the total uranium concentration of the soil did not exceed 500 pCi/g for Scenario C (subsistence farmer - on-site well water, a plausible but unlikely future use).

Nimmagadda, M.; Kamboj, S.; Yu, C.

1995-04-01T23:59:59.000Z

264

DOE Seeks Trucking Services for Transuranic Waste Shipments | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trucking Services for Transuranic Waste Shipments Trucking Services for Transuranic Waste Shipments DOE Seeks Trucking Services for Transuranic Waste Shipments March 30, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati -- The Department of Energy (DOE) today will issue a Request for Proposals for the continuation of carrier services to transport transuranic waste (TRU) between DOE sites and the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The transportation of TRU waste is accomplished by contracted trucking carriers that ship the waste via public highways on custom designed trailers. The contract will be an Indefinite Delivery/ Indefinite Quantity (ID/IQ) contract using firm-fixed- price delivery task orders. The estimated contract cost is $80-$100 million over a five-year contract

265

Pipe overpack container for transuranic waste storage and shipment  

Science Conference Proceedings (OSTI)

A Pipe Overpack Container is described for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding, thus allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

Geinitz, R.R.; Thorp, D.T.; Rivera, M.A.

1999-12-07T23:59:59.000Z

266

Pipe overpack container for trasuranic waste storage and shipment  

DOE Patents (OSTI)

A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

1999-01-01T23:59:59.000Z

267

Status of the TRIGA shipments to the INEEL from Asia  

SciTech Connect

This paper will report on preparations being made for returning Training, Research, Isotope, General Atomics (TRIGA) foreign research reactor (FRR) spent fuel from South Korea and Indonesia to the Idaho National Engineering and Environmental Laboratory (INEEL). The roles of US Department of Energy, INEEL, and NAC International in implementing a safe shipment are provided. Special preparations necessitated by making a shipment through a west coast port of the US to the INEEL will be explained. The institutional planning and actions needed to meet the unique political and operational environment for making a shipment from Asia to INEEL will be discussed. Facility preparation at both the INEEL and the FRRs is discussed. Cask analysis needed to properly characterize the various TRIGA configurations, compositions, and enrichments is discussed. Shipping preparations will include an explanation of the integrated team of spent fuel transportation specialists, and shipping resources needed to retrieve the fuel from foreign research reactor sites and deliver it to the INEEL.

Tyacke, M.; George, W. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States); Petrasek, A. [Dept. of Energy, Washington, DC (United States); Stump, R.C. [Dept. of Energy, Idaho Falls, ID (United States). Idaho Operations Office; Patterson, J.

1997-10-09T23:59:59.000Z

268

Waste Shipment Tracking Technology Lowers Costs, Increases Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shipment Tracking Technology Lowers Costs, Increases Shipment Tracking Technology Lowers Costs, Increases Efficiency Waste Shipment Tracking Technology Lowers Costs, Increases Efficiency February 27, 2013 - 12:00pm Addthis This graphic shows how the radiofrequency identification technology tracks and monitors packages in transport, in-transit stops and storage. This graphic shows how the radiofrequency identification technology tracks and monitors packages in transport, in-transit stops and storage. The technology developed by EM’s Office of Packaging and Transportation Packaging Certification Program technology development team was selected by the RFID Journal as the "Most Innovated Use of RFIDs.” Team members pictured here include Dr. John Lee, Dr. Yung Liu, Dr. Jim Shuler, Dr. Hanchung Tsai and John Anderson. Team members not pictured are Brian Craig and Dr. Kun Chen.

269

Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns  

Science Conference Proceedings (OSTI)

Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

2003-02-27T23:59:59.000Z

270

Derivation of residual radioactive material guidelines for uranium in soil at the Former Associate Aircraft Tool and Manufacturing Company Site, Fairfield, Ohio  

SciTech Connect

Residual radioactive material guidelines for uranium in soil were derived for the former Associate Aircraft Tool and Manufacturing Company site in Fairfield, Ohio. This site has been identified for remedial action under the U.S. Department of Energy`s (DOE`s) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that, after remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed (1) 30 mrem/yr for the current-use and likely future-use scenarios or (2) 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material (RESRAD) computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation.

Faillace, E.R.; Nimmagadda, M.; Yu, C.

1995-01-01T23:59:59.000Z

271

Air Shipment of Spent Nuclear Fuel from Romania to Russia  

SciTech Connect

Romania successfully completed the worlds first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

2010-10-01T23:59:59.000Z

272

SR-08-03 _LEU Shipments_.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Media CONTACTS: For Immediate Release DOE Media CONTACTS: For Immediate Release Jim Giusti, (803) 952-7697 October, 2, 2008 james-r.giusti@srs.gov DOE's Savannah River Site Fulfills Uranium Shipment Contract with TVA Aiken, SC - The U.S. Department of Energy's (DOE) Savannah River Site (SRS) this week safely sent its final shipment of Cold War era uranium to the Tennessee Valley Authority (TVA), marking a significant step toward achieving the Department's goal of safely cleaning up the Site.

273

Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1  

SciTech Connect

This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

1985-04-01T23:59:59.000Z

274

User Shipments | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

the Use Agreement, SSRL does not assume any liability for your equipment or materials. COD packages cannot be accepted. Shipping Crystallography Dewars to SSRL Users shipping...

275

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted...  

National Nuclear Security Administration (NNSA)

Megawatts Program, with this week's off-loading of the final shipment of low enriched uranium (LEU) at the Port of Baltimore in Baltimore, Maryland, from Russia. The shipment was...

276

Hazardous Materials Transportation RNL has a staff with  

E-Print Network (OSTI)

Radioactive Waste Management plan the transportation system for the shipment of spent nuclear fuel and high Systems Logistics Management Supply Chain Management Modeling and Simulation Transportation Operations, design, and testing · Detailed simulation of loading, transportation, and maintenance facilities

277

Hazardous Materials Transportation RNL has a staff with  

E-Print Network (OSTI)

Radioactive Waste Management plan the transportation system for the shipment of spent nuclear fuel and high Systems Logistics Management Supply Chain Management Modeling and Simulation Transportation Operations, and testing Detailed simulation of loading, transportation, and maintenance facilities for the transportation

278

Level: National Data; Row: Values of Shipments within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006; 3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2 50-99 830.1 5.9 2.7 100-249 1,130.0 6.7 3.1 250-499 1,961.4 7.6 3.6 500 and Over 3,861.9 9.0 3.6 Total 1,278.4 6.9 3.1 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 979.3 10.3

279

Level: National Data; Row: Values of Shipments within NAICS Codes;  

Gasoline and Diesel Fuel Update (EIA)

3 Consumption Ratios of Fuel, 2010; 3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2 50-99 832.0 4.9 2.3 100-249 1,313.4 6.2 2.8 250-499 1,905.2 7.4 3.6 500 and Over 4,225.4 7.5 3.1 Total 1,449.6 6.4 2.8 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 576.6 5.9

280

FUNCTIONALIZED SILICA AEROGELS: ADVANCED MATERIALS TO CAPTURE AND IMMOBILIZE RADIOACTIVE IODINE  

Science Conference Proceedings (OSTI)

To support the future expansion of nuclear energy, an effective method is needed to capture and safely store radiological iodine-129 released during reprocessing of spent nuclear fuel. Various materials have been investigated to capture and immobilize iodine. In most cases, however, the materials that are effective for capturing iodine cannot subsequently be sintered/densified to create a stable composite that could be a viable waste form. We have developed chemically modified, highly porous, silica aerogels that show sorption capacities higher than 440 mg of I2 per gram at 150 C. An iodine uptake test in dry air containing 4.2 ppm of iodine demonstrated no breakthrough after 3.5 h and indicated a decontamination factor in excess of 310. Preliminary densification tests showed that the I2-loaded aerogels retained more than 92 wt% of I2 after thermal sintering with pressure assistance at 1200 C for 30 min. These high capture and retention efficiencies for I2 can be further improved by optimizing the functionalization process and the chemistry as well as the sintering conditions.

Matyas, Josef; Fryxell, Glen E.; Busche, Brad J.; Wallace, Krys; Fifield, Leonard S.

2011-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

282

WEB RESOURCE: Radioactive Waste  

Science Conference Proceedings (OSTI)

May 8, 2007 ... This resource offers a a very broad explanation of how the Belgian Agency for Management of Radioactive Waste and Enriched Fissile Material...

283

SOME RESULTS OF STUDIES ON THE UPTAKE OF RADIOACTIVE WASTE MATERIALS BY MARINE AND ESTUARINE PHYTOPLANKTON ORGANISMS USING CONTINUOUS CULTURE TECHNIQUES. Technical Report XXI  

SciTech Connect

Progress is reported in studies on the uptake of radioactive waste products by phytoplackton organisms in a marine environment. Laboratory studies were made of the growth requirements of a number of phytoplankton algae. Data are included on the uptake of Ru/sup 103/ by a green algae and oysters and the uptake of Zn/sup 65/ by selected marine algae. The advantages of the use of continuous culturing techniques for the study of the uptake of radioactive materials by phytoplankton organisms are discussed. (C.H.)

Taylor, W.R.

1960-06-01T23:59:59.000Z

284

Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range  

SciTech Connect

A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products.

NONE

1997-06-01T23:59:59.000Z

285

WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Remote-Handled Waste Shipment From Sandia Labs First Remote-Handled Waste Shipment From Sandia Labs WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs December 21, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) has received the first of eight planned defense-related remote-handled transuranic (RH-TRU) waste shipments from Sandia National Laboratories (SNL) in Albuquerque. The shipment arrived December 16 for permanent disposal in WIPP's underground repository. DOE National TRU Program Director J.R. Stroble said the shipment is significant to WIPP. "Our goal is to reduce the nation's nuclear waste footprint and we routinely receive shipments from around the country,"

286

INSPECTION OF THE ACCOUNTABILITY AND CONTROL OF SEALED RADIOACTIVE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OF THE ACCOUNTABILITY AND CONTROL OF SEALED RADIOACTIVE SOURCES AT SELECTED DEPARTMENT OF ENERGY SITES, IG-0544 Sealed radioactive sources consist of radioactive material either...

287

DOE Transportation Protocols Topic Group Jacksonville, Florida...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

noted that while DOE shipments are a small number of the total of radioactive materials (RAM) shipments nationwide, they constitute approximately 75 percent of the total curie...

288

SPENT FUEL TRANSFER, STORAGE AND SHIPMENT FOR PL-3  

SciTech Connect

In refueling development studies performed on PL-3 Phase I design, several methods of fuel transfer, storage, and shipment were investigated. An evaluation of the relative merits of the systems and designs under study, as applied to either the BWR or PWR concepts, is made and optimum designs are selected. An analysis of spent fuel shipping cask shielding requirements is presented, along with recommendations for future study in this area. (auth)

Hauenstein, G.C.; Pomeroy, D.L.

1962-03-01T23:59:59.000Z

289

GUIDANCE FOR THE PROPER CHARACTERIZATION AND CLASSIFICATION OF LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS FOR DISPOSAL  

SciTech Connect

Regulatory concerns over the proper characterization of certain waste streams led CH2M HILL Plateau Remediation Company (CHPRC) to develop written guidance for personnel involved in Decontamination & Decommissioning (D&D) activities, facility management and Waste Management Representatives (WMRs) involved in the designation of wastes for disposal on and off the Hanford Site. It is essential that these waste streams regularly encountered in D&D operations are properly designated, characterized and classified prior to shipment to a Treatment, Storage or Disposal Facility (TSDF). Shipments of waste determined by the classification process as Low Specific Activity (LSA) or Surface Contaminated Objects (SCO) must also be compliant with all applicable U.S. Department of Transportation (DOE) regulations as well as Department of Energy (DOE) orders. The compliant shipment of these waste commodities is critical to the Hanford Central Plateau cleanup mission. Due to previous problems and concerns from DOE assessments, CHPRC internal critiques as well as DOT, a management decision was made to develop written guidance and procedures to assist CHPRC shippers and facility personnel in the proper classification of D&D waste materials as either LSA or SCO. The guidance provides a uniform methodology for the collection and documentation required to effectively characterize, classify and identify candidate materials for shipping operations. A primary focus is to ensure that waste materials generated from D&D and facility operations are compliant with the DOT regulations when packaged for shipment. At times this can be difficult as the current DOT regulations relative to the shipment of LSA and SCO materials are often not clear to waste generators. Guidance is often sought from NUREG 1608/RAMREG-003 [3]: a guidance document that was jointly developed by the DOT and the Nuclear Regulatory Commission (NRC) and published in 1998. However, NUREG 1608 [3] is now thirteen years old and requires updating to comply with the newer DOT regulations. Similar challenges present themselves throughout the nuclear industry in both commercial and government operations and therefore, this is not only a Hanford Site problem. Shipping radioactive wastes as either LSA or SCO rather than repacking it is significantly cheaper than other DOT radioactive materials shipping classifications particularly when the cost of packages is included. Additionally, the need to 'repackage' materials for transport can often increase worker exposure, necessitated by 'repackaging' waste materials into DOT 7 A Type A containers.

PORTSMOUTH JH; BLACKFORD LT

2012-02-13T23:59:59.000Z

290

Radioactive Materials License Commitments  

E-Print Network (OSTI)

Personnel Dosimeters Used at Nuclear Power Reactors," NUREG/CR-1204, U.S. Nuclear Regulatory Commission

291

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

292

10/2/2006 SLAC-I-760-2A08Z-001-R002 RADIOACTIVE MATERIAL DECLARATION FORM  

E-Print Network (OSTI)

Radiation exposure rate: Contact: _____________mR/h 30 cm: _____________mR/h Radioactive contamination: [ ] N/A (Activated only) Internal: _______________dpm/100cm2 [ ] Unknown (External contamination must

Wechsler, Risa H.

293

Hydrocarbon evaluation proposed southeastern New Mexico radioactive material storage site Eddy County, New Mexico. Volume I. Discussion  

SciTech Connect

The proposed radioactive waste material storage site is located in the northern portion of the Delaware Basin. No hydrocarbon production exists within the current boundaries of the ''site area'', but oil and gas are being produced from 60 wells in a 368 square-mile area around the site. These wells produce from the Delaware, Bone Springs, Wolfcamp, Strawn, Atoka and Morrow zones at a total rate of about 22,682 MCF of gas and 429 barrels of oil per day. This area is considered to be potentially rich in hydrocarbon reserves and the lack of fuller development and exploration drilling is due primarily to low gas prices, lack of sales outlets and/or pipelines and moratoriums on drilling in the potash areas. Proved producing and proved nonproducing reserves are present in two wells in the Los Medanos Field area immediately adjacent to the southwest corner of the ''site area''. In addition, proved undeveloped, probable and possible reserves exist at six potential drilling locations in the Los Medanos Field. Further, probable and possible reserves were assigned to fifteen other potential drilling locations in the northwest and south-central portions of the ''site area''. Total future economically recoverable reserves projected for these wells are 62,253,244 MCF of gas and 409,628 barrels of oil. The future net undiscounted revenue to the oil operators was determined to be $48,410,821. The discounted future net revenue is $21,216,899, discounted at 10 percent per annum. The fair market value for these projected reserves is $12,730,139, assuming a fair market factor of 0.60.

1976-09-01T23:59:59.000Z

294

ORNL IntelligentFreight Initiative:Enhanced End-to-End Supply Chain Visibility of Security Sensitive Hazardous Materials  

SciTech Connect

In the post September 11, 2001 (9/11) world the federal government has increased its focus on the manufacturing, distributing, warehousing, and transporting of hazardous materials. In 2002, Congress mandated that the Transportation Security Agency (TSA) designate a subset of hazardous materials that could pose a threat to the American public when transported in sufficiently large quantities. This subset of hazardous materials, which could be weaponized or subjected to a nefarious terrorist act, was designated as Security Sensitive Hazardous Materials (SSHM). Radioactive materials (RAM) were of special concern because actionable intelligence had revealed that Al Qaeda desired to develop a homemade nuclear device or a dirty bomb to use against the United States (US) or its allies.1 Because of this clear and present danger, it is today a national priority to develop and deploy technologies that will provide for visibility and real-time exception notification of SSHM and Radioactive Materials in Quantities of Concern (RAMQC) in international commerce. Over the past eight years Oak Ridge National Laboratory (ORNL) has been developing, implementing, and deploying sensor-based technologies to enhance supply chain visibility. ORNL s research into creating a model for shipments, known as IntelligentFreight, has investigated sensors and sensor integration methods at numerous testbeds throughout the national supply chain. As a result of our research, ORNL believes that most of the information needed by supply chain partners to provide shipment visibility and exceptions-based reporting already exists but is trapped in numerous proprietary or agency-centric databases.

Walker, Randy M [ORNL; Shankar, Mallikarjun [ORNL; Gorman, Bryan L [ORNL

2009-01-01T23:59:59.000Z

295

User`s guide for the KBERT 1.0 code: For the knowledge-based estimation of hazards of radioactive material releases from DOE nuclear facilities  

Science Conference Proceedings (OSTI)

The possibility of worker exposure to radioactive materials during accidents at nuclear facilities is a principal concern of the DOE. The KBERT software has been developed at Sandia National Laboratories under DOE support to address this issue by assisting in the estimation of risks posed by accidents at chemical and nuclear facilities. KBERT is an acronym for Knowledge-Based system for Estimating hazards of Radioactive material release Transients. The current prototype version of KBERT focuses on calculation of doses and consequences to in-facility workers due to accidental releases of radioactivity. This report gives detailed instructions on how a user who is familiar with the design, layout and potential hazards of a facility can use KBERT to assess the risks to workers in that facility. KBERT is a tool that allows a user to simulate possible accidents and observe the predicted consequences. Potential applications of KBERT include the evaluation of the efficacy of evacuation practices, worker shielding, personal protection equipment and the containment of hazardous materials.

Browitt, D.S.; Washington, K.E.; Powers, D.A. [and others

1995-07-01T23:59:59.000Z

296

10,000th Waste Shipment Milestone is All in the Family | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10,000th Waste Shipment Milestone is All in the Family 10,000th Waste Shipment Milestone is All in the Family 10,000th Waste Shipment Milestone is All in the Family August 29, 2011 - 12:00pm Addthis A Waste Isolation Pilot Plant facility shift manager inspects the shipping manifest of the 10,000th safe shipment to roll through the gates at the Department of Energy’s Waste Isolation Pilot Plant on Sept. 24, 2011. A Waste Isolation Pilot Plant facility shift manager inspects the shipping manifest of the 10,000th safe shipment to roll through the gates at the Department of Energy's Waste Isolation Pilot Plant on Sept. 24, 2011. Idaho's Advanced Mixed Waste Treatment Project employees prepare to send the 10,000th shipment to the Waste Isolation Pilot Plant. Idaho's Advanced Mixed Waste Treatment Project employees prepare to send

297

Spent fuel transportation in the United States: commercial spent fuel shipments through December 1984  

Science Conference Proceedings (OSTI)

This report has been prepared to provide updated transportation information on light water reactor (LWR) spent fuel in the United States. Historical data are presented on the quantities of spent fuel shipped from individual reactors on an annual basis and their shipping destinations. Specifically, a tabulation is provided for each present-fuel shipment that lists utility and plant of origin, destination and number of spent-fuel assemblies shipped. For all annual shipping campaigns between 1980 and 1984, the actual numbers of spent-fuel shipments are defined. The shipments are tabulated by year, and the mode of shipment and the casks utilized in shipment are included. The data consist of the current spent-fuel inventories at each of the operating reactors as of December 31, 1984. This report presents historical data on all commercial spent-fuel transportation shipments have occurred in the United States through December 31, 1984.

Not Available

1986-04-01T23:59:59.000Z

298

WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

For immediate release WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs CARLSBAD, N.M., December 21, 2011 - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) has received the first of eight planned defense-related remote- handled transuranic (RH-TRU) waste shipments from Sandia National Laboratories (SNL) in Albuquerque. The shipment arrived December 16 for permanent disposal in WIPP's underground repository. DOE National TRU Program Director J.R. Stroble said the shipment is significant to WIPP. "Our goal is to reduce the nation's nuclear waste footprint and we routinely receive shipments from around the country," said Stroble. "This first shipment of RH-TRU waste from

299

RESRAD-RECYCLE : a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing ratioactively surface-contaminated materials and equipment.  

Science Conference Proceedings (OSTI)

RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data.

Cheng, J. J.; Kassas, B.; Yu, C.; Arnish, J. J.; LePoire, D.; Chen, S.-Y.; Williams, W. A.; Wallo, A.; Peterson, H.; Environmental Assessment; DOE; Univ. of Texas

2004-11-01T23:59:59.000Z

300

Table 10.8 Photovoltaic Cell and Module Shipments by Type, Trade ...  

U.S. Energy Information Administration (EIA)

1 Prices equal shipment value divided by quantity shipped. Value includes charges for advertising and warranties. Excluded are excise taxes and the cost of freight or ...

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table 10.9 Photovoltaic Cell and Module Shipments by Sector and ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Table 10.9 Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010

302

Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams  

E-Print Network (OSTI)

ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small chemical factory, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the alchemists once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

Fernandes, Sandrina; Stora, Thierry

2010-01-01T23:59:59.000Z

303

Hydrogen gettering the overpressure gas from highly radioactive liquids  

DOE Green Energy (OSTI)

Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to 4 L (1.1 gal) of Type-B quantities of HALW, but significantly larger packaging could be needed in the future. Scoping studies and preliminary designs have identified the feasibility of retrofitting an insert into existing casks, allowing the transport of up to 380 L (100 gal) of HALW. However, the insert design and ultimate certification strategy depend heavily on the gas-generating attributes of the HALW. A non-vented containment vessel filled with HALW, in the absence of any gas-mitigation technologies, poses a deflagration threat and, therefore, gas generation, specifically hydrogen generation, must be reliably controlled during all phases of transportation. Two techniques are available to mitigate hydrogen accumulation: recombiners and getters. Getters have an advantage over recombiners in that oxides are not required to react with the hydrogen. A test plan was developed to evaluate three forms of getter material in the presence of both simulated HALW and the gases that are produced by the HALW. These tests demonstrated that getters can react with hydrogen in the presence of simulated waste and in the presence of several other gases generated by the HALW, such as nitrogen, ammonia, nitrous oxide, and carbon monoxide. Although the use of such a gettering system has been shown to be technically feasible, only a preliminary design for its use has been completed. No further development is planned until the requirement for bulk transport of Type-B quantities of HALW is more thoroughly defined.

Riley, D.L. [Walla Walla Coll., College Place, WA (United States). School of Engineering; McCoy, J.C. [Westinghouse Hanford Co., Richland, WA (United States); Schicker, J.R. [AlliedSignal Inc. Federal Manufacturing and Technologies, Kansas City, MO (United States)

1996-04-01T23:59:59.000Z

304

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

305

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

306

MRS (monitored retrievable storage) systems study Task G report: The role and functions of surface storage of radioactive material in the federal waste management system  

SciTech Connect

This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study investigates the functions that could be performed by surface storage of radioactive material within the federal radioactive waste management system, including enabling acceptance of spent fuel from utility owners, scheduling of waste-preparation processes within the system, enhancement of system operating reliability, and conditioning the thermal (decay heat) characteristics of spent fuel emplaced in a repository. The analysis focuses particularly on the effects of storage capacity and DOE acceptance schedule on power reactors. Figures of merit developed include the storage capacity (in metric tons of uranium (MTU)) required to be added beyond currently estimated maximum spent fuel storage capacities and its associated cost, and the number of years that spent fuel pools would remain open after last discharge (in pool-years) and the cost of this period of operation. 27 refs., 36 figs., 18 tabs.

Wood, T.W.; Short, S.M.; Woodruff, M.G.; Altenhofen, M.K.; MacKay, C.A.

1989-04-01T23:59:59.000Z

307

First TRUPACT-III Shipment Arrives Safely at the Waste Isolation Pilot  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRUPACT-III Shipment Arrives Safely at the Waste Isolation TRUPACT-III Shipment Arrives Safely at the Waste Isolation Pilot Plant First TRUPACT-III Shipment Arrives Safely at the Waste Isolation Pilot Plant August 29, 2011 - 12:00pm Addthis Media Contact Lauren Milone lauren.milone@em.doe.gov 301-903-3731 Washington, D.C. - The U.S. Department of Energy (DOE) announced today that the first shipment of transuranic waste using the newly approved shipping package known as the TRUPACT-III safely arrived at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The shipment, which originated at the Savannah River Site (SRS) in South Carolina, arrived at WIPP on August 25. The new shipping package - the Transuranic Package Transporter Model 3 or TRUPACT-III - allows the Department to package and ship large-sized transuranic waste in a single box that would otherwise

308

First TRUPACT-III Shipment Arrives Safely at the Waste Isolation Pilot  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First TRUPACT-III Shipment Arrives Safely at the Waste Isolation First TRUPACT-III Shipment Arrives Safely at the Waste Isolation Pilot Plant First TRUPACT-III Shipment Arrives Safely at the Waste Isolation Pilot Plant August 29, 2011 - 12:00pm Addthis Media Contact Lauren Milone lauren.milone@em.doe.gov 301-903-3731 Washington, D.C. - The U.S. Department of Energy (DOE) announced today that the first shipment of transuranic waste using the newly approved shipping package known as the TRUPACT-III safely arrived at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The shipment, which originated at the Savannah River Site (SRS) in South Carolina, arrived at WIPP on August 25. The new shipping package - the Transuranic Package Transporter Model 3 or TRUPACT-III - allows the Department to package and ship large-sized transuranic waste in a single box that would otherwise

309

ORNL radioactive waste operations  

SciTech Connect

Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards.

Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

1982-01-01T23:59:59.000Z

310

AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA  

SciTech Connect

In June 2009 Romania successfully completed the worlds first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

2010-07-01T23:59:59.000Z

311

LANL Reaches Waste Shipment Milestone: Waste from Cold War-era weapons  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaches Waste Shipment Milestone: Waste from Cold War-era Reaches Waste Shipment Milestone: Waste from Cold War-era weapons production being shipped to WIPP LANL Reaches Waste Shipment Milestone: Waste from Cold War-era weapons production being shipped to WIPP May 31, 2011 - 12:00pm Addthis Media Contact Fred deSousa 505-665-3430 fdesousa@lanl.gov LOS ALAMOS, New Mexico - Los Alamos National Laboratory has reached an important milestone in its campaign to ship transuranic (TRU) waste from Cold War-era nuclear operations to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This month, the Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total. The waste, sent from LANL to WIPP in more than 750 shipments since 1999,

312

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Task: Identify Shortline Railroads Serving Nuclear Power Plants Establish Contact Information with Railroads Officials Field Review of each Railroad's Physical and Operational Infrastructure Facilitate Upgrades to Meet Safe Acceptable Standards Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel More Documents & Publications TEC Meeting Summaries - February 2008 Presentations TEC Meeting Summaries - July 2007 Presentations TEC Meeting Summaries - September 2006

313

50th Anniversary of First Fuel Shipment Highlights EM's Role | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50th Anniversary of First Fuel Shipment Highlights EM's Role 50th Anniversary of First Fuel Shipment Highlights EM's Role 50th Anniversary of First Fuel Shipment Highlights EM's Role August 12, 2013 - 12:00pm Addthis A view of the first cask of reactor fuel from Sweden being unloaded from the m.s. Odensholm on July 21, 1963 in Savannah, Ga. A view of the first cask of reactor fuel from Sweden being unloaded from the m.s. Odensholm on July 21, 1963 in Savannah, Ga. Checking a shipment of reactor fuel are, left to right, Samuel Edlow, U.S. Representative for Aktiebolaget Atomenergi of Sweden; S.D. Smiley, offsite fuels coordinator for the Du Pont Company at Savannah River; S.D. Tatalovich, Atomic Energy Commission international affairs representative; and Robert L. Chandler, chemical engineer with the Savannah River Operations Office.

314

Assessing the level of service for shipments originating or terminating on short line railroads  

E-Print Network (OSTI)

This thesis measures railroad freight trip time and trip time reliability for freight rail shipments involving short lines in 2006. It is based on an underlying MIT study commissioned by members of the short line railroading ...

Alpert, Steven M

2007-01-01T23:59:59.000Z

315

10,000th Waste Shipment Milestone is All in the Family | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy's Waste Isolation Pilot Plant on Sept. 24, 2011. Idaho's Advanced Mixed Waste Treatment Project employees prepare to send the 10,000th shipment to the Waste...

316

50th Anniversary of First Fuel Shipment Highlights EM's Role | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50th Anniversary of First Fuel Shipment Highlights EM's Role 50th Anniversary of First Fuel Shipment Highlights EM's Role 50th Anniversary of First Fuel Shipment Highlights EM's Role August 12, 2013 - 12:00pm Addthis A view of the first cask of reactor fuel from Sweden being unloaded from the m.s. Odensholm on July 21, 1963 in Savannah, Ga. A view of the first cask of reactor fuel from Sweden being unloaded from the m.s. Odensholm on July 21, 1963 in Savannah, Ga. Checking a shipment of reactor fuel are, left to right, Samuel Edlow, U.S. Representative for Aktiebolaget Atomenergi of Sweden; S.D. Smiley, offsite fuels coordinator for the Du Pont Company at Savannah River; S.D. Tatalovich, Atomic Energy Commission international affairs representative; and Robert L. Chandler, chemical engineer with the Savannah River Operations Office.

317

10,000th Shipment Celebrated at WIPP | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10,000th Shipment Celebrated at WIPP 10,000th Shipment Celebrated at WIPP 10,000th Shipment Celebrated at WIPP October 24, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - Approximately 130 people gathered at the U.S. Department of Energy's (DOE's) Waste Isolation Pilot Plant (WIPP) on October 22, to celebrate the 10,000th shipment of transuranic (TRU) waste to WIPP, which arrived safely late last month. The event was attended by elected and appointed officials, state and local leaders, WIPP employees and representatives of the carriers who transport TRU waste to WIPP. People in D.C. absolutely understand the service you provide the nation,‖ said U.S. Congressman Steve Pearce. -We need to solve political problems in this industry because modern economies depend on good fuel and good

318

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

319

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

320

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. On February 17, 2011, DOE issued the Draft Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) and GTCC-Like Waste (Draft EIS, DOE/EIS-0375D) for public review and comment. DOE is inviting public comments on this Draft EIS during a 120-day public comment period, from the date of publication of the EIS's Notice of Availability in the Federal Register. During the comment

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity December 10, 2013 - 2:50pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - The United States and Russia are today commemorating the completion of the 1993 U.S.-Russia HEU Purchase Agreement, commonly known as the Megatons to Megawatts Program, with this week's off-loading of the final shipment of low enriched uranium (LEU) at the Port of Baltimore in Baltimore, Maryland, from Russia. The shipment was the last of the LEU converted from more than 500 metric tons of weapons-origin highly enriched

322

Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania  

SciTech Connect

Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the worlds first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

2010-07-01T23:59:59.000Z

323

Transporting & Shipping Hazardous Materials at LBNL: Dry Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Ice Dry ice is regulated as a hazardous material if shipped by air or water. Contact Shipping for any shipments that include dry ice (x5094, x4388, or shipping@lbl.gov)....

324

Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): 02-09-01, Mud Disposal Area 03-08-03, Mud Disposal Site 03-17-01, Waste Consolidation Site 3B 03-23-02, Waste Disposal Site 03-23-05, Europium Disposal Site 03-99-14, Radioactive Material Disposal Area 09-23-02, U-9y Drilling Mud Disposal Crater 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02. This CAS is closed with no further action. For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be sufficient, and safety concerns existed about the stability of the crater component. Therefore, a corrective action of close in place with a use restriction is recommended, and sampling at the site was not considered necessary. The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure of CAU 545 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from August 20 through November 02, 2007, as set forth in the CAU 545 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent. Provide sufficient information and data to complete appropriate corrective actions. The CAU 545 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels established in this CADD/CR. The results of the CAI identified no COCs at the five CASs investigated in CAU 545. As a best management practice, repair of the fence enclosing CAS 03-08-03 has been completed. Therefore, the DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: Close in place COCs at CASs 03-08-03 and 03-23-05 with use restrictions. No further corrective action for CAU 545. No Corrective Action Plan. Corrective Action Unit 545 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order. A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 545.

Alfred Wickline

2008-04-01T23:59:59.000Z

325

ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS  

Science Conference Proceedings (OSTI)

This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

R.H. Little, P.R. Maul, J.S.S. Penfoldag

2003-02-27T23:59:59.000Z

326

Radioactive isotopes on the Moon  

SciTech Connect

A limited review of experiments and studies of radioactivity and isotope ratios in lunar materials is given. Observations made on the first few millimeters of the surface where the effects of solar flare particles are important, some measurements on individual rocks, and some studies of radioactivities produced deep in the lunar soil by galactic cosmic rays, are among the experiments discussed. (GHT)

Davis, R. Jr.

1975-01-01T23:59:59.000Z

327

Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

Alfred Wickline

2007-06-01T23:59:59.000Z

328

Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers  

Science Conference Proceedings (OSTI)

The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D`Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program.

Molecke, M.A.; Sorensen, N.R. [eds.] [Sandia National Labs., Albuquerque, NM (US); Wicks, G.G. [ed.] [Westinghouse Savannah River Technology Center, Aiken, SC (US)

1993-08-01T23:59:59.000Z

329

RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA  

SciTech Connect

In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

2009-07-01T23:59:59.000Z

330

Moab Mill Tailings Removal Project Plans to Resume Train Shipments in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans to Resume Train Shipments Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return Moab Mill Tailings Removal Project Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return February 25, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, donald.metzler@gjem.doe.gov 970-257-2115 Jeff Biagini, jeff.biagini@gjemrac.doe.gov 970-257-2117 Wendee Ryan, wryan@gjemtac.doe.gov 970-257-2145 Grand Junction, CO - All 27 employees of the Remedial Action Contractor (RAC) to the U.S. Department of Energy will return to work on the Uranium Mill Tailings Remedial Action Project on March 4, following a 3-month planned furlough. Project shipping and disposal operations have been shut down, as planned, since late November 2012, but are scheduled to resume

331

SRNL - Cementitious Materials Workshop  

... the Department of Energy, ... engineers, project managers, ... status and future direction of the cement materials technology in radioactive waste ...

332

SHIPMENT OF NON-TRADITIONAL CONTENTS IN THE 9977 TYPE B PACKAGE  

Science Conference Proceedings (OSTI)

The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. These materials are typically confined within metallic containers designed for ease of handling and to prevent the spread of contamination. The Pacific Northwest National Laboratory (PNNL) uses Pu and U sources for the training of domestic and international customs agents in the identification and detection of radioactive materials (RAM). These materials are packed in polycarbonate containers which permit the trainees to view the RAM. The safety basis was made to authorize the use of these unusual containers. The inclusion of the PNNL Training Source Contents into the 9977 Packaging imposed unique conditions previously unanalyzed. The use of polycarbonate as a content container material, while different from any configuration previously considered, does not raise any safety issues with the package which continues to operate with a large safety margin for temperatures, pressures, containment, dose rates, and subcriticality.

Abramczyk, G.; Loftin, B.; Bellamy, S.; Nathan, S.

2011-06-06T23:59:59.000Z

333

Initial report on the application of laser ablation - inductively coupled plasma mass spectrometry for the analysis of radioactive Hanford Tank Waste materials  

Science Conference Proceedings (OSTI)

Initial LA/MS analyses of Hanford tank waste samples were performed successfully using laboratory and hot cell LA/MS instrumentation systems. The experiments described in this report have demonstrated that the LA/MS data can be used to provide rapid analysis of solid, radioactive Hanford tank waste samples to identify major, minor, and trace constituents (elemental and isotopic) and fission products and radioactive isotopes. The ability to determine isotopic constituents using the LA/MS method yielded significant advantages over ICP/AES analysis by providing valuable information on fission products and radioactive constituents.

Smith, M.R.; Hartman, J.S.; Alexander, M.L.; Mendoza, A.; Hirt, E.H.; Stewart, T.L.; Hansen, M.A.; Park, W.R.; Peters, T.J.; Burghard, B.J.

1996-12-01T23:59:59.000Z

334

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments Economic Net Residual Distillate LPG and Coke and of Energy Sources Characteristic(a) Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,166 367 23 48 540 15 41 3 140 12 20-49 1,209 333 20 26 550 8 104 5 182 20 50-99 1,507 349 51 19 575 98 190 9 256 40 100-249 2,651 607 53 20 1,091 23 310 53 566 73 250-499 2,362 413 52 13 754 158 247 9 732 16 500 and Over

335

A pragmatic stochastic decision model for supporting goods trans-shipments in a supply chain environment  

Science Conference Proceedings (OSTI)

This paper develops a set of decision rules to assist wholesalers to decide whether it is more cost effective to trans-ship urgent outstanding retailer orders from other wholesalers, very fast but at a higher purchase cost, or to order from their suppliers. ... Keywords: Inventory replenishment, Lateral trans-shipments, Stochastic demand, Wholesaler operations

H. C. W. Lau; Dilupa Nakandala

2012-12-01T23:59:59.000Z

336

Shipment partitioning and routing to minimize makespan in a transportation network  

Science Conference Proceedings (OSTI)

This paper addresses the problem of partitioning and transporting a shipment of known size through an n-node public transportation network with known scheduled departure and arrival times and expected available capacities for each departure. The objective ... Keywords: Minimizing makespan, Partitioning, Vehicle routing

Anand S. Kunnathur; Udayan Nandkeolyar; Daowei Li

2005-03-01T23:59:59.000Z

337

NATURE OF RADIOACTIVE WASTES  

SciTech Connect

The integrated processes of nuclear industry are considered to define the nature of wastes. Processes for recovery and preparation of U and Th fuels produce wastes containing concentrated radioactive materials which present problems of confinement and dispersal. Fundamentals of waste treatment are considered from the standpoint of processes in which radioactive materials become a factor such as naturally occurring feed materials, fission products, and elements produced by parasitic neutron capture. In addition, the origin of concentrated fission product wastes is examined, as well as characteristics of present wastes and the level of fission products in wastes. Also, comments are included on high-level wastes from processes other than solvent extraction, active gaseous wastes, and low- to intermediate-level liquid wastes. (J.R.D.)

Culler, F.L. Jr.

1959-01-26T23:59:59.000Z

338

How to deal with laboratory waste Radioactive waste  

E-Print Network (OSTI)

How to deal with laboratory waste Radioactive waste: Any laboratory waste, whether chemical or biological, containing radioactive material, should be disposed as radioactive waste. Radioactive waste should be removed from the laboratory to the departmental waste area, soon after finishing the experiment

Maoz, Shahar

339

Radioactivity and Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactivity and Radiation Radioactivity and Radiation Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects Radioactivity and Radiation Discussion of radioactivity and radiation, uranium and radioactivity, radiological health risks of uranium isotopes and decay products. Radioactivity Radioactivity is the term used to describe the natural process by which some atoms spontaneously disintegrate, emitting both particles and energy as they transform into different, more stable atoms. This process, also called radioactive decay, occurs because unstable isotopes tend to transform into a more stable state. Radioactivity is measured in terms of disintegrations, or decays, per unit time. Common units of radioactivity

340

SELF SINTERING OF RADIOACTIVE WASTES  

DOE Patents (OSTI)

A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

1959-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Method for storing radioactive combustible waste  

DOE Patents (OSTI)

A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

Godbee, H.W.; Lovelace, R.C.

1973-10-01T23:59:59.000Z

342

FORM EIA-63B ANNUAL PHOTOVOLTAIC CELL/MODULE SHIPMENTS REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

CELL/MODULE SHIPMENTS REPORT For Reporting Year ( ) OMB No. 1905-0129 Approval Expires: 12/31/2016 Burden: 5 hours GENERAL INFORMATION AND INSTRUCTIONS I. Purpose Form EIA-63B is designed to provide the data necessary for the U.S. Energy Information Administration (EIA), a part of the U.S. Department of Energy (DOE), to carry out its responsibilities tracking photovoltaic cell/module shipments in the photovoltaic industry and reporting information concerning the size and status of the industry. The data collected will be published a nnu a lly in the S o la r Phot o vo lt ai c C el l/ Mo du le Sh ip m ent s R epor t a nd be available through EIA's Internet site at http://www.eia.gov/renewable/annual/solar_photo/. II. Who Should Respond to This Survey

343

ACCELERATING HANFORD TRANSURANC (TRU) WASTE CERTIFICATION & SHIPMENT FROM 2 PER YEAR TO 12 PER MONTH  

DOE Green Energy (OSTI)

The Department of Energy's site at Hanford has significantly accelerated the characterization of transuranic (TRU) waste and its subsequent shipment to the Waste Isolation Pilot Plant (WIPP)--from a total of two shipments in fiscal year 2002 to twelve shipments per month. The challenges encountered and experience gained in achieving this acceleration provide valuable lessons that can be used by others in the waste industry. Lessons learned as well as estimates of cost savings and schedule benefits are described. At the start of the acceleration effort, three separate facilities managed by multiple organizations characterized and handled the drums. To consolidate the majority of these activities under one organization and in one facility required RCRA permit and safety basis modifications. and a myriad of construction activities--but all with very visible benefit. Transferring drums between the separate facilities involved multiple organizations, and required meeting a complex set of transportation and safety basis requirements. Consolidating characterization activities into a single facility greatly simplified this process, realizing very significant operational efficiencies. Drums stockpiled in buildings for future processing previously were stored with recognition of physical, chemical, and radiological hazards, but without consideration for future processing. Drums are now stored using a modular approach so that feed for characterization processing takes drums from the accessible module face rather than randomly throughout the storage building. This approach makes drum handling more efficient, minimizes the potential for worker injuries, and supports the principles of ''as low as reasonably achievable'' (ALARA) exposure from the waste. Sampling the headspace gas of the TRU waste packages was a major bottleneck in the characterization process, and hence an obstacle to acceleration. Sampling rates were improved by a combination of insulating and heating a waste storage building to provide sufficient space for the required temperature residence time; installing filter and sample ports in the drums using a pneumatic dart method; improving gas analysis time using cryofocusing technology and using both onsite and offsite labs for redundancy of analysis capability. The need for real-time radiography was reduced by implementing avisual examination technique as the waste was being packaged. Key to implementing the visual examination technique was the use of a ''portable procedure'' that can be used anywhere on the Hanford Site. This approach has been used successfully for packaging newly generated waste from various decontamination and decommissioning projects. Using a glovebox for repackaging drums has also been a rate-limiting step in accelerating the characterization of TRU waste at Hanford. The impacts of this requirement, however, have been minimized in two ways: first, by venting certain heat-sealed bags, and second, by implementing hydrogen and methane testing of headspace gas for high gram drums with multiple layers of confinement. The details of these specific efforts are included in a separate paper. Payload assembly and loading efficiencies of the TRUPACT-II, and certification and shipment efficiencies were instrumental to Hanford's successfully accelerating shipments. Loading time of TRUPACT II's for a shipment (three TRUPACTS per shipment) went from four days to two days. Future acceleration plans include certification of a box radioassay unit to assay TRU standard waste boxes (SWB) for shipment to WIPP and adding additional payload building/loadout stations to increase the shipping capabilities.

MCDONALD, K.M.

2005-01-20T23:59:59.000Z

344

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2006; 2 Consumption Ratios of Fuel, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value Economic per Employee of Value Added of Shipments Characteristic(a) (million Btu) (thousand Btu) (thousand Btu) Total United States Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2 50-99 830.1 5.9 2.7 100-249 1,130.0 6.7 3.1 250-499 1,961.4 7.6 3.6 500 and Over 3,861.9 9.0 3.6 Total 1,278.4 6.9 3.1 Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3 7.7 3.6 500-999 2,328.9

345

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

346

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

347

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING In general, building materials contain low levels of radioactivity. For example, the range of  

E-Print Network (OSTI)

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING MATERIALS In general, building materials contain low, especially in buildings constructed with materials containing uranium TENORM mine wastes. In the Grand the wastes from uranium mines have been removed from mining sites and used in local and nearby communities

348

Management of alpha-contaminated wastes at the radioactive waste management complex at the Idaho National Engineering Laboratory  

SciTech Connect

Problems related to above ground storage of radioactive wastes at the Idaho National Engineering Laboratory and steps taken to resolve these difficulties are discussed. The quantity of wastes now in storage and the amount forecasted to be in place by 1985 are disclosed. The condition of containers placed for storage between 1954 and 1970 is described. Programs for retrieval and repackaging for shipment to federal repositories are discussed. (DC)

McCormack, M.A.

1980-01-01T23:59:59.000Z

349

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

350

Feed Materials Production Center Waste Management Plan  

SciTech Connect

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-12-31T23:59:59.000Z

351

Radioactive waste systems and radioactive effluents  

SciTech Connect

Radioactive waste systems for handling gaseous, liquid, and solid wastes generated at light and pressurized water reactors are described. (TFD)

Row, T.H.

1973-01-01T23:59:59.000Z

352

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes  

U.S. Energy Information Administration (EIA) Indexed Site

2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006; 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources Unit: Trillion Btu Economic Residual Distillate LPG and Coke and Characteristic(a) Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal Breeze Other(e) Total United States Value of Shipments and Receipts (million dollars) Under 20 47 0 3 5 Q 20 1 17 20-49 112 7 Q 20 1 12 1 64 50-99 247 29 Q 26 88 33 * 68 100-249 313 28 1 97 12 48 43 85 250-499 297 * * 121 154 3 5 13 500 and Over 2,547 * * 130 2,043 301 6 66 Not Ascertained (f) 3,399 0 0 0 0 0 0 3,399 Total 6,962 64 17 398 2,299 417 56 3,711 Employment Size Under 50 161 4 Q 48 15 19 0 64 50-99 390 41 1 97 145 27 1 77 100-249

353

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 14,128 14,113 326 1,475 11,399 2,947 67 15 1,210 W 3112 Grain and Oilseed Milling 580 580 15 183 449 269 35 0 148 W 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 0 31131 Sugar Manufacturing 78 78 11 45 61 35 26 15 45 0 3114 Fruit and Vegetable Preserving and Specialty Food 1,125

354

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

3.3 Fuel Consumption, 2006; 3.3 Fuel Consumption, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,139 367 23 45 535 14 21 3 131 20-49 1,122 333 13 19 530 8 93 5 122 50-99 1,309 349 22 17 549 10 157 8 197 100-249 2,443 607 25 19 994 11 263 10 512 250-499 2,092 413 53 13 633 4 244 3 730 500 and Over 7,551 781 115 17 2,271 31 240 344 3,752 Total 15,657 2,851 251 129 5,512 79 1,016 374 5,445 Employment Size Under 50 1,103 334 10 45 550 10

355

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

Gasoline and Diesel Fuel Update (EIA)

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 13,269 13,265 151 2,494 10,376 4,061 64 7 1,668 W 3112 Grain and Oilseed Milling 602 602 9 201 490 286 30 0 165 W 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 29 0 31131 Sugar Manufacturing 73 73 3 36 67 13 11 7 15 0 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987

356

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

6 Electricity: Sales to Utility and Nonutility Purchasers, 2006; 6 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of Economic Sales and Utility Nonutility Characteristic(a) Transfers Offsite Purchaser(b) Purchaser(c) Total United States Value of Shipments and Receipts (million dollars) Under 20 28 28 0 20-49 307 227 80 50-99 2,218 1,673 545 100-249 2,647 1,437 1,210 250-499 3,736 2,271 1,464 500 and Over 10,814 5,665 5,149 Total 19,750 11,301 8,449 Employment Size Under 50 516 230 287 50-99 1,193 1,180 13 100-249 3,825 3,231 594 250-499 3,796 2,675 1,120 500-999 4,311 1,921 2,390

357

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2006; 4 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood Economic Total Onsite and Characteristic(a) Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,447 450 Q Q 20-49 5,220 5,106 29 Q 50-99 3,784 3,579 29 Q 100-249 17,821 17,115 484 222 250-499 28,464 27,202 334 927 500 and Over 86,249 85,028 106 1,114 Total 142,986 138,480 1,030 3,476 Employment Size Under 50 2,193 1,177 Q Q 50-99 6,617 6,438 13 166 100-249 12,403 12,039 266 98 250-499

358

Bacteria eats radioactive waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Bacteria eats radioactive waste Bacteria eats radioactive waste Name: deenaharper Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: In my studies, I have found that everything in this world is balanced. When something dies it is converted into life. Is there anything out there that could convert radioactive material into a harmless substance? Some sort of bacteria that consumes radiation? Replies: The reason why radiation is so harmful is that is produces free radicals in living tissue, that is, it de-stabilizes molecules by tearing off electrons due to intense energies. These free radicals start a chain reaction of destruction, de-stabilizing neighboring molecules. If this continues unchecked, cells die, genetic material are mutated, and tissue aging accelerates. It is somewhat like being burned. Fire oxidizes by a similar free radical reaction. (Hence the term "sun burn.") The natural defenses against free radical reactions in biological systems are antioxidants, which are enzymes, nutrients, and other chemicals, which quench free radical reactions. Without them, life would very quickly cease. To my knowledge, no microorganism has an antioxidant capacity great enough to withstand even minimal exposure to any type of radiation. Microorganisms are actually very susceptible to radiation, which is why heat and gamma irradiation are used to sterilize food, instruments, etc. However, you raise an interesting possibility in that perhaps one can be genetically engineered to have super- antioxidant capacity, but that may be beyond current technology. Plus, if any got loose, given the exponential rate of reproduction, they may become an uncontrollable health hazard, as it would be very difficult to destroy them!

359

radtran2005_pc.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

assessment capability will also be introduced in FY 2006. Risk assessment and consequence analysis for radioactive material transportation assures a safe TRUPACT shipment to WIPP...

360

Helpful links for materials transport, safety, etc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Transportation Stakeholders National Transportation Stakeholders National Transportation Stakeholders National Transportation Stakeholders Forum Forum 2011 Annual Meeting 2011 Annual Meeting 2011 Annual Meeting 2011 Annual Meeting May 11, 2011 May 11, 2011 Evaluation of Shortline Railroads Evaluation of Shortline Railroads & & & & SNF/HLW Rail Shipment Inspections SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads Evaluation of Shortline Railroads Evaluation of Shortline Railroads Evaluation of Shortline Railroads Task: Task: Task: Task: Identify Shortline Railroads Serving Nuclear Power Plants Identify Shortline Railroads Serving Nuclear Power Plants

362

Toll Policies for Mitigating Hazardous Materials Transport Risk  

Science Conference Proceedings (OSTI)

In this paper, we investigate toll setting as a policy tool to regulate the use of roads for dangerous goods shipments. We propose a mathematical formulation as well as a solution method for the hazardous materials toll problem. Based on a comparative ... Keywords: bilevel programming, hazardous materials transportation, network design, toll setting

Patrice Marcotte; Anne Mercier; Gilles Savard; Vedat Verter

2009-05-01T23:59:59.000Z

363

Environmental assessment for Sandia National Laboratories/New Mexico offsite transportation of low-level radioactive waste  

Science Conference Proceedings (OSTI)

Sandia National Laboratories, New Mexico (SNL/NM) is managed and operated by Sandia Corporation, a Lockheed Martin Company. SNL/NM is located on land owned by the U.S. Department of Energy (DOE) within the boundaries of the Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. Low-level radioactive waste (LLW) is generated by some of the activities performed at SNL/NM in support of the DOE. This report describes potential environmental effects of the shipments of low-level radioactive wastes to other sites.

NONE

1996-09-01T23:59:59.000Z

364

Applying Risk Communication to the Transportation of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Transportation of Radioactive Materials More Documents & Publications Status and Future of TRANSCOM Department of Energy Office of Science Transportation Overview NTSF...

365

CRAD, Packaging and Transfer of Hazardous Materials and Materials of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transfer of Hazardous Materials and Materials Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials

366

EIA Energy Efficiency-Table 3a. Value of Shipments by Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

a a Page Last Modified: May 2010 Table 3a. Value of Shipments 1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 428 457 538 312 Beverage and Tobacco Product Manufacturing 102 104 125 313 Textile Mills 57 45 39 314 Textile Product Mills 31 32 33 315 Apparel Manufacturing 65 45 30 316 Leather and Allied Product Manufacturing 10 7 6 321 Wood Product Manufacturing 91 88 112 322 Paper Manufacturing 155 153 170 323 Printing and Related Support Activities 100 96 100 324 Petroleum and Coal Products Manufacturing 138 216 549 325 Chemical Manufacturing 417 454 658 326 Plastics and Rubber Products Manufacturing 164 173 211

367

EIA Energy Efficiency-Table 4a. Value of Shipments by Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

Table 4a Table 4a Page Last Modified: May 2010 Table 4a. Value of Shipments1 by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars ) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 430 448 472 312 Beverage and Tobacco Product Manufacturing 121 96 109 313 Textile Mills 56 47 37 314 Textile Product Mills 31 32 30 315 Apparel Manufacturing 65 45 30 316 Leather and Allied Product Manufacturing 10 6 6 321 Wood Product Manufacturing 92 89 100 322 Paper Manufacturing 168 156 153 323 Printing and Related Support Activities 103 93 92 324 Petroleum and Coal Products Manufacturing 227 242 265 325 Chemical Manufacturing 440 452 509 326 Plastics and Rubber Products Manufacturing 168 171 175

368

RADIO-ACTIVE TRANSDUCER  

DOE Patents (OSTI)

ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

Wanetick, S.

1962-03-01T23:59:59.000Z

369

Materials Transportation Testing & Analysis at Sandia National...  

NLE Websites -- All DOE Office Websites (Extended Search)

"How SAFE are radioactive material transportation packages?" RADCAT 2.0 Now Available RADCATRADTRAN Brochure pdf 237kb...

370

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contents Contents CR-iii TABLE OF CONTENTS Section Page 8. Transportation Modes, Routes, Affected Environment, and Impacts............................................ CR8-1 8.1 General Opposition to Transporting Spent Nuclear Fuel and High-Level Radioactive Waste ............................................................................................................ CR8-6 8.2 Number of Shipments ..................................................................................................... CR8-37 8.3 Transportation Modes and Routes .................................................................................. CR8-41 8.3.1 State Highway 127, Hoover Dam, Nevada Department of Transportation Alternatives ..............................................................................................................

371

APS Radioactive Sample Safety Review Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Sample Safety Review Committee Radioactive Sample Safety Review Committee March 6, 2012 1. Purpose The APS Safety Radioactive Sample Safety Review Committee (RSSRC) advises the AES Division Director on the radioactive samples to be used at the APS and the adequacy of controls in place for the duration of their use. The RSSRC reviews the radioactive material samples proposed to be run at the APS to ensure that they fall within established safety envelopes of the APS. 2. Membership The RSSRC members are appointed by the AES Division Director. The current members of the RSRC are: B. Glagola AES - Chair S. Davey AES G. Pile AES L. Soderholm CHM J. Vacca RSO W. VanWingeren AES M. Beno XSD E. Alp XSD M. Rivers PUC 3. Method The AES User Safety Coordinator will notify the RSSRC of any samples

372

Radioactive Waste Management (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

373

Packaging and Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transportation Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012 Annual Report. SUPPORTING PROGRAMS SAFE TRANSPORTATION OF RADIOLOGICAL SHIPMENTS Transportation Emergency Preparedness Program (TEPP) TEPP provides the tools for planning, training and exercises, and technical assistance to assist State and Tribal authorities in preparing for response

374

Radioactive anomaly discrimination from spectral ratios  

DOE Patents (OSTI)

A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

2013-08-20T23:59:59.000Z

375

Simplified scheme or radioactive plume calculations  

SciTech Connect

A simplified mathematical scheme to estimate external whole-body $gamma$ radiation exposure rates from gaseous radioactive plumes was developed for the Rio Blanco Gas Field Nuclear Stimulation Experiment. The method enables one to calculate swiftly, in the field, downwind exposure rates knowing the meteorological conditions and $gamma$ radiation exposure rates measured by detectors positioned near the plume source. The method is straightforward and easy to use under field conditions without the help of mini-computers. It is applicable to a wide range of radioactive plume situations. It should be noted that the Rio Blanco experiment was detonated on May 17, 1973, and no seep or release of radioactive material occurred. (auth)

Gibson, T.A.; Montan, D.N.

1976-11-21T23:59:59.000Z

376

Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)  

Science Conference Proceedings (OSTI)

In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

D'Amico, E. L [Washington TRU Solutions (United States); Edmiston, D. R. [John Hart and Associates (United States); O'Leary, G. A. [CH2M-WG Idaho, LLC (United States); Rivera, M. A. [Aspen Resources Ltd., Inc. (United States); Steward, D. M. [Boulder Research Enterprises, LLC (United States)

2006-07-01T23:59:59.000Z

377

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

378

Choices of canisters and elements for the first fuel shipment from K West Basin  

SciTech Connect

Twenty-two canisters (10 prime and 12 backup candidates) in the K West Basin have been identified as containing fuel which, when examined, will satisfy the Data Quality Objectives for the first fuel shipment from this basin. These were chosen as meeting criteria such as containing relatively long fuel elements, locking bar integrity, and the availability of gas/liquid interface level measurements for associated canister gas traps. Two canisters were identified as having reported broken fuel on initial loading. Usage and interpretation of canister cesium concentration measurements have also been established and levels of maximum and minimum acceptable cesium concentration (from a data optimization point of view) for decapping have been determined although other operational cesium limits may also apply. Criteria for picking particular elements, once a canister is opened, are reviewed in this document. A pristine, a slightly damaged, and a badly damaged element are desired. The latter includes elements with end caps removed but does not include elements which have large amounts of swelling or split cladding that might interfere with handling tools. Finally, operational scenarios have been suggested to aid in the selections of canisters and elements in a way that utilizes anticipated canister gas sampling and leads to a correct and quick choice of elements which will supply the desired data.

Makenas, B.J.

1995-03-01T23:59:59.000Z

379

What are Spent Nuclear Fuel and High-Level Radioactive Waste ?  

Science Conference Proceedings (OSTI)

Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

DOE

2002-12-01T23:59:59.000Z

380

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SCAVENGING OF RADIOACTIVE AEROSOLS  

DOE Patents (OSTI)

A process of decontaminatinig an atmosphere from suspended radioactive particles by introducing silicon tetrafluoride whereby the particles precipitate and are removed, is described. (AEC)

Rosinski, J.; Werle, D.K.

1963-12-01T23:59:59.000Z

382

Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan  

Science Conference Proceedings (OSTI)

Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

2007-07-01T23:59:59.000Z

383

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

REGULATIONS & GUIDANCE SEARCH SITE MAP SITE MAP SAFE HOME Search Site RAM PACKAGES What are they? When are they used? How are they moved? What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record TESTING & CERTIFICATION How are packages certified? What are full-scale tests? What are scale-model tests? What is computer analysis? Package Certification Using Computer Analysis Engineering Principles Established by Three Early Scientists Engineering Principles Applied to Ancient Structures Description of Computer Model in Computer Analysis Engineered Structures Built WITHOUT the Use of Computer Analysis Structures Analyzed WITH the Use of Computer Analysis What are examples of severe testing? How do the certification tests compare to real-life accidents?

384

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Puncture Comparison Fire Comparison Immersion Comparison Demonstrating target hardness. Comparison of the Free Drop Test to a Mack Truck and Subaru Collision Crush Test 200,000 lbs of force present in this package certification test. [CRUSH test] Click to view picture Real-life Accident Comparison 60,000 lbs of force present in this real-life accident. [CRUSH scenario] Click to view picture Real-life scenarios that the above test* is designed to protect against include: the package being under a vehicle during a pile-up accident the package being pinned between two vehicles during a collision. The 55 gallon drum is an overpack for a smaller (6-inch diameter x 18-inch long, 1/4-inch thick stainless steel walled) package that is inside. Note*: This test is ONLY for packages weighing less than 500 kg (1100 lbs). On April 25, 1996, a Mack truck with a concrete mixer body, unable to stop, proceeded through an intersection at the bottom of an exit ramp. It collided with and overrode a Subaru passenger car near Plymouth Meeting, Pennsylvania.

385

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are examples of severe testing? What are examples of severe testing? How do the certification tests compare to real-life accidents? Demonstrating target hardness. Purpose Background Results References Demonstrating Target Hardness between an Unyielding Target vs. Concrete Target During 30-foot Drop Tests. 30-foot 1/2 scale DHLW (Defense High-Level Waste) cask drop onto an unyielding target click to play, avi 4.7MB 30-foot 1/2 scale DHLW (Defense High-Level Waste) cask drop onto a 1/2 scale (5 1/2 inch) concrete pad click to play, avi 2.5MB 30-foot van drop onto an unyielding target click to play, avi 3.7MB 30-foot van drop onto an 11 inch concrete pad click to play, avi 3.4MB Purpose [ Back to top of page ] The purpose of this series of tests is to visually demonstrate the severity of the Type B Hypothetical Accident Condition impact test (10 CFR Part

386

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Immersion Comparison Demonstrating target hardness. Comparison of the Fire Test to a Gasoline Tanker and Sedan collision under an Overpass Fire Test [FIRE test] Click to view picture Real-life Accident Comparison [FIRE scenario] Click to view picture Real-life scenarios that the above test is designed to protect against include being involved in an accident with a gasoline tanker truck, causing the gasoline contents to burn the package. The amount of fuel being burned is approximately 5000 gallons in a pool 30 feet in diameter. During this test, the package is fully engulfed in the fire and is not protected by a transporting vehicle. On October 9, 1997, a truck tractor pulling a cargo tank semitrailer was going under an overpass of the New York State Thruway in Yonkers, New York when it was struck by a sedan. The car hit the right side of the cargo tank in the area of the tank's external loading/unloading lines, releasing the 8800 gallons of gasoline they contained.

387

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What is computer analysis? What are examples of severe testing? How do the certification tests compare to real-life accidents? Demonstrating target hardness. Accurate determination of package behavior for impact and puncture accidents can be obtained by testing sub-scale models. This technique is frequently used in conjunction with full-scale tests and computer analyses. Full-scale spent fuel packages can weigh 250,000 pounds (three fully loaded semi-trucks) or more, therefore the ability to determine the behavior with scale-models improves testing safety and reduces testing costs. *** 1/4 Scale Free Drop Test 1/4 Scale Component Free Drop Test 1/3 Scale Puncture Test 1/2 Scale Puncture Test 1/8 Scale Rail Crush Test [scale model DROP test] Click to view picture [scale model component test]

388

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Package Certification Using Computer Analysis Package Certification Using Computer Analysis Engineering Principles Established by Three Early Scientists Engineering Principles Applied to Ancient Structures Description of Computer Model in Computer Analysis Engineered Structures Built WITHOUT the Use of Computer Analysis Structures Analyzed WITH the Use of Computer Analysis What are examples of severe testing? How do the certification tests compare to real-life accidents? Demonstrating target hardness. Computer analysis is an application of known engineering principles that take advantage of high-power computing capabilities in solving the response of computer models to various environments with complex mathematical calculations. Computer analysis can be used for package certification by generating a

389

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Free Drop Comparison Crush Comparison Puncture Comparison Fire Comparison Immersion Comparison Demonstrating target hardness. Hypothetical Accident Conditions: Six tests as defined in 10 CFR Part 71.73 of the NRC transportation regulations were established to provide repeatable and definable conditions that encompass most real-life accidents. The real-life accidents on this page are comparisons to the environments that the regulatory hypothetical accidents protect against. The collision forces or fire temperature and duration that were present in each accident are similar to the conditions that spent fuel casks are designed to survive. Passenger Train and Semi-truck Trailer Collision [DROP scenario] Mack Truck and Subaru Collision [CRUSH scenario] Freight Train and Freight Train Collision

390

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Comments & Questions Gary Lanthrum, DOE/NTP Albuquerque, NM E-mail: glanthrum@doeal.gov Phone: (505) 845-5277 Fax: (505) 845-5508 Ashok K. Kapoor, DOE/NTP Albuquerque, NM E-mail: akapoor@doeal.gov Phone: (505) 845-4574 Fax: (505) 845-5508 David R. Miller, SNL/TP Manager, Albuquerque, NM E-mail: drmille@sandia.gov Phone: (505) 284-2574 Fax: (505) 844-2829 Mona L. Aragon, SNL/TP Advanced Visualization, Albuquerque, NM E-mail: mlrage@sandia.gov Phone: (505) 844-2541 Fax: (505) 844-0244 Doug Ammerman, SNL/TP Structural Analysis, Albuquerque, NM E-mail: djammer@sandia.gov Phone: (505) 845-8158 Fax: (505) 844-0244 Fran Kanipe, SNL/TP Computer Programming, Albuquerque, NM E-mail: flkanip@sandia.gov Phone: (505) 844-1121 Fax: (505) 844-0244 Carlos Lopez, SNL/TP Thermal Analysis, Albuquerque, NM

391

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary of Nuclear Terms [Majority from NRC] Contacts Comments & Questions Photos 30-Foot Free Drop Test jpeg, 788K [photo] Click to view picture 1100-Pound Crush Test jpeg, 448K [photo] Click to view picture 40-Inch Puncture Test jpeg, 912K [photo] Click to view picture 30-Minute Pool Fire Test jpeg, 88K [photo] Click to view picture 8-Hour Immersion Test jpeg, 416K [photo] Click to view picture Graphics Unyielding Target jpeg, 144K [graphic] Click to view graphic title jpeg, 000K [graphic] Click to view graphic title jpeg, 000K [graphic] Click to view graphic title jpeg, 000K [graphic] Click to view graphic title jpeg, 000K [graphic] Click to view graphic Movies 30-Foot Free Drop Test AVI, 4.5 MB [movie] Click to view movie 1/3-Scale Puncture Test AVI, 3.3 MB [movie] Click to view movie 30-Minute

392

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Crush Comparison Puncture Comparison Fire Comparison Immersion Comparison Demonstrating target hardness. Comparison of the Free Drop Test to a Passenger Train and Semi-truck Trailer Collision Free Drop Test 3,000,000 lbs of force present in this package certification test. [DROP test] Click to view picture Real-life Accident Comparison 1,000,000 lbs of force present in this real-life accident. [DROP scenario] Click to view picture Real-life scenarios that are encompassed by the above test include: the package being struck by a train traveling 60 MPH the package falling off of a 30-foot high bridge onto solid rock or from a higher bridge onto a highway or railroad the package running into a bridge support or rock slope at 45 MPH. Packages are transported onboard trucks or rail cars, which absorb some of the impact energy, reducing the resulting damage to the packages from the accident. On May 2, 1995, an O&J Gordon Trucking Company truck consisting of a tractor and a lowbed semitrailer became lodged on a high-profile (hump) railroad grade crossing near Sycamore, South Carolina. About 35 minutes later, the truck was struck by southbound Amtrak train No. 81, Silver Star, en route from New York City to Tampa, Florida.

393

Radioactive Materials Transportation and Incident Response  

Energy.gov (U.S. Department of Energy (DOE))

This booklet was written to answer questions most frequently asked by fire fighters, law enforcement officers, and emergency medical services personnel. The booklet is not intended as a substitute...

394

Radioactivity Standard Reference Material Quality Procedures ...  

Science Conference Proceedings (OSTI)

... of nuclear data and the examination of basic nuclear processes ... reviewed and approved by the NIST Occupational Health and Safety Division ...

2010-07-21T23:59:59.000Z

395

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are scale-model tests? What is computer analysis? What are examples of severe testing? How do the certification tests compare to real-life accidents? Demonstrating target...

396

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Principles Applied to Ancient Structures Description of Computer Model in Computer Analysis Engineered Structures Built WITHOUT the Use of Computer Analysi Structures Analyzed...

397

CHAPTER: Corrosion of Containment Materials for Radioactive ...  

Science Conference Proceedings (OSTI)

Included in the ASM Handbook, Corrosion: Environments and Industries Created On: 6/22/2007 2:31 PM, Topic View: Linear, Threading, Single, Branch...

398

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Analysis Fundamentals come from Engineering, Science, and Mathematics Mechanics Statics Deformable Body Mechanics Click to view picture Click to view picture Click...

399

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Effects History Gallery Glossary of Nuclear Terms Majority from NRC Contacts Comments & Questions It is difficult to understand why some people die while others survive...

400

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Immersion Comparison Demonstrating target hardness. Comparison of the Puncture Test to a Passenger Cruise Ship and Cargo Ship Collision Immersion Test IMMRSN test Click to view...

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Response Effects of Radiation History Gallery Glossary of Nuclear Terms Majority from NRC Contacts Comments & Questions A B C D E F G H I J K L M N O P Q R S T U V W X Y Z...

402

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Radiation History Gallery Glossary of Nuclear Terms Majority from NRC Contacts Comments & Questions Emergency Planning, Preparedness, and Response DOE Transportation...

403

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Comments & Questions Send Your Comments andor Questions (Fill in blank fields and click on "Submit" to send) Send To: Webmaster Your Name: Your E-mail Address: Affiliation: Type...

404

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fire Comparison Immersion Comparison Demonstrating target hardness. Comparison of the Puncture Test to a Freight Train and Freight Train Collision Puncture Test 2,000,000 lbs of...

405

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance The NRC certifies packages as being Type A or Type B on the basis of Safety Analysis Reports submitted by the package designer that demonstrate the package can withstand...

406

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Who uses them? Who makes rules? What are the requirements? Safety Record Spent fuel casks are constructed with thick walls of various metals. This cask is approximately 18-feet...

407

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

sandstone blocks and limestone facing (mostly missing), Pyramid of Khufu (largest) is as tall as a 50-story building 3200 BC, Egypt Brooklyn Bridge Steel cable and masonry piers,...

408

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

used in reactor physics to describe the state when the number of neutrons released by fission is exactly balanced by the neutrons being absorbed (by the fuel and poisons) and...

409

PEROXIDE PROCESS FOR SEPARATION OF RADIOACTIVE MATERIALS  

DOE Patents (OSTI)

reduced state, from hexavalent uranium. It consists in treating an aqueous solution containing such uranium and plutonium ions with sulfate ions in order to form a soluble uranium sulfate complex and then treating the solution with a soluble thorium compound and a soluble peroxide compound in order to ferm a thorium peroxide carrier precipitate which carries down with it the plutonium peroxide present. During this treatment the pH of the solution must be maintained between 2 and 3.

Seaborg, G.T.; Perlman, I.

1958-09-16T23:59:59.000Z

410

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirements Regulatory Framework Site Characterization Activities Current Status of DOE Program Current Status of NRC Program A Short History of Nuclear Regulation published...

411

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

80AD - stone and wood Pantheon Rome, 118 - 126 AD - masonry Archimedes' Hydralic Screw Greece, 200's BC - wood Plumbing Valve Rome, 1st Century AD - bronze and lead Catapult...

412

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Structures Analyzed WITH the Use of Computer Analysis Structures Analyzed WITH the Use of Computer Analysis What are examples of severe testing? How do the certification tests compare to real-life accidents? Demonstrating target hardness. Structural Analysis and Thermal Analysis of RAM Packaging Sandia National Laboratories jpeg, 24K Click to view picture AVI, 344K Click to view movie jpeg, 100K Click to view picture AVI, 1.5 MB Click to view movie C-1500 Truck Model Crash Analysis National Crash Analysis Center jpeg, 60K Click to view picture AVI, 616K Click to view movie AVI, 1.4 MB Click to view movie AVI, 368K Click to view movie Ship-to-Ship Collision Sandia National Laboratories Simulation Testing of Tire Designs Sandia National Laboratories jpeg, 72K Click to view picture AVI, 6.9 MB Click to view movie jpeg, 88K

413

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Responses Other Effects History Gallery Glossary of Nuclear Terms [Majority from NRC] Contacts Comments & Questions [RAD Pie Chart] Exposure Source Average annual dose to an individual in the United States (millirem) Natural sources (including radon) - Ground, cosmic, and terrestrial - Internal radiation 200 mrem 100 mrem Occupational 0.9 mrem Nuclear Fuel Cycle 0.05 mrem Consumer Products - Tobacco - Other (i.e., smoke detectors, exit signs, luminous watch dials) Dose to lungs ~16,000 mrem 5 - 13 mrem Environmental Sources 0.06 mrem Medical - Diagnostic X-rays - Nuclear Medicine 39 mrem 14 mrem Approximate Annual Total 360 mrem [Radiation] Everyone in the world is continuously exposed to naturally-occuring background radiation. The average radiation dose received by the United

414

Emergency Responder Radioactive Material Quick Reference Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

This job aid is a quick reference to assist emergency responders in identifying preliminary safety precautions that should be taken during the initial response phase after arrival...

415

AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT  

DOE Green Energy (OSTI)

One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

Bunting, Bruce G [ORNL; Boyd, Alison C [ORNL

2012-01-01T23:59:59.000Z

416

Radioactive scrap metal decontamination technology assessment report  

SciTech Connect

Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E. [Sandia National Labs., Albuquerque, NM (United States). Liquid Metal Processing Lab.

1996-04-01T23:59:59.000Z

417

The New Orphaned Radioactive Sources Program in the United States International Conference on the Safety of Radiation Sources and the Security of Radioactive  

E-Print Network (OSTI)

1 The New Orphaned Radioactive Sources Program in the United States International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials. September 14-18, 1998 Neil Naraine Exposure of the public to uncontrolled radioactive sources has become an significant concern to the United

418

"NAICS",,"per Employee","of Value Added","of Shipments"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 6.1;" 1 Relative Standard Errors for Table 6.1;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",3.8,4.3,4.1 3112," Grain and Oilseed Milling",8.2,5.8,5.6 311221," Wet Corn Milling",0,0,0 31131," Sugar Manufacturing",0,0,0 3114," Fruit and Vegetable Preserving and Specialty Foods ",7.3,6.7,6.2

419

CLEANING OF RADIOACTIVE CONTAMINATED OCCUPATIONAL CLOTHING  

SciTech Connect

The soiling and contamination of work clothing and ways of removing this contamination are discussed. Means of disinfection, washing tests with radioactive-contaminated cotton clothing, construction of the laundry, and cleaning protective clothing of plastic and other materials with the help of washing methods and polyphosphates are described. (M.C.G.)

Siewert, G.; Schikora, Th.

1963-11-01T23:59:59.000Z

420

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... and fission products relevant for radioactive waste disposal projects.

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Environmental Degradation of Materials in Nuclear Power Systems ...  

Science Conference Proceedings (OSTI)

Environmental Degradation of Materials in Nuclear Power SystemsWater ... problems associated with spent fuel storage and radioactive waste disposal.

422

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network (OSTI)

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid scintillation vials must be collected separately. 5. Any "mixed waste" must be cleared with the RSO and labeled

423

Radioactivity in Nature  

NLE Websites -- All DOE Office Websites (Extended Search)

Fig. 3-8. The ratio of uranium to lead present on Earth today gives us an estimate of its age (4.5 billion years). Given Earths age, any much shorter lived radioactive nuclei...

424

Dynamic radioactive particle source  

SciTech Connect

A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

2012-06-26T23:59:59.000Z

425

Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation  

SciTech Connect

On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Re, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

2008-07-01T23:59:59.000Z

426

Interim report on concreted uranium fines and chips billet curing tests: a basis for resuming shipment of concreted uranium scrap billets  

SciTech Connect

Through extensive testing and analyses of the concretion process, billets and shipping conditions, it has been determined that properly cured concreted billets can be safely shipped to National Lead Company of Ohio (NLO), Fernald. During curing, billets will be dried for 26 days prior to shipment with the last 10 days between 54 to 66/sup 0/C (130 to 150/sup 0/F). Such dried billets can withstand temperatures up to 85/sup 0/C (185/sup 0/F). The maximum billet temperature that can be expected to occur in shipment is 50/sup 0/C (123/sup 0/F). Thus, the drying cycle becomes a burning test at temperatures which the billets will not reach during shipment to NLO.

Weakley, E.A.

1980-05-02T23:59:59.000Z

427

RADIOACTIVITY IN SILT OF THE CLINCH AND TENNESSEE RIVERS  

SciTech Connect

Surveys of radioactivity in the Clinch and Tennessee rivers during 1954 through 1958 are summarized. It is concluded that no immediate hazard exists due to the reconcentration of radioactive materials in downstream bottom sediments, However, if the amount of radioactivity in the bottom sediment continues to increase for the next few years, it will be necessary to re-evaluate our present waste disposal policy in order to further restrict the release of ralioactive wastes to the Clinch River. The most probable effect of the radioactive sediment on industry would be an increased background counting rate if sand from the river bottom were used in making concrete for the construction of counting rooms of instrument laboratories. The problem ofthe radioactivity in solution in the river water would have to be considered before using the downstream water as process water in the manufacture of film emulsions or other photographic materials, (auth)

Cottrell, W.D.

1959-12-01T23:59:59.000Z

428

Background X-ray Spectrum of Radioactive Samples  

Science Conference Proceedings (OSTI)

An energy-dispersive X-ray spectrometer (EDS) is commonly used with a scanning electron microscope (SEM) to analyze the elemental compositions and microstructures of a variety of samples. For example, the microstructures of nuclear fuels are commonly investigated with this technique. However, the radioactivity of some materials introduces additional X-rays that contribute to the EDS background spectrum. These X-rays are generally not accounted for in spectral analysis software, and can cause misleading results. X-rays from internal conversion [1], Bremsstrahlung [2] radiation associated with alpha ionizations and beta particle interactions [3], and gamma rays from radioactive decay can all elevate the background of radioactive materials.

Shannon Yee; Dawn E. Janney

2008-02-01T23:59:59.000Z

429

Long-term management of high-level radioactive waste (HLW) and...  

NLE Websites -- All DOE Office Websites (Extended Search)

HLW is the highly radioactive material resulting from the reprocessing of SNF. Under the Nuclear Waste Policy Act of 1982, the federal government is responsible for the disposal...

430

Demonstration (DEMO) of Radio Frequency Identification (RFID) system for tracking and monitoring of nuclear materials.  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (models 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.

Tsai, H. C.; Chen, K.; Liu, Y. Y.; Shuler, J. (Decision and Information Sciences); (USDOE)

2010-01-01T23:59:59.000Z

431

The development of radioactive sample surrogates for training and exercises  

Science Conference Proceedings (OSTI)

The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Members from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.

Martha Finck; Bevin Brush; Dick Jansen; David Chamberlain; Don Dry; George Brooks; Margaret Goldberg

2012-03-01T23:59:59.000Z

432

Feed Materials Production Center waste management plan (Revision to NLCO-1100, R. 6)  

Science Conference Proceedings (OSTI)

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the wastes generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-10-15T23:59:59.000Z

433

Radioactive Nickel-63 - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Making Radioactive Nickel-63 Making Radioactive Nickel-63 ORNL-Supplied Nickel-63 Enables High-Sensitivity Explosives, Chemical Weapons, and Narcotics Detectors at Airports Explosives and narcotics detector. Detectors based on ion mobility spectrometry using ORNL 63Ni can now satisfy enhanced Homeland Security requirements at airports and other sensitive locations. When Transportation Security Administration (TSA) inspectors swipe a cloth over your luggage and then place it in an analyzer to check for explosives residue, they are using a device containing 63Ni, a radioactive isotope of nickel, made at ORNL. ORNL is the exclusive producer for 63Ni in North America and perhaps worldwide. "Our only competition would probably be Russia. They have high-flux research reactors and may well be supplying the material also,"

434

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

435

Public involvement in radioactive waste management decisions  

SciTech Connect

Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

NONE

1994-04-01T23:59:59.000Z

436

Radioactivity in food crops  

SciTech Connect

Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

1983-05-01T23:59:59.000Z

437

Transporting & Shipping Hazardous Materials at LBNL: Waste -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste: Hazardous, Biohazardous, Medical or Radioactive Do not transport or ship hazardous material wastes off-site. Only Waste Management, Radiation Protection or approved...

438

DETECTOR FOR RADIOACTIVE HYDROGEN  

SciTech Connect

A device of the Geiger-Mueller type is designed for detecting radioactive hydrogen in the presence of other radioactive substances. The device comprises an envelope with thin (1 to 5 mil thick) Ni or Pd windows at the ends, an anode and a cathode spaced apart in the envelope, and a counting gas within the envelope. In operation, the suspect atmosphere is blown against one of the windows, whereby only the hydrogen diffuses into the envelope for counting. Means is provided for heating the windows to the desired temperatures. (D.L.C.)

Christianson, C.; Gilman, M.; Maggio, R.C.

1963-12-10T23:59:59.000Z

439

Methods for verifying compliance with low-level radioactive waste acceptance criteria  

Science Conference Proceedings (OSTI)

This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

NONE

1993-09-01T23:59:59.000Z

440

BIOLOGICAL DECOMPOSITION OF RADIOACTIVE LAUNDRY WASTE  

SciTech Connect

A series of tests was conducted on a laundry waste containing radtoactive materials, using an activated sludge process, to determine whether the organic materials which would interfere with a process of flocculation and adsorption could be removed along with a substantial quantity of the radioactive material. A trickling filter was used to treat the waste over a long period of time. The filter removed nearly all of the activity and most of the organic compounds. However, sufficient residual activity remained in the effluent to require either two-stage operation or final processing by flocculation and adsorption. Recirculation was beneficial. A supplementary bacteria feed of ammonium nitrate was necessary. (auth)

Wiederhold, E.W.

1954-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2005 TEPP Annual Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 TEPP Annual Report 5 TEPP Annual Report 2005 TEPP Annual Report During FY 2005, the Office of Environmental Management completed over 21,000 shipments of radioactive material and waste. Hazardous material shipments continue to be of concern to communities. This is particularly true for radioactive material. An underlying concern is the adequacy of emergency preparedness along DOE shipping corridors. Within the DOE Office of Environmental Management, the Office of Transportation implements the complex-wide Transportation Emergency Preparedness Program (TEPP) to address preparedness issues for radioactive material and waste shipments. As an element of the DOE Comprehensive Emergency Management System, TEPP provides support to Federal, state, tribal, and local authorities to

442

Method for immobilizing radioactive iodine  

DOE Patents (OSTI)

Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

Babad, Harry (Richland, WA); Strachan, Denis M. (Richland, WA)

1980-01-01T23:59:59.000Z

443

SHIPMENT OF TWO DOE-STD-3013 CONTAINERS IN A 9977 TYPE B PACKAGE  

Science Conference Proceedings (OSTI)

The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. Historically, the standard container for these materials has been the DOE-STD-3013 which was specifically designed for the long term storage of plutonium bearing materials. The Department of Energy has used the 9975 Packaging containing a single 3013 container for the transportation and storage of these materials. In order to reduce container, shipping, and storage costs, the 9977 Packaging is being certified for transportation and storage of two 3013 containers. The challenges and risks of this content and the 9977s ability to meet the Code of Federal Regulations for the transport of these materials are presented.

Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

2011-06-06T23:59:59.000Z

444