National Library of Energy BETA

Sample records for radioactive material shipments

  1. ELUCIDATING THE DIFFERENCES BETWEEN ONSITE AND OFFSITE SHIPMENT OF RADIOACTIVE MATERIALS

    SciTech Connect (OSTI)

    Loftin, B.; Watkins, R.

    2013-06-19

    Federal regulations stipulate how radioactive materials are transported within the United States. However, the Department of Energy, under Department of Energy Order, has the authority to operate, within the boundaries of their physical site, to other stipulations. In many cases the DOE sites have internal reviews for onsite transfers that rival reviews performed by the regulatory authorities for offsite shipments. Most of the differences are in the level or type of packaging that is required, but in some cases it may be in the amount and type of material that is allowed to be transferred. This paper will describe and discuss those differences and it will discuss ways to effectively align the onsite rules for transferring materials with those for offsite shipment.

  2. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  3. Portsmouth Site Delivers First Radioactive Waste Shipment to...

    Office of Environmental Management (EM)

    Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

  4. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  5. Safety evaluation for packaging 222-S laboratory cargo tank for onetime type B material shipment

    SciTech Connect (OSTI)

    Nguyen, P.M.

    1994-08-19

    The purpose of this Safety Evaluation for Packaging (SEP) is to evaluate and document the safety of the onetime shipment of bulk radioactive liquids in the 222-S Laboratory cargo tank (222-S cargo tank). The 222-S cargo tank is a US Department of Transportation (DOT) MC-312 specification (DOT 1989) cargo tank, vehicle registration number HO-64-04275, approved for low specific activity (LSA) shipments in accordance with the DOT Title 49, Code of Federal Regulations (CFR). In accordance with the US Department of Energy, Richland Operations Office (RL) Order 5480.1A, Chapter III (RL 1988), an equivalent degree of safety shall be provided for onsite shipments as would be afforded by the DOT shipping regulations for a radioactive material package. This document demonstrates that this packaging system meets the onsite transportation safety criteria for a onetime shipment of Type B contents.

  6. Radioactive Materials Product Stewardship

    E-Print Network [OSTI]

    Radioactive Materials Product Stewardship ABackground Report for the National Dialogue...................................................................................................26 Low Level Waste (LLW) Disposal Regulations on Radioactive Materials Product Stewardship Prepared by the: Product Stewardship Institute University

  7. Midwestern Radioactive Materials Transportation Committee Agenda...

    Office of Environmental Management (EM)

    Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

  8. Enhancements to System for Tracking Radioactive Waste Shipments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    features are new mapping tools, multi-mode, two-way communication that automatically switches between terrestrial and satellite, in-depth shipment reporting, event alerts and a...

  9. Requirements for shipment of DOE radioactive mixed waste

    SciTech Connect (OSTI)

    Gablin, K.; No, Hyo; Herman, J.

    1993-08-01

    There are several sources of radioactive mixed waste (RMW) at Argonne National Laboratory which, in the past, were collected at waste tanks and/or sludge tanks. They were eventually pumped out by special pumps and processed in an evaporator located in the waste operations area in Building No. 306. Some of this radioactive mixed waste represents pure elementary mercury. These cleaning tanks must be manually cleaned up because the RMW material was too dense to pump with the equipment in use. The four tanks being discussed in this report are located in Building No. 306. They are the Acid Waste Tank, IMOX/FLOC Tanks, Evaporation Feed Tanks, and Waste Storage Tanks. All of these tanks are characterized and handled separately. This paper discusses the process and the requirements for characterization and the associated paperwork for Argonne Waste to be shipped to Westinghouse Hanford Company for storage.

  10. The radioactive materials packaging handbook: Design, operations, and maintenance

    SciTech Connect (OSTI)

    Shappert, L.B.; Bowman, S.M.; Arnold, E.D.

    1998-08-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  11. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  12. Radioactive Materials Emergencies Course Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hanford Fire Department has developed this training to assist emergency responders in understanding the hazards in responding to events involving radioactive materials, to know the fundamentals of radioactive contamination, to understand the biological affects of exposure to radioactive materials, and to know how to appropriately respond to hazardous material events involving radioactive materials.

  13. Lessons learned by southern states in transportation of radioactive materials

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE`s Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board`s Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns.

  14. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, S.R.

    1984-05-30

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  15. RADIOACTIVE MATERIALS SENSORS

    SciTech Connect (OSTI)

    Mayo, Robert M.; Stephens, Daniel L.

    2009-09-15

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  16. Packaging and Transportation for Offsite Shipment of Materials of National Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest.

  17. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  18. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  19. ETEC - Radioactive Handling Materials Facility (RMHF) Leachfield...

    Office of Environmental Management (EM)

    - Radioactive Handling Materials Facility (RMHF) Leachfield ETEC - Radioactive Handling Materials Facility (RMHF) Leachfield January 1, 2014 - 12:00pm Addthis US Department of...

  20. Storage depot for radioactive material

    DOE Patents [OSTI]

    Szulinski, Milton J. (Richland, WA)

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

  1. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2010-02-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  2. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet

  3. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  4. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  5. Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-20

    The purpose of this Order is to make clear that the packaging and transportation of all offsite shipments of materials of national security interest for DOE must be conducted in accordance with DOT and Nuclear Regulatory Commission (NRC) regulations that would be applicable to comparable commercial shipments, except where an alternative course of action is identified in this Order. Supersedes DOE O 461.1A.

  6. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    SciTech Connect (OSTI)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  7. DRAFT - DOE O 461.1C, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest.

  8. Ensuring Safe Shipment of Hazardous Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartmentApril 13,truck carries a waste shipment from

  9. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report

    SciTech Connect (OSTI)

    Doerge, D. H.; Miller, R. L.; Scotti, K. S.

    1986-05-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

  10. Safety and Security Technologies for Radioactive Material Shipments

    Office of Environmental Management (EM)

    Technologies Study Emerging Technologies Continued 7. Nanopiezoelectronics. 8. Plastic thin-film organic solar cells. 9. Container integrity. Safety & Security Technologies...

  11. UW EH&S Radiation Safety Section Box 354400 201 Hall Health Seattle WA 98195-4400 206-543-0463 206.543.9726 (fax) FORM 160 RADIOACTIVE MATERIAL DELIVERY AND USAGE RECORD (9/12)

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    and that radioactive labels are defaced prior to their disposal into the normal waste stream. RESULT OF WIPE SAMPLE.543.9726 (fax) FORM 160 RADIOACTIVE MATERIAL DELIVERY AND USAGE RECORD (9/12) AUI Name PO # AUI # Item # Order receiving shipments of radioactive materials to monitor the inside of packages in order to detect a leaking

  12. Radiation Sources and Radioactive Materials (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

  13. Radiation Machines and Radioactive Materials (Iowa)

    Broader source: Energy.gov [DOE]

    These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

  14. Diverter assembly for radioactive material

    DOE Patents [OSTI]

    Andrews, K.M.; Starenchak, R.W.

    1988-04-11

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

  15. Structural analysis in support of the waterborne transport of radioactive materials

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1996-08-01

    The safety of the transportation of radioactive materials by road and rail has been well studied and documented. However, the safety of waterborne transportation has received much less attention. Recent highly visible waterborne transportation campaigns have led to DOE and IAEA to focus attention on the safety of this transportation mode. In response, Sandia National Laboratories is conducting a program to establish a method to determine the safety of these shipments. As part of that program the mechanics involved in ship-to-ship collisions are being evaluated to determine the loadings imparted to radioactive material transportation packages during these collisions. This paper will report on the results of these evaluations.

  16. Radioactive materials released from nuclear power plants. Volume 11: Annual report, 1990

    SciTech Connect (OSTI)

    Tichler, J.; Doty, K.; Congemi, J. [Brookhaven National Lab., Upton, NY (United States)

    1993-10-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1990 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1990 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  17. Packaging and Transportation for Offsite Shipment of Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Materials of National Security Interests by Matthew Weber Functional areas: Defense Nuclear Facility Safety and Health Requirement, Packaging and Transportation, Security,...

  18. The radioactive Substances (Irradiated Material) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01

    STATUTORY INSTRUMENTS 1962 No. 2647 ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Irradiated Material) Exemption Order 1962

  19. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    SciTech Connect (OSTI)

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D&D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews.

  20. USING A RISK-BASED METHODOLOGY FOR THE TRANSFER OF RADIOACTIVE MATERIAL WITHIN THE SAVANNAH RIVER SITE BOUNDARY

    SciTech Connect (OSTI)

    Loftin, B.; Watkins, R.; Loibl, M.

    2010-06-03

    Shipment of radioactive materials (RAM) is discussed in the Code of Federal Regulations in parts of both 49 CFR and 10 CFR. The regulations provide the requirements and rules necessary for the safe shipment of RAM across public highways, railways, waterways, and through the air. These shipments are sometimes referred to as in-commerce shipments. Shipments of RAM entirely within the boundaries of Department of Energy sites, such as the Savannah River Site (SRS), can be made using methodology allowing provisions to maintain equivalent safety while deviating from the regulations for in-commerce shipments. These onsite shipments are known as transfers at the SRS. These transfers must follow the requirements approved in a site-specific Transportation Safety Document (TSD). The TSD defines how the site will transfer materials so that they have equivalence to the regulations. These equivalences are documented in an Onsite Safety Assessment (OSA). The OSA can show how a particular packaging used onsite is equivalent to that which would be used for an in-commerce shipment. This is known as a deterministic approach. However, when a deterministic approach is not viable, the TSD allows for a risk-based OSA to be written. These risk-based assessments show that if a packaging does not provide the necessary safety to ensure that materials are not released (during normal or accident conditions) then the worst-case release of materials does not result in a dose consequence worse than that defined for the SRS. This paper will discuss recent challenges and successes using this methodology at the SRS.

  1. Radioactive Material or Multiple Hazardous Materials Decontamination

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

  2. Solid low-level radioactive waste radiation stability studies 

    E-Print Network [OSTI]

    Williams, Arnold Andre?

    1989-01-01

    MANAGEMENT . . . Historical background Characteristics of radioactive wastes Classification of radioactive wastes Disposal methodology and criteria Handling and storage of radioactive wastes SOLID RADIOACTIVE WASTES Historical background... Characteristics of the solidified wastes Storage and handling of solid radioactive wastes Shipment of solid radioactive wastes Solidification of waste solutions MATERIALS AND METHODS Ion-exchange methods. High integrity containers (HIC). . tv tx 15 15...

  3. Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-01-05

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  4. Packaging and Transportation for Offsite Shipment of Materials of National Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-09-25

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  5. Entry Survey for Laboratories Using Radioactive Materials

    E-Print Network [OSTI]

    Jia, Songtao

    Entry Survey for Laboratories Using Radioactive Materials Procedure: 7.50 Created: 11 materials or radiation-generating devices is restricted to those facilities, spaces and/or rooms that have materials (RAM) in this location. The entry survey will be performed by Radiation Safety Program personnel

  6. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  7. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    SciTech Connect (OSTI)

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision points such as; crash, location, etc. For each pass through the routines, when a crash is randomly selected, crash parameters are then used to determine if failure has occurred using either external look up tables, correlations functions from deterministic calculations, or built in data libraries. The effectiveness of the software was recently demonstrated in safety analyses of the transportation of radioisotope systems for the US Dept. of Energy. These methods are readily adaptable to estimating risks associated with a variety of hazardous shipments such as spent nuclear fuel, explosives, and chemicals.

  8. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  9. Working with Radioactive Materials in Clinical Areas -Documentation

    E-Print Network [OSTI]

    Jia, Songtao

    Working with Radioactive Materials in Clinical Areas - Documentation Procedure: 7.54 Created: 2008 Version: 1.1 Revised: 11/5/2013 10/22/2014 Working with Radioactive Materials in Clinical Areas of the City of New York, Article 175, Radiation Control1 and New York City Department of Health Radioactive

  10. Radiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material &

    E-Print Network [OSTI]

    Li, Mo

    & XX--RaysRays Office of Radiological Safety Environmental Health & Safety Georgia Institute, Chemistry, Physics, Applied Physiology · Radioactive Material ­ Sealed Sources, Unsealed Sources (liquid · You can help us by informing potential users of the approval process and training! #12;Role of ORS

  11. Base Technology for Radioactive Material Transportation Packaging Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-07-08

    To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

  12. Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis

    SciTech Connect (OSTI)

    Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

    2003-02-26

    The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

  13. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect (OSTI)

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  14. Notice of Intent to Revise Department of Energy Order 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-15

    The purpose of this memorandum is to provide justification for the proposed revision of DOE O 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest, dated 12-16-2010, as part of the the quadrennial review and recertification as required by DOE O 251.1C, Departmental Directives Program.

  15. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  16. Radioactive material in the West Lake Landfill: Summary report

    SciTech Connect (OSTI)

    none,

    1988-06-01

    The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. This report summarizes the circumstances of the radioactive material in the West Lake Landfill. The radioactive material resulted from the processing of uranium ores and the subsequent by the AEC of processing residues. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. It is concluded that remedial action is called for. 8 refs., 2 figs., 1 tab.

  17. Radioactive Material Transportation Considerations with Respect to DOE 3013 Storage Containers

    SciTech Connect (OSTI)

    HENSEL, SJ

    2004-04-15

    This paper evaluates sealed hardware that meets the requirements of DOE-STD-3013, ''Criteria for Preparing and packaging Plutonium Metals and Oxides for Long-Term Storage'' with respect to radioactive material (Type B quantity) transportation requirements. The Standard provides criteria for packaging of the plutonium materials for storage periods of at least 50 years. The standard requires the hardware to maintain integrity under both normal storage conditions and under anticipated handling conditions. To accomplish this, the standard requires that the plutonium be loaded in a minimum of two nested stainless steel sealed containers that are both tested for leak-tightness per ANSI N14.5. As such the 3013 hardware is robust. While the 3013 STD may provide appropriate storage criteria, it is not intended to provide criteria for transporting the material under the requirements of the Department of Transportation (DOT). In this evaluation, it is assumed that the activity of plutonium exceeds A1 and/or A2 curies as defined in DOT 49 CFR 173.431 and therefore must be shipped as a Type B package meeting the Nuclear Regulatory Commission (NRC) requirements of 10 CFR 71. The evaluation considers Type B shipment of plutonium in the 3013 hardware within a certified package for such contents.

  18. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  19. Emergency department management of patients internally contaminated with radioactive material

    SciTech Connect (OSTI)

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  20. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect (OSTI)

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  1. A pill to treat people exposed to radioactive materials

    ScienceCinema (OSTI)

    Abergel, Rebecca

    2014-06-24

    Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

  2. A pill to treat people exposed to radioactive materials

    SciTech Connect (OSTI)

    Abergel, Rebecca

    2013-10-31

    Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

  3. Self-closing shielded container for use with radioactive materials

    DOE Patents [OSTI]

    Smith, J.E.

    1984-10-16

    A container is described for storage of radioactive material comprising a container body and a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open). 1 fig.

  4. Idaho, Navy, DOE agree on shipments to, from INEL

    SciTech Connect (OSTI)

    Tompkins, B.

    1995-12-01

    This report describes aspects of a legal agreement between the U.S. Navy, the state of Idaho, and the United States Department of Energy (US DOE) regarding shipments of radioactive wastes. The agreement will allow for the shipment of 244 spent fuel shipments from the Fort St Vrain facility in Colorado, if a repository or interim storage facility outside Idaho is open and accepting spent fuel from INEL. The number of shipments to the INEL will be limited to 1133, instead of the 1940 originally planned. The Navy will be allowed 575 total shipments through the year 2035.

  5. Use of inelastic design for radioactive material transportation packages

    SciTech Connect (OSTI)

    Heinstein, M.W.; Ammerman, D.J.

    1993-12-01

    There is much interest within the radioactive material transportation container design community in the use of inelastic analysis. In other industries where inelastic analysis is used in design there is typically an improved knowledge of the capacity of the structure and a more efficient use of material. This report describes the results of a program in which the incentives for inelastic analysis for radioactive material transport container design were investigated to determine if there are similar benefits. Detailed are the elastic and inelastic analyses of two containers subjected to impacts onto a rigid target following a thirty-foot free fall in end-on, side-on, and center-of-gravity- over-corner orientations.

  6. MATERIALS COMPATIBILITY OF SNAP FUEL COMPONENTS DURING SHIPMENT IN 9975 PACKAGING

    SciTech Connect (OSTI)

    Vormelker, P

    2006-11-14

    Materials Science and Technology has evaluated materials compatibility for the SNAP (Systems for Nuclear Auxiliary Power) fuel for containment within a 9975 packaging assembly for a shipping period of one year. The evaluation included consideration for potential for water within the convenience can, corrosion from water, galvanic corrosion, tape degradation, and thermal expansion risk. Based on a review of existing literature and assumed conditions, corrosion and/or degradation of the 304 stainless steel (SS) Primary Containment Vessel (PCV) and the 304 stainless steel convenience cans containing the SNAP fuel is not significant to cause failure during the 1 year time shipping period in the 9975 packaging assembly. However, storage beyond the 1 year shipping period has not been validated.

  7. A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?

    SciTech Connect (OSTI)

    Mark Schanfein

    2009-07-01

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

  8. Benchmarking of finite element codes for radioactive material transportation packages

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1996-10-01

    The increased power of computers and computer codes makes the use of nonlinear dynamic finite element analyses attractive for use as a tool used in the design and certification of radioactive material transportation packages. For this analysis technique to be acceptable it must be demonstrated. The technique has the ability to accurately capture the response of the packages to accident environments required by the regulations. The best method of demonstrating this ability is via a series of benchmark analyses. In this paper three benchmark problems involving significant inelastic deformations will be discussed. One of the problems has been analyzed using many different finite element codes. The other two problems involve comparison of finite element calculations to the results form physical tests. The ability of the finite element method to accurately capture the response in these three problems indicates the method should be acceptable for radioactive material transportation package design and certification.

  9. DRAFT - DOE O 460.1D, Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  10. RADIATION CONTROL GUIDE 2/97 2-1 RADIOACTIVE MATERIALS

    E-Print Network [OSTI]

    Sin, Peter

    RADIATION CONTROL GUIDE 2/97 2-1 CHAPTER 2 RADIOACTIVE MATERIALS I. AUTHORIZATION TO USE RADIOACTIVE MATERIAL A. Initial Approval Any University faculty or staff member needing to utilize radioactive material in research studies, must obtain approval of the Radiation Control Committee. Approval is obtained

  11. Safe Use of Radioactive Materials Procedure: 7.542 Created: 3/7/2014

    E-Print Network [OSTI]

    Jia, Songtao

    Officer must be consulted before beginning any new use of radioactive material. Eating, drinking, smokingSafe Use of Radioactive Materials Procedure: 7.542 Created: 3/7/2014 Version: 1.0 Revised of radioactive materials (RAM). They are designed to reduce the risk of a significant contamination event

  12. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  13. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  14. Investigation of Shielding Material in Radioactive Waste Management - 13009

    SciTech Connect (OSTI)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)] [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01

    In this study, various waste packages have been prepared by using different materials. Experimental work has been performed on radiation shielding for gamma and neutron radiation. Various materials were evaluated (e.g. concrete, boron, etc.) related to different application areas in radioactive waste management. Effects of addition boric compound mixtures on shielding properties of concrete have been investigated for neutron radiation. The effect of the mixture addition on the shielding properties of concrete was investigated. The results show that negative effects of boric compounds on the strength of concrete decreasing by increasing boric amounts. Shielding efficiency of prepared mixture added concrete up to 80% better than ordinary concretes for neutron radiation. The attenuation was determined theoretically by calculation and practically by using neutron dose rate measurements. In addition of dose rate measurements, strength tests were applied on test shielding materials. (authors)

  15. Radioactive Materials at SSRL | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProton DeliveryRadioactive Materials at SSRL Contact

  16. DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14

    In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

  17. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect (OSTI)

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  18. Public information circular for shipments of irradiated reactor fuel

    SciTech Connect (OSTI)

    1996-07-01

    This circular provides information on shipment of spent fuel subject to regulation by US NRC. It provides a brief description of spent fuel shipment safety and safeguards requirement of general interest, a summary of data for 1979-1995 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials.

  19. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    SciTech Connect (OSTI)

    Sturgeon, Richard W.

    2012-06-27

    This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

  20. Constraint-Based Routing Models for the Transport of Radioactive Materials

    SciTech Connect (OSTI)

    Peterson, Steven K

    2015-01-01

    The Department of Energy (DOE) has a historic programmatic interest in the safe and secure routing, tracking, and transportation risk analysis of radiological materials in the United States. In order to address these program goals, DOE has funded the development of several tools and related systems designed to provide insight to planners and other professionals handling radioactive materials shipments. These systems include the WebTRAGIS (Transportation Routing Analysis Geographic Information System) platform. WebTRAGIS is a browser-based routing application developed at Oak Ridge National Laboratory (ORNL) focused primarily on the safe transport of spent nuclear fuel from US nuclear reactors via railway, highway, or waterway. It is also used for the transport planning of low-level radiological waste to depositories such as the Waste Isolation Pilot Plant (WIPP) facility. One particular feature of WebTRAGIS is its coupling with high-resolution population data from ORNL s LandScan project. This allows users to obtain highly accurate population count and density information for use in route planning and risk analysis. To perform the routing and risk analysis WebTRAGIS incorporates a basic routing model methodology, with the additional application of various constraints designed to mimic US Department of Transportation (DOT), DOE, and Nuclear Regulatory Commission (NRC) regulations. Aside from the routing models available in WebTRAGIS, the system relies on detailed or specialized modal networks for the route solutions. These include a highly detailed network model of the US railroad system, the inland and coastal waterways, and a specialized highway network that focuses on the US interstate system and the designated hazardous materials and Highway Route Controlled Quantity (HRCQ) -designated roadways. The route constraints in WebTRAGIS rely upon a series of attributes assigned to the various components of the different modal networks. Routes are determined via a constrained shortest-path Dijkstra algorithm that has an assigned impedance factor. The route constraints modify the various impedance weights to bias or prefer particular network characteristics as desired by the user. Both the basic route model and the constrained impedance function calculations are determined by a series of network characteristics and shipment types. The study examines solutions under various constraints modeled by WebTRAGIS including possible routes from select shut-down reactor sites in the US to specific locations in the US. For purposes of illustration, the designated destinations are Oak Ridge National Laboratory in Tennessee and the Savannah River Site in South Carolina. To the degree that routes express sameness or variety under constraints serves to illustrate either a) the determinism of particular transport modes by either configuration or regulatory compliance, and/or b) the variety of constrained routes that are regulation compliant but may not be operationally feasible.

  1. FORM RS-2 (Revised 08/05) PERMIT FOR RADIOACTIVE MATERIAL Permit No.

    E-Print Network [OSTI]

    Johnson, Eric E.

    ________________________________________ NMSU Requirements for Sewage Disposal of Aqueous Waste Contaminated with Radioactivity 1. Permittee). Table 13.1 Permittee Limits for Sewage Disposal of Soluble Radioactivity in Aqueous Waste Isotope Radioactive Material" for sewage disposal and restrict facilities personnel from working on such sink until

  2. Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations

    SciTech Connect (OSTI)

    Sitaraman, S; Kim, S; Biswas, D; Hafner, R; Anderson, B

    2010-10-27

    Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging not exceed the regulatory limits prescribed by 10 CFR 71 for non-exclusive shipments. The mass of each radioisotope presented in this paper is limited by the radiation dose rate on the external surface of the package, which per the regulatory limit should not exceed 200 mrem/hr. The results presented are a compendium of allowable masses of a variety of different isotopes (with varying impurity levels of beryllium in some of the actinide isotopes) that, when loaded in an unshielded packaging, do not result in an external dose rate on the surface of the package that exceeds 190 mrem/hr (190 mrem/hr was chosen to provide 5% conservatism relative to the regulatory limit). These mass limits define the term 'Small Gram Quantity' (SGQ) contents in the context of radioactive material transportation packages. The term SGQ is isotope-specific and pertains to contents in radioactive material transportation packages that do not require shielding and still satisfy the external dose rate requirements. Since these calculated mass limits are for contents without shielding, they are conservative for packaging materials that provide some limited shielding or if the contents are placed into a shielded package. The isotopes presented in this paper were chosen as the isotopes that Department of Energy (DOE) sites most likely need to ship. Other more rarely shipped isotopes, along with industrial and medical isotopes, are planned to be included in subsequent extensions of this work.

  3. Section Title Page 1.0 Control of radioactive materials and radiation generating

    E-Print Network [OSTI]

    Arslan, Hüseyin

    .0 ALARA 3 3.0 USF application for use of radioactive material and/or radiation generating equipment 4 4

  4. Distribution of Radioactive Materials in the Absheron Peninsula, Azerbaijan - 13567

    SciTech Connect (OSTI)

    Vandergraaf, Tjalle T.; Mamedov, Gudrat G.; Ramazanov, Mahammadali A.; Badalov, Vatan H.; Naghiyev, Jalal A.; Mehdiyeva, Afat A.

    2013-07-01

    The Absheron Peninsula forms the extreme Eastern part of Azerbaijan and juts into the Caspian Sea. The region has a long history of oil and gas exploration, transport, and processing and includes a number of abandoned chemical plants that were used in the separation of iodine from formation waters. As a result of lax environmental standards during the Soviet era, the industrial activity has led to serious contamination from oils residues, heavy metals and naturally occurring radioactive materials (NORM). Radiometric surveys performed over a wide range of the Absheron Peninsula showed generally low NORM concentrations. However, radiation levels two to three orders of magnitude above background levels were detected at two abandoned iodine separation plants near the capital city, Baku. These elevated radiation levels are mainly due to Ra-226 and U-238 with lower contributions from Ra-228 and U-235. (authors)

  5. Inelastic analysis acceptance criteria for radioactive material transportation containers

    SciTech Connect (OSTI)

    Ammerman, D.J.; Ludwigsen, J.S.

    1993-06-01

    The design criteria currently used in the design of radioactive material (RAM) transportation containers are taken from the ASME Boiler and Pressure Vessel Code (ASME, 1992). These load-based criteria are ideally suited for pressure vessels where the loading is quasistatic and all stresses are in equilibrium with externally applied loads. For impact events, the use of load-based criteria is less supportable. Impact events tend to be energy controlled, and thus, energy-based acceptance criteria would appear to be more appropriate. Determination of an ideal design criteria depends on what behavior is desired. Currently there is not a design criteria for inelastic analysis for RAM nation packages that is accepted by the regulatory agencies. This lack of acceptance criteria is one of the major factors in limiting the use of inelastic analysis. In this paper inelastic analysis acceptance criteria based on stress and strain-energy density will be compared for two stainless steel test units subjected to impacts onto an unyielding target. Two different material models are considered for the inelastic analysis, a bilinear fit of the stress-strain curve and a power law hardening model that very closely follows the stress-strain curve. It is the purpose of this paper to stimulate discussion and research into the area of strain-energy density based inelastic analysis acceptance criteria.

  6. U.S. Department of Energy to Host Press Call on Radioactive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Waste Shipment and Disposal U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal November 12, 2013 - 10:26am Addthis NEWS MEDIA...

  7. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  8. Radioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located in the 3410 Material Science and

    E-Print Network [OSTI]

    of radioactive material. In order to work within 3410 facility radiological limits, potential users must provide can evaluate whether it will meet our facility limits. Note that while the EMSL Radiochemistry Annex

  9. Experiences in the field of radioactive materials seizures in the Czech Republic

    SciTech Connect (OSTI)

    Svoboda, Karel; Podlaha, Josef; Sir, David; Mudra, Josef [Nuclear Research Institute Rez plc (Czech Republic)

    2007-07-01

    In recent years, the amount of radioactive materials seizures (captured radioactive materials) has been rising. It was above all due to newly installed detection facilities that were able to check metallic scrap during its collection in scrap yards or on the entrance to iron-mills, checking municipal waste upon entrance to municipal disposal sites, even incineration plants, or through checking vehicles going through the borders of the Czech Republic. Most cases bore a relationship to secondary raw materials or they were connected to the application of machines and installations made from contaminated metallic materials. However, in accordance to our experience, the number of cases of seizures of materials and devices containing radioactive sources used in the public domain was lower, but not negligible, in the municipal storage yards or incineration plants. Atomic Act No. 18/1997 Coll. will apply to everybody who provides activities leading to exposure, mandatory assurance as high radiation safety as risk of the endangering of life, personal health and environment is as low as reasonably achievable in according to social and economic aspects. Hence, attention on the examination of all cases of the radioactive material seizure based on detection facilities alarm or reasonably grounds suspicion arising from the other information is important. Therefore, a service carried out by group of workers who ensure assessment of captured radioactive materials and eventual retrieval of radioactive sources from the municipal waste has come into existence in the Nuclear Research Institute Rez plc. This service has covered also transport, storage, processing and disposal of found radioactive sources. This service has arisen especially for municipal disposal sites, but later on even other companies took advantage of this service like incineration plants, the State Office for Nuclear Safety, etc. Our experience in the field of ensuring assessment of captured radioactive materials and eventual retrieval of radioactive sources will be presented in the paper. (authors)

  10. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Not Listed

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  11. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  12. Ion-exchange material and method of storing radioactive wastes

    DOE Patents [OSTI]

    Komarneni, S.; Roy, D.M.

    1983-10-31

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  13. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    SciTech Connect (OSTI)

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  14. Fast Neutron Radioactivity and Damage Studies on Materials

    E-Print Network [OSTI]

    Spencer, J.; Anderson, S. D.; Wolf, Z.; Volk, J. T.; Pellett, D.; Boussoufi, M.

    2007-01-01

    Pm Superconducting Materials Dy 165 2.33h Current leads, conductors and cavities with minimal Nd 147

  15. Subthreshold neutron interrogator for detection of radioactive materials

    DOE Patents [OSTI]

    Evans, Michael L. (Los Alamos, NM); Menlove, Howard O. (Los Alamos, NM); Baker, Michael P. (Los Alamos, NM)

    1980-01-01

    A device for detecting fissionable material such as uranium in low concentrations by interrogating with photoneutrons at energy levels below 500 keV, and typically about 26 keV. Induced fast neutrons having energies above 500 keV by the interrogated fissionable material are detected by a liquid scintillator or recoil proportional counter which is sensitive to the induced fast neutrons. Since the induced fast neutrons are proportional to the concentration of fissionable material, detection of induced fast neutrons indicate concentration of the fissionable material.

  16. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  17. Annual Transportation Report for Radioactive Waste Shipments...

    National Nuclear Security Administration (NNSA)

    which routes transporters used to reach the NTS. These reports may be found on the Internet at http:www.nv.doe.govemprogramsenvironmentwastemanagementquarterlyrepo...

  18. Albert Einstein College of Medicine Amendment to Non-human Use of Radioactive Material License

    E-Print Network [OSTI]

    Emmons, Scott

    RSO-2 Rev.0 Albert Einstein College of Medicine Amendment to Non-human Use of Radioactive Material Present Total Quantity (mCi) New Total Quantity (mCi) Max. Amount per Experiment (mCi) Chemical Form: If yes, please explain: 3. Radiation Protection: Check special equipment to be used to control radiation

  19. Rsonbook.doc The University of Connecticut Health Center is authorized to use byproduct radioactive materials

    E-Print Network [OSTI]

    II. Procedures for Obtaining Radioactive Materials ............................. 7 A. Policy and in accordance with federal and state regulations and institutional policies. The procedures contained/her activities in accordance with the procedures contained therein. Raymond W. Ryan, Ph.D., Chairman Radiation

  20. 1 EPA Actions in Response to WIPP Release EPA Actions in Response to Release of Radioactive Material

    E-Print Network [OSTI]

    1 EPA Actions in Response to WIPP Release EPA Actions in Response to Release of Radioactive Material from the Waste Isolation Pilot Plant (WIPP) Since the release of radioactive material on February 14, 2014 at the WIPP, EPA has been working closely with the New Mexico Environment Department (NMED

  1. APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.; Abramczyk, G.

    2012-07-11

    This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels.

  2. Nondestructive NMR technique for moisture determination in radioactive materials.

    SciTech Connect (OSTI)

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-12-04

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

  3. Development and evaluation of measurement devices used to support testing of radioactive material transportation packages

    SciTech Connect (OSTI)

    Uncapher, W. L.; Ammerman, D. J.; Stenberg, D.R.; Bronowski, D. R.; Arviso, M.

    1992-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of instrumentation measurement data. Sandia National Laboratories (SNL) has an ongoing program to develop and evaluate measurement devices to support testing of radioactive material packages. Measurement devices developed in support of this activity include evaluation channels, ruggedly constructed linear variable differential transformers, and piezoresistive accelerometers with enhanced measurement capabilities. In addition to developing measurement devices, a method has been derived to evaluate accelerometers and strain gages for measurement repeatability, ruggedness, and manufacturers' calibration data under both laboratory and field conditions. The developed measurement devices and evaluation technique will be discussed and the results of the evaluation will be presented.

  4. Radioactive material package closures with the use of shape memory alloys

    SciTech Connect (OSTI)

    Koski, J.A.; Bronowski, D.R.

    1997-11-01

    When heated from room temperature to 165 C, some shape memory metal alloys such as titanium-nickel alloys have the ability to return to a previously defined shape or size with dimensional changes up to 7%. In contrast, the thermal expansion of most metals over this temperature range is about 0.1 to 0.2%. The dimension change of shape memory alloys, which occurs during a martensite to austenite phase transition, can generate stresses as high as 700 MPa (100 kspi). These properties can be used to create a closure for radioactive materials packages that provides for easy robotic or manual operations and results in reproducible, tamper-proof seals. This paper describes some proposed closure methods with shape memory alloys for radioactive material packages. Properties of the shape memory alloys are first summarized, then some possible alternative sealing methods discussed, and, finally, results from an initial proof-of-concept experiment described.

  5. Legal aspects of the maritime transport of radioactive materials its regulation in Mexico

    E-Print Network [OSTI]

    Aguilar, S

    2001-01-01

    This work has the object to analyse the International as much as National legal frameworks, the scopes and limits of the instruments which form it as well as the congruous that exist between them and the situation which actually prevails in the maritime transport field of radioactive materials in worldwide level and in Mexico taking into account the technical advances, the operational experience and radiological protection principles. In the chapter 1, the background on the uses of nuclear energy are described and its development by more of fifty years. The chapter 2 analyses about the establishment of nuclear technologies in Mexico as well as their evolution in medicine, agriculture, research and electric power generation areas. In chapter 3 it was analysed the role what the International Organizations have been playing for the establish of an International legal framework in the maritime transport of radioactive materials field. In the chapter 4, the International legal framework was analysed which is appli...

  6. Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials

    SciTech Connect (OSTI)

    Young,, J. A.; Thomas, V. W.; Jackson, P. 0.

    1983-03-01

    This report recornmenrls instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two rnonth measurement rnethodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

  7. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    SciTech Connect (OSTI)

    Smith, A.R.; Hurley, D.L.

    1991-08-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite have been studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Bakground Facilities, in a multi-laboratory collaboration coordinated by Dr. Thomas Parnell's team at the Marshall Spacecraft Center, Huntsville, Alabama.

  8. A regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees: Final report

    SciTech Connect (OSTI)

    McGuire, S.A.

    1988-01-01

    The question this Regulatory Analysis sought to answer is: should the NRC impose additional emergency preparedness requirements on certain fuel cycle and other radioactive material licensees for dealing with accidents that might have offsite releases of radioactive material. To answer the question, we analyzed potential accidents for 15 types of fuel cycle and other radioactive material licensees. An appropriate plan would: (1) identify accidents for which protective actions should be taken by people offsite; (2) list the licensee's responsibilities for each type of accident, including notification of local authorities (fire and police generally); and (3) give sample messages for local authorities including protective action recommendations. This approach more closely follows the approach used for research reactors than for power reactors. The low potential offsite doses (acute fatalities and injuries not possible except possibly for UF/sub 6/ releases), the small areas where actions would be warranted, the small number of people involved, and the fact that the local police and fire departments would be doing essentially the same things they normally do, are all factors that tend to make a simple plan adequate. This report discusses the potentially hazardous accidents, and the likely effects of these accidents in terms of personnel danger.

  9. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  10. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  11. Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1997-06-01

    Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

  12. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

    2007-10-23

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  13. Revk - a Tool for the Fulfilment of Requirements from National Rules for Tracking and Documentation of Radioactive Residual Material and Radioactive Waste

    SciTech Connect (OSTI)

    Hartmann, B.; Haeger, M.; Gruendler, D.

    2006-07-01

    According to the German Radiation Protection Ordinance treatment, storage, whereabouts of radioactive material etc. have to be documented. Due to legal requirements an electronic documentation system for radioactive waste has to be installed. Within the framework of the currently largest decommissioning project of nuclear facilities by Energiewerke Nord GmbH, a material flow-waste tracking and control system (ReVK) has been developed, tailored to the special needs of the decommissioning of nuclear facilities. With this system it is possible to record radioactive materials which can be released after treatment or decay storage for restricted and unrestricted utilization. Radioactive waste meant for final storage can be registered and documented as well. Based on ORACLE, ReVK is a client/server data base system with the following modules: 1. data registration, 2. transport management, 3. waste tracking, 4. storage management, 5. container management, 6. reporting, 7. activity calculation, 8. examination of technical acceptance criteria for storages and final repositories. Furthermore ReVK provides a multitude of add-ons to meet special user needs, which enlarge the spectrum of application enormously. ReVK is validated and qualified, accepted by experts and authorities and fulfils the requirements for a radioactive waste documentation system. (authors)

  14. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  15. Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine

    DOE Patents [OSTI]

    Krumhansl, James L; Nenoff, Tina M

    2013-02-26

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  16. Airborne radioactive material collection, measurement, and data storage for the Nuclear Science Center at Texas A&M University 

    E-Print Network [OSTI]

    Jones, Melody Louise

    1982-01-01

    AIRBORNE RADIOACTIVE MATERIAL COLLECTION, MEASUREMENT, AND DATA STORAGE FOR THE NUCLEAR SCIENCE CENTER AT TEXAS A&M UNIVERSITY A Thesis by MELODY LOUISE JONES Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1982 Major Subject: Nuclear Engineering AIRBORNE RADIOACTIVE MATERIAL COLLECTION& MEASUREMENT& AND DATA STORAGE FOR THE NUCLEAR SCIENCE CENTER AT TEXAS A&M UNIVERSITY A Thesis by MELODY LOUISE...

  17. Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509

    SciTech Connect (OSTI)

    Boyle, J.D.; Fort, E. Joseph; Lorenz, William; Mills, Andy

    2013-07-01

    Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

  18. Transportation legislative data base: State radioactive materials transportation statute compilation, 1989--1993

    SciTech Connect (OSTI)

    NONE

    1994-04-01

    The Transportation Legislative Data Base (TLDB) is a computer-based information service containing summaries of federal, state and certain local government statutes and regulations relating to the transportation of radioactive materials in the United States. The TLDB has been operated by the National Conference of State Legislatures (NCSL) under cooperative agreement with the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management since 1992. The data base system serves the legislative and regulatory information needs of federal, state, tribal and local governments, the affected private sector and interested members of the general public. Users must be approved by DOE and NCSL. This report is a state statute compilation that updates the 1989 compilation produced by Battelle Memorial Institute, the previous manager of the data base. This compilation includes statutes not included in the prior compilation, as well as newly enacted laws. Statutes not included in the prior compilation show an enactment date prior to 1989. Statutes that deal with low-level radioactive waste transportation are included in the data base as are statutes from the states of Alaska and Hawaii. Over 155 new entries to the data base are summarized in this compilation.

  19. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    SciTech Connect (OSTI)

    Yu, Charley; Kamboj, Sunita; Wang, Cheng; Cheng, Jing-Jy

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  20. Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems

    SciTech Connect (OSTI)

    Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B.

    1992-05-01

    In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

  1. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect (OSTI)

    Gdowski, G.E.; Bullen, D.B. )

    1988-08-01

    Six alloys are being considered as possible materials for the fabrication of containers for the disposal of high-level radioactive waste. Three of these candidate materials are copper-based alloys: CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The other three are iron- to nickel-based austenitic materials: Types 304L and 316L stainless steels and Alloy 825. Radioactive waste will include spent-fuel assemblies from reactors as well as waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, the containers must be retrievable from the disposal site. Shortly after emplacement of the containers in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This radiation will promote the radiolytic decomposition of moist air to hydrogen. This volume surveys the available data on the effects of hydrogen on the six candidate alloys for fabrication of the containers. For copper, the mechanism of hydrogen embrittlement is discussed, and the effects of hydrogen on the mechanical properties of the copper-based alloys are reviewed. The solubilities and diffusivities of hydrogen are documented for these alloys. For the austenitic materials, the degradation of mechanical properties by hydrogen is documented. The diffusivity and solubility of hydrogen in these alloys are also presented. For the copper-based alloys, the ranking according to resistance to detrimental effects of hydrogen is: CDA 715 (best) > CDA 613 > CDA 102 (worst). For the austenitic alloys, the ranking is: Type 316L stainless steel {approx} Alloy 825 > Type 304L stainless steel (worst). 87 refs., 19 figs., 8 tabs.

  2. The Evolution of U.S. Transportation Regulations for Radioactive Materials?A Retrospective

    SciTech Connect (OSTI)

    Hafner, R

    2008-04-28

    The discussion in this Chapter is a highly condensed version of the information presented previously in Chapter 52 of the 2nd Edition of the Companion Guide to the ASME Boiler & Pressure Vessel Code.[1] The full text of the previous Chapter 52, i.e., Development of U.S. Regulations for the Transportation of Radioactive Materials - A Look Back over the Past 40 Years, could not be reproduced here. Therefore, this Chapter offers a high-level overview of the information presented previously, including all of the appropriate references. For the most part, the material that was not included in this version of Chapter 52 is available in the public domain. Due to the sheer volume of the information, readers interested in the preamble-only versions of the material referenced in this Chapter are redirected to Reference [1]. Readers interested in the full-text versions of the material referenced in this Chapter are redirected to the appropriate Federal Register and/or U.S. Nuclear Regulatory Commission (NRC) websites. Because some of the material dates back to pre-website times, readers interested in the full-text versions of some of the references may have to rely on the services of their local libraries.

  3. Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177

    SciTech Connect (OSTI)

    Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (?49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4) development of written guidance to capture 'administrative and technical' knowledge (e.g., office instructions (OIs), generic communications (e.g., bulletins, generic letters, regulatory issue summary), standard review plans (SRPs), interim staff guidance (ISGs)); (5) use of mentoring strategies for experienced staff to train new staff members; (6) use of Microsoft SharePoint portals in capturing, transferring, and documenting knowledge for staff across the Division from Division management and administrative assistants to the project managers, inspectors, and technical reviewers; and (7) development and implementation of a Division KM Plan. A discussion and description of the successes and challenges of implementing these KM strategies at the NRC/SFST will be provided. (authors)

  4. Info for Shipment Requests -------Original Message --------

    E-Print Network [OSTI]

    Movileanu, Liviu

    , Certified, etc. and insure it as well). Please note: Any prepaid shipment with label can be placed

  5. Waste shipment engineering data management plan

    SciTech Connect (OSTI)

    Marquez, D.L.

    1995-05-01

    This plan documents current data management practices and future data management improvements for TWRS Waste Shipment Engineering.

  6. Manual for implementing residual radioactive material guidelines using RESRAD, Version 5.0

    SciTech Connect (OSTI)

    Yu, C.; Zielen, A.J.; Cheng, J.J.

    1993-09-01

    This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material. It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating doses, risks, and guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. Two new pathways, radon inhalation and soil ingestion, have been added to RESRAD. Twenty-seven new radionuclides have also been added, and the cutoff half-life for associated radionuclides has been reduced to six months. Other major improvements to the RESRAD code include the ability to run sensitivity analyses, the addition of graphical output, user-specified dose factors, updated databases, an improved groundwater transport model, optional input of a groundwater concentration and a solubility constant, special models for tritium and carbon-14, calculation of cancer incidence risk, and the use of a mouse with menus.

  7. Development on inelastic analysis acceptance criteria for radioactive material transportation packages

    SciTech Connect (OSTI)

    Ammerman, D.J.; Ludwigsen, J.S.

    1995-12-31

    The response of radioactive material transportation packages to mechanical accident loadings can be more accurately characterized by non-linear dynamic analysis than by the ``Equivalent dynamic`` static elastic analysis typically used in the design of these packages. This more accurate characterization of the response can lead to improved package safety and design efficiency. For non-linear dynamic analysis to become the preferred method of package design analysis, an acceptance criterion must be established that achieves an equivalent level of safety as the currently used criterion defined in NRC Regulatory Guide 7.6 (NRC 1978). Sandia National Laboratories has been conducting a study of possible acceptance criteria to meet this requirement. In this paper non-linear dynamic analysis acceptance criteria based on stress, strain, and strain-energy-density will be discussed. An example package design will be compared for each of the design criteria, including the approach of NRC Regulatory Guide 7.6.

  8. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect (OSTI)

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K.; Kodama, T.

    2013-07-01

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)

  9. IMPACT OF TARGET MATERIAL ACTIVATION ON PERSONNEL EXPOSURE AND RADIOACTIVE CONTAMINATION IN THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Khater, H; Epperson, P; Thacker, R; Beale, R; Kohut, T; Brereton, S

    2009-06-30

    Detailed activation analyses are performed for the different materials under consideration for use in the target capsules and hohlraums used during the ignition campaign on the National Ignition Facility. Results of the target material activation were additionally used to estimate the levels of contamination within the NIF target chamber and the workplace controls necessary for safe operation. The analysis examined the impact of using Be-Cu and Ge-doped CH capsules on the external dose received by workers during maintenance activities. Five days following a 20 MJ shot, dose rates inside the Target Chamber (TC) due to the two proposed capsule materials are small ({approx} 1 {micro}rem/h). Gold and depleted-uranium (DU) are considered as potential hohlraum materials. Following a shot, gold will most probably get deposited on the TC first wall. On the other hand, while noble-gas precursors from the DU are expected to stay in the TC, most of the noble gases are pumped out of the chamber and end up on the cryopumps. The dose rates inside the TC due to activated gold or DU, at 5 days following a 20 MJ shot, are about 1 mrem/h. Dose rates in the vicinity of the cryo-pumps (containing noble 'fission' gases) drop-off to about 1 mrem/h during the first 12 hours following the shot. Contamination from activation of NIF targets will result in the NIF target chamber exceeding DOE surface contamination limits. Objects removed from the TC will need to be managed as radioactive material. However, the results suggest that airborne contamination from resuspension of surface contamination will not be significant and is at levels that can be managed by negative ventilation when accessing the TC attachments.

  10. Background radioactivity of construction materials, raw substance and ready-made CaMoO4 crystals

    E-Print Network [OSTI]

    Busanov, O A; Gavriljuk, Yu M; Gezhaev, A M; Kazalov, V V; Kornoukhov, V N; Kuzminov, V V; Moseev, P S; Panasenko, S I; Ratkevich, S S; Yakimenko, S P

    2013-01-01

    The results of measurements of natural radioactive isotopes content in different source materials of natural and enriched composition used for CaMoO4 scintillation crystal growing are presented. The crystals are to be used in the experiment to search for double neutrinoless betas-decay of Mo-100.

  11. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  12. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  13. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  14. A century of oil and gas exploration in Albania: assessment of Naturally Occurring Radioactive Materials (NORMs)

    E-Print Network [OSTI]

    Xhixha, Gerti; Callegari, Ivan; Colonna, Tommaso; Hasani, Fadil; Mantovani, Fabio; Shala, Ferat; Strati, Virginia; Kaçeli, Merita Xhixha

    2015-01-01

    Because potential Naturally Occurring Radioactive Materials (NORMs) generated from oil and gas extractions in Albania have been disposed without regulatory criteria in many decades, an extensive survey in one of the most productive regions (Vlora-Elbasan) has been performed. Among 52 gamma-ray spectrometry measurements of soil, oil-sand, sludge, produced water and crude oil samples, we discover that relatively low activity concentrations of 226Ra, 228Ra, 228Th and 40K, which are 23 +/- 2 Bq/kg, 23 +/- 2 Bq/kg, 24 +/- 3 Bq/kg and 549 +/- 12 Bq/kg, respectively, come from oil-sand produced by hydrocarbon extraction from molasses formations. The mineralogical characterization together with the 228Ra/40K and 226Ra/40K ratios of these Neogene deposits confirm the geological and geodynamic model that predicts a dismantling of Mesozoic source rocks. The average activity concentrations (+/- standard deviations) of the radium isotopes (226Ra, 228Ra) and of the 228Th and 40K radionuclides in soil samples are determined...

  15. An overview of naturally occurring radioactive materials (NORM) in the petroleum industry

    SciTech Connect (OSTI)

    Smith, K.P.

    1992-12-01

    Oil and gas extraction and processing operations sometimes accumulate naturally occurring radioactive materials (NORM) at concentrations above normal in by-product waste streams. Results from NORM surveys indicate that radionuclide concentrations can be quite variable, ranging from undetectable to extremely high levels. To date, efforts to characterize the geographic distribution of NORM have been limited by poor statistical representation. In addition, the fate of NORM in the environment has not been fully defined, and few human health risk assessment have been conducted. Both the petroleum industry and regulators are becoming increasingly concerned about the presence of NORM. At present, most existing federal environmental regulations do not address oil and gas NORM, and only a few states have developed regulatory programs. Available data suggest that the occurrence of NORM (and associated health risks) is significant enough to warrant increased regulatory control. However, before these regulations can be developed, additional research is needed to (1) better characterize the occurrence and distribution of NORM throughout the industry, (2) quantify hazards posed by NORM to industry workers and the general public, and (3) develop effective waste treatment and minimization technologies that will lower the risk associated with NORM and reduce disposal costs.

  16. A history of major Hanford facilities and processes involving radioactive material. [Contains glossary

    SciTech Connect (OSTI)

    Ballinger, M.Y.; Hall, R.B.

    1991-03-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established in 1987 to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. Hanford Site operations began in 1944 to produce plutonium for nuclear weapons. This effort included fabricating fuel elements, irradiating the fuel in nuclear reactors, and separating the resulting plutonium from uranium and fission byproducts. To build a foundation for the first step in estimating radiation doses, HEDR staff at the Pacific Northwest Laboratory compiled and summarized historical information that describes the processes and facilities in which radioactive material was generated or used at the Hanford Site. This document categorizes nuclear operations under six processes: fuel fabrication, reactor operations, fuel separations, plutonium finishing, research and development, and tank farms and waste recovery. Historical emission controls and effluent monitoring are discussed for each process. Because Hanford Site operations used the first large-scale nuclear facilities of their kind, process development and effluent control measures evolved as knowledge about the processes improved. Over the years, facilities were added or modified to improve processes, accelerate production, and better control emissions to the environment. 25 refs., 23 figs., 3 tabs.

  17. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    SciTech Connect (OSTI)

    Clauss, S.A.; Bean, R.M.

    1993-02-01

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  18. An analysis of the qualification criteria for small radioactive material shipping packages

    SciTech Connect (OSTI)

    McClure, J.D.

    1983-05-01

    The RAM package design certification process has two important elements, testing and acceptance. These terms sound very similar but they have specific meanings. Qualification testing in the context of this study is the imposition of simulated accident test conditions upon the candidate package design. (Normal transportation environments may also be included.) Following qualification testing, the acceptance criteria provide the performance levels which, if demonstrated, indicate the ability of the RAM package to sustain the severity of the qualification testing sequence and yet maintain specified levels of package integrity. This study has used Severities of Transportation Accidents as a data base to examine the regulatory test criteria which are required to be met by small packages containing Type B quantities of radioactive material (RAM). The basic findings indicate that the present regulatory test standards provide significantly higher levels of protection for the surface transportation modes (truck, rail) than for RAM packages shipped by aircraft. It should also be noted that various risk assessment studies have shown that the risk to the public due to severe transport accidents by surface and air transport modes is very low. A key element in this study was the quantification of the severity of the transportation accident environment and the severity of the present qualification test standards (called qualification test standards in this document) so that a direct comparison could be made between them to assess the effectiveness of the existing qualification test standards. The manner in which this was accomplished is described.

  19. Removing nuclear waste, one shipment at a time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos, on its way...

  20. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  1. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    DOE Patents [OSTI]

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  2. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 2: Supporting documents

    SciTech Connect (OSTI)

    Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-08-01

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.

  3. FUELS; 54 ENVIRONMENTAL SCIENCES; RADIOACTIVE EFFLUENTS; EMISSION...

    Office of Scientific and Technical Information (OSTI)

    SRP radioactive waste releases. Startup through 1959 Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; RADIOACTIVE EFFLUENTS; EMISSION; ENVIRONMENTAL MATERIALS;...

  4. WIPP - Shipment & Disposal Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|UpcomingVisit UsNews ThisPrivacy Act QuickShipment

  5. The State Regulations for Protection Against Radiation, radioactive material license, certified registration, registration of x-ray producing equipment, and operating & emergency procedures applicable to licensed or

    E-Print Network [OSTI]

    Wikswo, John

    The State Regulations for Protection Against Radiation, radioactive material license, certified REGULATIONS FOR PROTECTION AGAINST RADIATION", The Tennessee Department of Environment and Conservation has established standards for your protection against radiation hazards and certain provisions for the option

  6. Hazardous Material Shipments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of Hazardous

  7. RESRAD-BUILD: A computer model for analyzing the radiological doses resulting from the remediation and occupancy of buildings contaminated with radioactive material

    SciTech Connect (OSTI)

    Yu, C.; LePoire, D.J.; Jones, L.G. [and others

    1994-11-01

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material. The transport of radioactive material inside the building from one compartment to another is calculated with an indoor air quality model. The air quality model considers the transport of radioactive dust particulates and radon progeny due to air exchange, deposition and resuspension, and radioactive decay and ingrowth. A single run of the RESRAD-BUILD code can model a building with up to: three compartments, 10 distinct source geometries, and 10 receptor locations. A shielding material can be specified between each source-receptor pair for external gamma dose calculations. Six exposure pathways are considered in the RESRAD-BUILD code: (1) external exposure directly from the source; (2) external exposure to materials deposited on the floor; (3) external exposure due to air submersion; (4) inhalation of airborne radioactive particulates; (5) inhalation of aerosol indoor radon progeny; and (6) inadvertent ingestion of radioactive material, either directly from the sources or from materials deposited on the surfaces of the building compartments. 4 refs., 23 figs., 4 tabs.

  8. 4.0 RISK FROM URANIUM MINING WASTE IN BUILDING In general, building materials contain low levels of radioactivity. For example, the range of

    E-Print Network [OSTI]

    4.0 RISK FROM URANIUM MINING WASTE IN BUILDING MATERIALS In general, building materials contain low levels of radioactivity. For example, the range of natural uranium concentrations may average as low as about 0.5 ppm (0.34 pCi/g or 13 Bq/kg) total uranium activity in sandstone building materials to as high

  9. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network

    SciTech Connect (OSTI)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-01-01

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  10. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network

    SciTech Connect (OSTI)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-10-28

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  11. RADIOACTIVE MATERIAL SHIPPING PACKAGINGS AND METAL TO METAL SEALS FOUND IN THE CLOSURES OF CONTAINMENT VESSELS INCORPORATING CONE SEAL CLOSURES

    SciTech Connect (OSTI)

    Loftin, B; Glenn Abramczyk, G; Allen Smith, A

    2007-06-06

    The containment vessels for the Model 9975 radioactive material shipping packaging employ a cone-seal closure. The possibility of a metal-to-metal seal forming between the mating conical surfaces, independent of the elastomer seals, has been raised. It was postulated that such an occurrence would compromise the containment vessel hydrostatic and leakage tests. The possibility of formation of such a seal has been investigated by testing and by structural and statistical analyses. The results of the testing and the statistical analysis demonstrate and procedural changes ensure that hydrostatic proof and annual leakage testing can be accomplished to the appropriate standards.

  12. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  13. Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282

    SciTech Connect (OSTI)

    Komann, Steffen; Groeke, Carsten; Droste, Bernhard

    2013-07-01

    The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

  14. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  15. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  16. Enhancements to System for Tracking Radioactive Waste Shipments...

    Energy Savers [EERE]

    the Waste Isolation Pilot Plant in New Mexico. | Photo courtesy of the National Museum of Nuclear Science & History National Museum of Nuclear Science & History Opens WIPP Exhibit...

  17. Enhancements to System for Tracking Radioactive Waste Shipments Benefit

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavingsAugust 26,246April| DepartmentCalpineMultiple

  18. Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartment of Energy Portsmouth ScienceFacility in

  19. Development of a computer model for calculation of radioactive materials into the atmosphere after an accident

    SciTech Connect (OSTI)

    Schershakov, V.

    1997-11-01

    Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

  20. Identifying industrial best practices for the waste minimization of low-level radioactive materials

    SciTech Connect (OSTI)

    Levin, V.

    1996-04-01

    In US DOE, changing circumstances are affecting the management and disposal of solid, low-level radioactive waste (LLW). From 1977 to 1991, the nuclear power industry achieved major reductions in solid waste disposal, and DOE is interested in applying those practices to reduce solid waste at DOE facilities. Project focus was to identify and document commercial nuclear industry best practices for radiological control programs supporting routine operations, outages, and decontamination and decommissioning activities. The project team (DOE facility and nuclear power industry representatives) defined a Work Control Process Model, collected nuclear power industry Best Practices, and made recommendations to minimize LLW at DOE facilities.

  1. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOE Patents [OSTI]

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  2. Evaluation of solid-based separation materials for the pretreatment of radioactive wastes

    SciTech Connect (OSTI)

    Lumetta, G.J.; Wagner, M.J.; Wester, D.W.; Morrey, J.R.

    1993-05-01

    Separation science will play an important role in pretreating nuclear wastes stored at various US Department of Energy Sites. The application of separation processes offers potential economic and environmental benefits with regards to remediating these sites. For example, at the Hanford Site, the sizeable volume of radioactive wastes stored in underground tanks could be partitioned into a small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). After waste separation, only the smaller volume of HLW would require costly vitrification and geologic disposal. Furthermore, the quality of the remaining LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. This report investigates extraction chromatography as a possible separation process for Hanford wastes.

  3. Experimental and Computer Simulation Study of Radioactivity of Materials Irradiated by Intermediate Energy Protons

    E-Print Network [OSTI]

    Yu. E. Titarenko; O. V. Shvedov; V. F. Batyaev; E. I. Karpikhin; V. M. Zhivun; R. D. Mulambetov; S. G. Mashnik; R. E. Prael; W. B. Wilson

    1999-08-23

    The results of measurements and computer simulations of radioactivities and dose rates as functions of decay time are presented for Pb-nat and Bi-209 irradiated by 1.5-GeV protons, Co-59, Cu-63, and Cu-65 irradiated by 0.13- and 1.2-GeV protons, and Th-232 and U-nat irradiated by 0.1- and 0.8-GeV protons. The activities and dose rates are measured by direct high-precision gamma spectrometry. The irradiations were made using external beams extracted from the ITEP U-10 proton synchrotron. Simulations made using the LCS and CINDER'90 code systems are compared with measurements.

  4. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    SciTech Connect (OSTI)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

  5. U.S. Works With Kazakhstan to Stop Nuclear and Radioactive Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis WASHINGTON, DC - As part of the overall U.S. strategy to prevent nuclear and dangerous radiological materials from falling into the hands of terrorists, the Department of...

  6. Removing nuclear waste, one shipment June 26, 2012

    E-Print Network [OSTI]

    shipments that have been transported to WIPP this year. #12;- 2 - A milestone to be proud of Laboratory

  7. Overseas shipments of 48Y cylinders

    SciTech Connect (OSTI)

    Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

    1991-12-31

    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  8. Burnup estimation of fuel sourcing radioactive material based on monitored Cs and Pu isotopic activity ratios in Fukushima N. P. S. accident

    SciTech Connect (OSTI)

    Yamamoto, T.; Suzuki, M.; Ando, Y.

    2012-07-01

    After the severe core damage of Fukushima Dai-Ichi Nuclear Power Station, radioactive material leaked from the reactor buildings. As part of monitoring of radioactivity in the site, measurements of radioactivity in soils at three fixed points have been performed for {sup 134}Cs and {sup 137}Cs with gamma-ray spectrometry and for Pu, Pu, and {sup 240}Pu with {alpha}-ray spectrometry. Correlations of radioactivity ratios of {sup 134}Cs to {sup 137}Cs, and {sup 238}Pu to the sum of {sup 239}Pu and {sup 240}Pu with fuel burnup were studied by using theoretical burnup calculations and measurements on isotopic inventories, and compared with the Cs and Pu radioactivity rations in the soils. The comparison indicated that the burnup of the fuel sourcing the radioactivity was from 18 to 38 GWd/t, which corresponded to that of the fuel in the highest power and, therefore, the highest decay heat in operating high-burnup fueled BWR cores. (authors)

  9. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  10. FUNCTIONALIZED SILICA AEROGELS: ADVANCED MATERIALS TO CAPTURE AND IMMOBILIZE RADIOACTIVE IODINE

    SciTech Connect (OSTI)

    Matyas, Josef; Fryxell, Glen E.; Busche, Brad J.; Wallace, Krys; Fifield, Leonard S.

    2011-11-16

    To support the future expansion of nuclear energy, an effective method is needed to capture and safely store radiological iodine-129 released during reprocessing of spent nuclear fuel. Various materials have been investigated to capture and immobilize iodine. In most cases, however, the materials that are effective for capturing iodine cannot subsequently be sintered/densified to create a stable composite that could be a viable waste form. We have developed chemically modified, highly porous, silica aerogels that show sorption capacities higher than 440 mg of I2 per gram at 150 C. An iodine uptake test in dry air containing 4.2 ppm of iodine demonstrated no breakthrough after 3.5 h and indicated a decontamination factor in excess of 310. Preliminary densification tests showed that the I2-loaded aerogels retained more than 92 wt% of I2 after thermal sintering with pressure assistance at 1200 C for 30 min. These high capture and retention efficiencies for I2 can be further improved by optimizing the functionalization process and the chemistry as well as the sintering conditions.

  11. Regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees. Draft report for comment

    SciTech Connect (OSTI)

    McGuire, S.A.

    1985-06-01

    Potential accidents for 15 types of fuel cycle and other radioactive material licensees were analyzed. The most potentially hazardous accident, by a large margin, was determined to be the sudden rupture of a heated multi-ton cylinder of UF/sub 6/. Acute fatalities offsite are probably not credible. Acute permanent injuries may be possible for many hundreds of meters, and clinically observable transient effects of unknown long term consequences may be possible for distances up to a few miles. These effects would be caused by the chemical toxicity of the UF/sub 6/. Radiation doses would not be significant. The most potentially hazardous accident due to radiation exposure was determined to be a large fire at certain facilities handling large quantities of alpha-emitting radionuclides (i.e., Po-210, Pu-238, Pu-239, Am-241, Cm-242, Cm-244) or radioiodines (I-125 and I-131). However, acute fatalities or injuries to people offsite due to accidental releases of these materials do not seem plausible. The only other significant accident was identified as a long-term pulsating criticality at fuel cycle facilities handling high-enriched uranium or plutonium. An important feature of the most serious accidents is that releases are likely to start without prior warning. The releases would usually end within about half an hour. Thus protective actions would have to be taken quickly to be effective. There is not likely to be enough time for dose projections, complicated decisionmaking during the accident, or the participation of personnel not in the immediate vicinity of the site. The appropriate response by the facility is to immediately notify local fire, police, and other emergency personnel and give them a brief predetermined message recommending protective actions. Emergency personnel are generally well qualified to respond effectively to small accidents of these types.

  12. Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436

    SciTech Connect (OSTI)

    Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)] [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Meira Castro, Ana Cristina [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)] [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)

    2013-07-01

    Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

  13. PAVAN: an atmospheric-dispersion program for evaluating design-basis accidental releases of radioactive materials from nuclear power stations

    SciTech Connect (OSTI)

    Bander, T.J.

    1982-11-01

    This report provides a user's guide for the NRC computer program, PAVAN, which is a program used by the US Nuclear Regulatory Commission to estimate downwind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Such an assessment is required by 10 CFR Part 100 and 10 CFR Part 50. The program implements the guidance provided in Regulatory Guide 1.145, Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants. Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases (e.g., through building penetrations and vents) or elevated releases from free-standing stacks. Various options may be selected by the user. They can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. It cannot handle multiple emission sources. A description of the main program and all subroutines is provided. Also included as appendices are a complete listing of the program and two test cases with the required data inputs and the resulting program outputs.

  14. Radioactive Material License.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the Weldon Spring,7=cr5rnP 7694PerformedDecemberr*ROGER

  15. DOE Shipment Activities: What We Accomplished and a Look Forward...

    Office of Environmental Management (EM)

    Accomplished and a Look Forward Presented by Stephen O'Connor, Director of Office of Packaging and Transportation. DOE Shipment Activities: What We Accomplished and a Look Forward...

  16. Naval Spent Fuel Rail Shipment Accident Exercise Objectives

    Office of Environmental Management (EM)

    NAVAL SPENT FUEL RAIL SHIPMENT ACCIDENT EXERCISE OBJECTIVES * Familiarize stakeholders with the Naval spent fuel ACCIDENT EXERCISE OBJECTIVES Familiarize stakeholders with the...

  17. DOE Shipment Activities: What We Accomplished and a Look Forward

    Office of Environmental Management (EM)

    wims.arc.fiu.eduwims 5 Plans for future shipments. . . * Waste Incidental to Reprocessing (WIR) Draft Evaluation for WVDP Melter * Depleted Uranium Oxide (DUO) from...

  18. Proposal for Qualification of Gas-Generating Radioactive Payloads for Transportation within a Type B Package

    SciTech Connect (OSTI)

    Houghtaling, T.K.

    2002-06-07

    Characterization data describing radioactive materials (RAM) in storage are likely those associated with the processes that produced the materials or with the mission for which they were produced. Along with impurity data, often absent or unknown as a result of post-processing storage environment is moisture content. Radiolysis of moisture may lead to a hydrogen flammability hazard within a closed volume such as a storage can or a transportation package. This paper offers a practical means of qualifying payloads of unknown moisture content for shipment within Type B packaging, while supporting the DOE program to maintain radworker dose as low as reasonable achievable (ALARA). Specifically, the paper discusses part of a qualification program carried out at the Savannah River Site for onsite shipment of legacy RAM within the DDF-1 package. The DDF-1 is an onsite-only prototype of the currently certified 9975 package. Measurement of storage-can lid bulge can provide an upper bound for pressure within a storage can. Subsequent belljar testing can measure the rate of gas leakage from a storage can. These actions are shown sufficient to ensure that the performance of the 9975 containment vessels can accommodate the deflagration energy from flammable gas mixtures within Normal Conditions of Transport, and, and the consequences of a detonation shock wave within Hypothetical Accident Conditions.

  19. User Shipments | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 - 19PortalStatusUserUserHome ContactUserShipments

  20. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    E-Print Network [OSTI]

    Fernandes, Sandrina; Stora, Thierry

    2010-01-01

    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  1. GUIDANCE FOR THE PROPER CHARACTERIZATION AND CLASSIFICATION OF LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS FOR DISPOSAL

    SciTech Connect (OSTI)

    PORTSMOUTH JH; BLACKFORD LT

    2012-02-13

    Regulatory concerns over the proper characterization of certain waste streams led CH2M HILL Plateau Remediation Company (CHPRC) to develop written guidance for personnel involved in Decontamination & Decommissioning (D&D) activities, facility management and Waste Management Representatives (WMRs) involved in the designation of wastes for disposal on and off the Hanford Site. It is essential that these waste streams regularly encountered in D&D operations are properly designated, characterized and classified prior to shipment to a Treatment, Storage or Disposal Facility (TSDF). Shipments of waste determined by the classification process as Low Specific Activity (LSA) or Surface Contaminated Objects (SCO) must also be compliant with all applicable U.S. Department of Transportation (DOE) regulations as well as Department of Energy (DOE) orders. The compliant shipment of these waste commodities is critical to the Hanford Central Plateau cleanup mission. Due to previous problems and concerns from DOE assessments, CHPRC internal critiques as well as DOT, a management decision was made to develop written guidance and procedures to assist CHPRC shippers and facility personnel in the proper classification of D&D waste materials as either LSA or SCO. The guidance provides a uniform methodology for the collection and documentation required to effectively characterize, classify and identify candidate materials for shipping operations. A primary focus is to ensure that waste materials generated from D&D and facility operations are compliant with the DOT regulations when packaged for shipment. At times this can be difficult as the current DOT regulations relative to the shipment of LSA and SCO materials are often not clear to waste generators. Guidance is often sought from NUREG 1608/RAMREG-003 [3]: a guidance document that was jointly developed by the DOT and the Nuclear Regulatory Commission (NRC) and published in 1998. However, NUREG 1608 [3] is now thirteen years old and requires updating to comply with the newer DOT regulations. Similar challenges present themselves throughout the nuclear industry in both commercial and government operations and therefore, this is not only a Hanford Site problem. Shipping radioactive wastes as either LSA or SCO rather than repacking it is significantly cheaper than other DOT radioactive materials shipping classifications particularly when the cost of packages is included. Additionally, the need to 'repackage' materials for transport can often increase worker exposure, necessitated by 'repackaging' waste materials into DOT 7 A Type A containers.

  2. LNG shipments in 1994 set records

    SciTech Connect (OSTI)

    1996-01-15

    Worldwide LNG shipments by ocean-going vessels in 1994 increased to 1,619 voyages, according to an LNG shipping industry statistical annual. LNG Log 20 published the recently compiled 1994 data in the last quarter of 1995. The publication is from the Society of International Gas Tanker and Terminal Operators Ltd., London. The year`s total was 8.8% more than for 1993 and the most in 35 years of records. The trips were made and the vessels loaded and discharged without report of serious safety or environmental incident, says the publication. Of the voyages completed during the year, 596 were to European receiving terminals (up 2.8% over 1993), and 1,003 went to the Far East (an increase of 10.7%); shipments to the US, however, dropped to 20, from 32 in 1993. This paper shows that the 1,619 voyages represent 3.6 million nautical miles logged by 78 vessels active during the year. These ships pumped ashore record annual volumes of approximately 144.3 million cu m of LNG, 110.1 million cu m (76.3%) of which went to Far Eastern customers. The paper also summarizes containment systems in use in 1994 and since LNG began to be shipped in 1959.

  3. Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns

    SciTech Connect (OSTI)

    Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

    2003-02-27

    Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

  4. UW EH&S Radiation Safety Section Box 354400 201 Hall Health Seattle WA 98195-4400 206-543-0463 FORM 160T RADIOACTIVE MATERIAL TRANSFER AND USAGE RECORD (9/12)

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    for 5 calendar years after disposal of material! Collected by RSS mCi A. Animal Carcasses & Waste B to delete previously reported disposal en 160T RADIOACTIVE MATERIAL TRANSFER AND USAGE RECORD (9/12) I. Transferred From AUI transferring

  5. Estimating carbon emissions from less-than-truckload (LTL) shipments

    E-Print Network [OSTI]

    Veloso de Aguiar, Guilherme

    2014-01-01

    Less-than-truckload (LTL) is a $32-billion sector of the trucking industry that focuses on moving smaller shipments, typically with weights between 100 and 10,000 pounds, that do not require a full trailer to be moved. ...

  6. "TRU" Success: SRS Recovery Act Prepares to Complete Shipment...

    Broader source: Energy.gov (indexed) [DOE]

    Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP More Documents & Publications TRUPACT-III Quick Facts EIS-0026-SA-06: Supplement...

  7. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  8. Preparation of the Second Shipment of Spent Nuclear Fuel from the Ustav Jaderneho Vyzkumu Rez (UJV Rez), a.s., Czech Republic to the Russian Federation for Reprocessing - 13478

    SciTech Connect (OSTI)

    Trtilek, Radek; Podlaha, Josef [UJV Rez, a. s., Hlavni 130, 25068 Husinec-Rez (Czech Republic)] [UJV Rez, a. s., Hlavni 130, 25068 Husinec-Rez (Czech Republic)

    2013-07-01

    After more than 50 years of operation of the LVR-15 research reactor operated by the UJV Rez, a. s. (formerly Nuclear Research Institute - NRI), a large amount of the spent nuclear fuel (SNF) of Russian origin has been accumulated. In 2005 UJV Rez, a. s. jointed the Russian Research Reactor Fuel Return (RRRFR) program under the United States (US) - Russian Global Threat Reduction Initiative (GTRI) and started the process of SNF shipment from the LVR-15 research reactor back to the Russian Federation (RF). In 2007 the first shipment of SNF was realized. In 2011, preparation of the second shipment of spent fuel from the Czech Republic started. The experience obtained from the first shipment will be widely used, but some differences must be taken into the account. The second shipment will be realized in 2013 and will conclude the return transport of all, both fresh and spent, high-enriched nuclear fuel from the Czech Republic to the Russian Federation. After the shipment is completed, there will be only low-enriched nuclear fuel on the territory of the Czech Republic, containing maximum of 20% of U-235, which is the conventionally recognized limit between the low- and high-enriched nuclear materials. The experience (technical, organizational, administrative, logistic) obtained from the each SNF shipment as from the Czech Republic as from other countries using the Russian type research reactors are evaluated and projected onto preparation of next shipment of high enriched nuclear fuel back to the Russian Federation. The results shown all shipments provided by the UJV Rez, a. s. in the frame of the GTRI Program have been performed successfully and safely. It is expected the experience and results will be applied to preparation and completing of the Chinese Miniature Neutron Source Reactors (MNSR) Spent Nuclear Fuel Repatriation in the near future. (authors)

  9. Packaging and Transportation for Offsite Shipment of Materials of National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen PSeptember 30, 2014 City ofCubic

  10. Researchers at Montana State University and Idaho National Lab have developed a process to effectively and efficiently clean natural and man-made porous material of radioactive contamination. The system eliminates

    E-Print Network [OSTI]

    Lawrence, Rick L.

    to effectively and efficiently clean natural and man-made porous material of radioactive contamination. The system eliminates the practice of full demolition and removal of contaminated objects and can address contaminated substrate. Thus, building walls (interior or exterior), floors and ceilings can be remediated

  11. Pipe overpack container for trasuranic waste storage and shipment

    DOE Patents [OSTI]

    Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

    1999-01-01

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  12. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    SciTech Connect (OSTI)

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  13. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. Enhancing Railroad Hazardous Materials...

  14. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-06-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  15. Composite Variable Formulations for Express Shipment Service Network Design

    E-Print Network [OSTI]

    Gendron, Bernard

    · Cynthia Barnhart · Keith A. Ware Department of Management, United States Air Force Academy, Colorado, Kentucky 40223 In this paper we describe a new approach to solving the express shipment service net- work design problem. Conventional polyhedral methods for network design and network loading problems do

  16. ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION...

    Office of Scientific and Technical Information (OSTI)

    audit of SRP radioactive waste Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION; RADIOACTIVE EFFLUENTS; EMISSION; HIGH-LEVEL...

  17. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  18. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  19. Interagency cooperation in the development of a cost-effective transportation and disposal solution for vitrified radium bearing material

    SciTech Connect (OSTI)

    Smith, M.L.; Nixon, D.A.; Stone, T.J.; Tope, W.G.; Vogel, R.A.; Allen, R.B.; Schofield, W.D.

    1996-02-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3 waste, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, shielding requirements, packaging, and transportation alternatives was completed to identify the safest, most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-resonably-achievable principles, and material handling costs were factored into the recommended approach. Through cooperative work between the U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT), the vitrified K-65 and Silo 3 radioactive material will be classified consistent with the regulations promulgated by DOT in the September 28, 1995 Federal Register. These new regulations adopt International Atomic Energy Agency language to promote a consistent approach for the transportation and management of radioactive material between the international community and the DOT. Use of the new regulations allows classification of the vitrified radioactive material from the Fernald silos under the designation of low specific activity-II and allows the development of a container that is optimized to maximize payload while minimizing internal void space, external surface radiation levels, and external volume. This approach minimizes the required number of containers and shipments, and the related transportation and disposal costs.

  20. Radioactivity and foods

    SciTech Connect (OSTI)

    Olszyna-Marzys, A.E. (Unified Lab. of Food and Drug Control, Guatemala City (Guatemala))

    1991-01-01

    The purpose of this article is to describe and contrast two relationships between radiation and food--on the one hand, beneficial preservation of food by controlled exposure to ionizing radiation; and, on the other, contamination of food by accidental incorporation of radioactive nuclides within the food itself. In food irradiation, electrons or electromagnetic radiation is used to destroy microorganisms and insects or prevent seed germination. The economic advantages and health benefits of sterilizing food in this manner are clear, and numerous studies have confirmed that under strictly controlled conditions no undersirable changes or induced radioactivity is produced in the irradiated food. An altogether different situation is presented by exposure of food animals and farming areas to radioactive materials, as occurred after the major Soviet nuclear reactor accident at Chenobyl. This article furnishes the basic information needed to understand the nature of food contamination associated with that event and describes the work of international organizations seeking to establish appropriate safe limits for levels of radioactivity in foods.

  1. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    SciTech Connect (OSTI)

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  2. Effective 7/1/2014 6/30/2015 OREGON STATE UNIVERSITY (OSU) RADIATION CENTER

    E-Print Network [OSTI]

    -ring in-core irradiation tube (GRICIT), sample-holding dummy fuel element, beam port, or thermal column shipping documentation (usually 3 h or more), as well as materials and supplies. Radioactive material shipment (domestic) $165/shipment plus shipping fees at cost Radioactive material shipment (international

  3. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA. Geographic Available for sale to the public

  4. U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department of Energy Office of IndianDOE DrugU.S.|1:00AMCleanand

  5. Status and use of the Rocky Flats Environmental Technology Site Pipe Overpack Container for TRU waste storage and shipments

    SciTech Connect (OSTI)

    Thorp, D.T.; Geinitz, R.R.; Rivera, M.A.

    1998-03-03

    The Pipe Overpack Container was designed to optimize shipments of high plutonium content transuranic waste from Rocky Flats Environmental Technology Site (RFETS) to Waste Isolation Pilot Plant (WIPP). The container was approved for use in the TRUPACT-II shipping container by the Nuclear Regulatory Commission in February 1997. The container optimizes shipments to WIPP by increasing the TRUPACT-II criticality limit from 325 fissile grams equivalent (FGE) to 2,800 FGE and provides additional shielding for handling wastes with high americium-241 (Am-241) content. The container was subsequently evaluated and approved for storage of highly dispersible TRU wastes and residues at RFETS. Thermal evaluation of the container shows that the container will mitigate the impact of a worst case thermal event from reactive or potentially pyrophoric materials. These materials contain hazards postulated by the Defense Nuclear Facilities Safety Board for interim storage. Packaging these reactive or potentially pyrophoric residues in the container without stabilizing the materials is under consideration at RFETS. The design, testing, and evaluations used in the approvals, and the current status of the container usage, will be discussed.

  6. Hanford Shipment Arrives Safely At Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowï‚—34October 201422T Office36ZHanford Shipment

  7. Milestone reached: Waste shipment leaves Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework uses concrete7 Assessment ofLana7, atScienceWaste shipment leaves

  8. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  9. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  10. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  11. Stakeholder Transportation Scorecard: Reviewing Nevada's Recommendations for Enhancing the Safety and Security of Nuclear Waste Shipments - 13518

    SciTech Connect (OSTI)

    Dilger, Fred C.; Ballard, James D.; Halstead, Robert J.

    2013-07-01

    As a primary stakeholder in the Yucca Mountain program, the state of Nevada has spent three decades examining and considering national policy regarding spent nuclear fuel and high-level radioactive waste transportation. During this time, Nevada has identified 10 issues it believes are critical to ensuring the safety and security of any spent nuclear fuel transportation program, and achieving public acceptance. These recommendations are: 1) Ship the oldest fuel first; 2) Ship mostly by rail; 3) Use dual-purpose (transportable storage) casks; 4) Use dedicated trains for rail shipments; 5) Implement a full-scale cask testing program; 6) Utilize a National Environmental Policy Act (NEPA) process for the selection of a new rail spur to the proposed repository site; 7) Implement the Western Interstate Energy Board (WIEB) 'straw man' process for route selection; 8) Implement Section 180C assistance to affected States, Tribes and localities through rulemaking; 9) Adopt safety and security regulatory enhancements proposed states; and 10) Address stakeholder concerns about terrorism and sabotage. This paper describes Nevada's proposals in detail and examines their current status. The paper describes the various forums and methods by which Nevada has presented its arguments and sought to influence national policy. As of 2012, most of Nevada's recommendations have been adopted in one form or another, although not yet implemented. If implemented in a future nuclear waste program, the State of Nevada believes these recommendations would form the basis for a successful national transportation plan for shipments to a geologic repository and/or centralized interim storage facility. (authors)

  12. Applying Risk Communication to the Transportation of Radioactive...

    Office of Environmental Management (EM)

    to keep messages focused Applying Risk Communication to the Transportation of Radioactive Materials More Documents & Publications Status and Future of TRANSCOM Department of Energy...

  13. AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA

    SciTech Connect (OSTI)

    Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

    2010-07-01

    In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

  14. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  15. Developing an institutional strategy for transporting defense transuranic waste materials

    SciTech Connect (OSTI)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.

  16. Recovery Act Funding Leads to Record Year for Transuranic Waste Shipments

    Broader source: Energy.gov [DOE]

    With the help of American Recovery and Reinvestment Act funding, the Waste Isolation Pilot Plant (WIPP) received the most transuranic waste shipments in a single year since waste operations began...

  17. Radioactive Waste Management Procedures and Guidelines See Radiation Manual 1997 for further details

    E-Print Network [OSTI]

    1-24-03 Radioactive Waste Management Procedures and Guidelines See Radiation Manual 1997 PART I. Radioactive Waste A. Dry Waste 1. Labs must request a box from the Radioactive Waste program, and use only this box for accumulating their waste. 2. Place only radioactive material contaminated

  18. 1 INSTRODUCTION In the concept of geological radioactive waste disposal,

    E-Print Network [OSTI]

    Boyer, Edmond

    1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being-hydro-mechanical characterization of Opalinus clay are presented. The material is one of the argillites being studied in several research projects in Europe in the context of geological radioactive waste disposal. 2 MATERIAL STUDIED

  19. The New Orphaned Radioactive Sources Program in the United States International Conference on the Safety of Radiation Sources and the Security of Radioactive

    E-Print Network [OSTI]

    , insufficient accountability, and improper disposal of radioactive materials. The US Environmental Protection end up in municipal waste disposal facilities. Scrap metal handlers and some landfill operators have1 The New Orphaned Radioactive Sources Program in the United States International Conference

  20. Radioactive anomaly discrimination from spectral ratios

    DOE Patents [OSTI]

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  1. Microsoft PowerPoint - Advances_Taylor

    Office of Environmental Management (EM)

    MSP Airport Mall of America Bloomington, Minnesota WHAT is TRANSCOM? * Unclassified web-based tracking and communication system * Monitor radioactive material shipments at...

  2. TEC Working Group Topic Groups Archives Communications

    Broader source: Energy.gov [DOE]

    The Communications Topic Group was convened in April 1998 to improve internal and external strategic level communications regarding DOE shipments of radioactive and other hazardous materials.

  3. Intention to Ship Hazardous Materials Complete and submit this form to EHS if you intend to ship material that may be

    E-Print Network [OSTI]

    Intention to Ship Hazardous Materials Complete and submit this form to EHS if you intend to ship material that may be classified as hazardous material. EHS will determine if the shipment is regulated and/supervisor Department Phone Email Description of material (commercial product name, chemical name, etc.): Known hazards

  4. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  5. SHIPMENT OF NON-TRADITIONAL CONTENTS IN THE 9977 TYPE B PACKAGE

    SciTech Connect (OSTI)

    Abramczyk, G.; Loftin, B.; Bellamy, S.; Nathan, S.

    2011-06-06

    The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. These materials are typically confined within metallic containers designed for ease of handling and to prevent the spread of contamination. The Pacific Northwest National Laboratory (PNNL) uses Pu and U sources for the training of domestic and international customs agents in the identification and detection of radioactive materials (RAM). These materials are packed in polycarbonate containers which permit the trainees to view the RAM. The safety basis was made to authorize the use of these unusual containers. The inclusion of the PNNL Training Source Contents into the 9977 Packaging imposed unique conditions previously unanalyzed. The use of polycarbonate as a content container material, while different from any configuration previously considered, does not raise any safety issues with the package which continues to operate with a large safety margin for temperatures, pressures, containment, dose rates, and subcriticality.

  6. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    SciTech Connect (OSTI)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  7. What are Spent Nuclear Fuel and High-Level Radioactive Waste ?

    SciTech Connect (OSTI)

    DOE

    2002-12-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

  8. Radioactivity and food

    SciTech Connect (OSTI)

    Olszyna-Marzys, A.E. (Laboratorio Unificado de Control de Alimentos y Medicamentos (LUCAM) (Guatemala))

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references.

  9. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  10. Public information circular for shipments of irradiated reactor fuel. Revision 9

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96--295. The report provides a brief description of NRC authority for certain aspects of transporting spent fuel. It provides descriptive statistics on spent fuel shipments regulated by the NRC from 1979 to 1992. It also lists detailed highway and railway segments used within each state from October 1, 1987 through December 31, 1992.

  11. A Regulators' Guide to the Management of Radioactive

    E-Print Network [OSTI]

    Innovation); Fred Ferate (U.S. Department of Transportation, Radioactive Materials Branch); and CatherineA Regulators' Guide to the Management of Radioactive Residuals from Drinking Water Treatment (U.S. EPA's Office of Solid Waste and Emergency Response, Office of Site Remediation and Technology

  12. Design, construction, and use of a shipping case for radioactive sources used in the calibration of portal monitors in the radiation portal monitoring project

    SciTech Connect (OSTI)

    Lepel, Elwood A.; Hensley, Walter K.

    2009-12-01

    Pacific Northwest National Laboratory is working with US Customs and Border Protection to assist in the installation of radiation portal monitors. We need to provide radioactive sources – both gamma- and neutron-emitting – to ports of entry where the monitors are being installed. The monitors must be calibrated to verify proper operation and detection sensitivity. We designed a portable source-shipping case using numerical modeling to predict the neutron dose rate at the case’s surface. The shipping case including radioactive sources meets the DOT requirements for “limited quantity.” Over 300 shipments, domestic and international, were made in FY2008 using this type of shipping case.

  13. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    SciTech Connect (OSTI)

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  14. United States Home Information Center | Customer Support | Site Map Track Shipments

    E-Print Network [OSTI]

    Bartholdi III, John J.

    United States Home Information Center | Customer Support | Site Map Search Track Shipments Detailed your detailed tracking results (optional) Enter your email, submit up to three email addresses | Service Info | About FedEx | Investor Relations | Careers | fedex.com Terms of Use | Privacy Policy

  15. United States Home Information Center | Customer Support | Site Map Track Shipments

    E-Print Network [OSTI]

    Bartholdi III, John J.

    United States Home Information Center | Customer Support | Site Map Search Track Shipments Detailed results (optional) Enter your email, submit up to three email addresses (separated by commas), add yourEx | Investor Relations | Careers | fedex.com Terms of Use | Privacy Policy This site is protected by copyright

  16. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  17. DOE Seeks Trucking Services for Transuranic Waste Shipments ...

    Energy Savers [EERE]

    The TRU waste must be transported in Nuclear Regulatory Commission approved, Type-B packaging. The truck drivers must meet and maintain stringent safety and hazardous materials...

  18. RADIOACTIVE ELEMENT REMOVAL FROM WATER USING GRAPHENE OXIDE (GO) 

    E-Print Network [OSTI]

    Concklin, Joshua Paul

    2013-12-19

    and uranium. Naturally occurring radioactive materials (NORM) are abundant throughout the earth's crust. Human manipulation of NORM for economic ends, such as mining, ore processing, fossil fuel extraction, and commercial aviation, may lead to what is known...

  19. Recovering Radioactive Materials with ORSP Team

    ScienceCinema (OSTI)

    LANL

    2009-09-01

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered more than 16,000 orphan sources as of 2008.

  20. Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness...

    Office of Environmental Management (EM)

    (variable) (2 mSvyr) According to NCRP Report 160, the average Annual Dose in the United States from Natural and Man-made Sources is Approximately 620 mrem Radiation exposure or...

  1. Radioactive Materials Transportation and Incident Response

    Office of Energy Efficiency and Renewable Energy (EERE)

    This booklet was written to answer questions most frequently asked by fire fighters, law enforcement officers, and emergency medical services personnel. The booklet is not intended as a substitute...

  2. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    This job aid is a quick reference to assist emergency responders in identifying preliminary safety precautions that should be taken during the initial response phase after arrival at the scene of...

  3. Recovering Radioactive Materials with OSRP team

    ScienceCinema (OSTI)

    None

    2010-01-08

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

  4. NNSA: Securing Domestic Radioactive Material | National Nuclear...

    National Nuclear Security Administration (NNSA)

    established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible, identify, secure, remove andor...

  5. Disposal of Specific Articles Containing Radioactive Materials

    E-Print Network [OSTI]

    Jia, Songtao

    Am-241 3. NRC: United States Nuclear Regulatory Commission 4. Sodium Iodide (NaI) Detector: Uses. Disposal of these signs is governed by United States Nuclear Regulatory Commission (NRC) regulations, 10

  6. Midwestern Radioactive Materials Transportation Committee Agenda

    Office of Environmental Management (EM)

    and Communications Work Group Lisa Janairo 9:45 - 10:45 am Committee Discussion Blue Ribbon Commission final report: state reactions, next steps Regional Planning Guide:...

  7. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHowScientificOmbuds OfficeOne Vaccine Leads

  8. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

  9. Dynamic radioactive particle source

    DOE Patents [OSTI]

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  10. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  11. The development of radioactive sample surrogates for training and exercises

    SciTech Connect (OSTI)

    Martha Finck; Bevin Brush; Dick Jansen; David Chamberlain; Don Dry; George Brooks; Margaret Goldberg

    2012-03-01

    The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Members from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.

  12. The adequacy of current import and export controls on sealed radioactive sources.

    SciTech Connect (OSTI)

    Longley, Susan W.; Cochran, John Russell; Price, Laura L.; Lipinski, Kendra J.

    2003-10-01

    Millions of sealed radioactive sources (SRSs) are being used for a wide variety of beneficial purposes throughout the world. Security experts are now concerned that these beneficial SRSs could be used in a radiological dispersion device to terrorize and disrupt society. The greatest safety and security threat is from those highly radioactive Category 1 and 2 SRSs. Without adequate controls, it may be relatively easy to legally purchase a Category 1 or 2 SRS on the international market under false pretenses. Additionally, during transfer, SRSs are particularly susceptible to theft since the sources are in a shielded and mobile configuration, transportation routes are predictable, and shipments may not be adequately guarded. To determine if government controls on SRS are adequate, this study was commissioned to review the current SRS import and export controls of six countries. Canada, the Russian Federation, and South Africa were selected as the exporting countries, and Egypt, the Philippines, and the United States were selected as importing countries. A detailed review of the controls in each country is presented. The authors found that Canada and Russia are major exporters, and are exporting highly radioactive SRSs without first determining if the recipient is authorized by the receiving country to own and use the SRSs. Available evidence was used to estimate that on average there are tens to possibly hundreds of intercountry transfers of highly radioactive SRSs each day. Based on these and other findings, this reports recommends stronger controls on the export and import of highly radioactive SRSs.

  13. Moab Mill Tailings Removal Project Plans to Resume Train Shipments...

    Broader source: Energy.gov (indexed) [DOE]

    result in a cost savings to the project over the long term. Made of -inch durable plastic, the liners will prevent the tailings material, which tends to be sticky, from...

  14. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  15. Wide range radioactive gas concentration detector

    DOE Patents [OSTI]

    Anderson, David F. (Los Alamos, NM)

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  16. Soluble pig for radioactive waste transfer lines

    SciTech Connect (OSTI)

    Ohl, P.C., Westinghouse Hanford

    1996-12-02

    Flushing transfer pipe after radioactive waste transfers generates thousands of gallons of additional radioactive waste each year at the Hanford site. The use of pneumatic pigging with waste soluble pigs as a means to clear transfer piping may be an effective alternative to raw water flushes. A feasibility study was performed by a group of senior mechanical engineering students for their senior design project as part of their curriculum at Washington State University. The students divided the feasibility study into three sub-projects involving: (1) materials research, (2) delivery system design, and (3) mockup fabrication and testing. The students screened through twenty-three candidate materials and selected a thermoplastic polymer combined 50:50 wt% with sucrose to meet the established material performance criteria. The students also prepared a conceptual design of a remote pneumatic delivery system and constructed a mockup section of transfer pipe for testing the prototype pigs.

  17. Approval Shipment of Two Canisters of Irradiated Fuel Material from General Atomics.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. ' ,ALASKAAlternate3 ThroughABV

  18. Radioactive Contamination Control Work Practices

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2002-10-01

    At Hanford, loose radioactive material can be found in plant systems, rooms, ventilation ducts, fuel pools, and outside radiological work facilities. Work practices used to accomplish radiological work in nuclear facilities often concern keeping radioactive contamination from spreading. This is not an easy task as the contamination activity levels can be very high and the material can be very unstable. Most of the time, the contamination is not visible, so we have to rely on surveys taken by Radiological Controls personnel to tell workers where the contamination is located and the activity levels present. The work practices used by workers are critical in controlling contamination spread, but it is impossible to document all of the work practices a worker should use. Many times, something will happen during the job that could result in a contamination spread. We rely on the workers knowledge and experience to realize when a potential spread of contamination is occurring, and take the actions necessary to prevent it from happening. It is important that a worker understand the concepts of contamination control in order to make the right decisions when work is accomplished. In facilities that work with ''fissile'' materials there is increased concern that nothing be done that increases the chance that a ''criticality accident'' might occur during work. Criticality safety personnel need to be consulted and approve contamination control practices that could increase the potential for a criticality accident. This Workshop includes a discussion of fundamental contamination control practices and new techniques used for radiological work. This is intended to be very informative and include hands-on exercises to provide the attendees with an appreciation of the methods being used to confine contamination spread.

  19. Radioactivity in food crops

    SciTech Connect (OSTI)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  20. EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor

    Broader source: Energy.gov [DOE]

    This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

  1. A rationale for maintaining the double containment requirement for plutonium shipments

    SciTech Connect (OSTI)

    Channell, James K.; Anastas, George

    2003-12-31

    Current U.S. Nuclear Regulatory Commission (NRC) transportation regulations (10 CFR 71.63 (b)) require that all shipments containing more than 20 curies of plutonium must be transported in packages that provide double containment. On April 30, 2002 the NRC issued a proposed rule that would eliminate §71.63(b) and the double containment requirement. NRC’s reasons for proposing elimination of §71.63(b) are: (1) compatibility with International Atomic Energy Agency Transportation Safety Standards (which do not have the requirement); (2) the current rule is inconsistent with the A1/A2 system since it applies only to plutonium; (3) double containment causes a heavier package and results in higher transportation costs; (4) the separate inner containment results in additional radiation exposure; and (5) while there would be additional protection from a separate inner container in an accident; this type of approach is not “risk informed nor performance based.” The Environmental Evaluation Group (EEG) has been a proponent of the double containment requirement for the Waste Isolation Pilot Plant (WIPP) shipments for twenty years. This requirement affects shipments to WIPP much more than any other current or planned shipping campaign because reactor fuel elements, metal or metal alloy, and vitrified high-level waste are exempt from §71.63(b). EEG submitted comments on the Proposed Rule on July 26, 2002 (Appendix C). This report is an update and expansion of the July 26, 2002 comments. Actual WIPP experience with shipments in the double contained TRUPACT-II package is used to respond to NRC arguments for deletion of §71.63(b) and offers a rationale for maintaining the current requirement.

  2. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  3. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  4. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  5. Packaging and Transfer or Transportation of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-26

    To establish requirements and responsibilities for offsite shipments of naval nuclear fuel elements, Category I and Category II special nuclear material, nuclear explosives, nuclear components, special assemblies, and other materials of national security interest. Cancels DOE O 461.1. Canceled by DOE O 461.1B and DOE O 461.2.

  6. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Supersedes DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  7. New Proton Radioactivity Measurements

    E-Print Network [OSTI]

    Edinburgh, University of

    New Proton Radioactivity Measurements Richard J. Irvine Thesis submitted for the degree of Doctor to search for examples of proton emission from ground and low­lying states in odd­Z nuclei at the proton into a double­sided silicon strip detector system, where their subsequent particle decays (proton or alpha) were

  8. Sealed Radioactive Source Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-12-24

    To establish Department of Energy (DOE) interim policy and to provide guidance for sealed radioactive source accountability. The directive does not cancel any directives. Extended by DOE N 5400.10 to 12-24-93 & Extended by DOE N 5400.12 to 12-24-94.

  9. Sealed Radioactive Source Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-12-22

    This Notice extends DOE N 5400.9, Sealed Radioactive Source Accountability, of 12-24-91, until 12-24-95, unless sooner superseded or rescinded. The contents of DOE N 5400.9 will be updated and incorporated in the revised DOE O 5480.11, Radiation Protection for Occupational Workers.

  10. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  11. Application to Use Radioactive Procedure: 7.502 Created: 5/9/2014

    E-Print Network [OSTI]

    Jia, Songtao

    Application to Use Radioactive Materials Procedure: 7.502 Created: 5/9/2014 Version: 1.0 Revised: Environmental Health & Safety Page 1 of 4 A. Purpose Use of radioactive materials (RAM) for non-human research Lab Barnard College New York State Psychiatric Institute C. Definitions CUMC: Medical Center Campus

  12. Hazardous and radioactive substances in

    E-Print Network [OSTI]

    Hazardous and radioactive substances in danisH Marine Waters Ingela Dahllöf & Jesper H. Andersen University #12;#12;Hazardous and radioactive substances in danisH Marine Waters #12;#12;Hazardous Hazardous and radioactive substances in danisH Marine Waters status and teMporal trends #12;Hazardous

  13. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect (OSTI)

    Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  14. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  15. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste inventories in a safe and compliant...

  16. Environmental Assessment Radioactive Source Recovery Program

    SciTech Connect (OSTI)

    1995-12-20

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE`s and the U.S. Nuclear Regulatory Commission`s (NRC`s) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ({sup 238}Pu-Be) and americium-beryllium ({sup 241}Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ({sup 238}PuO{sub 2} or {sup 241}AmO{sub 2}). The proposed action would include placing the {sup 238}PuO{sub 2} or {sup 241}AmO{sub 2} in interim storage in a special nuclear material vault at the LANL Plutonium Facility.

  17. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    SciTech Connect (OSTI)

    NONE

    1993-09-01

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

  18. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    SciTech Connect (OSTI)

    Skidmore, E.; Fondeur, F.

    2013-04-15

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  19. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  20. Development of a pilot safety information document (PSID) for the replacement of radioactive liquid waste treatment facility at Los Alamos National Laboratory 

    E-Print Network [OSTI]

    Selvage, Ronald Derek

    1995-01-01

    Radioactive Liquid Waste Treatment Facility. The PSID documents risk analysis for the proposed facility and some of the alternatives, accident analysis, radioactive and hazardous material doses to off-site individuals, and the cumulative safety risk from...

  1. EM Removes Radioactive Components from Former Reactor at Oak...

    Office of Environmental Management (EM)

    contractor employees who worked on the project to remove irradiated components from a reactor pool gather to watch the transport of the shipment offsite for disposition. Employees...

  2. Present experience of NRI REZ with preparation of spent nuclear fuel shipment to Russian Federation

    SciTech Connect (OSTI)

    Svitak, F.; Broz, V.; Hrehor, M.; Marek, M.; Novosad, P.; Podlaha, J.; Rychecky, J. [Nuclear Research Institute Rez plc, Husinec 130, CZ-25068 (Czech Republic)

    2008-07-15

    The Nuclear Research Institute Rez plc (NRI) jointed the Russian Research Reactor Fuel Return (RRRFR) programme under the US-Russian Global Threat Reduction Initiative (GTRI) initiative and started the preparation of the spent nuclear fuel (SNF) shipment from the LVR-15 research reactor back to the Russian Federation (RF). The transport of 16 SKODA VPVR/M casks with EK-10, IRT-2M 80 %, and IRT-2M 36% fuel types is planned for the autumn of 2007. The paper describes the experience gained so far during the preparatory works for the SNF shipment (facility equipment modification, cask licenses) and the actual preparation of the SNF for transport, in particular its checking, repacking in a hot cell, loading into the VPVR/M casks, drying, manipulation, completion of the transport documentation, etc., including its transport to the SNF storage facility at the NRI before it is shipped to the RF. The paper also briefly describes a regulatory framework for these activities with a focus on legislative and methodological aspects of the return of vitrified waste back to the Czech Republic. (author)

  3. Office of Civilian Radioactive Waste Management fiscal year 1996 annual report to Congress

    SciTech Connect (OSTI)

    NONE

    1997-05-01

    In Fiscal Year 1996 a revised program strategy was developed that reflects Administration policy and responds to sharply reduced funding and congressional guidance while maintaining progress toward long-term objectives. The program is on track, working toward an early, comprehensive assessment of the viability of the Yucca Mountain site; more closely determining what will be required to incorporate defense waste into the waste management system; pursuing a market-driven strategy for waste acceptance, storage, and transportation; and preserving the core capability to respond to an interim storage contingency. Overall, the elements of an integrated system for managing the Nation`s spent fuel and high-level radioactive waste are emerging, more soundly conceived, and more modestly designed, as the OCRWM works toward the physical reality of waste shipments to Federal facilities.

  4. Radioactive waste management in the former USSR

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  5. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    DOE Patents [OSTI]

    Brassell, Gilbert W. (13237 W. 8th Ave., Golden, CO 80401); Brugger, Ronald P. (Lafayette, CO)

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  6. Particle beam generator using a radioactive source

    DOE Patents [OSTI]

    Underwood, David G. (Naperville, IL)

    1993-01-01

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  7. Particle beam generator using a radioactive source

    DOE Patents [OSTI]

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  8. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    SciTech Connect (OSTI)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  9. Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

  10. Summary of radioactive solid waste received in the 200 Areas during calendar year 1994

    SciTech Connect (OSTI)

    Anderson, J.D.; Hagel, D.L.

    1995-08-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

  11. Summary of radioactive solid waste received in the 200 Areas during calendar year 1993

    SciTech Connect (OSTI)

    Anderson, J.D.; Hagel, D.L.

    1994-09-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

  12. Bagless transfer process and apparatus for radioactive waste confinement

    DOE Patents [OSTI]

    Maxwell, D.N.; Hones, R.H.; Rogers, M.L.

    1998-04-14

    A process and apparatus are provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox. 7 figs.

  13. Bagless transfer process and apparatus for radioactive waste confinement

    DOE Patents [OSTI]

    Maxwell, David N. (Aiken, SC); Hones, Robert H. (Evans, GA); Rogers, M. Lane (Aiken, SC)

    1998-01-01

    A process and apparatus is provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox.

  14. Radioactive decay data tables

    SciTech Connect (OSTI)

    Kocher, D.C.

    1981-01-01

    The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

  15. CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT

    SciTech Connect (OSTI)

    Marra, J.

    2010-05-05

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

  16. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-07-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  17. AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT

    SciTech Connect (OSTI)

    Bunting, Bruce G; Boyd, Alison C

    2012-01-01

    One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

  18. Wide-range radioactive-gas-concentration detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  19. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  20. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2012-07-01

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's regulatory and demonstration testing of MAGNOX fuel flasks in the United Kingdom (the CEGB 'Operation Smash Hit' tests), and the 1980's regulatory drop and fire tests conducted on the TRUPACT II containers used for transuranic waste shipments to the Waste Isolation Pilot Plant in New Mexico. The primary focus of the paper is a detailed evaluation of the cask testing programs proposed by the NRC in its decision implementing staff recommendations based on the Package Performance Study, and by the State of Nevada recommendations based on previous work by Audin, Resnikoff, Dilger, Halstead, and Greiner. The NRC approach is based on demonstration impact testing (locomotive strike) of a large rail cask, either the TAD cask proposed by DOE for spent fuel shipments to Yucca Mountain, or a similar currently licensed dual-purpose cask. The NRC program might also be expanded to include fire testing of a legal-weight truck cask. The Nevada approach calls for a minimum of two tests: regulatory testing (impact, fire, puncture, immersion) of a rail cask, and extra-regulatory fire testing of a legal-weight truck cask, based on the cask performance modeling work by Greiner. The paper concludes with a discussion of key procedural elements - test costs and funding sources, development of testing protocols, selection of testing facilities, and test peer review - and various methods of communicating the test results to a broad range of stakeholder audiences. (authors)

  1. Materials and Components Technology Division research summary, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  2. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    SciTech Connect (OSTI)

    Del Signore, John C.

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  3. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  4. Radiation shielding materials and containers incorporating same

    DOE Patents [OSTI]

    Mirsky, Steven M. (Greenbelt, MD); Krill, Stephen J. (Arlington, VA); Murray, Alexander P. (Gaithersburg, MD)

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  5. Radiation Shielding Materials and Containers Incorporating Same

    DOE Patents [OSTI]

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  6. Radiation levels on empty cylinders containing heel material

    SciTech Connect (OSTI)

    Shockley, C.W. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

  7. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a

  8. A perspective on the status of coal research from shipments of samples

    SciTech Connect (OSTI)

    Vorres, K.S. [Argonne National Lab., IL (United States); Kruse, C.W. [Illinois State Geological Survey, Champaign, IL (United States); Nater, K.A. [deGrote Vos, Zeeweg 37, 1753 BB St. Martenzee, NL (Netherlands); Glick, D.C.; Davis, A. [Pennsylvania State Univ., University Park, PA (United States). Coal and Organic Petrology Labs.

    1993-12-31

    Research on all aspects of coal research, at least for more small scale work, involves the use of samples at the beginning of experimental work. Most research workers for smaller scale work do not collect their own coal samples, but rather order them from a group of sample suppliers. The number of suppliers meeting the major needs in the US, as well as for the world, is not very large. An examination of the shipments of samples from each of these suppliers will give an interesting insight into the general trends in volume of work in the field. The suppliers involved in this study include the Argonne Premium Coal Sample Program, the Illinois Basin Coal Sample Program, the SBN and the several groups of samples from the Pennsylvania State University Coal Sample Bank. Each of these supplies a different number of samples in varying quantities. The quantities and variety of samples is important to the individual worker in selecting a supplier. The type of work to be done frequently affects the quantities and choice of sample, which in turn affects the choice of supplier. In general these data indicate that researchers realize the advantages of acquiring samples from centralized sample banks. These advantages include a lower cost than would be incurred from individual sampling and preparation; availability of analyzed samples; preservation of samples and the possibility of comparing results with others who have worked on the same samples.

  9. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    radioactive waste disposal programme; Nagra Technical Reportfor radioactive waste disposal; and • a summary report onof Radioactive Waste Disposal Facilities, O E C D , Report,

  10. SRP RADIOACTIVE WASTE RELEASES S

    Office of Scientific and Technical Information (OSTI)

    . . . . . -- SRP RADIOACTIVE WASTE RELEASES S t a r t u p t h r o u g h 1 9 5 9 September 1 9 6 0 - R E C O R D - W O R K S T E C H N I C A L D E P A R T M E N T 1 J. E. C o l e ,...

  11. Reporting of Radioactive Sealed Sources

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-02-27

    To establish U.S. Department of Energy requirements for inventory reporting, transaction reporting, verification of reporting, and assign responsibilities for reporting of radioactive sealed sources. DOE N 251.86 extends this notice until 5-6-11. No cancellations. Canceled by DOE O 231.1B

  12. The Radioactive Beam Program at Argonne

    E-Print Network [OSTI]

    B. B. Back

    2006-06-06

    In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

  13. Radioactive Waste Management Complex Wide Review

    Office of Environmental Management (EM)

    This page intentionally blank i Complex-Wide Review of DOE's Radioactive Waste Management Summary Report TABLE OF CONTENTS Acronyms ......

  14. Radioactive isotopes in Danish drinking water

    E-Print Network [OSTI]

    Radioactive isotopes in Danish drinking water Sven P. Nielsen Risø National Laboratory Working OF INVESTIGATION 11 3 DESCRIPTION OF INVESTIGATION 12 4 RADIOACTIVITY IN DRINKING WATER 13 5 SAMPLING 15 6 27 #12;4 #12;5 Preface This project for investigation of radioactivity in drinking water shall

  15. An overview of airborne radioactive emissions at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Guevara, F.A.; Dvorak, R.F.

    1987-01-01

    Strict control is essential over any emissions of radioactivity in the ventilation exhaust from facilities where radioactive materials may become airborne. At Los Alamos National Laboratory there are 87 stacks exhausting ventilation air to the environment from operations with a potential for radioactive emissions. These stacks cover the diverse operations at all Laboratory facilities where radioactive materials are handled and require continuous sampling/monitoring to detect levels of contamination. An overview is presented of the operations, associated ventilation exhaust cleanup systems, and analysis of the emissions. In keeping with the as-low-as-reasonably-achievable concept, emissions of radionuclides are reduced whenever practicable. A specific example describing the reduction of emissions from the linear accelerator beam stop area at the Los Alamos Meson Physics Facility during 1985 by a factor of 8 over previous emissions is presented.

  16. Releases of radioactivity at the Savannah River Plant, 1954--1985

    SciTech Connect (OSTI)

    Zeigler, C.C.; Lawrimore, I.B.

    1988-07-01

    Radioactive releases from Savannah River Plant (SRP) facilities to air, water and earthen seepage basins have been monitored and tabulated throughout the history of the site. The purpose of this report is to provide a source of data on routine releases of radioactivity to air, water and seepage basins that can be used for analyses of trends, environmental impact, etc. As used in this report, routine radioactive releases means radioactive materials that are released through established effluents from process facilities. This report is not intended to provide interpretation of the release values, their transport and impact or information on spills, leaks, buried waste or special use facilities. These subjects are covered in other SRP publications. This report provides a summary of radioactive releases that reflects the release values contained in records and documents from startup through 1985. Releases are tabulated in the following categories: Annual radioactive releases by emission source and radionuclide for 1954 through 1985; Annual radioactive releases by receptor medium and radionuclide for 1954 through 1985; Monthly releases by emission source and radionuclide for 1981 through 1985. The presentation of all SRP routine radioactive releases data in these categories provides a reference for historic data on SRP releases. 34 refs.

  17. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    SciTech Connect (OSTI)

    Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.; Iyer, Natraj C.; Koenig, Rich E.; Leduc, D.; Hackney, B.; Leduc, Dan R.

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

  18. Development of long-term performance models for radioactive waste forms

    SciTech Connect (OSTI)

    Bacon, Diana H.; Pierce, Eric M.

    2011-03-22

    The long-term performance of solid radioactive waste is measured by the release rate of radionuclides into the environment, which depends on corrosion or weathering rates of the solid waste form. The reactions involved depend on the characteristics of the solid matrix containing the radioactive waste, the radionuclides of interest, and their interaction with surrounding geologic materials. This chapter describes thermo-hydro-mechanical and reactive transport models related to the long-term performance of solid radioactive waste forms, including metal, ceramic, glass, steam reformer and cement. Future trends involving Monte-Carlo simulations and coupled/multi-scale process modeling are also discussed.

  19. The radioactive Substances (Testing Instruments) Exemption Order 1962 

    E-Print Network [OSTI]

    Keith, Joseph

    1962-01-01

    STATUTORY INSTRUMENTS 1962 No. 2643 ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Testing Instruments) Exemption Order 1962

  20. The radioactive Substances (Civil Defence) Exemption Order 1962 

    E-Print Network [OSTI]

    Keith, Joseph

    1962-01-01

    STATUTORY INSTRUMENTS 1962 No. 2641 ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Civil Defence) Exemption Order 1962

  1. The radioactive Substances (Uranium and Thorium) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01

    STATUTORY INSTRUMENTS 1962 No.2710 ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Uranium and Thorium) Exemption Order 1962

  2. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    SciTech Connect (OSTI)

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    2008-07-01

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

  3. Radioactive waste treatment technologies and environment

    SciTech Connect (OSTI)

    HORVATH, Jan; KRASNY, Dusan [JAVYS, PLc. - Nuclear and Decommisioning Company, PLc. (Slovakia)

    2007-07-01

    The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

  4. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  5. Radioactive Waste Management BasisApril 2006

    SciTech Connect (OSTI)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  6. Transfer of excess nuclear material from Los Alamos to Savannah River site for long-term disposition

    SciTech Connect (OSTI)

    Hoth, C. W. (Carl W.); Yarbro, T. F. (Tresa F.); Foster, Lynn A.

    2001-06-01

    Los Alamos National Laboratory is preparing excess nuclear material for shipment to Savannah River Site (SRS) for final disposition. Prior to shipment the nuclear material will be stabilized and packaged to meet strict criteria. The criterion that must be met include: (1) the DOE stabilization, packaging and storage requirements for plutonium bearing materials, DOE-STD-3013, (2) shipping container packaging requirements, (3) SRS packaging and storage criteria, and (4) DOE Material Disposition criteria for either immobilization or MOX reactor fuel. Another issue in preparing for this transfer is the DOE certification of shipping containers and the availability of shipping containers. This transfer of the nuclear material is fully supported by the EM, DP and NN Sections of the DOE, as well as, by LANL and SRS, yet a strong collaboration is needed to meet all established requirements relating to stabilization, packaging, shipment, storage and final disposition. This paper will present the overall objectives, the issues and the planned strategy to accomplish this nuclear material transfer.

  7. TRANSFER OF EXCESS NUCLEAR MATERIAL FROM LOS ALAMOS TO SAVANNAH RIVER SITE FOR LONG-TERM DISPOSITION

    SciTech Connect (OSTI)

    C. W. HOTH; L. A. FOSTER; T. F YARBRO

    2001-06-01

    Los Alamos National Laboratory is preparing excess nuclear material for shipment to Savannah River Site (SRS) for final disposition. Prior to shipment the nuclear material will be stabilized and packaged to meet strict criteria. The criterion that must be met include: (1) the DOE stabilization, packaging and storage requirements for plutonium bearing materials, DOE-STD-3013, (2) shipping container packaging requirements, (3) SRS packaging and storage criteria, and (4) DOE Material Disposition criteria for either immobilization or MOX reactor fuel. Another issue in preparing for this transfer is the DOE certification of shipping containers and the availability of shipping containers. This transfer of the nuclear material is fully supported by the EM, DP and NN Sections of the DOE, as well as, by LANL and SRS, yet a strong collaboration is needed to meet all established requirements relating to stabilization, packaging, shipment, storage and final disposition. This paper will present the overall objectives, the issues and the planned strategy to accomplish this nuclear material transfer.

  8. Safety Analysis Report for packaging (onsite) steel waste package

    SciTech Connect (OSTI)

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  9. Fast Neutron Radioactivity and Damage Studies on Materials

    E-Print Network [OSTI]

    Spencer, J.; Anderson, S. D.; Wolf, Z.; Volk, J. T.; Pellett, D.; Boussoufi, M.

    2007-01-01

    were doped differently. Shin Etsu clearly made signi?cantdemagnetization curves from Shin-Etsu for block types N50Mand changing e.g. Shin-Etsu considers N34Z to be a 5 th

  10. Emergency Response to a Transportation Accident Involving Radioactive Material

    Broader source: Energy.gov [DOE]

    The purpose of this User’s Guide is to provide instructors with an overview of the key points covered in the video.  The Student Handout portion of this Guide is designed to assist the instructor...

  11. Film Badge Application Radioactive Material Package Receipt Log

    E-Print Network [OSTI]

    Slatton, Clint

    of Radiation Control & Radiological Services P.O. Box 118340, 212 Nuclear Sciences Center, Gainesville, FL: ____________________________________________________________ FACILITY: __________________ BLDG: _____________________ ROOM: __________ MAILING ADDRESS Principal Investigator Dept. Facility Building Lab Room Radionuclide Activity (mCi) Date Received

  12. DOE/NNSA Recovers One Millionth Curie of Radioactive Material...

    National Nuclear Security Administration (NNSA)

    Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Congressional Testimony Fact Sheets Newsletters...

  13. Radioactive Material Inspection/Survey Guidelines SIGNAGE AND POSTINGS

    E-Print Network [OSTI]

    , and be converted to dpm or pCi units. Cleaning will be required if contamination is found in excess of 100 pCi/100 in survey, and be converted to dpm or pCi units. Cleaning will be required if contamination is found in excess of 100 #12;pCi/100 cm2 (220 dpm/100 cm2 ). If cleaning is required, cleaning methods and follow

  14. Decontamination Dressdown at a Transportation Accident Involving Radioactive Material

    Broader source: Energy.gov [DOE]

    The purpose of this User’s Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in...

  15. The Model 9977 Radioactive Material Packaging Primer (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministrationTechnicalTechnical InformationFrequentlyEnergy,|THE

  16. NNSA: Securing Domestic Radioactive Material | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 National SecurityDevelopment Flight

  17. NNSA: Securing Domestic Radioactive Material | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 National SecurityDevelopment

  18. Simulation of natural radioactivity backgrounds in the central detector

    E-Print Network [OSTI]

    Xinying Li; Ziyan Deng; Liangjian Wen; Weidong Li; Zhengyun You; Chunxu Yu; Yumei Zhang; Tao Lin

    2015-05-13

    The Jiangmen Underground Neutrino Observatory (JUNO) is an experiment proposed to determine the neutrino mass hierarchy and probe the fundamental properties of neutrino oscillation. The JUNO central detector is a spherical liquid scintillator detector with 20 kton fiducial mass. It is required to achieve a $3\\%/\\sqrt{E(MeV)}$ energy resolution with very low radioactive background, which is a big challenge to the detector design. In order to ensure the detector performance can meet the physics requirements, reliable detector simulation is necessary to provide useful information for detector design. A simulation study of natural radioactivity backgrounds in the JUNO central detector has been performed to guide the detector design and set requirements to the radiopurity of detector materials.

  19. Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

  20. Radioactivity in Precipitation: Methods and Observations from...

    Office of Environmental Management (EM)

    Radioactivity in Precipitation: Methods & Observations from Savannah River Site Dennis Jackson P.E. & Timothy Jannik - Savannah River National Laboratory Teresa Eddy - Savannah...

  1. RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures of fuel containing materials can be fairly useful for the entire world's nuclear community and can help make nuclear energy safer.

  2. Cosmic radioactivity and INTEGRAL results

    SciTech Connect (OSTI)

    Diehl, Roland [Max Planck Institut für Extraterrestrische Physik, D-85748 Garching, Germany and Excellence Cluster Origin and Evolution of the Universe', D-85748 Garching (Germany)

    2014-05-02

    Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ?My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

  3. Under U.S.-Russia Partnership, Final Shipment of Fuel Converted...

    Office of Environmental Management (EM)

    material and to nuclear energy generation in the United States. Nearly every commercial nuclear reactor in the United States received nuclear fuel under the program," said Energy...

  4. Nuclear material operations manual

    SciTech Connect (OSTI)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  5. Hazardous Material Code Identification NFPA 704, 1996 Edition

    E-Print Network [OSTI]

    Slatton, Clint

    Hazardous Material Code Identification NFPA 704, 1996 Edition Identification of Health Hazard Color offer no hazard. 00 Materials that will not burn. 00 Materials that in themselves are normally stable DAMAGE TO LIVING TISSUE. MATERIALS POSSESSING RADIOACTIVITY HAZARDS. The identification systems

  6. 2nd Quarter Transportation Report FY 2014

    SciTech Connect (OSTI)

    Gregory, L.

    2014-07-30

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the second quarter of fiscal year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet (ft3) generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  7. Bioindicators for Monitoring Radioactive Pollution of the

    E-Print Network [OSTI]

    * IK s Dfc2looX|o Risø-R-443 Bioindicators for Monitoring Radioactive Pollution of the Marine-R-443 BIOINDICATORS FOR MONITORING RADIOACTIVE POLLUTION OF THE MARINE ENVIRONMENT Experiments Dahlgaard Abstract. Mussels (Mytilus edulis) are globally used as bio- indicators for pollution of coastal

  8. Storage of nuclear materials by encapsulation in fullerenes

    DOE Patents [OSTI]

    Coppa, Nicholas V. (Los Alamos, NM)

    1994-01-01

    A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

  9. Apparatus and method for radioactive waste screening

    DOE Patents [OSTI]

    Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

    2012-09-04

    An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

  10. Radioactive waste management in the former USSR. Volume 3

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  11. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  12. The Bayo Canyon/radioactive lanthanum (RaLa) program

    SciTech Connect (OSTI)

    Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

    1996-04-01

    LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3 miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.

  13. Introduction to Nuclear Waste Management Nuclear Waste is a type of radioactive waste that is usually the by-product of

    E-Print Network [OSTI]

    Auerbach, Scott M.

    that is usually the by-product of a nuclear technology. -Nuclear Technology includes: -Nuclear ReactorsIntroduction to Nuclear Waste Management Nuclear Waste is a type of radioactive waste -Nuclear Medicine Chemicals Nuclear reactors -Radioactive materials are placed in a reactor vessel

  14. In-situ stabilization of radioactive zirconium swarf

    DOE Patents [OSTI]

    Hess, Clay C. (Idaho Falls, ID)

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  15. PERFORMANCE OF A CONTAINMENT VESSEL CLOSURE FOR RADIOACTIVE GAS CONTENTS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of the design and testing of the containment vessel closure for the Bulk Tritium Shipping Package (BTSP). This package is a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The containment vessel closure incorporates features specifically designed for the containment of tritium when subjected to the normal and hypothetical conditions required of Type B radioactive material shipping Packages. The paper discusses functional performance of the containment vessel closure of the BTSP prototype packages and separate testing that evaluated the performance of the metallic C-Rings used in a mock BTSP closure.

  16. In-situ stabilization of radioactive zirconium swarf

    DOE Patents [OSTI]

    Hess, C.C.

    1999-08-31

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes. 6 figs.

  17. Radioactive targets for neutron-induced cross section measurements

    SciTech Connect (OSTI)

    Kronenberg, A. (Andreas); Bond, E. M. (Evelyn M.); Glover, S. E. (Samuel E.); Rundberg, R. S. (Robert S.); Vieira, D. J. (David J.); Esch, E. I. (Ernst-Ingo); Reifarth, R. (Rene); Ullmann, J. L. (John L.); Haight, Robert C.; Rochmann, D. (Dimitri)

    2004-01-01

    Measurements using radioactive targets are important for the determination of key reaction path ways associated with the synthesis of the elements in nuclear astrophysics (sprocess), advanced fuel cycle initiative (transmutation of radioactive waste), and stockpile stewardship. High precision capture cross-section measurements are needed to interpret observations, predict elemental or isotopical ratios, and unobserved abundances. There are two new detector systems that are presently being commissioned at Los Alamos National Laboratory for very precise measurements of (n,{gamma}) and (n,f) cross-sections using small quantities of radioactive samples. DANCE (Detector for Advanced Neutron-Capture Experiments), a 4 {pi} gamma array made up of 160 BaF{sub 2} detectors, is designed to measure neutron capture cross-sections of unstable nuclei in the low-energy range (thermal to {approx}500 keV). The high granularity and high detection efficiency of DANCE, combined with the high TOF-neutron flux available at the Lujan Center provides a versatile tool for measuring many important cross section data using radioactive and isotopically enriched targets of about 1 milligram. Another powerful instrument is the Lead-slowing down spectrometer (LSDS), which will enable the measurement of neutron-induced fission cross-section of U-235m and other short-lived actinides in a energy range from 1-200 keV with sample sizes down to 10 nanograms. Due to the short half-life of the U-235m isomer (T{sub 1/2} = 26 minutes), the samples must be rapidly and repeatedly extracted from its {sup 239}Pu parent. Since {sup 239}Pu is itself highly fissile, the separation must not only be rapid, but must also be of very high purity (the Pu must be removed from the U with a decontamination factor >10{sup 12}). Once extracted and purified, the {sup 235m}U isomer would be electrodeposited on solar cells as a fission detector and placed within the LSDS for direct (n,f) cross section measurements. The production of radioactive targets of a few milligrams will be described as well as the containment for safe handling of these targets at the Lujan Center at LANSCE. To avoid any contamination, the targets are electrochemically fixed onto thin Ti foils and two foils are placed back to back to contain the radioactive material within. This target sandwich is placed in a cylinder made of aluminum with thin translucent windows made of Kapton. Actinides targets, such as {sup 234,235,236,238}U, {sup 237}Np, and {sup 239}Pu are prepared by electrodeposition or molecular plating techniques. Target thicknesses of 1-2 mg/cm{sup 2} with sizes of 1 cm{sup 2} or more have been made. Other targets will be fabricated from separation of irradiated isotopically enriched targets, such as {sup 155}Eu from {sup 154}Sm,{sup 171}Tm from {sup 170}Er, and {sup 147}Pm from {sup 146}Nd, which has been irradiated in the high flux reactor at ILL, Grenoble. A radioactive sample isotope separator (RSIS) is in the process of being commissioned for the preparation of other radioactive targets. A brief summary of these experiments and the radioactive target preparation technique will be given.

  18. SHIPMENT OF TWO DOE-STD-3013 CONTAINERS IN A 9977 TYPE B PACKAGE

    SciTech Connect (OSTI)

    Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

    2011-06-06

    The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. Historically, the standard container for these materials has been the DOE-STD-3013 which was specifically designed for the long term storage of plutonium bearing materials. The Department of Energy has used the 9975 Packaging containing a single 3013 container for the transportation and storage of these materials. In order to reduce container, shipping, and storage costs, the 9977 Packaging is being certified for transportation and storage of two 3013 containers. The challenges and risks of this content and the 9977s ability to meet the Code of Federal Regulations for the transport of these materials are presented.

  19. The radioactive Substances (Testing Instruments) Exemption (Scotland)Order 1962 

    E-Print Network [OSTI]

    Noble, Michael

    1962-01-01

    STATUTORY INSTRUMENTS 1962 No. 2764 (S. 124) ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Testing instruments) Exemption (Scotland) Order 1962

  20. RESRAD Computer Code- Evaluation of Radioactively Contaminated Sites

    Office of Energy Efficiency and Renewable Energy (EERE)

    The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989.

  1. THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY...

    Office of Scientific and Technical Information (OSTI)

    THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY Citation Details In-Document Search Title: THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY...

  2. Letter to Congress RE: Office of Civilian Radioactive Waste Management...

    Office of Environmental Management (EM)

    to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report Letter to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial...

  3. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    Civilian Radioactive Waste Management Program Plan. DOE/RW-Civilian Radioactive Waste Management Program Plan. DraftBasis for Nuclear Waste Management X V I , Mat. Res. Soc.

  4. Geological challenges in radioactive waste isolation: Third worldwide review

    E-Print Network [OSTI]

    Witherspoon editor, P.A.; Bodvarsson editor, G.S.

    2001-01-01

    level radioactive waste disposal, 1993–1996, Annual Reportradioactive waste disposal programme, Nagra Technical ReportDisposal concepts for radioactive wastes, Final Report,

  5. Management Not Available 12 MANAGEMENT OF RADIOACTIVE AND NON...

    Office of Scientific and Technical Information (OSTI)

    87 Oak Ridge model conference: Proceedings: Volume I, Part 3, Waste Management Not Available 12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 11...

  6. Study finds radioactivity around Los Alamos largely due to natural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactivity largely due to natural sources Study finds radioactivity around Los Alamos largely due to natural sources The study was subsequently peer reviewed externally by...

  7. Materials and Components Technology Division research summary, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

  8. A Low-Tech, Low-Budget Storage Solution for High Level Radioactive Sources

    SciTech Connect (OSTI)

    Brett Carlsen; Ted Reed; Todd Johnson; John Weathersby; Joe Alexander; Dave Griffith; Douglas Hamelin

    2014-07-01

    The need for safe, secure, and economical storage of radioactive material becomes increasingly important as beneficial uses of radioactive material expand (increases inventory), as political instability rises (increases threat), and as final disposal and treatment facilities are delayed (increases inventory and storage duration). Several vendor-produced storage casks are available for this purpose but are often costly — due to the required design, analyses, and licensing costs. Thus the relatively high costs of currently accepted storage solutions may inhibit substantial improvements in safety and security that might otherwise be achieved. This is particularly true in areas of the world where the economic and/or the regulatory infrastructure may not provide the means and/or the justification for such an expense. This paper considers a relatively low-cost, low-technology radioactive material storage solution. The basic concept consists of a simple shielded storage container that can be fabricated locally using a steel pipe and a corrugated steel culvert as forms enclosing a concrete annulus. Benefits of such a system include 1) a low-tech solution that utilizes materials and skills available virtually anywhere in the world, 2) a readily scalable design that easily adapts to specific needs such as the geometry and radioactivity of the source term material), 3) flexible placement allows for free-standing above-ground or in-ground (i.e., below grade or bermed) installation, 4) the ability for future relocation without direct handling of sources, and 5) a long operational lifetime . ‘Le mieux est l’ennemi du bien’ (translated: The best is the enemy of good) applies to the management of radioactive materials – particularly where the economic and/or regulatory justification for additional investment is lacking. Development of a low-cost alternative that considerably enhances safety and security may lead to a greater overall risk reduction than insisting on solutions that remain economically and/or politically ‘out of reach’.

  9. POLICY FOR THE MANAGEMENT OF HAZARDOUS MATERIALS Effective Date: February 15, 2010 Originating Office: Office of the

    E-Print Network [OSTI]

    Doedel, Eusebius

    is responsible for the safe handling and disposal of hazardous waste (including transport as per TDG regulations. For the purposes of this Policy, hazardous materials includes chemicals, biological, and radioactive materials. Radiation Safety Policy (VPS-46) outlines the management of radioactive materials as required

  10. SCO shipments from Rocky Flats - Experience and current practice [Surface Contaminated Object

    SciTech Connect (OSTI)

    Bracken, Gary; Morris, Robert L.

    2001-01-10

    Decommissioning activities at Rocky Flats Environmental Technology Site (RFETS) are expected to generate approximately 251,000 cubic meters of low-level radioactive waste. Almost half of this will be characterized and shipped as the Department of Transportation ''Surface Contaminated Object'' (SCO) shipping class. In the 2 years since an SCO characterization method was implemented, almost 11,000 of the 18,000 cubic meters of low-level waste were SCO. RFETS experience to-date using an SCO waste characterization method has shown significant time and cost savings, reduced errors, and enhanced employee safety. SCO waste is characterized prior to packaging, near the point of generation, by any of the site's 300 Radiological Control Technicians using inexpensive radiological control survey instruments. This reduces on-site waste container moves and eliminates radiometric analysis at centrally located drum or crate counters. Containers too large for crate counters can also be characterized. Current instrumentation is not adequate to take full advantage of the SCO regulations. Future improvements in the SCO characterization and shipping process are focused on use of larger and/or reusable containers, extended-range instruments, and additional statistical methods, so that the full extent of the SCO regulations can be used.

  11. The fate and behaviour of enhanced natural radioactivity with respect to environmental protection

    SciTech Connect (OSTI)

    Michalik, B.; Brown, J.; Krajewski, P.

    2013-01-15

    In contrast to the monitoring and prevention of occupational radiation risk caused by enhanced natural radioactivity, relatively little attention has been paid to the environmental impact associated with residues containing enhanced activity concentration of naturally occurring radionuclides. Such materials are often deposited directly into the environment, a practice which is strictly forbidden in the management of other types of radioactive waste. In view of the new trends in radiation protection, the need to consider the occurrence of anthropogenically enhanced natural radioactivity as a particular unique case of environmental hazard is quite apparent. Residues containing high activity concentrations of some natural radionuclides differ from radioactive materials arising from the nuclear industry. In addition, the radiation risk is usually combined with the risk caused by other pollutants. As such and to date, there are no precise regulations regarding this matter and moreover, the non-nuclear industry is often not aware of potential environmental problems caused by natural radioactivity. This article discusses aspects of environmental radiation risks caused by anthropogenically enhanced natural radioactivity stored at unauthorised sites. Difficulties and inconclusiveness in the application of recommendations and models for radiation risk assessment are explored. General terms such as 'environmental effects' and the basic parameters necessary to carry out consistent and comparable Environmental Risk Assessment (ERA) have been developed and defined. - Highlights: Black-Right-Pointing-Pointer Features of environmental impact caused by residues containing high activity concentration of natural radionuclides Black-Right-Pointing-Pointer Definition of an effect of radiation on an ecosystem and novel method for its assessment Black-Right-Pointing-Pointer Radiation protection regulation inconclusiveness in the aspects of enhanced natural radioactivity.

  12. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  13. Southern state radiological emergency preparedness and response agencies

    SciTech Connect (OSTI)

    Not Available

    1988-11-01

    This Report provides information on the state agencies assigned to radioactive materials transportation incidents in 16 Southern States Energy Board member states. For each, the report lists the agencies with primary authority for preparedness and response, their responsibilities and personnel within the agencies who can offer additional information on their radioactive materials transportation programs. The report also lists each state's emergency team members and its laboratory and analytical capabilities. Finally, the governor's designee for receiving advance notification of high-level radioactive materials and spent fuel shipments under 10 CFR Parts 71 and 73 of the US Nuclear Regulatory Commission's regulations is listed for each state. Part 71 requires prenotification for large quantity radioactive waste shipments. Part 73 addresses prenotification for spent nuclear reactor fuel shipments.

  14. Southern state radiological emergency preparedness and response agencies

    SciTech Connect (OSTI)

    Not Available

    1988-11-01

    This Report provides information on the state agencies assigned to radioactive materials transportation incidents in 16 Southern States Energy Board member states. For each, the report lists the agencies with primary authority for preparedness and response, their responsibilities and personnel within the agencies who can offer additional information on their radioactive materials transportation programs. The report also lists each state`s emergency team members and its laboratory and analytical capabilities. Finally, the governor`s designee for receiving advance notification of high-level radioactive materials and spent fuel shipments under 10 CFR Parts 71 and 73 of the US Nuclear Regulatory Commission`s regulations is listed for each state. Part 71 requires prenotification for large quantity radioactive waste shipments. Part 73 addresses prenotification for spent nuclear reactor fuel shipments.

  15. Financial assistance to states and tribes to support emergency preparedness and response and the safe transportation of hazardous shipments: 1996 Update

    SciTech Connect (OSTI)

    Bradbury, J.A.; Leyson, J.; Lester, M.K.

    1996-07-01

    This report revises and updates the 1995 report Financial Assistance to States and Tribes to Support Emergency Preparedness and Response and the Safe Transportation of Hazardous Shipments, PNL-10260 (UC-620). The presentation of data and some of the data reported have been changed; these data supersede those presented in the earlier publication. All data have been updated to fiscal year 1995, with the exception of FEMA data that are updated to fiscal year 1994 only. The report identifies and summarizes existing sources of financial assistance to States and Tribes in preparing and responding to transportation emergencies and ensuring the safe transportation of hazardous shipments through their jurisdictions. It is intended for use as an information resource for the U.S. Department of Energy`s Office of Environmental Management (EM), Office of Transportation, Emergency Management, and Analytical Services (EM-76).

  16. Evaluation of beta partical densitometry for determination of self-absorption factors in gross alpha and gross beta radioactivity measurements on air particulate filter samples 

    E-Print Network [OSTI]

    Breida, Margaret A

    1994-01-01

    Alpha and beta particles emitted from radioactive material collected on an air filter may be significantly attenuated by the mass (thickness) of collected dust. In this study, we determined the mass or thickness of the simulated dust deposit...

  17. Analysis of International Commodity Shipping Data and the Shipment of NORM to the United States

    SciTech Connect (OSTI)

    Baciak, James E.; Ely, James H.; Schweppe, John E.; Sandness, Gerald A.; Robinson, Sean M.

    2011-10-01

    As part of the Spreader Bar Radiation Detector project, PNNL analyzed US import data shipped through US ports collected over the 12 months of 2006 (over 4.5 million containers). Using these data, we extracted a variety of distributions that are of interest to modelers and developers of active and passive detection systems used to 'scan' IMCCs for potential contraband. This report expands on some of the analysis presented in an earlier report from LLNL, by investigation the foreign port distribution of commodities shipped to the US. The majority of containers shipped to the United States are 40 ft containers ({approx}70%); about 25% are 20 ft; and about 3.6% are 45 ft containers. A small fraction (<1%) of containers are of other more specialized sizes, and very few ports actually ship these unique size containers (a full distribution for all foreign ports is shown in Appendix A below). The primary foreign ports that ship the largest fraction of each container are shown in the table below. Given that 45 ft containers comprise 1 of out every 27 containers shipped to the US, and given the foreign ports from which they are shipped, they should not be ignored in screening; further testing and analysis of radiation measurements for national security with this size container is warranted. While a large amount of NORM is shipped in IMCCs, only a few specific commodities are shipped with enough frequency to present potential issues in screening IMCCs at ports. The majority of containers with NORM will contain fertilizers (5,700 containers), granite (59,000 containers), or ceramic (225,000 containers) materials. Fertilizers were generally shipping in either 20- or 40 ft containers with equal frequency. While granite is mostly shipped in 20 ft containers, ceramic materials can be shipped in either 20- or 40 ft containers. The size of container depended on the specific use of the ceramic or porcelain material. General construction ceramics (such as floor and roofing tiles) tend to be shipped in 20 ft containers. Consumer products made from ceramic materials (e.g., tableware, sinks, and toilets) are generally shipped in 40 ft containers. This distinct discrepancy is due in large part to the packaging of the commodity. Consumer products are generally shipped packed in a box loaded with Styrofoam or other packing material to protect the product from breakage. Construction ceramic materials are generally shipped in less packing material, many times consisting of only a cardboard or wooden box. Granite is almost always shipped in a 20 ft container, given its very high density.

  18. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect (OSTI)

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  19. CRAD, NNSA- Radioactive Waste Management Program (RW)

    Broader source: Energy.gov [DOE]

    CRAD for Radioactive Waste Management Program (RW). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  20. 2013 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada; Review of the Performance Assessments and Composite Analyses

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-03-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC 2007a) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs), with the results submitted to the U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE 1999a, 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2013. This annual summary report presents data and conclusions from the FY 2013 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2013 include the following: • Development of a new Area 5 RWMS closure inventory estimate based on disposals through FY 2013 • Evaluation of new or revised waste streams by special analysis • Development of version 4.115 of the Area 5 RWMS GoldSim PA/CA model The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. The FY 2013 review of operations, facility design, closure plans, monitoring results, and R&D results for the Area 3 RWMS indicates no changes that would impact PA validity. The conclusion of the annual review is that all performance objectives can be met and the Area 3 RWMS PA remains valid. There is no need to the revise the Area 3 RWMS PA. Review of Area 5 RWMS operations, design, closure plans, monitoring results, and R&D activities indicates that no significant changes have occurred. The FY 2013 PA results, generated with the Area 5 RWMS v4.115 GoldSim PA model, indicate that there continues to be a reasonable expectation of meeting all performance objectives. The results and conclusions of the Area 5 RWMS PA are judged valid, and there is no need to the revise the PA. A review of changes potentially impacting the CAs indicates that no significant changes occurred in FY 2013. The continuing adequacy of the CAs was evaluated with the new models, and no significant changes that would alter the CAs results or conclusions were found. The revision of the Area 3 RWMS CA, which will include the Yucca Flat Underground Test Area (Corrective Action Unit [CAU] 97) source term, is scheduled for FY 2024, following the completion of the Corrective Action Decision Document/Corrective Action Plan in FY 2015. Inclusion of the Frenchman Flat Underground Test Area (CAU 98) results in the Area 5 RWMS CA is scheduled for FY 2016, pending the completion of the CAU 98 Closure Report in FY 2015. Near-term R&D efforts will focus on continuing development of the PA, CA, and inventory models for the Area 3 and Area 5 RWMS.

  1. Location and identification of radioactive waste in Massachusetts Bay

    SciTech Connect (OSTI)

    Colton, D.P.; Louft, H.L.

    1993-12-31

    The accurate location and identification of hazardous waste materials dumped in the world`s oceans are becoming an increasing concern. For years, the oceans have been viewed as a convenient and economical place to dispose of all types of waste. In all but a few cases, major dump sites have been closed leaving behind years of accumulated debris. The extent of past environmental damage, the possibility of continued environmental damage, and the possibility of hazardous substances reaching the human food chain need to be carefully investigated. This paper reports an attempt to accurately locate and identify the radioactive component of the waste material. The Department of Energy`s Remote Sensing Laboratory (RSL), in support of the US Environmental Protection Agency (EPA), provided the precision navigation system and prototype underwater radiological monitoring equipment that were used during this project. The paper also describes the equipment used, presents the data obtained, and discusses future equipment development.

  2. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  3. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 facility. The site includes four absorption beds that received treated radioactive liquid waste, 64 buried shafts used for the disposal of cement-treated radioactive mixtures,...

  4. MARSAME Appendix B B. SOURCES OF BACKGROUND RADIOACTIVITY

    E-Print Network [OSTI]

    : · The Nuclear Regulatory Commission (NRC) provides information concerning background radioactivity in Background

  5. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

    2005-08-01

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour (R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

  6. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

    2005-08-15

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour ({micro}R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

  7. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect (OSTI)

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

  8. RADIOACTIVE WASTE DISPOSAL PROCEDURES 1. Radioactive waste is accepted for disposal by Radiation Safety on Monday, Wednesday and

    E-Print Network [OSTI]

    Hammack, Richard

    attire including lab coats when transporting radioactive waste. LABS OUTSIDE SANGER HALL 1RADIOACTIVE WASTE DISPOSAL PROCEDURES 1. Radioactive waste is accepted for disposal by Radiation are required and may be scheduled by calling 8289131. 2. Segregate and package radioactive waste according

  9. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  10. Low-level radioactive waste disposal technologies used outside the United States

    SciTech Connect (OSTI)

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK).

  11. Uraninum-233 Inventory in Oak Ridge Lightened with First Shipment of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear EnergyPotomac RiverUpper EastMaterial from

  12. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  13. Effect of geometrical configuration of radioactive sources on radiation intensity in beta-voltaic nuclear battery system: A preliminary result

    SciTech Connect (OSTI)

    Basar, Khairul, E-mail: khbasar@fi.itb.ac.id; Riupassa, Robi D., E-mail: khbasar@fi.itb.ac.id; Bachtiar, Reza, E-mail: khbasar@fi.itb.ac.id; Badrianto, Muldani D., E-mail: khbasar@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

    2014-01-01

    It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.

  14. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    SciTech Connect (OSTI)

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: • Advanced once-through reactor concepts (Advanced Once-Through, or AOT) – intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing • Fission-fusion hybrid (FFH) reactor concepts – potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes • High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs • Molten salt reactor (MSR) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication • Thorium/U-233 fueled LWR (Th/U-233) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: • Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings • Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials • Li-Be-F salts containing U, TRU, Th, and fission products • Ranges of separated or un-separated activation products, fission products, and actinides. Waste forms now used or studied for used LWR fuels can be used for some of these waste streams – but some waste forms may need to be developed for unique waste streams.

  15. Spent Fuel and High-Level Radioactive Waste Transportation Report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  16. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  17. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  18. Geological problems in radioactive waste isolation - A world wide review

    SciTech Connect (OSTI)

    Witherspoon, P.A. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  19. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect (OSTI)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  20. Pump station for radioactive waste water

    DOE Patents [OSTI]

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  1. Radioactivity and health: A history

    SciTech Connect (OSTI)

    Stannard, J.N.; Baalman, R.W. Jr.

    1988-10-01

    This book is designed to be primarily a history of research facts, measurements, and ideas and the people who developed them. ''Research'' is defined very broadly to include from bench-top laboratory experiments to worldwide environmental investigations. The book is not a monograph or a critical review. The findings and conclusions are presented largely as the investigators saw and reported them. Frequently, the discussion utilizes the terminology and units of the time, unless they are truly antiquated or potentially unclear. It is only when the work being reported is markedly iconoclastic or obviously wrong that I chose to make special note of it or to correct it. Nevertheless, except for direct quotations, the language is mine, and I take full responsibility for it. The working materials for this volume included published papers in scientific journals, books, published conferences and symposia, personal interviews with over 100 individuals, some of them more than once (see Appendix A), and particularly for the 1940--1950 decade and for the large government-supported laboratories to the present day, ''in-house'' reports. These reports frequently represent the only comprehensive archive of what was done and why. Unfortunately, this source is drying up because of storage problems and must be retrieved by ever more complex and inconvenient means. For this reason, special efforts have been taken to review and document these sources, though even now some sections of the field are partially inaccessible. Nevertheless, the volume of all materials available for this review was surprisingly large and the quality much better than might have been expected for so complex and disparate a fields approached under conditions of considerable urgency.

  2. Measurement of Moisture Content in Sand, Slag, and Crucible Materials

    SciTech Connect (OSTI)

    Gray, J.H.

    1999-09-20

    The deinventory process at Rocky Flats (RFETS) has included moisture content measurements of sand, slag, and crucible (SSC) materials by performing weight loss measurements at 210 degrees - 220 degrees Celsius on representative samples prior to packaging for shipment. Shipping requirements include knowledge of the moisture content. Work at the Savannah River Technology Center (SRTC) showed that the measurement at 210 degrees - 220 degrees Celsius did not account for all of the moisture. The objective of the work in this report was to determine if the measurement at 210 degrees - 220 degrees Celsius at RFETS could be used to set upper bounds on moisture content and therefore, eliminate the need for RFETS to unpack, reanalyze and repack the material.

  3. Low Radioactivity Crystals for Neutrinoless Double Beta Decay Detectors

    SciTech Connect (OSTI)

    Dafinei, Ioan [Sezione INFN di Roma, P-le Aldo Moro 2, Roma I-00185 (Italy)

    2011-04-27

    The production of crystals needed for rare events physics represent a relatively new, exciting challenge in the field of materials science and engineering. Extremely low concentration of radioactive impurities and very high crystal perfection is required for the crystals to be used in experiments in which the main concerns are the reduction of the background and the use of high sensitivity detectors. A further complication is the fact that for an experiment with a significant discovery potential, relatively large quantities of crystals are needed. The present work makes a review of the general problems related to the production of crystals for rare events physics and gives details related to the production of the TeO{sub 2} crystals needed for the major experiment in this field using bolometric technique, namely the CUORE experiment. The potential use of crystals for future double beta decay experiments is also discussed.

  4. High-level radioactive wastes. Supplement 1

    SciTech Connect (OSTI)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  5. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  6. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  7. RADIOACTIVE METALLOFULLERENES: HOT ATOM CHEMISTRY ASPECTS.

    E-Print Network [OSTI]

    Titov, Anatoly

    , enrichment, neutron activation, Szilard-Chalmers, retention, recoil implosion, radiation stability The n geometry of target/projectile system can not explain low implosion yields observed so far. Possible role studies and monitoring of 1 #12;chemical properties of metallofullerenes, in technology of radioactive

  8. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  9. Nondestructive assay of boxed radioactive waste

    SciTech Connect (OSTI)

    Gilles, W.P.; Roberts, R.J.; Jasen, W.G.

    1992-12-01

    This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

  10. Annual Radioactive Waste Tank Inspection Program - 1998

    SciTech Connect (OSTI)

    McNatt, F.G.

    1999-10-27

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  11. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  12. Geological challenges in radioactive waste isolation: Third worldwide review

    E-Print Network [OSTI]

    Witherspoon editor, P.A.; Bodvarsson editor, G.S.

    2001-01-01

    Radioactive Waste Long-Term Storage Piero Risoluti ENEA,The National Agency for New Technologies, Energy and Environment,environment, and the tech- nology for shutting down radioactive waste storage

  13. Geological challenges in radioactive waste isolation: Third worldwide review

    E-Print Network [OSTI]

    Witherspoon editor, P.A.; Bodvarsson editor, G.S.

    2001-01-01

    International Atomic Energy Agency (IAEA), Underground Disposal of Radioactive Waste,International Atomic Energy Agency (IAEA) regulations. The site- selection procedure began with exploring the possibility of radioactive waste

  14. CRAD, Low-Level Radioactive Waste Management - April 30, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Level Radioactive Waste Management - April 30, 2015 (EA CRAD 31-11, Rev. 0) CRAD, Low-Level Radioactive Waste Management - April 30, 2015 (EA CRAD 31-11, Rev. 0) April 2015...

  15. New York State low-level radioactive waste status report for 1997

    SciTech Connect (OSTI)

    NONE

    1998-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received.

  16. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    knowledge of radioactive waste management rather than dissent from any disposal solution and, surprisingly, general agreement with nuclear

  17. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    International Atomic Energy Agency). The Mission Report Radioactive Wasteradioactive waste and "to partic- *Currently with International Atomic Energy Agency

  18. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOE Patents [OSTI]

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  19. Quality assurance in the transport of UF{sub 6}

    SciTech Connect (OSTI)

    Ravenscroft, N.L. [Edlow International Company, Washington, DC (United States)

    1991-12-31

    Edlow International`s primary business is the international transportation of radioactive materials. Therefore, Edlow has the responsibility to ensure that shipments are performed in compliance with regulatory requirements. In this regard, Edlow maintains a Quality Assurance (QA) Program. A major part of this Program is the establishment and use of QA Procedures. This paper addresses QA procedural requirements and how they are applied to a routine international shipment of low enriched UF{sub 6}. Only the major requirements for scheduling shipments will be addressed.

  20. Covetic Materials

    Broader source: Energy.gov (indexed) [DOE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  1. Results of the material screening program of the NEXT experiment

    E-Print Network [OSTI]

    T. Dafni; V. Alvarez; I. Bandac; A. Bettini; F. I. G. M. Borges; M. Camargo; S. Carcel; S. Cebrian; A. Cervera; C. A. N. Conde; J. Diaz; R. Esteve; L. M. P. Fernandes; M. Fernandez; P. Ferrario; A. L. Ferreira; E. D. C. Freitas; V. M. Gehman; A. Goldschmidt; H. Gomez; J. J. Gomez-Cadenas; D. Gonzalez-Diaz; R. M. Gutierrez; J. Hauptman; J. A. Hernando Morata; D. C. Herrera; F. J. Iguaz; I. G. Irastorza; L. Labarga; A. Laing; I. Liubarsky; D. Lorca; M. Losada; G. Luzon; A. Mari; J. Martin-Albo; A. Martinez; G. Martinez-Lema; T. Miller; F. Monrabal; M. Monserrate; C. M. B. Monteiro; F. J. Mora; L. M. Moutinho; J. Munoz Vidal; M. Nebot-Guinot; D. Nygren; C. A. B. Oliveira; J. Perez; J. L. Perez Aparicio; J. Renner; L. Ripoll; A. Rodriguez; J. Rodriguez; F. P. Santos; J. M. F. dos Santos; L. Segui; L. Serra; D. Shuman; A. Simon; C. Sofka; M. Sorel; J. F. Toledo; J. Torrent; Z. Tsamalaidze; J. F. C. A. Veloso; J. A. Villar; R. C. Webb; J. T. White; N. Yahlali

    2014-11-05

    The 'Neutrino Experiment with a Xenon TPC (NEXT)', intended to investigate neutrinoless double beta decay, requires extremely low background levels. An extensive material screening and selection process to assess the radioactivity of components is underway combining several techniques, including germanium gamma-ray spectrometry performed at the Canfranc Underground Laboratory; recent results of this material screening program are presented here.

  2. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    SciTech Connect (OSTI)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  3. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  4. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    SciTech Connect (OSTI)

    Klein, J.A.; Storch, S.N.; Ashline, R.C.

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  5. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  6. Critical Materials:

    Office of Environmental Management (EM)

    Extraction Separation Processes for Critical Materials in 30- 21 Stage Test Facility (Bruce Moyer) ......

  7. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  8. Proton radioactivity with a Yukawa effective interaction

    E-Print Network [OSTI]

    T. R. Routray; S. K. Tripathy; B. B. Dash; B. Behera; D. N. Basu

    2011-04-26

    The half lives of proton radioactivity of proton emitters are investigated theoretically. Proton-nucleus interaction potentials are obtained by folding the densities of the daughter nuclei with a finite range effective nucleon-nucleon interaction having Yukawa form. The Wood-Saxon density distributions for the nuclei used in calculating the nuclear as well as the Coulomb interaction potentials are predictions of the interaction. The quantum mechanical tunneling probability is calculated within the WKB framework. These calculations provide reasonable estimates for the observed proton radioactivity lifetimes. The effects of neutron-proton effective mass splitting in neutron rich asymmetric matter as well as the nuclear matter incompressibility on the decay probability are investigated.

  9. Radioactive beam production at the Bevalac

    SciTech Connect (OSTI)

    Alonso, J.R.; Feinberg, B.; Kalnins, J.G.; Krebs, G.F.; McMahan, M.A.; Tanihata, I.

    1989-10-01

    At the Bevalac radioactive beams are routinely produced by the fragmentation process. The effectiveness of this process with respect to the secondary beam's emittance, intensity and energy spread depends critically on the nuclear reaction kinematics and the magnitude of the incident beam energy. When this beam energy significantly exceeds the energies of the nuclear reaction process, many of the qualities of the incident beam can be passed on to the secondary beam. Factors affecting secondary beam quality are discussed along with techniques for isolating and purifying a specific reaction product. The on-going radioactive beam program at the Bevalac is used as an example with applications, present performance and plans for the future. 6 refs., 6 figs., 1 tab.

  10. Fields of View for Environmental Radioactivity

    E-Print Network [OSTI]

    Malins, Alex; Machida, Masahiko; Takemiya, Hiroshi; Saito, Kimiaki

    2015-01-01

    The gamma component of air radiation dose rates is a function of the amount and spread of radioactive nuclides in the environment. These radionuclides can be natural or anthropogenic in origin. The field of view describes the area of radionuclides on, or below, the ground that is responsible for determining the air dose rate, and hence correspondingly the external radiation exposure. This work describes Monte Carlo radiation transport calculations for the field of view under a variety of situations. Presented first are results for natural 40K and thorium and uranium series radionuclides distributed homogeneously within the ground. Results are then described for atmospheric radioactive caesium fallout, such as from the Fukushima Daiichi Nuclear Power Plant accident. Various stages of fallout evolution are considered through the depth distribution of 134Cs and 137Cs in soil. The fields of view for the natural radionuclides and radiocaesium are different. This can affect the responses of radiation monitors to th...

  11. Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect (OSTI)

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  12. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    SciTech Connect (OSTI)

    Klute, Stefan; Huber, Wolfgang-Bruno [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany)] [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Meyer, Franz [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)] [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)

    2013-07-01

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  13. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  14. Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud

    SciTech Connect (OSTI)

    Hazelton, R.F.

    1987-09-01

    Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

  15. DEVELOPMENT OF A ROTARY MICROFILTER FOR RADIOACTIVE WASTE APPLICATIONS

    SciTech Connect (OSTI)

    Poirier, M; David Herman, D; Samuel Fink, S

    2008-02-25

    The processing rate of Savannah River Site (SRS) high-level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross-flow filter, produces {approx}0.02 gpm/sq. ft. of filtrate under expected operating conditions. Savannah River National Laboratory (SRNL) demonstrated significantly higher filter flux for actual waste samples using a small-scale rotary filter. With funding from the U. S. Department of Energy Office of Cleanup Technology, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. The authors improved the design for the disks and filter unit to make them suitable for high-level radioactive service. They procured two units using the new design, tested them with simulated SRS wastes, and evaluated the operation of the units. Work to date provides the following conclusions and program status: (1) The authors modified the design of the filter disks to remove epoxy and Ryton{reg_sign}. The new design includes welding both stainless steel and ceramic coated stainless steel filter media to a stainless steel support plate. The welded disks were tested in the full-scale unit. They showed good reliability and met filtrate quality requirements. (2) The authors modified the design of the unit, making installation and removal easier. The new design uses a modular, one-piece filter stack that is removed simply by disassembly of a flange on the upper (inlet) side of the filter housing. All seals and rotary unions are contained within the removable stack. (3) While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service conditions is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement of the current seal with an air seal could increase the lifetime to 5 years and is undergoing testing in the current work. (4) The bottom bushing showed wear due to a misalignment during the manufacture of the filter tank. Replacing the graphite bushing with a more wear resistant material such as a carbide material will increase the lifetime of the bushing. This replacement requires a more wear resistant part or coating to prevent excessive wear of the shaft. The authors are currently conducting testing with the more wear resistant bushing. (5) The project team plans to use the rotary microfilter as a filter in advance of an ion exchange process under development for potential deployment in SRS waste tank risers.

  16. Fifty years of federal radioactive waste management: Policies and practices

    SciTech Connect (OSTI)

    Bradley, R.G.

    1997-04-01

    This report provides a chronological history of policies and practices relating to the management of radioactive waste for which the US Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy, have been responsible since the enactment of the Atomic Energy Act in 1946. The defense programs and capabilities that the Commission inherited in 1947 are briefly described. The Commission undertook a dramatic expansion nationwide of its physical facilities and program capabilities over the five years beginning in 1947. While the nuclear defense activities continued to be a major portion of the Atomic Energy Commission`s program, there was added in 1955 the Atoms for Peace program that spawned a multiplicity of peaceful use applications for nuclear energy, e.g., the civilian nuclear power program and its associated nuclear fuel cycle; a variety of industrial applications; and medical research, diagnostic, and therapeutic applications. All of these nuclear programs and activities generated large volumes of radioactive waste that had to be managed in a manner that was safe for the workers, the public, and the environment. The management of these materials, which varied significantly in their physical, chemical, and radiological characteristics, involved to varying degrees the following phases of the waste management system life cycle: waste characterization, storage, treatment, and disposal, with appropriate transportation linkages. One of the benefits of reviewing the history of the waste management program policies and practices if the opportunity it provides for identifying the lessons learned over the years. Examples are summarized at the end of the report and are listed in no particular order of importance.

  17. The Spanish General Radioactive Waste Management Plan

    SciTech Connect (OSTI)

    Espejo, J.M.; Abreu, A. [National Company for Radioactive Waste Limited Company (ENRESA), Madrid (Spain)

    2008-07-01

    This paper mainly describes the strategies, the necessary actions and the technical solutions to be developed by ENRESA in the short, medium and long term, aimed at ensuring the adequate management of radioactive waste, the dismantling and decommissioning of nuclear and radioactive facilities and other activities, including economic and financial measures required to carry them out. Starting with the Spanish administrative organization in this field, which identifies the different agents involved and their roles, and after referring to the waste generation, the activities to be performed in the areas of LILW, SF and HLW management, decommissioning of installations and others are summarized. Finally, the future management costs are estimated and the financing system currently in force is explained. The so-called Sixth General Radioactive Waste Plan (6. GRWP), approved by the Spanish Government, is the 'master document' of reference where all the above mentioned issues are contemplated. In summary: The 6. GRWP includes the strategies and actions to be performed by Enresa in the coming years. The document, revised by the Government and subject to a process of public information, underlines the fact that Spain possesses an excellent infrastructure for the safe and efficient management of radioactive waste, from the administrative, technical and economic-financial points of view. From the administrative point of view there is an organisation, supported by ample legislative developments, that contemplates and governs the main responsibilities of the parties involved in the process (Government, CSN, ENRESA and waste producers). As regards the technical aspect, the experience accumulated to date by Enresa is particularly significant, as are the technologies now available in the field of management and for dismantling processes. As regards the economic-financial basis, a system is in place that guarantees the financing of radioactive waste management costs. This system is based on the generation of funds up front, during the operating lifetime of the facilities, through the application of fees established by Statutory provisions. Finally, a mandatory mechanism of annual revision for both technical issues and economic and financial aspects, allows to have updated all the courses of action. (authors)

  18. RH_SRS_Shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on Global TechnologyProceeding SignPrice Volatility

  19. SGP Shipment Notification Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12 Page 1 of 24Department2/01/123 SGP

  20. In-field analysis and assessment of nuclear material

    SciTech Connect (OSTI)

    Morgado, R.E.; Myers, W.S.; Olivares, J.A.; Phillips, J.R.; York, R.L.

    1996-05-01

    Los Alamos National Laboratory has actively developed and implemented a number of instruments to monitor, detect, and analyze nuclear materials in the field. Many of these technologies, developed under existing US Department of Energy programs, can also be used to effectively interdict nuclear materials smuggled across or within national borders. In particular, two instruments are suitable for immediate implementation: the NAVI-2, a hand-held gamma-ray and neutron system for the detection and rapid identification of radioactive materials, and the portable mass spectrometer for the rapid analysis of minute quantities of radioactive materials. Both instruments provide not only critical information about the characteristics of the nuclear material for law-enforcement agencies and national authorities but also supply health and safety information for personnel handling the suspect materials.

  1. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys...

  2. New York State low-level radioactive waste status report for 1998

    SciTech Connect (OSTI)

    Voelk, H.

    1999-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs.

  3. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect (OSTI)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.

  4. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    SciTech Connect (OSTI)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.; Henckel, George; Gruetzmacher, Kathleen M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorized Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)

  5. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    SciTech Connect (OSTI)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  6. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, S. Y.; Smith, III, F. G.

    2014-07-25

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermalmore »response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.« less

  7. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    SciTech Connect (OSTI)

    Lee, S. Y. [Savannah River Site Nuclear Solutions, LLC, Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, III, F. G. [Savannah River Site Nuclear Solutions, LLC, Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-07-25

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.

  8. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    SciTech Connect (OSTI)

    Lee, S. Y. [Savannah River Site Nuclear Solutions, LLC, Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, III, F. G. [Savannah River Site Nuclear Solutions, LLC, Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-10-01

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.

  9. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    E-Print Network [OSTI]

    T. I. Banks; S. J. Freedman; J. Wallig; N. Ybarrolaza; A. Gando; Y. Gando; H. Ikeda; K. Inoue; Y. Kishimoto; M. Koga; T. Mitsui; K. Nakamura; I. Shimizu; J. Shirai; A. Suzuki; Y. Takemoto; K. Tamae; K. Ueshima; H. Watanabe; B. D. Xu; H. Yoshida; S. Yoshida; A. Kozlov; C. Grant; G. Keefer; A. Piepke; T. Bloxham; B. K. Fujikawa; K. Han; K. Ichimura; H. Murayama; T. O'Donnell; H. M. Steiner; L. A. Winslow; D. A. Dwyer; R. D. McKeown; C. Zhang; B. E. Berger; C. E. Lane; J. Maricic; T. Miletic; M. Batygov; J. G. Learned; S. Matsuno; M. Sakai; G. A. Horton-Smith; K. E. Downum; G. Gratta; Y. Efremenko; O. Perevozchikov; H. J. Karwowski; D. M. Markoff; W. Tornow; K. M. Heeger; J. A. Detwiler; S. Enomoto; M. P. Decowski

    2015-02-12

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  10. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE.

    SciTech Connect (OSTI)

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-02-27

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data recorded automatically by dataloggers that will be periodically downloaded. Solar panels provide power for the batteries to run both the dataloggers and PICs. Truck drivers have been asked to park their truck within the PIC array for only the time it takes to complete an information log before moving on to one of two Radioactive Waste Management Sites (RWMS) on the NTS. On the log, the truck drivers record their shipment identification number, the time of day, where the waste originated, and information on the route they used to reach the NTS. This data will facilitate comparison of PIC readings with waste manifests and other waste disposal operations data collected at the RWMSs. Gamma radiation measurements collected from the PICs will be analyzed using standard health physics and statistical methods for comparison to DOT standards, but with the added benefit of obtaining an improved understanding of the variability of readings that can occur in the near vicinity of a LLW truck. The data collected will be combined with measurements of street width and other information about transportation routes through towns to develop realistic dose scenarios for citizens in Nevada and Utah towns.

  11. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    SciTech Connect (OSTI)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

  12. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  13. Proton radioactivity half lives with Skyrme interactions

    E-Print Network [OSTI]

    T. R. Routray; Abhishek Mishra; S. K. Tripathy; B. Behera; D. N. Basu

    2012-05-31

    The potential barrier impeding the spontaneous emission of protons in the proton radioactive nuclei is calculated as the sum of nuclear, Coulomb and centrifugal contributions. The nuclear part of the proton-nucleus interaction potential is obtained in the energy density formalism using Skyrme effective interaction that results into a simple algebraic expression. The half-lives of the proton emitters are calculated for the different Skyrme sets within the improved WKB framework. The results are found to be in reasonable agreement with the earlier results obtained for more complicated calculations involving finite range interactions.

  14. Astrophysics experiments with radioactive beams at ATLAS

    SciTech Connect (OSTI)

    Back, B. B.; Clark, J. A.; Pardo, R. C.; Rehm, K. E., E-mail: rehm@anl.gov; Savard, G. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)] [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2014-04-15

    Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

  15. Sealed Radioactive Source Accountability and Control Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-15

    For use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. This Guide provides an acceptable methodology for establishing and operating a sealed radioactive source accountability and control program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart M of 10 CFR 835. Canceled by DOE G 441.1-1B.

  16. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  17. Fusion Induced by Radioactive Ion Beams

    E-Print Network [OSTI]

    J. F. Liang; C. Signorini

    2005-04-26

    The use of radioactive beams opens a new frontier for fusion studies. The coupling to the continuum can be explored with very loosely bound nuclei. Experiments were performed with beams of nuclei at or near the proton and neutron drip-lines to measure fusion and associated reactions in the vicinity of the Coulomb barrier. In addition, the fusion yield is predicted to be enhanced in reactions involving very neutron-rich unstable nuclei. Experimental measurements were carried out to investigate if it is feasible to use such beams to produce new heavy elements. The current status of these experimental activities is given in this review.

  18. The environmental impact of radioactive effluents from a university reactor 

    E-Print Network [OSTI]

    Hamiter, Floyd Raymond

    1975-01-01

    of the radioactive cloud were then determined to a distance of 50 miles from the reactor. With the aid of population projections for the reactor environs, annual population doses due to gaseous effluents were estimated. Concentration of radioactive liquid waste... 13 3, Exposure pathways to man 17 INTRODUCTION Prior to World War II, little was known about radioactivity in the environment. The information available was exchanged among a rel- atively few specialized laboratories equipped to measure natural...

  19. Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes

    SciTech Connect (OSTI)

    Wade, J.F.; Williams, P.M.

    1995-05-17

    A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550{degrees}C and 650{degrees}C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s.

  20. EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program

    Broader source: Energy.gov [DOE]

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

  1. Hanford Site Shares Lessons Learned in Retrieving Highly Radioactive...

    Energy Savers [EERE]

    radioactive sludge at the Hanford site. This pump was modified to fit the underwater environment where the sludge is stored. Representatives from the Oak Ridge Office of...

  2. The radioactive Substances (Prepared Uranium Thorium Compounds) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01

    STATUTORY INSTRUMENTS 1962 No. 2711 ATOMIC ENERGY AND RADIOACI1VE SUBSTANCES The Radioactive Substances (prepared Uranium and Thorium Compounds) Exemption Order 1962

  3. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

  4. Revised Draft Hanford Site Solid (Radioactive and Hazardous)...

    Office of Environmental Management (EM)

    Operations Office TITLE: Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE...

  5. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Richland Operations Office TITLE: Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE...

  6. Office of Civilian Radioactive Waste Management-Quality Assurance...

    Broader source: Energy.gov (indexed) [DOE]

    and description of the Quality Assurance program. Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description More Documents &...

  7. EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result...

  8. Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at...

    Office of Science (SC) Website

    Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear...

  9. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    radioac- tive waste repository construction and operation,and Construction of Underground Repositories for Radioactive Wastes,suitable for the construction of deep waste repositories and

  10. Huizenga leads safety of spent fuel management, radioactive waste...

    National Nuclear Security Administration (NNSA)

    Huizenga leads safety of spent fuel management, radioactive waste management meeting in Vienna | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  11. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  12. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    SciTech Connect (OSTI)

    Ralph Best; T. Winnard; S. Ross; R. Best

    2001-08-17

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as well as non-radioactive traffic fatalities. The Yucca Mountain EIS Transportation Database was developed using Microsoft Access 97{trademark} software and the Microsoft Windows NT{trademark} operating system. The database consists of tables for storing data, forms for selecting data for querying, and queries for retrieving the data in a predefined format. Database queries retrieve records based on input parameters and are used to calculate incident-free and accident doses using unit risk factors obtained from RADTRAN results. The next section briefly provides some background that led to the development of the database approach used in preparing the Yucca Mountain DEIS. Subsequent sections provide additional details on the database structure and types of impacts calculated using the database.

  13. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOE Patents [OSTI]

    Cole, Jerald D. (Idaho Falls, ID); Drigert, Mark W. (Idaho Falls, ID); Reber, Edward L. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID)

    2001-01-01

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  14. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

  15. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect (OSTI)

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  16. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  17. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  18. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  19. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  20. LATIN AMERICAN AND CARIBBEAN WORKSHOP ON THE SUSTAINABILITY OF RADIOACTIVE SOURCE PHYSICAL PROTECTION UPGRADES HOSTED IN GUATEMALA

    SciTech Connect (OSTI)

    Greenberg, Raymond; Watson, Erica E.; Morris, Frederic A.; de Leal, Patty

    2009-10-07

    The Global Threat Reduction Initiative (GTRI) reduces and protects vulnerable nuclear and radiological material located at civilian sites worldwide. The GTRI program has worked successfully to remove and protect nuclear and radioactive materials, including orphaned and disused high-activity sources, and is now working to ensure sustainability. Internationally, over 40 countries are cooperating with GTRI to enhance the security of radiological materials. GTRI is now seeking to develop and enhance sustainability by coordinating its resources with those of the partner country, other donor countries, and international organizations such as the International Atomic Energy Agency (IAEA).

  1. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  2. Carbon isotopic evidence for biodegradation of organic contaminants in the shallow vadose zone of the radioactive waste management complex

    E-Print Network [OSTI]

    Conrad, Mark E.; DePaolo, Donald J.

    2003-01-01

    at the Radioactive Waste Management Complex, Idaho NationalSciences. 1995. Radioactive Waste Management Complex organicat the Radioactive Waste Management Complex. Lockheed Martin

  3. RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE

    SciTech Connect (OSTI)

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value. For the elements, which have no stable characteristic terrestrial isotopic composition, the data on the half-lives and the relative atomic masses for the nuclides of interest for those elements have been evaluated. The values of the half-lives with their uncertainties are listed in the table. The uncertainties are given for the last digit quoted of the half-life and are given in parentheses. A half-life entry for the Table having a value and an uncertainty of 7 {+-} 3 is listed in the half-life column as 7 (3). The criteria to include data in this Table, is to be the same as it has been for over sixty years. It is the same criteria, which are used for all data that are evaluated for inclusion in the Standard Table of Atomic Weights. If a report of data is published in a peer-reviewed journal, that data is evaluated and considered for inclusion in the appropriate table of the biennial report of the Atomic Weights Commission. As better data becomes available in the future, the information that is contained in either of the Tables of Standard Atomic Weights or in the Table of Radioactive Elements may be modified. It should be noted that the appearance of any datum in the Table of the Radioactive Elements is merely for the purposes of calculating an atomic mass value for any sample of a radioactive material, which might have a variety of isotopic compositions and it has no implication as to the priority for claiming discovery of a given element and is not intended to. The atomic mass values have been taken primarily from the 2003 Atomic Mass Table. Mass values for those radioisotopes that do not appear in the 2003 Atomic mass Table have been taken from preliminary data of the Atomic Mass Data Center. Most of the quoted half-lives.

  4. 2011 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-03-20

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2007a) requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs), with the results submitted annually to U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 1999a; 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2011. This annual summary report presents data and conclusions from the FY 2011 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R and D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2011 include the following: (1) Operation of a new shallow land disposal unit and a new Resource Conservation and Recovery Act (RCRA)-compliant lined disposal unit at the Area 5 RWMS; (2) Development of new closure inventory estimates based on disposals through FY 2011; (3) Evaluation of new or revised waste streams by special analysis; (4) Development of version 2.102 of the Area 3 RWMS GoldSim PA model; and (5) Development of version 4.113 of the Area 5 RWMS GoldSim PA model. Analysis of the latest available data using the Area 5 RWMS v4.113 GoldSim PA model indicates that all performance objectives can be met. The results and conclusions of the Area 5 RWMS PA are judged valid, and there is no need to the revise the PA. The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. In FY 2011, there were no operational changes, monitoring results, or R and D results for the Area 3 RWMS that would impact PA validity. Despite the increase in waste volume and inventory at the Area 3 RWMS since 1996 when the PA was approved, the facility performance evaluated with the Area 3 RWMS PA GoldSim model, version 2.0 (with the final closure inventory), remains well below the performance objectives set forth in U.S. Department of Energy Order DOE O 435.1, 'Radioactive Waste Management' (DOE, 2001). The conclusions of the Area 3 RWMS PA remain valid. A special analysis was prepared to update the PA and CA results for the Area 3 RWMS in FY 2011. Release of the special analysis is planned for FY 2012. The continuing adequacy of the CAs was evaluated with the new models, and no significant changes that would alter CA results or conclusions were found. Inclusion of the Frenchman Flat Underground Test Area (UGTA) results in the Area 5 RWMS CA is scheduled for FY 2016, pending the completion of the closure report for the Frenchman Flat UGTA corrective action unit (CAU) in FY 2015. An industrial site, CAU 547, with corrective action sites near the Area 3 RWMS was found to have a significant plutonium inventory in 2009. CAU 547 will be evaluated for inclusion of future revisions or updates of the Area 3 RWMS CA. The revision of the Area 3 RWMS CA, which will include the UGTA source terms, is expected in FY 2024, following the completion of the Yucca Flat CAU Corrective Action Decision Document, scheduled for FY 2023. Near-term R and D efforts will focus on continuing development of the Are

  5. Method for electrochemical decontamination of radioactive metal

    DOE Patents [OSTI]

    Ekechukwu, Amy A. (Augusta, GA)

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  6. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  7. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  8. STUDY OF RADIOACTIVE IMPURITIES IN SOLIDS PART ONE : RADIATION CHARACTERISTICS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    285 STUDY OF RADIOACTIVE IMPURITIES IN SOLIDS PART ONE : RADIATION CHARACTERISTICS F. HARTMANN problem of the emission of radiation by radioactive nuclei is usually treated in a very general form for the computation of relaxation and radiofrequency effects. LE JOURNAL DE PHYSIQUE TOME 33, FÃ?VRIER-MARS 1972

  9. GEONEUTRINOS AND THE RADIOACTIVE POWER OF THE EARTH

    E-Print Network [OSTI]

    Mcdonough, William F.

    % of this radioactive power (3­8 TW) escapes to space in the form of geoneutrinos. The remaining 11­38 TW heats observations in Japan and Italy find consistent values of radiogenic heat- ing. The combined result mildlyGEONEUTRINOS AND THE RADIOACTIVE POWER OF THE EARTH S. T. Dye1,2 Received 4 April 2012; revised 15

  10. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  11. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  12. Radioactive Waste Information for 1998 and Record-To-Date

    SciTech Connect (OSTI)

    D. L. French; R. E. Tallman; K. A. Taylor

    1999-07-01

    This document presents detailed data, bar graphs, and pie charts on volume, radioactivity; isotopic identity, origin, and status of radioactive waste for calendar year 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL). The data presented are from the INEEL Integrated Waste Information System.

  13. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    SciTech Connect (OSTI)

    Hayes, Timothy; Nelson, Roger

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)

  14. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, David K. (Broomfield, CO); Tyree, William H. (Boulder, CO)

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  15. Submersible purification system for radioactive water

    DOE Patents [OSTI]

    Abbott, Michael L. (Fort Collins, CO); Lewis, Donald R. (Pocatello, ID)

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  16. Evaluation of radioactive scrap metal recycling

    SciTech Connect (OSTI)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  17. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  18. Standard guide for sampling radioactive tank waste

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOE Patents [OSTI]

    Zeren, J.D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet. 5 figures.

  20. Radioactive air emissions notice of construction for deactivation of the PUREX storage tunnel number 2

    SciTech Connect (OSTI)

    JOHNSON, R.E.

    1999-10-11

    The Plutonium-Uranium Extraction (PUREX) Plant Storage Tunnel Number 2 (hereafter referred to as the PUREX Tunnel) was built in 1964. Since that time, the PUREX Tunnel has been used for storage of radioactive and mixed waste. In 1991, the PUREX Plant ceased operations and was transitioned to deactivation. The PUREX Tunnel continued to receive PUREX Plant waste material for storage during transition activities. Before 1995, a decision was made to store radioactive and mixed waste in the PUREX Tunnel generated from other onsite sources, on a case-by-case basis. This notice of construction (NOC) describes the activities associated with the reactivation of the PUREX Tunnel ventilation system and the transfer of up to 3.5 million curies (MCi) of radioactive waste to the PUREX Tunnel from any location on the Hanford Site. The unabated total effective dose equivalent (TEDE) estimated for the hypothetical offsite maximally exposed individual (MEI) is 5.6 E-2 millirem (mrem). The abated TEDE conservatively is estimated to account for 1.9 E-5 mrem to the MEI. The following text provides information requirements of Appendix A of Washington Administrative Code (WAC) 246-247 (requirements 1 through 18).