Powered by Deep Web Technologies
Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

August 1999 Radiation Safety Manual Section 12 Shipment of Radioactive Materials  

E-Print Network [OSTI]

August 1999 Radiation Safety Manual Section 12 ­ Shipment of Radioactive Materials UW Environmental Health and Safety Page 12-1 Section 12 Shipment of Radioactive Materials Contents A. Shipping Regulations regulations for the safe transportation of radioactive materials. These regulations are adopted from those

Wilcock, William

2

INSTRUCTIONS FOR OPENING RADIONUCLIDE SHIPMENTS All packages containing radioactive material are physically received at the Department of Environmental  

E-Print Network [OSTI]

are monitored and contamination of the package exterior is assessed. The radioactive stock vialINSTRUCTIONS FOR OPENING RADIONUCLIDE SHIPMENTS All packages containing radioactive material radionuclide packages. GENERAL PROCEDURES 1. Radioactive packages must be opened and inspected as soon

Firestone, Jeremy

3

ELUCIDATING THE DIFFERENCES BETWEEN ONSITE AND OFFSITE SHIPMENT OF RADIOACTIVE MATERIALS  

SciTech Connect (OSTI)

Federal regulations stipulate how radioactive materials are transported within the United States. However, the Department of Energy, under Department of Energy Order, has the authority to operate, within the boundaries of their physical site, to other stipulations. In many cases the DOE sites have internal reviews for onsite transfers that rival reviews performed by the regulatory authorities for offsite shipments. Most of the differences are in the level or type of packaging that is required, but in some cases it may be in the amount and type of material that is allowed to be transferred. This paper will describe and discuss those differences and it will discuss ways to effectively align the onsite rules for transferring materials with those for offsite shipment.

Loftin, B.; Watkins, R.

2013-06-19T23:59:59.000Z

4

Enhancements to System for Tracking Radioactive Waste Shipments...  

Energy Savers [EERE]

Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access...

5

Radioactive Material Transportation Practices  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

2002-09-23T23:59:59.000Z

6

Annual Transportation Report for Radioactive Waste Shipments...  

National Nuclear Security Administration (NNSA)

ANNUAL TRANSPORTATION REPORT FY 2008 Radioactive Waste Shipments to and from the Nevada Test Site (NTS) February 2009 United States Department of Energy National Nuclear Security...

7

Portsmouth Site Delivers First Radioactive Waste Shipment to...  

Office of Environmental Management (EM)

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

8

Radioactive Material Transportation Practices Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Cancels DOE M 460.2-1.

2008-06-04T23:59:59.000Z

9

Routing of radioactive shipments in networks with time-varying costs and curfews  

SciTech Connect (OSTI)

This research examines routing of radioactive shipments in highway networks with time-dependent travel times and population densities. A time-dependent least-cost path (TDLCP) algorithm that uses a label-correcting approach is adapted to include curfews and waiting at nodes. A method is developed to estimate time-dependent population densities, which are required to estimate risk associated with the use of a particular highway link at a particular time. The TDLCP algorithm is implemented for example networks and used to examine policy questions related to radioactive shipments. It is observed that when only Interstate highway facilities are used to transport these materials, a shipment must go through many cities and has difficulty avoiding all of them during their rush hour periods. Decreases in risk, increased departure time flexibility, and modest increases in travel times are observed when primary and/or secondary roads are included in the network. Based on the results of the example implementation, the suitability of the TDLCP algorithm for strategic nuclear material and general radioactive material shipments is demonstrated.

Bowler, L.A.; Mahmassani, H.S. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

1998-09-01T23:59:59.000Z

10

Radioactive Materials License Commitments  

E-Print Network [OSTI]

Radioactive Materials License Commitments for The University of Texas at Austin May 2009 July 2009 in the use of radioactive materials. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means

11

Transporting radioactive materials: Q & A to your questions  

SciTech Connect (OSTI)

Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet.

Not Available

1993-04-01T23:59:59.000Z

12

The radioactive materials packaging handbook: Design, operations, and maintenance  

SciTech Connect (OSTI)

As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

Shappert, L.B.; Bowman, S.M. [Oak Ridge National Lab., TN (United States); Arnold, E.D. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)] [and others

1998-08-01T23:59:59.000Z

13

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect (OSTI)

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

14

Container for radioactive materials  

DOE Patents [OSTI]

A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

Fields, S.R.

1984-05-30T23:59:59.000Z

15

Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Haffner, D. R.

1988-06-01T23:59:59.000Z

16

Annual Report - FY 2002, Radioactive Waste Shipments To and From the Nevada Test Site  

SciTech Connect (OSTI)

In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMSs) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2002.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-01-01T23:59:59.000Z

17

Packaging and Transportation for Offsite Shipment of Materials of National Security Interest  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The purpose of this Order is to make clear that the packaging and transportation of all offsite shipments of materials of national security interest for DOE must be conducted in accordance with DOT and Nuclear Regulatory Commission (NRC) regulations that would be applicable to comparable commercial shipments, except where an alternative course of action is identified in this Order. Cancels DOE O 461.1A.

2010-12-20T23:59:59.000Z

18

Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009  

SciTech Connect (OSTI)

In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2010-02-01T23:59:59.000Z

19

Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California  

SciTech Connect (OSTI)

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

20

Radioactive waste material melter apparatus  

DOE Patents [OSTI]

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Radioactive waste material melter apparatus  

DOE Patents [OSTI]

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

Newman, D.F.; Ross, W.A.

1990-04-24T23:59:59.000Z

22

Storage depot for radioactive material  

DOE Patents [OSTI]

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

23

Radiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material &  

E-Print Network [OSTI]

quarterly · Radioactive waste retrieval, storage, disposal · Dosimetry exchange · Leak tests of sealedRadiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material, Chemistry, Physics, Applied Physiology · Radioactive Material ­ Sealed Sources, Unsealed Sources (liquid

Sherrill, David

24

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

25

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

26

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Miller, R. L.; Scotti, K. S.

1986-05-01T23:59:59.000Z

27

Storage containers for radioactive material  

DOE Patents [OSTI]

A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

Groh, Edward F. (Naperville, IL); Cassidy, Dale A. (Valparaiso, IN); Dates, Leon R. (Elmwood Park, IL)

1981-01-01T23:59:59.000Z

28

Storage containers for radioactive material  

DOE Patents [OSTI]

A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

Groh, E.F.; Cassidy, D.A.; Dates, L.R.

1980-07-31T23:59:59.000Z

29

Safety and Security Technologies for Radioactive Material Shipments |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1 Department of Energy and

30

RPR 14 ISU-1 REQUEST FOR SHIPMENT OF RADIOACTIVE MATERIAL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote:BEAMENV-39658 Revision37045624

31

Safety and Security Technologies for Radioactive Material Shipments  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartmentRestrictionsExample Sheet) | Department of EnergySAFETYSafety

32

Ontario Hydro`s transportation of radioactive material and emergency response plan  

SciTech Connect (OSTI)

Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro`s shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation`s ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada.

Karmali, N. [Ontario Hydro, Toronto, Ontario (Canada). Nuclear Operations Branch

1993-12-31T23:59:59.000Z

33

Radioactive material package seal tests  

SciTech Connect (OSTI)

General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

1990-01-01T23:59:59.000Z

34

Laboratory Surveys when Working with Radioactive Materials  

E-Print Network [OSTI]

radioactive materials (RAM) are used or stored, including waste areas. Negative results should be clearlyLaboratory Surveys when Working with Radioactive Materials Procedure: 7.546 Created: 9/25/14 Version: 1.0 Revised: Environmental Health & Safety Page 1 of 6 A. Purpose Radioactive contamination and

Jia, Songtao

35

Radioactive materials released from nuclear power plants: Annual report, 1993. Volume 14  

SciTech Connect (OSTI)

Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1993 have been compiled and reported. The summary data for the years 1974 through 1992 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1993 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

Tichler, J.; Doty, K.; Lucadamo, K. [Brookhaven National Lab., Upton, NY (United States)

1995-12-01T23:59:59.000Z

36

Spills of Radioactive Materials -Emergency Procedures  

E-Print Network [OSTI]

to radioactive waste container. For surface decontamination, use soap and water and cleansers appropriateSpills of Radioactive Materials - Emergency Procedures Procedure: 7.53 Created: 1/16/2014 Version for injured personnel. B. Applicability/scope This policy applies to all facilities where radioactive

Jia, Songtao

37

Radiation Machines and Radioactive Materials (Iowa)  

Broader source: Energy.gov [DOE]

These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

38

Radiation Sources and Radioactive Materials (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

39

USING A RISK-BASED METHODOLOGY FOR THE TRANSFER OF RADIOACTIVE MATERIAL WITHIN THE SAVANNAH RIVER SITE BOUNDARY  

SciTech Connect (OSTI)

Shipment of radioactive materials (RAM) is discussed in the Code of Federal Regulations in parts of both 49 CFR and 10 CFR. The regulations provide the requirements and rules necessary for the safe shipment of RAM across public highways, railways, waterways, and through the air. These shipments are sometimes referred to as in-commerce shipments. Shipments of RAM entirely within the boundaries of Department of Energy sites, such as the Savannah River Site (SRS), can be made using methodology allowing provisions to maintain equivalent safety while deviating from the regulations for in-commerce shipments. These onsite shipments are known as transfers at the SRS. These transfers must follow the requirements approved in a site-specific Transportation Safety Document (TSD). The TSD defines how the site will transfer materials so that they have equivalence to the regulations. These equivalences are documented in an Onsite Safety Assessment (OSA). The OSA can show how a particular packaging used onsite is equivalent to that which would be used for an in-commerce shipment. This is known as a deterministic approach. However, when a deterministic approach is not viable, the TSD allows for a risk-based OSA to be written. These risk-based assessments show that if a packaging does not provide the necessary safety to ensure that materials are not released (during normal or accident conditions) then the worst-case release of materials does not result in a dose consequence worse than that defined for the SRS. This paper will discuss recent challenges and successes using this methodology at the SRS.

Loftin, B.; Watkins, R.; Loibl, M.

2010-06-03T23:59:59.000Z

40

Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection  

SciTech Connect (OSTI)

The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision points such as; crash, location, etc. For each pass through the routines, when a crash is randomly selected, crash parameters are then used to determine if failure has occurred using either external look up tables, correlations functions from deterministic calculations, or built in data libraries. The effectiveness of the software was recently demonstrated in safety analyses of the transportation of radioisotope systems for the US Dept. of Energy. These methods are readily adaptable to estimating risks associated with a variety of hazardous shipments such as spent nuclear fuel, explosives, and chemicals.

Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Radioactive materials shipping cask anticontamination enclosure  

DOE Patents [OSTI]

An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

Belmonte, Mark S. (Irwin, PA); Davis, James H. (Pittsburgh, PA); Williams, David A. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

42

Radioactive Material Use at the EMSL Radiochemistry Annex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dispersible radioactive material must be placed in rigid, leak- tight inner containers (e.g., durable screw-top sample jars). Non-dispersible radioactive material may...

43

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network [OSTI]

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

44

Regulatory compliance in the design of packages used to transport radioactive materials  

SciTech Connect (OSTI)

Shipments of radioactive materials within the regulatory jurisdiction of the US Department of Energy (DOE) must meet the package design requirements contained in Title 10 of the Code of Federal Regulations, Part 71, and DOE Order 5480.3. These regulations do not provide design criteria requirements, but only detail the approval standards, structural performance criteria, and package integrity requirements that must be met during transport. The DOE recommended design criterion for high-level Category I radioactive packagings is Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. However, alternative design criteria may be used if all the design requirements are satisfied. The purpose of this paper is to review alternatives to the Code criteria and discuss their applicability to the design of containment vessels in packages for high-level radioactive materials. Issues such as design qualification by physical testing, the use of scale models, and problems encountered using a non-ASME design approach are addressed.

Raske, D.T.

1993-06-01T23:59:59.000Z

45

Radioactive Material or Multiple Hazardous Materials Decontamination |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoansDepartment of Energy Radioactive

46

Radcalc: An Analytical Tool for Shippers of Radioactive Material and Waste  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) ships radioactive materials in support of its research and development, environmental restoration, and national defense activities. The Radcalc software program assists personnel working on behalf of DOE in packaging and transportation determinations (e.g., isotopic decay, decay heat, regulatory classification, and gas generation) for shipment of radioactive materials and waste. Radcalc performs: - The U.S. Department of Transportation determinations and classifications (i.e., activity concentration for exempt material Type A or B, effective A1/A2, limited quantity, low specific activity, highway route controlled quantity, fissile quantity, fissile excepted, reportable quantity, list of isotopes required on shipping papers) - DOE calculations (i.e., transuranic waste, Pu-239 equivalent curies, fissile-gram equivalents) - The U.S. Nuclear Regulatory Commission packaging category (i.e., Category I, II, or III) - Dose-equivalent curie calculations - Radioactive decay calculations using a novel decay methodology and a decay data library of 1,867 isotopes typical of the range of materials encountered in DOE laboratory environments - Hydrogen and helium gas calculations - Pressure calculations. Radcalc is a validated and cost-effective tool to provide consistency, accuracy, reproducibility, timeliness, quality, compliance, and appropriate documentation to shippers of radioactive materials and waste at DOE facilities nationwide. Hundreds of shippers and engineers throughout the DOE Complex routinely use this software to automate various determinations and to validate compliance with the regulations. The effective use of software by DOE sites contributes toward minimizing risk involved in radioactive waste shipments and assuring the safety of workers and the public. (authors)

Kapoor, A.K. [U.S. Department of Energy, Office of Transportation, Washington, DC (United States); Stuhl, L.A. [EnergySolutions Federal Services, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

47

Completion of the Radioactive Materials Packaging Handbook  

SciTech Connect (OSTI)

The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance, which will serve as a replacement for the Cask Designers Guide (Shappert, 1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US Department of Energy (DOE) and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials.

Shappert, L.B.

1998-02-01T23:59:59.000Z

48

Film Badge Application Radioactive Material Package Receipt Log  

E-Print Network [OSTI]

;RADIOACTIVE MATERIAL PACKAGE RECEIPT LOG DATE: DELIVERED BY: AUTHORIZED BY: Contamination Check DPM/100 cm2APPENDIX A Film Badge Application Radioactive Material Package Receipt Log Radioactive Material Package Receipt Form (Off-Campus Locations) Radiation / Contamination Survey Form #12;PERSONNEL MONITORING

Slatton, Clint

49

Corrosion resistant storage container for radioactive material  

DOE Patents [OSTI]

A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

Schweitzer, Donald G. (Bayport, NY); Davis, Mary S. (Wading River, NY)

1990-01-01T23:59:59.000Z

50

Corrosion resistant storage container for radioactive material  

DOE Patents [OSTI]

A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

Schweitzer, D.G.; Davis, M.S.

1984-08-30T23:59:59.000Z

51

Cask for radioactive material and method for preventing release of neutrons from radioactive material  

SciTech Connect (OSTI)

A cask for radioactive material, such as nuclear reactor fuel or spent nuclear reactor fuel, includes a plurality of associated walled internal compartments for containing such radioactive material, with neutron absorbing material present to absorb neutrons emitted by the radioactive material, and a plurality of thermally conductive members, such as longitudinal copper or aluminum castings, about the compartment and in thermal contact with the compartment walls and with other such thermally conductive members and having thermal contact surfaces between such members extending, preferably radially, from the compartment walls to external surfaces of the thermally conductive members, which surfaces are preferably in the form of a cylinder. The ends of the shipping cask also preferably include a neutron absorber and a conductive metal covering to dissipate heat released by decay of the radioactive material. A preferred neutron absorber utilized is boron carbide, preferably as plasma sprayed with metal powder or as particles in a matrix of phenolic polymer, and the compartment walls are preferably of stainless steel, copper or other corrosion resistant and heat conductive metal or alloy. The invention also relates to shipping casks, storage casks and other containers for radioactive materials in which a plurality of internal compartments for such material, e.g., nuclear reactor fuel rods, are joined together, preferably in modular construction with surrounding heat conductive metal members, and the modules are joined together to form a major part of a finished shipping cask, which is preferably of cylindrical shape. Also within the invention are methods of safely storing radioactive materials which emit neutrons, while dissipating the heat thereof, and of manufacturing the present shipping casks.

Gaffney, M.F.; Shaffer, P.T.

1981-09-29T23:59:59.000Z

52

Criteria for cesium capsules to be shipped as special form radioactive material  

SciTech Connect (OSTI)

The purpose of this report is to compile all the documentation which defines the criteria for Waste Encapsulation and Storage Facility (WESF) cesium capsules at the IOTECH facility and Applied Radiant Energy Corporation (ARECO) to be shipped as special form radioactive material in the Beneficial Uses Shipping System (BUSS) Cask. The capsules were originally approved as special form in 1975, but in 1988 the integrity of the capsules came into question. WHC developed the Pre-shipment Acceptance Test Criteria for capsules to meet in order to be shipped as special form material. The Department of Energy approved the criteria and directed WHC to ship the capsules at IOTECH and ARECO meeting this criteria to WHC as special form material.

Lundeen, J.E.

1994-10-01T23:59:59.000Z

53

Radioactive Material Declaration Form Exhibit to the Radioactive Waste Manual (RWM)  

E-Print Network [OSTI]

Radioactive Material Declaration Form Exhibit to the Radioactive Waste Manual (RWM) 12/5/2013 (form Declaration Form Exhibit to the Radioactive Waste Manual (RWM) 12/5/2013 (form date) SLAC-I-760-2A08Z-001 (RWM date) SLAC-I-760-2A08Z-001 (RWM number) Page 1 of 2 RADIOACTIVE MATERIAL DECLARATION FORM For RP use

Wechsler, Risa H.

54

Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis  

SciTech Connect (OSTI)

The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

2003-02-26T23:59:59.000Z

55

Introduction to naturally occurring radioactive material  

SciTech Connect (OSTI)

Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to! We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these radionuclides. We will then review some of the industrial sectors affected by TENORM, followed by a brief discussion on regulatory aspects of the issue.

Egidi, P.

1997-08-01T23:59:59.000Z

56

Base Technology for Radioactive Material Transportation Packaging Systems  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

1992-07-08T23:59:59.000Z

57

RADIOACTIVE MATERIAL PACKAGING TORQUE REQUIREMENTS COMPLIANCE  

SciTech Connect (OSTI)

Shipping containers used to transport radioactive material (RAM) in commerce employ a variety of closure mechanisms. Often, these closure mechanisms require a specific amount of torque be applied to a bolt, nut or other threaded fastener. It is important that the required preload is achieved so that the package testing and analysis is not invalidated for the purpose of protecting the public. Torque compliance is a means of ensuring closure preload, is a major factor in accomplishing the package functions of confinement/containment, sub-criticality, and shielding. This paper will address the importance of applying proper torque to package closures, discuss torque value nomenclature, and present one methodology to ensure torque compliance is achieved.

Watkins, R.; Leduc, D.

2011-03-24T23:59:59.000Z

58

One million curies of radioactive material recovered  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Removal Program and OSRP mission includes removal and disposal of excess, unwanted, abandoned, or orphan radioactive sealed sources that pose a potential risk to national...

59

Hazardous Materials Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

2015-04-20T23:59:59.000Z

60

Naturally Occurring Radioactive Materials in Cargo at US Borders  

SciTech Connect (OSTI)

In the U.S. and other countries, large numbers of vehicles pass through border crossings each day. The illicit movement of radioactive sources is a concern that has resulted in the installation of radiation detection and identification instruments at border crossing points. This activity is judged to be necessary because of the possibility of an act of terrorism involving a radioactive source that may include any number of dangerous radionuclides. The problem of detecting, identifying, and interdicting illicit radioactive sources is complicated by the fact that many materials present in cargo are somewhat radioactive. Some cargo contains naturally occurring radioactive material or technologically-enhanced naturally occurring radioactive material that may trigger radiation portal monitor alarms. Man-made radioactive sources, especially medical isotopes, are also frequently observed and produce alarms. Such nuisance alarms can be an operational limiting factor for screening of cargo at border crossings. Information about the nature of the radioactive materials in cargo that can interfere with the detection of radionuclides of concern is necessary. This paper provides such information for North American cargo, but the information may also be of use to border control officials in other countries. (PIET-43741-TM-361)

Kouzes, Richard T.; Ely, James H.; Evans, John C.; Hensley, Walter K.; Lepel, Elwood A.; McDonald, Joseph C.; Schweppe, John E.; Siciliano, Edward R.; Strom, Daniel J.; Woodring, Mitchell L.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Shipments in Idaho  

Broader source: Energy.gov (indexed) [DOE]

for standardizing instrumentation within the regional response structure * Adopted the DOE-MERRTT as the core training for radioactive materials * Assigned Radiation Control...

62

MATERIALS COMPATIBILITY OF SNAP FUEL COMPONENTS DURING SHIPMENT IN 9975 PACKAGING  

SciTech Connect (OSTI)

Materials Science and Technology has evaluated materials compatibility for the SNAP (Systems for Nuclear Auxiliary Power) fuel for containment within a 9975 packaging assembly for a shipping period of one year. The evaluation included consideration for potential for water within the convenience can, corrosion from water, galvanic corrosion, tape degradation, and thermal expansion risk. Based on a review of existing literature and assumed conditions, corrosion and/or degradation of the 304 stainless steel (SS) Primary Containment Vessel (PCV) and the 304 stainless steel convenience cans containing the SNAP fuel is not significant to cause failure during the 1 year time shipping period in the 9975 packaging assembly. However, storage beyond the 1 year shipping period has not been validated.

Vormelker, P

2006-11-14T23:59:59.000Z

63

Radioactive Samples / Materials at the APS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115,PerformanceUsing Radioactive Samples /

64

One million curies of radioactive material recovered  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOil inventoriesquasicrystalsRadioactive

65

Waste minimization for commercial radioactive materials users generating low-level radioactive waste  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

1991-07-01T23:59:59.000Z

66

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01T23:59:59.000Z

67

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents [OSTI]

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

68

A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?  

SciTech Connect (OSTI)

Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

Mark Schanfein

2009-07-01T23:59:59.000Z

69

Management of sewage sludge and ash containing radioactive materials.  

SciTech Connect (OSTI)

Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

2007-01-01T23:59:59.000Z

70

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

SciTech Connect (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen- containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organizations to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, Dale Elden; Hamp, S.

2002-02-01T23:59:59.000Z

71

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

SciTech Connect (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, D.E. (INEEL); Hamp, S. (DOE-Albuquerque Operations Office)

2002-01-04T23:59:59.000Z

72

A pill to treat people exposed to radioactive materials  

SciTech Connect (OSTI)

Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

Abergel, Rebecca

2013-10-31T23:59:59.000Z

73

A pill to treat people exposed to radioactive materials  

ScienceCinema (OSTI)

Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

Abergel, Rebecca

2014-06-24T23:59:59.000Z

74

Working with Radioactive Materials in Clinical Areas -Documentation  

E-Print Network [OSTI]

Working with Radioactive Materials in Clinical Areas - Documentation Procedure: 7.54 Created: 2008 ­ Documentation A. Purpose This SOP summarizes records that must be maintained as required by the Rules. Responsibility Authorized User, approved technologist or lab manager ­ maintain records of receipt, use, spill

Jia, Songtao

75

A manual for implementing residual radioactive material guidelines  

SciTech Connect (OSTI)

This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

1989-06-01T23:59:59.000Z

76

TRANSCOM: The US Department of Energy (DOE) system for tracking shipments  

SciTech Connect (OSTI)

The US Department of energy (DOE) Transportation Management Division (TMD) has developed a system which allows communications with and near real-time tracking of high-visibility shipments of hazardous materials. This system, which is known as TRANSCOM (Transportation Tracking and Communications System), is currently in operation. This paper summarizes the current status of TRANSCOM, its history, the experience associated with its use, and the future plans for its growth and enhancement. during the first half of fiscal year (FY) 1994, 38 shipments were tracked by the TRANSCOM system. These shipments included two Mark-42 spent fuel shipments, one BUSS cask shipment, and one waterway shipment (the Seawolf shipment).

Boes, K.S.; Joy, D.S.; Pope, R.B. [Oak Ridge National Lab., TN (United States); Thomas, T.M. [US Dept. of Energy, Germantown, MD (United States); Lester, P.B. [US Dept. of Energy, Oak Ridge, TN (United States)

1994-06-01T23:59:59.000Z

77

RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING  

SciTech Connect (OSTI)

The Model 9977 Packaging was initially issued a Certificate of Compliance (CoC) by the Department of Energy’s Office of Environmental Management (DOE-EM) for the transportation of radioactive material (RAM) in the Fall of 2007. This first CoC was for a single radioactive material and two packing configurations. In the five years since that time, seven Addendums have been written to the Safety Analysis Report for Packaging (SARP) and five Letter Amendments have been written that have authorized either new RAM contents or packing configurations, or both. This paper will discuss the process of updating the 9977 SARP to include all the contents and configurations, including the addition of a new content, and its submittal for recertification.

Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

2013-06-05T23:59:59.000Z

78

Derivation of residual radioactive material guidelines for uranium in soil at the Middlesex Sampling Plant Site, Middlesex, New Jersey  

SciTech Connect (OSTI)

Residual radioactive material guidelines for uranium in soil were derived for the Middlesex Sampling Plant (MSP) site in Middlesex, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. The site became contaminated from operations conducted in support of the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) between 1943 and 1967. Activities conducted at the site included sampling, storage, and shipment of uranium, thorium, and beryllium ores and residues. Uranium guidelines for single radioisotopes and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the MSP site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The RESRAD computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation. Four scenarios were considered for the site. These scenarios vary regarding future land use at the site, sources of water used, and sources of food consumed.

Dunning, D.E. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1995-02-01T23:59:59.000Z

79

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12T23:59:59.000Z

80

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Safe Use of Radioactive Materials Procedure: 7.542 Created: 3/7/2014  

E-Print Network [OSTI]

-level radioactive waste and still provide for ease of decontamination. Trays made of impervious material (iSafe Use of Radioactive Materials Procedure: 7.542 Created: 3/7/2014 Version: 1.0 Revised of radioactive materials (RAM). They are designed to reduce the risk of a significant contamination event

Jia, Songtao

82

rev September 2003 Radiation Safety Manual Section 11 Procurement of Radioactive Material  

E-Print Network [OSTI]

rev September 2003 Radiation Safety Manual Section 11 ­ Procurement of Radioactive Material Page 11-1 Section 11 Procurement of Radioactive Materials Contents A. Authorization to Order Radioactive Materials. Authorized Investigator Package Monitoring.................................11-3 3. No Contamination Detected

Wilcock, William

83

System for chemically digesting low level radioactive, solid waste material  

DOE Patents [OSTI]

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01T23:59:59.000Z

84

Radioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located in the 3410 Material Science and  

E-Print Network [OSTI]

contamination during transportation. Dispersible radioactive material must be placed in rigid, leak- tight inner be sufficient such that EMSL staff will not encounter radioactive contamination when they open the shippingRadioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located

85

Management of Naturally Occurring Radioactive Materials (NORM) in Canada  

SciTech Connect (OSTI)

In Canada, nuclear and radiological regulatory responsibilities are shared between the provinces/territories and the federal government. The Canadian Nuclear Safety Commission (CNSC) regulates nuclear fuel cycle materials and man-made radionuclides under the Nuclear Safety and Control Act (2000). The provinces and territories regulate NORM arising from industrial activities, not involving the nuclear fuel cycle materials. Present guideline--Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)--was published in 2000 in order to bring uniformity to the management of NORM-related procedures to provide adequate radiation protection for workers and the general public. The basic premise of these guidelines is that the NORM-related activities should not be posing any greater hazard than those activities regulated under the Nuclear Safety and Control Act; these concepts are described in this paper.

Baweja, Anar S.; Tracy, Bliss L. [Radiation Protection Bureau, Health Canada, Ottawa, Ontario (Canada)

2008-08-07T23:59:59.000Z

86

INTRODUCTION In every laboratory where radioactive materials are utilized, it is necessary to maintain a  

E-Print Network [OSTI]

) in their work habits and to minimize the potential for exposures, contamination or release of radioactiveINTRODUCTION In every laboratory where radioactive materials are utilized, it is necessary of Texas the privilege of using large varieties of radioactive materials. Large amounts of activity

87

Best Practices for the Security of Radioactive Materials  

SciTech Connect (OSTI)

This work is funded under a grant provided by the US Department of Health and Human Services, Centers for Disease Control. The Department of Health and Mental Hygiene (DOHMH) awarded a contract to Brookhaven National Laboratory (BNL) to develop best practices guidance for Office of Radiological Health (ORH) licensees to increase on-site security to deter and prevent theft of radioactive materials (RAM). The purpose of this document is to describe best practices available to manage the security of radioactive materials in medical centers, hospitals, and research facilities. There are thousands of such facilities in the United States, and recent studies suggest that these materials may be vulnerable to theft or sabotage. Their malevolent use in a radiological-dispersion device (RDD), viz., a dirty bomb, can have severe environmental- and economic- impacts, the associated area denial, and potentially large cleanup costs, as well as other effects on the licensees and the public. These issues are important to all Nuclear Regulatory Commission and Agreement State licensees, and to the general public. This document outlines approaches for the licensees possessing these materials to undertake security audits to identify vulnerabilities in how these materials are stored or used, and to describe best practices to upgrade or enhance their security. Best practices can be described as the most efficient (least amount of effort/cost) and effective (best results) way of accomplishing a task and meeting an objective, based on repeatable procedures that have proven themselves over time for many people and circumstances. Best practices within the security industry include information security, personnel security, administrative security, and physical security. Each discipline within the security industry has its own 'best practices' that have evolved over time into common ones. With respect to radiological devices and radioactive-materials security, industry best practices encompass both physical security (hardware and engineering) and administrative procedures. Security regimes for these devices and materials typically use a defense-in-depth- or layered-security approach to eliminate single points of failure. The Department of Energy, the Department of Homeland Security, the Department of Defense, the American Society of Industrial Security (ASIS), the Security Industry Association (SIA) and Underwriters Laboratory (UL) all rovide design guidance and hardware specifications. With a graded approach, a physical-security specialist can tailor an integrated security-management system in the most appropriate cost-effective manner to meet the regulatory and non-regulatory requirements of the licensee or client.

Coulter, D.T.; Musolino, S.

2009-05-01T23:59:59.000Z

88

DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

Blanton, P.; Eberl, K.

2008-09-14T23:59:59.000Z

89

NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING  

SciTech Connect (OSTI)

Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

Watkins, R; Leduc, D; Askew, N

2009-06-25T23:59:59.000Z

90

2011 Radioactive Materials Usage Survey for Unmonitored Point Sources  

SciTech Connect (OSTI)

This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

Sturgeon, Richard W. [Los Alamos National Laboratory

2012-06-27T23:59:59.000Z

91

Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations  

SciTech Connect (OSTI)

Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging not exceed the regulatory limits prescribed by 10 CFR 71 for non-exclusive shipments. The mass of each radioisotope presented in this paper is limited by the radiation dose rate on the external surface of the package, which per the regulatory limit should not exceed 200 mrem/hr. The results presented are a compendium of allowable masses of a variety of different isotopes (with varying impurity levels of beryllium in some of the actinide isotopes) that, when loaded in an unshielded packaging, do not result in an external dose rate on the surface of the package that exceeds 190 mrem/hr (190 mrem/hr was chosen to provide 5% conservatism relative to the regulatory limit). These mass limits define the term 'Small Gram Quantity' (SGQ) contents in the context of radioactive material transportation packages. The term SGQ is isotope-specific and pertains to contents in radioactive material transportation packages that do not require shielding and still satisfy the external dose rate requirements. Since these calculated mass limits are for contents without shielding, they are conservative for packaging materials that provide some limited shielding or if the contents are placed into a shielded package. The isotopes presented in this paper were chosen as the isotopes that Department of Energy (DOE) sites most likely need to ship. Other more rarely shipped isotopes, along with industrial and medical isotopes, are planned to be included in subsequent extensions of this work.

Sitaraman, S; Kim, S; Biswas, D; Hafner, R; Anderson, B

2010-10-27T23:59:59.000Z

92

Priorities for technology development and policy to reduce the risk from radioactive materials.  

SciTech Connect (OSTI)

The Standing Committee on International Security of Radioactive and Nuclear Materials in the Nonproliferation and Arms Control Division conducted its fourth annual workshop in February 2010 on Reducing the Risk from Radioactive and Nuclear Materials. This workshop examined new technologies in real-time tracking of radioactive materials, new risks and policy issues in transportation security, the best practices and challenges found in addressing illicit radioactive materials trafficking, industry leadership in reducing proliferation risk, and verification of the Nuclear Nonproliferation Treaty, Article VI. Technology gaps, policy gaps, and prioritization for addressing the identified gaps were discussed. Participants included academia, policy makers, radioactive materials users, physical security and safeguards specialists, and vendors of radioactive sources and transportation services. This paper summarizes the results of this workshop with the recommendations and calls to action for the Institute of Nuclear Materials Management (INMM) membership community.

Duggan, Ruth Ann

2010-06-01T23:59:59.000Z

93

Distribution of Radioactive Materials in the Absheron Peninsula, Azerbaijan - 13567  

SciTech Connect (OSTI)

The Absheron Peninsula forms the extreme Eastern part of Azerbaijan and juts into the Caspian Sea. The region has a long history of oil and gas exploration, transport, and processing and includes a number of abandoned chemical plants that were used in the separation of iodine from formation waters. As a result of lax environmental standards during the Soviet era, the industrial activity has led to serious contamination from oils residues, heavy metals and naturally occurring radioactive materials (NORM). Radiometric surveys performed over a wide range of the Absheron Peninsula showed generally low NORM concentrations. However, radiation levels two to three orders of magnitude above background levels were detected at two abandoned iodine separation plants near the capital city, Baku. These elevated radiation levels are mainly due to Ra-226 and U-238 with lower contributions from Ra-228 and U-235. (authors)

Vandergraaf, Tjalle T. [Consultant, Pinawa, MB, R0E 1L0 (Canada)] [Consultant, Pinawa, MB, R0E 1L0 (Canada); Mamedov, Gudrat G.; Ramazanov, Mahammadali A.; Badalov, Vatan H. [Baku State University, Baku (Azerbaijan)] [Baku State University, Baku (Azerbaijan); Naghiyev, Jalal A. [Institute of Radiation Problems of ANAS, Baku (Azerbaijan)] [Institute of Radiation Problems of ANAS, Baku (Azerbaijan); Mehdiyeva, Afat A. [National Aerospace Agency of Ministry of Defense Industry, Baku (Azerbaijan)] [National Aerospace Agency of Ministry of Defense Industry, Baku (Azerbaijan)

2013-07-01T23:59:59.000Z

94

Application of United States Department of Transportation regulations to hazardous material and waste shipments on the Hanford Site  

SciTech Connect (OSTI)

All hazardous material and waste transported over roadways open to the public must be in compliance with the US Department of Transportation (DOT) regulations. The DOT states that the hazardous material regulations (HMR) also apply to government-owned, contractor-operated (GOCO) transportation operations over any US Department of Energy (DOE) site roadway where the public has free and unrestricted access. Hazardous material and waste in packages that do not meet DOE regulations must be transported on DOE site roadways in a manner that excludes the public and nonessential workers. At the DOE Richland Field Office (the Hanford Site), hazardous material and waste movements that do not meet DOE requirements are transported over public access roadways during off-peak hours with the roadways barricaded. These movements are accomplished using a transportation plan that involves the DOE, DOE contractors, and private utilities who operate on or near the Hanford Site. This method, which is used at the Hanford Site to comply with DOE regulations onsite, can be communicated to other DOE sites to provide a basis for achieving consistency in similar transportation operations.

Burnside, M.E.

1992-01-01T23:59:59.000Z

95

DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials  

SciTech Connect (OSTI)

DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials Implementing adequate institutional programs and validating preparedness for emergency response to radiological transportation incidents along or near U.S. Department of Energy (DOE) shipping corridors poses unique challenges to transportation operations management. Delayed or insufficient attention to State and Tribal preparedness needs may significantly impact the transportation operations schedule and budget. The DOE Transportation Emergency Preparedness Program (TEPP) has successfully used a cooperative planning process to develop strong partnerships with States, Tribes, Federal agencies and other national programs to support responder preparedness across the United States. DOE TEPP has found that building solid partnerships with key emergency response agencies ensures responders have access to the planning, training, technical expertise and assistance necessary to safely, efficiently and effectively respond to a radiological transportation accident. Through the efforts of TEPP over the past fifteen years, partnerships have resulted in States and Tribal Nations either using significant portions of the TEPP planning resources in their programs and/or adopting the Modular Emergency Response Radiological Transportation Training (MERRTT) program into their hazardous material training curriculums to prepare their fire departments, law enforcement, hazardous materials response teams, emergency management officials, public information officers and emergency medical technicians for responding to transportation incidents involving radioactive materials. In addition, through strong partnerships with Federal Agencies and other national programs TEPP provided technical expertise to support a variety of radiological response initiatives and assisted several programs with integration of the nationally recognized MERRTT program into other training venues, thus ensuring consistency of radiological response curriculums delivered to responders. This presentation will provide an overview of the steps to achieve coordination, to avoid redundancy, and to highlight several of the successful partnerships TEPP has formed with States, Tribes, Federal agencies and other national programs. Events, accident scenarios, and training where TEPP was proven to be integral in building the radiological response capabilities for first responders to actual radiological incidents are also highlighted. Participants will gain an appreciation for the collaborative efforts States and Tribes are engaging in with the DOE to ensure that responders all along the DOE transportation corridors are adequately prepared to respond to shipments of radioactive materials through their communities.

Marsha Keister

2001-02-01T23:59:59.000Z

96

U.S. Department of Energy to Host Press Call on Radioactive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal November...

97

Albert Einstein College of Medicine Amendment to Non-human Use of Radioactive Material License  

E-Print Network [OSTI]

RSO-2 Rev.0 Albert Einstein College of Medicine Amendment to Non-human Use of Radioactive Material License INSTRUCTIONS: If you wish to make changes to your license to use radioactive material please exposure; Glove box: Mechanical pipettes: Fume hood: Absorbent liner & Tray Shielding: Lead: Lucite: GM

Emmons, Scott

98

SSRL Radioactive Material Sample Holder Catalog 5/30/14 Page 1 of 17  

E-Print Network [OSTI]

SSRL Radioactive Material Sample Holder Catalog 5/30/14 Page 1 of 17 Hazard Class Category finger under vacuum #12;SSRL Radioactive Material Sample Holder Catalog 5/30/14 Page 2 of 17 1.d USGS polyethylene envelopes. Check for no contamination of each envelope. - External envelope glued onto the cell

Wechsler, Risa H.

99

RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT  

SciTech Connect (OSTI)

This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

KOZLOWSKI, S.D.

2007-05-30T23:59:59.000Z

100

Experiences in the field of radioactive materials seizures in the Czech Republic  

SciTech Connect (OSTI)

In recent years, the amount of radioactive materials seizures (captured radioactive materials) has been rising. It was above all due to newly installed detection facilities that were able to check metallic scrap during its collection in scrap yards or on the entrance to iron-mills, checking municipal waste upon entrance to municipal disposal sites, even incineration plants, or through checking vehicles going through the borders of the Czech Republic. Most cases bore a relationship to secondary raw materials or they were connected to the application of machines and installations made from contaminated metallic materials. However, in accordance to our experience, the number of cases of seizures of materials and devices containing radioactive sources used in the public domain was lower, but not negligible, in the municipal storage yards or incineration plants. Atomic Act No. 18/1997 Coll. will apply to everybody who provides activities leading to exposure, mandatory assurance as high radiation safety as risk of the endangering of life, personal health and environment is as low as reasonably achievable in according to social and economic aspects. Hence, attention on the examination of all cases of the radioactive material seizure based on detection facilities alarm or reasonably grounds suspicion arising from the other information is important. Therefore, a service carried out by group of workers who ensure assessment of captured radioactive materials and eventual retrieval of radioactive sources from the municipal waste has come into existence in the Nuclear Research Institute Rez plc. This service has covered also transport, storage, processing and disposal of found radioactive sources. This service has arisen especially for municipal disposal sites, but later on even other companies took advantage of this service like incineration plants, the State Office for Nuclear Safety, etc. Our experience in the field of ensuring assessment of captured radioactive materials and eventual retrieval of radioactive sources will be presented in the paper. (authors)

Svoboda, Karel; Podlaha, Josef; Sir, David; Mudra, Josef [Nuclear Research Institute Rez plc (Czech Republic)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Albert Einstein College of Medicine Application for Non-human Use of Radioactive Material  

E-Print Network [OSTI]

RSO-1 Rev.0 Albert Einstein College of Medicine Application for Non-human Use of Radioactive pipettes: Fume hood: Absorbent liner & Tray Shielding: Lead: Lucite: GM survey meter: Handling tongs radioactive material is secure against unauthorized access: 9. Please check the type of application below

Emmons, Scott

102

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

103

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

104

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect (OSTI)

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

105

Ion-exchange material and method of storing radioactive wastes  

DOE Patents [OSTI]

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, S.; Roy, D.M.

1983-10-31T23:59:59.000Z

106

Compilation of current literature on seals, closures, and leakage for radioactive material packagings  

SciTech Connect (OSTI)

This report presents an overview of the features that affect the sealing capability of radioactive material packagings currently certified by the US Nuclear Regulatory Commission. The report is based on a review of current literature on seals, closures, and leakage for radioactive material packagings. Federal regulations that relate to the sealing capability of radioactive material packagings, as well as basic equations for leakage calculations and some of the available leakage test procedures are presented. The factors which affect the sealing capability of a closure, including the properties of the sealing surfaces, the gasket material, the closure method and the contents are discussed in qualitative terms. Information on the general properties of both elastomer and metal gasket materials and some specific designs are presented. A summary of the seal material, closure method, and leakage tests for currently certified packagings with large diameter seals is provided. 18 figs., 9 tabs.

Warrant, M.M.; Ottinger, C.A.

1989-01-01T23:59:59.000Z

107

Fast Neutron Radioactivity and Damage Studies on Materials  

E-Print Network [OSTI]

Materials We know that binary Sm x Co y compounds are more radi- ation resistant and have better thermal

Spencer, J.; Anderson, S. D.; Wolf, Z.; Volk, J. T.; Pellett, D.; Boussoufi, M.

2007-01-01T23:59:59.000Z

108

Determination of Fire Enviroment in Stacked Cargo Containers with Radioactive Materials Packages  

SciTech Connect (OSTI)

Results from a Fire Test with a three-by-three stack of standard 6 m long International Standards Organization shipping containers containing combustible fuels and empty radioactive materials packages are reported and discussed. The stack is intended to simulate fire conditions that could occur during on-deck stowage on container cargo ships. The fire is initated by locating the container stack adjacent to a 9.8 x 6 m pool fire. Temperatures of both cargoes (empty and simulated radioactive materials packages) and containers are recorded and reported. Observations on the duration, intensity and spread of the fire are discussed. Based on the results, models for simulation of fire exposure of radioactive materials packages in such fires are suggested.

Arviso, M.; Bobbe, J.G.; Dukart, R.D.; Koski, J.A.

1999-05-01T23:59:59.000Z

109

Radioactivity measurements of ITER materials using TFTR D-T neutron field  

SciTech Connect (OSTI)

TFTR successfully initiated trace tritium plasma experiments in mid-November 1993. During the coming year, the TFTR plasma tritium fraction is scheduled to be increased to at least 50%. The availability of larger amounts of D-T fusion neutrons in the high power D-T plasma phase of TFTR provides an useful opportunity to directly measure D-T neutron induced radioactivity in a realistic tokamak-environment in materials of vital interest to ITER. These measurements are invaluable for characterizing short and long lived radioactivity in various ITER candidate materials, for validating complex neutron transport calculations, and for meeting fusion reactor licensing requirements. The radioactivity measurements at TFTR will involve potential ITER materials that include stainless steel 316, vanadium-alloy, copper, iron, nickel, chromium, vanadium, titanium, manganese, cobalt, molybdenum, zinc, niobium, zirconium, tungsten, lead, tin, silicon, etc. Small samples of these materials will be irradiated in varying neutron energy spectra at the vacuum vessel first wall. These irradiated samples will then be counted for {gamma}-radioactivity at different cooling times to get extensive information on as many {gamma}-emitting radioactive products as feasible.

Kumar, A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States); Kugel, H.W. [Princeton Univ., NJ (United States)] [and others

1994-12-31T23:59:59.000Z

110

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

DOE Patents [OSTI]

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

1999-01-01T23:59:59.000Z

111

REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION  

SciTech Connect (OSTI)

Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field using gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.

XU, X. George; Zhang, X.C.

2002-05-10T23:59:59.000Z

112

Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction  

SciTech Connect (OSTI)

Mesoporous silica with covalently bound salicylic acid molecules incorporated in the structure was synthesized with a one-pot, co-condensation reaction at room temperature. The as-synthesized material has a large surface area, uniform particle size, and an ordered pore structure as determined by characterization with transmission electron microscopy, thermal gravimetric analysis, and infrared spectra, etc. Using the strong fluorescence and metal coordination capability of salicylic acid, functionalized mesoporous silica (FMS) was developed to track and extract radionuclide contaminants, such as uranyl [U(VI)] ions encountered in subsurface environments. Adsorption measurements showed a strong affinity of the FMS toward U(VI) with a Kd value of 105 mL/g, which is four orders of magnitude higher than the adsorption of U(VI) onto most of the sediments in natural environments. The new materials have a potential for synergistic environmental monitoring and remediation of the radionuclide U(VI) from contaminated subsurface environments.

Li, Juan; Zhu, Kake; Shang, Jianying; Wang, Donghai; Nie, Zimin; Guo, Ruisong; Liu, Chongxuan; Wang, Zheming; Li, Xiaolin; Liu, Jun

2012-08-01T23:59:59.000Z

113

Guidance for use of Radiology Devices and Radioactive Materials in Research Protocols  

E-Print Network [OSTI]

Guidance for use of Radiology Devices and Radioactive Materials in Research Protocols Definition preparation, handling, storage, administration, and waste disposal in sufficient detail to permit a radiological hazards evaluation of the proposal, including potential for radiation dose to other health care

Puglisi, Joseph

114

Physical test report for drop test of a 9974 radioactive material shipping packaging  

SciTech Connect (OSTI)

This report presents the drop test results for the 9974 radioactive material shipping package being dropped onto 6-inch diameter, 40-inch long puncture pin. Also reported are the drop test resuls for a 30-foot impact that failed the drum confinement boundary. The purpose of these drops was to show that the package lid would remain attached to the drum.

Blanton, P.S. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-10-01T23:59:59.000Z

115

Data collection handbook to support modeling the impacts of radioactive material in soil  

SciTech Connect (OSTI)

A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Loureiro, C. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Engenharia; Chia, Y.P. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Geology

1993-04-01T23:59:59.000Z

116

Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509  

SciTech Connect (OSTI)

Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

Boyle, J.D. [U.S. Army Corps of Engineers - Buffalo District, Buffalo, New York 14207 (United States)] [U.S. Army Corps of Engineers - Buffalo District, Buffalo, New York 14207 (United States); Fort, E. Joseph; Lorenz, William [Cabrera Services (Cabrera) East Harford, CT 06108 (United States)] [Cabrera Services (Cabrera) East Harford, CT 06108 (United States); Mills, Andy [Shaw Environmental and Infrastructure, Inc. (Shaw) Baton Rouge, LA 70809 (United States)] [Shaw Environmental and Infrastructure, Inc. (Shaw) Baton Rouge, LA 70809 (United States)

2013-07-01T23:59:59.000Z

117

Nondestructive NMR technique for moisture determination in radioactive materials.  

SciTech Connect (OSTI)

This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

1998-12-04T23:59:59.000Z

118

Physical Protection of Spent Fuel Shipments: Resolution of Stakeholder Concerns Through Rulemaking - 12284  

SciTech Connect (OSTI)

In 1999, the State of Nevada brought its concerns about physical protection of current spent nuclear fuel (SNF) shipments, and future SNF shipments to a federal repository, before the NRC in a 1999 petition for rulemaking (PRM-73-10). In October 2010, the NRC published a rulemaking decision which would significantly strengthen physical protection of SNF in transit. The newest articulation of the rule (10 CFR 73.37) incorporates regulatory clarifications and security enhancements requested in Nevada's 1999 petition for rulemaking, codifies the findings of the Nuclear NRC and DOE consequence analyses into policy guidance documents and brings forward into regulations the agency and licensee experience gained since the terrorist attacks of September 11, 2001. Although at present DOE SNF shipments would continue to be exempt from these NRC regulations, Nevada considers the rule to constitute a largely satisfactory resolution to stakeholder concerns raised in the original petition and in subsequent comments submitted to the NRC. This paper reviews the process of regulatory changes, assesses the specific improvements contained in the new rules and briefly describes the significance of the new rule in the context of a future national nuclear waste management program. Nevada's petition for rulemaking led to a generally satisfactory resolution of the State's concerns. The decade plus timeframe from petition to rulemaking conclusion saw a sea change in many aspects of the relevant issues - perhaps most importantly the attacks on 9/11 led to the recognition by regulatory bodies that a new threat environment exists wherein shipments of SNF and HLW pose a viable target for human initiated events. The State of Nevada has always considered security a critical concern for the transport of these highly radioactive materials. This was one of the primary reasons for the original rulemaking petition and subsequent advocacy by Nevada on related issues. NRC decisions on the majority of the concerns expressed in the petition, additional developments by other regulatory bodies and the change in how the United States sees threats to the homeland - all of these produced a satisfactory resolution through the rulemaking process. While not all of the concerns expressed by Nevada were addressed in the proposed rule and significant challenges face any programmatic shipment campaign in the future, the lesson learned on this occasion is that stakeholder concerns can be resolved through rulemaking. If DOE would engage with stakeholders on its role in transport of SNF and HLW under the NWPA, these concerns would be better addressed. Specifically the attempts by DOE to resist transportation and security regulations now considered necessary by the NRC for the adequate protection of the shipments of highly radioactive materials, these DOE efforts seem ill advised. One clear lesson learned from this successful rulemaking petition process is that the system of stakeholder input can work to better the regulatory environment. (authors)

Ballard, James D. [Department of Sociology, California State University, Northridge, Northridge, CA 91330 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 89706 (United States); Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)

2012-07-01T23:59:59.000Z

119

APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS  

SciTech Connect (OSTI)

This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels.

Blanton, P.; Eberl, K.; Abramczyk, G.

2012-07-11T23:59:59.000Z

120

Decay radioactivity induced in plasma-facing materials by deutrium-tritium neutrons  

SciTech Connect (OSTI)

Deuterium-tritium (D-T) neutron-induced radioactivity constitutes one of the foremost issues in fusion reactor design. Designers have been using radioactivity codes and associated nuclear data libraries for nucleonic designs of fusion reactors. However, in the past, there was hardly any experimental validation of these codes/libraries. An elaborate, experimental program was initiated in 1988 under a U.S. Department of Energy/Japan Atomic Energy Research Institute collaborative program to validate the radioactivity codes/libraries. As many as 14 neutron energy spectra were covered for a number of materials. The analyses of the isotopic activities of the irradiated materials using the activation cross-section libraries of four leading radioactivity codes, i.e., ACT4/THIDA-1, REAC-3. DKR-ICF; and RACC, have shown large discrepancies among the calculations on one hand and between the calculations and the measurements, on the other. Vanadium, Co, Ni, Zn, Zr, Mo, In, Sn, and W each count the largest number of discrepant isotopic activities. In addition to providing detailed results of the status of predictability of individual isotopic activities using the ACT4, REAC-3, DKR-ICF, and RACC activation cross-section libraries, safety factors cum quality factors characterizing each library are presented and discussed. The related issues of confidence level and associated uncertainty are also highlighted. 37 refs., 112 figs., 24 tabs.

Kumar, A.; Abdou, M.A.; Youssef, M.Z. [Univ. of California, Los Angeles, CA (United States); Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Nakamura, T.; Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Packaging and transportation of radioactive liquid at the U.S. Department of Energy Hanford Site  

SciTech Connect (OSTI)

Beginning in the 1940`s, radioactive liquid waste has been generated at the US Department of Energy (DOE) Hanford Site as a result of defense material production. The liquid waste is currently stored in 177 underground storage tanks. As part of the tank remediation efforts, Type B quantity packagings for the transport of large volumes of radioactive liquids are required. There are very few Type B liquid packagings in existence because of the rarity of large-volume radioactive liquid payloads in the commercial nuclear industry. Development of aboveground transport systems for large volumes of radioactive liquids involves institutional, economic, and technical issues. Although liquid shipments have taken place under DOE-approved controlled conditions within the boundaries of the Hanford Site for many years, offsite shipment requires compliance with DOE, US Nuclear Regulatory Commission (NRC), and US Department of Transportation (DOT) directives and regulations. At the present time, no domestic DOE nor NRC-certified Type B packagings with the appropriate level of shielding are available for DOT-compliant transport of radioactive liquids in bulk volumes. This paper will provide technical details regarding current methods used to transport such liquids on and off the Hanford Site, and will provide a status of packaging development programs for future liquid shipments.

Smith, R.J.

1995-02-01T23:59:59.000Z

122

In-situ remediation of naturally occurring radioactive materials with high-permeability hydraulic fracturing  

E-Print Network [OSTI]

IN-SITU REMEDIATION OF NATURALLY OCCURRING RADIOACTIVE MATERIALS WITH HIGH-PERMEABILITY HYDRAULIC FRACTURING A Thesis by ANDRONIKOS STAVROS DEMARCHOS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Michael J. Economides (Chair of Committee) ulat D. Mamora (Member...

Demarchos, Andronikos Stavros

1998-01-01T23:59:59.000Z

123

Romanian Experience for Enhancing Safety and Security in Transport of Radioactive Material - 12223  

SciTech Connect (OSTI)

The transport of Dangerous Goods-Class no.7 Radioactive Material (RAM), is an important part of the Romanian Radioactive Material Management. The overall aim of this activity is for enhancing operational safety and security measures during the transport of the radioactive materials, in order to ensure the protection of the people and the environment. The paper will present an overall of the safety and security measures recommended and implemented during transportation of RAM in Romania. Some aspects on the potential threat environment will be also approached with special referring to the low level radioactive material (waste) and NORM transportation either by road or by rail. A special attention is given to the assessment and evaluation of the possible radiological consequences due to RAM transportation. The paper is a part of the IAEA's Vienna Scientific Research Contract on the State Management of Nuclear Security Regime (Framework) concluded with the Institute for Nuclear Research, Romania, where the author is the CSI (Chief Scientific Investigator). The transport of RAM in Romania is a very sensible and complex problem taking into consideration the importance and the need of the security and safety for such activities. The Romanian Nuclear Regulatory Body set up strictly regulation and procedures according to the Recommendation of the IAEA Vienna and other international organizations. There were implemented the adequate regulation and procedures in order to keep the environmental impacts and the radiological consequences at the lower possible level and to assure the effectiveness of state nuclear security regime due to possible malicious acts in carrying out these activities including transport and the disposal site at the acceptable international levels. The levels of the estimated doses and risk expectation values for transport and disposal are within the acceptable limits provided by national and international regulations and recommendations but can increase, significantly during potential malicious acts. (authors)

Vieru, Gheorghe [Institute for Nuclear Research, P.O.BOX 78, 0300 PITESTI (Romania)

2012-07-01T23:59:59.000Z

124

A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers  

SciTech Connect (OSTI)

This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

1981-05-01T23:59:59.000Z

125

A regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees: Final report  

SciTech Connect (OSTI)

The question this Regulatory Analysis sought to answer is: should the NRC impose additional emergency preparedness requirements on certain fuel cycle and other radioactive material licensees for dealing with accidents that might have offsite releases of radioactive material. To answer the question, we analyzed potential accidents for 15 types of fuel cycle and other radioactive material licensees. An appropriate plan would: (1) identify accidents for which protective actions should be taken by people offsite; (2) list the licensee's responsibilities for each type of accident, including notification of local authorities (fire and police generally); and (3) give sample messages for local authorities including protective action recommendations. This approach more closely follows the approach used for research reactors than for power reactors. The low potential offsite doses (acute fatalities and injuries not possible except possibly for UF/sub 6/ releases), the small areas where actions would be warranted, the small number of people involved, and the fact that the local police and fire departments would be doing essentially the same things they normally do, are all factors that tend to make a simple plan adequate. This report discusses the potentially hazardous accidents, and the likely effects of these accidents in terms of personnel danger.

McGuire, S.A.

1988-01-01T23:59:59.000Z

126

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1999-03-16T23:59:59.000Z

127

Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety  

SciTech Connect (OSTI)

Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

Ammerman, D.J.

1997-06-01T23:59:59.000Z

128

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1999-03-16T23:59:59.000Z

129

Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy  

DOE Patents [OSTI]

A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

2007-10-23T23:59:59.000Z

130

CLOSURE WELDING RADIOACTIVE MATERIALS CONTAINERS AT THE DEPARTMENT OF ENERGY (DOE) HANFORD SITE  

SciTech Connect (OSTI)

The Department of Energy's (DOE) responsibility for the disposition of radioactive materials has given rise to several unique welding applications. Many of these materials require packaging into containers for either Interim or long-term storage. It is not uncommon that final container fabrication, i.e., closure welding, is performed with these materials already placed into the container. Closure welding is typically performed remote to the container, and routine post-weld testing and nondestructive examination (NDE) are often times not feasible. Fluor Hanford has packaged many such materials in recent years as park of the Site's cleanup mission. In lieu of post-weld testing and NDE, the Fluor-Hanford approach has been to establish weld quality through ''upfront'' development and qualification of welding parameters, and then ensure parameter compliance during welding. This approach requires a rigor not usually afforded to typical welding development activities, and may involve statistical analysis and extensive testing, including burst, drop, sensitive leak testing, etc. This paper provides an instructive review of the development and qualification activities associated with the closure of radioactive materials containers, including a brief report on activities for closure welding research reactor, spent nuclear fuel (SNF) overpacks at the Hanford Site.

CANNELL, G.R.

2006-09-01T23:59:59.000Z

131

Radioactive waste processing apparatus  

DOE Patents [OSTI]

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01T23:59:59.000Z

132

Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine  

DOE Patents [OSTI]

Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

Krumhansl, James L; Nenoff, Tina M

2013-02-26T23:59:59.000Z

133

Derivation of uranium residual radioactive material guidelines for the Shpack site  

SciTech Connect (OSTI)

Residual radioactive material guidelines for uranium were derived for the Shpack site in Norton, Massachusetts. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). The uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Shpack site should not exceed a dose of 100 mrem/yr following decontamination. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation. Three potential scenarios were considered for the site; the scenarios vary with regard to time spent at the site, sources of water used, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1000 years, provided that the soil concentration of combined uranium (uranium-234 and uranium-238) at the Shpack site does not exceed the following levels: 2500 pCi/g for Scenario A (recreationist: the expected scenario); 1100 pCi/g for Scenario B (industrial worker: a plausible scenario); and 53 pCi/g for Scenario C (resident farmer using a well water as the only water source: a possible but unlikely scenario). The uranium guidelines derived in this report apply to the combined activity concentration of uranium-234 and uranium-238 and were calculated on the basis of a dose of 100 mrem/yr. In setting the actual uranium guidelines for the Shpack site, DOE will apply the as low as reasonably achievable (ALARA) policy to the decision-making process, along with other factors, such as whether a particular scenario is reasonable and appropriate. 8 refs., 2 figs., 8 tabs.

Cheng, J.J.; Yu, C.; Monette, F.; Jones, L.

1991-08-01T23:59:59.000Z

134

Experimental determination of the shipboard fire environment for simulated radioactive material packages  

SciTech Connect (OSTI)

A series of eight fire tests with simulated radioactive material shipping containers aboard the test ship Mayo Lykes, a break-bulk freighter, is described. The tests simulate three basic types of fires: engine room fires, cargo fires and open pool fires. Detailed results from the tests include temperatures, heat fluxes and air flows measured during the fires. The first examination of the results indicates that shipboard fires are not significantly different from fires encountered in land transport. 13 refs., 15 figs., 11 tabs.

Koski, J.A.; Bobbe, J.G.; Arviso, M. [and others

1997-03-01T23:59:59.000Z

135

A workshop on developing risk assessment methods for medical use of radioactive material. Volume 1: Summary  

SciTech Connect (OSTI)

A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains a summary of that workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report. An appendix contains the 8 papers presented at the conference: NRC proposed policy statement on the use of probabilistic risk assessment methods in nuclear regulatory activities; NRC proposed agency-wide implementation plan for probabilistic risk assessment; Risk evaluation of high dose rate remote afterloading brachytherapy at a large research/teaching institution; The pros and cons of using human reliability analysis techniques to analyze misadministration events; Review of medical misadministration event summaries and comparison of human error modeling; Preliminary examples of the development of error influences and effects diagrams to analyze medical misadministration events; Brachytherapy risk assessment program plan; and Principles of brachytherapy quality assurance.

Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-08-01T23:59:59.000Z

136

Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems  

SciTech Connect (OSTI)

In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B. [Pacific Northwest Lab., Richland, WA (United States)

1992-05-01T23:59:59.000Z

137

Removing nuclear waste, one shipment at a time  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos, on its way...

138

THERMAL EVALUATION OF DRUM TYPE RADIOACTIVE MATERIAL PACKAGING ARRAYS IN STORAGE  

SciTech Connect (OSTI)

Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR 71.[1] In recent years, there has been a greater need to use these packagings to store the excess fissile material, especially plutonium for long term storage. While the design requirements for safe transportation of these packagings are well defined, the requirements for safe long term storage are not well established. Since the RAM contents in the packagings produce decay heat, it is important that they are stored carefully to prevent overheating of the containment vessel (CV) seals to prevent any leakage and the impact limiter to maintain the package structural integrity. This paper analyzes different storage arrays for a typical 9977 packaging for thermal considerations and makes recommendations for their safe storage under normal operating conditions.

Gupta, N

2009-04-27T23:59:59.000Z

139

WIPP - Shipment & Disposal Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome VelenciaNewsNews ThisPrivacy ActShipment

140

HOW MANY DID YOU SAY? HISTORICAL AND PROJECTED SPENT NUCLEAR FUEL SHIPMENTS IN THE UNITED STATES, 1964 - 2048  

SciTech Connect (OSTI)

No comprehensive, up-to-date, official database exists for spent nuclear fuel shipments in the United States. The authors review the available data sources, and conclude that the absence of such a database can only be rectified by a major research effort, similar to that carried out by Oak Ridge National Laboratory (ORNL) in the early 1990s. Based on a variety of published references, and unpublished data from the U.S. Nuclear Regulatory Commission (NRC), the authors estimate cumulative U.S. shipments of commercial spent fuel for the period 1964-2001. The cumulative estimates include quantity shipped, number of cask-shipments, and shipment-miles, by truck and by rail. The authors review previous estimates of future spent fuel shipments, including contractor reports prepared for the U.S. Department of Energy (DOE), NRC, and the State of Nevada. The DOE Final Environmental Impact Statement (FEIS) for Yucca Mountain includes projections of spent nuclear fuel and high-level radioactive was te shipments for two inventory disposal scenarios (24 years and 38 years) and two national transportation modal scenarios (''mostly legal-weight truck'' and ''mostly rail''). Commercial spent fuel would compromise about 90 percent of the wastes shipped to the repository. The authors estimate potential shipments to Yucca Mountain over 38 years (2010-2048) for the DOE ''mostly legal-weight truck'' and ''mostly rail'' scenarios, and for an alternative modal mix scenario based on current shipping capabilities of the 72 commercial reactor sites. The cumulative estimates of future spent fuel shipments include quantity shipped, number of cask-shipments, and shipment-miles, by legal-weight truck, heavy-haul truck, rail and barge.

Halstead, Robert J.; Dilger, Fred

2003-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (?49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4) development of written guidance to capture 'administrative and technical' knowledge (e.g., office instructions (OIs), generic communications (e.g., bulletins, generic letters, regulatory issue summary), standard review plans (SRPs), interim staff guidance (ISGs)); (5) use of mentoring strategies for experienced staff to train new staff members; (6) use of Microsoft SharePoint portals in capturing, transferring, and documenting knowledge for staff across the Division from Division management and administrative assistants to the project managers, inspectors, and technical reviewers; and (7) development and implementation of a Division KM Plan. A discussion and description of the successes and challenges of implementing these KM strategies at the NRC/SFST will be provided. (authors)

Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David [United States Nuclear Regulatory Commission, Mail Stop EBB-03D-02M, 6003 Executive Boulevard, Rockville, MD 20852 (United States)

2012-07-01T23:59:59.000Z

142

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) ...  

Broader source: Energy.gov (indexed) [DOE]

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the...

143

Manual for implementing residual radioactive material guidelines using RESRAD, Version 5.0  

SciTech Connect (OSTI)

This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material. It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating doses, risks, and guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. Two new pathways, radon inhalation and soil ingestion, have been added to RESRAD. Twenty-seven new radionuclides have also been added, and the cutoff half-life for associated radionuclides has been reduced to six months. Other major improvements to the RESRAD code include the ability to run sensitivity analyses, the addition of graphical output, user-specified dose factors, updated databases, an improved groundwater transport model, optional input of a groundwater concentration and a solubility constant, special models for tritium and carbon-14, calculation of cancer incidence risk, and the use of a mouse with menus.

Yu, C.; Zielen, A.J.; Cheng, J.J. [and others

1993-09-01T23:59:59.000Z

144

Hazardous Material Shipments | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960Options forHazardous

145

Demonstration of a computer model for residual radioactive material guidelines, RESRAD  

SciTech Connect (OSTI)

A computer model was developed to calculate residual radioactive material guidelines for the US Department of Energy (DOE). This model, called RESRAD, can be run on IBM or IBM-compatible microcomputer. Seven potential exposure pathways from contaminated soil are analyzed, including external radiation exposure and internal radiation exposure from inhalation and food digestion. The RESRAD code has been applied to several DOE sites to derive soil cleanup guidelines. The experience gained indicates that a comprehensive set of site-specific hydrogeologic and geochemical input parameters must be used for a realistic pathway analysis. The RESRAD code is a useful tool; it is easy to run and very user-friendly. 6 refs., 12 figs.

Yu, C.; Yuan, Y.C.; Zielen, A.J.; Wallo, A. III (Argonne National Lab., IL (USA); USDOE, Washington, DC (USA))

1989-01-01T23:59:59.000Z

146

High temperature materials for radioactive waste incineration and vitrification. Revision 1  

SciTech Connect (OSTI)

Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments.

Bickford, D F; Ondrejcin, R S; Salley, L

1986-01-01T23:59:59.000Z

147

Modular glovebox connector and associated good practices for control of radioactive and chemically toxic materials  

SciTech Connect (OSTI)

Design and associated good practices are described for a modular glovebox connector to improve control of radioactive and chemically toxic materials. The connector consists of an anodized aluminum circular port with a mating spacer, gaskets, and retaining rings for joining two parallel ends of commercially available or custom-manufactured glovebox enclosures. Use of the connector allows multiple gloveboxes to be quickly assembled or reconfigured in functional units. Connector dimensions can be scaled to meet operational requirements for access between gloveboxes. Options for construction materials are discussed, along with recommendations for installation of the connector in new or retrofitted systems. Associated good practices include application of surface coatings and caulking, use of disposable glovebags, and proper selection and protection of gasket and glove materials. Use of the connector at an inhalation toxicology research facility has reduced the time and expense required to reconfigure equipment for changing operational requirements, the dispersion of contamination during reconfigurations, and the need for decommissioning and disposal of contaminated enclosures.

Hoover, M.D.; Mewhinney, C.J.; Newton, G.J. [Lovelace Respiratory Research Inst., Albuquerque, NM (United States)

1999-01-01T23:59:59.000Z

148

A HOLISTIC APPROACH FOR DISPOSITION OF LONG-LIVED RADIOACTIVE MATERIALS  

SciTech Connect (OSTI)

During the past 45 years, one of the most challenging scientific, engineering, socio-economic, and political tasks and obligations of our time has been to site and develop technical, politically acceptable, solutions to the safe disposition of long-lived radioactive materials (LLRMs). However, at the end of the year 2002, the Waste Isolation Pilot Plant (WIPP) site in the United States of America (USA) hosts the world's only operating LLRM-disposal system, which (1) is based on the LLRM-disposal principles recommended by the National Academy of Sciences (NAS) in 1957, i.e., deep geological disposal in a ''stable'' salt vault/repository, (2) complies with the nation's ''Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes'', and (3) may receive 175,584 cubic meters (m3) of transuranic radioactive waste (TRUW)a. Pending the scheduled opening of repositories for once-used nuclear fuel (OUNF) in the USA, Sweden, and Finland in the years 2010, 2015, and 2017, respectively, LLRM-disposal solutions remain the missing link in all national LLRM-disposition programs. Furthermore, for a variety of reasons, many nations with nuclear programs have chosen a ''spectator'' stance in terms of enhancing the global nuclear safety culture and the nuclear renaissance, and have either ''slow-tracked'' or deferred their LLRM-disposal programs to allow time for an informed national consensus to evolve based on LLRM-disposition experiences and solutions gained elsewhere. In the meantime, LLRMs will continue to amass in different types and levels of safeguarded storage facilities around the world. In an attempt to contribute to the enhancement of the global nuclear safety culture and the nuclear renaissance, the authors developed the sample holistic approach for synergistic disposition of LLRMs comprising LLRM-disposition components considered either ''proven'' or ''promising'' by the authors. The fundamental principles of the holistic approach are: (1) Risk minimization; (2) Minimization of the LLRM volume requiring deep geological disposal; and (3) LLRM-disposition flexibility. An integral element of these principles is to allow time for LLRM-disposition solutions to evolve/mature technically, financially, and politically. Furthermore, contingent upon the desired outcome(s), available financial, scientific, and technical resources, and political will, these components may be implemented separately or in combinations by one or a group of nations.

Eriksson, Leif G.; Dials, George E.; Parker, Frank L.

2003-02-27T23:59:59.000Z

149

PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials [Papers presented by Sandia National Laboratories  

SciTech Connect (OSTI)

This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately. (FL)

none,

1992-01-01T23:59:59.000Z

150

Materials performance in a high-level radioactive waste vitrification system  

SciTech Connect (OSTI)

The Defense Waste Processing Facility (DWPF) is a Department of Energy Facility designed to vitrify highly radioactive waste. An extensive materials evaluation program has been completed on key components in the DWPF after twelve months of operation using nonradioactive simulated wastes. Results of the visual inspections of the feed preparation system indicate that the system components, which were fabricated from Hastelloy C-276, should achieve their design lives. Significant erosion was observed on agitator blades that process glass frit slurries; however, design modifications should mitigate the erosion. Visual inspections of the DWPF melter top head and off gas components, which were fabricated from Inconel 690, indicated that varying degrees of degradation occurred. Most of the components will perform satisfactorily for their two year design life. The components that suffered significant attack were the borescopes, primary film cooler brush, and feed tubes. Changes in the operation of the film cooler brush and design modifications to the feed tubes and borescopes is expected to extend their service lives to two years. A program to investigate new high temperature engineered materials and alloys with improved oxidation and high temperature corrosion resistance will be initiated.

Imrich, K.J.; Chandler, G.T.

1996-06-17T23:59:59.000Z

151

Regulatory Initiatives for Control and Release of Technologically Enhanced Naturally-Occurring Radioactive Materials  

SciTech Connect (OSTI)

Current drafts of proposed standards and suggested State regulations for control and release of technologically-enhanced naturally-occurring radioactive material (TENORM), and standards for release of volumetrically-contaminated material in the US are reviewed. These are compared to the recommendations of the International Atomic Energy Association (IAEA) Safety Series and the European Commission (EC) proposals. Past regulatory efforts with respect to TENORM in the US dealt primarily with oil-field related wastes. Currently, nine states (AK, GA, LA, MS, NM, OH, OR SC, TX) have specific regulations pertaining to TENORM, mostly based on uranium mill tailings cleanup criteria. The new US proposals are dose- or risk-based, as are the IAEA and EC recommendations, and are grounded in the linear no threshold hypothesis (LNT). TENORM wastes involve extremely large volumes, particularly scrap metal and mine wastes. Costs to control and dispose of these wastes can be considerable. The current debate over the validity of LNT at low doses and low dose rates is particularly germane to this discussion. Most standards setting organizations and regulatory agencies base their recommendations on the LNT. The US Environmental Protection Agency has released a draft Federal Guidance Report that recommends calculating health risks from low-level exposure to radionuclides based on the LNT. However, some scientific and professional organizations are openly questioning the validity of LNT and its basis for regulations, practices, and costs to society in general. It is not clear at this time how a non-linear regulatory scheme would be implemented.

Egidi, P.V.

1999-03-02T23:59:59.000Z

152

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect (OSTI)

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

153

An overview of naturally occurring radioactive materials (NORM) in the petroleum industry  

SciTech Connect (OSTI)

Oil and gas extraction and processing operations sometimes accumulate naturally occurring radioactive materials (NORM) at concentrations above normal in by-product waste streams. Results from NORM surveys indicate that radionuclide concentrations can be quite variable, ranging from undetectable to extremely high levels. To date, efforts to characterize the geographic distribution of NORM have been limited by poor statistical representation. In addition, the fate of NORM in the environment has not been fully defined, and few human health risk assessment have been conducted. Both the petroleum industry and regulators are becoming increasingly concerned about the presence of NORM. At present, most existing federal environmental regulations do not address oil and gas NORM, and only a few states have developed regulatory programs. Available data suggest that the occurrence of NORM (and associated health risks) is significant enough to warrant increased regulatory control. However, before these regulations can be developed, additional research is needed to (1) better characterize the occurrence and distribution of NORM throughout the industry, (2) quantify hazards posed by NORM to industry workers and the general public, and (3) develop effective waste treatment and minimization technologies that will lower the risk associated with NORM and reduce disposal costs.

Smith, K.P.

1992-12-01T23:59:59.000Z

154

Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review  

SciTech Connect (OSTI)

Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

Clauss, S.A.; Bean, R.M.

1993-02-01T23:59:59.000Z

155

"The Vendor's Optimal Policy for Stock Replenishment and Shipment Scheduling under Temporal Shipment Consolidation  

E-Print Network [OSTI]

"The Vendor's Optimal Policy for Stock Replenishment and Shipment Scheduling under Temporal stock replenishment and shipment scheduling problem applicable under a vendor-managed inventory (VMI) contract where the vendor has flexibility over the timing and quantity of resupply at a group of retailers

Reisslein, Martin

156

Method for making a low density polyethylene waste form for safe disposal of low level radioactive material  

DOE Patents [OSTI]

In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

Colombo, P.; Kalb, P.D.

1984-06-05T23:59:59.000Z

157

Physical test report to drop test of a 9975 radioactive material shipping packaging  

SciTech Connect (OSTI)

This report presents the drop test results for the 9975 radioactive material shipping package being dropped 30 feet onto a unyielding surface followed by a 40-inch puncture pin drop. The purpose of these drops was to show that the package lid would remain attached to the drum. The 30-foot drop was designed to weaken the lid closure lug while still maintaining maximum extension of the lugs from the drum surface. This was accomplished by angling the drum approximately 30 degrees from horizontal in an inverted position. In this position, the drum was rotated slightly so as not to embed the closure lugs into the drum as a result of the 30-foot drop. It was determined that this orientation would maximize deformation to the closure ring around the closure lug while still maintaining the extension of the lugs from the package surface. The second drop was from 40 inches above a 40-inch tall 6-inch diameter puncture pin. The package was angled 10 degrees from vertical and aligned over the puncture pin to solidly hit the drum lug(s) in an attempt to disengage the lid when dropped.Tests were performed in response to DOE EM-76 review Q5 inquires that questioned the capability of the 9975 drum lid to remain in place under this test sequence. Two packages were dropped utilizing this sequence, a 9974 and 9975. Test results for the 9974 package are reported in WSRC-RP-97-00945. A series of 40-inch puncture pin tests were also performed on undamaged 9975 and 9974 packages.

Blanton, P.S.

1997-11-11T23:59:59.000Z

158

Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)  

SciTech Connect (OSTI)

Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

Estrella, R.

1994-10-01T23:59:59.000Z

159

A workshop on developing risk assessment methods for medical use of radioactive material. Volume 2: Supporting documents  

SciTech Connect (OSTI)

A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.

Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-08-01T23:59:59.000Z

160

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRockyServicesFindings

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Enhancements to System for Tracking Radioactive Waste Shipments Benefit  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupportingEnergy Engagingbasics.pdfMultiple Users |

162

Overseas shipments of 48Y cylinders  

SciTech Connect (OSTI)

This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

1991-12-31T23:59:59.000Z

163

The Bayou Choctaw Oil Shipment Test  

SciTech Connect (OSTI)

In early October of 1993, an oil shipment of about 1 million barrels was made from the Bayou Choctaw Strategic Petroleum Reserve storage facility to St. James Terminal. During the shipment, oil temperatures and soil temperatures along the pipeline were recorded. The field data were used to make estimations of soil thermal properties, thermal conductivity and specific heat. These data were also used to validate and calibrate a heat transfer code, OILPIP, which has been used to calculate pipeline cooling of oil during a drawdown.

Bauer, S.J.; Ballard, S.; Barker, G.T.

1994-05-01T23:59:59.000Z

164

Radioactive material (RAM) transportation accident and incident experience in the U.S.A. (1971--1997)  

SciTech Connect (OSTI)

The Radioactive Materials Incident Report (RMIR) database was developed in 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US Department of Energy (DOE). This database contains information about radioactive materials transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation`s (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the National Transportation Program (EM-70) of the US Department of Energy. Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident incident events in the US for the period 1971--1997. Among the areas to be examined are: transportation accidents by mode, package response during accidents and an examination of accidents where release of contents has occurred.

McClure, J.D.; Yoshimura, H.R.; Fagan, H.F. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Analysis Dept.; Thomas, T. [Dept. of Energy National Transportation Program (United States)

1997-11-01T23:59:59.000Z

165

Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network  

SciTech Connect (OSTI)

Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

166

Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network  

SciTech Connect (OSTI)

Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

2010-10-28T23:59:59.000Z

167

Slovak Nuclear Regulatory Body Position in the Transport of Radioactive Waste  

SciTech Connect (OSTI)

This paper describes safety requirements for transport of radioactive waste in Slovakia and the role of regulatory body in the transport licensing and assessment processes. Importance of radioactive waste shipments have been increased since 1999 by starting of NPP A-1 decommissioning and operation of near surface disposal facility. Also some information from history of shipment as well as future activities are given. Legal basis for radioactive waste transport is resulting from IAEA recommendations in this area. Different types of transport equipment were approved by regulatory body for both liquid and solid waste and transportation permits were issued to their shipment. Regulatory body attention during evaluation of transport safety is focused mainly on ability of individual packages to withstand different transport conditions and on safety analyses performed for transport equipment for liquid waste with high frequency of shipments. During past three years no event was occurred in connection with radioactive waste transport in Slovakia.

Homola, J.

2003-02-27T23:59:59.000Z

168

Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste  

SciTech Connect (OSTI)

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

NONE

1994-12-31T23:59:59.000Z

169

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

SciTech Connect (OSTI)

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

170

Waste management facilities cost information for transportation of radioactive and hazardous materials  

SciTech Connect (OSTI)

This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

Feizollahi, F.; Shropshire, D.; Burton, D.

1995-06-01T23:59:59.000Z

171

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

172

Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282  

SciTech Connect (OSTI)

The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

Komann, Steffen; Groeke, Carsten; Droste, Bernhard [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin (Germany)

2013-07-01T23:59:59.000Z

173

Measurements and analyses of decay radioactivity induced in simulated deuterium-tritium neutron environments for fusion reactor structural materials  

SciTech Connect (OSTI)

To meet urgent requirements for data validation, an experimental analysis has been carried out for isotopic radioactivity induced by deuterium-tritium neutron irradiation in structural materials. The primary objective is to examine the adequacy of the activation cross sections implemented in the current activation calculation codes considered for use in fusion reactor nuclear design. Four activation cross-section libraries, namely, JENDL, LIB90, REAC{sup *}63, and REAC{sup *}175 were investigated in this current analysis. The isotopic induced radioactivity calculations using these four libraries are compared with experimental values obtained in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics. The nine materials studied are aluminum, silicon, titanium, vanadium, chromium, MnCu alloy, iron, nickel, niobium, and Type 316 stainless steel. The adequacy of the cross sections is investigated through the calculation to experiment analysis. As a result, most of the discrepancies in the calculations from experiments can be explained by inadequate activation cross sections. In addition, uncertainties due to neutron energy groups and neutron transport calculation are considered. The JENDL library gives the best agreement with experiments, followed by REAC{sup *}175, LIB90, and REAC{sup *}63, in this order. 45 refs., 32 figs., 5 tabs.

Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Maekawa, F.; Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki (Japan); Kumar, A.; Youssef, M.Z.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1995-08-01T23:59:59.000Z

174

A guide for the ASME code for austenitic stainless steel containment vessels for high-level radioactive materials  

SciTech Connect (OSTI)

The design and fabrication criteria recommended by the US Department of Energy (DOE) for high-level radioactive materials containment vessels used in packaging is found in Section III, Division 1, Subsection NB of the ASME Boiler and Pressure Vessel Code. This Code provides material, design, fabrication, examination, and testing specifications for nuclear power plant components. However, many of the requirements listed in the Code are not applicable to containment vessels made from austenitic stainless steel with austenitic or ferritic steel bolting. Most packaging designers, engineers, and fabricators are intimidated by the sheer volume of requirements contained in the Code; consequently, the Code is not always followed and many requirements that do apply are often overlooked during preparation of the Safety Analysis Report for Packaging (SARP) that constitutes the basis to evaluate the packaging for certification.

Raske, D.T.

1995-06-01T23:59:59.000Z

175

Development of a computer model for calculation of radioactive materials into the atmosphere after an accident  

SciTech Connect (OSTI)

Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

Schershakov, V. [Federal Information Analytical Centre, Obinski (Russia)

1997-11-01T23:59:59.000Z

176

Radiation sensitive devices and systems for detection of radioactive materials and related methods  

DOE Patents [OSTI]

Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

Kotter, Dale K

2014-12-02T23:59:59.000Z

177

PERFORMANCE TESTING OF SPRING ENERGIZED C-RINGS FOR USE IN RADIOACTIVE MATERIAL PACKAGINGS CONTAINING TRITIUM  

SciTech Connect (OSTI)

This paper describes the sealing performance testing and results of silver-plated inconel Spring Energized C-Rings used for tritium containment in radioactive shipping packagings. The test methodology used follows requirements of the American Society of Mechanical Engineers (ASME) summarized in ASME Pressure Vessel Code (B&PVC), Section V, Article 10, Appendix IX (Helium Mass Spectrometer Test - Hood Technique) and recommendations by the American National Standards Institute (ANSI) described in ANSI N14.5-1997. The tests parameters bound the predicted structural and thermal responses from conditions defined in the Code of Federal Regulations 10 CFR 71. The testing includes an evaluation of the effects of pressure, temperature, flange deflection, surface roughness, permeation, closure torque, torque sequencing and re-use on performance of metal C-Ring seals.

Blanton, P; Kurt Eberl, K

2007-10-23T23:59:59.000Z

178

Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1  

SciTech Connect (OSTI)

This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

1985-04-01T23:59:59.000Z

179

User Shipments | Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUser Services Print The UserShipments

180

User Shipments | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdates byUser Guide Print 1.HomeShipments Shipping

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Application of ALARA principles to shipment of spent nuclear fuel  

SciTech Connect (OSTI)

The public exposure from spent fuel shipment is very low. In view of this low exposure and the perfect safety record for spent fuel shipment, existing systems can be considered satisfactory. On the other hand, occupational exposure reduction merits consideration and technology improvement to decrease dose should concentrate on this exposure. Practices that affect the age of spent fuel in shipment and the number of times the fuel must be shipped prior to disposal have the largest impact. A policy to encourage a 5-year spent fuel cooling period prior to shipment coupled with appropriate cask redesign to accommodate larger loads would be consistent with ALARA and economic principles. And finally, bypassing high population density areas will not in general reduce shipment dose.

Greenborg, J.; Brackenbush, L.W.; Murphy, D.W. Burnett, R.A.; Lewis, J.R.

1980-05-01T23:59:59.000Z

182

Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository  

SciTech Connect (OSTI)

The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction by the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: {rho}d of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density ({rho}d: 1.4--2.0 Mg/m{sup 3}) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10{sup {minus}13} m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite.

Kawakami, S.; Yamanaka, Y.; Kato, K.; Asano, H.; Ueda, H.

1999-07-01T23:59:59.000Z

183

Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers  

SciTech Connect (OSTI)

Oxidation and atmospheric corrosion data suggest that addition of Cr provides the greatest improvement in oxidation resistance. Cr-bearing cast irons are resistant to chloride environments and solutions containing strongly oxidizing constituents. Weathering steels, including high content and at least 0.04% Cu, appear to provide adequate resistance to oxidation under temperate conditions. However, data from long-term, high-temperature oxidation studies on weathering steels were not available. From the literature, it appears that the low alloy steels, plain carbon steels, cast steels, and cast irons con-ode at similar rates in an aqueous environment. Alloys containing more than 12% Cr or 36% Ni corrode at a lower rate than plain carbon steels, but pitting may be worse. Short term tests indicate that an alloy of 9Cr-1Mo may result in increased corrosion resistance, however long term data are not available. Austenitic cast irons show the best corrosion resistance. A ranking of total corrosion performance of the materials from most corrosion resistant to least corrosion resistant is: Austenitic Cast Iron; 12% Cr = 36% Ni = 9Cr-1Mo; Carbon Steel = Low Alloy Steels; and Cast Iron. Since the materials to be employed in the Advanced Conceptual Design (ACD) waste package are considered to be corrosion allowance materials, the austenitic cast irons, high Cr steels, high Ni steels and the high Cr-Mo steels should not be considered as candidates for the outer containment barrier. Based upon the oxidation and corrosion data available for carbon steels, low alloy steels, and cast irons, a suitable list of candidate materials for a corrosion allowance outer barrier for an ACD waste package could include, A516, 2.25%Cr -- 1%Mo Steel, and A27.

Vinson, D.W.; Nutt, W.M.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

1995-06-01T23:59:59.000Z

184

Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

Hakonson, T.E.

1986-02-01T23:59:59.000Z

185

Burnup estimation of fuel sourcing radioactive material based on monitored Cs and Pu isotopic activity ratios in Fukushima N. P. S. accident  

SciTech Connect (OSTI)

After the severe core damage of Fukushima Dai-Ichi Nuclear Power Station, radioactive material leaked from the reactor buildings. As part of monitoring of radioactivity in the site, measurements of radioactivity in soils at three fixed points have been performed for {sup 134}Cs and {sup 137}Cs with gamma-ray spectrometry and for Pu, Pu, and {sup 240}Pu with {alpha}-ray spectrometry. Correlations of radioactivity ratios of {sup 134}Cs to {sup 137}Cs, and {sup 238}Pu to the sum of {sup 239}Pu and {sup 240}Pu with fuel burnup were studied by using theoretical burnup calculations and measurements on isotopic inventories, and compared with the Cs and Pu radioactivity rations in the soils. The comparison indicated that the burnup of the fuel sourcing the radioactivity was from 18 to 38 GWd/t, which corresponded to that of the fuel in the highest power and, therefore, the highest decay heat in operating high-burnup fueled BWR cores. (authors)

Yamamoto, T.; Suzuki, M.; Ando, Y. [Japan Nuclear Energy Safety Organization, Toranomon Towers Office, 14F, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

2012-07-01T23:59:59.000Z

186

INMM 55th Annual Meeting, July 2024, 2014, Atlanta Marriott Marquis, Atlanta, Georgia, USA Transport Security for Nuclear and Other Radioactive Materials --A DOE Training Course  

E-Print Network [OSTI]

Laboratory. The course was developed by Argonne for the U.S. Department of Energy Packaging Certification of Energy, Washington, D.C. 20585 ABSTRACT In early December of 2013, a weeklong training course on security Transport Security for Nuclear and Other Radioactive Materials -- A DOE Training Course Ronald B. Pope, Yung

Kemner, Ken

187

Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers. Final report  

SciTech Connect (OSTI)

One of the most significant factors impacting the performance of waste package container materials under repository relevant conditions is the thermal environment. This environment will be affected by the areal power density of the repository, which is dictated by facility design, and the dominant heat transfer mechanism at the site. The near-field environment will evolve as radioactive decay decreases the thermal output of each waste package. Recent calculations (Buscheck and Nitao, 1994) have addressed the importance of thermal loading conditions on waste package performance at the Yucca Mountain site. If a relatively low repository thermal loading design is employed, the temperature and relative humidity near the waste package may significantly affect the degradation of corrosion allowance barriers due to moist air oxidation and radiolytically enhanced corrosion. The purpose this report is to present a literature review of the potential degradation modes for moderately corrosion resistant nickel copper and nickel based candidate materials that may be applicable as alternate barriers for the ACD systems in the Yucca Mountain environment. This report presents a review of the corrosion of nickel-copper alloys, summaries of experimental evaluations of oxidation and atmospheric corrosion in nickel-copper alloys, views of experimental studies of aqueous corrosion in nickel copper alloys, a brief review of galvanic corrosion effects and a summary of stress corrosion cracking in these alloys.

Vinson, D.W.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

1995-09-22T23:59:59.000Z

188

FUNCTIONALIZED SILICA AEROGELS: ADVANCED MATERIALS TO CAPTURE AND IMMOBILIZE RADIOACTIVE IODINE  

SciTech Connect (OSTI)

To support the future expansion of nuclear energy, an effective method is needed to capture and safely store radiological iodine-129 released during reprocessing of spent nuclear fuel. Various materials have been investigated to capture and immobilize iodine. In most cases, however, the materials that are effective for capturing iodine cannot subsequently be sintered/densified to create a stable composite that could be a viable waste form. We have developed chemically modified, highly porous, silica aerogels that show sorption capacities higher than 440 mg of I2 per gram at 150 C. An iodine uptake test in dry air containing 4.2 ppm of iodine demonstrated no breakthrough after 3.5 h and indicated a decontamination factor in excess of 310. Preliminary densification tests showed that the I2-loaded aerogels retained more than 92 wt% of I2 after thermal sintering with pressure assistance at 1200 C for 30 min. These high capture and retention efficiencies for I2 can be further improved by optimizing the functionalization process and the chemistry as well as the sintering conditions.

Matyas, Josef; Fryxell, Glen E.; Busche, Brad J.; Wallace, Krys; Fifield, Leonard S.

2011-11-16T23:59:59.000Z

189

Determination of the radioactive material and plutonium holdup in ducts and piping in the 324 Building  

SciTech Connect (OSTI)

This report describes the measurements Performed to determine the radionuclide content and mass of plutonium in exposed ducts, filters, and piping in the 324 Building at the US Department of Energy Hanford Site in Washington State. This information is needed to characterize facility radiation levels, to verify compliance with criticality safety specifications, and to allow more accurate nuclear material control using nondestructive assay (NDA) methods. Gamma assay techniques typically employed for NDA analysis were used to determine the gamma-emitting isotopes in the ducts, filters, and piping. Passive neutron counting was selected to estimate -the plutonium content because high gamma levels from fission and activation products effectively mask any gamma emissions from plutonium. A high-purity gamma-ray detector Was used to measure the mixed fission and activation radionuclides. A neutron slab detector containing five {sup 3}He proportional counters was used to determine the neutron emission rates and estimate the mass of plutonium present. Both measurement systems followed the methods and procedures routinely used for nuclear waste assay and safeguards measurements.

Haggard, D.L.; Brackenbush, L.W.; Tanner, J.E.

1996-01-01T23:59:59.000Z

190

Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436  

SciTech Connect (OSTI)

Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)] [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Meira Castro, Ana Cristina [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)] [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)

2013-07-01T23:59:59.000Z

191

Regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees. Draft report for comment  

SciTech Connect (OSTI)

Potential accidents for 15 types of fuel cycle and other radioactive material licensees were analyzed. The most potentially hazardous accident, by a large margin, was determined to be the sudden rupture of a heated multi-ton cylinder of UF/sub 6/. Acute fatalities offsite are probably not credible. Acute permanent injuries may be possible for many hundreds of meters, and clinically observable transient effects of unknown long term consequences may be possible for distances up to a few miles. These effects would be caused by the chemical toxicity of the UF/sub 6/. Radiation doses would not be significant. The most potentially hazardous accident due to radiation exposure was determined to be a large fire at certain facilities handling large quantities of alpha-emitting radionuclides (i.e., Po-210, Pu-238, Pu-239, Am-241, Cm-242, Cm-244) or radioiodines (I-125 and I-131). However, acute fatalities or injuries to people offsite due to accidental releases of these materials do not seem plausible. The only other significant accident was identified as a long-term pulsating criticality at fuel cycle facilities handling high-enriched uranium or plutonium. An important feature of the most serious accidents is that releases are likely to start without prior warning. The releases would usually end within about half an hour. Thus protective actions would have to be taken quickly to be effective. There is not likely to be enough time for dose projections, complicated decisionmaking during the accident, or the participation of personnel not in the immediate vicinity of the site. The appropriate response by the facility is to immediately notify local fire, police, and other emergency personnel and give them a brief predetermined message recommending protective actions. Emergency personnel are generally well qualified to respond effectively to small accidents of these types.

McGuire, S.A.

1985-06-01T23:59:59.000Z

192

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

193

E-Print Network 3.0 - agent-based national radioactive Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The United Nations Scientific... 's Guidelines for Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM). d National... Radioactive Materials Board on...

194

Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns  

SciTech Connect (OSTI)

Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

2003-02-27T23:59:59.000Z

195

Estimating carbon emissions from less-than-truckload (LTL) shipments  

E-Print Network [OSTI]

Less-than-truckload (LTL) is a $32-billion sector of the trucking industry that focuses on moving smaller shipments, typically with weights between 100 and 10,000 pounds, that do not require a full trailer to be moved. ...

Veloso de Aguiar, Guilherme

2014-01-01T23:59:59.000Z

196

Case histories of West Valley spent fuel shipments: Final report  

SciTech Connect (OSTI)

In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

Not Available

1987-01-01T23:59:59.000Z

197

PAVAN: an atmospheric-dispersion program for evaluating design-basis accidental releases of radioactive materials from nuclear power stations  

SciTech Connect (OSTI)

This report provides a user's guide for the NRC computer program, PAVAN, which is a program used by the US Nuclear Regulatory Commission to estimate downwind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Such an assessment is required by 10 CFR Part 100 and 10 CFR Part 50. The program implements the guidance provided in Regulatory Guide 1.145, Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants. Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases (e.g., through building penetrations and vents) or elevated releases from free-standing stacks. Various options may be selected by the user. They can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. It cannot handle multiple emission sources. A description of the main program and all subroutines is provided. Also included as appendices are a complete listing of the program and two test cases with the required data inputs and the resulting program outputs.

Bander, T.J.

1982-11-01T23:59:59.000Z

198

Radioactive Material License.  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores"December 2010r* R

199

Radioactive Materials Product Stewardship  

E-Print Network [OSTI]

...................................................................................................26 Low Level Waste (LLW) Disposal Regulations...............................................................................13 4.1 RADIONUCLIDES AND NUCLEAR FIXED GAUGES

200

GUIDANCE FOR THE PROPER CHARACTERIZATION AND CLASSIFICATION OF LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS FOR DISPOSAL  

SciTech Connect (OSTI)

Regulatory concerns over the proper characterization of certain waste streams led CH2M HILL Plateau Remediation Company (CHPRC) to develop written guidance for personnel involved in Decontamination & Decommissioning (D&D) activities, facility management and Waste Management Representatives (WMRs) involved in the designation of wastes for disposal on and off the Hanford Site. It is essential that these waste streams regularly encountered in D&D operations are properly designated, characterized and classified prior to shipment to a Treatment, Storage or Disposal Facility (TSDF). Shipments of waste determined by the classification process as Low Specific Activity (LSA) or Surface Contaminated Objects (SCO) must also be compliant with all applicable U.S. Department of Transportation (DOE) regulations as well as Department of Energy (DOE) orders. The compliant shipment of these waste commodities is critical to the Hanford Central Plateau cleanup mission. Due to previous problems and concerns from DOE assessments, CHPRC internal critiques as well as DOT, a management decision was made to develop written guidance and procedures to assist CHPRC shippers and facility personnel in the proper classification of D&D waste materials as either LSA or SCO. The guidance provides a uniform methodology for the collection and documentation required to effectively characterize, classify and identify candidate materials for shipping operations. A primary focus is to ensure that waste materials generated from D&D and facility operations are compliant with the DOT regulations when packaged for shipment. At times this can be difficult as the current DOT regulations relative to the shipment of LSA and SCO materials are often not clear to waste generators. Guidance is often sought from NUREG 1608/RAMREG-003 [3]: a guidance document that was jointly developed by the DOT and the Nuclear Regulatory Commission (NRC) and published in 1998. However, NUREG 1608 [3] is now thirteen years old and requires updating to comply with the newer DOT regulations. Similar challenges present themselves throughout the nuclear industry in both commercial and government operations and therefore, this is not only a Hanford Site problem. Shipping radioactive wastes as either LSA or SCO rather than repacking it is significantly cheaper than other DOT radioactive materials shipping classifications particularly when the cost of packages is included. Additionally, the need to 'repackage' materials for transport can often increase worker exposure, necessitated by 'repackaging' waste materials into DOT 7 A Type A containers.

PORTSMOUTH JH; BLACKFORD LT

2012-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

UW EH&S Radiation Safety Office Box 354400 201 Hall Health Seattle WA 98195-4400 206-543-0463 FORM 160 RADIOACTIVE MATERIAL DELIVERY AND USAGE RECORD (5/00)  

E-Print Network [OSTI]

160 RADIOACTIVE MATERIAL DELIVERY AND USAGE RECORD (5/00) AUI Name PO # AUI # Item # Order Date Order be surveyed if they are labeled with a Radioactive White I, Yellow II or Yellow III label. Swipes CONTAMINATION (WAC 246-221-160(4)): contamination

Wilcock, William

202

Ensuring Safe Shipment of Hazardous Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment ofFeaturingThanks

203

Characterization of the National Petroleum Reserve No. 3 (NPR-3) Site for Naturally Occurring Radioactive Material(NORM)  

SciTech Connect (OSTI)

The National Petroleum Reserve No. 3 site (NPR-3) near Casper, Wyoming is being prepared for transfer to private industry. Remediation of the NPR-3 site has already begun in anticipation of this transfer. This document describes the characterization of the NPR-3 site for Naturally Occurring Radioactive Materials (NORM). Data generated on radionuclide concentrations and radon emanation may be used to determine disposal options and the need for remediation at this site. A preliminary gamma survey of the NPR-3 site was conducted to identify areas of potential NORM contamination. Based on these gamma surveys, two general areas of NORM contamination were found: the North Water Flood area and the BTP-10 produced water discharge steam. A maximum surface exposure rate of 120 {micro}R h{sup -1} was observed in the North Water Flood area, with the highest readings found along the drainage channel from the area. Exposure rates dropped to background quickly with increasing distance from the center of the drainage. The maximum observed exposure rate in the BTP-10 produced water drainage was 40 {micro}R h{sup -1}. Soil and sediment sampling were concentrated in these two areas. All samples were analyzed for concentration of {sup 226}Ra, {sup 228}Ra, and {sup 40}K. Maximum {sup 226}Ra concentrations observed in the samples collected were 46 pCi g{sup -1} for soil and 78 pCi g{sup -1} for sediment. Concentrations in most samples were considerably lower than these values. Radon emanation fraction was also measured for a randomly selected fraction of the samples. The mean Rn emanation fraction measured was 0.10, indicating that on average only 10 percent of the Rn produced is released from the medium. Based on the results of these analyses, NORM contamination at the NPR-3 site is minimal, and appears to be restricted to the two general areas sampled. Concentrations of NORM radionuclides found soils and sediments in these two locations do not justify remedial actions at present. However, continued discharge of NORM-contaminated produced waters from the BTP-10 area will likely result in the continued accumulation of NORM in sediment. It is therefore recommended that the sediments in the BTP-10 discharge stream be monitored periodically for NORM.

White, G.J; Rood, A.S.

1999-01-21T23:59:59.000Z

204

Pipe overpack container for trasuranic waste storage and shipment  

DOE Patents [OSTI]

A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

1999-01-01T23:59:59.000Z

205

Air Shipment of Spent Nuclear Fuel from Romania to Russia  

SciTech Connect (OSTI)

Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

2010-10-01T23:59:59.000Z

206

Measurements of D-T neutron induced radioactivity in plasma-facing materials and their role in qualification of activation cross-section libraries and codes  

SciTech Connect (OSTI)

USDOE/JAERI collaborative program on induced radioactivity measurements has been spread over last five years and has covered, among others, a large number of plasma facing materials of interest to D-T fusion reactors, including ITER and DEMO. The experiments have consisted of irradiation of high purity material samples in a range of neutron energy spectra in simulated fusion environments of prototypical blanket assemblies driven by D-T neutrons at FNS/JAERI. A typical sample measured 10 mm in diameter by 1 mm thickness, and the neutron fluence ranged from {approximately}10{sup 10} n/cm{sup 2} to {approximately}10{sup 14} n/cm{sup 2}, over an irradiation period of 30 m and 10 h. The irradiated samples were then cooled for varying times, from {approximately}10 m to {approximately}3 weeks, and their activity was derived by counting associated {gamma}-rays with intrinsic germanium detectors.

Kumar, A.; Abdou, M.A.; Youssef, M.Z. [Univ. of California, Los Angeles, CA (United States)] [and others

1994-12-31T23:59:59.000Z

207

Airborne radioactive material collection, measurement, and data storage for the Nuclear Science Center at Texas A&M University  

E-Print Network [OSTI]

REFERENCES AEC73 AEC Regulatory Guide 8. 2, 1973, "Guide for Administrative Practices in Radiation Monitoring". AEC74 AEC Regulatory Guide 1. 21, Rev. 1, 1974, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes, and Releases... System at the Nuclear Science Center (Texas AAM University) 38 VITA 66 LIST OF FIGURES FIGURE NUMBER Figure 1: FAM//I and FANF3 Sample Probe Orientation, PAGE Figure 2: FAM42, FAMR4, and FAMt6 Sample Probe Location . . 13 Figure 3; FAMF1 and FAM...

Jones, Melody Louise

1982-01-01T23:59:59.000Z

208

( Sample of Shipment Notice) Federal Records Center | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice) Federal Records Center ( Sample of

209

AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR  

SciTech Connect (OSTI)

The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

Dewes, J.

2014-02-24T23:59:59.000Z

210

Understanding radioactive waste  

SciTech Connect (OSTI)

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

211

Researchers at Montana State University and Idaho National Lab have developed a process to effectively and efficiently clean natural and man-made porous material of radioactive contamination. The system eliminates  

E-Print Network [OSTI]

to effectively and efficiently clean natural and man-made porous material of radioactive contamination. The system eliminates the practice of full demolition and removal of contaminated objects and can address contaminated substrate. Thus, building walls (interior or exterior), floors and ceilings can be remediated

Maxwell, Bruce D.

212

Readiness Assessments for the Shipment of TRU from West Jefferson, Ohio  

SciTech Connect (OSTI)

From 1943 through 1986, Battelle Memorial Institute (BMI) performed research and development work at its own facilities for the U.S. Department of Energy (DOE) and its predecessor agencies. The most highly contaminated facilities, comprising BMI's Nuclear Sciences Area, are located on 11 acres in West Jefferson, Ohio. Three buildings in this area were used to study nuclear reactor fuels, fuel element components, reactor designs, and radiochemistry analyses: one building contained nuclear hot cells, a second building contained a critical assembly and radiochemistry laboratory, and a third building once housed a nuclear research reactor. The Columbus Environmental Management Project (CEMP), one of the DOE Ohio Field Office's radioactive cleanup sites, oversees the Battelle Columbus Laboratories Decommissioning Project (BCLDP) for the decontamination and decommissioning (D&D) of BMI's Nuclear Sciences Area. The BCLDP mission is to decontaminate the Nuclear Sciences Area to a condition that is suitable for use without restrictions and to dispose of or store the associated radioactive waste at a suitable DOE-approved facility. During decontamination work, the CEMP is expected to generate approximately 120, 55-gallon drums of transuranic (TRU) waste, or about 20 truckloads. This TRU waste will be transported to DOE's Hanford nuclear facility in Washington State for temporary storage, prior to its ultimate disposal at the Waste Isolation Pilot Plant (WIPP). This paper presents a detailed approach for conducting readiness assessments for TRU waste shipments from any DOE site. It is based on demonstrating satisfaction of the 18 core requirements contained in DOE Order 425.1B, Startup and Restart of Nuclear Facilities, that are derived from the seven guiding principles of DOE's integrated safety management system.

Duffy, M. A.

2003-02-26T23:59:59.000Z

213

Removing nuclear waste, one shipment at a time  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories » Removing nuclear waste, one shipment at a time

214

Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME | NationalTbilisi | Available for sale

215

U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergyThe sunCommerce EconomicsDepartmentand

216

Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste  

SciTech Connect (OSTI)

The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

NONE

1998-03-01T23:59:59.000Z

217

Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be sufficient, and safety concerns existed about the stability of the crater component. Therefore, a corrective action of close in place with a use restriction is recommended, and sampling at the site was not considered necessary. The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure of CAU 545 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from August 20 through November 02, 2007, as set forth in the CAU 545 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. The CAU 545 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels established in this CADD/CR. The results of the CAI identified no COCs at the five CASs investigated in CAU 545. As a best management practice, repair of the fence enclosing CAS 03-08-03 has been completed. Therefore, the DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • Close in place COCs at CASs 03-08-03 and 03-23-05 with use restrictions. • No further corrective action for CAU 545. • No Corrective Action Plan. • Corrective Action Unit 545 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order. • A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 545.

Alfred Wickline

2008-04-01T23:59:59.000Z

218

Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

Alfred Wickline

2007-06-01T23:59:59.000Z

219

Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers  

SciTech Connect (OSTI)

The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D`Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program.

Molecke, M.A.; Sorensen, N.R. [eds.] [Sandia National Labs., Albuquerque, NM (US); Wicks, G.G. [ed.] [Westinghouse Savannah River Technology Center, Aiken, SC (US)

1993-08-01T23:59:59.000Z

220

Proposed risk evaluation guidelines for use by the DOE-AL Nuclear Explosive Safety Division in evaluating proposed shipments of nuclear components  

SciTech Connect (OSTI)

The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied.

Just, R.A.; Love, A.F.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Stakeholder Transportation Scorecard: Reviewing Nevada's Recommendations for Enhancing the Safety and Security of Nuclear Waste Shipments - 13518  

SciTech Connect (OSTI)

As a primary stakeholder in the Yucca Mountain program, the state of Nevada has spent three decades examining and considering national policy regarding spent nuclear fuel and high-level radioactive waste transportation. During this time, Nevada has identified 10 issues it believes are critical to ensuring the safety and security of any spent nuclear fuel transportation program, and achieving public acceptance. These recommendations are: 1) Ship the oldest fuel first; 2) Ship mostly by rail; 3) Use dual-purpose (transportable storage) casks; 4) Use dedicated trains for rail shipments; 5) Implement a full-scale cask testing program; 6) Utilize a National Environmental Policy Act (NEPA) process for the selection of a new rail spur to the proposed repository site; 7) Implement the Western Interstate Energy Board (WIEB) 'straw man' process for route selection; 8) Implement Section 180C assistance to affected States, Tribes and localities through rulemaking; 9) Adopt safety and security regulatory enhancements proposed states; and 10) Address stakeholder concerns about terrorism and sabotage. This paper describes Nevada's proposals in detail and examines their current status. The paper describes the various forums and methods by which Nevada has presented its arguments and sought to influence national policy. As of 2012, most of Nevada's recommendations have been adopted in one form or another, although not yet implemented. If implemented in a future nuclear waste program, the State of Nevada believes these recommendations would form the basis for a successful national transportation plan for shipments to a geologic repository and/or centralized interim storage facility. (authors)

Dilger, Fred C. [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)

2013-07-01T23:59:59.000Z

222

Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J. [and others

1997-02-01T23:59:59.000Z

223

Radioactive ion detector  

DOE Patents [OSTI]

Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

Bower, K.E.; Weeks, D.R.

1997-08-12T23:59:59.000Z

224

Radioactive ion detector  

DOE Patents [OSTI]

Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

1997-01-01T23:59:59.000Z

225

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted...  

Broader source: Energy.gov (indexed) [DOE]

U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity Under U.S.-Russia...

226

Assessing the level of service for shipments originating or terminating on short line railroads  

E-Print Network [OSTI]

This thesis measures railroad freight trip time and trip time reliability for freight rail shipments involving short lines in 2006. It is based on an underlying MIT study commissioned by members of the short line railroading ...

Alpert, Steven M

2007-01-01T23:59:59.000Z

227

Recovery Act Funding Leads to Record Year for Transuranic Waste Shipments  

Broader source: Energy.gov [DOE]

With the help of American Recovery and Reinvestment Act funding, the Waste Isolation Pilot Plant (WIPP) received the most transuranic waste shipments in a single year since waste operations began...

228

E-Print Network 3.0 - artificial radioactive isotopes Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from an artificial source or from a radioactive substance containing naturally occurring... . This includes work with radioactive materials and that involving sources of...

229

Radiation Exposures Associated with Shipments of Foreign Research Reactor Spent Nuclear Fuel  

SciTech Connect (OSTI)

Experience has shown that the analyses of marine transport of spent fuel in the Environmental Impact Statement (EIS) were conservative. It is anticipated that for most shipments. The external dose rate for the loaded transportation cask will be more in line with recent shipments. At the radiation levels associated with these shipments, we would not expect any personnel to exceed radiation exposure limits for the public. Package dose rates usually well below the regulatory limits and personnel work practices following ALARA principles are keeping human exposures to minimal levels. However, the potential for Mure shipments with external dose rates closer to the exclusive-use regulatory limit suggests that DOE should continue to provide a means to assure that individual crew members do not receive doses in excess of the public dose limits. As a minimum, the program will monitor cask dose rates and continue to implement administrative procedures that will maintain records of the dose rates associated with each shipment, the vessel used, and the crew list for the vessel. DOE will continue to include a clause in the contract for shipment of the foreign research reactor spent nuclear fuel requiring that the Mitigation Action Plan be followed.

MASSEY,CHARLES D.; MESSICK,C.E.; MUSTIN,T.

1999-11-01T23:59:59.000Z

230

Microsoft Word - EMSL Rad Materials Use.r2.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dispersible radioactive material must be placed in rigid, leak-tight inner containers (e.g., durable screw-top sample jars). Non-dispersible radioactive material may...

231

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

232

Impact of the deployment schedule of fast breeding reactors in the frame of French act for nuclear materials and radioactive waste management  

SciTech Connect (OSTI)

In the frame of the French Act of June 28, 2006 on 'a sustainable management of nuclear materials and radioactive waste' EDF R and D assesses various research scenarios of transition between the actual French fleet and a Generation IV fleet with a closed fuel cycle where plutonium is multi-recycled. The basic scenarios simulate a deployment of 60 GWe of Sodium-cooled Fast Reactors (SFRs) in two steps: one third from 2040 to 2050 and the rest from 2080 to 2100 (scenarios 2040). These research scenarios assume that SFR technology will be ready for industrial deployment in 2040. One of the many sensitivity analyses that EDF, as a nuclear power plant operator, must evaluate is the impact of a delay of SFR technology in terms of uranium consumptions, plutonium needs and fuel cycle utilities gauging. The sensitivity scenarios use the same assumptions as scenarios 2040 but they simulate a different transition phase: SFRs are deployed in one step between 2080 and 2110 (scenarios 2080). As the French Act states to conduct research on minor actinides (MA) management, we studied different options for 2040 and 2080 scenarios: no MA transmutation, americium transmutation in heterogeneous mode based on americium Bearing Blankets (AmBB) in SFRs and all MA transmutation in heterogeneous mode based on MA Bearing Blankets (MABB). Moreover, we studied multiple parameters that could impact the deployment of these reactors (SFR load factor, increase of the use of MOX in Light Water Reactors, increase of the cooling time in spent nuclear fuel storage...). Each scenario has been computed with the EDF R and D fuel cycle simulation code TIRELIRE-STRATEGIE and optimized to meet various fuel cycle constraints such as using the reprocessing facility with long period of constant capacity, keeping the temporary stored mass of plutonium and MA under imposed limits, recycling older assemblies first... These research scenarios show that the transition from the current PWR fleet to an equivalent fleet of Generation IV SFR can follow different courses. The design of SFR-V2B that we used in our studies needs a high inventory of plutonium resulting in tension on this resource. Several options can be used in order to loosen this tension: our results lead to favour the use of axial breeding blanket in SFR. Load factor of upcoming reactors has to be regarded with attention as it has a high impact on plutonium resource for a given production of electricity. The deployment of SFRs beginning in 2080 instead of 2040 following the scenarios we described creates higher tensions on reprocessing capacity, separated plutonium storage and spent fuel storage. In the frame of the French Act, we studied minor actinides transmutation. The flux of MA in all fuel cycle plants is really high, which will lead to decay heat, a and neutron emission related problems. In terms of reduction of MA inventories, the deployment of MA transmutation cycle must not delay the installation of SFRs. The plutonium production in MABB and AmBB does not allow reducing the use of axial breeding blankets. The impact of MA or Am transmutation over the high level waste disposal is more important if the SFRs are deployed later. Transmutation option (americium or all MA) does not have a significant impact on the number of canister produced nor on its long-term thermal properties. (authors)

Le Mer, J.; Garzenne, C.; Lemasson, D. [Electricite de France R and D, 1, Avenue du General De Gaulle, 92141 Clamart (France)

2012-07-01T23:59:59.000Z

233

SHIPMENT OF NON-TRADITIONAL CONTENTS IN THE 9977 TYPE B PACKAGE  

SciTech Connect (OSTI)

The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. These materials are typically confined within metallic containers designed for ease of handling and to prevent the spread of contamination. The Pacific Northwest National Laboratory (PNNL) uses Pu and U sources for the training of domestic and international customs agents in the identification and detection of radioactive materials (RAM). These materials are packed in polycarbonate containers which permit the trainees to view the RAM. The safety basis was made to authorize the use of these unusual containers. The inclusion of the PNNL Training Source Contents into the 9977 Packaging imposed unique conditions previously unanalyzed. The use of polycarbonate as a content container material, while different from any configuration previously considered, does not raise any safety issues with the package which continues to operate with a large safety margin for temperatures, pressures, containment, dose rates, and subcriticality.

Abramczyk, G.; Loftin, B.; Bellamy, S.; Nathan, S.

2011-06-06T23:59:59.000Z

234

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING In general, building materials contain low levels of radioactivity. For example, the range of  

E-Print Network [OSTI]

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING MATERIALS In general, building materials contain low, especially in buildings constructed with materials containing uranium TENORM mine wastes. In the Grand the wastes from uranium mines have been removed from mining sites and used in local and nearby communities

235

RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA  

SciTech Connect (OSTI)

In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

2009-07-01T23:59:59.000Z

236

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

1984-02-06T23:59:59.000Z

237

Helpful links for materials transport, safety, etc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

238

Survey of National Programs for Managing High-Level Radioactive  

E-Print Network [OSTI]

Survey of National Programs for Managing High-Level Radioactive Waste and Spent Nuclear Fuel-Level Radioactive Waste and Spent Nuclear Fuel A Report to Congress and the Secretary of Energy October 2009 #12 Safety (Germany) Peter De Preter: National Agency for Radioactive Waste and Enriched Fissile Materials

239

RADIOACTIVITY 1997 BNL Site Environmental Report 4 -1  

E-Print Network [OSTI]

of a few inches. Naturally occurring radioactive elements such as potassium-40 emit beta radiation. Gamma by materials such as paper and have a range in air of only an inch or so. Naturally occurring radioactive 4.3 Sources of Radiation Radioactivity and radiation are part of the earth's natural environment

240

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

B cell remote-handled waste shipment cask alternatives study  

SciTech Connect (OSTI)

The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria.

RIDDELLE, J.G.

1999-05-26T23:59:59.000Z

242

activity radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

243

aqueous radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

244

acidic radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

245

activities radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

246

activity radioactive wastes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

247

Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1  

SciTech Connect (OSTI)

This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

Green, J.R.

1995-05-16T23:59:59.000Z

248

Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities  

SciTech Connect (OSTI)

One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

Jooho, W.; Baldwin, G. T.

2005-04-01T23:59:59.000Z

249

Moab Mill Tailings Removal Project Plans to Resume Train Shipments...  

Energy Savers [EERE]

result in a cost savings to the project over the long term. Made of -inch durable plastic, the liners will prevent the tailings material, which tends to be sticky, from...

250

Radioactive Waste Management Procedures and Guidelines See Radiation Manual 1997 for further details  

E-Print Network [OSTI]

1-24-03 Radioactive Waste Management Procedures and Guidelines See Radiation Manual 1997 PART I. Radioactive Waste A. Dry Waste 1. Labs must request a box from the Radioactive Waste program, and use only this box for accumulating their waste. 2. Place only radioactive material contaminated

251

Approval Shipment of Two Canisters of Irradiated Fuel Material from General Atomics.  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka, Alaska,BV

252

Radioactive Waste Management (Minnesota)  

Broader source: Energy.gov [DOE]

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

253

A TRANSPORTATION RISK ASSESSMENT TOOL FOR ANALYZING THE TRANSPORT OF SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE WASTE TO THE PROPOSED YUCCA MOUNTAIN REPOSITORY  

SciTech Connect (OSTI)

The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis addressed the potential for transporting spent nuclear fuel and high-level radioactive waste from 77 origins for 34 types of spent fuel and high-level radioactive waste, 49,914 legal weight truck shipments, and 10,911 rail shipments. The analysis evaluated transportation over 59,250 unique shipment links for travel outside Nevada (shipment segments in urban, suburban or rural zones by state), and 22,611 links in Nevada. In addition, the analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The analysis also used mode-specific accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. This complex mix of data and information required an innovative approach to assess the transportation impacts. The approach employed a Microsoft{reg_sign} Access database tool that incorporated data from many sources, including unit risk factors calculated using the RADTRAN IV transportation risk assessment computer program. Using Microsoft{reg_sign} Access, the analysts organized data (such as state-specific accident and fatality rates) into tables and developed queries to obtain the overall transportation impacts. Queries are instructions to the database describing how to use data contained in the database tables. While a query might be applied to thousands of table entries, there is only one sequence of queries that is used to calculate a particular transportation impact. For example, the incident-free dose to off-link populations in a state is calculated by a query that uses route segment lengths for each route in a state that could be used by shipments, populations for each segment, number of shipments on each segment, and an incident-free unit risk factor calculated using RADTRAN IV. In addition to providing a method for using large volumes of data in the calculations, the queries provide a straight-forward means used to verify results. Another advantage of using the MS Access database was the ability to develop query hierarchies using nested queries. Calculations were broken into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing unit risk factors calculated using RADTRAN IV to produce radiological impacts. Through the use of queries, impacts by origin, mode, fuel type or many other parameters can be obtained. The paper will show both the flexibility of the assessment tool and the ease it provides for verifying results.

NA

2001-02-15T23:59:59.000Z

254

Impacts of SNF burnup credit on the shipment capability of the GA-4 cask  

SciTech Connect (OSTI)

Scoping analyses were performed to determine the impacts of two different levels of burnup credit and two different spent fuel pickup rates on the shipment capability and the minimum fleet size of the GA-4 cask. The analyses involved developing loading curves for the GA-4 cask based on the actinide-only and principal-isotope burnup credit considerations. The analyses also involved examination of the spent nuclear fuel assembly population at nine reactor sites and categorization of the assemblies in accordance with the loading restrictions imposed. The results revealed that for the nine sites considered, depending on the level of burnup credit and the pickup rate assumed, the total savings in shipment and cask fleet costs (1994 dollars) can range from $55 million to $74 million.

Mobasheran, A.S. [Roy F. Weston, Inc., Washington, DC (United States); Lake, W. [Department of Energy, Washington, DC (United States); Richardson, J. [Raytheon Nuclear Inc., Washington, DC (United States)

1996-12-01T23:59:59.000Z

255

Effects of shipment on diffusive dosimetry recovery efficiency for pentane, hexane and heptane  

E-Print Network [OSTI]

Sciences College of Pharmacy Chairman of' Advisory Committee: Mr. Charles L. Gilmore The effects of' shipment on recovery was investigated for three aliphatic hydrocarbons adsorbed on the 3M Company's $3500 Organic Vapor Monitor and the Scientific Kit... Combination Vs. Contaminant INTRODUCTION The Occupational Safety and Health Adminsitration (OSHA) has promulgated standards including permissible exposure limits (PEL) for humans based on eight hour time-weighted average (TWA) exposures for approximately...

Read, Ronald Bruce

1981-01-01T23:59:59.000Z

256

Radioactive and chemotoxic wastes: Only radioactive wastes?  

SciTech Connect (OSTI)

Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

1993-12-31T23:59:59.000Z

257

Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan  

SciTech Connect (OSTI)

Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

2007-07-01T23:59:59.000Z

258

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network [OSTI]

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid frequently and change them if contaminated. 5. Use radioactive waste container to collect the waste. 6. Check

Jia, Songtao

259

Radioactive Waste Management Basis  

SciTech Connect (OSTI)

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

260

Radioactivity in Food and the Environment, 2005  

E-Print Network [OSTI]

.............................................................................................. 0 .. Radioactive waste disposal from nuclear sites ........................................................................................................................... 9 . Disposals of radioactive waste............................................ .. Radioactive waste disposal at sea

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design, construction, and use of a shipping case for radioactive sources used in the calibration of portal monitors in the radiation portal monitoring project  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory is working with US Customs and Border Protection to assist in the installation of radiation portal monitors. We need to provide radioactive sources – both gamma- and neutron-emitting – to ports of entry where the monitors are being installed. The monitors must be calibrated to verify proper operation and detection sensitivity. We designed a portable source-shipping case using numerical modeling to predict the neutron dose rate at the case’s surface. The shipping case including radioactive sources meets the DOT requirements for “limited quantity.” Over 300 shipments, domestic and international, were made in FY2008 using this type of shipping case.

Lepel, Elwood A.; Hensley, Walter K.

2009-12-01T23:59:59.000Z

262

RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage  

SciTech Connect (OSTI)

Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

2003-02-26T23:59:59.000Z

263

The New Orphaned Radioactive Sources Program in the United States International Conference on the Safety of Radiation Sources and the Security of Radioactive  

E-Print Network [OSTI]

of contamination in metals: contaminated metal from foreign countries, and sealed radioactive sources, both1 The New Orphaned Radioactive Sources Program in the United States International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials. September 14-18, 1998 Neil Naraine

264

The Development of an Effective Transportation Risk Assessment Model for Analyzing the Transport of Spent Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository  

SciTech Connect (OSTI)

Past approaches for assessing the impacts of transporting spent fuel and high-level radioactive waste have not been effectively implemented or have used relatively simple approaches. The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis considers 83 origins, 34 fuel types, 49,914 legal weight truck shipments, 10,911 rail shipments, consisting of 59,250 shipment links outside Nevada (shipment kilometers and population density pairs through urban, suburban or rural zones by state), and 22,611 shipment links in Nevada. There was additional complexity within the analysis. The analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The model also considered different accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. To capture the all of the complexities of the transportation analysis, a Microsoft{reg_sign} Access database was created. In the Microsoft{reg_sign} Access approach the data is placed in individual tables and equations are developed in queries to obtain the overall impacts. While the query might be applied to thousands of table entries, there is only one equation for a particular impact. This greatly simplifies the validation effort. Furthermore, in Access, data in tables can be linked automatically using query joins. Another advantage built into MS Access is nested queries, or the ability to develop query hierarchies. It is possible to separate the calculation into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing the state and mode specific accident rate to produce accidents by state. One of the biggest advantages of the nested queries is in validation. Temporarily restricting the query to one origin, one shipment, or one state and validating that the query calculation is returning the expected result allows simple validation. The paper will show the flexibility of the assessment tool to consider a wide variety of impacts. Through the use of pre-designed queries, impacts by origin, mode, fuel type or many other parameters can be obtained.

McSweeney; Thomas; Winnard; Ross; Steven B.; Best; Ralph E.

2001-02-06T23:59:59.000Z

265

10,000th Shipment Celebrated at WIPP | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley Responsible DOEQA: NA Root CauseDepartment0,000th Shipment

266

Microsoft Word - 10,000th Shipment Commemoration Release Final.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping RichlandScatteringWater Vapor77 PAGE OF838:UFC10,000 th Shipment

267

Recovering Radioactive Materials with ORSP Team  

ScienceCinema (OSTI)

The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered more than 16,000 orphan sources as of 2008.

LANL

2009-09-01T23:59:59.000Z

268

Recovering Radioactive Materials with OSRP team  

ScienceCinema (OSTI)

The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

None

2010-01-08T23:59:59.000Z

269

Emergency Responder Radioactive Material Quick Reference Sheet  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirementsDraft EnvironmentalRoadDepartment5-CE-14020)BUILDING

270

ETEC - Radioactive Handling Materials Facility (RMHF) Leachfield |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThreeEnergyDepartment0:Energy 2: ActionsEPActDepartment of

271

Radioactive Materials Emergencies Course Presentation | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbus HTS1,Geologic Disposal= J .MEASUREMENT

272

Midwestern Radioactive Materials Transportation Committee Agenda |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergyMagna:MasterOffice0RecordsDomestic Natural Gas

273

Midwestern Radioactive Materials Transportation Committee Agenda  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to: A DispersionMid-LevelProposed PenaltyDepartment

274

Technical Review Report for the Justification for Shipment of Sodium-Bonded Carbide Fuel Pins in the T-3 Cask  

SciTech Connect (OSTI)

This report documents the review of the Fluor Submittal (hereafter, the Submittal), prepared by Savannah River Packaging Technology (SRPT) of Savannah River National Laboratory (SRNL), at the request of the Department of Energy's (DOE) Richland Operations Office, for the shipment of unirradiated and irradiated sodium-bonded carbide fuel pins. The sodium-bonded carbide fuel pins are currently stored at the Fast Flux Test Facility (FFTF) awaiting shipment to Idaho National Laboratory (INL). Normally, modified contents are included into the next revision of the SARP. However, the contents, identified to be shipped from FFTF to Idaho National Laboratory, are a one-way shipment of 18 irradiated fuel pins and 7 unirradiated fuel pins, where the irradiated and unirradiated fuel pins are shipped separately, and can be authorized with a letter amendment to the existing Certificate of Compliance (CoC).

West, M; DiSabatino, A

2008-01-04T23:59:59.000Z

275

Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519  

SciTech Connect (OSTI)

Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States)

2013-07-01T23:59:59.000Z

276

RADIOACTIVE WASTE DISPOSAL IN GRANITE  

E-Print Network [OSTI]

RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

277

TRESS: A Transportable Radioactive Effluent Solidification System  

SciTech Connect (OSTI)

This paper describes an attempt to produce a totally new concept for a transportable plant capable of encapsulating radioactive sludges and ion exchange resins, employing recently developed dewatering and mixing techniques. One of the prime aims of the investigation was to produce a plant which could handle both beta/gamma and alpha-bearing materials.

Sims, J. [BBN Environmental Management Ltd., Bramhall (United Kingdom). WasteChem Div.; Schneider, K. [NUKEM GmbH, Alzenau (Germany)

1993-12-31T23:59:59.000Z

278

Packaging and Transfer or Transportation of Materials of National Security Interest  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements and responsibilities for offsite shipments of naval nuclear fuel elements, Category I and Category II special nuclear material, nuclear explosives, nuclear components, special assemblies, and other materials of national security interest. Cancels DOE O 461.1. Canceled by DOE O 461.1B and DOE O 461.2.

2004-04-26T23:59:59.000Z

279

The ENCOAL project: Initial commercialization shipment and utilization of both solid and liquid products. Topical report  

SciTech Connect (OSTI)

ENCOAL is co-funding a mild gasification project and shipping the products to customers. The ENCOAL Corporation has shipped, to two utility customers, over 500 rail cars (six partial trains and two full trains) of solid product (PDF) from its plant located at Triton Coal Company`s Buckskin Mine near Gillette Wyoming. Shipments span a range of blends from 15% to essentially unblended PDF. Utility handling of these shipments is comparable to that of run-of-mine Buckskin coal. Results related to spontaneous combustion and generation of fugitive dust are particularly favorable. Combustion tests were performed both in a pulverized-fired boiler and in a cyclone-fired boiler. Commercialization utilization of the liquid product (CDL) depends on customer facility capabilities and the source of any blending fuel, as expected. A total of 56 tank cars have been sent to three customers. The 1994 test program met or exceeded ENCOAL`s major objectives of transporting and burning both PDF and CDL in existing customer facilities.

McCord, T.G.

1995-03-01T23:59:59.000Z

280

Present experience of NRI REZ with preparation of spent nuclear fuel shipment to Russian Federation  

SciTech Connect (OSTI)

The Nuclear Research Institute Rez plc (NRI) jointed the Russian Research Reactor Fuel Return (RRRFR) programme under the US-Russian Global Threat Reduction Initiative (GTRI) initiative and started the preparation of the spent nuclear fuel (SNF) shipment from the LVR-15 research reactor back to the Russian Federation (RF). The transport of 16 SKODA VPVR/M casks with EK-10, IRT-2M 80 %, and IRT-2M 36% fuel types is planned for the autumn of 2007. The paper describes the experience gained so far during the preparatory works for the SNF shipment (facility equipment modification, cask licenses) and the actual preparation of the SNF for transport, in particular its checking, repacking in a hot cell, loading into the VPVR/M casks, drying, manipulation, completion of the transport documentation, etc., including its transport to the SNF storage facility at the NRI before it is shipped to the RF. The paper also briefly describes a regulatory framework for these activities with a focus on legislative and methodological aspects of the return of vitrified waste back to the Czech Republic. (author)

Svitak, F.; Broz, V.; Hrehor, M.; Marek, M.; Novosad, P.; Podlaha, J.; Rychecky, J. [Nuclear Research Institute Rez plc, Husinec 130, CZ-25068 (Czech Republic)

2008-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

1999-07-09T23:59:59.000Z

282

RADIOACTIVE ELEMENT REMOVAL FROM WATER USING GRAPHENE OXIDE (GO)  

E-Print Network [OSTI]

and may release significant amounts of radioactive material into the environment resulting in the potential for widespread exposure. These industries include mining, phosphate processing, metal ore processing, heavy mineral sand processing, titanium...

Concklin, Joshua Paul

2013-12-19T23:59:59.000Z

283

EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor  

Broader source: Energy.gov [DOE]

This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

284

Modelling of long-term diffusionreaction in a bentonite barrier for radioactive waste confinement  

E-Print Network [OSTI]

Modelling of long-term diffusion­reaction in a bentonite barrier for radioactive waste confinement in geological disposal facilities for radioactive waste. This material is expected to fill up by swelling transformations; Solute diffusion 1. Introduction The radioactive waste confinement in deep geolo- gical laye

Montes-Hernandez, German

285

Investigations to site a radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4  

E-Print Network [OSTI]

Investigations to site a radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4 Radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4 s the UK radioactive waste legacy comprises difficult material which is complex, of mixed origin

286

E-Print Network 3.0 - alkaline radioactive liquid Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Conventional Uranium Milling Introduction Summary: Radioactive Materials from Uranium Mining. Volume 1: Mining and Reclamation Background" by U.S. EPA (2006... as an...

287

Puncture detecting barrier materials  

DOE Patents [OSTI]

A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

1998-03-31T23:59:59.000Z

288

Dynamic radioactive particle source  

DOE Patents [OSTI]

A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

2012-06-26T23:59:59.000Z

289

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

1999-07-09T23:59:59.000Z

290

Fernald vacuum transfer system for uranium materials repackaging  

SciTech Connect (OSTI)

The Fernald Environmental Management Project (FEMP) is the site of a former Department of Energy (DOE) uranium processing plant. When production was halted, many materials were left in an intermediate state. Some of this product material included enriched uranium compounds that had to be repackaged for shipment of off-site storage. This paper provides an overview, technical description, and status of a new application of existing technology, a vacuum transfer system, to repackage the uranium bearing compounds for shipment. The vacuum transfer system provides a method of transferring compounds from their current storage configuration into packages that meet the Department of Transportation (DOT) shipping requirements for fissile materials. This is a necessary activity, supporting removal of nuclear materials prior to site decontamination and decommissioning, key to the Fernald site's closure process.

Kaushiva, Shirley; Weekley, Clint; Molecke, Martin; Polansky, Gary

2002-02-24T23:59:59.000Z

291

Concluding Remarks In this work, we have explored in depth many types of radioactive contamination that are  

E-Print Network [OSTI]

Concluding Remarks In this work, we have explored in depth many types of radioactive contamination as radiopurity testing facilities, capable of measuring the radioactivity levels of materials to be used

292

Radioactive tank waste remediation focus area  

SciTech Connect (OSTI)

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

NONE

1996-08-01T23:59:59.000Z

293

Wide range radioactive gas concentration detector  

DOE Patents [OSTI]

A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

Anderson, David F. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

294

Public involvement in radioactive waste management decisions  

SciTech Connect (OSTI)

Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

NONE

1994-04-01T23:59:59.000Z

295

Radioactivity in food crops  

SciTech Connect (OSTI)

Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

1983-05-01T23:59:59.000Z

296

Hazardous Material Packaging for Transport - Administrative Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

1986-09-30T23:59:59.000Z

297

Demonstration (DEMO) of Radio Frequency Identification (RFID) system for tracking and monitoring of nuclear materials.  

SciTech Connect (OSTI)

The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (models 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.

Tsai, H. C.; Chen, K.; Liu, Y. Y.; Shuler, J. (Decision and Information Sciences); (USDOE)

2010-01-01T23:59:59.000Z

298

University of Hawaii TABLE OF CONTENTS  

E-Print Network [OSTI]

Spills 3-1 C. Injuries to Personnel 3-2 D. Fires Involving Radioactive Materials 3-2 Part IV: Waste Shipments App. A-11 Radioactive Waste Pickup Form Instructions App. A-12 Radioactive Waste Pickup Request Instructions for Cruise Radioactive Waste App. A-16 Radioactive Waste Pick-Up Request form for R/V cruises App

Browder, Tom

299

Radioactive mixed waste disposal  

SciTech Connect (OSTI)

Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

Jasen, W.G.; Erpenbeck, E.G.

1993-02-01T23:59:59.000Z

300

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

1999-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

1999-07-09T23:59:59.000Z

302

Sealed Radioactive Source Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) interim policy and to provide guidance for sealed radioactive source accountability. The directive does not cancel any directives. Extended by DOE N 5400.10 to 12-24-93 & Extended by DOE N 5400.12 to 12-24-94.

1991-12-24T23:59:59.000Z

303

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

1999-07-09T23:59:59.000Z

304

Sealed Radioactive Source Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Notice extends DOE N 5400.9, Sealed Radioactive Source Accountability, of 12-24-91, until 12-24-95, unless sooner superseded or rescinded. The contents of DOE N 5400.9 will be updated and incorporated in the revised DOE O 5480.11, Radiation Protection for Occupational Workers.

1994-12-22T23:59:59.000Z

305

Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254  

SciTech Connect (OSTI)

Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's regulatory and demonstration testing of MAGNOX fuel flasks in the United Kingdom (the CEGB 'Operation Smash Hit' tests), and the 1980's regulatory drop and fire tests conducted on the TRUPACT II containers used for transuranic waste shipments to the Waste Isolation Pilot Plant in New Mexico. The primary focus of the paper is a detailed evaluation of the cask testing programs proposed by the NRC in its decision implementing staff recommendations based on the Package Performance Study, and by the State of Nevada recommendations based on previous work by Audin, Resnikoff, Dilger, Halstead, and Greiner. The NRC approach is based on demonstration impact testing (locomotive strike) of a large rail cask, either the TAD cask proposed by DOE for spent fuel shipments to Yucca Mountain, or a similar currently licensed dual-purpose cask. The NRC program might also be expanded to include fire testing of a legal-weight truck cask. The Nevada approach calls for a minimum of two tests: regulatory testing (impact, fire, puncture, immersion) of a rail cask, and extra-regulatory fire testing of a legal-weight truck cask, based on the cask performance modeling work by Greiner. The paper concludes with a discussion of key procedural elements - test costs and funding sources, development of testing protocols, selection of testing facilities, and test peer review - and various methods of communicating the test results to a broad range of stakeholder audiences. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge Northridge, CA 91330 (United States)

2012-07-01T23:59:59.000Z

306

Radioactive Contamination of Danish Territory  

E-Print Network [OSTI]

Risø-R-462 Radioactive Contamination of Danish Territory after Core-melt Accidents at the Barsebäck;#12;RIS0-R-462 RADIOACTIVE CONTAMINATION OF DANISH TERRITORY AFTER CORE-MELT ACCIDENTS AT THE BARSEBACK. An assessment is made of the radioactive contamination of Danish territory in the event of a core-melt accident

307

Radioactive Contamination of Danish Territory  

E-Print Network [OSTI]

» & Risø-R-462 Radioactive Contamination of Danish Territory after Core-melt Accidents 1982 Risø National Laboratory, DK-4000 Roskilde, Denmark #12;RIS�-R-462 RADIOACTIVE CONTAMINATION. Heikel Vinther, L. Warming and A. Aarkrog Abstract. An assessment is made of the radioactive

308

Low-level radioactive waste regulation: Science, politics and fear  

SciTech Connect (OSTI)

An inevitable consequence of the use of radioactive materials is the generation of radioactive wastes and the public policy debate over how they will be managed. In 1980, Congress shifted responsibility for the disposal of low-level radioactive wastes from the federal government to the states. This act represented a sharp departure from more than 30 years of virtually absolute federal control over radioactive materials. Though this plan had the enthusiastic support of the states in 1980, it now appears to have been at best a chimera. Radioactive waste management has become an increasingly complicated and controversial issue for society in recent years. This book discusses only low-level wastes, however, because Congress decided for political reasons to treat them differently than high-level wastes. The book is based in part on three symposia sponsored by the division of Chemistry and the Law of the American Chemical Society. Each chapter is derived in full or in part from presentations made at these meetings, and includes: (1) Low-level radioactive wastes in the nuclear power industry; (2) Low-level radiation cancer risk assessment and government regulation to protect public health; and (3) Low-level radioactive waste: can new disposal sites be found.

Burns, M.E. (ed.)

1988-01-01T23:59:59.000Z

309

Methods for verifying compliance with low-level radioactive waste acceptance criteria  

SciTech Connect (OSTI)

This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

NONE

1993-09-01T23:59:59.000Z

310

AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT  

SciTech Connect (OSTI)

One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

Bunting, Bruce G [ORNL] [ORNL; Boyd, Alison C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

311

Office of Civilian Radioactive Waste Management fiscal year 1996 annual report to Congress  

SciTech Connect (OSTI)

In Fiscal Year 1996 a revised program strategy was developed that reflects Administration policy and responds to sharply reduced funding and congressional guidance while maintaining progress toward long-term objectives. The program is on track, working toward an early, comprehensive assessment of the viability of the Yucca Mountain site; more closely determining what will be required to incorporate defense waste into the waste management system; pursuing a market-driven strategy for waste acceptance, storage, and transportation; and preserving the core capability to respond to an interim storage contingency. Overall, the elements of an integrated system for managing the Nation`s spent fuel and high-level radioactive waste are emerging, more soundly conceived, and more modestly designed, as the OCRWM works toward the physical reality of waste shipments to Federal facilities.

NONE

1997-05-01T23:59:59.000Z

312

THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS  

SciTech Connect (OSTI)

The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

Skidmore, E.; Fondeur, F.

2013-04-15T23:59:59.000Z

313

Membrane Treatment of Liquid Salt Bearing Radioactive Wastes  

SciTech Connect (OSTI)

The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

2003-02-25T23:59:59.000Z

314

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect (OSTI)

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

315

Radioactive waste management strategy in the Republic of Croatia  

SciTech Connect (OSTI)

Environmental preservation and human health protection have been proclaimed by the Croatian Government as priority actions. Hence, all organized actions toward this aim are expected to be supported by the State. Radioactive waste management plays a significant role in controlling materials that could harm the environment. Strategy in handling radioactive wastes is a prerequisite for well-organized radwaste management. It should be applied to all radioactive wastes that have already been produced in various industries, medical institutions, and scientific laboratories. Additionally, radioactive wastes that are being generated in the Krsko NPP must not be neglected, as well as possible future nuclear program needs in Croatia. For all considered actions, world-wide experiences and safety requirements should be strictly respected.

Subasic, D.; Saler, A.; Skanata, D. [Javno poduzece za zbrinjavanje radioaktivnog otpada, Zagreb (Croatia)

1993-12-31T23:59:59.000Z

316

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network [OSTI]

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

317

Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste  

E-Print Network [OSTI]

1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

318

Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation  

SciTech Connect (OSTI)

On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

2008-07-01T23:59:59.000Z

319

CHERNOBYL DATA BASE ENVIRONMENTAL RADIOACTIVITY  

E-Print Network [OSTI]

MAY 1990 THE NORDIC CHERNOBYL DATA BASE ENVIRONMENTAL RADIOACTIVITY MEASUREMENTS Nordic liaison CHERNOBYL DATA BASE ENVIRONMENTAL RADIOACTIVITY MEASUREMENTS Final Report of the NKA Project AKT 242 Edited the members of the working group. Graphic Systems AB, Malmo 1990 #12;111 ABSTRACT. The NORDIC CHERNOBYL DATA

320

Properties of Natural Radiation and Radioactivity  

SciTech Connect (OSTI)

Ubiquitous natural sources of radiation and radioactive material (naturally occurring radioactive material, NORM) have exposed humans throughout history. To these natural sources have been added technologically-enhanced naturally occurring radioactive material (TENORM) sources and human-made (anthropogenic) sources. This chapter describes the ubiquitous radiation sources that we call background, including primordial radionuclides such as 40K, 87Rb, the 232Th series, the 238U series, and the 235U series; cosmogenic radionuclides such as 3H and 14C; anthropogenic radionuclides such as 3H, 14C, 137Cs, 90Sr, and 129I; radiation from space; and radiation from technologically-enhanced concentrations of natural radionuclides, particularly the short-lived decay products of 222Rn ("radon") and 220Rn ("thoron") in indoor air. These sources produce radiation doses to people principally via external irradiation or internal irradiation following intakes by inhalation or ingestion. The effective doses from each are given, with a total of 3.11 mSv y-1 (311 mrem y-1) to the average US resident. Over 2.5 million US residents receive over 20 mSv y-1 (2 rem y-1), primarily due to indoor radon. Exposure to radiation from NORM and TENORM produces the largest fraction of ubiquitous background exposure to US residents, on the order of 2.78 mSv (278 mrem) or about 89%. This is roughly 45% of the average annual effective dose to a US resident of 6.2 mSv y-1 (620 mrem y-1) that includes medical (48%), consumer products and air travel (2%), and occupational and industrial (0.1%). Much of this chapter is based on National Council on Radiation Protection and Measurements (NCRP) Report No. 160, "Ionizing Radiation Exposure of the Population of the United States," for which the author chaired the subcommittee that wrote Chapter 3 on "Ubiquitous Background Radiation."

Strom, Daniel J.

2009-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Radiation levels on empty cylinders containing heel material  

SciTech Connect (OSTI)

Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

Shockley, C.W. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

1991-12-31T23:59:59.000Z

322

Enclosure 3 DOE Response to EPA Question Regarding "High-Level Liquid Radioactive Waste"  

E-Print Network [OSTI]

to date, which is from the definitions in the Nuclear Waste Policy Act: The term "high-level radioactive waste" means-- (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel of waste streams as from the applicable definition of HLW in the Nuclear Waste Policy Act. 5/11/20051 #12

323

Bonded carbon or ceramic fiber composite filter vent for radioactive waste  

DOE Patents [OSTI]

Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

Brassell, Gilbert W. (13237 W. 8th Ave., Golden, CO 80401); Brugger, Ronald P. (Lafayette, CO)

1985-02-19T23:59:59.000Z

324

CHAPTER 4: CONCEPTS OF RADIOACTIVITY 1998 SITE ENVIRONMENTAL REPORT4-1  

E-Print Network [OSTI]

a range in air of only an inch or so. Naturally occurring radioactive elements such as radon emit alpha by materials such as aluminum foil. They have a range in air of a few inches. Naturally occurring radioactive-rays are essen- tially a form of gamma radiation. Figure 4-1. Typical Annual Radiation Doses from Natural and Man

325

Radioactive waste management in the former USSR  

SciTech Connect (OSTI)

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01T23:59:59.000Z

326

Radioactivity in Food and the Environment, 2009  

E-Print Network [OSTI]

................................................................................................................22 1.2.1 Radioactive waste disposal from nuclear sites ............................................................................................................................22 1.2 Disposals of radioactive waste ..............................................................................................................27 1.2.5 Solid radioactive waste disposal at sea

327

Radioactivity in Food and the Environment, 2006  

E-Print Network [OSTI]

................................................................................................................22 1.2.1 Radioactive waste disposal from nuclear sites .............................................................................................................................22 1.2 Disposals of radioactive waste.......................................................................................................25 1.2.5 Solid radioactive waste disposal at sea

328

Particle beam generator using a radioactive source  

DOE Patents [OSTI]

The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

Underwood, David G. (Naperville, IL)

1993-01-01T23:59:59.000Z

329

Particle beam generator using a radioactive source  

DOE Patents [OSTI]

The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

Underwood, D.G.

1993-03-30T23:59:59.000Z

330

Kevin Blackwell, FRA Mike Butler, UETC Sandy Covi, UPRR Steve...  

Broader source: Energy.gov (indexed) [DOE]

for the Topic Group to discuss DOE's process for mode selection, the use of dedicated trains in spent fuel shipments, the feasibility of shipping low-level radioactive materials...

331

Summary of radioactive solid waste received in the 200 Areas during calendar year 1992  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1991. This report does not include solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms, or backlog wastes. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1992-05-01T23:59:59.000Z

332

Summary of radioactive solid waste received in the 200 Areas during calendar year 1994  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1995-08-01T23:59:59.000Z

333

Summary of radioactive solid waste received in the 200 Areas during calendar year 1993  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1994-09-01T23:59:59.000Z

334

Bagless transfer process and apparatus for radioactive waste confinement  

DOE Patents [OSTI]

A process and apparatus is provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox.

Maxwell, David N. (Aiken, SC); Hones, Robert H. (Evans, GA); Rogers, M. Lane (Aiken, SC)

1998-01-01T23:59:59.000Z

335

Bagless transfer process and apparatus for radioactive waste confinement  

DOE Patents [OSTI]

A process and apparatus are provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox. 7 figs.

Maxwell, D.N.; Hones, R.H.; Rogers, M.L.

1998-04-14T23:59:59.000Z

336

SIMPLIFIED PROCEDURE FOR CERTAIN USERS OF SEALED SOURCES, SHORT HALF-LIFE MATERIALS,  

E-Print Network [OSTI]

authority with a minimum of: (1) a certification that no residual radioactive contamination attributable, AND SMALL QUANTITIES A large number of users of radioactive materials may use a simplified procedure that qualify for simplified decommissioning procedures are those where radioactive materials have been used

337

Radiation shielding materials and containers incorporating same  

DOE Patents [OSTI]

An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

Mirsky, Steven M. (Greenbelt, MD); Krill, Stephen J. (Arlington, VA); Murray, Alexander P. (Gaithersburg, MD)

2005-11-01T23:59:59.000Z

338

Radiation Shielding Materials and Containers Incorporating Same  

DOE Patents [OSTI]

An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

2005-11-01T23:59:59.000Z

339

Radioactive decay data tables  

SciTech Connect (OSTI)

The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

Kocher, D.C.

1981-01-01T23:59:59.000Z

340

Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2  

SciTech Connect (OSTI)

The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

NONE

1995-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of the Office of Civilian Radioactive Waste Management National Transportation Plan  

SciTech Connect (OSTI)

The Director of the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) designated development of the National Transportation Plan (NTP) as one of his four strategic objectives for the program. The Office of Logistics Management (OLM) within OCRWM was tasked to develop the plan, which will accommodate state, local, and tribal concerns and input to the greatest extent practicable. The plan will describe each element of the national transportation system that OCRWM is developing for shipping spent nuclear fuel and high-level radioactive waste to the proposed geologic repository at Yucca Mountain, Nevada. The plan will bring together OCRWM's approach for acquiring capital assets (casks, rail cars, and a rail line in Nevada) and its operational planning efforts in a single, comprehensive document. It will also provide a timetable for major transportation decisions and milestones needed to support a 2017 start date for shipments to the Yucca Mountain repository. The NTP will be revised to incorporate new developments and decisions as they are finalized. This paper will describe the elements of the NTP, its importance in providing a comprehensive overview of the national transportation system, and the role of stakeholders in providing input on the NTP and the national transportation system. (authors)

Macaluso, C. [U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, DC (United States); Offner, J.; Patric, J. [Booz Allen Hamilton, Washington, DC (United States)

2008-07-01T23:59:59.000Z

342

REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN  

SciTech Connect (OSTI)

U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

Dunn, Kerry A. [Savannah River National Laboratory; Bellamy, J. Steve [Savannah River National Laboratory; Chandler, Greg T. [Savannah River National Laboratory; Iyer, Natraj C. [U.S. Department of Energy, National Nuclear Security Administration, Office of; Koenig, Rich E.; Leduc, D. [Savannah River National Laboratory; Hackney, B. [Savannah River National Laboratory; Leduc, Dan R. [Savannah River National Laboratory

2013-08-18T23:59:59.000Z

343

CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT  

SciTech Connect (OSTI)

The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

Marra, J.

2010-05-05T23:59:59.000Z

344

Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect (OSTI)

This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a

Greg Shott, Vefa Yucel, Lloyd Desotell

2008-05-01T23:59:59.000Z

345

Wide-range radioactive-gas-concentration detector  

DOE Patents [OSTI]

A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

Anderson, D.F.

1981-11-16T23:59:59.000Z

346

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

SciTech Connect (OSTI)

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

347

IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD  

SciTech Connect (OSTI)

The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation & Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington, the Department of Energy, and the Environmental Protection Agency. These commitments require waste containers to be shipped off site for disposal and/or treatment within a certain time frame. Because the program was struggling to meet production demands, the Production and Planning group was tasked with developing a method to assist the LLW Program in fulfilling its requirements. Using existing databases for container management, a single electronic spreadsheet was created to visually map every waste container within the CWC. The file displays the exact location (e.g., building, module, tier, position) of each container in a format that replicates the actual layout in the facility. In addition, each container was placed into a queue defined by the LLW and TRU waste management programs. The queues were developed based on characterization requirements, treatment type and location, and potential final disposition. This visual aid allows the user to select containers from similar queues and view their location within the facility. The user selects containers in a centralized location, rather than random locations, to expedite shipments out of the facility. This increases efficiency for generating the shipments, as well as decreasing worker exposure and container handling time when gathering containers for shipment by reducing movements of waste container. As the containers are collected for shipment, the remaining containers are segregated by queue, which further reduces future container movements.

UYTIOCO EM

2007-11-14T23:59:59.000Z

348

Testing atomic mass models with radioactive beams  

SciTech Connect (OSTI)

Significantly increased yields of new or poorly characterized exotic isotopes that lie far from beta-decay stability can be expected when radioactive beams are used to produce these nuclides. Measurements of the masses of these new species are very important. Such measurements are motivated by the general tendency of mass models to diverge from one another upon excursions from the line of beta-stability. Therefore in these regions (where atomic mass data are presently nonexistent or sparse) the models can be tested rigorously to highlight the features that affect the quality of their short-range and long-range extrapolation properties. Selection of systems to study can be guided, in part, by a desire to probe those mass regions where distinctions among mass models are most apparent and where yields of exotic isotopes, produced via radioactive beams, can be optimized. Identification of models in such regions that have good predictive properties will aid materially in guiding the selection of additional experiments which ultimately will provide expansion of the atomic mass database for further refinement of the mass models. 6 refs., 5 figs.

Haustein, P.E.

1989-01-01T23:59:59.000Z

349

Electrostatics and radioactive aerosol behavior  

SciTech Connect (OSTI)

Radioactive aerosols differ from their nonradioactive counterparts by their ability to charge themselves by emitting charged particles during the radioactive decay process. Evidence that electrostatics, including this charging process, can affect the transport of the aerosols was summarized previously. Charge distributions and the mean charge for a monodisperse radioactive aerosol have been considered in detail. The principal results of theory to calculate charge distributions on a aerosol with a size distribution, changes to Brownian coagulation rates for an aerosol in a reactor containment, and possible changes to aerosol deposition resulting from the charging will be presented. The main purpose of the work has been to improve calculations of aerosol behavior in reactor containments, but behavior in less ionizing environments will be affected more strongly, and some problems remain to be solved in performing reliable calculations.

Clement, C.F.

1994-12-31T23:59:59.000Z

350

Porous Materials Porous Materials  

E-Print Network [OSTI]

1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

Berlin,Technische Universität

351

Maine State Briefing Book on low-level radioactive waste management  

SciTech Connect (OSTI)

The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

Not Available

1981-08-01T23:59:59.000Z

352

Safety Analysis Report for packaging (onsite) steel waste package  

SciTech Connect (OSTI)

The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

BOEHNKE, W.M.

2000-07-13T23:59:59.000Z

353

Natural Radioactivity of Boron Added Clay Samples  

SciTech Connect (OSTI)

Clay, consisting fine-grained minerals, is an interesting materials and can be used in a variety of different fields especially in dermatology application. Using clay such a field it is important to measure its natural radioactivity. Thus the purpose of this study is to measure {sup 226}Ra, {sup 232}Th and {sup 40}K concentration in clay samples enriched with boron. Three different types of clay samples were prepared where boron is used in different rate. The measurements have been determined using a gamma-ray spectrometry consists of a 3''x3'' NaI(Tl) detector. From the measured activity the radium equivalent activities (Ra{sub eq}), external hazard index (H{sub ex}), absorbed dose rate in air (D) and annual effective dose (AED) have also been obtained.

Akkurt, I.; Guenoglu, K. [Sueleyman Demirel University, Faculty of Arts and Sciences, Dept. of Physics, Isparta (Turkey); Canakcii, H. [Gaziantep University, Engineering Faculty, Civil Engineering Dept., Gaziantep (Turkey); Mavi, B. [Amasya University, Faculty of Arts and Sciences, Dept. of Physics, Amasya (Turkey)

2011-12-26T23:59:59.000Z

354

Annual radioactive waste tank inspection program -- 1993  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

McNatt, F.G. Sr.

1994-05-01T23:59:59.000Z

355

Analysis of International Commodity Shipping Data and the Shipment of NORM to the United States  

SciTech Connect (OSTI)

As part of the Spreader Bar Radiation Detector project, PNNL analyzed US import data shipped through US ports collected over the 12 months of 2006 (over 4.5 million containers). Using these data, we extracted a variety of distributions that are of interest to modelers and developers of active and passive detection systems used to 'scan' IMCCs for potential contraband. This report expands on some of the analysis presented in an earlier report from LLNL, by investigation the foreign port distribution of commodities shipped to the US. The majority of containers shipped to the United States are 40 ft containers ({approx}70%); about 25% are 20 ft; and about 3.6% are 45 ft containers. A small fraction (<1%) of containers are of other more specialized sizes, and very few ports actually ship these unique size containers (a full distribution for all foreign ports is shown in Appendix A below). The primary foreign ports that ship the largest fraction of each container are shown in the table below. Given that 45 ft containers comprise 1 of out every 27 containers shipped to the US, and given the foreign ports from which they are shipped, they should not be ignored in screening; further testing and analysis of radiation measurements for national security with this size container is warranted. While a large amount of NORM is shipped in IMCCs, only a few specific commodities are shipped with enough frequency to present potential issues in screening IMCCs at ports. The majority of containers with NORM will contain fertilizers (5,700 containers), granite (59,000 containers), or ceramic (225,000 containers) materials. Fertilizers were generally shipping in either 20- or 40 ft containers with equal frequency. While granite is mostly shipped in 20 ft containers, ceramic materials can be shipped in either 20- or 40 ft containers. The size of container depended on the specific use of the ceramic or porcelain material. General construction ceramics (such as floor and roofing tiles) tend to be shipped in 20 ft containers. Consumer products made from ceramic materials (e.g., tableware, sinks, and toilets) are generally shipped in 40 ft containers. This distinct discrepancy is due in large part to the packaging of the commodity. Consumer products are generally shipped packed in a box loaded with Styrofoam or other packing material to protect the product from breakage. Construction ceramic materials are generally shipped in less packing material, many times consisting of only a cardboard or wooden box. Granite is almost always shipped in a 20 ft container, given its very high density.

Baciak, James E.; Ely, James H.; Schweppe, John E.; Sandness, Gerald A.; Robinson, Sean M.

2011-10-01T23:59:59.000Z

356

Integrated Management Program Radioactive Sealed Sources in Egypt  

SciTech Connect (OSTI)

The radioactive materials in ''public'' locations are typically contained in small, stainless steel capsules known as sealed radiation sources (RS). These capsules seal in the radioactive materials, but not the radiation, because it is the radiation that is needed for a wide variety of applications at hospitals, medical clinics, manufacturing plants, universities, construction sites, and other facilities in the public sector. Radiation sources are readily available, and worldwide there are hundreds of thousands of RS. The IMPRSS Project is a cooperative development between the Egyptian Atomic Energy Authority (EAEA), Egyptian Ministry of Health (MOH), Sandia National Laboratories (SNL), New Mexico Tech University (NMT), and Agriculture Cooperative Development International (ACDI/VOCA). SNL will coordinate the work scope between the participant organizations.

Hasan, A.; Cochran, J. R.; El-Adham, K.; El-Sorougy, R.

2003-02-26T23:59:59.000Z

357

The Radioactive Beam Program at Argonne  

E-Print Network [OSTI]

In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

B. B. Back

2006-06-06T23:59:59.000Z

358

Low Level Radioactive Waste Authority (Michigan)  

Broader source: Energy.gov [DOE]

Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority ...

359

Internal and External Radioactive Backgrounds  

E-Print Network [OSTI]

Chapter 3 Internal and External Radioactive Backgrounds New physics is often discovered by pushing energies. With the current large mixing angle-MSW oscillation parameters, Borexino expects to observe 0.35 neutrino events per day per ton from 7Be in the energy window. Because there are so few events

360

SRP RADIOACTIVE WASTE RELEASES S  

Office of Scientific and Technical Information (OSTI)

. . . . . -- SRP RADIOACTIVE WASTE RELEASES S t a r t u p t h r o u g h 1 9 5 9 September 1 9 6 0 - R E C O R D - W O R K S T E C H N I C A L D E P A R T M E N T 1 J. E. C o l e ,...

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Reporting of Radioactive Sealed Sources  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish U.S. Department of Energy requirements for inventory reporting, transaction reporting, verification of reporting, and assign responsibilities for reporting of radioactive sealed sources. DOE N 251.86 extends this notice until 5-6-11. No cancellations. Canceled by DOE O 231.1B

2008-02-27T23:59:59.000Z

362

(Revised May 25, 2012) Radioactivity  

E-Print Network [OSTI]

(Revised May 25, 2012) Radioactivity GOALS (1) To gain a better understanding of naturally-occurring. (3) To measure the amount of "background radiation" from natural sources. (4) To test whether and man-made radiation sources. (2) To use a Geiger-Mueller tube to detect both beta and gamma radiation

Collins, Gary S.

363

ICPP radioactive liquid and calcine waste technologies evaluation. Interim report  

SciTech Connect (OSTI)

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

1994-06-01T23:59:59.000Z

364

CRAD, Radioactive Waste Management- June 22, 2009  

Broader source: Energy.gov [DOE]

Radioactive Waste Management, Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-33, Rev. 0)

365

An overview of airborne radioactive emissions at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Strict control is essential over any emissions of radioactivity in the ventilation exhaust from facilities where radioactive materials may become airborne. At Los Alamos National Laboratory there are 87 stacks exhausting ventilation air to the environment from operations with a potential for radioactive emissions. These stacks cover the diverse operations at all Laboratory facilities where radioactive materials are handled and require continuous sampling/monitoring to detect levels of contamination. An overview is presented of the operations, associated ventilation exhaust cleanup systems, and analysis of the emissions. In keeping with the as-low-as-reasonably-achievable concept, emissions of radionuclides are reduced whenever practicable. A specific example describing the reduction of emissions from the linear accelerator beam stop area at the Los Alamos Meson Physics Facility during 1985 by a factor of 8 over previous emissions is presented.

Guevara, F.A.; Dvorak, R.F.

1987-01-01T23:59:59.000Z

366

"TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition InformationWindWoodDepartmenteGallon:`5,000

367

Environmental Radioactivity in Greenland in 1981  

E-Print Network [OSTI]

Ris«-R-471 v Environmental Radioactivity in Greenland in 1981 A. Aarkrog, Henning Dahlgaard, Elis July 1962 #12;Risř-R-471 ENVIRONMENTAL RADIOACTIVITY IN GREENLAND IN 1981 A. Aarkrog, Henning Dahlgaard. Measurements of fallout radioactivity in Greenland in 1981 are reported. Strontium-90 (and Cesium-137 in most

368

Environmental Radioactivity in Greenland in 1978  

E-Print Network [OSTI]

·ft I la 0 0 0 0 Risn-R-405 Environmental Radioactivity in Greenland in 1978 A. Aarkrog, Heinz ENVIRONMENTAL RADIOACTIVITY IN GREENLAND IN 1978 A. Aarkrog, Heinz Hansen and J. Lippert Abstract. Heasureaents of fallout radioactivity in Greenland in 1978 are reported. Strontium-90 (and Cesium-137 in most cases

369

Radioactivity in Food and the Environment, 1997  

E-Print Network [OSTI]

Radioactivity in Food and the Environment, 1997 RIFE - 3 1998 SCOTTISH ENVIRONMENT PROTECTION SCOTTISH ENVIRONMENT PROTECTION AGENCY Radioactivity in Food and the Environment, 1997 September 1998 #12 Environment Protection Agency in 1997. Measurements of radioactivity have been carried out in a range

370

Radioactive isotopes in Danish drinking water  

E-Print Network [OSTI]

Radioactive isotopes in Danish drinking water Sven P. Nielsen Risø National Laboratory Working OF INVESTIGATION 11 3 DESCRIPTION OF INVESTIGATION 12 4 RADIOACTIVITY IN DRINKING WATER 13 5 SAMPLING 15 6 27 #12;4 #12;5 Preface This project for investigation of radioactivity in drinking water shall

371

Development of long-term performance models for radioactive waste forms  

SciTech Connect (OSTI)

The long-term performance of solid radioactive waste is measured by the release rate of radionuclides into the environment, which depends on corrosion or weathering rates of the solid waste form. The reactions involved depend on the characteristics of the solid matrix containing the radioactive waste, the radionuclides of interest, and their interaction with surrounding geologic materials. This chapter describes thermo-hydro-mechanical and reactive transport models related to the long-term performance of solid radioactive waste forms, including metal, ceramic, glass, steam reformer and cement. Future trends involving Monte-Carlo simulations and coupled/multi-scale process modeling are also discussed.

Bacon, Diana H.; Pierce, Eric M.

2011-03-22T23:59:59.000Z

372

WM'05 Conference, February 27 -March 3, 2005, Tucson, AZ TRACKING RADIOACTIVE SOURCES IN COMMERCE  

E-Print Network [OSTI]

Identification [RFID] tags). Preliminary pseudo-random testing results have been very positive. Once we have radiological and nuclear material tracking and monitoring in commerce and is part of a larger program entitled in proximity to radioactive materials. Current candidate technologies include, (1) Satellite, (2) Radio

373

REPORT NO. 5 background material  

E-Print Network [OSTI]

of atmospheric testing of nuclear weapons in 1961 and 1962 the question arose as to the possible need for protec from such events as: (1) an industrial accident, possibly involving a nuclear reactor or a nuclear fuel processing plant, and (2) release of radioactive materials from the detonation of nuclear weapons or other

374

10,000th Waste Shipment Milestone is All in the Family | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition#EnergyFaceoff1 1 1 MoreEnergy Waste

375

Uraninum-233 Inventory in Oak Ridge Lightened with First Shipment of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|Solar DecathlonManufacturing LoanMaterial from

376

Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)  

SciTech Connect (OSTI)

Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been {sup 238}PuO{sub 2}, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the {open_quotes}Pluto Express{close_quotes} mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS). {copyright} {ital 1997 American Institute of Physics.}

Barklay, C.D.; Miller, R.G.; Pugh, B.K.; Howell, E.I. [EGG Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio45343-3000 (United States)

1997-01-01T23:59:59.000Z

377

Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)  

SciTech Connect (OSTI)

Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been {sup 238}PuO{sub 2}, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the 'Pluto Express' mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS)

Barklay, Chadwick D.; Miller, Roger G.; Pugh, Barry K.; Howell, Edwin I. [EG and G Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio 45343-3000 (United States)

1997-01-10T23:59:59.000Z

378

administered radioactive material: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei...

379

Directory of certificates of compliance for radioactive materials packages  

SciTech Connect (OSTI)

This directory provides an information source for packagings approved by the U.S. Nuclear Regulatory Commission. Volumes 1 and 2 of the directory provide an index by model number and corresponding Certificate of Compliance number. Volume 3 includes an alphabetical listing by user name for approved quality assurance programs. The reports include a listing of all users of each package design and approved quality assurance programs.

NONE

1997-10-01T23:59:59.000Z

380

Directory of certificates of compliance for radioactive materials packages  

SciTech Connect (OSTI)

The purpose of this directory is to make available a convenient source of information on packagings approved by the U.S. Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance Number is included at the front of Volumes 1 and 2. An alphabetical listing by user name is included in the back of Volume 3 for approved Quality Assurance programs. The reports include a listing of all users of each package design and approved Quality Assurance programs prior to the publication date of the directory. Comments to make future revisions of this directory more useful are invited and should be directed to the Spent Fuel Project Office, U.S. Nuclear Regulatory Commission.

NONE

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

airborne radioactive materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bronchial model; Radiation 1. Introduction Inhalation of airborne short-lived radon progeny in the indoor and outdoor environment yields the greatest amount of natural...

382

Remediation of a Former USAF Radioactive Material Disposal Site  

SciTech Connect (OSTI)

This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had been identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while minimizing disposal costs. In addition, worker exposures were maintained ALARA as a result of the removal and characterization methods employed.

Hoffman, D. E.; Cushman, M; Tupyi, B.; Lambert, J.

2003-02-25T23:59:59.000Z

383

Radioactive Materials at SSRL | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115,Performance

384

NNSA: Securing Domestic Radioactive Material | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two years |

385

NNSA: Securing Domestic Radioactive Material | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two years |Administration May 29, 2014

386

Applying Risk Communication to the Transportation of Radioactive Materials  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012)Tie Ltd |Line, LLC:LLC |Department ofOpportunity

387

Applying Risk Communication to the Transportation of Radioactive Materials  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal RegisterPowerPA00133 - March 2011 AppliedStudents|

388

Emergency Responder Radioactive Material Quick Reference Sheet | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectrical Safety Occurrences5 (04/2015) U.S.1-20, 2006 |of Energy

389

Emergency Responder Radioactive Material Quick Reference Sheet | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectrical Safety Occurrences5 (04/2015) U.S.1-20, 2006 |of Energyof

390

Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbus HTS1, 2008 Company Affilation|Pumpkin| Department2 Q

391

Radioactive Materials Transportation and Incident Response | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbus HTS1,Geologic Disposal= J .MEASUREMENTEnergy

392

Radioactive waste treatment technologies and environment  

SciTech Connect (OSTI)

The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

HORVATH, Jan; KRASNY, Dusan [JAVYS, PLc. - Nuclear and Decommisioning Company, PLc. (Slovakia)

2007-07-01T23:59:59.000Z

393

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

394

Nuclear material operations manual  

SciTech Connect (OSTI)

This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

Tyler, R.P.

1981-02-01T23:59:59.000Z

395

2nd Quarter Transportation Report FY 2014  

SciTech Connect (OSTI)

This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the second quarter of fiscal year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet (ft3) generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

Gregory, L.

2014-07-30T23:59:59.000Z

396

Ion exchange columns for selective removal of cesium from aqueous radioactive waste using hydrous crystalline silico-titanates  

E-Print Network [OSTI]

conscious society. In Hanford, WA, hundreds of underground storage tanks hold tens of millions of gallons of aqueous radioactive waste. This liquid waste, which has a very high sodium content, contains trace amounts of radioactive cesium 137. Since... the material for batch ion exchange of the nuclear waste solution. More research was needed to investigate the material's effectiveness in a column operation. An ion exchange column system was developed to study column performance. The column design...

Ricci, David Michael

1995-01-01T23:59:59.000Z

397

Risk assessment for the on-site transportation of radioactive wastes for the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

This report documents the risk assessment performed for the on-site transportation of radioactive wastes in the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). Risks for the routine shipment of wastes and the impacts from potential accidental releases are analyzed for operations at the Hanford Site (Hanford) near Richland, Washington. Like other large DOE sites, hanford conducts waste management operations for all wastes types; consequently, the impacts calculated for Hanford are expected to be greater than those for smaller sites. The risk assessment conducted for on-site transportation is intended to provide an estimate of the magnitude of the potential risk for comparison with off-site transportation risks assessed for the WM PEIS.

Biwer, B.M.; Monette, F.A.; Chen, S.Y. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1996-12-01T23:59:59.000Z

398

Materials and Components Technology Division research summary, 1992  

SciTech Connect (OSTI)

The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

Not Available

1992-11-01T23:59:59.000Z

399

Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

Not Available

1993-06-01T23:59:59.000Z

400

Conceptual design and development of high-activity radioactive liquid packaging (summary)  

SciTech Connect (OSTI)

Environmental remediation and disposal of US Department of Energy radioactive liquid waste require analytical support, characterization, process development, testing, demonstration, and stabilization. In support of these diverse activities, there is a need to transport varying quantities of Type B high-activity liquid (HAL). To date, except for quantities of 50 ml (1.7 oz), there has never been, a US, Nuclear Regulatory Commission-licensed liquid Type B package available to support these remediation activities. In an effort to develop suitable packaging for large volumes of HAL, an investigation into packaging alternatives that would facilitate such transfers is under way. In, past and present studies, a spent fuel shipping cask fitted with a high-integrity pressure vessel has been determined to be the most viable concept for large volume HAL shipments. One concept that was investigated utilized the Pacific Nuclear 125-B shipping container and has been shown to meet the strUctural, thermal, shielding, and criticality conditions for HAL. The results of these investigations are being extended to develop the concept into the HAL packaging system.

Riley, D.L.; McCoy, J.C.; Edwards, W.S.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DESIGN OF A CONTAINMENT VESSEL CLOSURE FOR SHIPMENT OF TRITIUM GAS  

SciTech Connect (OSTI)

This paper presents a design summary of the containment vessel closure for the Bulk Tritium Shipping Package (BTSP). This new package is a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The new design is based on changes in the regulatory requirements. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials that enhance the package's ability to withstand dynamic loading and thermal effects. This paper will specifically summarize the design philosophy and engineered features of the BTSP containment vessel closure. The closure design incorporates a concave closure lid, metallic C-Ring seals for containing tritium gas, a metal bellows valve and an elastomer O-Ring for leak testing. The efficient design minimizes the overall vessel height and protects the valve housing from damage during postulated drop and crush scenarios. Design features will be discussed.

Eberl, K; Paul Blanton, P

2007-07-03T23:59:59.000Z

402

Storage of nuclear materials by encapsulation in fullerenes  

DOE Patents [OSTI]

A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

Coppa, Nicholas V. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

403

Theoretical Aspects of Science with Radioactive Nuclear Beams  

E-Print Network [OSTI]

Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

Jacek Dobaczewski; Witold Nazarewicz

1997-07-28T23:59:59.000Z

404

Theoretical Aspects of Science with Radioactive Nuclear Beams  

E-Print Network [OSTI]

Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

Dobaczewski, J; Dobaczewski, Jacek; Nazarewicz, Witold

1997-01-01T23:59:59.000Z

405

Radioactive Waste Management BasisSept 2001  

SciTech Connect (OSTI)

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31T23:59:59.000Z

406

Office of Civilian Radioactive Waste Management Transportation...  

Broader source: Energy.gov (indexed) [DOE]

Jay Jones Office of Civilian Radioactive Waste Management April 22, 2004 Albuquerque, New Mexico 2 Session Overview * Meeting objectives and expectations * Topic Group...

407

RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT  

SciTech Connect (OSTI)

Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures of fuel containing materials can be fairly useful for the entire world's nuclear community and can help make nuclear energy safer.

Farfan, E.; Jannik, T.

2011-10-01T23:59:59.000Z

408

Cosmic radioactivity and INTEGRAL results  

SciTech Connect (OSTI)

Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ?My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

Diehl, Roland [Max Planck Institut für Extraterrestrische Physik, D-85748 Garching, Germany and Excellence Cluster Origin and Evolution of the Universe', D-85748 Garching (Germany)

2014-05-02T23:59:59.000Z

409

Performance testing of elastomeric seal materials under low and high temperature conditions: Final report  

SciTech Connect (OSTI)

The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

BRONOWSKI,DAVID R.

2000-06-01T23:59:59.000Z

410

Indirect Estimation of Radioactivity in Containerized Cargo  

SciTech Connect (OSTI)

Detecting illicit nuclear and radiological material in containerized cargo challenges the state of the art in detection systems. Current systems are being evaluated and new systems envisioned to address the need for the high probability of detection and extremely low false alarm rates necessary to thwart potential threats and extremely low nuisance and false alarm rates while maintaining necessary to maintain the flow of commerce impacted by the enormous volume of commodities imported in shipping containers. Maintaining flow of commerce also means that primary inspection must be rapid, requiring relatively indirect measurements of cargo from outside the containers. With increasing information content in such indirect measurements, it is natural to ask how the information might be combined to improved detection. Toward this end, we present an approach to estimating isotopic activity of naturally occurring radioactive material in cargo grouped by commodity type, combining container manifest data with radiography and gamma spectroscopy aligned to location along the container. The heart of this approach is our statistical model of gamma counts within peak regions of interest, which captures the effects of background suppression, counting noise, convolution of neighboring cargo contributions, and down-scattered photons to provide physically constrained estimates of counts due to decay of specific radioisotopes in cargo alone. Coupled to that model, we use a mechanistic model of self-attenuated radiation flux to estimate the isotopic activity within cargo, segmented by location within each container, that produces those counts. We demonstrate our approach by applying it to a set of measurements taken at the Port of Seattle in 2006. This approach to synthesizing disparate available data streams and extraction of cargo characteristics holds the potential to improve primary inspection using current detection capabilities and to enable simulation-based evaluation of new candidate detection systems.

Jarman, Kenneth D.; Scherrer, Chad; Smith, Eric L.; Chilton, Lawrence; Anderson, K. K.; Ressler, Jennifer J.; Trease, Lynn L.

2011-01-01T23:59:59.000Z

411

Bioindicators for Monitoring Radioactive Pollution of the  

E-Print Network [OSTI]

* IK s Dfc2looX|o Risø-R-443 Bioindicators for Monitoring Radioactive Pollution of the Marine-R-443 BIOINDICATORS FOR MONITORING RADIOACTIVE POLLUTION OF THE MARINE ENVIRONMENT Experiments Dahlgaard Abstract. Mussels (Mytilus edulis) are globally used as bio- indicators for pollution of coastal

412

4. Nuclei and Radioactivity Paradoxes and Puzzles  

E-Print Network [OSTI]

, and Firearms tests wine, gin, whisky, and vodka for radioactivity. If the product does not have sufficient. The key feature of radioactivity that makes it so fascinating is that the energy released is enormous-- at least when compared to typical chemical energies. The typical energy release in the explosion of one

Browder, Tom

413

Radioactivity in Food and the Environment, 2004  

E-Print Network [OSTI]

Radioactivity in Food and the Environment, 2004 RIFE - 10 2005 #12;Food Standards Agency Emergency Planning, Radiation and Incidents Division Aviation House 125 Kingsway London WC2B 6NH RadioactivityinFoodandtheEnvironment,2004 Scottish Environment ProtectionAgency Radioactive Substances Unit Erskine Court The Castle

414

Radioactivity in Food and the Environment, 2002  

E-Print Network [OSTI]

Radioactivity in Food and the Environment, 2002 RIFE - 8 2003 #12;1 ENVIRONMENT AGENCY ENVIRONMENT AND HERITAGE SERVICE FOOD STANDARDS AGENCY SCOTTISH ENVIRONMENT PROTECTION AGENCY Radioactivity in Food and the Environment, 2002 RIFE - 8 October 2003 #12;2 This report was compiled by the Centre for Environment

415

Radioactive waste management in the former USSR. Volume 3  

SciTech Connect (OSTI)

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01T23:59:59.000Z

416

Geological problems in radioactive waste isolation - second worldwide review  

SciTech Connect (OSTI)

The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

Witherspoon, P.A. [ed.

1996-09-01T23:59:59.000Z

417

The Bayo Canyon/radioactive lanthanum (RaLa) program  

SciTech Connect (OSTI)

LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3 miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.

Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

1996-04-01T23:59:59.000Z

418

Rev August 2006 Radiation Safety Manual Section 14 Radioactive Waste  

E-Print Network [OSTI]

Rev August 2006 Radiation Safety Manual Section 14 ­ Radioactive Waste Page 14-1 Section 14 Radioactive Waste Contents A. Proper Collection, Disposal, and Packaging and Putrescible Animal Waste.........................14-8 a. Non-Radioactive Animal Waste

Wilcock, William

419

Apparatus and method for radioactive waste screening  

DOE Patents [OSTI]

An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

2012-09-04T23:59:59.000Z

420

Thermal treatment of organic radioactive waste  

SciTech Connect (OSTI)

The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste.

Chrubasik, A.; Stich, W. [NUKEM GmbH, Alzenau (Germany)

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Part of the National Nuclear User Facility Culham Materials  

E-Print Network [OSTI]

Part of the National Nuclear User Facility Culham Materials Research Facility #12;Introduction from Professor Steve Cowley Culham's Materials Research Facility (MRF) is a valuable addition to the UK's suite and fusion ­ with equipment for the processing and micro-characterisation of radioactive materials, for on

422

A Low-Tech, Low-Budget Storage Solution for High Level Radioactive Sources  

SciTech Connect (OSTI)

The need for safe, secure, and economical storage of radioactive material becomes increasingly important as beneficial uses of radioactive material expand (increases inventory), as political instability rises (increases threat), and as final disposal and treatment facilities are delayed (increases inventory and storage duration). Several vendor-produced storage casks are available for this purpose but are often costly — due to the required design, analyses, and licensing costs. Thus the relatively high costs of currently accepted storage solutions may inhibit substantial improvements in safety and security that might otherwise be achieved. This is particularly true in areas of the world where the economic and/or the regulatory infrastructure may not provide the means and/or the justification for such an expense. This paper considers a relatively low-cost, low-technology radioactive material storage solution. The basic concept consists of a simple shielded storage container that can be fabricated locally using a steel pipe and a corrugated steel culvert as forms enclosing a concrete annulus. Benefits of such a system include 1) a low-tech solution that utilizes materials and skills available virtually anywhere in the world, 2) a readily scalable design that easily adapts to specific needs such as the geometry and radioactivity of the source term material), 3) flexible placement allows for free-standing above-ground or in-ground (i.e., below grade or bermed) installation, 4) the ability for future relocation without direct handling of sources, and 5) a long operational lifetime . ‘Le mieux est l’ennemi du bien’ (translated: The best is the enemy of good) applies to the management of radioactive materials – particularly where the economic and/or regulatory justification for additional investment is lacking. Development of a low-cost alternative that considerably enhances safety and security may lead to a greater overall risk reduction than insisting on solutions that remain economically and/or politically ‘out of reach’.

Brett Carlsen; Ted Reed; Todd Johnson; John Weathersby; Joe Alexander; Dave Griffith; Douglas Hamelin

2014-07-01T23:59:59.000Z

423

SGP Shipment Notification Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORT SANDSDNTM7/31/13 Page3 SGP Cloud

424

RH_SRS_Shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a February 2009WIPP

425

2013 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada; Review of the Performance Assessments and Composite Analyses  

SciTech Connect (OSTI)

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC 2007a) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs), with the results submitted to the U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE 1999a, 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2013. This annual summary report presents data and conclusions from the FY 2013 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2013 include the following: • Development of a new Area 5 RWMS closure inventory estimate based on disposals through FY 2013 • Evaluation of new or revised waste streams by special analysis • Development of version 4.115 of the Area 5 RWMS GoldSim PA/CA model The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. The FY 2013 review of operations, facility design, closure plans, monitoring results, and R&D results for the Area 3 RWMS indicates no changes that would impact PA validity. The conclusion of the annual review is that all performance objectives can be met and the Area 3 RWMS PA remains valid. There is no need to the revise the Area 3 RWMS PA. Review of Area 5 RWMS operations, design, closure plans, monitoring results, and R&D activities indicates that no significant changes have occurred. The FY 2013 PA results, generated with the Area 5 RWMS v4.115 GoldSim PA model, indicate that there continues to be a reasonable expectation of meeting all performance objectives. The results and conclusions of the Area 5 RWMS PA are judged valid, and there is no need to the revise the PA. A review of changes potentially impacting the CAs indicates that no significant changes occurred in FY 2013. The continuing adequacy of the CAs was evaluated with the new models, and no significant changes that would alter the CAs results or conclusions were found. The revision of the Area 3 RWMS CA, which will include the Yucca Flat Underground Test Area (Corrective Action Unit [CAU] 97) source term, is scheduled for FY 2024, following the completion of the Corrective Action Decision Document/Corrective Action Plan in FY 2015. Inclusion of the Frenchman Flat Underground Test Area (CAU 98) results in the Area 5 RWMS CA is scheduled for FY 2016, pending the completion of the CAU 98 Closure Report in FY 2015. Near-term R&D efforts will focus on continuing development of the PA, CA, and inventory models for the Area 3 and Area 5 RWMS.

Shott, Gregory [NSTec] [NSTec

2014-03-01T23:59:59.000Z

426

2010 Annual Planning Summary for Civilian Radioactive Waste Management...  

Broader source: Energy.gov (indexed) [DOE]

Civilian Radioactive Waste Management (CRWM) 2010 Annual Planning Summary for Civilian Radioactive Waste Management (CRWM) Annual Planning Summaries briefly describe the status of...

427

Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy...  

Broader source: Energy.gov (indexed) [DOE]

Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report U.S....

428

Office of Civilian Radioactive Waste Management-Quality Assurance...  

Office of Environmental Management (EM)

Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and...

429

Lab obtains approval to begin design on new radioactive waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New radioactive waste staging facility Lab obtains approval to begin design on new radioactive waste staging facility The 4-acre complex will include multiple staging buildings...

430

Letter to Congress RE: Office of Civilian Radioactive Waste Management...  

Broader source: Energy.gov (indexed) [DOE]

to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report Letter to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial...

431

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste....

432

RESRAD Computer Code- Evaluation of Radioactively Contaminated Sites  

Broader source: Energy.gov [DOE]

The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989.

433

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

434

Statistical Approach to Radioactive Target Detection and Location via Wireless Sensor Networks  

E-Print Network [OSTI]

: tlzhang@purdue.edu Fax: 1-765-4940558 AbstractThe detection of materials or devices for nuclear or radiological weapons of mass destruction is fundamentally important to national safety and security of radioactive target via wireless sensor networks. The statistical approach includes a hypotheses test

Zhang, Tonglin

435

The fate and behaviour of enhanced natural radioactivity with respect to environmental protection  

SciTech Connect (OSTI)

In contrast to the monitoring and prevention of occupational radiation risk caused by enhanced natural radioactivity, relatively little attention has been paid to the environmental impact associated with residues containing enhanced activity concentration of naturally occurring radionuclides. Such materials are often deposited directly into the environment, a practice which is strictly forbidden in the management of other types of radioactive waste. In view of the new trends in radiation protection, the need to consider the occurrence of anthropogenically enhanced natural radioactivity as a particular unique case of environmental hazard is quite apparent. Residues containing high activity concentrations of some natural radionuclides differ from radioactive materials arising from the nuclear industry. In addition, the radiation risk is usually combined with the risk caused by other pollutants. As such and to date, there are no precise regulations regarding this matter and moreover, the non-nuclear industry is often not aware of potential environmental problems caused by natural radioactivity. This article discusses aspects of environmental radiation risks caused by anthropogenically enhanced natural radioactivity stored at unauthorised sites. Difficulties and inconclusiveness in the application of recommendations and models for radiation risk assessment are explored. General terms such as 'environmental effects' and the basic parameters necessary to carry out consistent and comparable Environmental Risk Assessment (ERA) have been developed and defined. - Highlights: Black-Right-Pointing-Pointer Features of environmental impact caused by residues containing high activity concentration of natural radionuclides Black-Right-Pointing-Pointer Definition of an effect of radiation on an ecosystem and novel method for its assessment Black-Right-Pointing-Pointer Radiation protection regulation inconclusiveness in the aspects of enhanced natural radioactivity.

Michalik, B., E-mail: b.michalik@gig.eu [Laboratory of Radiometry, Central Mining Institute (GIG), Plac Gwarkow 1, 40-166 Katowice (Poland); Brown, J., E-mail: Justin.Brown@nrpa.no [Norwegian Radiation Protection Authority (NRPA), Grini naeringspark 13, 1361 Osteras Norway (Norway); Krajewski, P., E-mail: krajewski@clor.waw.pl [Central Laboratory for Radiological Protection (CLOR), ul. Konwaliowa 7, 03-194 Warszawa Poland (Poland)

2013-01-15T23:59:59.000Z

436

Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1995-09-01T23:59:59.000Z

437

Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud  

SciTech Connect (OSTI)

Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

Hazelton, R.F.

1987-09-01T23:59:59.000Z

438

Evaluation of beta partical densitometry for determination of self-absorption factors in gross alpha and gross beta radioactivity measurements on air particulate filter samples  

E-Print Network [OSTI]

Alpha and beta particles emitted from radioactive material collected on an air filter may be significantly attenuated by the mass (thickness) of collected dust. In this study, we determined the mass or thickness of the simulated dust deposit...

Breida, Margaret A

2012-06-07T23:59:59.000Z

439

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect (OSTI)

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01T23:59:59.000Z

440

Radiological consequences of ship collisions that might occur in U.S. Ports during the shipment of foreign research reactor spent nuclear fuel to the United States in break-bulk freighters  

SciTech Connect (OSTI)

Accident source terms, source term probabilities, consequences, and risks are developed for ship collisions that might occur in U.S. ports during the shipment of spent fuel from foreign research reactors to the United States in break-bulk freighters.

Sprung, J.L.; Bespalko, S.J.; Massey, C.D.; Yoshimura, R. [Sandia National Laboratory, Albuquerque, NM (United States); Johnson, J.D. [GRAM Inc., Albuquerque, NM (United States); Reardon, P.C. [PCRT Technologies, Albuquerque, NM (United States); Ebert, M.W.; Gallagher D.W. [Science Applications International Corp., Reston, VA (United States)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "radioactive material shipments" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Building 251 Radioactive Waste Characterization by Process Knowledge  

SciTech Connect (OSTI)

Building 251 is the Lawrence Livermore National Laboratory Heavy Elements Facility. Operations that involved heavy elements with uncontained radioisotopes including transuranic elements took place inside of glove boxes and fume hoods. These operations included process and solution chemistry, dissolutions, titrations, centrifuging, etc., and isotope separation. Operations with radioactive material which presently take place outside of glove boxes include storage, assaying, packing and unpacking and inventory verification. Wastes generated inside glove boxes will generally be considered TRU or Greater Than Class C (GTCC). Wastes generated in the RMA, outside glove boxes, is presumed to be low level waste. This process knowledge quantification method may be applied to waste generated anywhere within or around B251. The method is suitable only for quantification of waste which measures below the MDA of the Blue Alpha meter (i.e. only material which measures as Non-Detect with the blue alpha is to be characterized by this method).

Dominick, J L

2002-05-29T23:59:59.000Z

442

Analysis of disposition alternatives for radioactively contaminated scrap metal  

SciTech Connect (OSTI)

Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1997-01-01T23:59:59.000Z

443

Principles for Sampling Airborne Radioactivity from Stacks  

SciTech Connect (OSTI)

This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

Glissmeyer, John A.

2010-10-18T23:59:59.000Z

444

1969 AUDIT OF SRP RADIOACTIVE WASTE  

Office of Scientific and Technical Information (OSTI)

969 AUDIT OF SRP RADIOACTIVE WASTE bY C . Ashley A p r i l 1970 Radiological Sciences Division Savannah River Laboratory E. 1. du Pont de Nemours & Co. Aiken, South Carolina 29801...

445

Radioactivity in man: levels, effects and unknowns  

SciTech Connect (OSTI)

The report discusses the potential for significant human exposure to internal radiation. Sources of radiation considered include background radiation, fallout, reactor accidents, radioactive waste, and occupational exposure to various radioisotopes. (ACR)

Rundo, J.

1980-01-01T23:59:59.000Z

446

Low Level Radioactive Wastes Conditioning during Decommissioning of Salaspils Research Reactor  

SciTech Connect (OSTI)

The decommissioning of Salaspils research reactor is connected with the treatment of 2200 tons different materials. The largest part of all materials ({approx}60 % of all dismantled materials) is connected with low level radioactive wastes conditioning activities. Dismantled radioactive materials were cemented in concrete containers using water-cement mortar. According to elaborated technology, the tritiated water (150 tons of liquid wastes from special canalization tanks) was used for preparation of water-cement mortar. Such approach excludes the emissions of tritiated water into environment and increases the efficiency of radioactive wastes management system for decommissioning of Salaspils research reactor. The Environmental Impact Assessment studies for Salaspils research reactor decommissioning (2004) and for upgrade of repository 'Radons' for decommissioning purposes (2005) induced the investigations of radionuclides release parameters from cemented radioactive waste packages. These data were necessary for implementation of quality assurance demands during conditioning of radioactive wastes and for safety assessment modeling for institutional control period during 300 years. Experimental studies indicated, that during solidification of water- cement samples proceeds the increase of temperature up to 81 deg. C. It is unpleasant phenomena since it can result in damage of concrete container due to expansion differences for mortar and concrete walls. Another unpleasant factor is connected with the formation of bubbles and cavities in the mortar structure which can reduce the mechanical stability of samples and increase the release of radionuclides from solidified cement matrix. The several additives, fly ash and PENETRON were used for decrease of solidification temperature. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature up to 62 deg. C. Addition of PENETRON results in increasing of solidification temperature up to 83 deg. C. Experimental data shows, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas. Significant reduction of viscosity is an important factor, which facilitates the fulfillment all gaps and cavities with the mortar during conditioning of solid radioactive wastes in containers. On the other hand, increase water ratio from 0.45 up to 0.65 decreases mechanical stability of water-cement samples from 23 N/mm{sup 2} to the 12 N/mm{sup 2}. It means that water-cement bulk stability significantly decreases with increasing of water content. Technologically is important to increase the tritiated water content in container with cemented radioactive wastes. It gives a possibility to increase the fulfillment of container with radioactive materials. On the other hand, additional water significantly reduces bulk stability of containers with cemented radioactive wastes, which can result in disintegration of radioactive wastes packages in repository during 300 years. Taking into account the experimental results, it is not recommended to exceed the water/cement ratio more than 0.60. Tritium and Cs{sup 137} leakage tests show, that radionuclides release curves has a complicate structure. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium release in water phase. This is unpleasant factor, which significantly decreases the safety of disposed radioactive wastes. Despite the positive impact on solidification temperature drop, the addition of fly ash to the cement-water mortar is not recommended in case of cementation of radionuclides in concrete containers. In conclusion: The cementation processes of solid radioactive wastes in concrete containers were investigated. The influence of additives on cementation processes was studied. It was shown, that the increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar

Abramenkova, G.; Klavins, M. [Faculty of Geographical and Earth Sciences, University of Latvia, 19 Rainis Boulevard, Riga, LV-1586 (Latvia); Abramenkovs, A. [Ministry of Environment, Hazardous Wastes Management State Agency, 31 Miera Street, Salaspils, LV-2169 (Latvia)

2008-01-15T23:59:59.000Z

447

Nondestructive assay of boxed radioactive waste  

SciTech Connect (OSTI)

Solid radioactive waste must be classified before treatment and disposal methods can be chosen. After treatment and before disposal, the radionuclide contents of a container must be certified. This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford Company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

Gilles, W.P.; Jasen, W.G.; Roberts, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-31T23:59:59.000Z

448

Radioactivity and X-rays Applications and health effects  

E-Print Network [OSTI]

as the release of radioactivity from reactor accidents and fallout from nuclear explosions in the atmosphereRadioactivity and X-rays Applications and health effects by Thormod Henriksen #12;Preface ­ 7 Chapter 2. What is radioactivity page 8 ­ 27 Chapter 3. Radioactive decay laws page 28 ­ 35

Sahay, Sundeep

449

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

450

The IAEA and Control of Radioactive SourcesThe  

SciTech Connect (OSTI)

This presentation discusses the International Atomic Energy Agency (IAEA) and the control of radioactive sources.

Dodd, B.

2004-10-03T23:59:59.000Z

451

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect (OSTI)

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially su