Powered by Deep Web Technologies
Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Application of the adjoint method in atmospheric radiative transfer calculations  

DOE Green Energy (OSTI)

The transfer of solar radiation through a standard mid-latitude summer atmosphere including different amounts of aerosols (from clear to hazy) has been computed. The discrete-ordinates (S/sub N/) method, which has been developed to a high degree of computational efficiency and accuracy primarily for nuclear radiation shielding applications, is employed in a forward as well as adjoint mode. In the adjoint mode the result of a transfer calculation is an importance function (adjoint intensity) which allows the calculation of transmitted fluxes, or other radiative responses, for any arbitrary source distribution. The theory of the adjoint method is outlined in detail and physical interpretations are developed for the adjoint intensity. If, for example, the downward directed solar flux at ground level, F/sub lambda/ (z = 0), is desired for N different solar zenith angles, a regular (forward) radiative transfer calculation must be repeated for each solar zenith angle. In contrast, only 1 adjoint transfer calculation gives F/sub lambda/ (z = 0) for all solar zenith angles in a hazy aerosol atmosphere, for 1 wavelength interval, in 2.3 seconds on a CDC-7600 computer. A total of 155 altitude zones were employed between 0 and 70 km, and the convergence criterion for the ratio of fluxes from successive iterations was set at 2 x 10/sup -3/. Our results demonstrate not only the applicability of the highly efficient modern S/sub N/ codes, but indicate also conceptual and computational advantages when the adjoint formulation of the radiative transfer equation is used.

Gerstl, S.A.W.

1979-01-01T23:59:59.000Z

2

Simple Radiative Transfer Methods for Calculating Domain-Averaged Solar Fluxes in Inhomogeneous Clouds  

Science Conference Proceedings (OSTI)

The use of cloud fraction as a means of incorporating horizontal cloud inhomogeneity in radiative transfer calculations is widespread in the atmospheric science community. This study addresses some issues pertaining to the use of cloud fraction ...

P. M. Gabriel; K. F. Evans

1996-03-01T23:59:59.000Z

3

Improved Radiative Transfer Calculations from Information Provided by Bulk Microphysical Schemes  

Science Conference Proceedings (OSTI)

Bulk microphysical schemes are providing increasingly detailed information of hydrometeor profiles both within and below clouds. This information can be used to improve radiative transfer calculations with little increase in computation time. In ...

J. C. Petch

1998-05-01T23:59:59.000Z

4

Radiative component and combined heat transfer in the thermal calculation of finned tube banks  

Science Conference Proceedings (OSTI)

For more exact calculation of combined heat transfer in the case of finned tube banks (e.g., in the convective section of a furnace), the radiative heat transfer cannot be neglected. A new method for relatively simple calculation of total heat flux (convection + radiation + conduction in fins) is fully compatible with that for bare tube banks/bundles developed earlier. It is based on the method of radiative coefficients. However, the resulting value of heat flux must be corrected due to fin thickness and especially due to the fin radiative influence. For this purpose the so-called multiplicator of heat flux was introduced. The applicability of this methods has been demonstrated on a tubular fired heater convective section. A developed computer program based on the method has also been used for an analysis of the influence of selected parameters to show the share of radiation on the total heat flux.

Stehlik, P. [Technical Univ. of Brno (Czech Republic). Dept. of Process Engineering] [Technical Univ. of Brno (Czech Republic). Dept. of Process Engineering

1999-01-01T23:59:59.000Z

5

A New Look at the Discrete Ordinate Method for Radiative Transfer Calculations in Anisotropically Scattering Atmospheres  

Science Conference Proceedings (OSTI)

The difficulties inherent in the conventional numerical implementation of the discrete ordinate method (following Chandrasekhar's prescription) for solving the radiative transfer equation are discussed. A matrix formulation is developed to ...

Knut Stamnes; Roy A. Swanson

1981-02-01T23:59:59.000Z

6

paNTICA: A Fast 3D Radiative Transfer Scheme to Calculate Surface Solar Irradiance for NWP and LES Models  

Science Conference Proceedings (OSTI)

The resolution of numerical weather prediction models is constantly increasing, making it necessary to consider three-dimensional radiative transfer effects such as cloud shadows cast into neighboring grid cells and thus affecting radiative ...

Ulrike Wissmeier; Robert Buras; Bernhard Mayer

2013-08-01T23:59:59.000Z

7

Computational Cost and Accuracy in Calculating Three-Dimensional Radiative Transfer: Results for New Implementations of Monte Carlo and SHDOM  

Science Conference Proceedings (OSTI)

This paper examines the tradeoffs between computational cost and accuracy for two new state-of-the-art codes for computing three-dimensional radiative transfer: a community Monte Carlo model and a parallel implementation of the Spherical ...

Robert Pincus; K. Franklin Evans

2009-10-01T23:59:59.000Z

8

Vertical Profiles of Aerosol and Radiation and the Influence of a Temperature Inversion: Measurements and Radiative Transfer Calculations  

Science Conference Proceedings (OSTI)

The results of an airborne experiment performed near Mönchengladbach (Germany) in November 1993 are reported. Besides meteorological data, vertical profiles of aerosol properties (number concentration, size distribution) and radiation (...

M. Wendisch; S. Mertes; A. Ruggaber; T. Nakajima

1996-10-01T23:59:59.000Z

9

Atmospheric Longwave Irradiance Uncertainty: Pyrgeometers Compared to an Absolute Sky-Scanning Radiometer, Atmospheric Emitted Radiance Interferometer, and Radiative Transfer Model Calculations  

SciTech Connect

Because atmospheric longwave radiation is one of the most fundamental elements of an expected climate change, there has been a strong interest in improving measurements and model calculations in recent years. Important questions are how reliable and consistent are atmospheric longwave radiation measurements and calculations and what are the uncertainties? The First International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison, which was held at the Atmospheric Radiation Measurement program's Souther Great Plains site in Oklahoma, answers these questions at least for midlatitude summer conditions and reflects the state of the art for atmospheric longwave radiation measurements and calculations. The 15 participating pyrgeometers were all calibration-traced standard instruments chosen from a broad international community. Two new chopped pyrgeometers also took part in the comparison. And absolute sky-scanning radiometer (ASR), which includes a pyroelectric detector and a reference blackbody source, was used for the first time as a reference standard instrument to field calibrate pyrgeometers during clear-sky nighttime measurements. Owner-provided and uniformly determined blackbody calibration factors were compared. Remarkable improvements and higher pyrgeometer precision were achieved with field calibration factors. Results of nighttime and daytime pyrgeometer precision and absolute uncertainty are presented for eight consecutive days of measurements, during which period downward longwave irradiance varied between 260 and 420 W m-2. Comparisons between pyrgeometers and the absolute ASR, the atmospheric emitted radiance interferometer, and radiative transfer models LBLRTM and MODTRAN show a surprisingly good agreement of <2 W m-2 for nighttime atmospheric longwave irradiance measurements and calculations.

Philipona, J. R.; Dutton, Ellsworth G.; Stoffel, T.; Michalsky, Joseph J.; Reda, I.; Stifter, Armin; Wendling, Peter; Wood, Norm; Clough, Shepard A.; Mlawer, Eli J.; Anderson, Gail; Revercomb, Henry E.; Shippert, Timothy R.

2001-06-04T23:59:59.000Z

10

Parameterization of Outgoing Infrared Radiation Derived from Detailed Radiative Calculations  

Science Conference Proceedings (OSTI)

State-of-the-art radiative transfer models can calculate outgoing infrared (IR) irradiance at the top of the atmosphere (F) to an accuracy suitable for climate modeling given the proper atmospheric profiles of temperature and absorbing gases and ...

Starley L. Thompson; Stephen G. Warren

1982-12-01T23:59:59.000Z

11

The Angular Distribution of UV-B Sky Radiance under Cloudy Conditions: A Comparison of Measurements and Radiative Transfer Calculations Using a Fractal Cloud Model  

Science Conference Proceedings (OSTI)

In recent years, global warming concerns have focused attention on cloud radiative forcing and its accurate encapsulation in radiative transfer measurement and modeling programs. At present, this process is constrained by the dynamic movement and ...

Christopher Kuchinke; Kurt Fienberg; Manuel Nunez

2004-05-01T23:59:59.000Z

12

Development of a 3D atmospheric radiative transfer model  

Science Conference Proceedings (OSTI)

The 3D atmospheric radiative transfer model is established based on MODTRAN4. Moreover, the methods of calculating the ratio of atmospheric transmission, path radiation and single scattering solar radiation are presented. This 3D model is running by ... Keywords: MODTRAN4, atmospheric radiative transfer model, infrared radiation

Zhifeng Lu; Ge Li; Gang Guo; Kedi Huang

2008-05-01T23:59:59.000Z

13

Measurements and model calculations of radiative fluxes for the...  

NLE Websites -- All DOE Office Websites (Extended Search)

are compared with calculations made with a state-of-the art radiative transfer model (Modtran). The model is driven by measurements that give an as accurate as possible...

14

Sensitivity of aerosol radiative forcing calculations to spectral resolution  

DOE Green Energy (OSTI)

Potential impacts of aerosol radiative forcing on climate have generated considerable recent interest. An important consideration in estimating the forcing from various aerosol components is the spectral resolution used for the solar radiative transfer calculations. This paper examines the spectral resolution required from the viewpoint of overlapping spectrally varying aerosol properties with other cross sections. A diagnostic is developed for comparing different band choices, and the impact of these choices on the radiative forcing calculated for typical sulfate and biomass aerosols was investigated.

Grant, K.E.

1996-10-01T23:59:59.000Z

15

Effective Diameter in Radiation Transfer: General Definition, Applications, and Limitations  

Science Conference Proceedings (OSTI)

Although the use of an effective radius for radiation transfer calculations in water clouds has been common for many years, the export of this concept to ice clouds has been fraught with uncertainty, due to the nonspherical shapes of ice ...

David L. Mitchell

2002-08-01T23:59:59.000Z

16

DRY TRANSFER FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Dry Transfer Facility Description Document'' (BSC 2005 [DIRS 173737], p. 3-8). A description of the changes is as follows: (1) Update the supporting calculations for the various Category 1 and 2 event sequences as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2005 [DIRS 171429], Section 7). (2) Update the criticality safety calculations for the DTF staging racks and the remediation pool to reflect the current design. This design calculation focuses on commercial spent nuclear fuel (SNF) assemblies, i.e., pressurized water reactor (PWR) and boiling water reactor (BWR) SNF. U.S. Department of Energy (DOE) Environmental Management (EM) owned SNF is evaluated in depth in the ''Canister Handling Facility Criticality Safety Calculations'' (BSC 2005 [DIRS 173284]) and is also applicable to DTF operations. Further, the design and safety analyses of the naval SNF canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. Also, note that the results for the Monitored Geologic Repository (MGR) Site specific Cask (MSC) calculations are limited to the specific design chosen (see Assumption 3.4). A more current design will be included in the next revision of the criticality calculations for the Aging Facility. In addition, this calculation is valid for the current design as provided in Attachment III of the DTF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document.

C.E. Sanders

2005-05-17T23:59:59.000Z

17

N-Stream Approximations to Radiative Transfer  

Science Conference Proceedings (OSTI)

Schuster's two-stream approximation is first derived from Chandrasekhar's radiative transfer equation, and then generalized to an arbitrary number of streams. The resulting technique for solving the transfer equation that is similar to the ...

Charles Acquista; Frederick House; James Jafolla

1981-07-01T23:59:59.000Z

18

Calculating Monthly Radiative Fluxes and Heating Rates fromMonthly Cloud Observations  

Science Conference Proceedings (OSTI)

The radiative transfer model from NCAR’s general circulation model CCM3 is modified to calculate monthly radiative fluxes and heating rates from monthly observations of cloud properties from the International Satellite Cloud Climatology Project ...

John W. Bergman; Harry H. Hendon

1998-12-01T23:59:59.000Z

19

A Rapid Radiative Transfer Model for Reflection of Solar Radiation  

Science Conference Proceedings (OSTI)

A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over ...

X. Xiang; E. A. Smith; C. G. Justus

1994-07-01T23:59:59.000Z

20

Handbook of radiative heat transfer in high-temperature gases  

Science Conference Proceedings (OSTI)

This work offers both an original method for calculating optical properties of low-temperature plasma at elevated densities ... and an effective new means for calculating radiative heat transfer in hot gases and plasma with arbitrary temperature and pressure distributions. These methods allow for automatic accounting of all details of the plasma spectrum, including the line structure. This volume contains radiant transfer in problems of heat transfer; integration over frequency; methods of partial characteristics; method of effective populations; calculation of partial characteristics; appendix: tabular data.

Soloukhin, R.I.; Golovnev, I.F.; Zamurayev, V.P.; Katsnelson, S.S.; Kovalskaya, G.A.; Sevastyanenko, V.G.; Soloukhin, R.I.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NREL Improves Window Heat Transfer Calculations (Fact Sheet)...  

NLE Websites -- All DOE Office Websites (Extended Search)

and interior radiation. The most significant errors were found in detailed window heat transfer algorithms due to implementation problems. The results show a decrease in...

22

Radiative heat transfer between dielectric bodies  

E-Print Network (OSTI)

The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.

Svend-Age Biehs

2011-03-16T23:59:59.000Z

23

ETTM - Heat Transfer Calculations Version 1.0  

Science Conference Proceedings (OSTI)

ETTM Heat Transfer Calculations is a computer based training module that allows users to access training when desired and review it at their own pace. It provides graphics and limited interactive features to enhance learning. This module reviews the basic engineering principles used to calculate heat transfer and how to apply these principles to typical nuclear plant applications. The calculation of heat transfer in plant systems is an important element of many engineering calculations. Students should r...

2010-09-27T23:59:59.000Z

24

Radiative Heat Transfer between Neighboring Particles  

E-Print Network (OSTI)

The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

Alejandro Manjavacas; F. Javier Garcia de Abajo

2012-01-26T23:59:59.000Z

25

Stochastic Radiative Transfer in Partially Cloudy Atmosphere  

Science Conference Proceedings (OSTI)

A radiation treatment of the broken-cloud problem is presented, based upon various stochastic models of the equation of radiative transfer that consider the clouds and clear sky as a two-component mixture. These models, recently introduced in the ...

F. Malvagi; R. N. Byrne; G. C. Pomraning; R. C. J. Somerville

1993-07-01T23:59:59.000Z

26

Radiation-damage calculations with NJOY  

SciTech Connect

Atomic displacement, gas production, transmutation, and nuclear heating can all be calculated with the NJOY nuclear data processing system using evaluated data in ENDF/B format. Using NJOY helps assure consistency between damage cross sections and those used for transport, and NJOY provides convenient interface formats for linking data to application codes. Unique features of the damage calculation include a simple momentum balance treatment for radiative capture and a new model for (n, particle) reactions based on statistical model calculations. Sample results for iron and nickel are given and compared with the results of other methods.

MacFarlane, R.E.; Muir, D.W.; Mann, F.W.

1983-01-01T23:59:59.000Z

27

A versatile procedure for calculating heat transfer through windows  

SciTech Connect

Advances in window technologies and the desire to standardize the reporting of standard window heat transfer indices have necessitated the development of a comprehensive analytical procedure for calculating heat transfer through windows. This paper shows how complete window heat transfer can be considered as the area-weighted sum of the three window component areas: the center-of-glass area, the edge-of-glass area, and the frame area. Algorithms for calculating heat transfer through each of these areas and for combining these to calculate total window indices are presented. 36 refs., 5 figs., 6 tabs.

Arasteh, D.K.; Reilly, M.S.; Rubin, M.D.

1989-05-01T23:59:59.000Z

28

Analytical Delta-Four-Stream Doubling–Adding Method for Radiative Transfer Parameterizations  

Science Conference Proceedings (OSTI)

Although single-layer solutions have been obtained for the ?-four-stream discrete ordinates method (DOM) in radiative transfer, a four-stream doubling–adding method (4DA) is lacking, which enables us to calculate the radiative transfer through a ...

Feng Zhang; Zhongping Shen; Jiangnan Li; Xiuji Zhou; Leiming Ma

2013-03-01T23:59:59.000Z

29

Agriculture-related radiation dose calculations  

SciTech Connect

Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

Furr, J.M.; Mayberry, J.J.; Waite, D.A.

1987-10-01T23:59:59.000Z

30

Monte Carlo calculations of channeling radiation  

Science Conference Proceedings (OSTI)

Results of classical Monte Carlo calculations are presented for the radiation produced by ultra-relativistic positrons incident in a direction parallel to the (110) plane of Si in the energy range 30 to 100 MeV. The results all show the characteristic CR(channeling radiation) peak in the energy range 20 keV to 100 keV. Plots of the centroid energies, widths, and total yields of the CR peaks as a function of energy show the power law dependences of ..gamma../sup 1/ /sup 5/, ..gamma../sup 1/ /sup 7/, and ..gamma../sup 2/ /sup 5/ respectively. Except for the centroid energies and power-law dependence is only approximate. Agreement with experimental data is good for the centroid energies and only rough for the widths. Adequate experimental data for verifying the yield dependence on ..gamma.. does not yet exist.

Bloom, S.D.; Berman, B.L.; Hamilton, D.C.; Alguard, M.J.; Barrett, J.H.; Datz, S.; Pantell, R.H.; Swent, R.H.

1981-01-01T23:59:59.000Z

31

Documentation for the intergalactic radiative transfer code IGMtransfer  

E-Print Network (OSTI)

This document describes the publically available numerical code "IGMtransfer", capable of performing intergalactic radiative transfer (RT) of light in the vicinity of the Lyman alpha (Lya) line. Calculating the RT in a (possibly adaptively refined) grid of cells resulting from a cosmological simulation, the code returns 1) a "transmission function", showing how the intergalactic medium (IGM) affects the Lya line at a given redshift, and 2) the "average transmission" of the IGM, making it useful for studying the results of reionization simulations.

Laursen, Peter

2010-01-01T23:59:59.000Z

32

Four-Stream Isosector Approximation for Solar Radiative Transfer  

Science Conference Proceedings (OSTI)

For radiative transfer in a thin atmosphere, an analytical four-stream isosector approximation for solar radiative transfer is presented. This approximation method is based on the assumption of four spherical sectors of isotropic intensities. ...

J. Li; J. S. Dobbie

1998-02-01T23:59:59.000Z

33

Multimode Radiative Transfer in Finite Optical Media. I: Fundamentals  

Science Conference Proceedings (OSTI)

In this paper we develop a new method for solving the transfer of radiation within a laterally finite optical medium. A new radiative transfer equation, based on a multimode approach, is developed which includes the explicit effects of the sides ...

Rudolph W. Preisendorfer; Graeme L. Stephens

1984-03-01T23:59:59.000Z

34

A Revised Cloud Overlap Scheme for Fast Microwave Radiative Transfer in Rain and Cloud  

Science Conference Proceedings (OSTI)

The assimilation of cloud- and precipitation-affected observations into weather forecasting systems requires very fast calculations of radiative transfer in the presence of multiple scattering. At the European Centre for Medium-Range Weather ...

Alan J. Geer; Peter Bauer; Christopher W. O’Dell

2009-11-01T23:59:59.000Z

35

Entrainment-Mixing and Radiative Transfer Simulation in Boundary Layer Clouds  

Science Conference Proceedings (OSTI)

In general circulation models, clouds are parameterized and radiative transfer calculations are performed using the plane-parallel approximation over the cloudy fraction of each model grid. The albedo bias resulting from the plane-parallel ...

Frédérick Chosson; Jean-Louis Brenguier; Lothar Schüller

2007-07-01T23:59:59.000Z

36

A Fourier–Riccati Approach to Radiative Transfer. Part I: Foundations  

Science Conference Proceedings (OSTI)

The three-dimensional equation of radiative transfer is formally solved using a Fourier-Riccati approach while calculations are performed on cloudy media embedded in a two-dimensional space. An extension to Stephens’ work, this study addresses ...

P. M. Gabriel; S-C. Tsay; G. L. Stephens

1993-09-01T23:59:59.000Z

37

Doubling–Adding Method for Delta-Four-Stream Spherical Harmonic Expansion Approximation in Radiative Transfer Parameterization  

Science Conference Proceedings (OSTI)

Though the single-layer solutions have been found for the ?-four-stream spherical harmonic expansion method (SHM) in radiative transfer, there is lack of a corresponding doubling–adding method (4SDA), which enables the calculation of radiative ...

Feng Zhang; Jiangnan Li

2013-10-01T23:59:59.000Z

38

An Iterative Radiative Transfer Code For Ocean-Atmosphere Systems  

Science Conference Proceedings (OSTI)

We describe the details of an iterative radiative transfer code for computing the intensity and degree of polarization of diffuse radiation in models of the ocean-atmosphere system. The present code neglects the upwelling radiation from below the ...

Ziauddin Ahmad; Robert S. Fraser

1982-03-01T23:59:59.000Z

39

Boundary conditions for NLTE polarized radiative transfer with incident radiation  

E-Print Network (OSTI)

Polarized NLTE radiative transfer in the presence of scattering in spectral lines and/or in continua may be cast in a so-called reduced form for six reduced components of the radiation field. In this formalism the six components of the reduced source function are angle-independent quantities. It thus reduces drastically the storage requirement of numerical codes. This approach encounters a fundamental problem when the medium is illuminated by a polarized incident radiation, because there is a priori no way of relating the known (and measurable) Stokes parameters of the incident radiation to boundary conditions for the reduced equations. The origin of this problem is that there is no unique way of deriving the radiation reduced components from its Stokes parameters (only the inverse operation is clearly defined). The method proposed here aims at enabling to work with arbitrary incident radiation field (polarized or unpolarized). In previous works an ad-hoc treatment of the boundary conditions, applying to case...

Faurobert, Marianne; Atanackovic, Olga

2013-01-01T23:59:59.000Z

40

Synchrotron Ultraviolet Radiation Facility SURF III - Calculate ...  

Science Conference Proceedings (OSTI)

Far Ultraviolet Physics Group / Synchrotron Ultraviolet Radiation Facility SURF III The Far Ultraviolet Physics Group maintains and improves the ...

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Posters The Effects of Radiative Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Posters The Effects of Radiative Transfer on Low-Level Cyclogenesis M. J. Leach and S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, North Carolina Introduction Many investigators have documented the role that thermodynamic forcing due to radiative flux divergence plays in the enhancement or generation of circulation. Most of these studies involve large-scale systems (e.g., Slingo et al. 1988), small-scale systems such as thunderstorms (Chen and Cotton 1988), and squall lines (Chin, submitted). The generation of circulation on large scales results from the creation of divergence in the upper troposphere and the maintenance of low-level potentially unstable air, and the maintenance of baroclinicity throughout

42

Modeling radiative transfer in photobioreactors for algal growth  

Science Conference Proceedings (OSTI)

Simulations of radiative transfer within an air-lift photobioreactor (PBR) are demonstrated by coupling it to the fluid hydrodynamics and employing wavelength dependant properties for the participating media. The radiative properties of the algal media ... Keywords: CFD, Computer simulation, Photobioreactor, Radiation transfer

Zachary C. Wheaton; Gautham Krishnamoorthy

2012-09-01T23:59:59.000Z

43

Neutronics and radiation damage calculations for fusion reactors  

DOE Green Energy (OSTI)

Some of the neutronics calculations that have been carried out at the Oak Ridge National Laboratory to assess radiation damage problems in fusion reactors are presented and discussed.

Alsmiller, R.G. Jr.; Gabriel, T.A.; Santoro, R.T.

1977-01-01T23:59:59.000Z

44

Available transfer capability calculation with transfer based static security-constrained optimal power flow  

Science Conference Proceedings (OSTI)

In power market environment, available transfer capability (ATC) is an important index, indicating the amount of the further usable transmission capacity for commercial trading. ATC calculation is non-trivial when static security constraints are included. ... Keywords: available transfer capability (ATC), optimal power flow, power market, power system, static stability

M. Gandchi; M. Tarafdar Haque; A. Yazdanpanah

2006-03-01T23:59:59.000Z

45

Cross Validation of Satellite Radiation Transfer Models during...  

Open Energy Info (EERE)

Cross Validation of Satellite Radiation Transfer Models during SWERA Project in Brazil (Abstract):  This work describes the cross validation between two different...

46

Improvements to the SHDOM Radiative Transfer Modeling Package  

NLE Websites -- All DOE Office Websites (Extended Search)

to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration...

47

An Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Update on Radiative Transfer Model Development at Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc. J. S. Delamere, S. A. Clough, E. J. Mlawer, Sid-Ahmed Boukabara, K. Cady-Pereira, and M. Shepard Atmospheric and Environmental Research, Inc. Lexington, Maine Introduction Over the last decade, a suite of radiative transfer models has been developed at Atmospheric and Environmental Research, Inc. (AER) with support from the Atmospheric and Radiation Measurement (ARM) Program. These models span the full spectral regime from the microwave to the ultraviolet, and range from monochromatic to band calculations. Each model combines the latest spectroscopic advancements with radiative transfer algorithms to efficiently compute radiances, fluxes, and cooling

48

Calculating thermal radiation fields from 3D flame reconstruction  

Science Conference Proceedings (OSTI)

Designing fire safety into a building requires a designer to think through issues that include fire ignition, growth and spread. Radiative heat transfer from flames is the dominant method of spread. It is, therefore, necessary to determine the thermal ... Keywords: configuration factor, flame geometry, heat flux, radial basis function, thermal radiation field

Paul Mason; Chris Rogers

2003-02-01T23:59:59.000Z

49

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network (OSTI)

An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat transfer, and the effect of infrared radiation on the thermal conductivity of the insulation system and on attic heat transfer. All the tests were performed at steady state conditions by controlling the roof deck temperature. Calculations are performed for insulation thicknesses between 1 inch (2.54cm) and 6.0 inches (15.24cm) and roof deck temperatures between 145°F (62.78°C) and 100°F (36.78°C). The temperature profiles within the insulation were measured by placing thermocouples at various levels within the insulation. The profiles for the cellulose insulation are linear. The profiles within the glass fiber insulation are non-linear due to the effect of infrared radiation. Also heat fluxes were measured through different insulation thicknesses and for different roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model was in good agreement with experimental results.

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

50

On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media  

Science Conference Proceedings (OSTI)

The application of flux limiters to the discrete ordinates method (DOM), S"N, for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium ... Keywords: Discrete ordinates method (DOM), Flux limiters, Newton-Krylov GMRES, Non-homogeneous 3D media, Radiation heat transfer, Radiative transfer equation (RTE), TVD schemes

William F. Godoy; Paul E. DesJardin

2010-05-01T23:59:59.000Z

51

Semi-implicit time integration for PN thermal radiative transfer  

Science Conference Proceedings (OSTI)

Implicit time integration involving the solution of large systems of equations is the current paradigm for time-dependent radiative transfer. In this paper we present a semi-implicit, linear discontinuous Galerkin method for the spherical harmonics (P"N) ... Keywords: Asymptotic diffusion limit, Discontinuous Galerkin, PN approximation, Thermal radiative transfer

Ryan G. McClarren; Thomas M. Evans; Robert B. Lowrie; Jeffery D. Densmore

2008-08-01T23:59:59.000Z

52

Present and Future Computing Requirements Radiative Transfer...  

NLE Websites -- All DOE Office Websites (Extended Search)

radiative shock (e.g., ensman 1994) gas temperature radiation temperature Local Thermodynamic Equilibrium (LTE) non-equilibrium (NLTE) CaII microphysics 1GB atomic data...

53

Modeling near-field radiative heat transfer from sharp objects using a general three-dimensional numerical scattering technique  

E-Print Network (OSTI)

We develop a general numerical method to calculate the nonequilibrium radiative heat transfer between a plate and compact objects of arbitrary shapes, making the first accurate theoretical predictions for the total heat ...

McCauley, Alexander Patrick

54

Solar Radiative Transfer for Wind-Sheared Cumulus Cloud Fields  

Science Conference Proceedings (OSTI)

The Monte Carlo method of photon transport was used to simulate solar radiative transfer for cumulus-like cloud forms (and cloud fields) possessing structural characteristics similar to those induced by wind shear. Using regular infinite arrays ...

Howard W. Barker

1994-05-01T23:59:59.000Z

55

An Improved Microwave Radiative Transfer Model for Tropical Oceanic Precipitation  

Science Conference Proceedings (OSTI)

In preparation for the launch of TRMM, new algorithms must be created that take advantage of the combined data from radar and microwave radiometers that will be on board the satellite. A microwave radiative transfer algorithm with a one-...

Jeffrey R. Tesmer; Thomas T. Wilheit

1998-05-01T23:59:59.000Z

56

Multiple Scattering Parameterization in Thermal Infrared Radiative Transfer  

Science Conference Proceedings (OSTI)

A systematic formulation of various radiative transfer parameterizations is presented, including the absorption approximation (AA), ?-two-stream approximation (D2S), ?-four-stream approximation (D4S), and ?-two- and four-stream combination ...

Qiang Fu; K. N. Liou; M. C. Cribb; T. P. Charlock; A. Grossman

1997-12-01T23:59:59.000Z

57

Radiative Transfer in Cloud Fields with Random Geometry  

Science Conference Proceedings (OSTI)

Numerical results are given to estimate the importance of effects associated with the stochastic geometry of cloud fields. These results show the important of treating radiative transfer in broken clouds as a statistical problem. In the case of ...

Vladimir E. Zuev; Georgii A. Titov

1995-01-01T23:59:59.000Z

58

Community Radiative Transfer Model for Stratospheric Sounding Unit  

Science Conference Proceedings (OSTI)

To better use the Stratospheric Sounding Unit (SSU) data for reanalysis and climate studies, issues associated with the fast radiative transfer (RT) model for SSU have recently been revisited and the results have been implemented into the ...

Yong Chen; Yong Han; Quanhua Liu; Paul Van Delst; Fuzhong Weng

2011-06-01T23:59:59.000Z

59

The Scaling Group of the Radiative Transfer Equation  

Science Conference Proceedings (OSTI)

We show that the equation of radiative transfer is invariant under a group of simultaneous transformations of the scale (i.e., the optical thickness) and the phase function. In this way, we provide a unified explanation of various empirical ...

Bruce H. J. McKellar; Michael A. Box

1981-05-01T23:59:59.000Z

60

Development and Evaluation of RRTMG_SW, a Shortwave Radiative Transfer Model for GCM Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Evaluation of RRTMG_SW, Development and Evaluation of RRTMG_SW, a Shortwave Radiative Transfer Model for General Circulation Model Applications M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Center for Medium-Range Weather Forecasts Reading, United Kingdom Y.-T. Hou National Centers for Environmental Prediction Camp Springs, Maryland Introduction The k-distribution shortwave radiation model developed for the Atmospheric Radiation Measurement (ARM) Program, RRTM_SW_V2.4 (Clough et al. 2004), utilizes the discrete ordinates radiative transfer model, DISORT, for scattering calculations and 16 g-points in each of its 16 spectral bands. DISORT provides agreement with line-by-line flux calculations to within 1 Wm

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Discrete diffusion Monte Carlo for frequency-dependent radiative transfer  

SciTech Connect

Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

Densmore, Jeffrey D [Los Alamos National Laboratory; Kelly, Thompson G [Los Alamos National Laboratory; Urbatish, Todd J [Los Alamos National Laboratory

2010-11-17T23:59:59.000Z

62

COMPARING THE EFFECT OF RADIATIVE TRANSFER SCHEMES ON CONVECTION SIMULATIONS  

Science Conference Proceedings (OSTI)

We examine the effect of different radiative transfer schemes on the properties of three-dimensional (3D) simulations of near-surface stellar convection in the superadiabatic layer, where energy transport transitions from fully convective to fully radiative. We employ two radiative transfer schemes that fundamentally differ in the way they cover the 3D domain. The first solver approximates domain coverage with moments, while the second solver samples the 3D domain with ray integrations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere.

Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

2012-11-10T23:59:59.000Z

63

Enhanced radiative heat transfer between nanostructured gold plates  

E-Print Network (OSTI)

We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud

2012-03-07T23:59:59.000Z

64

Surface Solar Radiation Flux and Cloud Radiative Forcing for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP): A Satellite, Surface Observations, and Radiative Transfer Model Study  

Science Conference Proceedings (OSTI)

This study presents surface solar radiation flux and cloud radiative forcing results obtained by using a combination of satellite and surface observations interpreted by means of a simple plane-parallel radiative transfer model called 2001. This ...

Catherine Gautier; Martin Landsfeld

1997-05-01T23:59:59.000Z

65

Spectrally Invariant Approximation within Atmospheric Radiative Transfer  

Science Conference Proceedings (OSTI)

Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These “spectrally invariant relationships” are the consequence of wavelength ...

A. Marshak; Y. Knyazikhin; J. C. Chiu; W. J. Wiscombe

2011-12-01T23:59:59.000Z

66

Accounting for Unresolved Clouds in a 1D Infrared Radiative Transfer Model. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap  

Science Conference Proceedings (OSTI)

Various aspects of infrared radiative transfer through clouds are investigated. First, three solutions to the IR radiative transfer equation are presented and assessed, each corresponding to a different approximation for the Planck function. It ...

J. Li

2002-12-01T23:59:59.000Z

67

The Radiative Transfer Of CH{sub 4}-N{sub 2} Plasma Arc  

Science Conference Proceedings (OSTI)

Any physical modelling of a circuit-breaker arc therefore requires an understanding of the radiated energy which is taken into account in the form of a net coefficient. The evaluation of the net emission coefficient is performed by the knowledge of the chemical plasma composition and the resolution of the radiative transfer equation. In this paper, the total radiation which escapes from a CH{sub 4}-N{sub 2} plasma is calculated in the temperature range between 5000 and 30000K on the assumption of a local thermodynamic equilibrium and we have studied the nitrogen effect in the hydrocarbon plasmas.

Benallal, R. [Theoretical physics Laboratory, Physics Department of University Aboubekr Belkaied Tlemcen 13000 (Algeria); Liani, B. [Science Faculty, Hassiba Benbouali University, Chlef 02000 (Algeria)

2008-09-23T23:59:59.000Z

68

Cross Validation of Satellite Radiation Transfer Models during SWERA  

Open Energy Info (EERE)

Cross Validation of Satellite Radiation Transfer Models during SWERA Cross Validation of Satellite Radiation Transfer Models during SWERA Project in Brazil Dataset Summary Description (Abstract): This work describes the cross validation between two different core radiation transfer models that will be applied during the SWERA (Solar and Wind Energy Assessment): the BRAZIL-SR, and the SUNY-Albany. The model cross validation was performed by using two reference sites in Brazil: at Caicó (06°28'01"S - 037°05'05"W,175.8 m), and Florianópolis (27°34'18"S - 048°31'42"W, 10 m), Satellite data were collected by INPE-CPTEC for GOES-8, that also provides for its quality assessment, sectoring, storing and distribution to the participating teams. In this work we show the first results of this cross-validation along with some discussions on model deviations

69

Low Dose Radiation Research Program: Low-LET Microdosimetry Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-LET Microdosimetry Calculations Low-LET Microdosimetry Calculations Authors: W.E. Wilson, J.H. Miller, D.J. Lynch, R.R. Lewis and M. Batdorf Institutions: Washington State University, Richland, WA, USA Liquid Model Calculations of low-linear-transfer (LET) microdosimetry have been extended to condensed phase by introducing new modules into the PITS code suite. Probability tables for inelastic interactions are constructed using the Dingfelder-GSF model for liquid-water cross-sections. Dingfelder et al. 1 re-evaluated low-energy electron interactions in liquid water in terms of five excitation and five ionization channels, and without assuming any collective interactions (plasmons). We use Dingfelder’s algorithms to calculate differential energy-loss distributions for the ten channels; by

70

Application Of A Spherical-Radial Heat Transfer Model To Calculate...  

Open Energy Info (EERE)

Application Of A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal...

71

Choosing an Approximation to the Equation of Radiative Transfer  

Science Conference Proceedings (OSTI)

We examine the accuracy of the PL, approximation to the equation of radiative transfer in the presence of scattering/absorbing clouds of various optical thicknesses. We find that very accurate net fluxes can be obtained with the P1, (two-stream) ...

James A. Fillmore; Alan H. Karp

1980-08-01T23:59:59.000Z

72

A mesoscopic description of radiative heat transfer at the nanoscale  

E-Print Network (OSTI)

We present a formulation of the nanoscale radiative heat transfer (RHT) using concepts of mesoscopic physics. We introduce the analog of the Sharvin conductance using the quantum of thermal conductance. The formalism provides a convenient framework to analyse the physics of RHT at the nanoscale. Finally, we propose a RHT experiment in the regime of quantized conductance.

Svend-Age Biehs; Emmanuel Rousseau; Jean-Jacques Greffet

2011-03-11T23:59:59.000Z

73

CHAPARRAL: A library for solving large enclosure radiation heat transfer problems  

SciTech Connect

Large, three-dimensional enclosure radiation beat transfer problems place a heavy demand on computing resources such as computational cycles, memory requirements, disk I/O, and disk space usage. This is primarily due to the computational and memory requirements associated with the view factor calculation and subsequent access of the view factor matrix during solution of the radiosity matrix equation. This is a fundamental problem that constrains Sandia`s current modeling capabilities. Reducing the computational and memory requirements for calculating and manipulating view factors would enable an analyst to increase the level of detail at which a body could be modeled and would have a major impact on many programs at Sandia such as weapon and transportation safety programs, component survivability programs, energy programs, and material processing programs. CHAPARRAL is a library package written to address these problems and is specifically tailored towards the efficient solution of extremely large three-dimensional enclosure radiation heat transfer problems.

Glass, M.W.

1995-08-01T23:59:59.000Z

74

Incorporating the Effects of 3D Radiative Transfer in the Presence of Clouds into Two-Stream Multilayer Radiation Schemes  

Science Conference Proceedings (OSTI)

This paper presents a new method for representing the important effects of horizontal radiation transport through cloud sides in two-stream radiation schemes. Ordinarily, the radiative transfer equations are discretized separately for the clear ...

Robin J. Hogan; Jonathan K. P. Shonk

2013-02-01T23:59:59.000Z

75

Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem  

Science Conference Proceedings (OSTI)

This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

Dana E. Veron

2012-04-09T23:59:59.000Z

76

Advances in Radiative Transfer Modeling in Support of Satellite Data Assimilation  

Science Conference Proceedings (OSTI)

Development of fast and accurate radiative transfer models for clear atmospheric conditions has enabled direct assimilation of clear-sky radiances from satellites in numerical weather prediction models. In this article, fast radiative transfer ...

Fuzhong Weng

2007-11-01T23:59:59.000Z

77

Two-Dimensional Radiative Transfer in Cloudy Atmospheres: The Spherical Harmonic Spatial Grid Method  

Science Conference Proceedings (OSTI)

A new two-dimensional monochromatic method that computes the transfer of solar or thermal radiation through atmospheres with arbitrary optical properties is described. The model discretizes the radiative transfer equation by expanding the angular ...

K. Franklin Evans

1993-09-01T23:59:59.000Z

78

Scalable photon monte carlo algorithms and software for the solution of radiative heat transfer problems  

Science Conference Proceedings (OSTI)

Radiative heat transfer plays a central role in many combustion and engineering applications. Because of its highly nonlinear and nonlocal nature, the computational cost can be extremely high to model radiative heat transfer effects accurately. In this ...

Ivana Veljkovic; Paul E. Plassmann

2005-09-01T23:59:59.000Z

79

COLLAPSE OF MOLECULAR CLOUD CORES WITH RADIATION TRANSFER: FORMATION OF MASSIVE STARS BY ACCRETION  

Science Conference Proceedings (OSTI)

Most early radiative transfer calculations of protostellar collapse have suggested an upper limit of approx40 M{sub sun} for the final stellar mass before radiation pressure can exceed the star's gravitational pull and halt the accretion. Here we perform further collapse calculations, using frequency-dependent radiation transfer coupled to a frequency-dependent dust model that includes amorphous carbon particles, silicates, and ice-coated silicates. The models start from pressure-bounded, logatropic spheres of mass between 5 M{sub sun} and 150 M{sub sun} with an initial nonsingular density profile. We find that in a logatrope the infall is never reversed by the radiative forces on the dust and that stars with masses approx>100 M{sub sun} may form by continued accretion. Compared to previous models that start the collapse with a rho propor to r{sup -2} density configuration, our calculations result in higher accretion times and lower average accretion rates with peak values of approx5.8 x 10{sup -5} M{sub sun} yr{sup -1}. The radii and bolometric luminosities of the produced massive stars (approx>90 M{sub sun}) are in good agreement with the figures reported for detected stars with initial masses in excess of 100 M{sub sun}. The spectral energy distribution from the stellar photosphere reproduces the observed fluxes for hot molecular cores with peaks of emission from mid- to near-infrared.

Sigalotti, Leonardo Di G.; Daza-Montero, Judith [Centro de Fisica, Instituto Venezolano de Investigaciones CientIficas, IVIC, Apartado 21827, Caracas 1020A (Venezuela, Bolivarian Republic of); De Felice, Fernando [Dipartimento di Fisica 'G. Galilei', Universita di Padova, Via Marzolo 8 35131 Padova (Italy)

2009-12-20T23:59:59.000Z

80

CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT  

Open Energy Info (EERE)

ISES- 2003 ISES- 2003 CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT IN BRAZIL Enio B. Pereira, Fernando R. Martins 1 Brazilian Institute for Space Research - INPE, São José dos Campos, 12245-970, SP, Brazil Phone + 55 12 39456741, Fax + 55 12 39456810, enio@dge.inpe.br Samuel L. Abreu, Hans Georg Beyer, Sergio Colle, and Solar Energy Laboratory - LABSOLAR - Department of Mechanical Engineering, Federal University of Santa Catarina -UFSC, Florianopolis, 88040-900, (SC), Brazil, Richard Perez The University at Albany (SUNY), ASRC-CESTM, Albany, 12203 (NY), USA Abstract - This work describes the cross validation between two different core radiation transfer models that will be applied during the SWERA (Solar and Wind Energy Assessment): the BRAZIL-SR, and the

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Aerosol Models for Radiative Flux Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology E. Andrews Cooperative Institute for Research in the Environment University of Colorado Boulder, Colorado E. Andrews, J. A. Ogren, P. J. Sheridan, and J. M. Harris Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado P. K. Quinn Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington Abstract The uncertainties associated with assumptions of generic aerosol properties in radiative transfer codes are unknown, which means that these uncertainties are frequently invoked when models and

82

Investigation of the Accuracy of Calculation Methods for Conduction Transfer Functions of Building Construction  

E-Print Network (OSTI)

Conduction transfer functions (CTFs) are widely used to calculate conduction heat transfer in building cooling load and energy calculations. They can conveniently fit into any load and energy calculation techniques to perform conduction calculations. There are three methods: the Laplace transform (LP) method, the state-space (SS) method and the frequency-domain regression (FDR) method to calculate CTF coefficients. The limitation of methodology possibly results in imprecise or false CTF coefficients. This paper investigates the accuracy of the three methods applied to the material properties of a single-layer and a multilayer heavyweight building construction.

Chen, Y.; Li, X.; Zhang, Q.; Spitler, J.; Fisher, D.

2006-01-01T23:59:59.000Z

83

Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation  

Science Conference Proceedings (OSTI)

The heat transfer and absorption characteristics of an external receiver pipe under unilateral concentrated solar radiation are theoretically investigated. Since the heat loss ratio of the infrared radiation has maximum at moderate energy flux, the heat absorption efficiency will first increase and then decrease with the incident energy flux. The local absorption efficiency will increase with the flow velocity, while the wall temperature drops quickly. Because of the unilateral concentrated solar radiation and different incident angle, the heat transfer is uneven along the circumference. Near the perpendicularly incident region, the wall temperature and absorption efficiency slowly approaches to the maximum, while the absorption efficiency sharply drops near the parallelly incident region. The calculation results show that the heat transfer parameters calculated from the average incident energy flux have a good agreement with the average values of the circumference under different boundary conditions. For the whole pipe with coating of Pyromark, the absorption efficiency of the main region is above 85%, and only the absorption efficiency near the parallelly incident region is below 80%. In general, the absorption efficiency of the whole pipe increases with flow velocity rising and pipe length decreasing, and it approaches to the maximum at optimal concentrated solar flux. (author)

Jianfeng, Lu; Jing, Ding [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Jianping, Yang [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640 (China)

2010-11-15T23:59:59.000Z

84

Radiative Transfer Modeling of a Coniferous Canopy Characterized by Airborne Remote Sensing  

Science Conference Proceedings (OSTI)

Solar radiation beneath a forest canopy can have large spatial variations, but this is frequently neglected in radiative transfer models for large-scale applications. To explicitly model spatial variations in subcanopy radiation, maps of canopy ...

Richard Essery; Peter Bunting; Aled Rowlands; Nick Rutter; Janet Hardy; Rae Melloh; Tim Link; Danny Marks; John Pomeroy

2008-04-01T23:59:59.000Z

85

Exact Semiclassical Calculations of Translational-Vibrational Energy Transfer  

SciTech Connect

We present "exact" calculations, by the semiclassical method, of vibrational excitation of a harmonic diatomic molecule A-B, in its ground vibrational state, upon collinear collision with an atom C. Results are compared with those of first-order quantum mechanical time dependent perturbation methods and those of purely classical methods.

Kelley, J. Daniel; Wolfsberg, Max

1966-07-22T23:59:59.000Z

86

FILM COOLING CALCULATIONS WITH AN ITERATIVE CONJUGATE HEAT TRANSFER APPROACH USING EMPIRICAL HEAT TRANSFER COEFFICIENT CORRECTIONS.  

E-Print Network (OSTI)

??An iterative conjugate heat transfer technique was developed and automated to predict the temperatures on film cooled surfaces such as flat plates and turbine blades.… (more)

Dhiman, Sushant

2010-01-01T23:59:59.000Z

87

A Discrete Ordinate, Multiple Scattering, Radiative Transfer Model of the Venus Atmosphere from 0.1 to 260 ?m  

Science Conference Proceedings (OSTI)

The authors describe a new radiative transfer model of the Venus atmosphere (RTM) that includes optical properties from nine gases and four cloud modes between 0.1 and 260 ?m. A multiple-stream discrete ordinate flux solver is used to calculate ...

Christopher Lee; Mark Ian Richardson

2011-06-01T23:59:59.000Z

88

A Radiation Fog Model with a Detailed Treatment of the Interaction between Radiative Transfer and Fog Microphysics  

Science Conference Proceedings (OSTI)

A one-dimensional radiation fog model is presented which includes a detailed description of the interaction between atmospheric radiative transfer and the microphysical structure of the fog. Aerosol particles and activated cloud droplets are ...

A. Bott; U. Sievers; W. Zdunkowski

1990-09-01T23:59:59.000Z

89

Near-field radiative heat transfer for structured surfaces  

E-Print Network (OSTI)

We apply an analytical approach for determining the near-field radiative heat transfer between a metallic nanosphere and a planar semi-infinite medium with some given surface structure. This approach is based on a perturbative expansion, and evaluated to first order in the surface profile. With the help of numerical results obtained for some simple model geometries we discuss typical signatures that should be obtainable with a near-field scanning thermal microscope operated in either constant-height or constant-distance mode.

Svend-Age Biehs; Oliver Huth; Felix Rüting

2011-03-15T23:59:59.000Z

90

A 3-D multiband closure for radiation and neutron transfer moment models  

Science Conference Proceedings (OSTI)

We derive a 3D multi-band moment model and its associated closure for radiation and neutron transfer. The new closure is analytical and nonlinear but very simple. Its derivation is based on the maximum entropy closure and assumes a Wien shape for the ... Keywords: Maximum entropy closure, Moment models, Multi-band models, Multi-bin models, Neutron transfer, ODF, Radiative transfer

J. -F. Ripoll; A. A. Wray

2008-02-01T23:59:59.000Z

91

An Improved Parameterization for Estimating Effective Atmospheric Emissivity for Use in Calculating Daytime Downwelling Longwave Radiation  

Science Conference Proceedings (OSTI)

An improved parameterization is presented for estimating effective atmospheric emissivity for use in calculating downwelling longwave radiation based on temperature, humidity, pressure, and solar radiation observations. The first improvement is ...

Todd M. Crawford; Claude E. Duchon

1999-04-01T23:59:59.000Z

92

Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloudy Sky RRTM Shortwave Radiative Transfer and Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Introduction An important step toward improving radiative transfer codes in general circulation models (GCMs) is their thorough evaluation by comparison to measurements directly, or to other data-validated radiation models. This work extends the clear-sky shortwave (SW) GCM evaluation presented by Iacono et al. (2001) to computations including clouds. The rapid radiative transfer model (RRTM) SW radiation model accurately reproduces clear-sky direct beam fluxes from the Line-By-Line Radiative Transfer

93

Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model  

Science Conference Proceedings (OSTI)

A thin cirrus cloud thermal infrared radiative transfer model has been developed for application to cloudy satellite data assimilation. This radiation model was constructed by combining the Optical Path Transmittance (OPTRAN) model, developed for ...

Qing Yue; K. N. Liou; S. C. Ou; B. H. Kahn; P. Yang; G. G. Mace

2007-11-01T23:59:59.000Z

94

Radiative Transfer in Cirrus Clouds. Part IV: On Cloud Geometry, Inhomogeneity, and Absorption  

Science Conference Proceedings (OSTI)

The effects of cloud geometry and inhomogeneity on the radiative properties of cirrus clouds are investigated by using the successive orders of scattering (SOS) approach for radiative transfer. This approach is an integral solution method that em ...

K. N. Liou; N. Rao

1996-11-01T23:59:59.000Z

95

Radiative Transfer through Arbitrarily Shaped Optical Media. Part I: A General Method of Solution  

Science Conference Proceedings (OSTI)

A general transform method is presented for studying problems of radiative transfer through absorbing, emitting and anisotropically scattering media exposed to arbitrary radiation conditions on its boundaries. The method permits quite arbitrary ...

Graeme L. Stephens

1988-06-01T23:59:59.000Z

96

Radiative Heat Transfer Analysis within Three-Dimensional Clouds Subjected to Solar and Sky Irradiation  

Science Conference Proceedings (OSTI)

A three-dimensional radiative heat transfer analysis of an arbitrary-shaped modeled cloud subjected to solar and sky irradiation has been performed. The Radiation Element Method by Ray Emission Model (REM2) was used for numerical simulation. ...

Toru Nishikawa; Shigenao Maruyama; Seigo Sakai

2004-12-01T23:59:59.000Z

97

A Coupled Atmosphere–Ocean Radiative Transfer System Using the Analytic Four-Stream Approximation  

Science Conference Proceedings (OSTI)

A coupled atmosphere–ocean radiative transfer model based on the analytic four-stream approximation has been developed. It is shown that this radiation model is computationally efficient and at the same time can achieve acceptable accuracy for ...

Wei-Liang Lee; K. N. Liou

2007-10-01T23:59:59.000Z

98

3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations  

SciTech Connect

Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

Howard Barker; Jason Cole

2012-05-17T23:59:59.000Z

99

Implied Dynamic Feedback of 3D IR Radiative Transfer on Simulated...  

NLE Websites -- All DOE Office Websites (Extended Search)

of 3D IR Radiative Transfer on Simulated Cloud Fields D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman,...

100

TAU: A 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres  

E-Print Network (OSTI)

The TAU code is a 1D line-by-line radiative transfer code, which is generally applicable for modelling transmission spectra of close-in extrasolar planets. The inputs are the assumed pressure-temperature profile of the planetary atmosphere, the continuum absorption coefficients and the absorption cross-sections for the trace molecular absorbers present in the model, as well as the fundamental system parameters taken from the published literature. The program then calculates the optical path through the planetary atmosphere of the radiation from the host star, and quantifies the absorption due to the modelled composition in a transmission spectrum of transit depth as a function of wavelength. The code is written in C++, parallelised using OpenMP, and is available for public download and use from http://www.ucl.ac.uk/exoplanets/.

Hollis, M D J; Tinetti, G

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Radiative transfer in plane-parallel media and Cauchy integral equations III. The finite case  

E-Print Network (OSTI)

We come back to the Cauchy integral equations occurring in radiative transfer problems posed in finite, plane-parallel media with light scattering taken as monochromatic and isotropic. Their solution is calculated following the classical scheme where a Cauchy integral equation is reduced to a couple of Fredholm integral equations. It is expressed in terms of two auxiliary functions $\\zeta_+$ and $\\zeta_-$ we introduce in this paper. These functions show remarkable analytical properties in the complex plane. They satisfy a simple algebraic relation which generalizes the factorization relation of semi-infinite media. They are regular in the domain of the Fredholm integral equations they satisfy, and thus can be computed accurately. As an illustration, the X- and Y-functions are calculated in the whole complex plane, together with the extension in this plane of the so-called Sobouti's functions.

B. Rutily; L. Chevallier; J. Bergeat

2006-01-16T23:59:59.000Z

102

Radiative equilibrium in Monte Carlo radiative transfer using frequency distribution adjustment  

E-Print Network (OSTI)

The Monte Carlo method is a powerful tool for performing radiative equilibrium calculations, even in complex geometries. The main drawback of the standard Monte Carlo radiative equilibrium methods is that they require iteration, which makes them numerically very demanding. Bjorkman & Wood recently proposed a frequency distribution adjustment scheme, which allows radiative equilibrium Monte Carlo calculations to be performed without iteration, by choosing the frequency of each re-emitted photon such that it corrects for the incorrect spectrum of the previously re-emitted photons. Although the method appears to yield correct results, we argue that its theoretical basis is not completely transparent, and that it is not completely clear whether this technique is an exact rigorous method, or whether it is just a good and convenient approximation. We critically study the general problem of how an already sampled distribution can be adjusted to a new distribution by adding data points sampled from an adjustment distribution. We show that this adjustment is not always possible, and that it depends on the shape of the original and desired distributions, as well as on the relative number of data points that can be added. Applying this theorem to radiative equilibrium Monte Carlo calculations, we provide a firm theoretical basis for the frequency distribution adjustment method of Bjorkman & Wood, and we demonstrate that this method provides the correct frequency distribution through the additional requirement of radiative equilibrium. We discuss the advantages and limitations of this approach, and show that it can easily be combined with the presence of additional heating sources and the concept of photon weighting. However, the method may fail if small dust grains are included... (abridged)

Maarten Baes; Dimitris Stamatellos; Jonathan I. Davies; Anthony P. Whitworth; Sabina Sabatini; Sarah Roberts; Suzanne M. Linder; Rhodri Evans

2005-04-01T23:59:59.000Z

103

Microwave radiative transfer in the mixed-phase regions of tropical rainfall  

E-Print Network (OSTI)

Current physically-based Radiative Transfer Model (RTM) algorithms for estimating oceanic rain use a very simplified hydrometeor profile that ignores the mixed-phase regions (Wilheit et al., 1977). However, to estimate hydrometeor profiles more reasonably in the tropical precipitation regions, understanding of the brightness temperature (Tb) variations in the mixed-phase regions is essential. Further, establishing physical assumptions for microwave radiative transfer in the mixed-phase regions is necessary for quantifying and minimizing the uncertainties in the rainfall retrieval. Consequently, the objective of this study was to quantify uncertainties and to achieve a solid basis for improvement of the current rainfall retrieval, which is based on an RTM. To accomplish this, we examined data taken by the Convair-580 aircraft during the KWAJEX (Kwajalein Experiment). In order to calculate radiative transfer, the AMMR (Airborne Multi-channel Microwave Radiometer) data were combined with radiosonde data and aircraft microphysics data. Analyses were performed for the stratiform and convective rainfall regions respectively. In stratiform precipitation with a bright band, the main concern was to examine the needed physical assumptions for describing the abrupt change of Tb just below the freezing level. In the case of convective precipitation, the focus was to investigate the effective additional rain layer thickness corresponding to the super-cooled water layer above the freezing level. From the results, it was required to assume the bright-band (around 1/2 km below the FL) as having 2 times the absorption as the rain below to explain the Tb variation due to the phase change of hydrometeors. On the other hand, in the case of convective rainfall, it was suggested that approximately from 1/4km to 3km of super-cooled layer thickness should be considered to describe the additional hydrometeor layer due to the strong updrafts in the convective regions.

Jin, Kyoung-Wook

2001-01-01T23:59:59.000Z

104

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network (OSTI)

W/m 2 .µm) f (?T ) Blackbody radiation function I ? SpectralW/m 2 .sr.µm) I b,? Blackbody radiation intensity (W/m 2 .can be treated as blackbody radiation at temperature T sur .

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

105

Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report  

Science Conference Proceedings (OSTI)

This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

Jerry Y. Harrington

2012-09-21T23:59:59.000Z

106

Test plan for validation of the radiative transfer equation.  

SciTech Connect

As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).

Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.

2010-09-01T23:59:59.000Z

107

CERENKOV RADIATION INTENSITY CALCULATIONS FOR Sr$sup 90$ AND Co$sup 60$ IN WATER  

SciTech Connect

A method for calculating Cherenkov radiation intensity from an initial electron energy distribution is presented. The Cherenkov radiation intensity from 1 curie of Sr/sup 90/ in secular equilibrium with Y/sup 90/ in water was calculated from the beta energy spectrum to illustrate the use of the method for a pure beta emitter. The Cherenkov radiation intensity from 1 curie of Co/sup 60/ in water was calculated from the Compton electron energy spectrum to illustrate the use of the method for a gamma emitter. The steps necessary to obtain the Compton electron energy spectrum from a gamma emitter are indicated. (auth)

Wymer, R.G.; Biggers, R.E.

1961-09-19T23:59:59.000Z

108

A Three-Dimensional Radiative Transfer Model to Investigate the Solar Radiation within a Cloudy Atmosphere. Part I: Spatial Effects  

Science Conference Proceedings (OSTI)

A new Monte Carlo–based three-dimensional (3D) radiative transfer model of high spectral and spatial resolution is presented. It is used to investigate the difference in broadband solar radiation absorption, top-of-the-atmosphere upwelling, and ...

William O’Hirok; Catherine Gautier

1998-06-01T23:59:59.000Z

109

A Three-Dimensional Radiative Transfer Model to Investigate the Solar Radiation within a Cloudy Atmosphere. Part II: Spectral Effects  

Science Conference Proceedings (OSTI)

In this second part of a two-part paper, the spectral response of the interaction between gases, cloud droplets, and solar radiation is investigated using a Monte Carlo-based three-dimensional (3D) radiative transfer model with a spectral ...

William O’Hirok; Catherine Gautier

1998-10-01T23:59:59.000Z

110

Application Of A Spherical-Radial Heat Transfer Model To Calculate  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Application Of A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Details Activities (0) Areas (0) Regions (0) Abstract: This paper presents estimates of the undisturbed formation temperatures in a geothermal exploration well drilled in the Ceboruco area in the western part of the Mexican Volcanic Belt. The method used assumes

111

W-320 waste retrieval sluicing system transfer line flushing volume and frequency calculation  

DOE Green Energy (OSTI)

The calculations contained in this analysis document establish the technical basis for the volume, frequency, and flushing fluid to be utilized for routine Waste Retrieval Sluicing System (WRSS) process line flushes. The WRSS was installed by Project W-320, Tank 241-C-106 Sluicing. The double contained pipelines being flushed have 4 inch stainless steel primary pipes. The flushes are intended to prevent hydrogen buildup in the transfer lines and to provide ALARA conditions for maintenance personnel.

Bailey, J.W.

1997-04-07T23:59:59.000Z

112

W-320 waste retrieval sluicing system transfer line flushing volume and frequency calculation  

DOE Green Energy (OSTI)

The calculations contained in this analysis document establish the technical basis for the volume, frequency, and flushing fluid to be utilized for routine Waste Retrieval Sluicing System (WRSS) process line flushes. The WRSS was installed by Project W-320, Tank 24 I-C-106 Sluicing. The double contained pipelines being flushed have 4 inch stainless steel primary pipes. The flushes are intended to prevent hydrogen build up in the transfer lines and to provide ALARA conditions for maintenance personnel.

Bailey, J.W.

1997-11-05T23:59:59.000Z

113

A Comparison of Radiation Variables Calculated in the UCLA General Circulation Model to Observations  

Science Conference Proceedings (OSTI)

Comparisons are made between the spatial patterns of solar and thermal fluxes of radiation calculated by the UCLA general circulation model and observations. The latter include estimates at the Pacific Ocean surface of the climatological averages ...

Bryan C. Weare

1988-05-01T23:59:59.000Z

114

Thermal-radiation heat-transfer model for degraded cores. [PWR; BWR  

SciTech Connect

One consequence of the accident at the Three Mile Island Unit 2 (TMI-2) nuclear power plant is a realization by the nuclear power technical community that there is a need for calculational tools that can be used to analyze the TMI-2 accident and to investigate hypothetical situations involving degraded light-water reactor (LWR) cores. As a result, there are now several ongoing modeling and code development efforts in the United States among which is the development of the MIMAS (Multifield Integrated Meltdown Analysis System code) at the Los Alamos National Laboratory. This paper describes a thermal-radiation heat-transfer model for LWR degraded cores that has been developed for the MIMAS code.

Tomkins, J.L.

1983-01-01T23:59:59.000Z

115

Full-Spectrum Correlated-k Distribution for Shortwave Atmospheric Radiative Transfer  

Science Conference Proceedings (OSTI)

The full-spectrum correlated k-distribution (FSCK) method, originally developed for applications in combustion systems, is adapted for use in shortwave atmospheric radiative transfer. By weighting k distributions by the solar source function, the ...

Daniel T. Pawlak; Eugene E. Clothiaux; Michael F. Modest; Jason N. S. Cole

2004-11-01T23:59:59.000Z

116

Estimating Three-Dimensional Cloudy Radiative Transfer Effects from Time-Height Cross Sections  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Three-Dimensional Cloudy Radiative Transfer Estimating Three-Dimensional Cloudy Radiative Transfer Effects from Time-Height Cross Sections C. Hannay and R. Pincus National Oceanic and Atmospheric Administration Climate Diagnostics Center Boulder, Colorado K. F. Evans Program in Atmospheric and Oceanic Sciences University of Colorado Boulder, Colorado Introduction Clouds in the atmosphere are finite in extent and variable in every direction and in time. Long data sets from ground-based profilers, such as lidars or cloud radars, could provide a very valuable set of observations to characterize this variability. We may ask how well such profiling instruments can represent the cloud structure as measured by the magnitude of the three-dimensional (3D) radiative transfer effect. The 3D radiative transfer effect is the difference between the domain average broadband solar surface

117

On the Correlated k-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres  

Science Conference Proceedings (OSTI)

The correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres is discussed in terms of the physical and mathematical conditions under which this method is valid. Two correlated conditions are necessary and sufficient ...

Qiang Fu; K. N. Liou

1992-11-01T23:59:59.000Z

118

Near-field thermal radiation transfer controlled by plasmons in graphene  

E-Print Network (OSTI)

It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance, and tune the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange ...

Ilic, Ognjen

119

A 3-D Canopy Radiative Transfer Model for Global Climate Modeling: Description, Validation and Application  

Science Conference Proceedings (OSTI)

The process of solar radiative transfer at the land surface is important to energy, water and carbon balance, especially for vegetated areas. Currently the most commonly used two-stream model considers the Plant Functional Types (PFTs) within a ...

Hua Yuan; Robert E. Dickinson; Yongjiu Dai; Muhammad J. Shaikh; Liming Zhou; Wei Shangguan; Duoying Ji

120

Multiresolution Analysis of Radiative Transfer through Inhomogeneous Media. Part II: Validation and New Insights  

Science Conference Proceedings (OSTI)

The multiresolution radiative transfer equations of Part I of this paper are solved numerically for the case of inhomogeneous model clouds using Meyer’s basis functions. After analyzing the properties of Meyer’s connection coefficients and ...

Nicolas Ferlay; Harumi Isaka; Philip Gabriel; Albert Benassi

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries  

E-Print Network (OSTI)

We describe a fluctuating-surface-current formulation of radiative heat transfer, applicable to arbitrary geometries in both the near and far field, that directly exploits efficient and sophisticated techniques from the ...

Rodriguez, Alejandro W.

122

Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects  

E-Print Network (OSTI)

We present a detailed derivation of heat radiation, heat transfer, and (Casimir) interactions for N arbitrary objects in the framework of fluctuational electrodynamics in thermal nonequilibrium. The results can be expressed ...

Bimonte, Giuseppe

123

The Successive-Order-of-Interaction Radiative Transfer Model. Part II: Model Performance and Applications  

Science Conference Proceedings (OSTI)

Radiative transfer models for scattering atmospheres that are accurate yet computationally efficient are required for many applications, such as data assimilation in numerical weather prediction. The successive-order-of-interaction (SOI) model is ...

Christopher W. O’Dell; Andrew K. Heidinger; Thomas Greenwald; Peter Bauer; Ralf Bennartz

2006-10-01T23:59:59.000Z

124

Radiative Transfer on a Linear Lattice: Application to Anisotropic Ice Crystal Clouds  

Science Conference Proceedings (OSTI)

The problem of radiative transfer in a horizontally infinite cloud layer possessing anisotropy with respect to volume extinction and other single-scattering properties was solved using the method of discrete space theory. The model was applied to ...

Graeme L. Stephens

1980-09-01T23:59:59.000Z

125

The Spherical Harmonics Discrete Ordinate Method for Three-Dimensional Atmospheric Radiative Transfer  

Science Conference Proceedings (OSTI)

A new algorithm for modeling radiative transfer in inhomogeneous three-dimensional media is described. The spherical harmonics discrete ordinate method uses a spherical harmonic angular representation to reduce memory use and time computing the ...

K. Franklin Evans

1998-02-01T23:59:59.000Z

126

Aircraft Observations of the Vertical Structure of Stratiform Precipitation Relevant to Microwave Radiative Transfer  

Science Conference Proceedings (OSTI)

The retrieval of rainfall intensity over the oceans from passive microwave observations is based on a radiative transfer model. Direct rainfall observations of oceanic rainfall are virtually nonexistent making validation of the retrievals ...

A. T. C. Chang; A. Barnes; M. Glass; R. Kakar; T. T. Wilheit

1993-06-01T23:59:59.000Z

127

Radiative Transfer through Arbitrarily Shaped Optical Media. Part II. Group Theory and Simple Closures  

Science Conference Proceedings (OSTI)

This paper presents a formulation of the radiative transfer equation which allows for the distinction between various groups of spatial scales of variation that comprise the radiance field. Such a formulation provides a convenient means for ...

Graeme L. Stephens

1988-06-01T23:59:59.000Z

128

Assessing 1D Atmospheric Solar Radiative Transfer Models: Interpretation and Handling of Unresolved Clouds  

Science Conference Proceedings (OSTI)

The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. ...

H. W. Barker; G. L. Stephens; P. T. Partain; J. W. Bergman; B. Bonnel; K. Campana; E. E. Clothiaux; S. Clough; S. Cusack; J. Delamere; J. Edwards; K. F. Evans; Y. Fouquart; S. Freidenreich; V. Galin; Y. Hou; S. Kato; J. Li; E. Mlawer; J.-J. Morcrette; W. O'Hirok; P. Räisänen; V. Ramaswamy; B. Ritter; E. Rozanov; M. Schlesinger; K. Shibata; P. Sporyshev; Z. Sun; M. Wendisch; N. Wood; F. Yang

2003-08-01T23:59:59.000Z

129

Precision calculation of blackbody radiation shifts for optical frequency metrology  

E-Print Network (OSTI)

We show that three group IIIB divalent ions, B+, Al+, and In+, have anomalously small blackbody radiation (BBR) shifts of the ns^2 1S0 - nsnp 3P0 clock transitions. The fractional BBR shifts for these ions are at least 10 times smaller than those of any other present or proposed optical frequency standards at the same temperature, and are less than 0.3% of the Sr clock shift. We have developed a hybrid configuration interaction + coupled-cluster method that provides accurate treatment of correlation corrections in such ions, considers all relevant states in the same systematic way, and yields a rigorous upper bound on the uncertainty of the final results. We reduce the BBR contribution to the fractional frequency uncertainty of the Al+ clock to 4 \\times 10^{-19} at T=300K. We also reduce the uncertainties due to this effect at room temperature to 10^{-18} level for B+ and In+ to facilitate further development of these systems for metrology and quantum sensing. These uncertainties approach recent estimates of the feasible precision of currently proposed optical atomic clocks.

M. S. Safronova; M. G. Kozlov; Charles W. Clark

2011-05-16T23:59:59.000Z

130

An alternative Monte Carlo approach to the thermal radiative transfer problem  

SciTech Connect

The usual Monte Carlo approach to the thermal radiative transfer problem is to view Monte Carlo as a solution technique for the nonlinear thermal radiative transfer equations. The equations contain time derivatives which are approximated by introducing small time steps. An alternative approach avoids time steps by using Monte Carlo to directly sample the time at which the next event occurs. That is, the time is advanced on a natural event-by-event basis rather than by introducing an artificial time step.

Booth, Thomas E., E-mail: teb@lanl.go [Mail Stop A143, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2011-02-20T23:59:59.000Z

131

The multiple absorption coefficient zonal method (MACZM), an efficient computational approach for the analysis of radiative heat transfer in multidimensional inhomogeneous nongray media  

E-Print Network (OSTI)

of Radiative Heat Transfer, the P-3 Approximation”, AIAAMedia”, Journal of Heat Transfer, Vol. 109, No. 3 (1987),Media”, Numerical Heat Transfer, Part B, Fundamentals, Vol.

Yuen, W W

2006-01-01T23:59:59.000Z

132

Neutron measurements and radiation damage calculations for fusion materials studies  

SciTech Connect

Fusion reactors will generate intense neutron fields, especially at the inner surfaces of containment vessels. With a typical wall loading of 1 MW/m/sup 2/, the yearly neutron fluence will be about 10/sup 26/ n/m/sup 2/. In a material like stainless steel this irradiation will produce about 10 atomic displacements-per-atom (DPA), 100 appM helium, 500 appM hydrogen, and various other transmutations. The gas-to-DPA ratios are very high compared to fission reactors due to the 14 MeV neutrons from the d-t fusion reaction. No existing neutron source can produce both the high fluence and high gas rates needed to simulate fusion damage. Consequently, fusion material studies are underway in a variety of facilities including fission reactors and accelerator-based neutron sources. A Subtask Group has been created by DOE to characterize these diverse facilities in terms of neutron flux and energy spectrum and to calculate DPA and transmutation for specific irradiations. Material property changes can then be correlated between facilities and extrapolated to fusion reactor conditions.

Greenwood, L.R.

1983-01-01T23:59:59.000Z

133

Change in regime and transfer function models of global solar radiation in Kuwait  

Science Conference Proceedings (OSTI)

The development of the models for global solar radiation in Kuwait is based on removing the annual periodicity and seasonal variation. The first methodology used here is the change in regime technique that relies on dividing the observations into two ... Keywords: ARMA model, Harmonic analysis, Solar radiation, Transfer function

S. A. Al-Awadhi

2005-09-01T23:59:59.000Z

134

THE THERMAL PROPERTIES OF GASES FOR USE IN REACTOR HEAT-TRANSFER CALCULATIONS  

DOE Green Energy (OSTI)

A revised standard set of values of the thermal conductivities, viscosities, and specific heats of hydrogen, helium, nitrogen, argon, krypton, xenon, carbon dioxide, and air over the temperature range 0 to 1000 deg C is presented for ease in heat-transfer calculations and experiments. Selected experimental values and an indication of the methods of calculation of the thermal conductivity and viscosity of some binary and ternary gas mixtures are also included. Attention was also given to the variation of these gaseous properties at pressures above atmospheric. A selection of published work, mainly since 1954, collected from a literature survey is reviewed and the values quoted are displayed in tabular and/or graphical form, from which standard graphs were derived. (auth)

Massey, G.V.

1960-07-01T23:59:59.000Z

135

O Star X-ray Line Profiles Explained by Radiation Transfer in Inhomogeneous Stellar Wind  

E-Print Network (OSTI)

It is commonly adopted that X-rays from O stars are produced deep inside the stellar wind, and transported outwards through the bulk of the expanding matter which attenuates the radiation and affects the shape of emission line profiles. The ability of Chandra and XMM-Newton to resolve these lines spectroscopically provided a stringent test for the theory of X-ray production. It turned out that none of the existing models was able to reproduce the observations consistently. The major caveat of these models was the underlying assumption of a smooth stellar wind. Motivated by the various observational evidence that the stellar winds are in fact structured, we present a 2-D model of a stochastic, inhomogeneous wind. The X-ray radiative transfer is derived for such media. It is shown that profiles from a clumped wind differ drastically from those predicted by conventional homogeneous models. We review the up-to-date observations of X-ray line profiles from stellar winds and present line fits obtained from the inhomogeneous wind model. The necessity to account for inhomogeneities in calculating the X-ray transport in massive star winds, including for HMXB is highlighted.

L. M. Oskinova; A. Feldmeier; W. -R. Hamann

2005-11-01T23:59:59.000Z

136

Trace formulae for non-equilibrium Casimir interactions, heat radiation and heat transfer for arbitrary objects  

E-Print Network (OSTI)

We present a detailed derivation of heat radiation, heat transfer and (Casimir) interactions for N arbitrary objects in the framework of fluctuational electrodynamics in thermal non-equilibrium. The results can be expressed as basis-independent trace formulae in terms of the scattering operators of the individual objects. We prove that heat radiation of a single object is positive, and that heat transfer (for two arbitrary passive objects) is from the hotter to a colder body. The heat transferred is also symmetric, exactly reversed if the two temperatures are exchanged. Introducing partial wave-expansions, we transform the results for radiation, transfer and forces into traces of matrices that can be evaluated in any basis, analogous to the equilibrium Casimir force. The method is illustrated by (re)deriving the heat radiation of a plate, a sphere and a cylinder. We analyze the radiation of a sphere for different materials, emphasizing that a simplification often employed for metallic nano-spheres is typically invalid. We derive asymptotic formulae for heat transfer and non-equilibrium interactions for the cases of a sphere in front a plate and for two spheres, extending previous results. As an example, we show that a hot nano-sphere can levitate above a plate with the repulsive non-equilibrium force overcoming gravity -- an effect that is not due to radiation pressure.

Matthias Krüger; Giuseppe Bimonte; Thorsten Emig; Mehran Kardar

2012-07-02T23:59:59.000Z

137

Investigation of Thin Cirrus Cloud Optical and Microphysical Properties on the Basis of Satellite Observations and Fast Radiative Transfer Models  

E-Print Network (OSTI)

This dissertation focuses on the global investigation of optically thin cirrus cloud optical thickness (tau) and microphysical properties, such as, effective particle size (D_(eff)) and ice crystal habits (shapes), based on the global satellite observations and fast radiative transfer models (RTMs). In the first part, we develop two computationally efficient RTMs simulating satellite observations under cloudy-sky conditions in the visible/shortwave infrared (VIS/SWIR) and thermal inferred (IR) spectral regions, respectively. To mitigate the computational burden associated with absorption, thermal emission and multiple scattering, we generate pre-computed lookup tables (LUTs) using two rigorous models, i.e., the line-by-line radiative transfer model (LBLRTM) and the discrete ordinates radiative transfer model (DISORT). The second part introduces two methods (i.e., VIS/SWIR- and IR-based methods) to retrieve tau and D_(eff) from satellite observations in corresponding spectral regions of the two RTMs. We discuss the advantages and weakness of the two methods by estimating the impacts from different error sources on the retrievals through sensitivity studies. Finally, we develop a new method to infer the scattering phase functions of optically thin cirrus clouds in a water vapor absorption channel (1.38-µm). We estimate the ice crystal habits and surface structures by comparing the inferred scattering phase functions and numerically simulated phase functions calculated using idealized habits.

Wang, Chenxi

2013-08-01T23:59:59.000Z

138

Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land–Atmosphere Schemes for Environmental Modeling  

Science Conference Proceedings (OSTI)

A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The ...

D. T. Mihailovic; K. Alapaty; B. Lalic; I. Arsenic; B. Rajkovic; S. Malinovic

2004-10-01T23:59:59.000Z

139

3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D  

E-Print Network (OSTI)

We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {\\lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that t...

Lobel, A; Blomme, R

2010-01-01T23:59:59.000Z

140

Multimode Radiative Transfer in Finite Optical Media. II: Solutions  

Science Conference Proceedings (OSTI)

This paper extends the theoretical developments of Part I to illustrate the power of the method in solving multiple scattering problems with sources that result from i) the single scatter of a collimated beam of solar radiation that is directly ...

Graeme L. Stephens; Rudolph W. Preisendorfer

1984-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Original article: Comparison of numerical models in radiative heat transfer with application to circuit-breaker simulations  

Science Conference Proceedings (OSTI)

Two different modeling approaches for the numerical computation of the radiation energy exchange in the context of the simulation of high-voltage circuit breakers are investigated. These are the basic Radiative Transfer Equation method and the P1 model ... Keywords: CFD modeling, Circuit breakers, Finite volume discretization, P1 model, Radiative heat transfer

Matthieu Melot; Jean-Yves TréPanier; Ricardo Camarero; Eddy Petro

2012-08-01T23:59:59.000Z

142

A Systematic Study of Longwave Radiative Heating and Cooling within Valleys and Basins Using a Three-Dimensional Radiative Transfer Model  

Science Conference Proceedings (OSTI)

The Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres (MYSTIC) three-dimensional radiative transfer model was used in a parametric study to determine the strength of longwave radiative heating and cooling in ...

Sebastian W. Hoch; C. David Whiteman; Bernhard Mayer

2011-12-01T23:59:59.000Z

143

Effect of Cloud Types on the Earth Radiation Budget Calculated with the ISCCP Cl Dataset: Methodology and Initial Results  

Science Conference Proceedings (OSTI)

A method is introduced to derive cloud effects on the earth radiation budget. The ISCCP Cl cloud data for daylight cases are used in combination with a radiative transfer model to estimate the outgoing broadband radiative fluxes at the top of the ...

C. Poetzsch-Heffter; Q. Liu; E. Ruperecht; C. Simmer

1995-04-01T23:59:59.000Z

144

Precision calculation of blackbody radiation shifts for metrology at the 18th decimal place  

E-Print Network (OSTI)

We present a theoretical method to accurately treat correlation corrections in atoms with a few valence electrons, and apply it to calculate polarizabilities and the blackbody radiation (BBR) shifts of atomic frequency standards. The method combines the relativistic many-body all-order approach that is currently used in precision calculations for monovalent atoms, with the configuration-interaction approach that is applicable to many-electron systems. Our calculated polarizabilities are used to evaluate the blackbody radiation (BBR) shifts at 300K in the ns^2 - nsnp ^3P_0 clock transitions in Al+, B+, and In+. We estimate that our calculation reduces the relative uncertainty due to BBR shift at 300K in Al+ to 4x10^{-19}.

Safronova, M S; Clark, Charles W

2011-01-01T23:59:59.000Z

145

Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report  

Open Energy Info (EERE)

Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report Dataset Summary Description (Abstract): This partial report describes the results obtained by two of the core radiative transfer models adopted in the SWERA Project for global horizontal solar irradiation during the cross-validation step. They are BRASIL-SR and SUNY-ALBANY models (Martins, 2001; Stuhlmann et al. 1990; Perez et al., 2002). The results from other two other core models, NREL and DLR, are not yet available. The HELIOSAT was included as a reference model at this stage. The HELIOSAT model is widely employed for solar energy assessment in Europe and is well know by the solar energy community worldwide (Beyer et al., 1996; Cano et al., 1986). (Purpose): SWERA solar cross-validation study

146

Validation of the Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models  

NLE Websites -- All DOE Office Websites (Extended Search)

Poisson Stochastic Radiative Transfer Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models T. B. Zhuravleva Institute of Atmospheric Optics Tomsk, Russia A. Marshak National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Background Starting from a very simple stochastic cloud model by Mullamaa et al. (1972), several different stochastic models have been developed to describe radiative transfer regime in single-layer broken clouds (Kargin 1984; Titov 1990; Malvagi and Pomraning 1992; Barker et al. 1992; Malvagi et al. 1993; Kargin and Prigarin 1994; Prigarin and Titov 1996; Marshak et al. 1998; Prigarin et al. 1998, 2001; Evans et al. 1999, 2001). Recently Kassianov (2003a) generalized the Titov's (1990) stochastic model

147

Parameterization of Atmospheric Radiative Transfer. Part II: Selection Rules  

Science Conference Proceedings (OSTI)

This paper describes simple, computationally efficient methods of calculating 2-stream broadband fluxes and heating rates in the shortwave and longwave for multilayered media. The method, herein referred to as selection rules, is used in ...

Philip M. Gabriel; Philip T. Partain; Graeme L. Stephens

2001-11-01T23:59:59.000Z

148

Effect of Spatial Organization on Solar Radiative Transfer in Three-Dimensional Idealized Stratocumulus Cloud Fields  

Science Conference Proceedings (OSTI)

To relate the error associated with 1D radiative calculations to the geometrical scales of cloud organization and/or in-cloud optical inhomogeneities, a new idealized methodology, based on a Fourier statistical technique, has been developed. ...

F. Di Giuseppe; A. M. Tompkins

2003-08-01T23:59:59.000Z

149

Parallel Jacobian-free Newton Krylov solution of the discrete ordinates method with flux limiters for 3D radiative transfer  

Science Conference Proceedings (OSTI)

The present study introduces a parallel Jacobian-free Newton Krylov (JFNK) general minimal residual (GMRES) solution for the discretized radiative transfer equation (RTE) in 3D, absorbing, emitting and scattering media. For the angular and spatial discretization ... Keywords: Collimated radiation, Discrete ordinates method (DOM) SN, Electromagnetic radiation, Flux limiters, General Minimal Residual (GMRES), Gram-Schmidt, Householder, Jacobian free Newton-Krylov (JFNK), Parallel MPI, Radiative transfer equation (RTE), TVD, Threads

William F. Godoy; Xu Liu

2012-06-01T23:59:59.000Z

150

A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations  

Science Conference Proceedings (OSTI)

Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting ... Keywords: Hybrid transport-diffusion, Monte Carlo, Radiative transfer

Jeffery D. Densmore; Todd J. Urbatsch; Thomas M. Evans; Michael W. Buksas

2007-03-01T23:59:59.000Z

151

Radiative Transfer to Space through a Precipitating Cloud at Multiple Microwave Frequencies. Part I: Model Description  

Science Conference Proceedings (OSTI)

In a two-part study we investigate the impact of time-dependent cloud microphysical structure on the transfer to space of passive microwave radiation at several frequencies across the EHF and lower SHF portions of the microwave spectrum in order ...

Alberto Mugnai; Eric A. Smith

1988-09-01T23:59:59.000Z

152

Net Exchange Reformulation of Radiative Transfer in the CO2 15-?m Band on Mars  

Science Conference Proceedings (OSTI)

The net exchange formulation (NEF) is an alternative to the usual radiative transfer formulation. It was proposed by two authors in 1967, but until now, this formulation has been used only in a very few cases for atmospheric studies. The aim of ...

Jean-Louis Dufresne; Richard Fournier; Christophe Hourdin; Frédéric Hourdin

2005-09-01T23:59:59.000Z

153

A Computation of the Stratospheric Diabatic Circulation Using an Accurate Radiative Transfer Model  

Science Conference Proceedings (OSTI)

The global diabatic circulation is computed for the months of January, April, July and October over the altitude region 100 to 0.1 mb using an accurate troposphere-stratosphere radiative transfer model, SBUV and SME ozone data, and NMC ...

Joan E. Rosenfield; Mark R. Schoeberl; Marvin A. Geller

1987-03-01T23:59:59.000Z

154

Analytic Green’s Function for Radiative Transfer in Plane-Parallel Atmospheres  

Science Conference Proceedings (OSTI)

Green’s function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green’s function has been found to be useful in land, ocean, and atmosphere remote sensing. It is also a key element in higher ...

Yi Qin; Michael A. Box

2005-08-01T23:59:59.000Z

155

Physically Based Satellite Retrieval of Precipitation Using a 3D Passive Microwave Radiative Transfer Model  

Science Conference Proceedings (OSTI)

A precipitation retrieval algorithm based on the application of a 3D radiative transfer model to a hybrid physical-stochastic 3D cloud model is described. The cloud model uses a statistical rainfall clustering scheme to generate 3D cloud ...

J. L. Haferman; E. N. Anagnostou; D. Tsintikidis; W. F. Krajewski; T. F. Smith

1996-08-01T23:59:59.000Z

156

Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method  

Science Conference Proceedings (OSTI)

High-order accurate explicit and implicit conservative predictor-corrector schemes are presented for the radiative transfer and energy equations in the multigroup kinetic approximation solved together by applying the splitting method with respect to ... Keywords: difference splitting schemes, radiative transfer equations

N. Ya. Moiseev

2013-03-01T23:59:59.000Z

157

Calculation of radiation therapy dose using all particle Monte Carlo transport  

DOE Patents (OSTI)

The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

Chandler, William P. (Tracy, CA); Hartmann-Siantar, Christine L. (San Ramon, CA); Rathkopf, James A. (Livermore, CA)

1999-01-01T23:59:59.000Z

158

Intercomparison of Radiation Transfer Models Representing Direct Shortwave Forcing by Sulfate Aerosols  

E-Print Network (OSTI)

A study has been conducted, involving 15 models by 12 groups, to compare modeled forcing (change in shortwave radiation budget) due to sulfate aerosol for a wide range of values of particle radius, optical depth, surface albedo, and solar zenith angle (SZA). The models included high- and low-spectral resolution models, incorporating a variety of radiative transfer approximations, as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the radiative transfer models were examined and the differences characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence), except at high surface albedo combined with low SZA. The relative standard deviation of the zenith-angle-average normalized broadband forcing for 15 models was 8% for particle radius near the maximum in magnitude of this forcing (ca....

Sulfate Aerosols; Stephen E Schwartz

1998-01-01T23:59:59.000Z

159

A Reduced Radiation Grid for the ECMWF Integrated Forecasting System  

Science Conference Proceedings (OSTI)

A specific interface between the radiation transfer calculations and the rest of the ECMWF model was introduced in 2003, potentially providing substantial economy in computer time by reducing the spatial resolution at which radiation transfer is ...

Jean-Jacques Morcrette; George Mozdzynski; Martin Leutbecher

2008-12-01T23:59:59.000Z

160

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network (OSTI)

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Biehs, Svend-Age

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network (OSTI)

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Svend-Age Biehs

2011-03-15T23:59:59.000Z

162

Calculation of synchrotron radiation from high intensity electron beam at eRHIC  

Science Conference Proceedings (OSTI)

The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

Jing Y.; Chubar, O.; Litvinenko, V.

2012-05-20T23:59:59.000Z

163

Non-contact pumping of light emitters via non-radiative energy transfer  

DOE Patents (OSTI)

A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

Klimov, Victor I. (Los Alamos, NM); Achermann, Marc (Los Alamos, NM)

2010-01-05T23:59:59.000Z

164

Thermal correction to the Casimir force, radiative heat transfer, and an experiment  

E-Print Network (OSTI)

The low-temperature asymptotic expressions for the Casimir interaction between two real metals described by Leontovich surface impedance are obtained in the framework of thermal quantum field theory. It is shown that the Casimir entropy computed using the impedance of infrared optics vanishes in the limit of zero temperature. By contrast, the Casimir entropy computed using the impedance of the Drude model attains at zero temperature a positive value which depends on the parameters of a system, i.e., the Nernst heat theorem is violated. Thus, the impedance of infrared optics withstands the thermodynamic test, whereas the impedance of the Drude model does not. We also perform a phenomenological analysis of the thermal Casimir force and of the radiative heat transfer through a vacuum gap between real metal plates. The characterization of a metal by means of the Leontovich impedance of the Drude model is shown to be inconsistent with experiment at separations of a few hundred nanometers. A modification of the impedance of infrared optics is suggested taking into account relaxation processes. The power of radiative heat transfer predicted from this impedance is several times less than previous predictions due to different contributions from the transverse electric evanescent waves. The physical meaning of low frequencies in the Lifshitz formula is discussed. It is concluded that new measurements of radiative heat transfer are required to find out the adequate description of a metal in the theory of electromagnetic fluctuations.

V. B. Bezerra; G. Bimonte; G. L. Klimchitskaya; V. M. Mostepanenko; C. Romero

2007-08-18T23:59:59.000Z

165

Radiation shielding calculations for MuCool test area at Fermilab  

DOE Green Energy (OSTI)

The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets being developed for cooling intense muon beams. In this shielding study the results of Monte Carlo radiation shielding calculations performed using the MARS14 code for the MuCool Test Area and including the downstream portion of the target hall and berm around it, access pit, service building, and parking lot are presented and discussed within the context of the proposed MTA experimental configuration.

Igor Rakhno; Carol Johnstone

2004-05-26T23:59:59.000Z

166

Calculation of shielding door thicknesses for radiation therapy facilities using the ITS Monte Carlo program  

SciTech Connect

Shielding calculations for door thicknesses for megavoltage radiotherapy facilities with mazes are generally straightforward. To simplify the calculations, the standard formalism adopts several approximations relating to the average beam path, scattering coefficients, and the mean energy of the spectrum of scattered radiation. To test the accuracy of these calculations, the Monte Carlo program, ITS, was applied to this problem by determining the dose and energy spectrum of the radiation at the door for 4- and 10-MV bremsstrahlung beams incident on a phantom at isocenter. This was performed for mazes, one termed 'standard' and the other a shorter maze where the primary beam is incident on the wall adjacent to the door. The peak of the photon-energy spectrum at the door was found to be the same for both types of maze, independent of primary beam energy, and also, in the case of the conventional maze, of the primary beam orientation. The spectrum was harder for the short maze and for 10 MV vs. 4 MV. The thickness of the lead door for a short maze configuration was 1.5 cm for 10 MV and 1.2 cm for 4 MV vs. approximately less than 1 mm for a conventional maze. For the conventional maze, the Monte Carlo calculation predicts the dose at the door to be lower than given by NCRP 49 and NCRP 51 by about a factor of 2 at 4 MV but to be the same at 10 MV. For the short maze, the Monte Carlo predicts the dose to be a factor of 3 lower for 4 MV and about a factor of 1.5 lower for 10 MV. Experimental results support the Monte Carlo findings for the short maze.

Biggs, P.J. (Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston (United States))

1991-10-01T23:59:59.000Z

167

Computational study of atmospheric transfer radiation on an equatorial tropical desert (La Tatacoa, Colombia)  

E-Print Network (OSTI)

Radiative transfer models explain and predict interaction between solar radiation and the different elements present in the atmosphere, which are responsible for energy attenuation. In Colombia there have been neither measurements nor studies of atmospheric components such as gases and aerosols that can cause turbidity and pollution. Therefore satellite images cannot be corrected radiometrically in a proper way. When a suitable atmospheric correction is carried out, loss of information is avoided, which may be useful for discriminating image land cover. In this work a computational model was used to find radiative atmospheric attenuation (300 1000nm wavelength region) on an equatorial tropical desert (La Tatacoa, Colombia) in order to conduct an adequate atmospheric correction.

Delgado-Correal, Camilo; Castańo, Gabriel

2012-01-01T23:59:59.000Z

168

System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid  

DOE Patents (OSTI)

A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

Bergstrom, Paul M. (Livermore, CA); Daly, Thomas P. (Livermore, CA); Moses, Edward I. (Livermore, CA); Patterson, Jr., Ralph W. (Livermore, CA); Schach von Wittenau, Alexis E. (Livermore, CA); Garrett, Dewey N. (Livermore, CA); House, Ronald K. (Tracy, CA); Hartmann-Siantar, Christine L. (Livermore, CA); Cox, Lawrence J. (Los Alamos, NM); Fujino, Donald H. (San Leandro, CA)

2000-01-01T23:59:59.000Z

169

Two-Stream Approximations to Radiative Transfer in Planetary Atmospheres: A Unified Description of Existing Methods and a New Improvement  

Science Conference Proceedings (OSTI)

Existing two-stream approximations to radiative transfer theory for particulate media are shown to be represented by identical forms of coupled differential equations if the intensity is replaced by integrals of the intensity over hemispheres. ...

W. E. Meador; W. R. Weaver

1980-03-01T23:59:59.000Z

170

An Assessment of the Parameterization of Subgrid-Scale Cloud Effects on Radiative Transfer. Part II: Horizontal Inhomogeneity  

Science Conference Proceedings (OSTI)

The role of horizontal inhomogeneity in radiative transfer through cloud fields is investigated within the context of the two-stream approximation. Spatial correlations between cloud optical properties and the radiance field are introduced in the ...

Norman B. Wood; Philip M. Gabriel; Graeme L. Stephens

2005-08-01T23:59:59.000Z

171

Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations  

Science Conference Proceedings (OSTI)

A zero-order (tau-omega) microwave radiative transfer model (RTM) is coupled to the Goddard Earth Observing System, version 5 (GEOS-5) catchment land surface model in preparation for the future assimilation of global brightness temperatures (Tb) ...

Gabriëlle J. M. De Lannoy; Rolf H. Reichle; Valentijn R. N. Pauwels

2013-06-01T23:59:59.000Z

172

Retrieval of Sea Surface Temperature from Space, Based on Modeling of Infrared Radiative Transfer: Capabilities and Limitations  

Science Conference Proceedings (OSTI)

The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (...

Christopher J. Merchant; Pierre Le Borgne

2004-11-01T23:59:59.000Z

173

The Gastropod Fast Radiative Transfer Model for Advanced Infrared Sounders and Characterization of Its Errors for Radiance Assimilation  

Science Conference Proceedings (OSTI)

Principal aspects of the development of Gastropod, a fixed-pressure-grid fast radiative transfer model for the Atmospheric Infrared Sounder (AIRS), are described. Performance of the forward and gradient operators is characterized, and the impact ...

V. Sherlock; A. Collard; S. Hannon; R. Saunders

2003-12-01T23:59:59.000Z

174

Microweve Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part II. Remote Sensing of Ice Clouds  

Science Conference Proceedings (OSTI)

This paper presents the results of polarized microwave radiative transfer modeling of cirrus clouds containing five different particle shoes and 18 Gamma size distributions. Upwelling brightness temperatures for tropical and midlatitude winter ...

K. Franklin Evans; Graeme L. Stephens

1995-06-01T23:59:59.000Z

175

The Full-Spectrum Correlated-k Method for Longwave Atmospheric Radiative Transfer Using an Effective Planck Function  

Science Conference Proceedings (OSTI)

The correlated-k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models; it involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. ...

Robin J. Hogan

2010-06-01T23:59:59.000Z

176

Monte Carlo simulation of radiation heat transfer in arrays of fixed discrete surfaces using cell-to-cell photon transport  

DOE Green Energy (OSTI)

Radiation heat transfer in an array of fixed discrete surfaces is an important problem that is particularly difficult to analyze because of the nonhomogeneous and anisotropic optical properties involved. This article presents an efficient Monte Carlo method for evaluating radiation heat transfer in arrays of fixed discrete surfaces. This Monte Carlo model has been optimized to take advantage of the regular arrangement of surfaces often encountered in these arrays. Monte Carlo model predictions have been compared with analytical and experimental results.

Drost, M.K. (Pacific Northwest Lab., Richland, WA (United States)); Welty, J.R. (Oregon State Univ., Corvallis, OR (United States))

1992-08-01T23:59:59.000Z

177

Advances in radiation modeling in ALEGRA :a final report for LDRD-67120, efficient implicit mulitgroup radiation calculations.  

SciTech Connect

The original LDRD proposal was to use a nonlinear diffusion solver to compute estimates for the material temperature that could then be used in a Implicit Monte Carlo (IMC) calculation. At the end of the first year of the project, it was determined that this was not going to be effective, partially due to the concept, and partially due to the fact that the radiation diffusion package was not as efficient as it could be. The second, and final year, of the project focused on improving the robustness and computational efficiency of the radiation diffusion package in ALEGRA. To this end, several new multigroup diffusion methods have been developed and implemented in ALEGRA. While these methods have been implemented, their effectiveness of reducing overall simulation run time has not been fully tested. Additionally a comprehensive suite of verification problems has been developed for the diffusion package to ensure that it has been implemented correctly. This process took considerable time, but exposed significant bugs in both the previous and new diffusion packages, the linear solve packages, and even the NEVADA Framework's parser. In order to manage this large suite of problem, a new tool called Tampa has been developed. It is a general tool for automating the process of running and analyzing many simulations. Ryan McClarren, at the University of Michigan has been developing a Spherical Harmonics capability for unstructured meshes. While still in the early phases of development, this promises to bridge the gap in accuracy between a full transport solution using IMC and the diffusion approximation.

Mehlhorn, Thomas Alan; Kurecka, Christopher J. (University of Michigan, Ann Arbor, MI); McClarren, Ryan (University of Michigan, Ann Arbor, MI); Brunner, Thomas A.; Holloway, James Paul (University of Michigan, Ann Arbor, MI)

2005-11-01T23:59:59.000Z

178

Available Transfer Capability Calculation for AC/DC Systems with VSC-HVDC  

Science Conference Proceedings (OSTI)

In this paper, the voltage source converter is equivalently represented by voltage source model, thus the model of voltage source converter--high voltage direct current (VSC-HVDC) system suitable for optimal power flow is established. Each control mode ... Keywords: available transfer capability, voltage source converter, AC/DC systems, sequential quadratic programming method

Guoqing Li; Jian Zhang

2010-06-01T23:59:59.000Z

179

Calculation of Radiative Corrections to Hyperfine Splitting in p3/2 States  

DOE Green Energy (OSTI)

A recent calculation of the one-loop radiative correction to hyperfine splitting (hfs) of p{sub 1/2} states that includes binding corrections to all orders is extended to p{sub 3/2} states. Nuclear structure plays an essentially negligible role for such states, which is highly advantageous, as difficulties in controlling the Bohr-Weisskopf effect complicate the isolation of QED contributions for both s{sub 1/2} and p{sub 1/2} states. Three cases are studied. We first treat the hydrogen isoelectronic sequence, which is completely nonperturbative in Z{alpha} for high Z. Secondly the lowest lying p{sub 3/2} states of the neutral alkalis are treated, and finally lithium-like bismuth, where extensive theoretical and experimental studies of the hfs of 2s and 2p{sub 1/2} states have been made, is addressed.

Sapirstein, J; Cheng, K T

2008-07-15T23:59:59.000Z

180

Radiative lifetime of the $a\\ ^3\\Sigma^+$ state of HeH$^+$ from ab initio calculations  

E-Print Network (OSTI)

The first metastable triplet state of HeH$^+$ was found to be present in ion beam experiments, with its lifetime estimated to be between hundreds of milliseconds and thousand of seconds. In this work, we use {\\it ab initio} methods to evaluate the radiative lifetimes of the six vibrational levels of the $a\\ ^3\\Sigma^+$ of HeH$^+$. The transition $a\\ ^3\\Sigma^+ \\rightarrow X \\ ^1\\Sigma^+$ is spin-forbidden, but acquires intensity through spin-orbit interaction with the singlet and triplet $\\Pi$ states. Large scale CASSCF/MRCI calculations using an adapted basis set were performed to determine the potential energy curves of the relevant states of HeH$^+$ as well as the matrix elements of the dipole and spin-orbit operators. The wave functions and energies of the vibrational levels of the $a\\ ^3\\Sigma^+$ and $X \\ ^1\\Sigma^+$ states are obtained using a B-spline method and compared to previous works. We find that radiative lifetime of the vibrational levels increases strongly with $v$, the lifetime of the $v=0$ s...

Loreau, J; Vaeck, N

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Radiative heat transfer between two dielectric nanogratings in the scattering approach  

E-Print Network (OSTI)

We present a theoretical study of radiative heat transfer between dielectric nanogratings in the scattering approach. As a comparision with these exact results, we also evaluate the domain of validity of Derjaguin's Proximity Approximation (PA). We consider a system of two corrugated silica plates with various grating geometries, separation distances, and lateral displacement of the plates with respect to one another. Numerical computations show that while the PA is a good approximation for aligned gratings, it cannot be used when the gratings are laterally displaced. We illustrate this by a thermal modulator device for nanosystems based on such a displacement.

J. Lussange; R. Guérout; F. S. S. Rosa; J. -J. Greffet; A. Lambrecht; S. Reynaud

2012-06-01T23:59:59.000Z

182

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

183

Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations  

NLE Websites -- All DOE Office Websites (Extended Search)

Computation of Domain-Averaged Irradiance Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud fields in a realistic way and how to use them in a relatively simple one-dimensional (1D) radiative transfer model to compute the domain averaged irradiance. To address this issue, a simple shortwave radiative transfer model that can treat the vertical cloud optical property correlation is developed. The model is based on the gamma-weighted

184

Surface Radiation in the Tropical Pacific  

Science Conference Proceedings (OSTI)

Monthly surface radiative fluxes in the tropical Pacific between January 1970 and February 1978 have been calculated using a radiative transfer package which includes detailed treatments of the molecular and droplet absorptions and of the surface ...

Ming-Dah Chou

1985-01-01T23:59:59.000Z

185

OiNC: A Comprehensive CAD Import and Tracking System for Monte Carlo Radiation Transport Calculations  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection

Keith Searson; Fabrice Fleurot; Andrew Cooper; Pat Cowan

186

Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer  

SciTech Connect

Purpose: The novel deterministic radiation transport algorithm, Acuros XB (AXB), has shown great potential for accurate heterogeneous dose calculation. However, the clinical impact between AXB and other currently used algorithms still needs to be elucidated for translation between these algorithms. The purpose of this study was to investigate the impact of AXB for heterogeneous dose calculation in lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). Methods: The thorax phantom from the Radiological Physics Center (RPC) was used for this study. IMRT and VMAT plans were created for the phantom in the Eclipse 11.0 treatment planning system. Each plan was delivered to the phantom three times using a Varian Clinac iX linear accelerator to ensure reproducibility. Thermoluminescent dosimeters (TLDs) and Gafchromic EBT2 film were placed inside the phantom to measure delivered doses. The measurements were compared with dose calculations from AXB 11.0.21 and the anisotropic analytical algorithm (AAA) 11.0.21. Two dose reporting modes of AXB, dose-to-medium in medium (D{sub m,m}) and dose-to-water in medium (D{sub w,m}), were studied. Point doses, dose profiles, and gamma analysis were used to quantify the agreement between measurements and calculations from both AXB and AAA. The computation times for AAA and AXB were also evaluated. Results: For the RPC lung phantom, AAA and AXB dose predictions were found in good agreement to TLD and film measurements for both IMRT and VMAT plans. TLD dose predictions were within 0.4%-4.4% to AXB doses (both D{sub m,m} and D{sub w,m}); and within 2.5%-6.4% to AAA doses, respectively. For the film comparisons, the gamma indexes ({+-}3%/3 mm criteria) were 94%, 97%, and 98% for AAA, AXB{sub Dm,m}, and AXB{sub Dw,m}, respectively. The differences between AXB and AAA in dose-volume histogram mean doses were within 2% in the planning target volume, lung, heart, and within 5% in the spinal cord. However, differences up to 8% between AXB and AAA were found at lung/soft tissue interface regions for individual IMRT fields. AAA was found to be 5-6 times faster than AXB for IMRT, while AXB was 4-5 times faster than AAA for VMAT plan. Conclusions: AXB is satisfactorily accurate for the dose calculation in lung cancer for both IMRT and VMAT plans. The differences between AXB and AAA are generally small except in heterogeneous interface regions. AXB D{sub w,m} and D{sub m,m} calculations are similar inside the soft tissue and lung regions. AXB can benefit lung VMAT plans by both improving accuracy and reducing computation time.

Han Tao; Followill, David; Repchak, Roman; Molineu, Andrea; Howell, Rebecca; Salehpour, Mohammad [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Mikell, Justin [Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Mourtada, Firas [Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, Christiana Care Health System, Newark, Delaware 19713 (United States)

2013-05-15T23:59:59.000Z

187

A quantum calculation of multipole relaxation and transfer cross sections in collisions of Na with Xe  

Science Conference Proceedings (OSTI)

Well?established quantum mechanical methods were used to calculate multipole cross sections in sodium–xenon collisions. The cross sections were opacity analyzed to determine the relative importance of various angular momenta; the relaxation of the alignment was found to be the multipole most dependent upon low angular momenta (e.g.

Paul L. DeVries

1984-01-01T23:59:59.000Z

188

Implementation of a simplified approach to radiative transfer in general relativity  

E-Print Network (OSTI)

We describe in detail the implementation of a simplified approach to radiative transfer in general relativity by means of the well-known neutrino leakage scheme (NLS). In particular, we carry out an extensive investigation of the properties and limitations of the NLS for isolated relativistic stars to a level of detail that has not been discussed before in a general-relativistic context. Although the numerous tests considered here are rather idealized, they provide a well-controlled environment in which to understand the relationship between the matter dynamics and the neutrino emission, which is important in order to model the neutrino signals from more complicated scenarios, such as binary neutron-star mergers. When considering nonrotating hot neutron stars we confirm earlier results of one-dimensional simulations, but also present novel results about the equilibrium properties and on how the cooling affects the stability of these configurations. In our idealized but controlled setup, we can then show that deviations from the thermal and weak-interaction equilibrium affect the stability of these models to radial perturbations, leading models that are stable in the absence of radiative losses, to a gravitational collapse to a black hole when neutrinos are instead radiated.

Filippo Galeazzi; Wolfgang Kastaun; Luciano Rezzolla; José A. Font

2013-06-20T23:59:59.000Z

189

Radiative transfer in plane-parallel media and Cauchy integral equations II. The H-function  

E-Print Network (OSTI)

In the central part of this paper, we revisit the classical study of the H-function defined as the unique solution, regular in the right complex half-plane, of a Cauchy integral equation. We take advantage of our work on the N-function published in the first article of this series. The H-function is then used to solve a class of Cauchy integral equations occurring in transfer problems posed in plane-parallel media. We obtain a concise expression of the unique solution analytic in the right complex half-plane, then modified with the help of the residue theorem for numerical calculations.

B. Rutily; J. Bergeat; L. Chevallier

2006-01-16T23:59:59.000Z

190

Calculation of Radiative Corrections to Hyperfine Splitting in p1/2 States  

DOE Green Energy (OSTI)

Techniques to calculate one-loop radiative corrections to hyperfine splitting including binding corrections to all orders have been developed in the last decade for s states of atoms and ions. In this paper these methods are extended to p{sub 1/2} states for three cases. In the first case, the point-Coulomb 2p{sub 1/2} hyperfine splitting is treated for the hydrogen isoelectronic sequence, and the lowest order result, {alpha}/4{pi} E{sub F}, is shown to have large binding corrections at high Z. In the second case, neutral alkalis are considered. In the third case, hyperfine splitting of the 2p{sub 1/2} state of lithium-like bismuth is treated. In the latter two cases, correlation corrections are included and, in addition, the point is stressed that uncertainties associated with nuclear structure, which complicate comparison with experiment for s states, are considerably reduced because of the smaller overlap with the nucleus.

Sapirstein, J; Cheng, K T

2006-09-20T23:59:59.000Z

191

Integrated beta and gamma radiation dose calculations for the ferrocyanide waste tanks  

SciTech Connect

This report contains the total integrated beta and gamma radiation doses in all the ferrocyanide waste tanks. It also contains estimated gamma radiation dose rates for all single-shell waste tanks containing a liquid observation well.

Parra, S.A.

1994-11-30T23:59:59.000Z

192

Analytic calculations of the spectra of ultra high energy cosmic ray nuclei. II. The general case of background radiation  

E-Print Network (OSTI)

We discuss the problem of ultra high energy nuclei propagation in extragalactic background radiations. The present paper is the continuation of the accompanying paper I where we have presented three new analytic methods to calculate the fluxes and spectra of Ultra High Energy Cosmic Ray (UHECR) nuclei, both primary and secondary, and secondary protons. The computation scheme in this paper is based on the analytic solution of coupled kinetic equations, which takes into account the continuous energy losses due to the expansion of the universe and pair-production, together with photo-disintegration of the nuclei. This method includes in the most natural way the production of secondary nuclei in the process of photo-disintegration of the primary nuclei during their propagation through extragalactic background radiations. In paper I, in order to present the suggested analytical schemes of calculations, we have considered only the case of the Cosmic Microwave Background (CMB) radiation, in the present paper we gene...

Aloisio, R; Grigorieva, S

2013-01-01T23:59:59.000Z

193

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing Based Approach  

SciTech Connect

For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent- and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required {approx}100 hours until termination, whereas a parallel approach required only {approx}2.5 hours (42 compute nodes) - a 40x speed-up. Tools developed for this parallel execution are discussed.

Fillippi, Anthony [Texas A& M University; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

194

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing-Based Approach  

SciTech Connect

Abstract For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent-and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required ~100 hours until termination, whereas a parallel approach required only ~2.5 hours (42 compute nodes) a 40x speed-up. Tools developed for this parallel execution are discussed.

Filippi, Anthony M [ORNL; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

195

Polarized radiance fields under a dynamic ocean surface: a three-dimensional radiative transfer solution  

Science Conference Proceedings (OSTI)

The hybrid matrix operator, Monte Carlo (HMOMC) method previously reported [Appl. Opt.47, 1063-1071 (2008)APOPAI0003-693510.1364/AO.47.001063] is improved by neglecting higher-order terms in the coupling of the matrix operators and by introducing a dual grid scheme. The computational efficiency for solving the vector radiative transfer equation in a full 3D coupled atmosphere-surface-ocean system is substantially improved, and, thus, large-scale simulations of the radiance distribution become feasible. The improved method is applied to the computation of the polarized radiance field under realistic surface waves simulated by the power spectral density method. To the authors' best knowledge, this is the first time that the polarized radiance field under a dynamic ocean surface and the underwater image of an object above such an ocean surface have been reported.

You Yu; Zhai Pengwang; Kattawar, George W.; Yang Ping

2009-06-01T23:59:59.000Z

196

Three-dimensional dust radiative-transfer models: The Pinwheel Nebula of WR104  

E-Print Network (OSTI)

We present radiative-transfer modelling of the dusty spiral Pinwheel Nebula observed around the Wolf-Rayet/OB-star binary WR104. The models are based on the three-dimensional radiative-transfer code TORUS, modified to include an adaptive mesh that allows us to adequately resolve both the inner spiral turns (sub-AU scales) and the outer regions of the nebula (distances of 10^4 AU from the central source). The spiral model provides a good fit to both the spectral energy distribution and Keck aperture masking interferometry, reproducing both the maximum entropy recovered images and the visibility curves. We deduce a dust creation rate of 8+-1 x 10^{-7} solar masses per year, corresponding to approximately 2% by mass of the carbon produced by the Wolf-Rayet star. Simultaneous modelling of the imaging and spectral data enables us to constrain both the opening-angle of the wind-wind collision interface and the dust grain size. We conclude that the dust grains in the inner part of the Pinwheel nebula are small (~100A), in agreement with theoretical predictions, although we cannot rule out the presence of larger grains (~1 micron) further from the central binary. The opening angle of the wind-wind collision interface appears to be about 40 degrees, in broad agreement with the wind parameters estimated for the central binary. We discuss the success and deficiencies of the model, and the likely benefits of applying similar techniques to the more the more complex nebulae observed around other WR/O star binaries.

Tim J Harries; John D Monnier; Neil H Symington; Ryuichi Kurosawa

2004-01-27T23:59:59.000Z

197

Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF  

Science Conference Proceedings (OSTI)

A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. The hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.

Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

2012-10-30T23:59:59.000Z

198

Pioneering remote sensing in the USSR. 1. Radiation transfer in the optical wavelength region of the electromagnetic spectrum  

Science Conference Proceedings (OSTI)

In this paper a review is presented of the pioneering space research carried out under the leadership of Professor K. Ya. Kondratyev and with his direct participation. Some of his work concerned with radiation transfer in the atmosphere and with remote ...

T. A. Sushkevich

2008-05-01T23:59:59.000Z

199

Surface Albedo Estimates from Nimbus-7 ERB Data and a Two-Stream Approximation of the Radiative Transfer Equation  

Science Conference Proceedings (OSTI)

Solar zenith angle-dependent surface albedo is determined by equating top of the atmosphere (TOA) albedo evaluated from Nimbus-7 data with TOA albedo predicted by a two-layer, two-stream radiative transfer model of the atmosphere. Results are ...

Howard W. Barker; John A. Davies

1989-05-01T23:59:59.000Z

200

Near-field heat transfer at the spent fuel test-climax: a comparison of measurements and calculations  

Science Conference Proceedings (OSTI)

The Spent Fuel Test in the Climax granitic stock at the DOE Nevada Test Site is a test of the feasibility of storage and retrieval of spent nuclear reactor fuel in a deep geologic environment. Eleven spent fuel elements, together with six thermally identical electrical resistance heaters and 20 peripheral guard heaters, are emplaced 420 m below surface in a three-drift test array. This array was designed to simulate the near-field effects of thousands of canisters of nuclear waste and to evaluate the effects of heat alone, and heat plus ionizing radiation on the rock. Thermal calculations and measurements are conducted to determine thermal transport from the spent fuel and electrical resistance heaters. Calculations associated with the as-built Spent Fuel Test geometry and thermal source histories are presented and compared with thermocouple measurements made throughout the test array. Comparisons in space begin at the spent fuel canister and include the first few metres outside the test array. Comparisons in time begin at emplacement and progress through the first year of thermal loading in this multi-year test.

Patrick, W.C.; Montan, D.N.; Ballou, L.B.

1981-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solar Radiation Absorption due to Water Vapor: Advanced Broadband Parameterizations  

Science Conference Proceedings (OSTI)

Accurate parameterizations for calculating solar radiation absorption in the atmospheric column due to water vapor lines and continuum are proposed for use in broadband shortwave radiative transfer codes. The error in the absorption values is ...

Tatiana A. Tarasova; Boris A. Fomin

2000-11-01T23:59:59.000Z

202

Uncertainties in the Radiative Forcing Due to Sulfate Aerosols  

Science Conference Proceedings (OSTI)

Radiative transfer calculations based on a new sulfate distribution from a chemistry-transport model simulation have been performed. A wide range of sensitivity experiments have been performed to illustrate the large uncertainty in the radiative ...

Gunnar Myhre; Frode Stordal; Tore F. Berglen; Jostein K. Sundet; Ivar S. A. Isaksen

2004-03-01T23:59:59.000Z

203

Impact of Changes to the Radiation Transfer Parameterizations Plus Cloud Optical. Properties in the ECMWF Model  

Science Conference Proceedings (OSTI)

A new radiation package, shown to correct most of the systematic errors of the operational ECMWF radiation scheme, has been extensively tested in the ECMWF forecast model. Improvements in the clear-sky fluxes and radiative heating/cooling rate ...

Jean-Jacques Morcrette

1990-04-01T23:59:59.000Z

204

EGS4 calculations for a Cd-Zn-Te detector to measure synchrotron radiation at PEP-II  

SciTech Connect

Calculations have been performed with the EGS4 Code System for a CdZnTe semiconductor detector to be used in background studies of synchrotron radiation at PEP-II. The simulations take into account K-shell fluorescent-photon production in a CdZnTe mixture, electron-hole pair collection and electronic-noise broadening. The results are compared with measurements made with encapsulated {sup 241}Am, {sup 133}Ba and {sup 109}Cd sources.

Nelson, W.R. [Stanford Univ., CA (US). Stanford Linear Accelerator Center; Borak, T.; Malchow, R.; Toki, W. [Colorado State Univ., Fort Collins, CO (US); Kadyk, J. [Lawrence Berkeley National Lab., CA (US)

1997-08-20T23:59:59.000Z

205

EGS4 CALCULATIONS FOR A Cd-Zn-Te DETECTOR TO? y MEASURE SYNCHROTRON RADIATION AT PEP-II  

E-Print Network (OSTI)

Calculations have been performed with the EGS4 Code System for a CdZnTe semiconductor detector to be used in background studies of synchrotron radiation at PEP-II. The simulations take into account K-shell uorescent-photon production in a CdZnTe mixture, electron-hole pair collection and electronic-noise broadening. The results are compared with measurements made with encapsulated 241 Am, 133 Ba and 109 Cd sources.

W. R. Nelson; T. Borak; R. Malchow; W. Toki; J. Kadyk

1997-01-01T23:59:59.000Z

206

Absorption of Solar Radiation by Stratocumulus Clouds: Aircraft Measurements and Theoretical Calculations  

Science Conference Proceedings (OSTI)

Aircraft observations of shortwave radiative properties of stratocumulus clouds were carried out over the western North Pacific Ocean during January 1991. Two aircraft were equipped with a pair of pyranometers and near-infrared pyranometers. ...

Tadahiro Hayasaka; Nobuyuki Kikuchi; Masayuki Tanaka

1995-05-01T23:59:59.000Z

207

ALLDOS: a computer program for calculation of radiation doses from airborne and waterborne releases  

Science Conference Proceedings (OSTI)

The computer code ALLDOS is described and instructions for its use are presented. ALLDOS generates tables of radiation doses to the maximum individual and the population in the region of the release site. Acute or chronic release of radionuclides may be considered to airborne and waterborne pathways. The code relies heavily on data files of dose conversion factors and environmental transport factors for generating the radiation doses. A source inventory data library may also be used to generate the release terms for each pathway. Codes available for preparation of the dose conversion factors are described and a complete sample problem is provided describing preparation of data files and execution of ALLDOS.

Strenge, D.L.; Napier, B.A.; Peloquin, R.A.; Zimmerman, M.G.

1980-10-01T23:59:59.000Z

208

Technical assessment of the prevention of micro-fouling on OTEC heat-transfer surfaces through the use of ultraviolet radiation  

DOE Green Energy (OSTI)

To reduce or eliminate biofouling by microorganisms it has been suggested that the seawater entering the heat exchanger be sterilized (or at least sanitized) by uv radiation at 253.7 nm. The feasibility of applying this technology to OTEC is examined. Trivial calculations based on the Lambert-Beer equation and reasonable assumptions about seawater quality and the intensity of irradiation obtainable from a uv lamp suggest seawater may be transparent enough to a collimated beam of uv light to deliver effective germicidal doses to nearly 150 cm under some conditions. However, the practical limit on the depth of effective radiation from commercial lamps is severely restricted by many factors including the natural divergence of light, absorption and scattering in the media, intensity of radiation from the light source and so forth. Even under very favorable conditions a common design allowing uv light to penetrate 30 cm of water would have to permit the water at that distance to be in contact with the light for 20 seconds or so to deliver the germicidal effect of high quality sanitization but not necessarily sterilization. Macro-fouling, which may be more severe than micro-fouling, will not be affected by uv radiation (presuming an absence of symbiotic relationships). Parasitic power required for uv sources may be prohibitive under unfavorable conditions (i.e., unexpectedly high absorptivities of seawater, or excessive turbidity) or the absence of an industrial effort to scale up present uv equipment appropriate to OTEC needs. This latter event is unlikely for it appears that present uv lamps can be adapted to OTEC needs without major technological advancement. Power and cost estimates for uv installation and operation vary widely depending on the number of lamps needed for the OTEC configuration and the intensity of uv radiation actually required to prevent biofouling of heat transfer systems in OTEC designs.

Garrigan, G. A.; Schmitt, R. P.; Ciccone, V. J.

1981-09-01T23:59:59.000Z

209

Improved Simulation of Clear-Sky Shortwave Radiative Transfer in the CCC-GCM  

Science Conference Proceedings (OSTI)

The disposition of mean July clear-sky solar radiation in the Canadian Climate Centre second-generation general circulation model (CCC-GCMII) was analyzed by comparing top of the atmosphere (TOA) net fluxes with earth radiation budget experiment (...

Howard W. Barker; Zhanqing Li

1995-09-01T23:59:59.000Z

210

Using a Parameterization of a Radiative Transfer Model to Build High-Resolution Maps of Typical Clear-Sky UV Index in Catalonia, Spain  

Science Conference Proceedings (OSTI)

To perform a climatic analysis of the annual UV index (UVI) variations in Catalonia, Spain (northeast of the Iberian Peninsula), a new simple parameterization scheme is presented based on a multilayer radiative transfer model. The ...

Jordi Badosa; Josep-Abel González; Josep Calbó; Michiel van Weele; Richard L. McKenzie

2005-06-01T23:59:59.000Z

211

Measurements of cosmic radiation dose in subsonic commercial aircraft compared to the city-pair dose calculation  

SciTech Connect

The radiation dose received by passengers during flight on conventional jet aircraft was determined as a function of exposure to cosmic radiation, solar radiation, flight time, and flight path. The dosimetric measurements were made with thermoluminescent dosimeters (TLD's) and with emulsions of three types sealed in plastic packets. These packets were sent by air mail back and forth from Berkeley, California to five cities and a dose sufficiently above background for a satisfactory measurement was accumulated by the TLD's on one round trip and by the emulsions on three round trips. It was concluded that both experiments and theory show that the total doses received at present day conventional jet aircraft altitudes are considerably higher than those encountered in supersonic flights at much higher altitudes, even though the dose rate is lower at these lower altitudes, when the longer time of exposure at the lower altitudes is taken into consideration. Computer programs used in the dose calculations are included. (CH)

Wallace, R.

1973-07-16T23:59:59.000Z

212

Hiroshima and Nagasaki initial radiations: delayed neutron contributions and comparison of calculated and measured cobalt activations  

SciTech Connect

Calculated estimates of neutron doses received by atomic-bomb survivors at Hiroshima and Nagasaki have not included contributions from delayed neutrons emitted by fission products in the debris cloud, although the possibility of a significant contribution from this source has been suggested. In the present work, an established model accounting for gamma-ray kermas from these fission products is adapted to provide the desired neutron kerma estimates. Adaptations include use of explicit time dependence of neutron emitters, properly folded with the time-dependent phenomenology of the explosion itself, and detailed air-over-ground neutron transport with a source having an energy spectrum characteristic of these delayed neutrons. Results show that delayed neutrons are indeed negligible contributors to atomic-bomb survivor dosimetry, as well as to neutron activations at Hiroshima. About half the activation at Nagasaki, however, is due to the delayed component. Calculated activation of cobalt, a revision of previous estimates, is compared to measured values at Hiroshima and at Nagasaki. The causes of the substantial discrepancies are discussed and compared to previously reported discrepancies for sulfur activation. Additional investigation is recommended.

Loewe, W.E.

1985-03-01T23:59:59.000Z

213

Cloud-Induced Infrared Radiative Heating and Its Implications for Large-Scale Tropical Circulations  

Science Conference Proceedings (OSTI)

Three-dimensional global distributions of longwave radiative cooling for the summer of 1988 and the winter of 1989 are generated from radiative transfer calculations using European Centre for Medium-Range Weather Forecasts temperature and ...

Byung-Ju Sohn

1999-08-01T23:59:59.000Z

214

The Effect of Clouds on the Earth's Solar and Infrared Radiation Budgets  

Science Conference Proceedings (OSTI)

The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use ...

Gerald F. Herman; Man-Li C. Wu; Winthrop T. Johnson

1980-06-01T23:59:59.000Z

215

The Contributions of Several Absorption Bands to Stratospheric Radiative Dissipation Rates  

Science Conference Proceedings (OSTI)

A narrowband (5 cm?1) radiation transfer scheme has been used to calculate scale-dependent radiative dissipation rates for finite-amplitude temperature disturbances. Eight bands of five atmospheric trace gases have been examined. As previously ...

Gerd Breßer; Steven Pawson

1996-05-01T23:59:59.000Z

216

A scattering approach to Casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium  

E-Print Network (OSTI)

We develop an exact method for computing Casimir forces and the power of radiative heat transfer between two arbitrary nanostructured surfaces out of thermal equilibrium. The method is based on a generalization of the scattering approach recently used in investigations on the Casimir effect. Analogously to the equilibrium case, we find that also out of thermal equilibrium the shape and composition of the surfaces enter only through their scattering matrices. The expressions derived provide exact results in terms of the scattering matrices of the intervening surfaces.

Giuseppe Bimonte

2009-09-11T23:59:59.000Z

217

Report of a workshop on the impact of chemicals on the radiative transfer imbalance  

SciTech Connect

This workshop delineates the significant factors, possessed by any chemical, that may directly or indirectly affect the radiation balance of the atmosphere. Atmospheric physics research has already given information on direct and indirect effects. An example of direct effect is the cumulative infrared greenhouse effect of several trace gases, some of which are anthropogenic, and the short wave radiative effects of unactivated aerosol particles in clouds. Examples of indirect effects are those of aerosols as they change cloud droplet size distributions and hence albedo and radiative properties, and as found in observations of albedo and absorption anomalies in clouds, and cloud modification by urban pollution. 26 references.

DeLuisi, J.J. (ed.)

1979-01-01T23:59:59.000Z

218

Parameterization of Atmospheric Radiative Transfer. Part I: Validity of Simple Models  

Science Conference Proceedings (OSTI)

This paper outlines a radiation parameterization method for deriving broadband fluxes that is currently being implemented in a number of global and regional atmospheric models. The rationale for the use of the 2-stream method as a way of solving ...

Graeme L. Stephens; Philip M. Gabriel; Philip T. Partain

2001-11-01T23:59:59.000Z

219

On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing  

Science Conference Proceedings (OSTI)

The quantification of atmospheric effects on the solar radiation measured by a spaceborne or airborne optical sensor is required for some key tasks in remote sensing, such as atmospheric correction, simulation of realistic scenarios or retrieval of atmospheric ...

Luis Guanter; Rudolf Richter; Hermann Kaufmann

2009-01-01T23:59:59.000Z

220

Four-Stream Spherical Harmonic Expansion Approximation for Solar Radiative Transfer  

Science Conference Proceedings (OSTI)

This paper presents a four-stream extension of the ?-Eddington approximation by considering the higher-order spherical harmonic expansion in radiative intensity. By using the orthogonality relation of the spherical harmonic functions, the ...

J. Li; V. Ramaswamy

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol  

Science Conference Proceedings (OSTI)

A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different ...

J. M. Haywood; D. L. Roberts; A. Slingo; J. M. Edwards; K. P. Shine

1997-07-01T23:59:59.000Z

222

MILDOS - A Computer Program for Calculating Environmental Radiation Doses from Uranium Recovery Operations  

Science Conference Proceedings (OSTI)

The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based on recommendations of the International Commission on Radiological Protection (ICRP). These factors are fixed internally in the code, and are not part of the input option. Dose commitments which are available from the code are as follows: • Individual dose commitments for use in predictive 40 CFR 190 compliance evaluations (Radon and short-lived daughters are excluded) • Total individual dose commitments (impacts from all available radionuclides are considered) • Annual population dose commitments (regional, extraregional, total and cummulative). This model is primarily designed for uranium mill facilities, and should not be used for operations with different radionuclides or processes.

Strange, D. L.; Bander, T. J.

1981-04-01T23:59:59.000Z

223

Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout  

Science Conference Proceedings (OSTI)

This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

2010-12-15T23:59:59.000Z

224

3D Lya radiation transfer. II. Fitting the Lyman break galaxy MS 1512-cB58 and implications for Lya emission in high-z starbursts  

E-Print Network (OSTI)

Using our 3D Lya radiation transfer code, we compute the radiation transfer of Lya and UV continuum photons including dust. Observational constraints on the neutral gas (column density, kinematics, etc.) are taken from other analysis of this object. RESULTS: The observed Lya profile of MS 1512--cB58 is reproduced for the first time taking radiation transfer and all observational constraints into account. The observed absorption profile is found to result naturally from the observed amount of dust and the relatively high HI column density. Radiation transfer effects and suppresion by dust transform a strong intrinsic Lya emission with EW(Lya)>~ 60 Ang into the observed faint superposed Lya emission peak. We propose that the vast majority of LBGs have intrinsically EW(Lya)~60-80 Ang or larger, and that the main physical parameter responsible for the observed variety of Lya strengths and profiles in LBGs is N_H and the accompanying variation of the dust content. Observed EW(Lya) distributions, Lya luminosity functions, and related quantities must therefore be corrected for radiation transfer and dust effects. The implications from our scenario on the duty-cycle of Lya emitters are also discussed.

Daniel Schaerer; Anne Verhamme

2008-01-08T23:59:59.000Z

225

Sensitivity of cloud property retrievals to differences in radiative transfer simulations  

E-Print Network (OSTI)

RTMs for multiple scattering calculations: Monte Carlo, MODTRAN4v2r0 (beta release), DAK and SHDOM TRANsmittance and radiance code (MODTRAN), the multiple scattering calculations are based on the Discrete zenith angles to obtain N equations for N unknowns. These unknowns may be solved numerically. The MODTRAN

Stoffelen, Ad

226

Author's personal copy Radiation transfer in photobiological carbon dioxide fixation and fuel  

E-Print Network (OSTI)

Engineering Department, Cockrell School of Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX 78705, USA a r t i c l e i n f o Article history: Received 26 April 2011 Received a c t Solar radiation is the energy source driving the metabolic activity of microorganisms able

Pilon, Laurent

227

THE I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres  

Science Conference Proceedings (OSTI)

The interaction of clouds with solar and terrestrial radiation is one of the most important topics of climate research. In recent years it has been recognized that only a full three-dimensional (3D) treatment of this interaction can provide ...

Robert F. Cahalan; Lazaros Oreopoulos; Alexander Marshak; K. Franklin Evans; Anthony B. Davis; Robert Pincus; Ken H. Yetzer; Bernhard Mayer; Roger Davies; Thomas P. Ackerman; Howard W. Barker; Eugene E. Clothiaux; Robert G. Ellingson; Michael J. Garay; Evgueni Kassianov; Stefan Kinne; Andreas Macke; William O'Hirok; Philip T. Partain; Sergei M. Prigarin; Alexei N. Rublev; Graeme L. Stephens; Frederic Szczap; Ezra E. Takara; Támas Várnai; Guoyong Wen; Tatiana B. Zhuravleva

2005-09-01T23:59:59.000Z

228

Comparison of Model Calculations with Spectral UV Measurements during the SUSPEN Campaign: The Effect of Aerosols  

Science Conference Proceedings (OSTI)

Spectral measurements of global solar irradiance, obtained under cloud-free conditions during the SUSPEN campaign (July 1997) in Thessaloniki, Greece, are compared with radiative transfer model calculations, showing an agreement to within ±5% for ...

A. Kazantzidis; D. S. Balis; A. F. Bais; S. Kazadzis; E. Galani; E. Kosmidis; M. Blumthaler

2001-06-01T23:59:59.000Z

229

Interpolation and Profile Correction (IPC) Method for Shortwave Radiative Transfer in Spectral Intervals of Gaseous Absorption  

Science Conference Proceedings (OSTI)

The new interpolation and profile correction (IPC) method for radiance/flux calculations in gaseous absorption bands is presented. The IPC method is designed to allow an arbitrary spectral resolution including monochromatic mode. It features a ...

Alexei I. Lyapustin

2003-03-01T23:59:59.000Z

230

Microwave Radiative Transfer Studies Using Combined Multiparameter Radar and Radiometer Measurements during COHMEX  

Science Conference Proceedings (OSTI)

Theoretical calculations of the upwelling microwave radiances from clouds containing layers of rain, ice, and a melting region were performed at frequencies of 18, 37, and 92 GHz. These frequencies coincide with high-resolution microwave ...

J. Vivekanandan; J. Turk; G. L. Stephens; V. N. Bringi

1990-07-01T23:59:59.000Z

231

Energy transfer properties and absorption spectra of the FMO complex: from exact PIMC calculations to TCL master equations  

E-Print Network (OSTI)

We investigate the excitonic energy transfer (EET) in the Fenna-Matthews-Olsen complex and obtain the linear absorption spectrum (at 300 K) by a phenomenological time-convolutionless (TCL) master equation which is validated by utilizing Path Integral Monte Carlo (PIMC) simulations. By applying Marcus' theory for choosing the proper Lindblad operators for the long-time incoherent hopping process and using local non-Markovian dephasing rates, our model shows very good agreement with the PIMC results for EET. It also correctly reproduces the linear absorption spectrum that is found in experiment, without using any fitting parameters.

Schijven, Piet; Muelken, Oliver

2013-01-01T23:59:59.000Z

232

Energy transfer properties and absorption spectra of the FMO complex: from exact PIMC calculations to TCL master equations  

E-Print Network (OSTI)

We investigate the excitonic energy transfer (EET) in the Fenna-Matthews-Olsen complex and obtain the linear absorption spectrum (at 300 K) by a phenomenological time-convolutionless (TCL) master equation which is validated by utilizing Path Integral Monte Carlo (PIMC) simulations. By applying Marcus' theory for choosing the proper Lindblad operators for the long-time incoherent hopping process and using local non-Markovian dephasing rates, our model shows very good agreement with the PIMC results for EET. It also correctly reproduces the linear absorption spectrum that is found in experiment, without using any fitting parameters.

Piet Schijven; Lothar Muehlbacher; Oliver Muelken

2013-01-03T23:59:59.000Z

233

An Algorithm for the Constraining of Radiative Transfer Calculations to CERES-Observed Broadband Top-of-Atmosphere Irradiance  

Science Conference Proceedings (OSTI)

NASA’s Clouds and the Earth’s Radiant Energy System (CERES) project is responsible for operation and data processing of observations from scanning radiometers on board the Tropical Rainfall Measuring Mission (TRMM), Terra, Aqua, and Suomi National ...

Fred G. Rose; David A. Rutan; Thomas Charlock; G. Louis Smith; Seiji Kato

2013-06-01T23:59:59.000Z

234

Calculations of Nonlinear Wave-Packet Interferometry Signals in the Pump-Probe Limit as Tests for Vibrational Control over Electronic Excitation Transfer  

E-Print Network (OSTI)

The preceding paper describes a strategy for externally influencing the course of short-time electronic excitation transfer (EET) in molecular dimers and observing the process by nonlinear wave-packet interferometry (nl-WPI). Within a sample of isotropically oriented dimers having a specified internal geometry, a vibrational mode internal to the acceptor chromophore can be preferentially driven by electronically nonresonant impulsive stimulated Raman (or resonant infrared) excitation with a short polarized control pulse. A subsequent electronically resonant polarized pump then preferentially excites the donor, and EET ensues. Here we test both the control strategy and its spectroscopic investigation-with some sacrifice of amplitude-level detail-by calculating the pump-probe difference signal. That signal is the limiting case of the control-influenced nl-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference signals for (1) a model excitation-transfer complex in which two equal-energy monomers each support one moderately Franck-Condon active intramolecular vibration; (2) a simplified model of the covalent dimer dithia-anthracenophane, representing its EET dynamics following selective impulsive excitation of the weakly Franck-Condon active anthracene vibration at 385 cm-1; and (3) a model complex featuring moderate electronic-vibrational coupling in which the site energy of the acceptor chromophore is lower than that of the donor.

Jason D. Biggs; Jeffrey A. Cina

2009-10-12T23:59:59.000Z

235

Heat Transfer between Graphene and Amorphous SiO2  

E-Print Network (OSTI)

We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer result from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

B. N. J. Persson; H. Ueba

2010-07-22T23:59:59.000Z

236

Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia  

Science Conference Proceedings (OSTI)

The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be ...

A. Protat; S. A. Young; S. A. McFarlane; T. L’Ecuyer; G. G. Mace; J. M. Comstock; C. N. Long; E. Berry; J. Delanoë

237

Retrieval of Ice Cloud Properties from AIRS and MODIS Observations Based on a Fast High-Spectral-Resolution Radiative Transfer Model  

Science Conference Proceedings (OSTI)

A computationally efficient high-spectral-resolution cloudy-sky radiative transfer model (HRTM) in the thermal infrared region (700–1300 cm?1, 0.1 cm?1 spectral resolution) is advanced for simulating the upwelling radiance at the top of atmosphere ...

Chenxi Wang; Ping Yang; Steven Platnick; Andrew K. Heidinger; Bryan A. Baum; Thomas Greenwald; Zhibo Zhang; Robert E. Holz

2013-03-01T23:59:59.000Z

238

Suppressing nonphysical overheating with a modified implicit Monte Carlo method for time-dependent radiative transfer  

SciTech Connect

In this note we develop a robust implicit Monte Carlo (IMC) algorithm based on more accurately updating the linearized equilibrium radiation energy density. The method does not introduce oscillations in the solution and has the same limit as {Delta}t{yields}{infinity} as the standard Fleck and Cummings IMC method. Moreover, the approach we introduce can be trivially added to current implementations of IMC by changing the definition of the Fleck factor. Using this new method we develop an adaptive scheme that uses either standard IMC or the modified method basing the adaptation on a zero-dimensional problem solved in each cell. Numerical results demonstrate that the new method alleviates both the nonphysical overheating that occurs in standard IMC when the time step is large and significantly diminishes the statistical noise in the solution.

Mcclarren, Ryan G [Los Alamos National Laboratory; Urbatsch, Todd J [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

239

NLTE model calculations for the solar atmosphere with an iterative treatment of opacity distribution functions  

E-Print Network (OSTI)

Modeling the variability of the solar spectral irradiance is a key factor for understanding the solar influence on the climate of the Earth. As a first step to calculating the solar spectral irradiance variations we reproduce the solar spectrum for the quiet Sun over a broad wavelength range with an emphasis on the UV. We introduce the radiative transfer code COSI which calculates solar synthetic spectra under conditions of non-local thermodynamic equilibrium (NLTE). A self-consistent simultaneous solution of the radiative transfer and the statistical equation for the level populations guarantees that the correct physics is considered for wavelength regions where the assumption of local thermodynamic equilibrium (LTE) breaks down. The new concept of iterated opacity distribution functions (NLTE-ODFs), through which all line opacities are included in the NLTE radiative transfer calculation, is presented. We show that it is essential to include the line opacities in the radiative transfer to reproduce the solar...

Haberreiter, M; Hubeny, I

2008-01-01T23:59:59.000Z

240

Heat Capacity Uncertainty Calculation for the Eutectic Mixture of Biphenyl/Diphenyl Ether Used as Heat Transfer Fluid: Preprint  

DOE Green Energy (OSTI)

The main objective of this study was to calculate the uncertainty at 95% confidence for the experimental values of heat capacity of the eutectic mixture of biphenyl/diphenyl ether (Therminol VP-1) determined from 300 to 370 degrees C. Twenty-five samples were evaluated using differential scanning calorimetry (DSC) to obtain the sample heat flow as a function of temperature. The ASTM E-1269-05 standard was used to determine the heat capacity using DSC evaluations. High-pressure crucibles were employed to contain the sample in the liquid state without vaporizing. Sample handling has a significant impact on the random uncertainty. It was determined that the fluid is difficult to handle, and a high variability of the data was produced. The heat capacity of Therminol VP-1 between 300 and 370 degrees C was measured to be equal to 0.0025T+0.8672 with an uncertainty of +/- 0.074 J/g.K (3.09%) at 95% confidence with T (temperature) in Kelvin.

Gomez, J. C.; Glatzmaier, G. C.; Mehos, M.

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Results of calculations of external gamma radiation exposure rates from local fallout and the related radionuclide compositions of selected US Pacific events  

SciTech Connect

This report presents data on calculated gamma radiation exposure rates and local surface deposition of related radionuclides resulting from selected US Pacific events. Results of the calculations of relative external gamma radiation exposure rate and related radionuclide ground deposition are given in six appendices. The output of the calculation has 30 decay times: 10 from 1 to 21 h, 10 from 1 to 300 d, and 10 from 1 to 50 y. For each of these times and for zero time, there are values of the external gamma radiation exposure rate normalized to 1 mR/h, 1 m above the surface, 12 h after the event; the associated values of ..mu..Ci/m/sup 2/ for each radionuclide; and the total ..mu..Ci/m/sup 2/. Surface roughness effects are simulated by using Beck's values of (mR/h)/..mu..Ci/m/sup 2/) for a relaxation length of 0.16 g/cm/sup 2/. Fractionation effects, simulated by the removal of a fraction of the refractory nuclides from the calculation, were found for unfractionated debris and for debris with 0.5 and 0.1 of the refractory elements present. Each Appendix contains three sets of 11 pages of calculated results relating to one event in Table 1. Each set of 11 pages is marked page 2 through page 12. Page 2 of each set gives the external gamma-ray exposure rates and associated values of total microcuries per square meter at 30 decay intervals and at zero time. The value for each activation product at zero time is the result of a measurement. The measurements were performed on debris samples taken by aircraft approximately 1 to 4 h after detonation. When no measurement exists, the value appears as zero. Fission products were calculated from the fissioning nuclides and neutron energy spectra. Calculated values for each radionuclide at various decay intervals are given.

Hicks, H.G.

1984-02-01T23:59:59.000Z

242

Momentum transfer from waves to particles  

SciTech Connect

Momentum transfer from an electromagnetic or electrostatic wave to an electron is calculated in the presence of friction, and is shown to be comparable to the one obtained from the ponderomotive force. Radiation reaction is analyzed as a special case and shown to be derivable from the classical limit of Compton scattering.

Schmidt, G.

1979-05-01T23:59:59.000Z

243

Building Energy Software Tools Directory: Popolo Utility Load Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Popolo Utility Load Calculation Popolo Utility Load Calculation Popolo Utility Load Calculation is a collection of classes for calculating various heat transfer phenomena. The routines have been written from scratch in C#, and present a modern Applications Programming Interface (API) for .NET Framework programmers, allowing wrappers to be written for very high level languages. It contains classes to calculate solid conduction, convective heat transfer near wall surfaces, air ventilation, radiative heat balance of wall surfaces, transmitted solar radiation through a window, and so on. Users should build up these classes to simulate a whole complex building system. A sample source code to build test cases of BESTEST are provided. Since all the source code is distributed under the GNU General Public License, they can be freely

244

The Influence of Radiative Transfer on the Mass and Heat Budgets of Ice Crystals Failing in the Atmosphere  

Science Conference Proceedings (OSTI)

A theoretical study was carried out to investigate the effect of radiative heating and cooling on the mass and heat budgets of an ice crystal. Equations describing the radiative budget of an ice crystal were derived and particle absorption ...

Graeme L. Stephens

1983-07-01T23:59:59.000Z

245

Radiators  

SciTech Connect

A heat-exchange radiator is connected to a fluid flow circuit by a connector which provides one member of an interengageable spigot and socket pair for push-fit, fluid-tight, engagement between the connector and the radiator, with latching formations at least one of which is resilient. Preferably the connector carries the spigot which tapers and engages with a socket of corresponding shape, the spigot carrying an O-ring seal and either latching fingers or a resilient latching circlip.

Webster, D. M.

1985-07-30T23:59:59.000Z

246

Development of Simplified Calculations for a Multipyranometer Array for the Measurement of Direct and Diffuse Solar Radiation  

E-Print Network (OSTI)

This paper describes the development of simplified procedures for a multipyranometer array (MPA) for the continuous measurement of direct and diffuse solar radiation. The MPA described in this paper is an improvement over previously published MPA studies due several new features, including: the incorporation of an artificial horizon that prevents reflected ground radiation from striking the tilted sensors, and a routine that corrects the spectral response of photovoltaic-type sensors used in the MPA. An optimal solution procedure has also been developed that eliminates invalid data which are inherent in the simultaneous solution of the solar equations from the four MPA sensors. In this paper a description of the NIST-traceable calibration facility is provided and results are presented that compare the improved MPA-predicted beam to side-by-side measurements from a precision Normal Incidence Pyrheliometer (NIP).

Munger, B. K.; Haberl, J. S.

2000-01-01T23:59:59.000Z

247

Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration  

Science Conference Proceedings (OSTI)

The plane-parallel model for the parameterization of clouds in global climate models is examined in order to estimate the effects of the vertical profile of the microphysical parameters on radiative transfer calculations for extended boundary ...

Jean-Louis Brenguier; Hanna Pawlowska; Lothar Schüller; Rene Preusker; Jürgen Fischer; Yves Fouquart

2000-03-01T23:59:59.000Z

248

The Use of Cloud Reflectance Functions with Satellite Data for Surface Radiation Budget Estimation  

Science Conference Proceedings (OSTI)

The bidirectional reflectance distribution function (BRDF) of an overcast atmosphere above an ocean surface has been calculated as a function of wavelength using a discrete-ordinates radiative transfer model. This plane-parallel BRDF appears ...

Dan Lubin; Paul G. Weber

1995-06-01T23:59:59.000Z

249

Impact of Cloud Cover on Solar Radiative Biases in Deep Convective Regimes  

Science Conference Proceedings (OSTI)

Conflicting claims have been made concerning the magnitude of the bias in solar radiative transfer calculations when horizontal photon transport is neglected for deep convective scenarios. The difficulty of obtaining a realistic set of cloud ...

F. Di Giuseppe; A. M. Tompkins

2005-06-01T23:59:59.000Z

250

Modeling Ultraviolet Radiation at the Earth's Surface. Part II: Model and Instrument Comparison  

Science Conference Proceedings (OSTI)

High-resolution measurements in the spectral region of 280?400 nm using a double monochromator are compared with detailed radiative transfer calculations at Reading, United Kingdom (52°N, 0°), for clear and totally overcast days, using aerosol ...

Piers M. De F. Forster; Keith P. Shine; Ann R. Webb

1995-11-01T23:59:59.000Z

251

Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction $^{209}$Bi+$^{70}$Zn  

E-Print Network (OSTI)

We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction $^{70}$Zn + $^{209}$Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction $^{70}$Zn + $^{209}$Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4$%$ and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. {\\bf 73} (2004) 2593].

Takatoshi Ichikawa; Akira Iwamoto

2010-12-20T23:59:59.000Z

252

Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction $^{209}$Bi+$^{70}$Zn  

E-Print Network (OSTI)

We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction $^{70}$Zn + $^{209}$Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction $^{70}$Zn + $^{209}$Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4$%$ and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. {\\bf 73} (2004) 2593].

Ichikawa, Takatoshi; 10.1143/JPSJ.79.074201

2010-01-01T23:59:59.000Z

253

Effect of infrared transparency on the heat transfer through windows: a clarification of the greenhouse effect  

SciTech Connect

The various radiative, convective, and conductive components of the net heat transfer are calculated and illustrated for various infrared transparencies of covers such as would be used in architectural, greenhouse, or solar collector windows. It is shown that in the limiting cases of infrared opacity and infrared transparency the relative contributions of the three modes of heat transfer are altered, but all contribute significantly. The radiation shielding arguments pertain to the analogous greenhouse effect in the atmosphere.

Silverstein, S.D.

1976-07-16T23:59:59.000Z

254

The Effect of Realistic Radiative Transfer on Potential Vorticity Structures, Including the Influence of Background Shear and Strain  

Science Conference Proceedings (OSTI)

A modified version of the radiation scheme of Shine is used to investigate the decay of small-scale potential vorticity structures characteristic of those observed in the lower and middle stratosphere. Following Fels, effective thermal damping ...

P. H. Haynes; W. E. Ward

1993-10-01T23:59:59.000Z

255

Handbook of single-phase convective heat transfer  

Science Conference Proceedings (OSTI)

This book presents a comprehensive collection of convective heat transfer basics, methods of calculations, tables, charts and design parameters involving single-phase flows - the most commonly experienced mode in heat transfer problems. Topics covered include natural and forced convection under a wise variety of design conditions, such as ducts, crossflows, turbulent conditions, transitional states, curved and coiled ducts, over rods in metals and through bends, valves and fittings. The book provides sections on radiation interaction and fouling conditions.

Kakac, S.; Shah, R.K.; Aung, W.

1987-01-01T23:59:59.000Z

256

Motion-induced radiation from electrons moving in Maxwell's fish-eye  

E-Print Network (OSTI)

In \\u{C}erenkov radiation and transition radiation, evanescent wave from motion of charged particles transfers into radiation coherently. However, such dissipative motion-induced radiations require particles to move faster than light in medium or to encounter velocity transition to pump energy. Inspired by a method to detect cloak by observing radiation of a fast-moving electron bunch going through it by Zhang {\\itshape et al.}, we study the generation of electron-induced radiation from electrons' interaction with Maxwell's fish-eye sphere. Our calculation shows that the radiation is due to a combination of \\u{C}erenkov radiation and transition radiation, which may pave the way to investigate new schemes of transferring evanescent wave to radiation.

Liu, Yangjie

2013-01-01T23:59:59.000Z

257

Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes  

SciTech Connect

During the last few years the development of a second-generation regional climate modeling system (RegCM2) has been completed at the National Center for Atmospheric Research (NCAR). Based upon the National Center for Atmospheric Research-Pennsylvania State University Mesoscale Model (MM4), RegCM2 includes improved formulations of boundary layer, radiative transfer, surface physics, cumulus convection, and time integration technique, which make it more physically comprehensive and more computationally efficient than the previous regional climate model version. This paper discusses a number of month-long simulations over the European region that were conducted to test the new RegCM2 boundary-layer parameterization (the scheme developed by Holtsag et al.) and radiative transfer formulation [the package developed for the NCAR Community Climate Model 2 (CCM2)]. Both schemes significantly affect the model precipitation, temperature, moisture, and cloudiness climatology, leading to overall more realistic results, while they do not substantially modify the model performance in simulating the aggregated characteristics of synoptic patterns. Description of the convective processes and procedures of boundary condition assimilation included in RegCM2 is presented in companion paper by Giorgi et al. 26 refs., 11 figs., 10 tabs.

Giorgi, F.; Marinucci, M.R.; Bates, G.T. (National Center for Atmospheric Research, Boulder, CO (United States))

1993-10-01T23:59:59.000Z

258

Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility  

SciTech Connect

The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x10{sup 11} photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

Salah, Wa'el [Synchrotron-light for Experimental Science and Application in the Middle East (SESAME), P.O. Box 7, Allan 19252 (Jordan); Department of Physics, The Hashemite University, Zarqa 13115 (Jordan); Sanchez del Rio, M. [European Synchrotron Radiation Facility, Bp 220, 38043 Grenoble Cedex (France); Hoorani, H. [Synchrotron-light for Experimental Science and Application in the Middle East (SESAME), P.O. Box 7, Allan 19252 (Jordan)

2009-09-15T23:59:59.000Z

259

Comparison of Photoneutron Yields in Tungsten Calculated by MCNPX Using Different Photonuclear Cross-Section Data for Typical Radiation Therapy Energies  

Science Conference Proceedings (OSTI)

Neutron Data / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Biology and Medicine

Bryan Bednarz; Bin Han; X. George Xu

260

Intermodal transfer of spent fuel  

Science Conference Proceedings (OSTI)

As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handier exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. A study of the movement of spent fuel casks through ports, including the loading and unloading of containers from cargo vessels, afforded an opportunity to estimate the radiation doses to those individuals handling the spent fuels with doses to the public along subsequent transportation routes of the fuel. A number of states require redundant inspections and for escorts over long distances on highways; thus handlers, inspectors, escort personnel, and others who are not normally classified as radiation workers may sustain doses high enough to warrant concern about occupational safety. This paper addresses the question of radiation safety for these workers. Data were obtained during, observation of the offloading of reactor spent fuel (research reactor spent fuel, in this instance) which included estimates of exposure times and distances for handlers, inspectors and other workers during offloading and overnight storage. Exposure times and distance were also for other workers, including crane operators, scale operators, security personnel and truck drivers. RADTRAN calculational models and parameter values then facilitated estimation of the dose to workers during incident-free ship-to-truck transfer of spent fuel.

Neuhauser, K.S. (Sandia National Labs., Albuquerque, NM (United States)); Weiner, R.F. (Western Washington Univ., Bellingham, WA (United States))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes  

Science Conference Proceedings (OSTI)

Real midlatitude meteorological cases are simulated over western Europe with the cloud mesoscale model Méso-NH, and the outputs are used to calculate brightness temperatures at microwave frequencies with the Atmospheric Transmission at Microwave (...

Ingo Meirold-Mautner; Catherine Prigent; Eric Defer; Juan R. Pardo; Jean-Pierre Chaboureau; Jean-Pierre Pinty; Mario Mech; Susanne Crewell

2007-05-01T23:59:59.000Z

262

A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation  

E-Print Network (OSTI)

We describe a new, faster implicit algorithm for solving the radiation hydrodynamics equations in the flux-limited diffusion approximation for smoothed particle hydrodynamics. This improves on the method elucidated in Whitehouse & Bate by using a Gauss-Seidel iterative method rather than iterating over the exchange of energy between pairs of particles. The new algorithm is typically many thousands of times faster than the old one, which will enable more complex problems to be solved. The new algorithm is tested using the same tests performed by Turner & Stone for ZEUS-2D, and repeated by Whitehouse & Bate.

Stuart C. Whitehouse; Matthew R. Bate; Joe J. Monaghan

2005-09-28T23:59:59.000Z

263

A New Parameterization of Scale-Dependent Radiative Rates in the Stratosphere  

Science Conference Proceedings (OSTI)

Scale-dependent radiative dissipation rates. ?, for finite-amplitude temperature disturbances have been calculated with a narrowband (5 cm?1) radiative transfer model in the stratosphere (15–60 km). Results are presented for the 15-µm bands of C0...

Gerd Bresser; Amanda J. L. Manning; Steven Pawson; Clive D. Rodgers

1995-12-01T23:59:59.000Z

264

Variability of Radiative Cooling during the Asian Summer Monsoon and Its Influence on Intraseasonal Waves  

Science Conference Proceedings (OSTI)

Infrared radiative cooling rates are calculated over the Asian summer monsoon between 5°S–20°N and 40°–135°E at a spatial resolution of 5° × 5° for the summer seasons of 1984 and 1987. A medium spectral resolution infrared radiative transfer ...

Amita V. Mehta; Eric A. Smith

1997-04-01T23:59:59.000Z

265

Handbook of heat transfer fundamentals  

SciTech Connect

This handbook is on the fundamentals of heat transfer. It provides coverage on conduction, convection, and radiation and on thermophysical properties of materials.

Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

1985-01-01T23:59:59.000Z

266

Partnering Today: Technology Transfer Highlights  

THE LLNL TECHNOLOGY COMPANY PRODUCTS Partnering Today: Technology Transfer Highlights 10 Ametek-Ortec: High-precision Radiation Detectors ORTEC, a unit of AMETEK, is ...

267

Heat and moisture transfer through clothing  

E-Print Network (OSTI)

R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients for2008. Study of heat and moisture transfer within multi-layer

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

268

BUOYANCY-DRIVEN CONVECTION IN A RECTANGULAR ENCLOSURE: EXPERIMENTAL RESULTS AND NUMERICAL CALCULATIONS  

E-Print Network (OSTI)

the characteristics of this heat transfer process must beof the bas·ic heat transfer processes--radiation, conductionpointed out that the heat transfer processes are insensitive

Bauman, Fred

2013-01-01T23:59:59.000Z

269

Hybrid Radiator-Cooling System  

Technology Development & Commercialization Current Challenges Coolant radiators in highway trucks are designed to transfer maximum heat at a ...

270

Engineering Model of Liquid Storage Utility Tank for Heat Transfer Analysis  

SciTech Connect

The utility or chemical storage tank requires special engineering attention and heat transfer analysis because the tank content is very sensitive to temperature and surrounding environment such as atmospheric or outside air, humidity, and solar radiation heat. A simplified heat transfer model was developed to calculate the liquid content temperature of utility storage tank. The content of the utility storage tanks can be water or any other chemical liquid. An engineering model of liquid storage tank for heat transfer analysis and temperature calculations are presented and discussed in the examples of Tanks No. 1 containing oxalic acid and No. 2 containing sodium tetraphenylborate solution.

Kwon, K.C.

1995-09-27T23:59:59.000Z

271

A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics  

E-Print Network (OSTI)

Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. In this article, we survey the model validation literature and propose to formulate validation as an iterative construction process that mimics the process occurring implicitly in the minds of scientists. We thus offer a formal representation of the progressive build-up of trust in the model, and thereby replace incapacitating claims on the impossibility of validating a given model by an adaptive process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the new methodology first with the maturation of Quantum Mechanics as the arguably best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer-Meshkov instability. This article is an augmented version of Sornette et al. [2007] that appeared in Proceedings of the National Academy of Sciences in 2007 (doi: 10.1073/pnas.0611677104), with an electronic supplement at URL http://www.pnas.org/cgi/content/full/0611677104/DC1. Sornette et al. [2007] is also available in preprint form at physics/0511219.

Didier Sornette; Anthony B. Davis; James R. Kamm; Kayo Ide

2007-10-01T23:59:59.000Z

272

Calculation of emission from hydrogenic ions in super liquid density plasmas  

DOE Green Energy (OSTI)

Previous calculations of line emission were extended to higher density, lower temperature plasmas, typical of those expected in early ablative compression experiments. Emission from Ne-seeded fuel was analyzed in order to diagnose the density and temperature of the compressed core. The Stark/Doppler broadened emission profile is calculated for the H-like Ne resonance line. The observable lineshape is then obtained by time-averaging over expected density and temperature profiles and by including the effects of radiative transfer.

Bailey, D.S.; Valeo, E.J.

1976-11-15T23:59:59.000Z

273

Sensitivity of Tropical Storm Forecast to Radiative Destabilization  

Science Conference Proceedings (OSTI)

This paper examines the medium-range forecast of a typhoon using a global model. The focus of this study is on a comparison of two longwave radiative transfer calculations, one is based on an emissivity formulation while the other utilizes a band ...

T. N. Krishnamurti; K. S. Yap; D. K. Oosterhof

1991-09-01T23:59:59.000Z

274

A fourth-order symplectic finite-difference time-domain (FDTD) method for light scattering and a 3D Monte Carlo code for radiative transfer in scattering systems  

E-Print Network (OSTI)

When the finite-difference time-domain (FDTD) method is applied to light scattering computations, the far fields can be obtained by either a volume integration method, or a surface integration method. In the first study, we investigate the errors associated with the two near-to-far field transform methods. For a scatterer with a small refractive index, the surface approach is more accurate than its volume counterpart for computing the phase functions and extinction efficiencies; however, the volume integral approach is more accurate for computing other scattering matrix elements. If a large refractive index is involved, the results computed from the volume integration method become less accurate, whereas the surface method still retains the same order of accuracy as in the situation of a small refractive index. In my second study, a fourth order symplectic FDTD method is applied to the problem of light scattering by small particles. The total-field/ scattered-field (TF/SF) technique is generalized for providing the incident wave source conditions in the symplectic FDTD (SFDTD) scheme. Numerical examples demonstrate that the fourthorder symplectic FDTD scheme substantially improves the precision of the near field calculation. The major shortcoming of the fourth-order SFDTD scheme is that it requires more computer CPU time than the conventional second-order FDTD scheme if the same grid size is used. My third study is on multiple scattering theory. We develop a 3D Monte Carlo code for the solving vector radiative transfer equation, which is the equation governing the radiation field in a multiple scattering medium. The impulse-response relation for a plane-parallel scattering medium is studied using our 3D Monte Carlo code. For a collimated light beam source, the angular radiance distribution has a dark region as the detector moves away from the incident point. The dark region is gradually filled as multiple scattering increases. We have also studied the effects of the finite size of clouds. Extending the finite size of clouds to infinite layers leads to underestimating the reflected radiance in the multiple scattering region, especially for scattering angles around 90 degrees. The results have important applications in the field of remote sensing.

Zhai, Pengwang

2006-08-01T23:59:59.000Z

275

Modeling radiation characteristics of semitransparent media containing bubbles or particles.  

E-Print Network (OSTI)

and heat, mass, and radiation transfer,” Journal of Non-Sacadura, J. F. , “Thermal radiation properties of dispersedG. , and Viskanta, R. , “Radiation characteristics of glass

Randrianalisoa, Jaona; Baillis, Dominique; Pilon, Laurent

2006-01-01T23:59:59.000Z

276

Effect of wave boundary layer on sea-to-air dimethylsulfide transfer velocity during typhoon passage  

E-Print Network (OSTI)

: Dimethylsulfide; Sea-to-air gas transfer velocity; Wave boundary layer; Tropical cyclone; Drag coefficient in order to accurately calculate aerosol radiative forcing. The sea-to-air DMS flux depends on airside coefficient CD and roughness length z0 has been investigated over small areas of the sea or in wave tanks

Chu, Peter C.

277

A new generation of satellite based solar irradiance calculation schemes R. W. Mueller, D. Heinemann, C. Hoyer & R. Kuhlemann  

E-Print Network (OSTI)

for weather forecasting, but also for the estimation of solar irradiance since the knowledge of the lightA new generation of satellite based solar irradiance calculation schemes R. W. Mueller, D. Piernavieja Instituto Tecnologico de Canarias, Spain Keywords: radiative transfer, solar irradiance, MSG

Heinemann, Detlev

278

Radiation Pressure in Massive Star Formation  

E-Print Network (OSTI)

Stars with masses of >~ 20 solar masses have short Kelvin times that enable them to reach the main sequence while still accreting from their natal clouds. The resulting nuclear burning produces a huge luminosity and a correspondingly large radiation pressure force on dust grains in the accreting gas. This effect may limit the upper mass of stars that can form by accretion. Indeed, simulations and analytic calculations to date have been unable to resolve the mystery of how stars of 50 solar masses and up form. We present two new ideas to solve the radiation pressure problem. First, we use three-dimensional radiation hydrodynamic adaptive mesh refinement simulations to study the collapse of massive cores. We find that in three dimensions a configuration in which radiation holds up an infalling envelope is Rayleigh-Taylor unstable, leading radiation driven bubbles to collapse and accretion to continue. We also present Monte Carlo radiative transfer calculations showing that the cavities created by protostellar winds provides a valve that allow radiation to escape the accreting envelope, further reducing the ability of radiation pressure to inhibit accretion.

Mark R. Krumholz; Richard I. Klein; Christopher F. McKee

2005-10-14T23:59:59.000Z

279

Source and replica calculations  

Science Conference Proceedings (OSTI)

The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem.

Whalen, P.P.

1994-02-01T23:59:59.000Z

280

12.815 Atmospheric Radiation, Fall 2005  

E-Print Network (OSTI)

Introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. ...

Prinn, Ronald G.

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessment of the Effective Dose Equivalent for External Photon Radiation: Volume 2: Calculational Techniques for Estimating Externa l Effective Dose Equivalent from Dosimeter Readings  

Science Conference Proceedings (OSTI)

Recent revisions to the radiation protection standards contained in Title 10 Part 20 of the Code of Federal Regulations require nuclear power plants to assess a worker's "effective dose equivalent" (EDE). This report explains the concept of effective dose equivalent and describes research to improve the dosimetric methods presently used for assessing EDE.

1995-09-28T23:59:59.000Z

282

Dispersed-Flow Film Boiling Heat Transfer Data near Spacer Grids in a Rod Bundle  

Science Conference Proceedings (OSTI)

Technical Paper / Radiation Effects and Their Relationship to Geological Repository / Heat Transfer and Fluid Flow

Graydon L. Yoder; Jr.; David G. Morris; Charles B. Mullins; Larry J. Ott

283

Radiative and climate impacts of absorbing aerosols  

E-Print Network (OSTI)

resolved Radiative Transfer Model: MODTRAN……….131 APMEXModerate Imaging Spectroradiometer MODTRAN MODerate spectralprovide by MODTRAN…………………………………………………………………………133 Table 4.2

Zhu, Aihua

2010-01-01T23:59:59.000Z

284

Power transfer through strongly coupled resonances  

E-Print Network (OSTI)

Using self-resonant coils in a strongly coupled regime, we experimentally demonstrate efficient non-radiative power transfer over distances of up to eight times the radius of the coils. We use this system to transfer 60W ...

Kurs, André

2007-01-01T23:59:59.000Z

285

NIST: Theoretical Dosimetry and Radiation-Transport ...  

Science Conference Proceedings (OSTI)

Theoretical Dosimetry and Radiation-Transport Calculations. Summary: The fundamental photon and charged particle interaction ...

2013-02-27T23:59:59.000Z

286

High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Task Task Description Sample calculations LBL-PMC Future Work High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems Jian Cai 1 Ricardo Marquez 1 Michael F. Modest 2 1 Postdoctoral Research Associate 2 Shaffer and George Professor of Engineering University of California Merced Merced, CA 95343, USA DE-FG26-10FE0003801 May 2012 - Pittsburgh 2/17 Introduction Task Description Sample calculations LBL-PMC Future Work Radiation Challenges in Multi-Phase Reacting Flows Radiative heat transfer in high temperature combustion systems Thermal radiation becomes very important at elevated temperatures Coal and hydrocarbon fuels C n H m → H 2 O, CO 2 , CO, NO x , soot, char, ash CO 2 , H 2 O, soot, char and ash strongly emit and absorb radiative energy (lower temperature levels) Radiative effects are conveniently ignored or treated with very crude models Neglecting

287

Footprint Calculator?  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on...

288

Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger  

SciTech Connect

This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated dust parameterizations.

McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

2009-03-18T23:59:59.000Z

289

Magnetic fields and radiative feedback in the star formation process  

E-Print Network (OSTI)

Star formation is a complex process involving the interplay of many physical effects, including gravity, turbulent gas dynamics, magnetic fields and radiation. Our understanding of the process has improved substantially in recent years, primarily as a result of our increased ability to incorporate the relevant physics in numerical calculations of the star formation process. In this contribution we present an overview of our recent studies of star cluster formation in turbulent, magnetised clouds using self-gravitating radiation-magnetohydrodynamics calculations (Price and Bate 2008, 2009). Our incorporation of magnetic fields and radiative transfer into the Smoothed Particle Hydrodynamics method are discussed. We highlight how magnetic fields and radiative heating of the gas around newborn stars can solve several of the key puzzles in star formation, including an explanation for why star formation is such a slow and inefficient process. However, the presence of magnetic fields at observed strengths in collaps...

Price, Daniel J

2010-01-01T23:59:59.000Z

290

Tech Transfer  

Tech Transfer The Industrial Partnerships Office is improving tech transfer processes with our very own Yellow Belt. Several of the Lab's process ...

291

Multilevel acceleration of neutron transport calculations.  

E-Print Network (OSTI)

??Nuclear reactor design requires the calculation of integral core parameters and power and radiation profiles. These physical parameters are obtained by the solution of the… (more)

Marquez Damian, Jose Ignacio

2007-01-01T23:59:59.000Z

292

The 27–28 October 1986 FIRF IFO Cirrus Case Study: Comparison of Radiative Transfer Theory with Observations by Satellite and Aircraft  

Science Conference Proceedings (OSTI)

Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, ...

Bruce A. Wielicki; J.T. Suttles; Andrew J. Heymsfield; Ronald M. Welch; James D. Spinhirne; Man-Li C. Wu; David O'C. Starr; Lindsay Parker; Robert F. Arduini

1990-11-01T23:59:59.000Z

293

An Ultralight Aircraft as Platform for Research in the Lower Troposphere: System Performance and First Results from Radiation Transfer Studies in Stratiform Aerosol Layers and Broken Cloud Conditions  

Science Conference Proceedings (OSTI)

The ultraviolet actinic radiation flux governing the photochemical reactions in the atmosphere is dependent on the optical properties of atmospheric aerosols and reflective surfaces of ground and clouds. Theoretical models exist for horizontal ...

Wolfgang Junkermann

2001-06-01T23:59:59.000Z

294

Approximations for radiative cooling and heating in the solar chromosphere  

E-Print Network (OSTI)

Context. The radiative energy balance in the solar chromosphere is dominated by strong spectral lines that are formed out of LTE. It is computationally prohibitive to solve the full equations of radiative transfer and statistical equilibrium in 3D time dependent MHD simulations. Aims. To find simple recipes to compute the radiative energy balance in the dominant lines under solar chromospheric conditions. Methods. We use detailed calculations in time-dependent and 2D MHD snapshots to derive empirical formulae for the radiative cooling and heating. Results. The radiative cooling in neutral hydrogen lines and the Lyman continuum, the H and K and intrared triplet lines of singly ionized calcium and the h and k lines of singly ionized magnesium can be written as a product of an optically thin emission (dependent on temperature), an escape probability (dependent on column mass) and an ionization fraction (dependent on temperature). In the cool pockets of the chromosphere the same transitions contribute to the heat...

Carlsson, Mats

2012-01-01T23:59:59.000Z

295

Radiative forcing for changes in tropospheric O{sub 3}  

Science Conference Proceedings (OSTI)

We have evaluated the radiative forcing for assumed changes in tropospheric O{sub 3} in the 500-1650 cm{sup {minus}1} wavenumber range. The radiative forcing calculations were performed as a function of latitude as well as for a globally and seasonally averaged model atmosphere, both in a clear sky approximation and in a model containing a representative cloud distribution. The scenarios involved radiative forcing calculations for O{sub 3} at normal atmospheric abundance and at a tropospheric abundance depleted by 25 ppbv, at each altitude, for all northern hemisphere latitudes. Normal abundances of H{sub 2}O, CO{sub 2}, CH{sub 4}, and N{sub 2}O were included in the calculations. The IR radiative forcing was calculated using a correlated k-distribution radiative transfer model. The tropospheric radiative forcing values are compared to the IPCC formulae for ozone tropospheric forcing as well as other published values to determine the validity of the correlated k-distribution approach to the radiative forcing calculations. The results for the global average atmosphere show agreement with previous results to the order of 10 percent. We conclude that the O{sub 3} forcing is linear in the background abundance and that the radiative forcing for ozone for the globally averaged atmosphere and the latitude averaged radiative forcing in the clear sky approximation are in agreement to within 10 percent. For the case of an atmosphere in which the tropospheric ozone has been depleted by 25 ppbv at all altitudes in the northern hemisphere, the mid latitude zone contributes {approximately}50 percent of the forcing, tropic zone contributes {approximately}37 percent of the forcing and the polar zone contributes {approximately}13 percent of the total forcing.

Grossman, A.S.; Wuebbles, D.J.; Grant, K.E.

1994-06-01T23:59:59.000Z

296

Network simulation solutions for laminar radiating dissipative magneto-gas dynamic heat transfer over a wedge in non-Darcian porous regime  

Science Conference Proceedings (OSTI)

We study the steady-state, magnetohydrodynamic, optically thick, dissipative gas boundary layer flow and heat transfer past a non-isothermal porous wedge embedded in a scattering, homogenous, isotropic Darcy-Forchheimer porous medium, with significant ... Keywords: Boundary layers, Hartmann number, Joule heating, Magneto-gas dynamics, Network simulation

JoaquíN Zueco; O. Anwar BéG

2009-08-01T23:59:59.000Z

297

The Nocturnal Boundary Layer: Model Calculations Compared with Observations  

Science Conference Proceedings (OSTI)

The structure and evolution of the nocturnal boundary layer (NBL) is simulated using a model which includes the transfer of energy by radiation and turbulence. The radiation scheme is an accurate narrow band model which simulates the absorption ...

Stephen A. Tjemkes; Peter G. Duynkergke

1989-03-01T23:59:59.000Z

298

Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation  

SciTech Connect

Due to the complicated processes for coal particles burning in industrial furnaces, their radiative properties, such as the absorption and scattering coefficients, which are essential to make reliable calculation of radiative transfer in combustion computation, are hard to be given exactly by the existing methods. In this paper, multiple color image detectors were used to capture approximately red, green, and blue monochromatic radiative intensity images in the visible wavelength region, and the flame emissivity and the radiative properties of the particulate media in three pulverized-coal-fired boiler furnaces were got from the flame images. It was shown that as the load increased, the flame emissivity and the radiative properties increased too; these radiative parameters had the largest values near the burner zone, and decreased along the combustion process. Compared with the combustion medium with a low-volatile anthracite coal burning in a 670 t/h boiler, the emissivity and the absorption coefficient of the medium with a high-volatile bituminous coal burning in a 1025 t/h boiler were smaller near the outlet zone, but were larger near the burner zone of the furnace, due to the significant contribution of soot to the radiation. This work will be of practical importance in modeling and calculating the radiative heat transfer in combustion processes, and improving the technology for in situ, multi-dimensional visualization of large-scale combustion processes in coal-fired furnaces of power plants. 18 refs., 10 figs., 8 tabs.

Chun Lou; Huai-Chun Zhou; Peng-Feng Yu; Zhi-Wei Jiang [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

2007-07-01T23:59:59.000Z

299

Transferring Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Transferring Data Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data from/to NERSC - scp/sftp - bbcp - GridFTP * Sharing Data Within NERSC Tuesday, March 8, 2011 Systems and Disks 3 System Hopper Franklin Carver Euclid Data Transfer Node PDSF Global Home ($HOME) Global Scratch ($GSCRATCH) Project Directory Local Non-shared Scratch Data transfer nodes can access most of the disks, suggested for transferring data in/out NERSC Tuesday, March 8, 2011 Data Transfer Nodes * Two Servers Available Now: - dtn01.nersc.gov and dtn02.nersc.gov - Accessible by all NERSC users * Designed to Transfer Data: - High speed connection to HPSS and NGF (Global Home, Project, and Global Scratch) - High speed ethernet to wide area network

300

An Earth Outgoing Longwave Radiation Climate Model. Part II: Radiation with Clouds Included  

Science Conference Proceedings (OSTI)

An Earth outgoing longwave radiation (OLWR) climate model was constructed for radiation budget studies. The model consists of the upward radiative transfer parameterization of Thompson and Warren, the cloud cover model of Sherr et al., and a ...

Shi-Keng Yang; G. Louis Smith; Fred L. Bartman

1988-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Two-Dimensional Radiation-Turbulence Climate Model. I: Sensitivity to Cirrus Radiative Properties  

Science Conference Proceedings (OSTI)

Based on the thermodynamic energy balance between radiation and vertical plus horizontal dynamic transports, a two-dimensional radiation-turbulence climate model is developed. This model consists of a broadband solar and IR radiation transfer ...

Szu-Cheng S. Ou; Kuo-Nan Liou

1984-08-01T23:59:59.000Z

302

Spectral Reflectance and Atmospheric Energetics in Cirrus-like Clouds. Part II: Applications of a Fourier-Riccati Approach to Radiative Transfer  

Science Conference Proceedings (OSTI)

One of the major sources of uncertainty in climate studies is the detection of cirrus clouds and characterization of their radiative properties. Combinations of water vapor absorption channels (e.g., 1.38 µm), ice-water absorption channels (e.g., ...

Si-Chee Tsay; Philip M. Gabriel; Michael D. King; Graeme L. Stephens

1996-12-01T23:59:59.000Z

303

Satellite-based remote sensing of cirrus clouds: hyperspectral radiative transfer modeling, analysis of uncertainties in in-situ cloud extinction measurements and intercomparison of cirrus retrievals from a-train instruments  

E-Print Network (OSTI)

This dissertation consists of three parts, each devoted to a particular issue of significant importance for satellite-based remote sensing of cirrus clouds. In the first part, we develop and present a fast infrared radiative transfer model on the basis of the adding-doubling principle. The model aims to facilitate the radiative transfer computations involved in hyperspectral remote sensing applications. The model is applicable to a variety of cloud conditions, including vertically inhomogeneous or multilayered clouds. It is shown that for hyperspectral applications the model is two order-of-magnitude faster than the well-known discrete ordinate transfer (DISORT) model, while maintains a similar accuracy. The second part is devoted to the investigation of uncertainties in the FSSP (Forward Scattering Spectrometer Probe) measurement of cloud extinction by small ice particles. First, the single-scattering properties of small ice particles in cirrus clouds are derived and compared to those of equivalent spheres according to various definitions. It is found that, although small ice particles in cirrus clouds are often “quasi-spherical”, their scattering phase functions and asymmetry factors are significant different from those of ice spheres. Such differences may lead to substantial underestimation of cloud extinction in FSSP measurement, if small ice particles are assumed to be spheres. In the third part, we present a comparison of cirrus cloud optical thickness retrievals from two important instruments, MODIS (Moderate Resolution Imaging Spectrometer) and POLDER (Polarization and Directionality of Earth’s Reflection), on board NASA’s A-train satellite constellation. The comparison reveals a large difference. Several possible reasons are discussed. It is found that much of the difference is attributable to the difference between the MODIS and POLDER retrieval algorithm in the assumption of cirrus cloud bulk scattering properties. Potential implications of the difference for climate studies are investigated. An important finding is that the use of an unrealistic cirrus bulk scattering model might introduce artificial seasonal variation of cirrus optical thickness and shortwave radiative forcing into the retrieval.

Zhang, Zhibo

2008-08-01T23:59:59.000Z

304

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

305

The Quasi-stationary Structure of Radiating Shock Waves; 1, The One-temperature Fluid  

E-Print Network (OSTI)

We calculate the quasi-stationary structure of a radiating shock wave propagating through a spherically symmetric shell of cold gas by solving the time-dependent equations of radiation hydrodynamics on an adaptive grid. We show that this code successfully resolves the shock wave in both the subcritical and supercritical cases and, for the first time, we have reproduced all the expected features -- including the optically thin temperature spike at a supercritical shock front -- without invoking analytic jump conditions at the discontinuity. We solve the full moment equations for the radiation flux and energy density, but the shock wave structure can also be reproduced if the radiation flux is assumed to be proportional to the gradient of the energy density (the diffusion approximation), as long as the radiation energy density is determined by the appropriate radiative transfer moment equation. We find that Zel'dovich and Raizer's analytic solution for the shock wave structure accurately describes a subcritical...

Sincell, M W; Mihalas, D L

1997-01-01T23:59:59.000Z

306

Enhanced heat transfer for thermionic power modules  

DOE Green Energy (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

307

Contribution of maternal radionuclide burdens to prenatal radiation doses  

SciTech Connect

This report describes approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radioelements that provide a spectrum of metabolic and dosimetric characteristics. Evaluations are also presented for inhaled inert gases and for selected radiopharmaceuticals. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were calculated for these materials. The ratios were integrated with data from biokinetic transfer models to estimate radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. These results are given as tables of deposition and retention in the embryo/fetus as a function of gestational age at exposure and elapsed time following exposure. Methodologies described by MIRD were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed using a model situation that assumed a single injection of 1 {mu}Ci into a woman`s blood; independent calculations were performed for administration at successive months of pregnancy. Gestational -stage-dependent dosimetric tabulations are given together with tables of correlations and relationships. Generalized surrogate dose factors and categorizations are provided in the report to provide for use in operational radiological protection situations. These approaches to calculation yield radiation absorbed doses that can be converted to dose equivalent by multiplication by quality factor. Dose equivalent is the most common quantity for stating prenatal dose limits in the United States and is appropriate for the types of effect that are usually associated with prenatal exposure. If it is desired to obtain alternatives for other purposes, this value can be multiplied by appropriate weighting factors.

Sikov, M.R.; Hui, T.E.

1996-05-01T23:59:59.000Z

308

Direct Simulation of Internal Wave Energy Transfer  

Science Conference Proceedings (OSTI)

A three-dimensional nonhydrostatic numerical model is used to calculate nonlinear energy transfers within decaying Garrett–Munk internal wavefields. Inviscid wave interactions are calculated over horizontal scales from about 1 to 80 km and for ...

Kraig B. Winters; Eric A. D’Asaro

1997-09-01T23:59:59.000Z

309

Urban Sewage Delivery Heat Transfer System (2): Heat Transfer  

E-Print Network (OSTI)

The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH forms are analyzed and the calculation formulas and characteristic are also given. The results indicate that the efficiency of the parallel-flow form is greater than that of the reverse-flow, so the TDTH system must choose the parallel-flow form. The distance-load ratio (DLR) is defined and the minimum DLR is obtained by the technical and economic feasibility analysis. The paper will provide references for heat-transfer calculation and schematic determination of urban sewage cool or heat source applied delivery heat transfer methods.

Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

2006-01-01T23:59:59.000Z

310

Applied heat transfer  

Science Conference Proceedings (OSTI)

Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

Ganapathy, V.

1982-01-01T23:59:59.000Z

311

Radiation Budgets in the Western Tropical Pacific  

Science Conference Proceedings (OSTI)

The usefulness of the radiances measured by operational satellites in deriving radiation budgets is demonstrated by comparing the model calculations with the Earth Radiation Budget Experiment (ERBE) fluxes. The radiation budgets in the atmosphere ...

Mino-Dah Chou

1994-12-01T23:59:59.000Z

312

Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy  

DOE Green Energy (OSTI)

We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

Debreczeny, M.P.

1994-05-01T23:59:59.000Z

313

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

Science Conference Proceedings (OSTI)

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

314

Radiation Hydrodynamics  

DOE Green Energy (OSTI)

The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish hydrogen atoms from helium atoms, for instance. There are all just components of a mixed fluid in this case. So why do we have a special subject called ''radiation hydrodynamics'', when photons are just one of the many kinds of particles that comprise our fluid? The reason is that photons couple rather weakly to the atoms, ions and electrons, much more weakly than those particles couple with each other. Nor is the matter-radiation coupling negligible in many problems, since the star or nebula may be millions of mean free paths in extent. Radiation hydrodynamics exists as a discipline to treat those problems for which the energy and momentum coupling terms between matter and radiation are important, and for which, since the photon mean free path is neither extremely large nor extremely small compared with the size of the system, the radiation field is not very easy to calculate. In the theoretical development of this subject, many of the relations are presented in a form that is described as approximate, and perhaps accurate only to order of {nu}/c. This makes the discussion cumbersome. Why are we required to do this? It is because we are using Newtonian mechanics to treat our fluid, yet its photon component is intrinsically relativistic; the particles travel at the speed of light. There is a perfectly consistent relativistic kinetic theory, and a corresponding relativistic theory of fluid mechanics, which is perfectly suited to describing the photon gas. But it is cumbersome to use this for the fluid in general, and we prefer to avoid it for cases in which the flow velocity satisfies {nu} << c. The price we pay is to spend extra effort making sure that the source-sink terms relating to our relativistic gas component are included in the equations of motion in a form that preserves overall conservation of energy and momentum, something that would be automatic if the relativistic equations were used throughout.

Castor, J I

2003-10-16T23:59:59.000Z

315

Surface Radiation from GOES: A Physical Approach; Preprint  

DOE Green Energy (OSTI)

Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

Habte, A.; Sengupta, M.; Wilcox, S.

2012-09-01T23:59:59.000Z

316

Radiative Effects of Cloud-Type Variations  

Science Conference Proceedings (OSTI)

Radiative flux changes induced by the occurrence of different cloud types are investigated using International Satellite Cloud Climatology Project cloud data and a refined radiative transfer model from National Aeronautics and Space ...

Ting Chen; William B. Rossow; Yuanchong Zhang

2000-01-01T23:59:59.000Z

317

Measuring Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration...

318

Radiation Sources and Radioactive Materials (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

319

Low Dose Radiation Research Program: Characterizing Bystander...  

NLE Websites -- All DOE Office Websites (Extended Search)

To order to investigate these variables for low-linear transfer (LET) radiation, an electron microbeam irradiation system has been developed. An electron source provides a beam...

320

Modeling of Heat Transfer in Rooms in the Modelica Buildings Library  

E-Print Network (OSTI)

for convective and radiative heat transfer yielded a twofoldModeling of Heat Transfer in Rooms in the Modelica “of California. MODELING OF HEAT TRANSFER IN ROOMS IN THE

Wetter, Michael

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Plutonium 239 Equivalency Calculations  

SciTech Connect

This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

Wen, J

2011-05-31T23:59:59.000Z

322

Tachyons and Gravitational Cherenkov Radiation  

E-Print Network (OSTI)

We calculate the rate at which a free tachyon (faster than light particle) would emit gravitational radiation. It is very small.

Schwartz, Charles

2011-01-01T23:59:59.000Z

323

Unruh radiation and Interference effect  

E-Print Network (OSTI)

A uniformly accelerated charged particle feels the vacuum as thermally excited and fluctuates around the classical trajectory. Then we may expect additional radiation besides the Larmor radiation. It is called Unruh radiation. In this report, we review the calculation of the Unruh radiation with an emphasis on the interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. Our calculation is based on a stochastic treatment of the particle under a uniform acceleration. The basics of the stochastic equation are reviewed in another report in the same proceeding. In this report, we mainly discuss the radiation and the interference effect.

Iso, Satoshi; Zhang, Sen

2011-01-01T23:59:59.000Z

324

Unruh radiation and Interference effect  

E-Print Network (OSTI)

A uniformly accelerated charged particle feels the vacuum as thermally excited and fluctuates around the classical trajectory. Then we may expect additional radiation besides the Larmor radiation. It is called Unruh radiation. In this report, we review the calculation of the Unruh radiation with an emphasis on the interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. Our calculation is based on a stochastic treatment of the particle under a uniform acceleration. The basics of the stochastic equation are reviewed in another report in the same proceeding. In this report, we mainly discuss the radiation and the interference effect.

Satoshi Iso; Yasuhiro Yamamoto; Sen Zhang

2011-02-23T23:59:59.000Z

325

Estimates for Infrared Transfer in Finite Clouds  

Science Conference Proceedings (OSTI)

Upper and lower bounds are computed for the infrared radiance within a cloud of finite size. The bounds are established by an iterative procedure, analogous to the iterative solution of the radiative transfer equation, except that at every ...

D. M. O'Brien

1986-02-01T23:59:59.000Z

326

Sandia Laboratories radiation facilities  

SciTech Connect

This brochure is designed as a basic source of information for prospective users of Sandia Laboratories Radiation Facilities. It contains a brief description of the various major radiation sources, a summary of their output characteristics, and additional information useful to experimenters. Radiation source development and source upgrading is an ongoing program, with new source configurations and modes of operation continually being devised to satisfy the ever-changing radiation requirements of the users. For most cases, the information here should allow a potential user to assess the applicability of a particular radiation facility to a proposed experiment and to permit some preirradiation calculations and planning.

Choate, L.M.; Schmidt, T.R.; Schuch, R.L.

1977-07-01T23:59:59.000Z

327

Vibrational energy transfer in a diesel engine  

Science Conference Proceedings (OSTI)

The paths of vibrational energy transfer in a diesel engine were investigated in order to obtain insight into ways of reducing this transfer to the exterior surfaces and thereby reduce the radiated noise. The engine was tested in a nonrunning condition with simulated internal forces in order to study the different transfer paths separately. Vibration response measurements were made of individual engine components and lumped?parameter models were developed to simulate this response. These models were then used to determine component design changes that would reduce the energy transfer. Two design changes were implemented in the engine and a reduction of the energy transfer was achieved as predicted.

R. G. DeJong; R. H. Lyon

1977-01-01T23:59:59.000Z

328

Casimir-Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies  

E-Print Network (OSTI)

We study the Casimir-Lifshitz force and the radiative heat transfer occurring between two arbitrary bodies, each one held at a given temperature, surrounded by environmental radiation at a third temperature. The system, in stationary configuration out of thermal equilibrium, is characterized by a force and a heat transfer depending on the three temperatures, and explicitly expressed in terms of the scattering operators of each body. We find a closed-form analytic expression valid for bodies of any geometry and dielectric properties. As an example, the force between two parallel slabs of finite thickness is calculated, showing the importance of the environmental temperature as well as the occurrence of a repulsive interaction. An analytic expression is also provided for the force acting on an atom in front of a slab. Our predictions can be relevant for experimental and technological purposes.

Riccardo Messina; Mauro Antezza

2010-12-23T23:59:59.000Z

329

Cherenkov Radiation from e+e- Pairs and Its Effect on nu e Induced Showers  

E-Print Network (OSTI)

5] J. V. Jelley, Cherenkov Radiation and its applications (calculated the Cherenkov radiation from e + e ? pairs as a? 2 [1?? 2 ?(?)]), the radiation is suppressed compared to

Mandal, Sourav K.; Klein, Spencer R.; Jackson, J. David

2005-01-01T23:59:59.000Z

330

Heat Transfer Simulation of Reactor Cavity Cooling System Experimental Facility using RELAP5-3D and Generation of View Factors using MCNP  

E-Print Network (OSTI)

As one of the most attractive reactor types, The High Temperature Gas-cooled Reactor (HTGR) is designed to be passively safe with the incorporation of Reactor Cavity Cooling System (RCCS). In this paper, a RELAP5-3D simulation model is set up based on the 1/16 scale experimental facility established by Texas A&M University. Also, RELAP5-3D input decks are modified to replicate the experiment procedures and the experimental results are compared with the simulation results. The results show there is a perfect match between experimental and simulation results. Radiation heat transfer dominates in the heat transfer process of high temperature gas-cooled reactor due to its high operation temperature. According to experimental research done with the RCCS facility in Texas A&M University, radiation heat transfer takes up 80% of the total heat transferred to standing pipes. In radiation heat transfer, the important parameters are view factors between surfaces. However, because of the geometrical complexity in the experimental facility, it is hard to use the numerical method or analytical view factor formula to calculate view factors. In this project, MCNP based on the Monte Carlo method is used to generate view factors for RELAP5-3D input. MCNP is powerful in setting up complicated geometry, source definition and tally application. In the end, RCCS geometry is set up using MCNP and view factors are calculated.

Wu, Huali

2013-08-01T23:59:59.000Z

331

Broadband Longwave Radiative Cooling Rates in Inhomogeneous Stratocumulus Clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

Broadband Longwave Radiative Cooling Rates in Broadband Longwave Radiative Cooling Rates in Inhomogeneous Stratocumulus Clouds M. Ovtchinnikov and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma R. F. Cahalan National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland A. B. Davis Los Alamos National Laboratory Los Alamos, New Mexico R. G. Ellingson and E. E.Takara Florida State University Tallahassee, Florida K. F. Evans University of Colorado Boulder, Colorado Introduction We are concerned with three-dimensional (3D) effects of longwave (LW) radiative transfer (RT) through inhomogeneous clouds. In cloud models, LW RT is typically calculated under the independent

332

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

333

Nonequilibrium Electromagnetic Fluctuations: Heat Transfer and Interactions  

Science Conference Proceedings (OSTI)

The Casimir force between arbitrary objects in equilibrium is related to scattering from individual bodies. We extend this approach to heat transfer and Casimir forces in nonequilibrium cases where each body, and the environment, is at a different temperature. The formalism tracks the radiation from each body and its scatterings by the other objects. We discuss the radiation from a cylinder, emphasizing its polarized nature, and obtain the heat transfer between a sphere and a plate, demonstrating the validity of proximity transfer approximation at close separations and arbitrary temperatures.

Krueger, Matthias; Kardar, Mehran [Massachusetts Institute of Technology, Department of Physics, Cambridge, Massachusetts 02139 (United States); Emig, Thorsten [Laboratoire de Physique Theorique et Modeles Statistiques, CNRS UMR 8626, Ba circumflex timent 100, Universite Paris-Sud, 91405 Orsay cedex (France)

2011-05-27T23:59:59.000Z

334

Shielding calculations at dismantled synchrocyclotron  

SciTech Connect

The Space Radiation Effects Laboratory located in Newport News, Virginia, was operated by the College of William and Mary for the National Aeronautics and Space Administration. A synchrocyclotron which was formerly in operation in this building was removed in 1980. At several locations, the scattered radiation caused an induced radioactivity within the walls of the cyclotron room. A radiological survey has been performed to determine the amount of residual radioactivity on the walls. Calculations were performed to determine the thickness of the concrete walls and floor for shielding the residual radiation in the cyclotron room. Recommendations are made to minimize exposures from the residual radioactivity on the walls and floor of the cyclotron room to potential occupants working in the building. 19 refs., 1 fig., 2 tabs.

Yalcintas, M.G.

1987-01-01T23:59:59.000Z

335

Coherent Radiation in Insertion Devices  

E-Print Network (OSTI)

We calculate the coherent radiation in an undulator/wiggler with a vacuum chamber of arbitrary cross section. The backward radiation is a coherent and it has wavelengths about twice the period of the undulator/wiggler. Mostly of coherent radiation is going with the wavelengths approximately the bunch length at small angles however.

Mikhailichenko, A A

2011-01-01T23:59:59.000Z

336

Hyperon radiative decay  

SciTech Connect

The radiative decay widths of the low-lying strange baryons are calculated both within the relativistic quark bag model and the nonrelativistic potential model. These widths are found to depend sensitively upon the quark-model dynamics through multiplet mixing and q/sup 4/q-bar admixtures. The comparison between our calculated results and the very limited experimental data is discussed.

Kaxiras, E.; Moniz, E.J.; Soyeur, M.

1985-08-01T23:59:59.000Z

337

Validation and Sensitivity Analysis of a New Atmosphere–Soil–Vegetation Model. Part II: Impacts on In-Canopy Latent Heat Flux over a Winter Wheat Field Determined by Detailed Calculation of Canopy Radiation Transmission and Stomatal Resistance  

Science Conference Proceedings (OSTI)

This paper describes the validation and sensitivity analysis of an atmosphere–soil–vegetation model. The model consists of one-dimensional multilayer submodels for the atmosphere, soil, and vegetation and a radiation scheme for the transmission ...

Haruyasu Nagai

2003-03-01T23:59:59.000Z

338

A Comprehensive Radiation Scheme for Numerical Weather Prediction Models with Potential Applications in Climate Simulations  

Science Conference Proceedings (OSTI)

A comprehensive scheme for the parameterization of radiative transfer in numerical weather Prediction (NWP) models has been developed. The scheme is based on the solution of the ?-two-stream version of the radiative transfer equation ...

Bodo Ritter; Jean-Francois Geleyn

1992-02-01T23:59:59.000Z

339

Fundamentals of Radiation Dosimetry  

Science Conference Proceedings (OSTI)

The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

Bos, Adrie J. J. [Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629JB Delft (Netherlands)

2011-05-05T23:59:59.000Z

340

Modelling of Radiative Transfer in Light Sources  

E-Print Network (OSTI)

Institute of Applied Physics, RAS, 46 Ulyanov Street, Nizhny Novgorod 603950, Russia I. Y. Dodin and N. J particles could not travel faster than light. Hence, the final energy is estimated from Eq. 52 as a -1 Research through Grant No. 08-02-01209-a and the NNSA under the SSAA Program through DOE Research un- der

Eindhoven, Technische Universiteit

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Statistical Description of Radiation Transfer in Clouds  

Science Conference Proceedings (OSTI)

The statistical characteristics of simulated cloud fields constructed based on Poisson point fluxes are studied. The input parameters of mathematical models of cloudiness include the cloud fraction and the mean horizontal size of clouds ...

Georgi A. Titov

1990-01-01T23:59:59.000Z

342

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

343

Electron Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example, photosynthesis and nitrogen fixation (to name but two of the most well-known biochemical activities) are driven by electron transfer processes. It is unsurprising, therefore, that much effort has been placed on understanding the fundamental principles that control and define the simple act of adding and/or removing electrons from chemical species.

344

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from...

345

Posters Radiation Impacts on Global Climate Models F. Baer, N. Arsky, and K. Rocque  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Posters Radiation Impacts on Global Climate Models F. Baer, N. Arsky, and K. Rocque University of Maryland College Park, Maryland Climate Prediction and Radiative Heating Climate models are driven by forcing, and these forces are seen primarily by the thermal field in general circulation models (GCMs). The major forces that affect the thermal field are longwave radiative (LWR) heating, shortwave radiative (SWR) heating, and convection (cumulus, etc.). These forcing effects are cycled through the thermal field to the motion field by nonlinear transfer. The dependent variables-in particular, temperature (T), moisture (Q) and especially clouds-evolve in time in a model and determine the subsequent forcing. If the dependent variables are not accurately calculated in space and time, the forcing

346

NETL: Technology Transfer - History of Technology Transfer  

History of Technology Transfer Technology transfer differs from providing services or products (e.g., acquisition) and financial assistance (e.g., ...

347

Theory of electron transfer and ionization  

DOE Green Energy (OSTI)

The main effort reported is directed toward charge transfer and ionization in high energy atomic collisions. The research may be divided into classical trajectory calculations, quantum - mechanical collision theory, and phenomenological treatments of quantal interference effects in heavy ion collisions.

Becker, R.L.

1979-01-01T23:59:59.000Z

348

Nonlinear Energy Transfer Between Wind Waves  

Science Conference Proceedings (OSTI)

A computational scheme for calculating transfer functions is prepared, which gives much improved numerical stability and smoothness compared with previous studies. Besides, a detailed analysis is made of the kernel function, in which the essence ...

Akira Masuda

1980-12-01T23:59:59.000Z

349

A New Narrowband Radiation Model for Water Vapor Absorption  

Science Conference Proceedings (OSTI)

The accuracy of radiation models is a critical issue in climate studies. However, calculations from different radiation models used in climate calculations disagree with one another, and with more detailed models, at levels significant to many ...

Juying X. Warner; Robert G. Ellingson

2000-05-01T23:59:59.000Z

350

Alpha Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

351

Handbook of heat transfer fundamentals (2nd edition)  

SciTech Connect

Recent advances in heat transfer are discussed, providing data and methodology to solve a wide range of heat transfer problems. The topics considered include: basic concepts of heat transfer, mathematical methods, thermophysical properties, conduction, numerical methods in heat transfer, natural convection, and internal duct flow and external flows in forced convection. Also addressed are: rarefied gases, electric and magnetic fields, condensation, boiling, two-phase flow, and radiation.

Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

1985-01-01T23:59:59.000Z

352

RADIATIVE PROPERTY MEASUREMENTS OF OXY-FUEL FLAMES  

Science Conference Proceedings (OSTI)

As part of the DOE Existing Plants, Emissions and Capture (EPEC) program, oxy-combustion is being investigated as a method to simplify carbon capture and reduce the parasitic energy penalties associated with separating CO2 from a dilute flue gas. Gas-phase radiation heat transfer in boilers becomes significant when shifting from air-firing to oxycombustion, and must be accurately represented in models. Currently, radiative property data are not widely available in the literature for conditions appropriate to this environment. In order to facilitate the development and validation of accurate oxy-combustion models, NETL conducted a series of studies to measure radiation properties of oxy-fuel flames at adiabatic flame temperatures of 1750 - 1950K, and product molar concentrations ranging from 95% CO2 to 100% steam, determined by equilibrium calculations. Transmission coefficients were measured as a function of wavelength using a mid-IR imaging spectrometer and a blackbody radiation source. Additionally, flame temperatures were calculated using data collected within CO2 and H2O absorption bands. Experimental results were compared to two statistical narrowband models and experimental data from literature sources. These comparisons showed good overall agreement, although differences between the models and experimental results were noted, particularly for the R branch of the 2.7 ?m H2O band.

Clinton R. Bedick; Stephen K. Beer; Kent H. Casleton; Benjamin T. Chorpening; David W. Shaw; M. Joseph Yip

2011-03-01T23:59:59.000Z

353

Radiation: Radiation Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

354

Protection Against Ionizing Radiation in Extreme Radiation ...  

Science Conference Proceedings (OSTI)

Protection Against Ionizing Radiation in Extreme Radiation-resistant Microorganisms. ... Elucidated radiation protection by intracellular halides. ...

2013-05-01T23:59:59.000Z

355

A Comparison Between Modeled and Measured Clear-Sky Radiative Shortwave Fluxes in Arctic Environments, with Special Emphasis on Diffuse Radiation  

SciTech Connect

The ability of the SBDART radiative transfer model to predict clear-sky diffuse and direct normal broadband shortwave irradiances is investigated. Model calculations of these quantities are compared with data from the Atmospheric Radiation Measurement (ARM) program’s Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites. The model tends to consistently underestimate the direct normal irradiances at both sites by about 1%. In regards to clear-sky diffuse irradiance, the model overestimates this quantity at the SGP site in a manner similar to what has been observed in other studies (Halthore and Schwartz, 2000). The difference between the diffuse SBDART calculations and Halthore and Schwartz’s MODTRAN calculations is very small, thus demonstrating that SBDART performs similarly to MODTRAN. SBDART is then applied to the NSA site, and here it is found that the discrepancy between the model calculations and corrected diffuse measurements (corrected for daytime offsets, Dutton et al., 2001) is 0.4 W/m2 when averaged over the 12 cases considered here. Two cases of diffuse measurements from a shaded “black and white” pyranometer are also compared with the calculations and the discrepancy is again minimal. Thus, it appears as if the “diffuse discrepancy” that exists at the SGP site does not exist at the NSA sites. We cannot yet explain why the model predicts diffuse radiation well at one site but not at the other.

Barnard, James C.; Flynn, Donna M.

2002-10-08T23:59:59.000Z

356

My Trip Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Calculator Trip Calculator Benefits Why is fuel economy important? Climate Change Oil Dependence Costs Sustainability Save Money Vehicles produce about half of the...

357

Radiative Energy Budget Estimates for the 1979 Southwest Summer Monsoon  

Science Conference Proceedings (OSTI)

Obsemations of temperature moisture, cloud amount, cloud height and soil-derived aerosols are incorporated into radiative transfer models to yield estimates of the tropospheric and surface radiative energy budgets for the summer Monsoon of 1979. ...

Steven A. Ackerman; Stephen K. Cox

1987-10-01T23:59:59.000Z

358

Infrared Radiative Properties Of the Maritime Antarctic Atmosphere  

Science Conference Proceedings (OSTI)

The longwave radiation environment of the Antarctic Peninsula and Southern Ocean has been investigated using radiometric Fourier Transform Infrared (FTIR) measurements of atmospheric emission in conjunction with detailed radiative transfer ...

Dan Lubin

1994-01-01T23:59:59.000Z

359

ARM - Publications: Science Team Meeting Documents: ARM Radiative...  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Radiative Transfer Modeling and Remote Sensing Clough, Shepard Atmospheric and Environmental Research Shephard, Mark Atmospheric and Environmental Research, Inc. Mlawer, Eli...

360

AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES  

Science Conference Proceedings (OSTI)

We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

Robinson, Tyler D. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Catling, David C., E-mail: robinson@astro.washington.edu [Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195-1310 (United States)

2012-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Beta Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells...

362

RADIATION MONITORING  

E-Print Network (OSTI)

of Monitoring for Radiation Protection of Workers" in ICRPNo. 9, in "Advances in Radiation Protection and Dosimetry inDosimetry f o r Stray Radiation Monitoring on the CERN S i t

Thomas, R.H.

2010-01-01T23:59:59.000Z

363

Calculating reactor transfer functions by Pade approximation via Lanczos algorithm  

E-Print Network (OSTI)

;Analytis, G.Th., 1983. Ann. Nucl. Energy 10, 31±40. Bell, G.I., Glasstone, S., 1970. Nuclear Reactor Theory to the complexity of the dynamic problem, unlike for static cases, most problems of reactor noise theory are treated reactor while the detector is at three dierent positions. Z. Kuang et al. / Annals of Nuclear Energy 28

Pázsit, Imre

364

Handbook of heat and mass transfer. Volume 1  

Science Conference Proceedings (OSTI)

This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 1 emphasizes heat transfer operations. The contents are: Fundamentsls of momentum and heat transfer. Scaling in laminar and turbulent heat and mass transfer. Heat flux in the Benar-Rayleigh problem. Hydrodynamics of free liquid jets and their influence on heat transfer. Natural convection heat transfer to power law fluids. Natural convection in evaporating droplets. Principles of heat and mass transfer with liquid evaporation. Bubble nucleation, growth, and departure in boiling heat transfer. Forced convection boiling in uniformly heated channels. Transient boiling heat transfer under forced convection. Prediction of heat transfer during forced convection subcooled boiling. Liquid metal heat transfer in turbulent pipe flows. Mixed convection in buoyant plumes. Nucleation and growth in the diffusion cloud chamber. Convective and radiative heat transfer of flowing gaseous-solid suspensions. Heat transfer in gas-solid fluidized beds. Gas convection and unsteady conduction in fluid bed heat transfer. Heat transfer between tubes and gas-solid fluid beds. Periodic heat transfer through inhomogeneous layers.

Cheremisinoff, N.P.

1986-01-01T23:59:59.000Z

365

R-value Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Wall Systems Advanced Wall Systems ORNL Home ASTM Testing BEP Home Related Sites Work With Us Advanced Wall Systems Home Interactive Calculators New Whole Wall R-value Calculators As A Part Of The ORNL Material Database For Whole Building Energy Simulations These calculators are replacing the old Whole Wall Thermal Performance calculator. These new versions of the calculator contain many new features and are part of the newly developed Interactive Envelope Materials Database for Whole-Building Energy Simulation Programs. The simple version of the Whole Wall R-value calculator is now available for use. This calculator is similar to the previous Whole Wall Thermal Performance calculator and does not require any downloads from the user. However, it was updated to allow calculations for fourteen wall details

366

Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing:  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing: Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing: An Example from M-PACE Title Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing: An Example from M-PACE Publication Type Journal Article Year of Publication 2011 Authors de Boer, Gijs, William D. Collins, Surabi Menon, and Charles N. Long Journal Atmospheric Chemistry and Physics Volume 11 Start Page 11937 Pagination 11937-11949 Abstract Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

367

Optical Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Optical Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

368

Ionizing Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Ionizing Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

369

Radiative Forcing of Stationary Planetary Waves  

Science Conference Proceedings (OSTI)

The stationary wave components of the planetary-scale circulation are maintained by topographic forcing and by latent and sensible heat transfers and radiation. These waves have a potential vorticity balance mainly due to vertically differential ...

Leo J. Donner; Hsiao-Lan Kuo

1984-10-01T23:59:59.000Z

370

Transferring Data at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

371

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

372

Accelerating the transfer in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

373

Passive-solar directional-radiating cooling system  

DOE Patents (OSTI)

A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

Hull, J.R.; Schertz, W.W.

1985-06-27T23:59:59.000Z

374

Passive-solar directional-radiating cooling system  

DOE Patents (OSTI)

A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

1986-01-01T23:59:59.000Z

375

Radiation Physics Portal  

Science Conference Proceedings (OSTI)

NIST Home > Radiation Physics Portal. Radiation Physics Portal. ... more. >> see all Radiation Physics programs and projects ... ...

2013-08-08T23:59:59.000Z

376

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

377

Cooperative heat transfer and ground coupled storage system  

DOE Patents (OSTI)

A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

Metz, Philip D. (Rocky Point, NY)

1982-01-01T23:59:59.000Z

378

Radiative Heating Rates for Saharan Dust  

Science Conference Proceedings (OSTI)

A combined longwave and shortwave radiative transfer model was used to determine effects of Saharan dust on the radiative fluxes and heating/cooling rates in the atmosphere. Cases are treated for cloud-free and overcast conditions over the ocean ...

Toby N. Carlson; Stanley G. Benjamin

1980-01-01T23:59:59.000Z

379

Electron transfer in systems of well-defined geometry  

DOE Green Energy (OSTI)

Two mesopyropheophorbide macrocycles can be joined via two covalent linkages to produce a cyclophane. It is possible to insert one or two Mg atoms into the cyclophane. The Qy transitions of the macrocycles are nearly orthogonal. The visible absorption spectrum of the monometal cyclophane is nearly a superposition of the spectra of the monomers. Emission from the monometal cyclophane arises primarily from the red most absorbing chromophore. The excited state difference spectrum shows that both macrocycles are excited. Fluorescence lifetimes of the monometal cyclophane decrease with increasing dielectric strength. Changes in the fluorescence and the triplet yield parallel the shortening of the singlet lifetime. Thus the radiative rate is solvent independent. This is in contrast to what one would expect if the emitting state had charge transfer character. Since the fluorescence lifetime is dependent on dielectric, the nonradiative relaxation from the singlet state is due to formation of a radical pair. The decay rate of the postulated radical pair was monitored by observing the kinetics of ground state repopulation. For the geometry of this cyclophane, electron transfer proceeds relatively slowly (k = 3 x 10/sup 9/ sec/sup -1/) in the forward direction. Modeling calculations indicate that the rate of annihilation of the radical pair may decrease as the solvent dielectric decreases.

Overfield, R.E.; Kaufmann, K.J.; Wasielewski, M.R.

1980-01-01T23:59:59.000Z

380

Multiphase flow calculation software  

DOE Patents (OSTI)

Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

Fincke, James R. (Idaho Falls, ID)

2003-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Oceanic Heat Flux Calculation  

Science Conference Proceedings (OSTI)

The authors review the procedure for the direct calculation of oceanic heat flux from hydrographic measurements and set out the full “recipe” that is required.

Sheldon Bacon; Nick Fofonoff

1996-12-01T23:59:59.000Z

382

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... For energy dependent cross sections please go to ... The neutron scattering length density is defined ... To calculate scattering length densities enter a ...

383

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

384

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... The first calculation will take the longest because the program has to download ... will take a few seconds as the database of isotopes is downloaded ...

385

Simplified scheme or radioactive plume calculations  

SciTech Connect

A simplified mathematical scheme to estimate external whole-body $gamma$ radiation exposure rates from gaseous radioactive plumes was developed for the Rio Blanco Gas Field Nuclear Stimulation Experiment. The method enables one to calculate swiftly, in the field, downwind exposure rates knowing the meteorological conditions and $gamma$ radiation exposure rates measured by detectors positioned near the plume source. The method is straightforward and easy to use under field conditions without the help of mini-computers. It is applicable to a wide range of radioactive plume situations. It should be noted that the Rio Blanco experiment was detonated on May 17, 1973, and no seep or release of radioactive material occurred. (auth)

Gibson, T.A.; Montan, D.N.

1976-11-21T23:59:59.000Z

386

Radiation Cataract  

NLE Websites -- All DOE Office Websites (Extended Search)

radiation including patients undergoing diagnostic CT scans or radiotherapy, atomic bomb survivors, residents of radioactively contaminated buildings, victims of the...

387

Non-equilibrium electromagnetic fluctuations: Heat transfer and interactions  

E-Print Network (OSTI)

The Casimir force between arbitrary objects in equilibrium is related to scattering from individual bodies. We extend this approach to heat transfer and Casimir forces in non-equilibrium cases where each body, and the environment, is at a different temperature. The formalism tracks the radiation from each body and its scatterings by the other objects. We discuss the radiation from a cylinder, emphasizing its polarized nature, and obtain the heat transfer between a sphere and a plate, demonstrating the validity of proximity transfer approximation at close separations and arbitrary temperatures.

Matthias Krüger; Thorsten Emig; Mehran Kardar

2011-02-18T23:59:59.000Z

388

Bases for pump pit requirements calculations  

DOE Green Energy (OSTI)

A task team is preparing the Process Requirements for the interarea transfer pump pits at the Defense Waste Process Facility (DWPF). The team is developing requirements to prevent flammable mixtures from forming and requires values to use on the generation of various components such as benzene, hydrogen, and N20. The purpose of this memorandum is to document values to be used and to provide sample calculations using these values. There are no recommendations contained in this document.

Jacobs, R.A.

1992-02-13T23:59:59.000Z

389

BWRVIP-189: BWR Vessel and Internals Project, Evaluation of RAMA Fluence Methodology Calculational Uncertainty  

Science Conference Proceedings (OSTI)

This report documents the overall calculational uncertainty associated with the application of the Radiation Application Modeling Application (RAMA) Fluence Methodology to BWR reactor pressure vessel fluence evaluations.

2008-07-07T23:59:59.000Z

390

Improved Numerical Method for Calculation of 4-Body Transition Amplitudes  

E-Print Network (OSTI)

In order to study 4-body atomic collisions such as excitation-ionization, transfer with target excitation, and double electron capture, the calculation of a nine-dimensional numerical integral is often required. This calculation can become computationally expensive, especially when calculating fully differential cross sections (FDCS), where the positions and momenta of all the particles are known. We have developed a new technique for calculating FDCS using fewer computing hours, but more memory. This new technique allows for much more efficient calculations and the use of many fewer resources.

Harris, A L

2013-01-01T23:59:59.000Z

391

A unified numerical framework model for simulating flow, transport, and heat transfer in porous and fractured media  

E-Print Network (OSTI)

or chemical species in a multiphase porous medium system canand radiation in a multiphase, multicomponent, porous mediummultiphase flow, multicomponent transport, and heat transfer in porous

Wu, Yu-Shu

2004-01-01T23:59:59.000Z

392

Aqueous systems from first-principles : structure, dynamics and electron-transfer reactions  

E-Print Network (OSTI)

In this thesis, we show for the first time how it is possible to calculated fully from first-principles the diabatic free-energy surfaces of electron-transfer reactions. The excitation energy corresponding to the transfer ...

Sit, Patrick Hoi Land

2006-01-01T23:59:59.000Z

393

FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

C.E. Sanders

2005-06-30T23:59:59.000Z

394

NERSC's Data Transfer Nodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transfer Nodes Data Transfer Nodes Data Transfer Nodes Overview The data transfer nodes are NERSC servers dedicated to performing transfers between NERSC data storage resources such as HPSS and the NERSC Global Filesystem (NGF), and storage resources at other sites including the Leadership Computing Facility at ORNL (Oak Ridge National Laboratory). These nodes are being managed (and monitored for performance) as part of a collaborative effort between ESnet, NERSC, and ORNL to enable high performance data movement over the high-bandwidth 10Gb ESnet wide-area network (WAN). Restrictions In order to keep the data transfer nodes performing optimally for data transfers, we request that users restrict interactive use of these systems to tasks that are related to preparing data for transfer or are directly

395

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

396

MODIFIED ZONE METHOD CALCULATOR  

NLE Websites -- All DOE Office Websites (Extended Search)

Zone Method is recommended for R-value calculations in steel stud walls by the 1997 ASHRAE Handbook of Fundamentals ASHRAE 1997. The Modified Zone Method is similar to the...

397

Federal Laboratory Technology Transfer  

Science Conference Proceedings (OSTI)

... Department of Energy (DOE) ... and business development involved in successful technology transfer. 8. Government-industry interactions. ...

2012-11-14T23:59:59.000Z

398

SRNL - Technology Transfer - Home  

Technology Transfer. Research and Development Savannah River Nuclear Solutions, LLC (SRNS) scientists and engineers develop technologies designed to improve ...

399

Tech Transfer Report 2000  

Science Conference Proceedings (OSTI)

Page 1. Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report ...

2010-07-27T23:59:59.000Z

400

22.01 Introduction to Ionizing Radiation, Fall 2003  

E-Print Network (OSTI)

Introduction to basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. Discusses natural and man-made radiation sources, energy deposition and dose calculations, ...

Coderre, Jeffrey A.

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Global Character of the Flux of Downward Longwave Radiation  

Science Conference Proceedings (OSTI)

Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because ...

Graeme L. Stephens; Martin Wild; Paul W. Stackhouse Jr.; Tristan L’Ecuyer; Seiji Kato; David S. Henderson

2012-04-01T23:59:59.000Z

402

An Accurate and Efficient Radiation Algorithm for Middle Atmosphere Models  

Science Conference Proceedings (OSTI)

An accurate, efficient, and user-friendly radiation algorithm is developed for calculating net radiative heating rate in middle atmosphere models. The Curtis matrix interpolation scheme originally developed by Zhu is adopted with explicit ...

Xun Zhu

1994-12-01T23:59:59.000Z

403

Radiation effects in space: The Clementine I mission  

SciTech Connect

The space radiation environment for the CLEMENTINE I mission was investigated using a new calculational model, CHIME, which includes the effects of galactic cosmic rays (GCR), anomalous component (AC) species and solar energetic particle (SEP) events and their variations as a function of time. Unlike most previous radiation environment models, CHIME is based upon physical theory and is {open_quotes}calibrated{close_quotes} with energetic particle measurements made over the last two decades. Thus, CHIME provides an advance in the accuracy of estimating the interplanetary radiation environment. Using this model we have calculated particle energy spectra, fluences and linear energy transfer (LET) spectra for all three major components of the CLEMENTINE I mission during 1994: (1) the spacecraft in lunar orbit, (2) the spacecraft during asteroid flyby, and (3) the interstate adapter USA in Earth orbit. Our investigations indicate that during 1994 the level of solar modulation, which dominates the variation in the GCR and AC flux as a function of time, will be decreasing toward solar minimum levels. Consequently the GCR and AC flux will be increasing during Y, the year and, potentially, will rise to levels seen during previous solar minimums. The estimated radiation environment also indicates that the AC will dominate the energetic particle spectra for energies below 30-50 MeV/nucleon, while the GCR have a peak flux at {approximately}300 MeV/nucleon and maintain a relatively high flux level up to >1000 MeV/nucleon. The AC significantly enhances the integrated flux for LET in the range 1 to 10 MeV/(mg/cm{sup 2}), but due to the steep energy spectra of the AC a relatively small amount of material ({approximately}50 mils of Al) can effectively shield against this component. The GCR are seen to be highly penetrating and require massive amounts of shielding before there is any appreciable decrease in the LET flux.

Guzik, T.G.; Clayton, E.; Wefel, J.P.

1994-12-20T23:59:59.000Z

404

Radiation Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Information << Timeline >> Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player July 31, 1942 The Army Corp of Engineers leases...

405

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

406

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

407

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiator Labs Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

408

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition » Radiator Labs Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

409

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition » Radiator Labs Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

410

MULTI-POINT RADIATION MONITOR  

SciTech Connect

A unique radiation monitor has been developed for performing wide-area field surveys for radiation sources. This device integrates the real-time output of multiple radiation detectors into a hand-held personal computer (e.g., a PDA) containing an intuitive graphical user interface. An independent hardware module supplies high voltage to the detectors and contains a rapid sampling system for transferring the detector count rates through an interface to the PDA. The imbedded firmware can be changed for various applications using a programmable memory card. As presently configured, the instrument contains a series of Geiger-Mueller (GM) tubes in a flexible detector string. This linear array of multiple sensors can be used by US Coast Guard and Customs container inspection personnel to measure radiation intensity in stacks of transport containers where physical access is impeded.

Hofstetter, K; Donna Beals, D; Ken Odell, K; Robert Eakle, R; Russell Huffman, R; Larry Harpring, L

2006-05-12T23:59:59.000Z

411

Spectral Absorption of Solar Radiation in Cloudy Atmospheres: A 20 cm?1 Model  

Science Conference Proceedings (OSTI)

The spectral of solar radiation in typical water clouds is determined using a radiative transfer model based on LOWTRAN transmission functions at a 20 cm?1 resolution and Monte Carlo simulations of photon pathlength distributions. Relative ...

Roger Davies; William L. Ridgway; Kyung-Eak Kim

1984-07-01T23:59:59.000Z

412

The CERES/ARM/GEWEX Experiment (CAGEX) for the Retrieval of Radiative Fluxes with Satellite Data  

Science Conference Proceedings (OSTI)

Results from a temporally intensive, limited area, radiative transfer model experiment are on-line for investigating the vertical profile of shortwave and longwave radiative fluxes from the surface to the top of the atmosphere (TOA). The CERES/...

Thomas P. Charlock; Timothy L. Alberta

1996-11-01T23:59:59.000Z

413

The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models  

Science Conference Proceedings (OSTI)

Guided by the results of doubling-adding solutions to the equation of radiative transfer, we develop a simple technique for incorporating in climate models the effect of the background tropospheric aerosol on solar radiation. Because the ...

James A. Coakley Jr.; Robert D. Cess; Franz B. Yurevich

1983-01-01T23:59:59.000Z

414

Downward Longwave Surface Radiation from Sun-Synchronous Satellite Data: Validation of Methodology  

Science Conference Proceedings (OSTI)

An extensive study has been carried out to validate a satellite technique for estimating downward longwave radiation at the surface. The technique, mostly developed earlier, uses operational sun-synchronous satellite data and a radiative transfer ...

Wayne L. Darnell; Shashi K. Gupta; W. Frank Staylor

1986-07-01T23:59:59.000Z

415

Radiative Effects on Turbulent Temperature Spectra and Budgets in the Planetary Boundary Layer  

Science Conference Proceedings (OSTI)

The effects of radiative energy transfer on turbulent temperature fields are studied, and preliminary estimates show the infrared “radiative dissipation” mechanism to be dominant. Spectral computations for the idealized homogeneous-isotropic case ...

M. Coantic; O. Simonin

1984-09-01T23:59:59.000Z

416

Numerical Modeling of Heat Pipe Radiator and Fin Size Optimization for Low and No Gravity Environments.  

E-Print Network (OSTI)

??A heat-pipe radiator element has been designed and modeled to study the efficiency of heat transfer for low and no gravity environments, like in lunar… (more)

Bieger, Virginia Ruth

2013-01-01T23:59:59.000Z

417

TVDG LET Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

To The B N L Tandem Van de Graaff Accelerator To The B N L Tandem Van de Graaff Accelerator TVDG LET Calculator This program calculates the Peak LET, Corresponding Energy and Range as well as the LET and Range at the Specified Energy for the Specified Ion in the Specified Target. Select the Target Material from the dropdown list. Select the Ion Specie from the dropdown list. Enter the Total Ion Energy in the text box. This is equal to the Atomic Mass times the Energy/Nucleon. Click the 'Calculate' button or press the 'Enter' key. The Peak LET, Corresponding Energy and Range as well as the LET and Range at the Specified Energy for the Specified Ion in the Specified Target will be returned. Select your Target from the list Air Aluminum Oxide Carbon Copper Gallium Arsenide Gold Polyester Polyethylene Silicon Silicon Dioxide Skin Soda Lime Glass Sodium Iodide Water Select your Ion from the list

418

Solar Reflectance Index Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflectance Index Calculator Reflectance Index Calculator ASTM Designation: E 1980-01 Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Wind Speed (mph) Wind Speed (m/s) Please input both the SR and the TE and the convection coeficient and surface temperature will be calculated

419

Spin resonance strength calculations  

SciTech Connect

In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

Courant,E.D.

2008-10-06T23:59:59.000Z

420

Transfer Credit Approval Form For Transfer Terms and Exchange Programs  

E-Print Network (OSTI)

Transfer Credit Approval Form For Transfer Terms and Exchange Programs CONTINUED Student/transfer term is not a Dartmouth-sponsored program. ______ The regulations for exchange/transfer terms of the COI will review my transfer term application and I may only receive Dartmouth credit for a transfer

Myers, Lawrence C.

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Definition of Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of...

422

How to Detect Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How...

423

Radiation in Particle Simulations  

SciTech Connect

Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of fusion ignition plasmas including the important effects of radiation emission and absorption.

More, R; Graziani, F; Glosli, J; Surh, M

2010-11-19T23:59:59.000Z

424

Radiative Importance of ÂŤThinÂŽ Liquid Water Clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Accomplishments of the Instantaneous Radiative Flux (IRF) Working Group August 2006 AERI Observations at Southern Great Plains Improve Infrared Radiative Transfer Models Turner et al., JAS, 2004 * AERI observations used to evaluate clear sky IR radiative transfer models * Long-term comparisons have improved - Spectral line database parameters - Water vapor continuum absorption models * Reduced errors in computation of downwelling radiative IR flux by approx 4; current uncertainty is on the order of 1.5 W/m 2 AERI - (Pre-ARM Model) AERI - (Model in 2003) 1 RU = 1 mW / (m 2 sr cm -1 ) Excellent Agreement in Clear Sky Shortwave Radiative Transfer Between Obs and Calcs Shortwave Flux Bias (Solid) Shortwave Flux RMS (Hatched) W m -2 * Comparison of shortwave radiative flux at the surface

425

RADIATION EFFECTS OF ALPHA PARTICLES ON URANIUM HEXAFLUORIDE  

SciTech Connect

Alpha irradiation of uranium hexafluoride results in the formation of fluorine and intermediate, solid uranium fluorides: these products react with each other, apparently by a radiation-induced process. to reform uranium hexifluoride. The number of molecules of uranium hexafluoride decomposed, excluding recombiapproximately 1 in the temperature range 21 to 87 deg C. Irradiation of a mixture of fluorine and uranium hexafluoride in a vessel containing uranium fluorides substantistes the postulated mechanism. At fluorine pressures of 50 to 100 mm Hg, there is an increase, rather than a decrease, in uranium hexafluoride pressure. Rates of both decomposition and recombination processes appear to depend only on the rates of radiation energy absorption. Equations formnulated to describe the combined decomposition and reformation reactions can be used to calculate equilibrium concentrations of uranium hexfluoride and fluorine when the intensity of the radiation source is defined. The effects of three diluent gases, helium, nitrogen and oxygen, were studied in an attempt to find possible electron transfer processes. (auth)

Bernhardt, H.A.; Davis, W. Jr.; Shiflett, C.H.

1958-06-01T23:59:59.000Z

426

Mitigation Efforts Calculator (MEC)  

Science Conference Proceedings (OSTI)

The Mitigation Efforts Calculator (MEC) has been developed by the International Institute for Applied Systems Analysis (IIASA) as an online tool to compare greenhouse gas (GHG) mitigation proposals by various countries for the year 2020. In this paper, ... Keywords: Business intelligence, Cost curves, Decision model, Interactive system, Optimisation

Thanh Binh Nguyen; Lena Hoeglund-Isaksson; Fabian Wagner; Wolfgang Schoepp

2013-04-01T23:59:59.000Z

427

Tunnel closure calculations  

SciTech Connect

When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

Moran, B.; Attia, A.

1995-07-01T23:59:59.000Z

428

Radiation hydrodynamics with Adaptive Mesh Refinement and application to prestellar core collapse. I Methods  

E-Print Network (OSTI)

Radiative transfer has a strong impact on the collapse and the fragmentation of prestellar dense cores. We present the radiation-hydrodynamics solver we designed for the RAMSES code. The method is designed for astrophysical purposes, and in particular for protostellar collapse. We present the solver, using the co-moving frame to evaluate the radiative quantities. We use the popular flux limited diffusion approximation, under the grey approximation (one group of photon). The solver is based on the second-order Godunov scheme of RAMSES for its hyperbolic part, and on an implicit scheme for the radiation diffusion and the coupling between radiation and matter. We report in details our methodology to integrate the RHD solver into RAMSES. We test successfully the method against several conventional tests. For validation in 3D, we perform calculations of the collapse of an isolated 1 M_sun prestellar dense core, without rotation. We compare successfully the results with previous studies using different models for r...

Commercon, Benoit; Audit, Edouard; Hennebelle, Patrick; Chabrier, Gilles

2011-01-01T23:59:59.000Z

429

The Radiative Effects of Aerosols on Photochemical Smog: Measurements and Modeling  

E-Print Network (OSTI)

. High concentrations of both ozone and aerosols are observed in the eastern United States during stagnant weather conditions associated with transport from the W or NW; they show similar spatial and temporal patterns. We discuss a causal mechanism that may contribute to this correlation - the radiative effects of aerosols on photolysis rates. We measured j(NO 2 ), the rate coefficient for nitrogen dioxide photolysis, and column aerosol optical depths at NASA/Goddard Space Flight Center in Greenbelt, MD (39.01 ffi N and 76.87 ffi W) during the smog seasons of 1995 and 1997. Direct measurements and radiative transfer model calculations show that particles can reduce surface j(NO 2 ) by 5 - 60%, depending on solar zenith angle and aerosol loading. Although particle scattering by dense aerosol loading on smoggy days decreases near-surface photolysis rates, it increases the integrated boundary layer photolysis rates by up to 20% and leads to accelerated photochemical smog formation in ...

Kondragunta Dickerson Stenchikov; S. Kondragunta; R. R. Dickerson; G. Stenchikov; W. F. Ryan; B. Holben; R. W. Stewart

2000-01-01T23:59:59.000Z

430

Sandia Laboratories radiation facilities. Second edition  

SciTech Connect

This brochure is designed as a basic source of information for prospective users of Sandia Laboratories Radiation Facilities. It contains a brief description of the various major radiation sources, a summary of their output characteristics, and additional information useful to experimenters. Radiation source development and source upgrading is an ongoing program, with new source configurations and modes of operation continually being devised to satisfy the ever-changing radiation requirements of the users. For most cases, the information presented here should allow a potential user to assess the applicability of a particular radiation facility to a proposed experiment and to permit some preirradiation calculations and planning.

Choate, L.M.; Schmidt, T.R.

1979-07-01T23:59:59.000Z

431

Heat and mass transfer in a gas in a capillary induced by light with nonuniform intensity distribution over the beam cross section  

SciTech Connect

An analysis is presented of the heat and drift fluxes induced by velocity-selective light absorption in a single-component gas in a capillary tube. The light intensity distribution across the beam is assumed to have a Gaussian profile. Kinetic equations are solved numerically to calculate flux profiles and kinetic coefficients quantifying the contributions of surface and collisional mechanisms to light-induced transfer as functions of the Knudsen number, the ratio of the rate of radiative decay of the exited level and intermolecular collision frequency, accommodation coefficient, and the ratio of the tube radius to the light beam radius.

Chernyak, V. G., E-mail: vladimir.chernyak@usu.ru; Polikarpov, A. P., E-mail: alexey.polikarpov@usu.ru [Ural State University (Russian Federation)

2011-01-15T23:59:59.000Z

432

Fuel transfer system  

DOE Patents (OSTI)

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

1994-01-01T23:59:59.000Z

433

NREL: Technology Transfer - About Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

434

Technology Transfer: About the Technology Transfer Department  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

435

Memristive Transfer Matrices  

E-Print Network (OSTI)

An electrical analysis is performed for a memristor crossbar array integrated with operational amplifiers including the effects of parasitic or contact resistances. It is shown that the memristor crossbar array can act as a transfer matrix for a multiple input-multiple output signal processing system. Special cases of the transfer matrix are described related to reconfigurable analog filters, waveform generators, analog computing, and pattern similarity. Keywords: transfer matrix, memristor, analog electronics, crossbar, operational amplifier, reconfigurable electronics

Mouttet, Blaise

2010-01-01T23:59:59.000Z

436

Heat transfer in freeboard region of fluidized beds  

SciTech Connect

This research involved the study of heat transfer and fluid mechanic characteristics around a horizontal tube in the freeboard region of fluidized beds. Heat transfer coefficients were experimetnally measured for different bed temperatures, particle sizes, gas flow rates, and tube elevations in the freeboard region of air fluidized beds at atmospheric pressure. Local heat transfer coefficients were found to vary significantly with angular position around the tube. Average heat transfer coefficients were found to decrease with increasing freeboard tube elevation and approach the values for gas convection plus radiation for any given gas velocity. For a fixed tube elevation, heat transfer coefficients generally increased with increasing gas velocity and with high particle entrainment they can approach the magnitudes found for immersed tubes. Heat transfer coefficients were also found to increase with increasing bed temperature. It was concluded that this increase is partly due to increase of radiative heat transfer and partly due to change of thermal properties of the fluidizing gas and particles. To investigate the fluid mechanic behavior of gas and particles around a freeboard tube, transient particle tube contacts were measured with a special capacitance probe in room temperature experiments. The results indicated that the tube surface experiences alternating dense and lean phase contacts. Quantitative information for local characteristics was obtained from the capacitance signals and used to develop a phenomenological model for prediction of the heat transfer coefficients around freeboard tubes. The packet renewal theory was modified to account for the dense phase heat transfer and a new model was suggested for the lean phase heat transfer. Finally, an empirical freeboard heat transfer correlation was developed from functional analysis of the freeboard heat transfer data using nondimensional groups representing gas velocity and tube elevation.

Biyikli, S.; Tuzla, K.; Chen, J.C.

1983-10-01T23:59:59.000Z

437

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

438

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

439

MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION  

SciTech Connect

In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

2010-07-18T23:59:59.000Z

440

Jefferson Lab Technology Transfer  

This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Technology Transfer.

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: Technology Transfer - DOE  

Home > Technology Transfer. ... and cheaper to design future power plants. ... we welcome the opportunity to build mutually beneficial partnerships with industry, ...

442

NREL: Technology Transfer - Contacts  

National Renewable Energy Laboratory Technology Transfer Contacts. Here you'll find contact information and resources to help answer any questions you may have about ...

443

SRNL - Technology Transfer - Ombudsman  

... complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy.

444

Partnerships and Technology Transfer  

Economic Development Overview. ORNL's Partnerships Staff works with a number of partners in the region, State, and across the nation to help transfer ORNL-developed ...

445

MATERIALS TRANSFER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

446

Convection Heat Transfer  

Science Conference Proceedings (OSTI)

...Heat-Transfer Equations, Fundamentals of Modeling for Metals Processing, Vol 22A, ASM Handbook, ASM International, 2009, p 625â??658...

447

Heat transfer dynamics  

Science Conference Proceedings (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

448

Facility Survey & Transfer  

Energy.gov (U.S. Department of Energy (DOE))

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

449

Technology Transfer: For Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Available Technologies Licensing Berkeley Lab Technologies Partnering with Berkeley Lab Contact Us Receive Customized Tech Alerts Tech Transfer Site Map Last updated: 09172009...

450

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

451

Steep Slope Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Steep Slope Calculator Steep Slope Calculator Estimates Cooling and Heating Savings for Residential Roofs with Non-Black Surfaces Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Click to see Data for All 243 Locations Roof Inputs: R-value(Btu-in/(hr ft2 oF):

452

RADIATION DETECTOR  

DOE Patents (OSTI)

A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

Wilson, H.N.; Glass, F.M.

1960-05-10T23:59:59.000Z

453

NIST Radiation thermometry  

Science Conference Proceedings (OSTI)

Radiation thermometry. Summary: ... Description: Radiation thermometers are calibrated using a range of variable-temperature blackbodies. ...

2011-10-13T23:59:59.000Z

454

NIST Optical Radiation Group  

Science Conference Proceedings (OSTI)

Optical Radiation Group. Welcome. The Optical Radiation Group maintains, improves, and disseminates the national scales ...

2013-07-29T23:59:59.000Z

455

Medium-induced multi-photon radiation  

E-Print Network (OSTI)

We study the spectrum of multi-photon radiation off a fast quark in medium in the BDMPS/ASW approach. We reproduce the medium-induced one-photon radiation spectrum in dipole approximation, and go on to calculate the two-photon radiation in the Moli\\`{e}re limit. We find that in this limit the LPM effect holds for medium-induced two-photon ladder emission.

Ma, Hao; Tywoniuk, Konrad

2011-01-01T23:59:59.000Z

456

Virtual radiation fields for ALARA determination  

Science Conference Proceedings (OSTI)

VRF (virtual radiation fields) was developed to accurately predict the radiation dose received by a person or robotic device with minimum effort. Dose calculations are performed using Monte Carlo techniques while the user interacts with the computer via a user-friendly graphical interface. The code has been utilized for the prediction of radiation doses from the Hanford Reservation waste tanks, particularly tank c-106. This paper describes the features of the code and evaluates it`s application to tank c-106.

Knight, T.W.; Dalton, G.R.; Tulenko, J.S. [Univ. of Flordia, Gainesville, FL (United States)

1995-12-31T23:59:59.000Z

457

11th International Conference of Radiation Research  

SciTech Connect

Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

NONE

1999-07-18T23:59:59.000Z

458

Radiative Properties of Cirrus Clouds in the Infrared Region  

Science Conference Proceedings (OSTI)

A multiple-scattering radiative transfer model is employed to evaluate the 11 ?m and the broad-band infrared (IR) fluxes, cooling rates and emittances in model cirrus clouds for a number of standard vertical atmospheric profiles of temperature ...

Graeme L. Stephens

1980-02-01T23:59:59.000Z

459

Knowledge transfer frameworks  

Science Conference Proceedings (OSTI)

While theories abound concerning knowledge transfer in organisations, little empirical work has been undertaken to assess any possible relationship between repositories of knowledge and those responsible for the use of knowledge. This paper develops ... Keywords: hybrid approach, knowledge administration, knowledge management, knowledge storage, knowledge transfer framework

Sajjad M Jasimuddin; Nigel Connell; Jonathan H Klein

2012-05-01T23:59:59.000Z

460

OPTIMIZED MULTI-FREQUENCY SPECTRA FOR APPLICATIONS IN RADIATIVE FEEDBACK AND COSMOLOGICAL REIONIZATION  

Science Conference Proceedings (OSTI)

The recent implementation of radiative transfer algorithms in numerous hydrodynamics codes has led to a dramatic improvement in studies of feedback in various astrophysical environments. However, because of methodological limitations and computational expense, the spectra of radiation sources are generally sampled at only a few evenly spaced discrete emission frequencies. Using one-dimensional radiative transfer calculations, we investigate the discrepancies in gas properties surrounding model stars and accreting black holes that arise solely due to spectral discretization. We find that even in the idealized case of a static and uniform density field, commonly used discretization schemes induce errors in the neutral fraction and temperature by factors of two to three on average, and by over an order of magnitude in certain column density regimes. The consequences are most severe for radiative feedback operating on large scales, dense clumps of gas, and media consisting of multiple chemical species. We have developed a method for optimally constructing discrete spectra, and show that for two test cases of interest, carefully chosen four-bin spectra can eliminate errors associated with frequency resolution to high precision. Applying these findings to a fully three-dimensional radiation-hydrodynamic simulation of the early universe, we find that the H II region around a primordial star is substantially altered in both size and morphology, corroborating the one-dimensional prediction that discrete spectral energy distributions can lead to sizable inaccuracies in the physical properties of a medium, and as a result, the subsequent evolution and observable signatures of objects embedded within it.

Mirocha, Jordan; Skory, Stephen; Burns, Jack O. [Center for Astrophysics and Space Astronomy, University of Colorado, Campus Box 389, Boulder, CO 80309 (United States); Wise, John H., E-mail: jordan.mirocha@colorado.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Transfers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transfers Transfers Transfers Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. Below are a few tips to better assist you when you transer agencies: If you have any dependents you must complete a standard Form 2809 during new employee orientation as this information does not transfer over automatically. You will not be able to change your coverage until open season or a life changing event occurs. At the time of new employee orientation you must provide your most recent leave and earning statement (LES) so that your leave may be updated accordingly. If you do not provide us with this document it will take approximately 6 weeks before your annual and sick leave is updated.

462

Data Transfer Examples  

NLE Websites -- All DOE Office Websites (Extended Search)

» Data Transfer Examples » Data Transfer Examples Data Transfer Examples Moving data to Projectb Projectb is where data should be written from jobs running on the cluster or Gpints. There are intermediate files or bad results from a run that didn't work out that don't need to be saved. By running these jobs in the SCRATCH areas, these files will be deleted for you by the puge. If you run in the SANDBOX, you will have to clean up after yourselves. Batch Scheduled Transfers Use any queues to schedule jobs that move data to Projectb. A basic transfer script is here: kmfagnan@genepool12 ~ $ cat data_to_projb.sh #!/bin/bash -l #$ -N data2projb /projectb/scratch// kmfagnan@genepool12 ~ $ qsub data_to_projb.sh

463

Multinucleon transfer reactions  

SciTech Connect

The development of higher energies and better resolution in heavy-ion beams has led to a resurgence of interest in transfer reactions at energies well above the Coulomb barrier. Direct reactions with heavy ions are discussed in some detail. Heavy-ion reactions open up the possibility of new methods of spectroscopy, e.g., elastic transfer. Differential cross sections for heavy-ion ' transfer reactions are often featureless; however, some data show diffractive effects. The high angular momenta associated with recoil effects in heavy-ion reactions can be exploited to perform selective spectroscopy on light nuclei. Although most heavy-iontransfer data suggest that reactions proceed in a direct fashion, recent experiments indicate the presence of second-order multistep processes. Correlated nucleon transfer and transfer of many nucleons (e.g., (12C, alpha )) are also being investigated. (20 figures, 3 tables, 93 references) (RWR)

Scott, D.K.

1973-08-01T23:59:59.000Z

464

Cryogenic apparatus for study of near-field heat transfer  

Science Conference Proceedings (OSTI)

For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 10{sup 0} to 10{sup 3} {mu}m. The heat transferred from the hot (10 - 100 K) to the cold sample ({approx}5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within {approx}2 nW/cm{sup 2} and {approx}30 {mu}W/cm{sup 2} is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer.

Kralik, T.; Hanzelka, P.; Musilova, V.; Srnka, A.; Zobac, M. [Institute of Scientific Instruments of the ASCR, v.v.i., Kralovopolska 147, Brno (Czech Republic)

2011-05-15T23:59:59.000Z

465

TOPAZ2D heat transfer code users manual and thermal property data base  

Science Conference Proceedings (OSTI)

TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

Shapiro, A.B.; Edwards, A.L.

1990-05-01T23:59:59.000Z

466

Radiation Detection Computational Benchmark Scenarios  

SciTech Connect

Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.

Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

2013-09-24T23:59:59.000Z

467

Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance  

Science Conference Proceedings (OSTI)

Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO{sub 2} has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO{sub 2} systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO{sub 2}.

Wang, Luxia; Willig, Frank; May, Volkhard [Department of Physics, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, 100083 Beijing (China); Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany)

2007-04-07T23:59:59.000Z

468

Technology transfer 1994  

SciTech Connect

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

1994-01-01T23:59:59.000Z

469

Radiation damage in optical fibers  

SciTech Connect

While plastic-clad-silica (PCS) fiber shows the greatest radiation resistance, PCS fiber has been difficult to reliably connectorize for routine field operations. For this reason, all-glass fibers have been studied as an alternative to PCS. Based on available literature and some preliminary tests at Los Alamos, we have concentrated on fluorosilicate clad, step index, pure silica core fibers. This paper reviews recent laboratory data for these fibers relative to the PCS fibers. This paper also discusses use of a fiber (or any optical medium) on a Cerenkov radiation-to-light transducer. Since the radiation induces attenuation in the medium, the light output is not proportional to the radiation input. The nonlinearity introduced by this attenuation is calculated.

Lyons, P.B.; Looney, L.D.; Ogle, J.W.

1983-01-01T23:59:59.000Z

470

Analytical Proton Transfer Amplitude for Heavy Ion Induced Nuclear Reactions  

Science Conference Proceedings (OSTI)

Direct reactions between heavy ions have been studied widely using semi-classical theories. The Distorted Wave Born Approximation or DWBA has been extensively applied to analyse transfer reaction processes. Initial attempts to gain insights into the simple semi-classical parametrisation starting from the DWBA had focused mainly on neutron transfer reactions. An analytical formula for the semi-classical amplitude for the transfer of a single neutron between bound classical orbits states in heavy ion collisions that agrees well with the DWBA calculations has been successfully derived. In this paper, we have successfully derived the corresponding analytical expression for the proton transfer amplitude by using a technique analogous to the transfer of a single neutron between bound states. Our result reduces to the well known expression for the neutron transfer amplitude in the limit that the nuclear charge tends to zero.

Kumar, P. Rajesh [Open University Malaysia, Jalan Tun Ismail, 50480 Kuala Lumpur (Malaysia); Wong, Bernardine Renaldo [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2011-03-30T23:59:59.000Z

471

Radiation receiver  

DOE Patents (OSTI)

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

472

Radiation receiver  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1983-01-01T23:59:59.000Z

473

Heat transfer between elastic solids with randomly rough surfaces  

E-Print Network (OSTI)

We study the heat transfer between elastic solids with randomly rough surfaces. We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the noncontact regions. We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.

B. N. J. Persson; B. Lorenz; A. I. Volokitin

2009-08-27T23:59:59.000Z

474

RADIATION SOURCES  

DOE Patents (OSTI)

A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

Brucer, M.H.

1958-04-15T23:59:59.000Z

475

Shortwave Radiation Budget of the Southern Hemisphere Using ISCCP C2 and NCEP–NCAR Climatological Data  

Science Conference Proceedings (OSTI)

The seasonal shortwave radiation budget at the surface of the Southern Hemisphere was estimated, for 10° latitudinal zones, using a radiative transfer model with long-term mean monthly climatological data from the International Satellite Cloud ...

N. Hatzianastassiou; I. Vardavas

2001-11-01T23:59:59.000Z

476

Anomalous Near-Field Heat Transfer between a Cylinder and a Perforated Surface  

E-Print Network (OSTI)

We predict that the near-field radiative heat-transfer rate between a cylinder and a perforated surface depends nonmonotonically on their separation. This anomalous behavior, which arises due to evanescent-wave effects, ...

Rodriguez-Wong, Alejandro

477

An Estimation of the Bulk Transfer Coefficients for a Bare Soil Surface Using a Linear Model  

Science Conference Proceedings (OSTI)

A linear heat budget model is developed to estimate the daytime means of the bulk transfer coefficients for heat and evaporation efficiency using the daily variation of observational data. The daily variation of shortwave radiation, ground-level ...

Dai Matsushima; Junsei Kondo

1995-04-01T23:59:59.000Z

478

W-12: Determination of Interfacial Heat Transfer and Air-gap ...  

Science Conference Proceedings (OSTI)

It is predicted for the Nickel-based alloy when the air-gap is below 0.3mm heat conduction is the dominant heat transfer process; above 0.3mm radiation is the ...

479

Building Energy Software Tools Directory: Cool Roof Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Calculator Cool Roof Calculator Cool Roof Calculator logo. Many reflective roof coatings and membranes are now available for low-slope roofs. These coatings help to reduce summer air-conditioning loads, but can also increase the winter heating load. The Cool Roof Calculator will estimate both how much energy you'll save in the summer and how much extra energy you'll need in the winter. Cool Roof Calculator provides answers on a 'per square foot' basis, so you can then multiply by the area of your roof to find out your net savings each year. Keywords reflective roof, roofing membrane, low-slope roof Validation/Testing The Radiation Control Fact Sheet describes both the analytical and experimental results that went into the calculator's development. Expertise Required

480

Technology Transfer Summit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agenda as of April 9, 2012 Agenda as of April 9, 2012 Technology Transfer Summit April 16, 2012 IMC - Trinity Ballroom 4 8:00 - 8:10 Welcome & Introduction Pete Tseronis, DOE Chief Technology Officer 8:10 - 8:50 Accelerating Transfer Within an Innovation Ecosystem Debra M. Amidon, Founder and Chief Strategist, ENTOVATION International, and Author, The Innovation SuperHighway 8:50 - 9:20 Tech Transfer - Predicaments, Perplexities, and Possible Panaceas Rex Northen, Executive Director, Cleantech Open 9:20 - 9:50 A Systems Approach to Innovation Mike Schwenk, Vice President and Director Technology Deployment and Outreach, Pacific Northwest National Laboratory (PNNL) 9:50 - 10:15 DOE's Online Tech Transfer Ecosystem - aka...Stop Building Moai! Robert Bectel, Senior Policy Advisor / Chief Technology Officer

Note: This page contains sample records for the topic "radiative transfer calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

VOLUNTARY LEAVE TRANSFER PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VOLUNTARY LEAVE TRANSFER PROGRAM VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM) Form 630, Application to Become A Leave Recipient Under the Voluntary Leave Transfer Program, through your supervisor to be considered for the program. The application must include an explanation of the reason the donation is needed (including a brief description of the

482

Technology Transfer: Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley National Laboratory masthead A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search Tech Transfer Tech Index For Industry For...

483

Multiscale photosynthetic exciton transfer  

E-Print Network (OSTI)

Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest s...

Ringsmuth, A K; Stace, T M; 10.1038/nphys2332

2012-01-01T23:59:59.000Z

484

Transfer reactions at ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

Transfer reactions before, and with, HELIOS Or - "...seems like an awful lot of work just to do (d,p)..." Congratulations ATLAS Happy 25 th Prologue: Long before ATLAS... 11...

485

NREL: Technology Transfer - Ombuds - National Renewable Energy ...  

National Renewable Energy Laboratory Technology Transfer Technology Transfer Ombuds. NREL's Technology Transfer Ombuds offers an informal process to ...

486

ITL Staff Members Receive Tech Transfer Award  

Science Conference Proceedings (OSTI)

ITL Staff Members Receive Tech Transfer Award. ... Regional "Excellence in Technology Transfer" Award for ... the process of transferring a technology ...

2010-10-05T23:59:59.000Z

487

Radiation Protection Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

488

Radiation Tolerant Metallic Multilayers  

Science Conference Proceedings (OSTI)

Strategies that can alleviate radiation damage may assist the design of radiation tolerant materials. We will summarize our recent studies on radiation damage in ...

489

NEW SOURCES OF RADIATION  

E-Print Network (OSTI)

Stanford Synchrotron Radiation Project Report No. 75/07.IBL 79M0733 Fig. 20. Radiation emission pattern by electronsWinick, Stanford Synchrotron Radiation Laboratory. Fig. 21.

Schimmerling, W.

2010-01-01T23:59:59.000Z

490

Radiation-induced angiosarcoma  

E-Print Network (OSTI)

1a Figure 1b Figure 1. Radiation-induced angiosarcoma in afollowing completion of radiation therapy. Figure 2a Figurecell histiocytosis after radiation for breast carcinoma: can

Anzalone, C Lane; Cohen, Philip R; Diwan, Abdul H; Prieto, Victor G

2013-01-01T23:59:59.000Z