National Library of Energy BETA

Sample records for radiative transfer calculations

  1. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect (OSTI)

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  2. A grey diffusion acceleration method for time-dependent radiative transfer calculations

    SciTech Connect (OSTI)

    Nowak, P.F.

    1991-07-01

    The equations of thermal radiative transfer describe the emission, absorption and transport of photons in a material. As photons travel through the material they are absorbed and re-emitted in a Planckian distribution characterized by the material temperature. As a result of these processes, the material can change resulting in a change in the Planckian emission spectrum. When the coupling between the material and radiation is strong, as occurs when the material opacity or the time step is large, standard iterative techniques converge very slowly. As a result, nested iterative algorithms have been applied to the problem. One algorithm, is to use multifrequency DSA to accelerate the convergence of the multifrequency transport iteration and a grey transport acceleration (GTA) followed by a single group DSA. Here we summarize a new method which uses a grey diffusion equation (GDA) to directly solve the multifrequency transport (S{sub N}) problem. Results of Fourier analysis for both the continuous and discretized equations are discussed and the computational efficiency of GDA is compared with the DSA and GTA nested algorithms. 5 refs., 1 fig., 1 tab.

  3. Canister Transfer Facility Criticality Calculations

    SciTech Connect (OSTI)

    J.E. Monroe-Rammsy

    2000-10-13

    The objective of this calculation is to evaluate the criticality risk in the surface facility for design basis events (DBE) involving Department of Energy (DOE) Spent Nuclear Fuel (SNF) standardized canisters (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 2000a). Since some of the canisters will be stored in the surface facility before they are loaded in the waste package (WP), this calculation supports the demonstration of concept viability related to the Surface Facility environment. The scope of this calculation is limited to the consideration of three DOE SNF fuels, specifically Enrico Fermi SNF, Training Research Isotope General Atomic (TRIGA) SNF, and Mixed Oxide (MOX) Fast Flux Test Facility (FFTF) SNF.

  4. Radiative accelerations for evolutionary model calculations

    SciTech Connect (OSTI)

    Richer, J.; Michaud, G.; Rogers, F.; Iglesias, C.; Turcotte, S.; LeBlanc, F.

    1998-01-01

    Monochromatic opacities from the OPAL database have been used to calculate radiative accelerations for the 21 included chemical species. The 10{sup 4} frequencies used are sufficient to calculate the radiative accelerations of many elements for T{gt}10{sup 5}K, using frequency sampling. This temperature limit is higher for less abundant elements. As the abundances of Fe, He, or O are varied, the radiative acceleration of other elements changes, since abundant elements modify the frequency dependence of the radiative flux and the Rosseland opacity. Accurate radiative accelerations for a given element can only be obtained by allowing the abundances of the species that contribute most to the Rosseland opacity to vary during the evolution and recalculating the radiative accelerations and the Rosseland opacity during the evolution. There are physical phenomena that cannot be included in the calculations if one uses only the OPAL data. For instance, one should correct for the momentum given to the electron in a photoionization. Such effects are evaluated using atomic data from Opacity Project, and correction factors are given. {copyright} {ital 1998} {ital The American Astronomical Society}

  5. Posters Comparison of Stochastic Radiation Transfer Predictions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models for estimating the effects of broken cloud on radiative transfer in the context of a general circulation model (GCM). These schemes are required to be very fast and...

  6. A Methodology for Calculating Radiation Signatures

    SciTech Connect (OSTI)

    Klasky, Marc Louis; Wilcox, Trevor; Bathke, Charles G.; James, Michael R.

    2015-05-01

    A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.

  7. Posters The Effects of Radiative Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters The Effects of Radiative Transfer on Low-Level Cyclogenesis M. J. Leach and S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, North Carolina Introduction Many investigators have documented the role that thermodynamic forcing due to radiative flux divergence plays in the enhancement or generation of circulation. Most of these studies involve large-scale systems (e.g., Slingo et al. 1988), small-scale systems such as thunderstorms

  8. Agriculture-related radiation dose calculations

    SciTech Connect (OSTI)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  9. Multigroup Radiation Transport in Supernova Light Curve Calculations...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Multigroup Radiation Transport in Supernova Light Curve Calculations Citation Details In-Document Search Title: Multigroup Radiation Transport in Supernova Light ...

  10. Measurements and model calculations of radiative fluxes for the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements and model calculations of radiative fluxes for the Cabauw Experimental Site for Atmospheric Research, the Netherlands Knap, Wouter Royal Netherlands Meteorological...

  11. Multigroup Radiation Transport in Supernova Light Curve Calculations...

    Office of Scientific and Technical Information (OSTI)

    Multigroup Radiation Transport in Supernova Light Curve Calculations Even, Wesley P. Los Alamos National Laboratory; Frey, Lucille H. Los Alamos National Laboratory; Fryer,...

  12. Radiation calculations for the ILC cryomodule

    SciTech Connect (OSTI)

    Nakao, N.; Mokhov, N.V.; Klebaner, A.; /Fermilab

    2007-04-01

    The MARS15 radiation simulations were performed for the ILC cryomodule. The model assumes a uniform beam loss intensity of 1 W/m of 750-MeV and 250-GeV electron along the inner surface of the beam pipe and the cavity iris of the 12-m cryomodule. Two-dimensional distributions of radiation dose in the module were obtained. Absorbed dose rate and energy spectra of electrons, photons, neutrons and protons were also obtained at the three cryogenic thermometers locations by filling with silicon material in the appropriate locations, and radiation hardness of the thermometers was discussed. From the obtained results, maximum absorbed dose of thermometers at the cooling pipe is 0.85mGy/sec (85 mRad/sec), that is 0.31 MGy (31 MRad) for 20 years.

  13. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    SciTech Connect (OSTI)

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P.J.

    2014-10-15

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  14. Multigroup Radiation Transport in Supernova Light Curve Calculations

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Multigroup Radiation Transport in Supernova Light Curve Calculations Citation Details In-Document Search Title: Multigroup Radiation Transport in Supernova Light Curve Calculations Authors: Even, Wesley P. [1] ; Frey, Lucille H. [1] ; Fryer, Christopher L. [1] ; Young, Patrick [2] + Show Author Affiliations Los Alamos National Laboratory Arizona State University Publication Date: 2013-04-29 OSTI Identifier: 1077017 Report Number(s):

  15. Improvements to the SHDOM Radiative Transfer Modeling Package

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvements to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Introduction The spherical harmonic discrete ordinate method (SHDOM) is an algorithm and FORTRAN computer code for three-dimensional (3D) atmospheric radiative transfer modeling (Evans 1998). The optical properties (extinction, single scattering albedo, and phase function)

  16. Collaborative Project. 3D Radiative Transfer Parameterization Over

    Office of Scientific and Technical Information (OSTI)

    Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications (Technical Report) | SciTech Connect Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications Citation Details In-Document Search Title: Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications Under the support of the aforementioned

  17. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect (OSTI)

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  18. The Radiative Transfer Of CH{sub 4}-N{sub 2} Plasma Arc

    SciTech Connect (OSTI)

    Benallal, R.; Liani, B.

    2008-09-23

    Any physical modelling of a circuit-breaker arc therefore requires an understanding of the radiated energy which is taken into account in the form of a net coefficient. The evaluation of the net emission coefficient is performed by the knowledge of the chemical plasma composition and the resolution of the radiative transfer equation. In this paper, the total radiation which escapes from a CH{sub 4}-N{sub 2} plasma is calculated in the temperature range between 5000 and 30000K on the assumption of a local thermodynamic equilibrium and we have studied the nitrogen effect in the hydrocarbon plasmas.

  19. Fast, narrow-band computer model for radiation calculations

    SciTech Connect (OSTI)

    Yan, Z.; Holmstedt, G.

    1997-01-01

    A fast, narrow-band computer model, FASTNB, which predicts the radiation intensity in a general nonisothermal and nonhomogeneous combustion environment, has been developed. The spectral absorption coefficients of the combustion products, including carbon dioxide, water vapor, and soot, are calculated based on the narrow-band model. FASTNB provides an accurate calculation at reasonably high speed. Compared with Grosshandler`s narrow-band model, RADCAL, which has been verified quite extensively against experimental measurements, FASTNB is more than 20 times faster and gives almost exactly the same results.

  20. Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts

    SciTech Connect (OSTI)

    Sapir, Nir; Halbertal, Dorri

    2014-12-01

    We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that the luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.

  1. Coupling radiative heat transfer in participating media with other heat transfer modes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tencer, John; Howell, John R.

    2015-09-28

    The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

  2. Radiation Heat Transfer in 3 Dimensions for Semi-Transparent Materials....

    Energy Science and Technology Software Center (OSTI)

    2010-12-02

    The RAD3D software solves the critical heat transfer mechanisms that occur in production glass furnaces. The code includes state-of-the-art solution algorithms for efficient radiant interaction of the heating elements, furnace walls and internal furnace components. The code specifically solves the coupled radiative and conductive heating of semi-transparent materials such as glass to calculate the temperature distribution in the glass during processing.

  3. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Veron, Dana E

    2009-03-12

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  4. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  5. Radiative heat transfer in 2D Dirac materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  6. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect (OSTI)

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  7. Fire Intensity Data for Validation of the Radiative Transfer Equation

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Jernigan, Dann A.

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  8. Development of Aerosol Models for Radiative Flux Calculations at ARM Sites

    SciTech Connect (OSTI)

    Ogren, John A.; Dutton, Ellsworth G.; McComiskey, Allison C.

    2006-09-30

    The direct radiative forcing (DRF) of aerosols, the change in net radiative flux due to aerosols in non-cloudy conditions, is an essential quantity for understanding the human impact on climate change. Our work has addressed several key issues that determine the accuracy, and identify the uncertainty, with which aerosol DRF can be modeled. These issues include the accuracy of several radiative transfer models when compared to measurements and to each other in a highly controlled closure study using data from the ARM 2003 Aerosol IOP. The primary focus of our work has been to determine an accurate approach to assigning aerosol properties appropriate for modeling over averaged periods of time and space that represent the observed regional variability of these properties. We have also undertaken a comprehensive analysis of the aerosol properties that contribute most to uncertainty in modeling aerosol DRF, and under what conditions they contribute the most uncertainty. Quantification of these issues enables the community to better state accuracies of radiative forcing calculations and to concentrate efforts in areas that will decrease uncertainties in these calculations in the future.

  9. Present and Future Computing Requirements Radiative Transfer of Astrophysical Explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Radiative Transfer of Astrophysical Explosions Daniel Kasen (UCB/LBNL) SciDAC computational astrophysics consortium Stan Woosley, Ann Almgren, John Bell, Haitao Ma, Peter Nugent, Rollin Thomas, Weiquin Zhang, Adam Burrows, Jason Nordhaus, Louis Howell, Mike Zingale topics and open questions * thermonuclear supernova: What are the progenitors: 1 or 2 white dwarfs? How does the nuclear runaway ignite and develop? How regular are these "standard candles" for cosmology? * core

  10. Application Of A Spherical-Radial Heat Transfer Model To Calculate...

    Open Energy Info (EERE)

    A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  11. End-to-end calculation of the radiation characteristics of VVER-1000 spent fuel assemblies

    SciTech Connect (OSTI)

    Linge, I. I.; Mitenkova, E. F. Novikov, N. V.

    2012-12-15

    The results of end-to-end calculation of the radiation characteristics of VVER-1000 spent nuclear fuel are presented. Details of formation of neutron and gamma-radiation sources are analyzed. Distributed sources of different types of radiation are considered. A comparative analysis of calculated radiation characteristics is performed with the use of nuclear data from different ENDF/B and EAF files and ANSI/ANS and ICRP standards.

  12. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect (OSTI)

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  13. RADIATION DOSE CALCULATION FOR FUEL HANDLING FACILITY CLOSURE CELL EQUIPMENT

    SciTech Connect (OSTI)

    D. Musat

    2005-03-07

    This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many orders of magnitude that cannot be modeled by computer codes that use deterministic methods. Therefore, in this calculation the Monte Carlo method was used to solve the photon and neutron transport. In contrast with the deterministic methods, Monte Carlo does not solve an explicit transport equation, but rather obtain answers by simulating individual particles, recording the aspects of interest of their average behavior, and estimates the statistical precision of the results.

  14. Test plan for validation of the radiative transfer equation.

    SciTech Connect (OSTI)

    Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.

    2010-09-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).

  15. General Relativistic Radiative Transfer and GeneralRelativistic...

    Office of Scientific and Technical Information (OSTI)

    43 PARTICLE ACCELERATORS; ACCRETION DISKS; BLACK HOLES; MAGNETIC FIELDS; MORPHOLOGY; OSCILLATIONS; RADIANT HEAT TRANSFER; SYNCHROTRONS; VISIBILITY Astrophysics,ASTRO, SYNCHRAD...

  16. Grey transport acceleration method for time-dependent radiative transfer problems

    SciTech Connect (OSTI)

    Larsen, E.

    1988-10-01

    A new iterative method for solving hte time-dependent multifrequency radiative transfer equations is described. The method is applicable to semi-implicit time discretizations that generate a linear steady-state multifrequency transport problem with pseudo-scattering within each time step. The standard ''lambda'' iteration method is shown to often converge slowly for such problems, and the new grey transport acceleration (GTA) method, based on accelerating the lambda method by employing a grey, or frequency-independent transport equation, is developed. The GTA method is shown, theoretically by an iterative Fourier analysis, and experimentally by numerical calculations, to converge significantly faster than the lambda method. In addition, the GTA method is conceptually simple to implement for general differencing schemes, on either Eulerian or Lagrangian meshes. copyright 1988 Academic Press, Inc.

  17. AN ALGORITHM FOR RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT TRANSFER EQUATION

    SciTech Connect (OSTI)

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-07-01

    We describe a new algorithm for solving the coupled frequency-integrated transfer equation and the equations of magnetohydrodynamics in the regime that light-crossing time is only marginally shorter than dynamical timescales. The transfer equation is solved in the mixed frame, including velocity-dependent source terms accurate to O(v/c). An operator split approach is used to compute the specific intensity along discrete rays, with upwind monotonic interpolation used along each ray to update the transport terms, and implicit methods used to compute the scattering and absorption source terms. Conservative differencing is used for the transport terms, which ensures the specific intensity (as well as energy and momentum) are conserved along each ray to round-off error. The use of implicit methods for the source terms ensures the method is stable even if the source terms are very stiff. To couple the solution of the transfer equation to the MHD algorithms in the ATHENA code, we perform direct quadrature of the specific intensity over angles to compute the energy and momentum source terms. We present the results of a variety of tests of the method, such as calculating the structure of a non-LTE atmosphere, an advective diffusion test, linear wave convergence tests, and the well-known shadow test. We use new semi-analytic solutions for radiation modified shocks to demonstrate the ability of our algorithm to capture the effects of an anisotropic radiation field accurately. Since the method uses explicit differencing of the spatial operators, it shows excellent weak scaling on parallel computers.

  18. Radiation Damage Calculations for the FUBR and BEATRIX Irradiations of Lithium Compounds in EBR-II and FFTF

    SciTech Connect (OSTI)

    Greenwood, Lawrence R.

    1999-05-01

    Radiation Damage Calculations for the FUBR and BEATRIX Irradiations of Lithium Compunds in EBR-II and FFTF

  19. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, Z. M.

    2014-06-23

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  20. Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Introduction An important step toward improving radiative transfer codes in general circulation models (GCMs) is their thorough evaluation by comparison to measurements directly, or

  1. Validation of the Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models T. B. Zhuravleva Institute of Atmospheric Optics Tomsk, Russia A. Marshak National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Background Starting from a very simple stochastic cloud model by Mullamaa et al. (1972), several different stochastic models have been developed to describe radiative transfer regime in single-layer broken clouds (Kargin 1984; Titov 1990; Malvagi and

  2. A new facility for the synchrotron radiation-based calibration of transfer radiation sources in the ultraviolet and vacuum ultraviolet spectral range

    SciTech Connect (OSTI)

    Thornagel, Reiner; Fliegauf, Rolf; Klein, Roman Kroth, Simone; Paustian, Wolfgang; Richter, Mathias

    2015-01-15

    The Physikalisch-Technische Bundesanstalt (PTB) has a long tradition in the calibration of radiation sources in the ultraviolet and vacuum ultraviolet spectral range, with traceability to calculable synchrotron radiation. Within this context, new instrumentation in the PTB laboratory at the Metrology Light Source (MLS) has been put into operation that opens up extended and improved calibration possibilities. A new facility for radiation source calibrations has been set up in the spectral range from 7 nm to 400 nm based on a combined normal incidence-grazing incidence monochromator. The facility can be used for the calibration of transfer sources in terms of spectral radiant intensity or mean spectral radiance, with traceability to the MLS primary source standard. We describe the design and performance of the experimental station and give examples of some commissioning results.

  3. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect (OSTI)

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models donâ??t consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and found that local effects were often much larger than the overall values mentioned above, and were especially large for high sun and near convective clouds such as cumulus. The study also found that statistical methods such as neural networks appear promising for enabling cloud models to consider radiative interactions between nearby atmospheric columns. Finally, through collaboration with German scientists, the project found that new methods (especially one called â??stepwise krigingâ?) show great promise in filling gaps between cloud radar scans. If applied to data from the new DOE scanning cloud radars, these methods can yield large, continuous three-dimensional cloud structures for future radiative simulations.

  4. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect (OSTI)

    Mirmoosa, M. S. Nefedov, I. S. Simovski, C. R.; Rüting, F.

    2014-06-21

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  5. Lyalpha RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES

    SciTech Connect (OSTI)

    Laursen, Peter; Sommer-Larsen, Jesper; Andersen, Anja C. E-mail: jslarsen@astro.ku.d

    2009-10-20

    The Lyalpha emission line is an essential diagnostic tool for probing galaxy formation and evolution. Not only is it commonly the strongest observable line from high-redshift galaxies, but from its shape detailed information about its host galaxy can be revealed. However, due to the scattering nature of Lyalpha photons increasing their path length in a nontrivial way, if dust is present in the galaxy, the line may be severely suppressed and its shape altered. In order to interpret observations correctly, it is thus of crucial significance to know how much of the emitted light actually escapes the galaxy. In the present work, using a combination of high-resolution cosmological hydrosimulations and an adaptively refinable Monte Carlo Lyalpha radiative transfer code including an environment dependent model of dust, the escape fractions f {sub esc} of Lyalpha radiation from high-redshift (z = 3.6) galaxies are calculated. In addition to the average escape fraction, the variation of f {sub esc} in different directions and from different parts of the galaxies is investigated, as well as the effect on the emergent spectrum. Escape fractions from a sample of simulated galaxies of representative physical properties are found to decrease for increasing galaxy virial mass M {sub vir}, from f {sub esc} approaching unity for M {sub vir} approx 10{sup 9} M {sub sun} to f {sub esc} less than 10% for M {sub vir} approx 10{sup 12} M {sub sun}. In spite of dust being almost gray, it is found that the emergent spectrum is affected nonuniformly, with the escape fraction of photons close to the line center being much higher than of those in the wings, thus effectively narrowing the Lyalpha line.

  6. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOE Patents [OSTI]

    Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.

    1999-02-09

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.

  7. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOE Patents [OSTI]

    Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

  8. Ab Initio Many-Body Calculation of the 7Be(p,g)8B Radiative Capture...

    Office of Scientific and Technical Information (OSTI)

    Ab Initio Many-Body Calculation of the 7Be(p,g)8B Radiative Capture Citation Details In-Document Search Title: Ab Initio Many-Body Calculation of the 7Be(p,g)8B Radiative Capture ...

  9. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    SciTech Connect (OSTI)

    Feister, Uwe; Meyer, Gabriele; Kirst, Ulrich

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  10. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer

    SciTech Connect (OSTI)

    Chang, Jui-Yung; Basu, Soumyadipta Wang, Liping

    2015-02-07

    We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150?nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150?nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

  11. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    SciTech Connect (OSTI)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2015-03-15

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.

  12. New model of calculating the energy transfer efficiency for the spherical theta-pinch device

    SciTech Connect (OSTI)

    Xu, G.; Hock, C.; Loisch, G.; Jacoby, J.; Xiao, G.; Zhao, Y.; Weyrich, K.; Li, Y.

    2015-05-15

    Ion-beam-plasma-interaction plays an important role in the field of warm dense matter and inertial confinement fusion. A spherical theta pinch is proposed to act as a plasma target in various applications including a plasma stripper cell. One key parameter for such applications is the free electron density. A linear dependency of this density to the amount of energy transferred into the plasma from an energy storage was found by Teske. Since the amount of stored energy is known, the energy transfer efficiency is a reliable parameter for the design of a spherical theta pinch device. As the main assumption of a constant reflected plasma resistance is contradictory by the measured data, the traditional two models of energy transfer efficiency will lead to wrong results. From measurements, the parasitic resistance is derived as constant. Based on this key parameter, a new model is proposed. Due to no assumption, the new model is considered as exact. Further, a comparison of these three different models is given at a fixed operation voltage for the full range of working gas pressures. Due to the inappropriate assumptions included in the traditional models, one owns a tendency to overestimate the energy transfer efficiency whereas the other leads to an underestimation. Applying our new model to a wide spread set of operation voltages and gas pressures, an overall picture of the energy transfer efficiency results.

  13. Calculation of synchrotron radiation from high intensity electron beam at eRHIC

    SciTech Connect (OSTI)

    Jing Y.; Chubar, O.; Litvinenko, V.

    2012-05-20

    The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

  14. Differential total absorptivity solution to the radiative transfer equation for mixtures of combustion gases and soot

    SciTech Connect (OSTI)

    Bressloff, N.W.; Moss, J.B.; Rubini, P.A.

    1997-01-01

    The differential total absorptivity (DTA) solution to the radiative transfer equation, originally devised for combustion gases in the discrete transfer radiation model, is extended to mixtures of gaseous combustion products and soot. The method is compared to other solution techniques for representative mixtures across single lines of sight and across a layer bounded by solid walls. Intermediate soot loadings are considered such that the total radiance is not dominated by either the gaseous or soot components. The DTA solution is shown to yield excellent accuracy relative to a narrow-band solution, with a considerable saving in computational cost. Thus, explicit treatment of the source temperature dependence of absorption is successfully demonstrated without the need for spectral integration.

  15. Estimating Three-Dimensional Cloudy Radiative Transfer Effects from Time-Height Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Three-Dimensional Cloudy Radiative Transfer Effects from Time-Height Cross Sections C. Hannay and R. Pincus National Oceanic and Atmospheric Administration Climate Diagnostics Center Boulder, Colorado K. F. Evans Program in Atmospheric and Oceanic Sciences University of Colorado Boulder, Colorado Introduction Clouds in the atmosphere are finite in extent and variable in every direction and in time. Long data sets from ground-based profilers, such as lidars or cloud radars, could

  16. Non-contact pumping of light emitters via non-radiative energy transfer

    DOE Patents [OSTI]

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  17. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    SciTech Connect (OSTI)

    Basu, Soumyadipta Yang, Yue; Wang, Liping

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  18. System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid

    DOE Patents [OSTI]

    Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.

    2000-01-01

    A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

  19. Ab Initio Many-Body Calculation of the 7Be(p,g)8B Radiative Capture...

    Office of Scientific and Technical Information (OSTI)

    Title: Ab Initio Many-Body Calculation of the 7Be(p,g)8B Radiative Capture Authors: Navratil, P ; Roth, R ; Quaglioni, S Publication Date: 2011-05-23 OSTI Identifier: 1122228 ...

  20. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    SciTech Connect (OSTI)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  1. Improving computer simulations of heat transfer for projecting fenestration products: Using radiation view-factor models

    SciTech Connect (OSTI)

    Griffith, B.; Tuerler, D.; Arasteh, D.K.; Curcija, D.

    1998-10-01

    The window well formed by the concave surface on the warm side of skylights and garden windows can cause surface heat-flow rates to be different for these projecting types of fenestration products than for normal planar windows. Current methods of simulating fenestration thermal conductance (U-factor) use constant boundary condition values for overall surface heat transfer. Simulations that account for local variations in surface heat transfer rates (radiation and convection) may be more accurate for rating and labeling window products whose surfaces project outside a building envelope. This paper, which presents simulation and experimental results for one projecting geometry, is the first step in documenting the importance of these local effects. A generic specimen, called the foam garden window, was used in simulations and experiments to investigate heat transfer of projecting surfaces. Experiments focused on a vertical cross section (measurement plane) located at the middle of the window well on the warm side of the specimen. The specimen was placed between laboratory thermal chambers that were operated at American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) winter heating design conditions. Infrared thermography was used to map surface temperatures. Air temperature and velocity were mapped throughout the measurement plane using a mechanical traversing system. Finite-element computer simulations that directly modeled element-to-element radiation were better able to match experimental data than simulations that used fixed coefficients for total surface heat transfer. Air conditions observed in the window well suggest that localized convective effects were the reason for the difference between actual and modeled surface temperatures. U-value simulation results were 5% to 10% lower when radiation was modeled directly.

  2. Investigation of Radiation and Chemical Resistance of Flexible HLW Transfer Hose

    SciTech Connect (OSTI)

    E. Skidmore; Billings, K.; Hubbard, M.

    2010-03-24

    A chemical transfer hose constructed of an EPDM (ethylene-propylene diene monomer) outer covering with a modified cross-linked polyethylene (XLPE) lining was evaluated for use in high level radioactive waste transfer applications. Laboratory analysis involved characterization of the hose liner after irradiation to doses of 50 to 300 Mrad and subsequent exposure to 25% NaOH solution at 93 C for 30 days, simulating 6 months intermittent service. The XLPE liner mechanical and structural properties were characterized at varying dose levels. Burst testing of irradiated hose assemblies was also performed. Literature review and test results suggest that radiation effects below doses of 100 kGy are minimal, with acceptable property changes to 500 kGy. Higher doses may be feasible. At a bounding dose of 2.5 MGy, the burst pressure is reduced to the working pressure (1.38 MPa) at room temperature. Radiation exposure slightly reduces liner tensile strength, with more significant decrease in liner elongation. Subsequent exposure to caustic solutions at elevated temperature slightly increases elongation, suggesting an immersion/hydrolytic effect or possible thermal annealing of radiation damage. This paper summarizes the laboratory results and recommendations for field deployment.

  3. Fragment transition density method to calculate electronic coupling for excitation energy transfer

    SciTech Connect (OSTI)

    Voityuk, Alexander A.

    2014-06-28

    A general approach, the Fragment Transition Density (FTD) scheme, is introduced to estimate electronic coupling for excitation energy transfer in a molecular system. Within this method, the excitation energies and transition densities of the system are used to derive the coupling matrix element. The scheme allows one to treat systems where exciton donor and acceptor are close together and their exchange interaction and orbital overlap are significant. The FTD method can be applied in combination with any quantum mechanical approach to treat excited states of general nature including single-, double-, and higher excitations. Using FTD approach, we derive excitonic couplings for several systems computed with the CIS, TD DFT and MS-CASPT2 methods. In particular, it is shown that the estimated coupling values in DNA ?-stacks are strongly affected by the short-range electronic interaction of adjacent nucleobases.

  4. Ab initio calculation of the $$np \\to d ³$$ radiative capture process

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beane, Silas R.; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.

    2015-09-24

    In this study, lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture processmore » $$np \\to d\\gamma$$, and the photo-disintegration processes $$\\gamma^{(\\ast)} d \\to np$$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of $$m_\\pi \\sim 450$$ and 806 MeV, and are combined with pionless nuclear effective field theory to determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross section of $$\\sigma^{lqcd}(np\\to d\\gamma)=332.4({\\tiny \\begin{array}{l}+5.4 \\\\ - 4.7\\end{array}})\\ mb$$ is obtained at an incident neutron speed of $$v=2,200\\ m/s$$, consistent with the experimental value of $$\\sigma^{expt}(np \\to d\\gamma) = 334.2(0.5)\\ mb$$.« less

  5. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  6. Mixed quantum classical calculation of proton transfer reaction rates: From deep tunneling to over the barrier regimes

    SciTech Connect (OSTI)

    Xie, Weiwei; Xu, Yang; Zhu, Lili; Shi, Qiang

    2014-05-07

    We present mixed quantum classical calculations of the proton transfer (PT) reaction rates represented by a double well system coupled to a dissipative bath. The rate constants are calculated within the so called nontraditional view of the PT reaction, where the proton motion is quantized and the solvent polarization is used as the reaction coordinate. Quantization of the proton degree of freedom results in a problem of non-adiabatic dynamics. By employing the reactive flux formulation of the rate constant, the initial sampling starts from the transition state defined using the collective reaction coordinate. Dynamics of the collective reaction coordinate is treated classically as over damped diffusive motion, for which the equation of motion can be derived using the path integral, or the mixed quantum classical Liouville equation methods. The calculated mixed quantum classical rate constants agree well with the results from the numerically exact hierarchical equation of motion approach for a broad range of model parameters. Moreover, we are able to obtain contributions from each vibrational state to the total reaction rate, which helps to understand the reaction mechanism from the deep tunneling to over the barrier regimes. The numerical results are also compared with those from existing approximate theories based on calculations of the non-adiabatic transmission coefficients. It is found that the two-surface Landau-Zener formula works well in calculating the transmission coefficients in the deep tunneling regime, where the crossing point between the two lowest vibrational states dominates the total reaction rate. When multiple vibrational levels are involved, including additional crossing points on the free energy surfaces is important to obtain the correct reaction rate using the Landau-Zener formula.

  7. Transfers

    Broader source: Energy.gov [DOE]

    Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. 

  8. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect (OSTI)

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  9. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    SciTech Connect (OSTI)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  10. Residual Monte Carlo high-order solver for Moment-Based Accelerated Thermal Radiative Transfer equations

    SciTech Connect (OSTI)

    Willert, Jeffrey Park, H.

    2014-11-01

    In this article we explore the possibility of replacing Standard Monte Carlo (SMC) transport sweeps within a Moment-Based Accelerated Thermal Radiative Transfer (TRT) algorithm with a Residual Monte Carlo (RMC) formulation. Previous Moment-Based Accelerated TRT implementations have encountered trouble when stochastic noise from SMC transport sweeps accumulates over several iterations and pollutes the low-order system. With RMC we hope to significantly lower the build-up of statistical error at a much lower cost. First, we display encouraging results for a zero-dimensional test problem. Then, we demonstrate that we can achieve a lower degree of error in two one-dimensional test problems by employing an RMC transport sweep with multiple orders of magnitude fewer particles per sweep. We find that by reformulating the high-order problem, we can compute more accurate solutions at a fraction of the cost.

  11. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CWmore » solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.« less

  12. HYDRODYNAMIC AND RADIATIVE MODELING OF TEMPORAL H{alpha} EMISSION V/R VARIATIONS CAUSED BY DISCONTINUOUS MASS TRANSFER IN BINARIES

    SciTech Connect (OSTI)

    Chadima, Pavel; Harmanec, Petr; Wolf, Marek; Firt, Roman; Ruzdjak, Domagoj; Bozic, Hrvoje; Koubsky, Pavel

    2011-07-15

    H{alpha} emission V/R variations caused by discontinuous mass transfer in interacting binaries with a rapidly rotating accreting star are modeled qualitatively for the first time. The program ZEUS-MP was used to create a non-linear three-dimensional hydrodynamical model of a development of a blob of gaseous material injected into an orbit around a star. It resulted in the formation of an elongated disk with a slow prograde revolution. The LTE radiative transfer program SHELLSPEC was used to calculate the H{alpha} profiles originating in the disk for several phases of its revolution. The profiles have the form of a double emission and exhibit V/R and radial velocity variations. However, these variations should be a temporal phenomenon since imposing a viscosity in the given model would lead to a circularization of the disk and fading-out of the given variations.

  13. Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF

    SciTech Connect (OSTI)

    Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

    2012-10-30

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. The hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.

  14. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservative assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.

  15. Analysis of light scattering by two-dimensional inhomogeneities in paper using general radiative transfer theory

    SciTech Connect (OSTI)

    Nukala, Madhuri; Mendrok, Jana

    2014-12-10

    Lateral light scattering simulations of printed dots are analyzed using general radiative transfer theory. We investigated the appearance of a printed paper in relation to the medium parameters like thickness of the paper sample, its optical properties, and the asymmetry factor. It was found that the appearance of a print greatly depends on these factors making it either brighter or darker. A thicker substrate with higher single scattering albedo backed with an absorbing surface makes the dots brighter due to increased number of scattering events. Additionally, it is shown that the optical effects of print also depend on illuminating and viewing angles along with the depth of ink penetration. A larger single scattering angle implies less intensity and the dots appear much blurred due to the shadowing effect prominent when viewed from sides. A fully penetrated dot of the same extinction coefficient as a partial penetrated one is darker due to increased absorption. These results can be used in applications dealing with lateral light scattering.

  16. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    SciTech Connect (OSTI)

    Ito, Kota; Miura, Atsushi; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2015-02-23

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.

  17. Measurements of radiocesium transfer to milk and calculation of resulting dose in Brescia, Italy, following the Chernobyl accident

    SciTech Connect (OSTI)

    Albini, E.; Mascaro, L.; Belletti, S. )

    1990-10-01

    Results are presented of several measurements on components of the cows' milk chain performed at our Medical Physics Service after the Chernobyl accident. Values were obtained for Cs isotope transfer coefficients, namely, for cows' diet-milk and diet-feces transfers. Other measured parameters were the effective half-life of Cs in milk and the {sup 134}Cs:{sup 137}Cs ratio. In addition, an evaluation of Cs contribution to the absorbed dose to population from milk is performed.

  18. Accounting for sub-pixel variability of clouds and/or unresolved spectral variability, as needed, with generalized radiative transfer theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, Anthony B.; Xu, Feng; Collins, William D.

    2015-03-01

    Atmospheric hyperspectral VNIR sensing struggles with sub-pixel variability of clouds and limited spectral resolution mixing molecular lines. Our generalized radiative transfer model addresses both issues with new propagation kernels characterized by power-law decay in space.

  19. MILDOS - A Computer Program for Calculating Environmental Radiation Doses from Uranium Recovery Operations

    SciTech Connect (OSTI)

    Strange, D. L.; Bander, T. J.

    1981-04-01

    The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based on recommendations of the International Commission on Radiological Protection (ICRP). These factors are fixed internally in the code, and are not part of the input option. Dose commitments which are available from the code are as follows: • Individual dose commitments for use in predictive 40 CFR 190 compliance evaluations (Radon and short-lived daughters are excluded) • Total individual dose commitments (impacts from all available radionuclides are considered) • Annual population dose commitments (regional, extraregional, total and cummulative). This model is primarily designed for uranium mill facilities, and should not be used for operations with different radionuclides or processes.

  20. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  1. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    SciTech Connect (OSTI)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  2. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,moreallowing for more realistic representation of cloud radiation interactions in large-scale models.less

  3. Heat Capacity Uncertainty Calculation for the Eutectic Mixture of Biphenyl/Diphenyl Ether Used as Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Gomez, J. C.; Glatzmaier, G. C.; Mehos, M.

    2012-09-01

    The main objective of this study was to calculate the uncertainty at 95% confidence for the experimental values of heat capacity of the eutectic mixture of biphenyl/diphenyl ether (Therminol VP-1) determined from 300 to 370 degrees C. Twenty-five samples were evaluated using differential scanning calorimetry (DSC) to obtain the sample heat flow as a function of temperature. The ASTM E-1269-05 standard was used to determine the heat capacity using DSC evaluations. High-pressure crucibles were employed to contain the sample in the liquid state without vaporizing. Sample handling has a significant impact on the random uncertainty. It was determined that the fluid is difficult to handle, and a high variability of the data was produced. The heat capacity of Therminol VP-1 between 300 and 370 degrees C was measured to be equal to 0.0025T+0.8672 with an uncertainty of +/- 0.074 J/g.K (3.09%) at 95% confidence with T (temperature) in Kelvin.

  4. SRU Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculator SRU Calculator About SRUs You can use this form to estimate your mass storage charges (in SRUs). SRUs are calculated on a daily basis. Enter your estimated daily average number of files and data storage and your yearly estimate of data transferred to and from the HPSS system. Click on Calculate and your SRU charge will appear in the light blue boxes. Enter average daily values for the allocation year Number of files*: Amount of data stored*: GB Enter total HPSS I/O for the allocation

  5. Monte Carlo simulation methods in moment-based scale-bridging algorithms for thermal radiative-transfer problems

    SciTech Connect (OSTI)

    Densmore, J.D.; Park, H.; Wollaber, A.B.; Rauenzahn, R.M.; Knoll, D.A.

    2015-03-01

    We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption–emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck–Cummings algorithm.

  6. Radiation View Factor With Shadowing

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors as input data to finite element heat transfer analysis codes.

  7. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    SciTech Connect (OSTI)

    Na, Y; Kapp, D; Kim, Y; Xing, L; Suh, T

    2014-06-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ? PRs ? 10.6 for the head and neck case, 1.2 ? PRs ? 13.3 for lung case, and 1.0 ? PRs ? 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1R01 CA133474) and by Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (Grant No.2009-00420)

  8. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  9. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol

    SciTech Connect (OSTI)

    Haywood, J.M.; Roberts, D.L.; Slingo, A.

    1997-07-01

    A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different aerosol profiles, relative humidity parameterizations, chemical compositions, and internal and external mixtures of the two aerosol types are investigated. The contribution to the radiative forcing from cloudy sky regions is found to be negligible for sulfate aerosol; this is in contrast to recent studies where the cloudy sky contribution was estimated using a method in which the spatial correlation between cloud amount and sulfate burden was ignored. However, the radiative forcing due to fossil-fuel soot aerosol is enhanced in cloudy regions if soot aerosol exists within or above the cloud. The global solar radiative forcing due to sulfate aerosol is estimated to be -0.38 W m{sup -2} and the global thermal radiative forcing is estimated to be +0.01 W m{sup -2}. The hemispheric mean radiative forcings vary by only about 10% for reasonable assumptions about the chemical form of the sulfate aerosol and the relative humidity dependence; the uncertainties in the aerosol loading are far more significant. If a soot/sulfate mass ratio of 0.075 is assumed, then the global solar radiative forcing weakens to -0.18 W m{sup -2} for an external mixture and weakens further for an internal mixture. Additionally, the spatial distribution of the radiative forcing shows strong negative/positive forcing contrasts that may influence the dynamical response of the atmosphere. Although these results are extremely sensitive to the adopted soot/sulfate ratio and the assumed vertical profile, they indicate that fossil-fuel soot aerosol may exert a nonnegligible radiative forcing and emphasize the need to consider each anthropogenic aerosol species. 58 refs., 8 figs., 1 tab.

  10. Evaluation of Radiation Doses Due to Consumption of Contaminated Food Items and Calculation of Food Class-Specific Derived Intervention Levels

    SciTech Connect (OSTI)

    Heinzelman, K M; Mansfield, W G

    2010-04-27

    This document evaluates the expected radiation dose due to the consumption of several specific food classes (dairy, meat, produce, etc.) contaminated with specific radionuclides, and relates concentration levels in food to the detection abilities of typical aboratory analysis/measurement methods. The attached charts present the limiting organ dose as a function of the radionuclide concentration in a particular food class, and allow the user to compare these concentrations and doses to typical analytical detection apabilities. The expected radiation dose depends on several factors: the age of the individual; the radionuclide present in the food; the concentration of the radionuclide in the food; and the amount of food consumed. Food consumption rates for individuals of various ges were taken from the 1998 United States Food and Drug Administration (FDA) document, Accidental Radioactive Contamination of HUman Food and Animal Feeds: Recommendations for State and Local Agencies. In that document, the FDA defines the erived Intervention Level (DIL), which is the concentration of a particular radionuclide in food that if consumed could result in an individual receiving a radiation dose exceeding the Protection Action Guide (PAG) thresholds for intervention. This document also resents odified, food class specific DIL, which is calculated using a somewhat modified version of the FDA's procedure. This document begins with an overview of the FDA's DIL calculation, followed by a description of the food class specific DIL calculations, and finally charts of the radiation dose per radioactivity concentration for several food class/radionuclide combinations.

  11. TH-C-17A-02: New Radioluminescence Strategies Based On CRET (Cerenkov Radiation Energy Transfer) for Imaging and Therapy

    SciTech Connect (OSTI)

    Volotskova, O; Sun, C; Pratx, G; Xing, L

    2014-06-15

    Purpose: Cerenkov photons are produced when charged particles, emitted from radionuclides, travel through a media with a speed greater than that of the light in the media. Cerenkov radiation is mostly in the UV/Blue region and, thus, readily absorbed by biological tissue. Cerenkov Radiation Energy Transfer (CRET) is a wavelength-shifting phenomenon from blue Cerenkov light to more penetrating red wavelengths. We demonstrate the feasibility of in-depth imaging of CRET light originating from radionuclides realized by down conversion of gold nanoclusters (AuNCs, a novel particle composed of few atoms of gold coated with serum proteins) in vivo. Methods: Bovine Serum Albumin, Human Serum Albumin and Transferrin conjugated gold nanoclusters were synthesized, characterized and examined for CRET. Three different clinically used radiotracers: 18F-FDG, 90Y and 99mTc were used. Optical spectrum (440–750 nm) was recorded by sensitive bioluminescence imaging system at physiological temperature. Dose dependence (activity range from 0.5 up to 800uCi) and concentration dependence (0.01 to 1uM) studies were carried out. The compound was also imaged in a xenograft mouse model. Results: Only β+ and β--emitting radionuclides (18F-FDG, 90Y) are capable of CRET; no signal was found in 99mTc (γ-emitter). The emission peak of CRET by AuNCs was found to be ∼700 nm and was ∼3 fold times of background. In vitro studies showed a linear dependency between luminescence intensity and dose and concentration. CRET by gold nanoclusters was observed in xenografted mice injected with 100uCi of 18F-FDG. Conclusion: The unique optical, transport and chemical properties of AuNCs (gold nanoclusters) make them ideal candidates for in-vivo imaging applications. Development of new molecular imaging probes will allow us to achieve substantially improved spatiotemporal resolution, sensitivity and specificity for tumor imaging and detection.

  12. Boiler heat transfer modeling using CEMS data with application to fouling analysis

    SciTech Connect (OSTI)

    Zibas, S.J.; Idem, S.A.

    1996-12-31

    A mathematical boiler heat transfer simulation for coal-fired plants is described. Required model input includes boiler geometry, fuel composition, and limited CEMS data that are typically available. Radiation heat transfer in the furnace is calculated using curve-fits to the Hottel charts. The model employs empirical heat transfer coefficient correlations to evaluate convection heat transfer to various boiler component surfaces. Fouling/slagging can be accounted for by including fouling resistance in the calculation of the overall heat transfer coefficient of each component. Model performance predictions are compared to cases available in the literature. Results from parametric studies are presented.

  13. Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility

    SciTech Connect (OSTI)

    Salah, Wa'el; Sanchez del Rio, M.; Hoorani, H.

    2009-09-15

    The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x10{sup 11} photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

  14. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower elevation areas occupy larger fractions of the land surface, the net effect of 3-D radiative transfer is to extend snowmelt and snowmelt-driven runoff into the warm season. Because 60-90% of water resources originate from mountains worldwide, the aforementioned differences in simulated hydrology due solely to 3-D interactions between solar radiation and mountains/snow merit further investigation in order to understand the implications of modeling mountain water resources, and these resources vulnerability to climate change and air pollution.

  15. Radiation Transport Calculations and Simulations

    SciTech Connect (OSTI)

    Fasso, Alberto; Ferrari, A.; /CERN

    2011-06-30

    This article is an introduction to the Monte Carlo method as used in particle transport. After a description at an elementary level of the mathematical basis of the method, the Boltzmann equation and its physical meaning are presented, followed by Monte Carlo integration and random sampling, and by a general description of the main aspects and components of a typical Monte Carlo particle transport code. In particular, the most common biasing techniques are described, as well as the concepts of estimator and detector. After a discussion of the different types of errors, the issue of Quality Assurance is briefly considered.

  16. Statistical characteristics of cloud variability. Part 2: Implication for parameterizations of microphysical and radiative transfer processes in climate models

    SciTech Connect (OSTI)

    Huang, Dong; Liu, Yangang

    2014-09-27

    The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific, Southern Great Plains, and North Slope of Alaska sites of the Department of Energy's Atmospheric Radiation Measurement program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The probability density functions are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate, whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest, and thus, there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.

  17. Statistical characteristics of cloud variability. Part 2: Implication for parameterizations of microphysical and radiative transfer processes in climate models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Dong; Liu, Yangang

    2014-09-27

    The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific, Southern Great Plains, and North Slope of Alaska sites of the Department of Energy's Atmospheric Radiation Measurement program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The probability density functions are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results inmoreup to 30% mean bias in autoconversion rate, whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest, and thus, there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.less

  18. Radiation Doses to Members of the U.S. Population from Ubiquitous Radionuclides in the Body: Part 2, Methods and Dose Calculations

    SciTech Connect (OSTI)

    Watson, David J.; Strom, Daniel J.

    2011-02-25

    This paper is part two of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. Part one reviewed, summarized, characterized, and grouped all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Assumptions about equilibrium with long-lived parents are made for the 28 other radionuclides in these series lacking data. This paper describes the methods developed to group the collected data into source regions described in the Radiation Dose Assessment Resource (RADAR) dosimetric methodology. Methods for converting the various units of data published over 50 years into a standard form are developed and described. Often, meaningful values of uncertainty of measurements were not published so that variability in data sets is confounded with measurement uncertainty. A description of the methods developed to estimate variability is included in this paper. The data described in part one are grouped by gender and age to match the RADAR dosimetric phantoms. Within these phantoms, concentration values are grouped into source tissue regions by radionuclide, and they are imputed for source regions lacking tissue data. Radionuclide concentrations are then imputed for other phantoms source regions with missing concentration values, and the uncertainties of the imputed values are increased. The content concentrations of hollow organs are calculated, and activities are apportioned to the bone source regions using assumptions about each radionuclides bone-seeking behavior. The data sets are then ready to be used to estimate equivalent doses to target tissues from these source regions. The target tissues are then mapped to lists of tissues with International Commission on Radiation Protection (ICRP) tissue weighting factors, or they are mapped to surrogate tissue regions when there is no direct match. Effective doses, using ICRP tissue weighting factors recommended in 1977, 1990, and 2007, are calculated from tissue and organ equivalent doses.

  19. Induction and Persistence of Large ?H2AX Foci by High Linear Energy Transfer Radiation in DNA-Dependent protein kinaseDeficient Cells

    SciTech Connect (OSTI)

    Bracalente, Candelaria; Ibaez, Irene L.; Molinari, Beatriz; Palmieri, Mnica; Kreiner, Andrs; Valda, Alejandro; and others

    2013-11-15

    Purpose: To evaluate the cell response to DNA double-strand breaks induced by low and high linear energy transfer (LET) radiations when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an essential protein of the nonhomologous end-joining repair pathway, lacks kinase activity. Methods and Materials: CHO10B2, a Chinese hamster ovary cell line, and its derived radiosensitive mutant cell line, irs-20, lacking DNA-PKcs activity, were evaluated after 0 to 3 Gy of ?-rays, plateau and Bragg peak protons, and lithium beams by clonogenic assay, and as a measurement of double-strand breaks, phosphorylated H2AX (?H2AX) foci number and size were quantified by immunocytofluorescence. Results: Irs-20 exhibited greater radiosensitivity and a higher amount of ?H2AX foci than CHO10B2 at 6 hours after irradiation for all types of radiations. Remarkably, CHO10B2 and irs-20 maintained their difference in radiosensitivity after high-LET radiation. Six hours after low-LET radiations, irs-20 did not reach basal levels of ?H2AX at high doses, whereas CHO10B2 recovered basal levels for all doses. After high-LET radiation, only CHO10B2 exhibited a reduction in ?H2AX foci, but it never reached basal levels. Persistent foci in irs-20 confirmed a repair deficiency. Interestingly, after 30 minutes of high-LET radiation both cell lines exhibited large foci (size >0.9 ?m{sup 2}) related to the damage nature, whereas at 6 hours irs-20 showed a higher amount of large foci than CHO10B2, with a 7-fold increase at 3 Gy, that could also be associated to radiosensitivity. Conclusions: We demonstrated, for the first time, an association between deficient DNA-PKcs activity and not only high levels of H2AX phosphorylation but also persistence and size increase of ?H2AX foci after high-LET irradiation.

  20. Oxidative Stress and Skeletal Health with Low-Dose, Low-LET (Linear Energy Transfer) Ionizing Radiation

    SciTech Connect (OSTI)

    Globus, Ruth K.

    2014-11-03

    We performed in vivo and in vitro experiments to accomplish the following specific aims of this project: 1) determine if low dose, low LET radiation affects skeletal remodeling at structural, cellular and molecular levels and 2) determine if low dose, low LET radiation modulates skeletal health during aging via oxidative mechanisms. A third aim is supported by NASA supplement to this DOE grant focusing on the influence of high LET radiation on bone. A series of experiments were conducted at the NASA Space Radiation Laboratory at Brookhaven, NSRL-BNL, using iron (56Fe) or a sequential exposure to protons / iron / protons, and separate experiments at NASA Ames Research Center (ARC) using 137Cs. The following provides a summary of key findings. (1) Exposure of nine-week old female mice to priming doses of gamma radiation (10cGy x 5) did not significantly affect bone volume/total volume (BV/TV) or microarchitecture as analyzed by 3D microcomputed tomography. As expected, exposure to the challenge dose of 2 Gy gamma irradiation resulted in significant decreases in BV/TV. The priming dose combined with the 2Gy challenge dose had no further effect on BV/TV compared to challenge dose alone, with the sole exception of the Structural Model Index (SMI). SMI reflects the ratio of rods-to-plates in cancellous bone tissue, such that higher SMI values indicate a tendency toward a weaker structure compared to lower SMI values. Mice treated with both priming and challenge dose had 25% higher SMI values compared to sham-irradiated controls and 7% higher values compared to mice treated with the challenge dose alone. Thus, although this priming regimen had relatively modest effects on cancellous tissue, the difference in SMI suggests this fractionated priming doses have adverse, rather than beneficial, effects on bone structure. (2) In 10-week old male mice, a single exposure to 100cGy of 137Cs reduces trabecular bone number and connectivity density by 20% and 36% respectively one month after irradiation (IR). At four months post-IR, these animals were comparable to sham-treated controls with regards to the abovementioned structural parameters. Irradation at 1 or 10 cGy did not result in any significant changes in bone structural parameters. (3) Irradiation of 16-wk old male mice with high doses of 56Fe or proton (50 or 200cGy), but not at low doses (5 or 10cGy), showed a similar loss of cancellous BV/TV and trabecular number at five weeks post-IR. (4) Age-related bone loss overtook acute radiation-induced decrements in bone structure within four months post-IR with 100 cGy gamma and 12 months post-IR with 200 cGy iron. Transgenic mice globally overexpressing human catalase gene in mitochondria did not exhibit cancellous bone loss as assessed at four month post-IR with 10 cGy proton, 50 cGy iron, or in combination. (5) The cellular and molecular mechanisms responsible for loss of bone with radiation are mediated primarily through increased osteoclastogenesis. Our data provide evidence that there are increases in gene expression of TNF alpha and MCP1 in the bone marrow cells 24 hours post-IR and of osteoclastogenic differentiation factor RANKL by day 3. These cytokines in the marrow may stimulate mature osteoclasts or drive osteoclastogenesis from precursors. (6) Osteoblastogenesis from marrow progenitors evaluated ex vivo decreased following whole body 56Fe irradiation at a dose threshold between 20 and 50 cGy whereas osteoclastogenesis ex vivo increased with doses as low as 10cGy two days post-IR of mice. However, the latter finding was not observed in more than a single experiment. (7) Gamma irradiation of cells in vitro requires relatively high doses (200cGy) to disturb normal osteoblastogenesis and osteoclastogenesis as evidenced by decrements in mineralized nodule formation, osteoclast counts, and expression of osteoblast related genes such as runx2, col1a1. (8) We also investigated the effect of antioxidants on osteoblastogenesis following low dose in vitro gamma irradiation (15cGy) on day four bone marrow stromal cell cultures. Superoxide dismutase (SOD) was added to the cell culture medium for 2 or 3 days post-irradiation and cell colonies were counted on days 7 and 10. SOD treatment increased cell growth as measured by DNA content and colony forming units (CFU) in both irradiated cells and 0 cGy control groups. However, low dose radiation of 15cGy abolished SOD stimulatory effects on cell growth and CFU number. These results suggest that exogenous SOD increases osteoblast cell growth and colony formation and that low-dose radiation (15cGy) can interfere with the antioxidant effects. In summary, our findings indicate that acute, whole body irradiation at high doses (50-200 cGy) results in prompt tissue degradation and bone loss. Lower doses (<50 cGy) do not cause bone structural deterioration but may deplete stem/progenitor cell pools in the bone marrow.

  1. Handbook of heat transfer fundamentals

    SciTech Connect (OSTI)

    Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

    1985-01-01

    This handbook is on the fundamentals of heat transfer. It provides coverage on conduction, convection, and radiation and on thermophysical properties of materials.

  2. Calculation of the dose rate emanating from gamma radiation of a gas jet propagating through the surface layer of the atmosphere

    SciTech Connect (OSTI)

    Zakharov, O.V.; Kovalenko, V.V.; Kolobashkin, V.M.

    1982-09-01

    The problem of calculating the dose rate on the Earth's surface which emanates from a gas jet is examined.

  3. ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative

    Office of Scientific and Technical Information (OSTI)

    of Oklahoma Univ. of Oklahoma 79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer, Dark Energy, Type Ia supernovae, radiative transfer, The...

  4. Transferring Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data from/to NERSC - scp/sftp - bbcp - GridFTP * Sharing Data Within NERSC Tuesday, March 8, 2011 Systems and Disks 3 System Hopper Franklin Carver Euclid Data Transfer Node PDSF Global Home ($HOME) Global Scratch ($GSCRATCH) Project Directory Local Non-shared Scratch Data transfer nodes can access most of the disks, suggested for transferring

  5. Nuclear Material Variance Calculation

    Energy Science and Technology Software Center (OSTI)

    1995-01-01

    MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet that significantly reduces the effort required to make the variance and covariance calculations needed to determine the detection sensitivity of a materials accounting system and loss of special nuclear material (SNM). The user is required to enter information into one of four data tables depending on the type of term in the materials balance (MB) equation. The four data tables correspond to input transfers, output transfers,more » and two types of inventory terms, one for nondestructive assay (NDA) measurements and one for measurements made by chemical analysis. Each data entry must contain an identification number and a short description, as well as values for the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements during an accounting period. The user must also specify the type of error model (additive or multiplicative) associated with each measurement, and possible correlations between transfer terms. Predefined spreadsheet macros are used to perform the variance and covariance calculations for each term based on the corresponding set of entries. MAVARIC has been used for sensitivity studies of chemical separation facilities, fuel processing and fabrication facilities, and gas centrifuge and laser isotope enrichment facilities.« less

  6. Data Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfer Data Transfer This section contains advice for the best ways to get your data into and out of NERSC. Globus Globus is a service for fast reliable managed data transfers. Read More » GridFTP GridFTP is a high-performance, secure, reliable data transfer protocol optimized for high-bandwidth wide-area networks. The GridFTP protocol is based on FTP, the highly-popular Internet file transfer protocol. Read More » Data Transfer Nodes The data transfer nodes are optimized for moving data

  7. Near-field thermal radiative transfer and thermoacoustic effects from vapor plumes produced by pulsed CO{sub 2} laser ablation of bulk water

    SciTech Connect (OSTI)

    Kudryashov, S. I.; Lyon, Kevin; Allen, S. D.

    2006-12-15

    Submillimeter deep heating of bulk water by thermal radiation from ablative water plumes produced by a 10.6 {mu}m transversely excited atmospheric CO{sub 2} laser and the related acoustic generation has been studied using a contact time-resolved photoacoustic technique. Effective penetration depths of thermal radiation in water were measured as a function of incident laser fluence and the corresponding plume temperatures were estimated. The near-field thermal and thermoacoustic effects of thermal radiation in laser-ablated bulk water and their potential near-field implications are discussed.

  8. Evaluation of GCM Column Radiation Models Under Cloudy Conditions with The Arm BBHRP Value Added Product

    SciTech Connect (OSTI)

    Oreopoulos, Lazaros; Norris, Peter M.

    2010-03-14

    The overarching goal of the project was to improve the transfer of solar and thermal radiation in the most sophisticated computer tools that are currently available for climate studies, namely Global Climate Models (GCMs). This transfer can be conceptually separated into propagation of radiation under cloudy and under cloudless conditions. For cloudless conditions, the factors that affect radiation propagation are gaseous absorption and scattering, aerosol particle absorption and scattering and surface albedo and emissivity. For cloudy atmospheres the factors are the various cloud properties such as cloud fraction, amount of cloud condensate, the size of the cloud particles, and morphological cloud features such as cloud vertical location, cloud horizontal and vertical inhomogeneity and cloud shape and size. The project addressed various aspects of the influence of the above contributors to atmospheric radiative transfer variability. In particular, it examined: (a) the quality of radiative transfer for cloudless and non-complex cloudy conditions for a substantial number of radiation algorithms used in current GCMs; (b) the errors in radiative fluxes from neglecting the horizontal variabiity of cloud extinction; (c) the statistical properties of cloud horizontal and vertical cloud inhomogeneity that can be incorporated into radiative transfer codes; (d) the potential albedo effects of changes in the particle size of liquid clouds; (e) the gaseous radiative forcing in the presence of clouds; and (f) the relative contribution of clouds of different sizes to the reflectance of a cloud field. To conduct the research in the various facets of the project, data from both the DOE ARM project and other sources were used. The outcomes of the project will have tangible effects on how the calculation of radiative energy will be approached in future editions of GCMs. With better calculations of radiative energy in GCMs more reliable predictions of future climate states will be attainable, thus affecting public policy decisions with great impact to public life.

  9. Proton transfer in nucleobases is mediated by water

    SciTech Connect (OSTI)

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-04-29

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  10. WBGT Calculator

    Energy Science and Technology Software Center (OSTI)

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore » the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less

  11. Estimating payload internal temperatures and radiator size for multimegawatt space platforms

    SciTech Connect (OSTI)

    Dobranich, D.

    1987-08-01

    A conceptual space platform consists of a payload, a power conditioning unit (PCU), and two radiators: the main radiator and a secondary radiator. A computer program was written to determine the required size of the two radiators and the temperatures of the PCU and payload for a given platform power level. An iterative approach is necessary because the required size of the main radiator depends on the size of the secondary radiator and vice versa. Also, the temperatures of the payload and PCU depend on the size of the radiators. The program user can subdivide the two radiators into any number of nodes to increase the accuracy of the radiant heat transfer solution. The use of more nodes also allows better prediction of the nonlinear temperature drop that occurs across the radiators as the working fluid deposits the platform's waste heat in the radiator. View factor expressions are automatically calculated for different choices of the number of nodes. The user can also select different separation distances between the various platform structures. A model is included to couple the radiant and conduction heat transfer that occurs between the payload and its meteoroid shell and between the PCU and its shell. Also, the program allows the use of a refrigerator to cool the payload. If a refrigerator is used, the program determines the amount of additional thermal power needed to run the refrigerator. The results of parametric calculations are included to demonstrate the use of the program.

  12. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    SciTech Connect (OSTI)

    Makarov, A. N.

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  13. Transferring Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transferring data - whether over the wide area network or with NERSC - can be expensive and time consuming. This page explains the mechanisms NERSC provides to move your data from one place to another. A good strategy, once your data is resident at NERSC, is to perform your analysis in situ, rather than transferring the data elsewhere for analysis. The NERSC consultant can

  14. Transmutation calculations for the accelerator transmutation of waste (ATW) program

    SciTech Connect (OSTI)

    Wilson, W.B.; Arthur, E.D.; Bowman, C.D.; Engel, L.N.; England, T.R.; Hughes, H.G.; Lisowski, P.W.; Perry, R.T.

    1991-01-01

    The disposal of radioactive waste by the transmutation of long-lived radionuclides is being considered; now using neutrons produced with an intense beam of 1.6-GeV protons on a Pb-Bi target. Study teams have been active in the areas of accelerator design, beam transport, radiation transport, transmutation, fluid flow and heat transfer, process chemistry and system analyses. Work is of a preliminary and developmental nature. Here we describe these preliminary efforts in transmutation calculations; the tools developed, status of basic nuclear data, and some early results. These calculations require the description of the intensity and spectrum of neutrons produced by the beam, the distribution of nuclides produced in the medium-energy reactions, the transport of particles produced by the beam, the transmutation of the target materials and transmutation products, and the decay properties of the inventory of radionuclides produced.

  15. Radiative Importance of ThinŽ Liquid Water Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Radiative Transfer Models Turner et al., JAS, 2004 * AERI observations ... Long et al., JGR, 2006 Radiative Importance of "Thin" Liquid Water Clouds Shortwave Turner ...

  16. Evaluating Radiative Closure in the Middle-to-Upper Troposhere...

    Office of Scientific and Technical Information (OSTI)

    and improvement of the radiative transfer parameterization in strongly absorbing water vapor bands, as these strongly absorbing bands dictate the clear sky radiative heating rate. ...

  17. Plutonium 239 Equivalency Calculations

    SciTech Connect (OSTI)

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  18. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect (OSTI)

    2011-12-05

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USFs PCMs remain stable at temperatures from 600 to 1,000C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  19. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year. Because the number

  20. The Continual Intercomparison of Radiation Codes: Results from Phase I

    SciTech Connect (OSTI)

    Oreopoulos, L.; Mlawer, Eli J.; Delamere, Jennifer; Shippert, Timothy R.; Cole, Jason; Fomin, Boris; Iacono, Michael J.; Jin, Zhonghai; Li, Jiangning; Manners, James; Raisanen, Petri; Rose, Fred; Zhang, Yuanchong; Wilson, Michael J.; Rossow, William B.

    2012-01-01

    We present results from Phase I of the Continual Intercomparison of Radiation Codes (CIRC), intended as an evolving and regularly updated reference source for evaluation of radiative transfer (RT) codes used in Global Climate Models. CIRC differs from previous intercomparisons in that it relies on an observationally validated catalogue of cases. The seven CIRC Phase I baseline cases, five cloud-free, and two with overcast liquid clouds, are built around observations by the Atmospheric Radiation Measurements (ARM) program that satisfy the goals of Phase I, namely to examine radiative transfer (RT) model performance in realistic, yet not overly complex, atmospheric conditions. In addition to the seven baseline cases, additional idealized "subcases" are also examined to facilitate intrepretation of the causes of model errors. In addition to summarizing individual model performance with respect to reference line-by-line calculations and inter-model differences, we also highlight RT model behavior for conditions of doubled CO2, aspects of utilizing a spectral specification of surface albedo, and the impact of the inclusion of scattering in the thermal infrared. Our analysis suggests that RT models should work towards improving their calculation of diffuse shortwave flux, shortwave absorption, treatment of spectral surface albedo, and shortwave CO2 forcing. On the other hand, LW calculations appear to be significantly closer to the reference results. By enhancing the range of conditions under which participating codes are tested, future CIRC phases will hopefully allow even more rigorous examination of RT code performance.

  1. Constraining the physical conditions in the jets of ?-ray flaring blazars using centimeter-band polarimetry and radiative transfer simulations. I. Data and models for 0420014, OJ 287, and 1156+295

    SciTech Connect (OSTI)

    Aller, M. F.; Hughes, P. A.; Aller, H. D.; Latimer, G. E.; Hovatta, T.

    2014-08-10

    To investigate parsec-scale jet flow conditions during GeV ?-ray flares detected by the Fermi Large Angle Telescope, we obtained centimeter-band total flux density and linear polarization monitoring observations from 2009.5 through 2012.5 with the 26 m Michigan radio telescope for a sample of core-dominated blazars. We use these data to constrain radiative transfer simulations incorporating propagating shocks oriented at an arbitrary angle to the flow direction in order to set limits on the jet flow and shock parameters during flares temporally associated with ?-ray flares in 0420014, OJ 287, and 1156+295; these active galactic nuclei exhibited the expected signature of shocks in the linear polarization data. Both the number of shocks comprising an individual radio outburst (3 and 4) and the range of the compression ratios of the individual shocks (0.5-0.8) are similar in all three sources; the shocks are found to be forward-moving with respect to the flow. While simulations incorporating transverse shocks provide good fits for 0420014 and 1156+295, oblique shocks are required for modeling the OJ 287 outburst, and an unusually low value of the low-energy cutoff of the radiating particles' energy distribution is also identified. Our derived viewing angles and shock speeds are consistent with independent Very Long Baseline Array results. While a random component dominates the jet magnetic field, as evidenced by the low fractional linear polarization, to reproduce the observed spectral character requires that a significant fraction of the magnetic field energy is in an ordered axial component. Both straight and low pitch angle helical field lines are viable scenarios.

  2. radiation detection | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA Deputy Administrator Creedon Travels to China NNSA keeps the promises borne out of ... NNSA Transfers Responsibility for Radiation Detection System to China Customs NNSA, ...

  3. Surface Radiation from GOES: A Physical Approach; Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2012-09-01

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

  4. SU-E-T-481: Dosimetric Comparison of Acuros XB and Anisotropic Analytic Algorithm with Commercial Monte Carlo Based Dose Calculation Algorithm for Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect (OSTI)

    Cao, M; Tenn, S; Lee, C; Yang, Y; Lamb, J; Agazaryan, N; Lee, P; Low, D

    2014-06-01

    Purpose: To evaluate performance of three commercially available treatment planning systems for stereotactic body radiation therapy (SBRT) of lung cancer using the following algorithms: Boltzmann transport equation based algorithm (AcurosXB AXB), convolution based algorithm Anisotropic Analytic Algorithm (AAA); and Monte Carlo based algorithm (XVMC). Methods: A total of 10 patients with early stage non-small cell peripheral lung cancer were included. The initial clinical plans were generated using the XVMC based treatment planning system with a prescription of 54Gy in 3 fractions following RTOG0613 protocol. The plans were recalculated with the same beam parameters and monitor units using AAA and AXB algorithms. A calculation grid size of 2mm was used for all algorithms. The dose distribution, conformity, and dosimetric parameters for the targets and organs at risk (OAR) are compared between the algorithms. Results: The average PTV volume was 19.6mL (range 4.247.2mL). The volume of PTV covered by the prescribed dose (PTV-V100) were 93.972.00%, 95.072.07% and 95.102.97% for XVMC, AXB and AAA algorithms, respectively. There was no significant difference in high dose conformity index; however, XVMC predicted slightly higher values (p=0.04) for the ratio of 50% prescription isodose volume to PTV (R50%). The percentage volume of total lungs receiving dose >20Gy (LungV20Gy) were 4.032.26%, 3.862.22% and 3.852.21% for XVMC, AXB and AAA algorithms. Examination of dose volume histograms (DVH) revealed small differences in targets and OARs for most patients. However, the AAA algorithm was found to predict considerable higher PTV coverage compared with AXB and XVMC algorithms in two cases. The dose difference was found to be primarily located at the periphery region of the target. Conclusion: For clinical SBRT lung treatment planning, the dosimetric differences between three commercially available algorithms are generally small except at target periphery. XVMC and AXB algorithms are recommended for accurate dose estimation at tissue boundaries.

  5. Electron Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example,

  6. NNSA Transfers Responsibility for Radiation Detection System...

    National Nuclear Security Administration (NNSA)

    application of nuclear science. NNSA maintains and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing; works ...

  7. Collaborative Project. 3D Radiative Transfer Parameterization...

    Office of Scientific and Technical Information (OSTI)

    for High-Resolution Climate Models. Fast physics and Applications Citation Details ... for High-Resolution Climate Models. Fast physics and Applications Under the support of the ...

  8. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  9. Alpha Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments

  10. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  11. Observational determination of surface radiative forcing by CO2 from 2000 to 2010

    SciTech Connect (OSTI)

    Feldman, Daniel R.; Collins, William D.; Gero, P. Johnathan; Torn, Margaret S.; Mlawer, Eli J.; Shippert, Timothy R.

    2015-02-25

    The climatic impact of CO2 and other greenhouse gases is usually quantified in terms of radiative forcing1, calculated as the difference between estimates of the Earth’s radiation field from pre-industrial and present-day concentrations of these gases. Radiative transfer models calculate that the increase in CO2 since 1750 corresponds to a global annual-mean radiative forcing at the tropopause of 1.82 ± 0.19 W m-2 (ref. 2). However, despite widespread scientific discussion and modelling of the climate impacts of well-mixed greenhouse gases, there is little direct observational evidence of the radiative impact of increasing atmospheric CO2. Here we present observationally based evidence of clear-sky CO2 surface radiative forcing that is directly attributable to the increase, between 2000 and 2010, of 22 parts per million atmospheric CO2. The time series of this forcing at the two locations—the Southern Great Plains and the North Slope of Alaska—are derived from Atmospheric Emitted Radiance Interferometer spectra3 together with ancillary measurements and thoroughly corroborated radiative transfer calculations4. The time series both show statistically significant trends of 0.2 W m-2 per decade (with respective uncertainties of ±0.06 W m-2 per decade and ±0.07 W m-2 per decade) and have seasonal ranges of 0.1–0.2 W m-2. This is approximately ten per cent of the trend in downwelling longwave radiation5, 6, 7. These results confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions, and provide empirical evidence of how rising CO2 levels, mediated by temporal variations due to photosynthesis and respiration, are affecting the surface energy balance.

  12. Original Impact Calculations

    Broader source: Energy.gov [DOE]

    Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  13. Direct Aerosol Forcing: Calculation from Observables and Sensitivities to

    Office of Scientific and Technical Information (OSTI)

    Inputs (Journal Article) | SciTech Connect Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Inputs Citation Details In-Document Search Title: Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Inputs Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty

  14. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (OSTI)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  15. Radiator Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer

  16. Fourier analysis of conductive heat transfer for glazed roofing materials

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Fourier analysis of conductive heat transfer for glazed roofing materials Citation Details In-Document Search Title: Fourier analysis of conductive heat transfer for glazed roofing materials For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials.

  17. Utility Potential Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Potential Studies in the Northwest V1.0 Utility Potential Calculator V1.0 for Excel 2007 Utility Potential Calculator V1.0 for Excel 2003 Note: BPA developed the Utility...

  18. ARM - Wind Chill Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  19. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its

  20. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfer » Data Transfer Nodes Data Transfer Nodes A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:35:12

  1. A global three-dimensional radiation magneto-hydrodynamic simulation of super-eddington accretion disks

    SciTech Connect (OSTI)

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-12-01

    We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.

  2. Ray tracing flux calculation for the small and wide angle x-ray scattering

    Office of Scientific and Technical Information (OSTI)

    diffraction station at the SESAME synchrotron radiation facility (Journal Article) | SciTech Connect Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility Citation Details In-Document Search Title: Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility The calculation for the optics of the synchrotron radiation small and

  3. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect (OSTI)

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative transfer calculations, will be acquired using the aircraft and surface facilities available to ARESE. This document outlines the scientific approach and measurement requirements of the project.

  4. Bandwidth and Transfer Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average. Graphs for the last 8 days. Historical yearly peak days. Daily Storage Concurrency Transfer Activity This graph shows the number of transfers to the storage systems...

  5. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  6. Beta Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells...

  7. ARM - Relative Humidity Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsRelative Humidity Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Relative Humidity Calculations Heat Index is an index that combines air temperature and relative humidity to estimate how hot it actually feels. The human body cools off through perspiration, which

  8. Multi-Dimensional Effects in Longwave Radiative Forcing of PBL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ellingson Florida State University Tallahassee, Florida 1. Introduction Numerical cloud models nearly universally employ one-dimensional (1D) treatments of radiative transfer (RT). ...

  9. Posters A One-Dimensional Radiative Convective Model with Detailed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and solid, comprehensive radiative transfer code. Initially, we specify the atmospheric temperature, humidity and aerosol profile, and ground conditions appropriate for the...

  10. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  11. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  12. Calculation note review

    SciTech Connect (OSTI)

    Ramble, A.L.

    1996-09-30

    This document contains a review of the calculation notes which were prepared for the Tank Waste Remediation System Basis for Interim Operation.

  13. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Nodes Data Transfer Nodes PDSF has dedicated nodes for grid services and data transfers named pdsfdtn1.nersc.gov and pdsfdtn2.nersc.gov. Both nodes have 10 Gb/s network connections to the NERSC network. Please avoid using the interactive nodes for bulk data transfer. Not only can it be disruptive to other users but the network connection is only 1 Gb/s so it will take longer. For transfers using /project and/or HPSS use the NERSC data transfer nodes - see the NERSC data transfer

  14. Draft PEI Calculator

    Broader source: Energy.gov [DOE]

    This Excel spreadsheet is designed to perform the calculations necessary to determine PEI -- a pump's energy index -- as proposed in DOE's Notices of Proposed Rulemaking (Dockets EERE-2011-BT-STD-0031 and EERE-2013-BT-TP-0055). DOE is providing this calculator as a convenience at the request of interested parties.

  15. TECHNOLOGY TRANSFER COORDINATORS

    Broader source: Energy.gov [DOE]

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  16. Analysis of Contribution from Edge Radiation to Optical Diffraction Radiation

    SciTech Connect (OSTI)

    C. Liu, P. Evtushenko, A. Freyberger, C. Liu, A.H. Lumpkin

    2009-05-01

    Beam size measurement with near-field optical diffraction radiation (ODR) has been carried out successfully at CEBAF. The ODR station is installed on the Hall-A beam line after eight bending magnets. The ODR images were affected by an unexpected radiation. Some calculations for analyzing the source of the radiation will be presented. Furthermore, two schemes will be proposed to alleviate the contamination.

  17. Dose Calculation Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore » various downwind distances as specified by the user.« less

  18. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code

  19. Appliance Energy Calculator

    Broader source: Energy.gov [DOE]

    Our appliance and electronic energy use calculator allows you to estimate your annual energy use and cost to operate specific products. The wattage values provided are samples only; actual wattage...

  20. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  1. ARM - Heat Index Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that ...

  2. Wireless adiabatic power transfer

    SciTech Connect (OSTI)

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  3. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  4. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D.

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  5. A general hybrid radiation transport scheme for star formation simulations on an adaptive grid

    SciTech Connect (OSTI)

    Klassen, Mikhail; Pudritz, Ralph E.; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi; Buntemeyer, Lars

    2014-12-10

    Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.

  6. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

  7. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect (OSTI)

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  8. New approach for absolute fluence distribution calculations in Monte Carlo simulations of light propagation in turbid media

    SciTech Connect (OSTI)

    Böcklin, Christoph Baumann, Dirk; Fröhlich, Jürg

    2014-02-14

    A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithm works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers.

  9. Jobs Calculator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs Calculator Jobs Calculator Office spreadsheet icon owip_jobs_calculator_v11-0.xls More Documents & Publications WPN 10-14: Calculation of Job Creation through DOE Recovery Act Funding Progress Report Template Job Counting Guidelines

  10. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  11. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  12. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  13. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  14. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  15. Ray tracing flux calculation for the small and wide angle x-ray...

    Office of Scientific and Technical Information (OSTI)

    Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility Citation Details In-Document Search ...

  16. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  17. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  18. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  19. Tunnel closure calculations

    SciTech Connect (OSTI)

    Moran, B.; Attia, A.

    1995-07-01

    When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

  20. Carbon Footprint Calculator

    Broader source: Energy.gov [DOE]

    This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

  1. Impedance scaling and synchrotron radiation intercept (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Impedance scaling and synchrotron radiation intercept Citation Details In-Document Search Title: Impedance scaling and synchrotron radiation intercept This paper presents several scalings in 2-D and 3-D impedance calculations. Most of the scalings are empirical and found by using the boundary perturbation method and numerical simulations. As an application of these scalings, the impedance of one type of synchrotron radiation intercept is calculated. The results are then

  2. Calculation notes in support of TWRS FSAR spray leak accident analysis

    SciTech Connect (OSTI)

    Hall, B.W., Westinghouse Hanford

    1996-08-05

    This document includes the calculations needed to quantify the risk associated with unmitigated and mitigated pressurized spray releases from tank farm transfer equipment inside transfer enclosures. The calculations within this document support the spray leak accident analysis reported in the TWRS FSAR.

  3. Synchrotron Radiation Workshop (SRW)

    Energy Science and Technology Software Center (OSTI)

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations inmore » steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, soft and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  4. Selective radiative heating of nanostructures using hyperbolic

    Office of Scientific and Technical Information (OSTI)

    metamaterials (Journal Article) | SciTech Connect Selective radiative heating of nanostructures using hyperbolic metamaterials Citation Details In-Document Search Title: Selective radiative heating of nanostructures using hyperbolic metamaterials Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a

  5. Wireless energy transfer between anisotropic metamaterials shells

    SciTech Connect (OSTI)

    Daz-Rubio, Ana; Carbonell, Jorge; Snchez-Dehesa, Jos

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. Exchange of electromagnetic energy between shells with high efficiency is analyzed. Strong coupling is supported with high wireless transfer efficiency. End-to-end energy transfer efficiencies higher than 83% can be predicted.

  6. NREL: Technology Transfer - Commercialization Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  7. Development of Aerosol Models for Radiative Flux Calculations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1985-1992. J. Geophys. Res., 99, 25,845-25,855. Quinn, P. K., T. L. Miller, T. S. Bates, J. A. Ogren, E. Andrews, and G. E. Shaw, 2002: A 3-year record of simultaneously...

  8. Multigroup Radiation Transport in Supernova Light Curve Calculations...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: Astronomy & Astrophysics(79) Word ...

  9. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  10. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  11. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  12. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  13. Technology Transfer at DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer at DOE Karina Edmonds Technology Transfer Coordinator US Department of Energy March 13, 2012 Goals (As presented 11/2010)  Improve contractual vehicles  Update and streamline WFO and CRADA agreements  Create new opportunities to partner with industry  Inreach  Educate tech transfer offices to improve consistency, streamline processes  Improve relationships with inventors to increase IP captured, manage expectations  Outreach  Develop interagency

  14. Material Transfer Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  15. Technology Transfer - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0004_v2.jpg Technology Transfer Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  16. NREL: Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  17. NETL: Tech Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the public sector to move federally funded technologies to commercialization. Learn more about NETL Technology Transfer Available Technologies Search NETL available...

  18. Bandwidth and Transfer Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Bandwidth and Transfer Activity Data Rate vs. File Size The graph below shows the bandwidth for individual file transfers for one day. The graph also gives a quick overview of the traffic and maximum bandwidth and file size for a given day. Historical yearly peak days. Daily Rate vs. Size Aggregate Transfer Bandwidth This graph shows the aggregate transfer rate to the storage systems as a function of time of day. The red line is the peak bandwidth observed within each one minute

  19. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  20. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the outer part of the self-consistent potential in such a way that in the final state after photoexcitation or photoionization the newly occupied orbital sees the hole left in the initial state. This is very important to account for the large number of Rydberg states in the case of low densities. In the next Section we show calculated photoabsorptions compared with experimental data in figures with some rudimentary explanations.

  1. Calculation of Electron Trajectories

    Energy Science and Technology Software Center (OSTI)

    1982-06-01

    EGUN, the SLAC Electron Trajectory Program, computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child''s Law conditions on cathodes of various shapes, user-specified initial conditions for each ray, and a combination of Child''s Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using arbitrary configuration of coils, or the outputmore » of a magnet program, such as Poisson, or by an externally calculated array of the axial fields.« less

  2. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Home MSDS Search MSDS Help Safety Training and Tests Contact Links LSU Campus Safety Glossary Radiation Safety Manual Radiation Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! **Please allow two weeks for your badge to be processed.** Regulations and Hierarchy The CAMD Safety Officer reports to two separate individuals regarding safety. These are the Radiation Safety Officer for the University, and the Campus Safety Officer in all other matters. Thus safety

  3. Measuring Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Measurement Activity: How Much Is Present? The size or weight of a container or shipment does not indicate how much radioactivity is in it. The amount of radioactivity in a quantity of material can be determined by noting how many curies of the material are present. This information should be found on labels and/or shipping

  4. Transfer Activity Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Last 8 Days Transfer Activity Last 8 Days These graphs show the transfer activity statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems)

  5. Roof Savings Calculator Suite

    Energy Science and Technology Software Center (OSTI)

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance,more » roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.« less

  6. Roof Savings Calculator Suite

    SciTech Connect (OSTI)

    New, Joshua R; Garrett, Aaron; Erdem, Ender; Huang, Yu

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance, roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.

  7. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  8. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  9. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  10. SWAMI II technology transfer plan

    SciTech Connect (OSTI)

    Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

    1995-12-31

    Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

  11. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  12. A GPU-based Calculation Method for Near Field Effects of Cherenkov

    Office of Scientific and Technical Information (OSTI)

    Radiation Induced by Ultra High Energy Cosmic Neutrinos (Conference) | SciTech Connect SciTech Connect Search Results Conference: A GPU-based Calculation Method for Near Field Effects of Cherenkov Radiation Induced by Ultra High Energy Cosmic Neutrinos Citation Details In-Document Search Title: A GPU-based Calculation Method for Near Field Effects of Cherenkov Radiation Induced by Ultra High Energy Cosmic Neutrinos Authors: Hu, Chia-Yu ; Chen, Chih-Ching ; /Taiwan, Natl. Taiwan U. ; Chen,

  13. Data Transfer Examples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » Data Transfer Examples Data Transfer Examples Moving data to Projectb Projectb is where data should be written from jobs running on the cluster or Gpints. There are intermediate files or bad results from a run that didn't work out that don't need to be saved. By running these jobs in the SCRATCH areas, these files will be deleted for you by the puge. If you run in the SANDBOX, you will have to clean up after yourselves. Batch Scheduled Transfers Use any queues to schedule jobs that move data

  14. Definition of Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of...

  15. TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST 300 Acres 300 Acres Additional Lands Additional Lands Identified for Identified for EA Analysis EA Analysis 2,772...

  16. NREL: Technology Transfer - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question...

  17. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to data transfer of some form or fashion. Examples of intended usage would be running python scripts to download data from a remote source, running client software to load data...

  18. Unstructured-Mesh Deterministic Radiation Transport. Single Physics Package Code.

    Energy Science and Technology Software Center (OSTI)

    2013-05-01

    UMT is an LLNL ASC proxy application (mini-app) that performs three-dimensional, non-linear, radiation transport calculations using deterministic methods.

  19. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  20. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  1. Inverse Energy Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Energy Transfer by Near-Resonant Interactions with a Damped-Wave Spectrum P.W. Terry Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas and Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA (Received 12 January 2004; published 1 December 2004) The interaction of long-wavelength anisotropic drift waves with the plasma turbulence of electron density advection is shown to produce the inverse energy transfer that condenses onto

  2. Optimizing Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Data Transfer Nodes using Packet Pacing Nathan Hanford University of California Davis, CA 95616 nhanford@ucdavis.edu Brian Tierney Energy Sciences Network Lawrence Berkeley National Laboratory Berkeley, CA 94720 bltierney@lbl.gov Dipak Ghosal University of California Davis, CA 95616 dghosal@ucdavis.edu ABSTRACT An important performance problem that we foresee with Data Transfer Nodes (DTNs) in the near future is a fast sending host over-running a slow receiving host, and packets

  3. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Nodes HPSS Data Archive I/O Resources for Scientific Applications at NERSC Optimizing I/O performance on the Lustre file system I/O Formats Science Databases Sharing Data Transferring Data Unix Groups at NERSC Unix File Permissions Data & Analytics Connecting to NERSC Queues and Scheduling Job Logs & Statistics Application Performance Training & Tutorials Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing

  4. A Study of Longwave Radiation Codes for Climate Studies: Validation with ARM Observations and Tests in General Circulation Models

    SciTech Connect (OSTI)

    Robert G. Ellingson

    2004-09-28

    One specific goal of the Atmospheric Radiation Measurements (ARM) program is to improve the treatment of radiative transfer in General Circulation Models (GCMs) under clear-sky, general overcast and broken cloud conditions. Our project was geared to contribute to this goal by attacking major problems associated with one of the dominant radiation components of the problem --longwave radiation. The primary long-term project objectives were to: (1) develop an optimum longwave radiation model for use in GCMs that has been calibrated with state-of-the-art observations for clear and cloudy conditions, and (2) determine how the longwave radiative forcing with an improved algorithm contributes relatively in a GCM when compared to shortwave radiative forcing, sensible heating, thermal advection and convection. The approach has been to build upon existing models in an iterative, predictive fashion. We focused on comparing calculations from a set of models with operationally observed data for clear, overcast and broken cloud conditions. The differences found through the comparisons and physical insights have been used to develop new models, most of which have been tested with new data. Our initial GCM studies used existing GCMs to study the climate model-radiation sensitivity problem. Although this portion of our initial plans was curtailed midway through the project, we anticipate that the eventual outcome of this approach will provide both a better longwave radiative forcing algorithm and from our better understanding of how longwave radiative forcing influences the model equilibrium climate, how improvements in climate prediction using this algorithm can be achieved.

  5. Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance

    SciTech Connect (OSTI)

    Wang, Luxia; Willig, Frank; May, Volkhard

    2007-04-07

    Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO{sub 2} has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO{sub 2} systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO{sub 2}.

  6. Validation of the RRTM Shortwave Radiation Model and Comparison to GCM Shortwave Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of the RRTM Shortwave Radiation Model and Comparison to GCM Shortwave Models M. J. Iacono, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts Introduction An important step toward improving radiative transfer codes in general circulation models (GCMs) is to thoroughly evaluate them either by comparison to measurements directly or by comparing them to other data-validated radiation models. The Rapid Radiative Transfer Model (RRTM)

  7. Computing NLTE Opacities -- Node Level Parallel Calculation

    SciTech Connect (OSTI)

    Holladay, Daniel

    2015-09-11

    Presentation. The goal: to produce a robust library capable of computing reasonably accurate opacities inline with the assumption of LTE relaxed (non-LTE). Near term: demonstrate acceleration of non-LTE opacity computation. Far term (if funded): connect to application codes with in-line capability and compute opacities. Study science problems. Use efficient algorithms that expose many levels of parallelism and utilize good memory access patterns for use on advanced architectures. Portability to multiple types of hardware including multicore processors, manycore processors such as KNL, GPUs, etc. Easily coupled to radiation hydrodynamics and thermal radiative transfer codes.

  8. RADIATION DETECTOR

    DOE Patents [OSTI]

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  9. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  10. Transferring Data from Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transferring Data from Batch Jobs Transferring Data from Batch Jobs Examples Once you are set up for automatic authentication (see HPSS Passwords) you can access HPSS within batch...

  11. Ames Lab 101: Technology Transfer

    ScienceCinema (OSTI)

    Covey, Debra

    2012-08-29

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  12. Ombuds Services for Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds Program Tech Transfer Ombuds Ombuds Services for Technology Transfer Committed to the fair and equitable treatment of all employees, contractors, and persons doing...

  13. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect (OSTI)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  14. How Are Momentum Savings Calculated?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simplifying the Math: How Are Momentum Savings Calculated? Many people have heard about Momentum savings but don't understand how these types of savings are calculated. The short...

  15. Technology Transfer Reporting Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Reporting Form Technology Transfer Reporting Form PDF icon Technology Transfer Reporting Form More Documents & Publications Technology Partnership Ombudsman - Roles,...

  16. Source storage and transfer cask: Users Guide

    SciTech Connect (OSTI)

    Eccleston, G.W.; Speir, L.G.; Garcia, D.C.

    1985-04-01

    The storage and shield cask for the dual californium source is designed to shield and transport up to 3.7 mg (2 Ci) of /sup 252/Cf. the cask meets Department of Transportation (DOT) license requirements for Type A materials (DOT-7A). The cask is designed to transfer sources to and from the Flourinel and Fuel Storage (FAST) facility delayed-neutron interrogator. Californium sources placed in the cask must be encapsulated in the SR-CF-100 package and attached to Teleflex cables. The cask contains two source locations. Each location contains a gear box that allows a Teleflex cable to be remotely moved by a hand crank into and out of the cask. This transfer procedure permits sources to be easily removed and inserted into the delayed-neutron interrogator and reduces personnel radiation exposure during transfer. The radiation dose rate with the maximum allowable quantity of californium (3.7 mg) in the cask is 30 mR/h at the surface and less than 2 mR/h 1 m from the cask surface. This manual contains information about the cask, californium sources, describes the method to ship the cask, and how to insert and remove sources from the cask. 28 figs.

  17. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect (OSTI)

    NELSON RL

    2008-07-18

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  18. 11th International Conference of Radiation Research

    SciTech Connect (OSTI)

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

  19. Calculation notes in support of TWRS FSAR spray leak accident analysis

    SciTech Connect (OSTI)

    Hall, B.W.

    1996-09-25

    This document contains the detailed calculations that support the spray leak accident analysis in the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The consequence analyses in this document form the basis for the selection of controls to mitigate or prevent spray leaks throughout TWRS. Pressurized spray leaks can occur due to a breach in containment barriers along transfer routes, during waste transfers. Spray leaks are of particular safety concern because, depending on leak dimensions, and waste pressure, they can be relatively efficient generators of dispersible sized aerosols that can transport downwind to onsite and offsite receptors. Waste is transferred between storage tanks and between processing facilities and storage tanks in TWRS through a system of buried transfer lines. Pumps for transferring waste and jumpers and valves for rerouting waste are located inside below grade pits and structures that are normally covered. Pressurized spray leaks can emanate to the atmosphere due to breaches in waste transfer associated equipment inside these structures should the structures be uncovered at the time of the leak. Pressurized spray leaks can develop through holes or cracks in transfer piping, valve bodies or pump casings caused by such mechanisms as corrosion, erosion, thermal stress, or water hammer. Leaks through degraded valve packing, jumper gaskets, or pump seals can also result in pressurized spray releases. Mechanisms that can degrade seals, packing and gaskets include aging, radiation hardening, thermal stress, etc. An1782other common cause for spray leaks inside transfer enclosures are misaligned jumpers caused by human error. A spray leak inside a DST valve pit during a transfer of aging waste was selected as the bounding, representative accident for detailed analysis. Sections 2 through 5 below develop this representative accident using the DOE- STD-3009 format. Sections 2 describes the unmitigated and mitigated accident scenarios evaluated to determine the need for safety class SSCs or TSR controls. Section 3 develops the source terms associated with the unmitigated and mitigated accident scenarios. Section 4 estimates the radiological and toxicological consequences for the unmitigated and mitigated scenarios. Section 5 compares the radiological and toxicological consequences against the TWRS evaluation guidelines. Section 6 extrapolates from the representative accident case to other represented spray leak sites to assess the conservatism in using the representative case to define controls for other postulated spray leak sites throughout TWRS. Section 7 discusses the sensitivities of the consequence analyses to the key parameters and assumptions used in the analyses. Conclusions are drawn in Section 8. The analyses herein pertain to spray leaks initiated due to internal mechanisms (e.g., corrosion, erosion, thermal stress, etc). External initiators of spray leaks (e.g., excavation accidents), and natural phenomena initiators (e.g., seismic events) are to be covered in separate accident analyses.

  20. ARM - Publications: Science Team Meeting Documents: ARM Radiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD. Atmospheric Radiative Transfer Modeling: a Summary of the AER Codes. J Quant Spectrosc...

  1. Reduce Radiation Losses from Heating Equipment; Industrial Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    line of sight, and the rate of heat transfer increases with the fourth power of the ... Radiation losses are a function of three factors: * The temperature of the internal ...

  2. VOLUNTARY LEAVE TRANSFER PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM)

  3. Transfer Activity Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Historical Yearly Peak Transfer Activity Historical Yearly Peak The plots below show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for the current year shows the data for the year-to-date peak. Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In

  4. RADIATION INTEGRATOR

    DOE Patents [OSTI]

    Glass, F.M.; Wilson, H.N.

    1959-02-17

    Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.

  5. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  6. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  7. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect (OSTI)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.

  8. Hybrid reduced order modeling for assembly calculations

    SciTech Connect (OSTI)

    Bang, Y.; Abdel-Khalik, H. S.; Jessee, M. A.; Mertyurek, U.

    2013-07-01

    While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)

  9. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  10. Decal transfer microfabrication

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Childs, William Robert

    2004-10-19

    A method of making a microstructure includes forming a pattern in a surface of a silicon-containing elastomer, oxidizing the pattern, contacting the pattern with a substrate; and bonding the oxidized pattern and the substrate such that the pattern and the substrate are irreversibly attached. The silicon-containing elastomer may be removably attached to a transfer pad.

  11. Equilibrium calculations of firework mixtures

    SciTech Connect (OSTI)

    Hobbs, M.L.; Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro

    1994-12-31

    Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.

  12. 3-D Finite Element Heat Transfer

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  13. SGPGET: AN SBDART Module for Aerosol Radiative Transfer (Conference...

    Office of Scientific and Technical Information (OSTI)

    (US); Institute for Computational Earth System Science, University of California, Santa Barbara, California; Climate Monitoring and Diagnostics Laboratory, National Oceanic ...

  14. SGPGET: AN SBDART Module for Aerosol Radiative Transfer (Conference...

    Office of Scientific and Technical Information (OSTI)

    ... (US); Institute for Computational Earth System Science, University of California, Santa Barbara, California; Climate Monitoring and Diagnostics Laboratory, National Oceanic ...

  15. CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING...

    Open Energy Info (EERE)

    is qualified according to BSRN 5 criteria and are available at each minute interval. The ground site at Caic is this small city located in the semi-arid region of the Brazilian...

  16. General Relativistic Radiative Transfer and GeneralRelativistic...

    Office of Scientific and Technical Information (OSTI)

    emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their...

  17. Radiation-transparent windows, method for imaging fluid transfers

    DOE Patents [OSTI]

    Shu, Deming; Wang, Jin

    2011-07-26

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  18. How to Detect Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How to Detect Radiation Radiation cannot be detected by human senses. A variety of instruments are available for detecting and measuring radiation. Examples of radiation survey meters: photos of survey meters alphacounter1.JPG (28857 bytes) This probe is used for the detection of alpha radiation. The most common type of

  19. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

  20. Types of Radiation Exposure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Types of radiation exposure Regardless of where or how an accident involving radiation ... Hospital Emergency Care of the Radiation Accident Patient.) Contamination The second type ...

  1. Calculation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are two separate equations with second derivatives of v ex and v ix instead of one equation including the second derivative of v. The resulting equations still contain E x ,...

  2. CURRENT TRANSFER SYSTEMS

    DOE Patents [OSTI]

    Watt, D.A.

    1956-07-01

    A current transfer system is described for transferring current between a rotating member and a co-axial stationary member. The particular area of application for the invention is in connection with homopolar generators where a low voltage and high current are generated. The current tramsfer system of the invention comprises a rotor member and a co-axial stator member wherein one of the members is shaped to provide a circumferential surface concave in section and the other member is shaped to have a peripheral portion in close proximity to the surface, whereby a liquid metal can be stably supported between the two members when they are moving relative to one another to establish an electrical conducting path between the members.

  3. Wireless power transfer system

    DOE Patents [OSTI]

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  4. Swipe transfer assembly

    DOE Patents [OSTI]

    Christiansen, Robert M.; Mills, William C.

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  5. Technology Transfer | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. A photo of three men looking at a colorful, floor-to-ceiling, 3-D visualization of a biomass analysis model. View a summary of

  6. Transfer reactions at ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Services » Transactions, Technology and Contractor Human Relations Transactions, Technology and Contractor Human Relations Transactions, Technology and Contractor Human Relations Offices of the Deputy General Counsel for Transactions, Technology and Contractor Human Resources Office of the Assistant General Counsel for Procurement and Financial Assistance (GC-61) Office of the Assistant General Counsel for Technology Transfer and Intellectual Property (GC-62) Office of the Assistant

  7. Plastic container bagless transfer

    DOE Patents [OSTI]

    Tibrea, Steven L.; D'Amelio, Joseph A.; Daugherty, Brent A.

    2003-11-18

    A process and apparatus are provided for transferring material from an isolated environment into a storage carrier through a conduit that can be sealed with a plug. The plug and conduit can then be severed to provide a hermetically sealed storage carrier containing the material which may be transported for storage or disposal and to maintain a seal between the isolated environment and the ambient environment.

  8. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  9. 2009 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Technology Transfer Awards Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los

  10. Resonant vibrational energy transfer in ice Ih

    SciTech Connect (OSTI)

    Shi, L.; Li, F.; Skinner, J. L.

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Frster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  11. Nonlinear Heat Transfer 2d Structure

    Energy Science and Technology Software Center (OSTI)

    1987-09-01

    DOT-BPMD is a general-purpose, finite-element, heat-transfer program used to predict thermal environments. The code considers linear and nonlinear transient or steady-state heat conduction in two-dimensional planar or axisymmetric representations of structures. Capabilities are provided for modeling anisotropic heterogeneous materials with temperature-dependent thermal properties and time-dependent temperature, heat flux, convection and radiation boundary conditions, together with time-dependent internal heat generation. DOT-BPMD may be used in the evaluation of steady-state geothermal gradients as well as in themore » transient heat conduction analysis of repository and waste package subsystems. Strengths of DOT-BPMD include its ability to account for a wide range of possible boundary conditions, nonlinear material properties, and its efficient equation solution algorithm. Limitations include the lack of a three-dimensional analysis capability, no radiative or convective internal heat transfer, and the need to maintain a constant time-step in each program execution.« less

  12. QER- Comment of Energy Transfer

    Broader source: Energy.gov [DOE]

    From: Lee Hanse Executive Vice President Interstate Energy Transfer Mobile - 210 464 2929 Office - 210 403 6455

  13. Decal transfer lithography

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Childs, William R.; Motala, Michael J.; Lee, Keon Jae

    2010-02-16

    A method of making a microstructure includes selectively activating a portion of a surface of a silicon-containing elastomer, contacting the activated portion with a substance, and bonding the activated portion and the substance, such that the activated portion of the surface and the substance in contact with the activated portion are irreversibly attached. The selective activation may be accomplished by positioning a mask on the surface of the silicon-containing elastomer, and irradiating the exposed portion with UV radiation.

  14. Energy Escalation Rate Calculator Download

    Broader source: Energy.gov [DOE]

    Energy Escalation Rate Calculator (EERC) computes an average annual escalation rate for a specified time period, which can be used as an escalation rate for contract payments in energy savings performance contracts and utility energy services contracts.

  15. Home Energy Score Calculation Methodology

    Broader source: Energy.gov [DOE]

    A Qualified Assessor calculates the Home Energy Score by first conducting a brief walk-through of the home and collecting approximately 40 data points. Next, the Qualified Assessor uses the Home...

  16. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  17. The use of microdosimetric techniques in radiation protection measurements

    SciTech Connect (OSTI)

    Chen, J.; Hsu, H.H.; Casson, W.H.; Vasilik, D.G.

    1997-01-01

    A major objective of radiation protection is to determine the dose equivalent for routine radiation protection applications. As microdosimetry has developed over approximately three decades, its most important application has been in measuring radiation quality, especially in radiation fields of unknown or inadequately known energy spectra. In these radiation fields, determination of dose equivalent is not straightforward; however, the use of microdosimetric principles and techniques could solve this problem. In this paper, the authors discuss the measurement of lineal energy, a microscopic analog to linear energy transfer, and demonstrate the development and implementation of the variance-covariance method, a novel method in experimental microdosimetry. This method permits the determination of dose mean lineal energy, an essential parameter of radiation quality, in a radiation field of unknown spectrum, time-varying dose rate, and high dose rate. Real-time monitoring of changes in radiation quality can also be achieved by using microdosimetric techniques.

  18. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  19. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  20. Wireless Power Transfer

    SciTech Connect (OSTI)

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  1. ENERGY-TRANSFER SYSTEMS

    DOE Patents [OSTI]

    Thonemann, P.C.; Cowhig, W.T.; Davenport, P.A.

    1963-04-01

    This patent relates to the transfer of energy in a traveling electromagnetic wave to direct-current electrical energy in a gaseous medium. The traveling wave is generated by means of a radio-frequency oscillator connected across a capacitance-loaded helix wound around a sealed tube enclosing the gaseous medium. The traveling wave causes the electrons within the medium to drift towards one end of the tube. The direct current appearing across electrodes placed at each end of the tube is then used by some electrical means. (AEC)

  2. Technology Transfer Reporting Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This form is to be completed by the TTO for individual inquiry/case activity during the quarter as required by the Technology Transfer Commercialization Act of 2000. Mouse over definitions and descriptions appear over text/check boxes where appropriate. After completing this form, click on the submit button. *If you have no TTO activity for the quarter, please fill in your name, FY and quarter, lab or facility and check the box "No Quarterly Activity". Initial Ombuds Contact:

  3. Manipulator mounted transfer platform

    DOE Patents [OSTI]

    Dobbins, James C.; Hoover, Mark A.; May, Kay W.; Ross, Maurice J.

    1990-01-01

    A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

  4. Material Transfer Agreements (MTA) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Research Material Transfer Agreements (MTA) Materials Transfer Agreements (MTAs) are used to transfer materials, biological or non-biological, between institutions from...

  5. Technology Transfer Ombudsman Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November ...

  6. Polarization transfer NMR imaging

    DOE Patents [OSTI]

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  7. Methods of calculating the post-closure performance of high-level waste repositories

    SciTech Connect (OSTI)

    Ross, B.

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

  8. Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

    SciTech Connect (OSTI)

    Rutan, D.; Rose, F.; Charlock, T.P.

    2005-03-18

    Within the Clouds and the Earth's Radiant Energy System (CERES) science team (Wielicki et al. 1996), the Surface and Atmospheric Radiation Budget (SARB) group is tasked with calculating vertical profiles of heating rates, globally, and continuously, beneath CERES footprint observations of Top of Atmosphere (TOA) fluxes. This is accomplished using a fast radiative transfer code originally developed by Qiang Fu and Kuo-Nan Liou (Fu and Liou 1993) and subsequently highly modified by the SARB team. Details on the code and its inputs can be found in Kato et al. (2005) and Rose and Charlock (2002). Among the many required inputs is characterization of the vertical column profile of aerosols beneath each footprint. To do this SARB combines aerosol optical depth information from the moderate-resolution imaging spectroradiometer (MODIS) instrument along with aerosol constituents specified by the Model for Atmosphere and Chemical Transport (MATCH) of Collins et al. (2001), and aerosol properties (e.g. single scatter albedo and asymmetry parameter) from Tegen and Lacis (1996) and OPAC (Hess et al. 1998). The publicly available files that include these flux profiles, called the Clouds and Radiative Swath (CRS) data product, available from the Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov/). As various versions of the code are completed, publishable results are named ''Editions.'' After CRS Edition 2A was finalized it was found that dust aerosols were too absorptive. Dust aerosols have subsequently been modified using a new set of properties developed by Andy Lacis and results have been released in CRS Edition 2B. This paper discusses the effects of changing desert dust aerosol properties, which can be significant for the radiation budget in mid ocean, a few thousand kilometers from the source regions. Resulting changes are validated via comparison of surface observed fluxes from the Saudi Solar Village surface site (Myers et al. 1999), and the E13 site at the Atmospheric Radiation Measurement (ARM), Southern Great Plains (SGP) central facility.

  9. Multigroup Reactor Lattice Cell Calculation

    Energy Science and Technology Software Center (OSTI)

    1990-03-01

    The Winfrith Improved Multigroup Scheme (WIMS), is a general code for reactor lattice cell calculations on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters, and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered themore » choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are available in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a succesor version of WIMS-D/4.« less

  10. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W.; Hegland, Joel E.; Braunlich, Peter F.; Tetzlaff, Wolfgang

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  11. RADIATION COUNTER

    DOE Patents [OSTI]

    Goldsworthy, W.W.

    1958-02-01

    This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

  12. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  13. LANL Land Transfers 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Land transfer activities are planned to occur fiscal year 2016 which will require independent verification of Los Alamos National Laboratory (LANL)’s sampling protocol and analyses. The former Sewage Treatment Plant within land tract A-16-D and the southern portion of A-16-E are on track for MARSSIM final status survey. The remainder of TA-21 will require verification once final D&D of structures is complete. The sampling activities for these tracts must undergo soil surveys/sampling and analysis by Los Alamos National Security (LANS) using the MARSSIM-style process as required by DOE-O-458.1 to obtain technically defensible data for determining the disposition of this property.

  14. HEAT TRANSFER METHOD

    DOE Patents [OSTI]

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  15. Technology transfer 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  16. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.

  17. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  18. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  19. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  20. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  1. Petrophysical corner - calculating water cut

    SciTech Connect (OSTI)

    Elphick, R.Y. )

    1990-02-01

    The problem of determining the amount of water cut that can be expected from a well is discussed in conjunction with a program for making this calculation. The program was written for Amiga, Apple Macintosh, and MS DOS personal computers and source code for the program is provided.

  2. Spallation Neutron Source Radiation Shielding Issues

    SciTech Connect (OSTI)

    Azmy, Y.Y.; Barnes, J.M.; Drischler, J.D.; Johnston, J.O.; Lillie, R.A.; McNeilly, G.S.; Santoro, R.T.

    1999-11-14

    This paper summarizes results of Spallation Neutron Source calculations to estimate radiation hazards and shielding requirements for activated Mercury, target components, target cooling water, and {sup 7}Be plateout. Dose rates in the accelerator tunnel from activation of magnets and concrete were investigated. The impact of gaps and other streaming paths on the radiation environment inside the test cell during operation and after shutdown were also assessed.

  3. Concurrent Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Last 8 Days Concurrent Transfers Last 8 Days These plots show the concurrent transfers statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Last

  4. Application of Improved Radiation Modeling to General Circulation Models

    SciTech Connect (OSTI)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  5. Working with SRNL - Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL Technology Transfer 2015 SRNL Research and Technology Recognition Reception Click to view the 2015...

  6. Working Group Reports Calibration of Radiation Codes Used in Climate Models:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Reports Calibration of Radiation Codes Used in Climate Models: Comparison of Clear-Sky Calculations with Observations from the Spectral Radiation Experiment and the Atmospheric Radiation Measurement Program R. G. Ellingson, S. Shen, and J. Warner University of Maryland College Park, Maryland Background The InterComparison of Radiation Codes in Climate Models (ICRCCM) showed large differences between model calculations of longwave fluxes and heating rates-even for clear-sky

  7. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  8. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  9. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

  10. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  11. A primer for criticality calculations with DANTSYS

    SciTech Connect (OSTI)

    Busch, R.D.

    1997-08-01

    With the closure of many experimental facilities, the nuclear safety analyst has to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. Although deterministic methods often do not provide exact models of a system, a substantial amount of reliable information on nuclear systems can be obtained using these methods if the user understands their limitations. To guide criticality specialists in this area, the Nuclear Criticality Safety Group at the University of New Mexico (UNM) in cooperation with the Radiation Transport Group at Los Alamos National Laboratory (LANL) has designed a primer to help the analyst understand and use the DANTSYS deterministic transport code for nuclear criticality safety analyses. DANTSYS is the new name of the group of codes formerly known as: ONEDANT, TWODANT, TWOHEX, TWOGQ, and THREEDANT. The primer is designed to teach bu example, with each example illustrating two or three DANTSYS features useful in criticality analyses. Starting with a Quickstart chapter, the primer gives an overview of the basic requirements for DANTSYS input and allows the user to quickly run a simple criticality problem with DANTSYS. Each chapter has a list of basic objectives at the beginning identifying the goal of the chapter and the individual DANTSYS features covered in detail in the chapter example problems. On completion of the primer, it is expected that the user will be comfortable doing criticality calculations with DANTSYS and can handle 60--80% of the situations that normally arise in a facility. The primary provides a set of input files that can be selective modified by the user to fit each particular problem.

  12. Low heat transfer, high strength window materials

    DOE Patents [OSTI]

    Berlad, Abraham L.; Salzano, Francis J.; Batey, John E.

    1978-01-01

    A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

  13. Analysis of Hydraulic Conductivity Calculations

    SciTech Connect (OSTI)

    Green, R.E.

    2003-01-06

    Equations by Marshall and by Millington and Quirk for calculating hydraulic conductivity from pore-size distribution data are dependent on an arbitrary choice of the exponent on the porosity term and a correct estimate of residual water. This study showed that a revised equation, based on the pore-interaction model of Marshall, accurately predicts hydraulic conductivity for glass beads and a loam soil from the pressure-water content relationships of these porous materials.

  14. Theory and calculations of synchrotron instabilities and feedback-mechanism

    SciTech Connect (OSTI)

    Meijssen, T.E.M.

    1981-08-12

    The properties of the phenomenon synchrotron radiation are given with general theory on the basic processes and betatron and synchrotron oscillations. A more extended theoretical view at transverse instabilities and the influence of a damping feedback system are discussed. The longitudinal case is covered. For the calculations on the longitudinal case with M equally spaced pointbunches, with N electrons each, in the storage ring, the parasitic modes of the radio-frequency cavity were measured. A description of this is given. The values of damping rates of the longitudinal feedback system found, are as expected, but too low to damp the longitudinal instabilities calculated. This might be caused by the input data. The calculated growth rates are very sensitive to changes in frequency and width of the parasitic modes, which were measured under conditions differing slightly from the operating conditions.

  15. Radiation.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation is a natural part of our everyday environment. Cosmic rays showering the Earth through the atmosphere and radon gas seeping up from the soil are only two examples of natural radiation. Radiation Basics The study of radiation begins with the atom. Tremendous amounts of energy are stored in an atom's nucleus. When atoms are split, heat and radiation are produced. The heat can be used to turn water into steam and produce electricity. The radiation produced from splitting an atom's

  16. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  17. Identifying and Resolving Issues in EnergyPlus and DOE-2 Window Heat Transfer Calculations

    SciTech Connect (OSTI)

    Booten, C.; Kruis, N.; Christensen, C.

    2012-08-01

    Issues in building energy software accuracy are often identified by comparative, analytical, and empirical testing as delineated in the BESTEST methodology. As described in this report, window-related discrepancies in heating energy predictions were identified through comparative testing of EnergyPlus and DOE-2. Multiple causes for discrepancies were identified, and software fixes are recommended to better align the models with the intended algorithms and underlying test data.

  18. Aerosol Radiative Forcing Under Cloudless Conditions.in Winter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARF in the shortwave range is determined by the difference between the net fluxes of the solar radiation, calculated with and without the aerosol component of the atmosphere. The...

  19. Alternative Fuels Data Center: Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on

  20. Incorporating Weather Data into Energy Savings Calculations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporating Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call...

  1. USAID Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Application ComplexityEase of Use: Not Available Website: www.afolucarbon.org Cost: Free Language: English USAID Carbon Calculator Screenshot Logo: USAID Carbon Calculator This...

  2. Calculation of chemical equilibrium between aqueous solution...

    Office of Scientific and Technical Information (OSTI)

    Calculation of chemical equilibrium between aqueous solution and minerals: the EQ36 ... Citation Details In-Document Search Title: Calculation of chemical equilibrium between ...

  3. NERSC Calculations Provide Independent Confirmation of Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, ...

  4. China 2050 Pathways Calculator | Open Energy Information

    Open Energy Info (EERE)

    2050 Pathways Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China 2050 Pathways Calculator AgencyCompany Organization: China's Energy Research Institute...

  5. California Biomass Collaborative Energy Cost Calculators | Open...

    Open Energy Info (EERE)

    Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Biomass Collaborative Energy Cost Calculators AgencyCompany...

  6. Interruption Cost Estimate Calculator | Open Energy Information

    Open Energy Info (EERE)

    Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are...

  7. Campus Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Campus Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Campus Carbon Calculator AgencyCompany Organization: Clean Air-Cool Planet Phase: Create a...

  8. Incorporating Weather Data into Energy Savings Calculations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call Series: ...

  9. Evaluation of Hose in Hose Transfer Line Service Life for Hanford's Interim Stabilization Program

    SciTech Connect (OSTI)

    TORRES, T.D.

    2000-08-24

    RPP-6153, Engineering Task Plan for Hose-in-Hose Transfer System for the Interim Stabilization Program, defines the programmatic goals, functional requirements, and technical criteria for the development and subsequent installation of transfer line equipment to support Hanford's Interim Stabilization Program. RPP-6028, Specification for Hose in Hose Transfer Lines for Hanford's Interim Stabilization Program, has been issued to define the specific requirements for the design, manufacture, and verification of transfer line assemblies for specific waste transfer applications. Included in RPP-6028 are tables defining the chemical constituents of concern to which transfer lines will be exposed. Current Interim Stabilization Program planning forecasts that the at-grade transfer lines will be required to convey pumpable waste for as much as three years after commissioning. Prudent engineering dictates that the equipment placed in service have a working life in excess of this forecasted time period, with some margin to allow for future adjustments to the planned schedule. This document evaluates the effective service life of the Hose-in-Hose Transfer Lines, based on information submitted by the manufacturer and published literature. The effective service life of transfer line assemblies is a function of several factors. Foremost among these are process fluid characteristics, ambient environmental conditions, and the manufacturer's stated shelf life. This evaluation examines the manufacturer's certification of shelf life, the manufacturer's certifications of chemical compatibility with waste, and published literature on the effects of exposure to ionizing radiation on the mechanical properties of elastomeric materials to evaluate transfer line service life.

  10. Calculate and Plot Complex Potential

    Energy Science and Technology Software Center (OSTI)

    1998-05-05

    SOLUPLOT is a program designed to calculate and plot complex potential, pH diagrams and log oxygen activity, pH diagrams for aqueous chemical syatems, considering speciation of ligands, from free energy and thermodynamic activity data. These diagrams, commonly referred to as Eh-pH and ao2-pH diagrams, respectively, define areas of predominance in Eh-pH diagrams or ao2-pH space for chemical species of a chemical system at equilibrium. Over an area of predominance, one predominant species is at greatermore » activity than the other species of the system considered. The diagram axes, pH (a measure of hydrogen ion activity) and either Eh or log ao2 (measures of a tendency toward either oxidation or reduction) , are paremeters commonly applied in describing the chemistry of aqueous systems.« less

  11. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    SciTech Connect (OSTI)

    Ajayi, O. A. E-mail: cww2104@columbia.edu; Wong, C. W. E-mail: cww2104@columbia.edu; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4 reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  12. Wireless power transfer test system

    DOE Patents [OSTI]

    Gilchrist, Aaron; Wu, Hunter; Sealy, Kylee D.; Israelsen, Paul D.

    2015-09-22

    A testing system for wireless power transfer systems, including a stationary plate, a rotating plate, and a driver to rotate the rotating plate with respect to the stationary plate.

  13. Transfer Service (contracts/rd)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    issues regarding Transfer Service. Questions on this program can be sent to Garry Thompson at grthompson@bpa.gov or Connie Howard at cmhoward@bpa.gov. Comments can be e-mailed...

  14. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  15. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, Kwan H.; Ahluwalia, Rajesh K.

    1994-01-01

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  16. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    SciTech Connect (OSTI)

    Wahiduzzaman, S.; Morel, T.

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  17. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    SciTech Connect (OSTI)

    Wahiduzzaman, S.; Morel, T. )

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  18. NREL Commercialization & Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL Commercialization & Technology Transfer State Energy Advisory Board June 8, 2010 Bill Farris, V.P. Commercialization and Technology Transfer NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC National Renewable Energy Laboratory Innovation for Our Energy Future NREL Mission It is NREL's mission to ... commercialization activities that enable widespread adoption of renewable

  19. Automatic computation of transfer functions

    DOE Patents [OSTI]

    Atcitty, Stanley; Watson, Luke Dale

    2015-04-14

    Technologies pertaining to the automatic computation of transfer functions for a physical system are described herein. The physical system is one of an electrical system, a mechanical system, an electromechanical system, an electrochemical system, or an electromagnetic system. A netlist in the form of a matrix comprises data that is indicative of elements in the physical system, values for the elements in the physical system, and structure of the physical system. Transfer functions for the physical system are computed based upon the netlist.

  20. Aggregate Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Aggregate Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate

  1. Aggregate Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Last 8 Days Aggregate Transfers Last 8 Days These plots show the aggregate bandwidth statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) Last edited: 2011-04-04 10:44:03

  2. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Concurrent Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage

  3. Radiation Protection and Safety Training | Environmental Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Curriculum Radiation Protection and Safety Training (3 hrs) Instructors: John Seaman and Neil Miller Course Description: The objective of this course is to provide students with an introduction to the fundamentals of ionizing radiation protection and safety. The course curriculum combines radiation safety and protection topics derived from the International Atomic Energy Agency (IAEA) Standard Syllabus, and radiological protection and control programs as administered by the NRC

  4. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect (OSTI)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  5. Regulation control and energy management scheme for wireless power transfer

    SciTech Connect (OSTI)

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  6. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect (OSTI)

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  7. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    2008-01-15

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  8. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  9. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect (OSTI)

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  10. Secretary Bodman Announces DOE Technology Transfer Coordinator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raymond Orbach, as Technology Transfer Coordinator, in accordance with the Energy Policy Act of 2005 (EPAct). Secretary Bodman also established a Technology Transfer Policy Board, ...

  11. Technology Transfer Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure ...

  12. Steinbeis Technology Transfer Centre for Emissions Trading |...

    Open Energy Info (EERE)

    Steinbeis Technology Transfer Centre for Emissions Trading Jump to: navigation, search Name: Steinbeis Technology Transfer Centre for Emissions Trading Place: Augsburg, Bavaria,...

  13. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  14. NREL: Technology Transfer - Cooperative Research and Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-4410. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  15. Nanofluids for Heat Transfer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Nanofluids for Heat Transfer Argonne National ... of nanoparticles for use as the heat transfer fluid (HTF) in liquid cooling systems. ...

  16. Heat Transfer Fluids Containing Nanoparticles | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Fluids Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a minimal ...

  17. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  18. recuperative heat transfer within the Brayton cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recuperative heat transfer within the Brayton cycle - Sandia Energy Energy Search Icon ... SunShot Grand Challenge: Regional Test Centers recuperative heat transfer within the ...

  19. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOE Patents [OSTI]

    Britton, Jr., Charles L.; Buckner, Mark A.; Hanson, Gregory R.; Bryan, William L.

    2011-05-03

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  20. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOE Patents [OSTI]

    Britton, Jr.; Charles L.; Buckner, Mark A.; Hanson, Gregory R.; Bryan, William L.

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  1. Radiation Safety Poster | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Poster Radiation Safety Poster Radiation Safety Poster

  2. RTU Comparison Calculator Enhancement Plan

    SciTech Connect (OSTI)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    2015-07-01

    Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  3. RTU Comparison Calculator Enhancement Plan

    SciTech Connect (OSTI)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    2014-03-31

    Over the past two years, Department of Energys Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  4. Radiation Shielding Properties of Some Marbles in Turkey

    SciTech Connect (OSTI)

    Guenoglu, K.; Akkurt, I.

    2011-12-26

    Especially after development of technology, radiation started to be used in a large fields such as medicine, industry and energy. Using radiation in those fields bring hazardous effect of radiation into humancell. Thus radiation protection becomes important in physics. Although there are three ways for radiation protection, shielding of the radiation is the most commonly used method. Natural Stones such as marble is used as construction material especially in critical building and thus its radiation shielding capability should be determined.In this study, gamma ray shielding properties of some different types of marble mined in Turkey, have been measured using a NaI(Tl) scintillator detector. The measured results were also compared with the theoretical calculations XCOM.

  5. Plutonium radiation surrogate

    DOE Patents [OSTI]

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  6. SOLAR MIXTURE OPACITY CALCULATIONS USING DETAILED CONFIGURATION AND LEVEL ACCOUNTING TREATMENTS

    SciTech Connect (OSTI)

    Blancard, Christophe; Cosse, Philippe; Faussurier, Gerald

    2012-01-20

    An opacity model (OPAS) combining detailed configuration and level accounting treatments has been developed to calculate radiative opacity of plasmas in local thermodynamic equilibrium. The model is presented and used to compute spectral opacities of a solar mixture. Various density-temperature couples have been considered from the solar center up to the vicinity of the radiative/convective zone interface. For a given solar thermodynamic path, OPAS calculations are compared to Opacity Project (OP) and OPAL data. Rosseland mean opacity values are in very good agreement over all the considered solar thermodynamic path, while OPAS and OP spectral opacities of each element may vary considerably. Main sources of discrepancy are discussed.

  7. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. ); Irvine, T.F., Jr. . Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  8. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A.; Irvine, T.F., Jr.

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  9. Native defects in Tl6SI4: Density functional calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Hongliang; Du, Mao -Hua

    2015-05-05

    In this study, Tl6SI4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl6SI4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl6SI4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl6SI4 gives rise to enhanced Born effective charges andmore » large static dielectric constant, which provides effective screening of charged defects and impurities.« less

  10. Light-induced electron transfer vs. energy transfer in molecular thin-film systems

    SciTech Connect (OSTI)

    Renschler, C. L.; Faulkner, L. R.

    1980-01-01

    Quenching of fluoranthene (FA) singlets by tetrabromo-o-benzoquinone (TBBQ) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was studied both in xylene solutions and in spin-cast polystyrene (PS) films. Emphasis was placed on time-resolved fluorescence transients resulting from pulsed excitation. Linear Stern-Volmer plots were obtained for quenching in solution and gave diffusion-controlled rate constants, of 1.45 x 10/sup 10/ M/sup -1/ sec/sup -1/ and 1.53 x 10/sup 10/ M/sup -1/ sec/sup -1/ for TBBQ and TMPD, respectively. TBBQ was found to quench FA singlets in PS over the studied concentration range 12 mM < (TBBQ) < 48 mM, but in its presence FA singlets decayed nonexponentially. The results were interpreted quantitatively in terms of pure Foerster's transfer from FA to TBBQ without diffusion of excitons. The critical transfer radius R/sub 0/ was experimentally determined to be 24.3 A, which is in good agreement with the theoretical value of 23 A calculated from spectral data. Quenching of FA singlets in PS films was found to be independent of FA concentration over a 300 mM to 1200 mM FA concentration range for a constant TBBQ concentration of 24.0 mM. TMPD was only slightly effective as a quencher of FA singlets in PS because it apparently behaves strictly as a contact quencher based on reversible charge transfer. The implications of these results for the design of systems intended to exploit light-induced electron transfer are discussed.

  11. Correlation of heat transfer in a cylinder containing uranium hexafluoride engulfed in a fire

    SciTech Connect (OSTI)

    Anderson, J.C.

    1994-08-01

    Transient heat transfer/stress analysis models are currently being developed to evaluate the response of cylinders containing uranium hexafluoride (UF{sub 6}) to fire accident scenarios. In order to accurately predict temperatures within the cylinder, and ultimately elapsed time to failure, the heat transfer to and within the cylinder must be well characterized. This report contains a complete set of heat transfer correlations required for such a model. Correlations are presented for predicting heat transfer rates over the cylinder exterior (radiative exchange and natural convection), from the cylinder interior to the various phases of UF{sub 6} (solid, liquid, and vapor) in the cylinder, between UF{sub 6} phases in the cylinder, and during UF{sub 6} liquid boiling. The heat transfer coefficients predicted by these correlations were chosen based on best engineering judgement and have not yet been compared to data from actual cylinder fire tests.

  12. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-23

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

  13. CASL - Radiation Transport Methods Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Transport Methods Update The Radiation Transport Methods (RTM) focus area is responsible for the development of methods, algorithms, and implementations of radiation...

  14. Selective radiative heating of nanostructures using hyperbolic metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ding, Ding; Minnich, Austin J

    2015-01-01

    Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

  15. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect (OSTI)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  16. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan -

  17. Methodology for Calculating Spectral Surface Albedo Using ARM MFSR and MFR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Methodology for Calculating Spectral Surface Albedo Using ARM MFSR and MFR Data Gaustad, Krista Pacific Northwest National Laboratory Long, Chuck Pacific Northwest National Laboratory Category: Radiation This poster will describe a methodology for identifying the best estimate downwelling and upwelling irradiance measurements for use in calculating a global and spectral albedo for the area located near the SGP ARM's central facility 10m tower. The best estimate MFRSR downwelling global

  18. Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system

    SciTech Connect (OSTI)

    Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun

    2011-02-15

    This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

  19. THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC...

    Office of Scientific and Technical Information (OSTI)

    THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC DIFFUSION FOR EXAFLAG Citation Details In-Document Search Title: THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH...

  20. THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC...

    Office of Scientific and Technical Information (OSTI)

    THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC DIFFUSION FOR EXAFLAG Citation Details In-Document Search Title: THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH ...

  1. Check Heat Transfer Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Transfer Surfaces Check Heat Transfer Surfaces This tip sheet discusses the importance of checking heat transfer surfaces in process heating systems. PROCESS HEAT TIP SHEET #4 PDF icon Check Heat Transfer Surfaces (September 2005) More Documents & Publications Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition Check Burner Air to Fuel Ratios Process Heating Assessment and Survey Tool (PHAST) Introduction

  2. Apparatus and method for transferring slurries

    DOE Patents [OSTI]

    Horton, J.R.

    1982-08-13

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  3. Transferring Data from Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transferring Data from Batch Jobs Transferring Data from Batch Jobs Examples Once you are set up for automatic authentication (see HPSS Passwords) you can access HPSS within batch scripts. You can add the following lines at the end of your batch script. HSI will accept one-line commands on the HSI command line, e.g., hsi put filename HSI, ftp and pftp read from the standard input (stdin) and a list of commands can be placed in a text file (script) and redirected into the given utility, e.g., htp

  4. Building Technologies Office: 179D DOE Calculator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    179D DOE Calculator EERE Building Technologies Office 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the...

  5. Relativistic Thomson Scatter from Factor Calculation

    Energy Science and Technology Software Center (OSTI)

    2009-11-01

    The purpose of this program is calculate the fully relativistic Thomson scatter from factor in unmagnetized plasmas. Such calculations are compared to experimental diagnoses of plasmas at such facilities as the Jupiter laser facility here a LLNL.

  6. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    SciTech Connect (OSTI)

    Jimenez V, Reina A.

    2007-10-26

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  7. Plasma wake field XUV radiation source

    DOE Patents [OSTI]

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  8. technology transfer | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    technology transfer Y-12 honors its inventors with Technology Transfer awards OAK RIDGE, Tennessee - Twenty-nine Y-12 inventors were recognized for their technology and innovative accomplishments during the recent 12th annual Technology Transfer Awards Ceremony. The site has a long history of producing technologies initially used at Y-12 and later transferred to the... Y-12 honors its inventors with Technology Transfer awards , Twenty-nine Y-12 inventors were recognized for their technology and

  9. PERSONAL RADIATION MONITOR

    DOE Patents [OSTI]

    Dilworth, R.H.; Borkowski, C.J.

    1961-12-26

    A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)

  10. Radiation detection system

    DOE Patents [OSTI]

    Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.

    1976-01-01

    A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.

  11. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect (OSTI)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  12. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, Richard F.; Pollick, Richard D.; Nyilas, Charles P.; Denmeade, Timothy J.

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  13. 2D FEM Heat Transfer & E&M Field Code

    Energy Science and Technology Software Center (OSTI)

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.moreBy implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.less

  14. 2D FEM Heat Transfer & E&M Field Code

    Energy Science and Technology Software Center (OSTI)

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  15. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  16. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco

  17. Fast All-sky Radiation Models for Solar applications (FARMS) - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Energy Analysis Energy Analysis Find More Like This Return to Search Fast All-sky Radiation Models for Solar applications (FARMS) National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Radiative transfer (RT) models simulating broadband solar radiation have been widely used by atmospheric scientists to model solar resources for various energy applications such as

  18. Radiatively Important Parameters Best Estimate (RIPBE): An ARM Value-Added Product

    SciTech Connect (OSTI)

    McFarlane, S; Shippert, T; Mather, J

    2011-06-30

    The Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to create a complete set of clearly identified set of parameters on a uniform vertical and temporal grid to use as input to a radiative transfer model. One of the main drivers for RIPBE was as input to the Broadband Heating Rate Profile (BBHRP) VAP, but we also envision using RIPBE files for user-run radiative transfer codes, as part of cloud/aerosol retrieval testbeds, and as input to averaged datastreams for model evaluation.

  19. NREL: Technology Transfer - Innovative Way to Test Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  20. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.

  1. Bagless Transfer System Welder Analysis Software

    Energy Science and Technology Software Center (OSTI)

    2003-10-01

    The Bagless Transfer System Welder Analysis Software (BTS WAS) was developed by SRTC for use with the Bagless Transfer System. During the welding process, critical weld parameters such as weld current and voltage, can give valuable informaitoin about the weld. In the past, weld data from the TIG welding process, such as the bagless transfer system in FB-Line, has been monitored using strip chart recorders. The data from the weld process, recorded on the stripmore » chart recorder traces, were reviewed by the supervisor using a procedure and criteria to analyze the weld. This hand checking can be tedious and time consuming. To improve this process, another software package developed by SRTC, the BTS DAS, digitizes the weld data and stores the weld data in a file. The BTS WAS automates the weld analysis process by analyzing the data obtained during the weld process against the same weld criteria that the supervisor currently users. Of course with the automated analysis system the supervisor is still provided the same information in the same chart display format so he can also manually review the data as desired. The BTS WAS reads in a data file that was prevously collected using the BTS DAS software. The software will read the file and parse the data. The user is first prompted to enter the file name. The file is then opened and the operator name and Date/Time of Acquisition are read from the file and displayed on the screen. The binary weld data is then read from the file into an array until the end of the file is reached. The shunt and weld current, voltage, RPM, and position data are displayed on the screen in graphical formats on the front panel. The weld power and resistance are calculated and are also displayed in graphical format on the front panel. Individual tack analysis data is provided for each of the three tacks. The main weld and downslope data is also displayed.« less

  2. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    SciTech Connect (OSTI)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in detail the electronic structure and dynamics of the investigated species [1, 3].

  3. Synchrotron Radiation Wake in Free Space

    SciTech Connect (OSTI)

    Stupakov, G.V.; /SLAC

    2011-08-31

    In this paper, we derive the transverse radiation force of a bunch of ultrarelativistic charged particles coherently radiating in free space assuming that the bending radius is much larger than the beam dimensions. In contrast to a similar recent study, where the authors decompose the total transverse force and find only a part that is responsible for the distortion of the beam orbit, we derive a full expression for the force and leave the issues of the beam dynamics for a separate consideration. Another approach to the calculation of the transverse force has been previously developed. In many cases considered in this paper, the calculations are extremely cumbersome; they were systematically performed with the use of symbolic engine of the computer program MATHEMATICA.

  4. Computation studies into architecture and energy transfer properties of photosynthetic units from filamentous anoxygenic phototrophs

    SciTech Connect (OSTI)

    Linnanto, Juha Matti; Freiberg, Arvi

    2014-10-06

    We have used different computational methods to study structural architecture, and light-harvesting and energy transfer properties of the photosynthetic unit of filamentous anoxygenic phototrophs. Due to the huge number of atoms in the photosynthetic unit, a combination of atomistic and coarse methods was used for electronic structure calculations. The calculations reveal that the light energy absorbed by the peripheral chlorosome antenna complex transfers efficiently via the baseplate and the core B808866 antenna complexes to the reaction center complex, in general agreement with the present understanding of this complex system.

  5. ORISE Video: What is the difference between radiation exposure and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation contamination?

  6. Los Alamos Science: Number 23, 1995. Radiation protection and the human radiation experiments

    SciTech Connect (OSTI)

    Cooper, N.G.

    1995-12-31

    There are a variety of myths and misconceptions about the ionizing radiation that surrounds and penetrates us all. Dispel a few of these by taking a leisurely tour of radiation and its properties, of the natural and man-made sources of ionizing radiation, and of the way doses are calculated. By damaging DNA and inducing genetic mutations, ionizing radiation can potentially initiate a cell on the road to cancer. The authors review what is currently known about regulation of cellular reproduction, DNA damage and repair, cellular defense mechanisms, and the specific cancer-causing genes that are susceptible to ionizing radiation. A rapid survey of the data on radiation effects in humans shows that high radiation doses increase the risk of cancer, whereas the effects of low doses are very difficult to detect. The hypothetical risks at low doses, which are estimated from the atomic-bomb survivors, are compared to the low-dose data so that the reader can assess the present level of uncertainty. As part of the openness initiative, ten individuals who have worked with plutonium during various periods in the Laboratory`s history were asked to share their experiences including their accidental intakes. The history and prognosis of people who have had plutonium exposures is discussed by the Laboratory`s leading epidemiologist.

  7. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  8. City Code Non-Transferable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    City Code Non-Transferable If the sales tax permit at this location becomes invalid then all associated permits will become invalid. If the business changes location or ownership or is discontinued for any reason, this permit must be returned to the Oklahoma Tax Commission for cancellation WITH AN EXPLANATION ON THE REVERSE SIDE. PLEASE POST IN CONSPICUOUS PLACE GENERAL ELECTRIC COMPANY 4211 METRO PKWY FORT MYERS FL 33916-9406 443111 8010 March 6, 2014 2102181888 Effective Expires Business

  9. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S.; Eastman, Jeffrey A.

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  10. RHOBOT: Radiation hardened robotics

    SciTech Connect (OSTI)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  11. radiation.p65

    Office of Legacy Management (LM)

    5 United States Department of Energy This fact sheet explains the potential health hazards associated with the radioactive decay of uranium and other radioactive elements found in ore and mill tailings. Potential Health Hazards of Radiation Man-made sources of radiation, most notably from medical uses and consumer products, contribute to the remaining radiation dose that individuals receive. A few household products, including smoke detectors, micro- wave ovens, and color televisions, emit small

  12. Convective heat transfer correlations for fenestration glazing cavities: A review

    SciTech Connect (OSTI)

    Zhao, Y.; Curcija, D.; Goss, W.P.

    1999-07-01

    Convective heat transfer in insulated glazing unit (IGU) cavities is a major component of the overall heat transfer in fenestration systems. Accurately quantifying the heat-transfer coefficient within the cavity is of great significance in calculating the center-of-glass U factor, the edge-of-glass U factor, and therefore the overall U factor. Over the past 40 years, along with the rapid development of experimental techniques and numerical methods as well as the powerful computer systems, the heat-transfer correlations have been updated either from experimental data or from numerical data from time to time. The literature reviewed here covers correlations based on simplified analytical studies, on the experimental data, and on the numerical results. In addition, most of the correlation equations cover the typical design range of fenestration glazing cavities, e.g., Ra < 20,000. Inconsistencies and discrepancies existing between different experimental observations, and between derived numerical/analytical correlations and available experimental data, are discussed.

  13. Single and pair neutron transfers at sub-barrier energies

    SciTech Connect (OSTI)

    Corradi, L.; Fioretto, E.; Michelagnoli, C.; Stefanini, A. M.; Valiente-Dobon, J. J.; Szilner, S.; Pollarolo, G.; Colo, G.; Mason, P.; Farnea, E.; Montagnoli, G.; Montanari, D.; Scarlassara, F.; Ur, C. A.; Gadea, A.; Haas, F.; Jelavic-Malenica, D.; Soic, N.; Marginean, N.

    2011-09-15

    Multinucleon transfer cross sections in the {sup 96}Zr+{sup 40}Ca system have been measured, in inverse kinematics, at bombarding energies ranging from the Coulomb barrier to {approx}25% below. Targetlike recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental data for one- and two-neutron transfer channels have been compared with semiclassical microscopic calculations. For the two-neutron transfer channels the relevance of the transitions to the ground state and to the 0{sup +} excited states of {sup 42}Ca are discussed by employing, for the reaction mechanism, the successive approximation. It is found that the transition to the 0{sup +} state at {approx}6 MeV, whose wave function is dominated by the two neutrons in the 2p{sub 3/2} shell, is much larger than the ground state one. The comparison with the inclusive data reveals that transitions to states with high multipolarity and non-natural parity are important. This suggests that more complex two-particle correlations have to be incorporated in the treatment of the transfer process.

  14. Data Transfer Study HPSS Archiving

    SciTech Connect (OSTI)

    Wynne, James; Parete-Koon, Suzanne T; Mitchell, Quinn; White, Stanley R

    2015-01-01

    The movement of the large amounts of data produced by codes run in a High Performance Computing (HPC) environment can be a bottleneck for project workflows. To balance filesystem capacity and performance requirements, HPC centers enforce data management policies to purge old files to make room for new computation and analysis results. Users at Oak Ridge Leadership Computing Facility (OLCF) and many other HPC user facilities must archive data to avoid data loss during purges, therefore the time associated with data movement for archiving is something that all users must consider. This study observed the difference in transfer speed from the originating location on the Lustre filesystem to the more permanent High Performance Storage System (HPSS). The tests were done with a number of different transfer methods for files that spanned a variety of sizes and compositions that reflect OLCF user data. This data will be used to help users of Titan and other Cray supercomputers plan their workflow and data transfers so that they are most efficient for their project. We will also discuss best practice for maintaining data at shared user facilities.

  15. Photovoltaics Economic Calculator (United States) | Open Energy...

    Open Energy Info (EERE)

    (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Economic Calculator (United States) Focus Area: Solar Topics: System & Application...

  16. Urban Transportation Emission Calculator | Open Energy Information

    Open Energy Info (EERE)

    Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and...

  17. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  18. CUFR Tree Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Desktop Application Website: www.fs.fed.usccrctopicsurban-forestsctcc Cost: Free Language: English References: CUFR Tree Carbon Calculator1 Overview "The CUFR Tree Carbon...

  19. Distributed Energy Calculator | Open Energy Information

    Open Energy Info (EERE)

    ibutedenergycalculator.com OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy1 The Distributed Energy Calculator allows you...

  20. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  1. Incorporating Weather Data into Energy Savings Calculations

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Incorporating Weather Data into Energy Savings Calculations, Call Slides and Discussion Summary, February 26, 2015.

  2. Cool Roof Calculator | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: Cool Roof Calculator AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Online...

  3. Calculating and Communicating Program Results | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Data and Evaluation Peer Exchange Call: Calculating and Communicating Program Results, Call Slides and Summary, February 23, 2012. Call Slides and Summary More Documents &...

  4. Low Dose Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation? That's what a consortium of scientists conducting an experiment at the Waste Isolation Pilot Plant aim to find out. Despite being an underground repository for...

  5. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  6. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  7. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  8. Technology Transfer Ombudsman Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national laboratory and research facility has appointed a technology partnership ombudsman (ombuds). The role of the ombuds is prevention and early resolution of disputes between the lab and inventors or private companies over technology transfer

  9. tech transfer | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    tech transfer Sandia wins tech transfer award from lab consortium EOD technician using XTK from within his response vehicle during a training exercise. NNSA's Sandia National Laboratories won the Federal Laboratory Consortium's (FLC) 2016 Award for Excellence in Technology Transfer for a decontamination product that neutralizes chemical and biological agents and... Y-12 honors its inventors with Technology Transfer awards , Twenty-nine Y-12 inventors were recognized for their technology and

  10. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    SciTech Connect (OSTI)

    Alemi, Mallory; Loring, Roger F.

    2015-06-07

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes.

  11. Bill Calculator V1.0

    Energy Science and Technology Software Center (OSTI)

    2002-08-19

    Utitlity tariffs vary significantly from utility to utility. Each utility has its own rates and sets of rules by which bills are calculated. The Bill Calculator reconstructs the tariff based on these rules, stored in data tables, and access the appropriate charges for a given energy consumption and demand. The software reconstructs the tariff logic from the rules stored in data tables. Changes are tallied as the logic is reconstructed. This is essentially an accountingmore » program. The main limitation is on the time to search for each tariff element. It is currently on O(N) search. Also, since the Bill calculator first stores all tariffs in an array and then reads the array to reconstruct a specific tariff, the memory limitatins of a particular system would limit the number of tariffs that could be handled. This tool allows a user to calculate a bill from any sampled utility without prior knowledge of the tariff logic or structure. The peculiarities of the tariff logic are stored in data tables and manged by the Bill Calculator software. This version of the software is implemented as a VB module that operates within Microsoft Excel. Input data tables are stored in Excel worksheets. In this version the Bill Calculator functions can be assessed through Excel as user defined worksheet functions. Bill Calculator can calculate approximately 50,000 bills in less than 30 minutes.« less

  12. PVWatts (R) Calculator India (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    The PVWatts (R) Calculator for India was released by the National Renewable Energy Laboratory in 2013. The online tool estimates electricity production and the monetary value of that production of grid-connected roof- or ground-mounted crystalline silicon photovoltaics systems based on a few simple inputs. This factsheet provides a broad overview of the PVWatts (R) Calculator for India.

  13. Unimolecular decomposition of methyltrichlorosilane: RRKM calculations

    SciTech Connect (OSTI)

    Osterheld, T.H.; Allendorf, M.D.; Melius, C.F.

    1993-06-01

    Based on reaction thermochemistry and estimates of Arrhenius A-factors, it is expected that Si-C bond cleavage, C-H bond cleavage, and HCl elimination will be the primary channels for the unimolecular decomposition of methyltrichlorosilane. Using RRKM theory, we calculated rate constants for these three reactions. The calculations support the conclusion that these three reactions are the major decomposition pathways. Rate constants for each reaction were calculated in the high-pressure limit (800--1500 K) and in the falloff regime (1300--1500 K) for bath gases of both helium and hydrogen. These calculations thus provide branching fractions as well as decomposition rates. We also calculated bimolecular rate constants for the overall decomposition in the low-pressure limit. Interesting and surprising kinetic behavior of this system and the individual reactions is discussed. The reactivity of this chlorinated organosilane is compared to that of other organosilanes.

  14. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2010-06-15

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  15. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2007-01-09

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  16. Electromagnetic radiation detector

    DOE Patents [OSTI]

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  17. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  18. Radiation detection system

    DOE Patents [OSTI]

    Franks, Larry A.; Lutz, Stephen S.; Lyons, Peter B.

    1981-01-01

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  19. Instrument for assaying radiation

    DOE Patents [OSTI]

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  20. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    SciTech Connect (OSTI)

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M.

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  1. Monte Carlo prompt dose calculations for the National Ingition Facility

    SciTech Connect (OSTI)

    Latkowski, J.F.; Phillips, T.W.

    1997-01-01

    During peak operation, the National Ignition Facility (NIF) will conduct as many as 600 experiments per year and attain deuterium- tritium fusion yields as high as 1200 MJ/yr. The radiation effective dose equivalent (EDE) to workers is limited to an average of 03 mSv/yr (30 mrem/yr) in occupied areas of the facility. Laboratory personnel determined located outside the facility will receive EDEs <= 0.5 mSv/yr (<= 50 mrem/yr). The total annual occupational EDE for the facility will be maintained at <= 0.1 person-Sv/yr (<= 10 person- rem/yr). To ensure that prompt EDEs meet these limits, three- dimensional Monte Carlo calculations have been completed.

  2. Magnetic mirror cavities as terahertz radiation sources and a means of quantifying radiation friction

    SciTech Connect (OSTI)

    Holkundkar, Amol R. E-mail: amol.holkundkar@gmail.com; Harvey, Chris

    2014-10-15

    We propose a radiation source based on a magnetic mirror cavity. Relativistic electrons are simulated entering the cavity and their trajectories and resulting emission spectra are calculated. The uniformity of the particle orbits is found to result in a frequency comb in terahertz range, the precise energies of which are tunable by varying the electron's γ-factor. For very high energy particles, radiation friction causes the spectral harmonics to broaden and we suggest this as a possible way to verify competing classical equations of motion.

  3. HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER

    SciTech Connect (OSTI)

    Lee, S.

    2009-06-01

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

  4. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  5. Underwater radiation detector

    DOE Patents [OSTI]

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  6. Apparatus and method for detecting full-capture radiation events

    DOE Patents [OSTI]

    Odell, Daniel M. C. (Aiken, SC)

    1994-01-01

    An apparatus and method for sampling the output signal of a radiation detector and distinguishing full-capture radiation events from Compton scattering events. The output signal of a radiation detector is continuously sampled. The samples are converted to digital values and input to a discriminator where samples that are representative of events are identified. The discriminator transfers only event samples, that is, samples representing full-capture events and Compton events, to a signal processor where the samples are saved in a three-dimensional count matrix with time (from the time of onset of the pulse) on the first axis, sample pulse current amplitude on the second axis, and number of samples on the third axis. The stored data are analyzed to separate the Compton events from full-capture events, and the energy of the full-capture events is determined without having determined the energies of any of the individual radiation detector events.

  7. Apparatus and method for detecting full-capture radiation events

    DOE Patents [OSTI]

    Odell, D.M.C.

    1994-10-11

    An apparatus and method are disclosed for sampling the output signal of a radiation detector and distinguishing full-capture radiation events from Compton scattering events. The output signal of a radiation detector is continuously sampled. The samples are converted to digital values and input to a discriminator where samples that are representative of events are identified. The discriminator transfers only event samples, that is, samples representing full-capture events and Compton events, to a signal processor where the samples are saved in a three-dimensional count matrix with time (from the time of onset of the pulse) on the first axis, sample pulse current amplitude on the second axis, and number of samples on the third axis. The stored data are analyzed to separate the Compton events from full-capture events, and the energy of the full-capture events is determined without having determined the energies of any of the individual radiation detector events. 4 figs.

  8. Wireless power transfer magnetic couplers

    DOE Patents [OSTI]

    Wu, Hunter; Gilchrist, Aaron; Sealy, Kylee

    2016-01-19

    A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.

  9. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  10. Two-dimensional heat transfer from earth-sheltered buildings

    SciTech Connect (OSTI)

    Krarti, M. (Steven Winter Associates, Inc., Norwalk, CT (US)); Claridge, D.E. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering)

    1990-02-01

    This paper describes use of the interzone temperature profile estimation (or ITPE) technique, an analytical calculation procedure to predict heat transfer within earth in contact with a structure. The solutions governing steady-state and steady-periodic heat conduction are derived for rectangular earth-sheltered buildings. The procedure accepts continuously variable values of geometric dimensions, insulation levels, and constant soil thermal characteristics and considers the presence of a finite water table level. Soil temperature profiles are shown for both steady-state and steady periodic conditions. The effects of insulation and water table depth on the heat losses from an earth-sheltered building envelope are discussed.

  11. Dose Rate Calculation of TRU Metal Ingot in Pyroprocessing - 12202

    SciTech Connect (OSTI)

    Lee, Yoon Hee; Lee, Kunjai

    2012-07-01

    Spent fuel management has been a main problem to be solved for continuous utilization of nuclear energy. Spent fuel management policy of Korea is 'Wait and See'. It is focused on Pyro-process and SFR (Sodium-cooled Fast Reactor) for closed-fuel cycle research and development in Korea. For peaceful use of nuclear facilities, the proliferation resistance has to be proved. Proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Non-proliferation and safeguard issues have been strengthening internationally. Barriers to proliferation are that reduces desirability or attractiveness as an explosive and makes it difficult to gain access to the materials, or makes it difficult to misuse facilities and/or technologies for weapons applications. Barriers to proliferation are classified into intrinsic and extrinsic barriers. Intrinsic barrier is inherent quality of reactor materials or the fuel cycle that is built into the reactor design and operation such as material and technical barriers. As one of the intrinsic measures, the radiation from the material is considered significantly. Therefore the radiation of TRU metal ingot from the pyro-process was calculated using ORIGEN and MCNP code. (authors)

  12. Policy_Statement_on_Technology_Transfer.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf PDF icon PolicyStatementonTechnologyTransfer.pdf More Documents & Publications...

  13. Secretarial Determination for the Sale or Transfer of Uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of...

  14. Policy_Statement_on_Technology_Transfer.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf PDF icon PolicyStatementonTechnologyTransfer.pdf More Documents & Publications ...

  15. Method and system for imaging a radiation source

    DOE Patents [OSTI]

    Myjak, Mitchell J. (Richland, WA) [Richland, WA; Seifert, Carolyn E. (Kennewick, WA) [Kennewick, WA; Morris, Scott J. (Kennewick, WA) [Kennewick, WA

    2011-04-19

    A method for imaging a radiation source, and a device that utilizes these methods that in one embodiment include the steps of: calculating at least one Compton cone of a first parameter of a radiation emission from information received from a sensor occurrence; and tracing this Compton cone on to a unit sphere having preselected characteristics using an estimated angular uncertainty to limit at least a portion of said tracing. In another embodiment of the invention at least two Compton cones are calculated and then intersected upon a predefined surface such as a sphere. These intersection points can then be iterated over a preselected series of prior events.

  16. Estimation of the electron density and radiative energy losses in a calcium plasma source based on an electron cyclotron resonance discharge

    SciTech Connect (OSTI)

    Potanin, E. P. Ustinov, A. L.

    2013-06-15

    The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures-the hot resonance component and the cold nonresonance component-were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T{sub e Parallel-To} of the main (cold) electron component on the energy fraction {beta} lost for radiation was obtained.

  17. Los Alamos Lab: Radiation Protection: Annual Occupational Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Dosimetry Report. If you would like general information about radiation exposure, please refer to www.radiationanswers.org. Title 10 Code of Federal Regulation...

  18. Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; Tretiak, S.

    2015-01-22

    In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.

  19. Spectral brilliance of channeling radiation at the ASTA photoinjector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sen, Tanaji; Lynn, Christopher

    2014-12-01

    We study channeling radiation from electron beams with energies under 100 MeV. We introduce a phenomenological model of dechanneling, correct non-radiative transition rates from thermal scattering, and discuss in detail the population dynamics in low order bound states. These are used to revisit the X-ray properties measured at the ELBE facility in Forschungszentrum Dresden-Rosenstock (FZDR), extract parameters for dechanneling states, and obtain satisfactory agreement with measured photon yields. The importance of rechanneling phenomena in thick crystals is emphasized. The model is then used to calculate the expected X-ray energies, linewidths and brilliance for forthcoming channeling radiation experiments at Fermilab's ASTAmorephotoinjector.less

  20. Spectral brilliance of channeling radiation at the ASTA photoinjector

    SciTech Connect (OSTI)

    Sen, Tanaji; Lynn, Christopher

    2014-12-01

    We study channeling radiation from electron beams with energies under 100 MeV. We introduce a phenomenological model of dechanneling, correct non-radiative transition rates from thermal scattering, and discuss in detail the population dynamics in low order bound states. These are used to revisit the X-ray properties measured at the ELBE facility in Forschungszentrum Dresden-Rosenstock (FZDR), extract parameters for dechanneling states, and obtain satisfactory agreement with measured photon yields. The importance of rechanneling phenomena in thick crystals is emphasized. The model is then used to calculate the expected X-ray energies, linewidths and brilliance for forthcoming channeling radiation experiments at Fermilab's ASTA photoinjector.

  1. Evaluating Radiative Closure in the Middle-to-Upper Troposhere

    SciTech Connect (OSTI)

    Tobin, David C; Turner, David D; Knuteson, Robert O

    2013-01-02

    This project had two general objectives. The first is the characterization and improvement of the radiative transfer parameterization in strongly absorbing water vapor bands, as these strongly absorbing bands dictate the clear sky radiative heating rate. The second is the characterization and improvement of the radiative transfer in cirrus clouds, with emphasis on ensuring that the parameterization of the radiative transfer is consistent and accurate across the spectrum. Both of these objectives are important for understanding the radiative processes in the mid-to-upper troposphere. The research on this project primarily involved analysis of data from the First and Second Radiative Heating in Underexplored Bands Campaigns, RHUBC-I and II. This included a climate model sensitivity study using results from RHUBC-I. The RHUBC experiments are ARM-funded activities that directly address the objectives of this research project. A secondary effort was also conducted that investigated the trends in the long-term (~14 year) dataset collected by the Atmospheric Emitted Radiance Interferometer (AERI) at the ARM Southern Great Plains site. This work, which was primarily done by a post-doc at the University of Wisconsin – Madison under Dr. Turner’s direction, uses the only NIST-traceable instrument at the ARM site that has a well-documented calibration and uncertainty performance to investigate long-term trends in the downwelling longwave radiance above this site.

  2. RADIATION TRANSPORT FOR EXPLOSIVE OUTFLOWS: OPACITY REGROUPING

    SciTech Connect (OSTI)

    Wollaeger, Ryan T. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison 1500 Engineering Drive, 410 ERB, Madison, WI 53706 (United States); Van Rossum, Daniel R., E-mail: wollaeger@wisc.edu, E-mail: daan@flash.uchicago.edu [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2014-10-01

    Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure ''opacity regrouping''. Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport in high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ?10% less than that calculated using PHOENIX.

  3. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  4. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  5. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  6. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS

    SciTech Connect (OSTI)

    Kuiper, Rolf; Yorke, Harold W.; Turner, Neal J. E-mail: Harold.W.Yorke@jpl.nasa.gov

    2015-02-20

    We carry out radiation hydrodynamical simulations of the formation of massive stars in the super-Eddington regime including both their radiative feedback and protostellar outflows. The calculations start from a prestellar core of dusty gas and continue until the star stops growing. The accretion ends when the remnants of the core are ejected, mostly by the force of the direct stellar radiation in the polar direction and elsewhere by the reradiated thermal infrared radiation. How long the accretion persists depends on whether the protostellar outflows are present. We set the mass outflow rate to 1% of the stellar sink particle's accretion rate. The outflows open a bipolar cavity extending to the core's outer edge, through which the thermal radiation readily escapes. The radiative flux is funneled into the polar directions while the core's collapse proceeds near the equator. The outflow thus extends the ''flashlight effect'', or anisotropic radiation field, found in previous studies from the few hundred AU scale of the circumstellar disk up to the 0.1 parsec scale of the core. The core's flashlight effect allows core gas to accrete on the disk for longer, in the same way that the disk's flashlight effect allows disk gas to accrete on the star for longer. Thus although the protostellar outflows remove material near the core's poles, causing slower stellar growth over the first few free-fall times, they also enable accretion to go on longer in our calculations. The outflows ultimately lead to stars of somewhat higher mass.

  7. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation

    SciTech Connect (OSTI)

    Xiao, Weizhan; Hu, Yongjun E-mail: lssheng@ustc.edu.cn; Li, Weixing; Guan, Jiwen; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi E-mail: lssheng@ustc.edu.cn

    2015-01-14

    While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C{sub 2}H{sub 5}OH) ⋅ H{sup +} (m/z = 47) and the β-carbon-carbon bond cleavage fragment CH{sub 2}O ⋅ (C{sub 2}H{sub 5}OH)H{sup +} (m/z = 77), the measured mass spectra revealed that a new fragment (C{sub 2}H{sub 5}OH) ⋅ (CH{sub 3}){sup +} (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C{sub 2}H{sub 5}OH) ⋅ H{sup +} and CH{sub 2}O ⋅ (C{sub 2}H{sub 5}OH)H{sup +} have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.

  8. Historical river flow rates for dose calculations

    SciTech Connect (OSTI)

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  9. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  10. Miniaturized radiation chirper

    DOE Patents [OSTI]

    Umbarger, C. John; Wolf, Michael A.

    1980-01-01

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  11. Radiation Safety System

    SciTech Connect (OSTI)

    Vylet, Vaclav; Liu, James C.; Walker, Lawrence S.; /Los Alamos

    2012-04-04

    The goal of this work is to provide an overview of a Radiation safety system (RSS) designed for protection from prompt radiation hazard at accelerator facilities. RSS design parameters, functional requirements and constraints are derived from hazard analysis and risk assessment undertaken in the design phase of the facility. The two main subsystems of a RSS are access control system (ACS) and radiation control system (RCS). In this text, a common approach to risk assessment, typical components of ACS and RCS, desirable features and general design principles applied to RSS are described.

  12. Radiation Protection | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Protection Radiation Protection Regulations: The Federal Regulation governing the use of radioactive materials at Ames Laboratory is 10 CFR 835. To implement this...

  13. First principle thousand atom quantum dot calculations

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  14. Dipping of terms in atomic calculations

    SciTech Connect (OSTI)

    Zelichenko, V.M.; Samsonov, B.F.; Nyavro, A.V.

    1983-11-01

    The paper discusses the orthogonality conditions for calculations in the single-configuration approximation of the autoionization states 1s2s/sup 2/ and 2s/sup 2/ in Li and He/sup -/ and He and He/sup -/, respectively. The necessity is demonstrated of considering the conditions of orthogonality of the complete wave functions of these configurations to the wave functions of the corresponding continuous spectrum in the calculation of energy by means of the variational method.

  15. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect (OSTI)

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earth??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

  16. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water

    SciTech Connect (OSTI)

    Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu

    2014-08-28

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfer process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps{sup ?1}, which is about 2.5 times faster than that in vacuum, 0.27 ps{sup ?1}. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.

  17. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  18. Technology_Transfer_Memo.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology_Transfer_Memo.pdf Technology_Transfer_Memo.pdf PDF icon Technology_Transfer_Memo.pdf More Documents & Publications Policy_Statement_on_Technology_Transfer.pdf Policy_Statement_on_TT.pdf livermorecmp.pdf

  19. ARM - Measurement - Backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane ...

  20. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  1. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  2. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  3. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  4. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  5. radiation.cdr

    Office of Legacy Management (LM)

    Everyone who has ever walked on this planet has been exposed to radiation. For the most part, nature is the largest source of exposure. It's in the air we breathe, the ground we ...

  6. Miniature mechanical transfer optical coupler

    DOE Patents [OSTI]

    Abel, Philip; Watterson, Carl

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  7. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    SciTech Connect (OSTI)

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  8. ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Integrated Column Description of the Atmosphere An Integrated Column Description of the Atmosphere Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific Northwest National Laboratory The "other" Washington ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Credits to Credits to * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace *

  9. Method of enhancing radiation response of radiation detection materials

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  10. Calculation of cross sections for binary reactions between heavy ion projectiles and heavy actinide targets

    SciTech Connect (OSTI)

    Hoffman, D.C.; Hoffman, M.M.

    1990-11-01

    The computer program, described in this report, is identified as PWAVED5. It was developed to calculate cross sections for nucleon transfer reactions in low energy heavy ion bombardments. The objective was to calculate cross sections that agree with experimental results for ions of different charge and mass and to develop a predictive capability. It was undertaken because previous heavy ion calculations, for which programs were readily available, appeared to focus primarily on reactions resulting in compound nucleus formation and were not particularly applicable to calculations of binary reaction cross sections at low interaction energies. There are to principal areas in which this computation differs from several other partial wave calculations of heavy-ion reaction cross sections. First, this program is designed specifically to calculate cross sections for nucleon exchange interactions and to exclude interactions that are expected to result in fusion of the two nuclei. A second major difference in this calculation is the use of a statistical distribution to assign the total interaction cross section to individual final mass states.

  11. NREL: Technology Transfer - Small Business Vouchers Pilot at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-4684. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  12. NREL: Technology Transfer - Small Business Vouchers Pilot at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address: Submit Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  13. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, James E.

    1989-01-01

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  14. A simple method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter

    SciTech Connect (OSTI)

    Du Weiliang; Yang, James; Luo Dershan; Martel, Mary

    2010-05-15

    Purpose: The aim of this study was to develop a computerized method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter. Three types of graticules were included in this study: Megavoltage (MV) mechanical graticule, MV electronic portal imaging device digital graticule, and kilovoltage (kV) on-board imaging digital graticule. Methods: A metal ball bearing (BB) was imaged with MV and kV x-ray beams in a procedure similar to a Winston-Lutz test. The radiation fields, graticules, and BB were localized in eight portal images using Hough transform-based computer algorithms. The center of the BB served as a static reference point in the 3D space so that the distances between the graticule centers and the radiation field centers were calculated. The radiation isocenter was determined from the radiation field centers at different gantry angles. Results: Misalignments of MV and kV portal imaging graticules varied with the gantry or x-ray source angle as a result of mechanical imperfections of the linear accelerator and its imaging system. While the three graticules in this study were aligned to the radiation field centers and the radiation isocenter within 2.0 mm, misalignments of 1.5-2.0 mm were found at certain gantry angles. These misalignments were highly reproducible with the gantry rotation. Conclusions: A simple method was developed to quantify the alignments of portal image graticules directly against the radiation field centers or the radiation isocenter. The advantage of this method is that it does not require the BB to be placed exactly at the radiation isocenter through a precalibrated surrogating device such as room lasers or light field crosshairs. The present method is useful for radiation therapy modalities that require high-precision portal imaging such as image-guided stereotactic radiotherapy.

  15. Calculation Package for the Analysis of Performance of Cells 1-6, with Underdrain, of the Environmental Management Waste Management Facility Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Gonzales D.

    2010-03-30

    This calculation package presents the results of an assessment of the performance of the 6 cell design of the Environmental Management Waste Management Facility (EMWMF). The calculations show that the new cell 6 design at the EMWMF meets the current WAC requirement. QA/QC steps were taken to verify the input/output data for the risk model and data transfer from modeling output files to tables and calculation.

  16. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  17. Analytic calculation of 1-jettiness in DIS at O (?s)

    SciTech Connect (OSTI)

    Kang, Daekyoung; Lee, Christopher; Stewart, Iain W.

    2014-11-24

    We present an analytic O(?s) calculation of cross sections in deep inelastic scattering (DIS) dependent on an event shape, 1-jettiness, that probes final states with one jet plus initial state radiation. This is the first entirely analytic calculation for a DIS event shape cross section at this order. We present results for the differential and cumulative 1-jettiness cross sections, and express both in terms of structure functions dependent not only on the usual DIS variables x, Q 2 but also on the 1-jettiness ?. Combined with previous results for log resummation, predictions are obtained over the entire range of the 1-jettiness distribution.

  18. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production

    SciTech Connect (OSTI)

    Horvath, Samantha; Fernandez, Laura; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2012-09-25

    The design of molecular electrocatalysts for H2 oxidation and production is important for the development of alternative renewable energy sources that are abundant, inexpensive, and environmentally benign. Recently nickel-based molecular electrocatalysts with pendant amines that act as proton relays for the nickel center were shown to effectively catalyze H2 oxidation and production. We developed a quantum mechanical approach for studying proton-coupled electron transfer processes in these types of molecular electrocatalysts. This theoretical approach is applied to a nickel-based catalyst in which phosphorous atoms are directly bonded to the nickel center and nitrogen atoms of the ligand rings act as proton relays. The cataly c step of interest involves electron transfer between the nickel complex and the electrode as well as intramolecular proton transfer between the nickel and nitrogen atoms. This process can occur sequentially, with either the electron or proton transferring first, or concertedly, with the electron and proton transferring simultaneously without a stable intermediate. The heterogeneous rate constants are calculated as functions of overpotential for the concerted electron-proton transfer reaction and the two electron transfer reactions in the sequential mechanisms. Our calculations illustrate that the concerted electron-proton transfer standard rate constant will increase as the equilibrium distance between the nickel and nitrogen atoms decreases and as the nitrogen atoms become more mobile to facilitate the contraction of this distance. This approach assists in the identification of the favored mechanisms under various experimental conditions and provides insight into the qualitative impact of substituents on the nitrogen and phosphorous atoms. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under FWP 56073.

  19. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect (OSTI)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  20. Technology Transfer Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.