National Library of Energy BETA

Sample records for radiative heating profiles

  1. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    2008-01-15

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  2. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  3. JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS

    E-Print Network [OSTI]

    Shupe, Matthew

    JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS). This data allows for observationally-based calculations ofradiative heating rate profiles within the Arctic atmosphere. In this paper we define cloud radiative heating rate forcing (CRHF) as the difference between

  4. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect (OSTI)

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

  5. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  6. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    and J.R. Howell, Thermal radiation heat transfer, Hemispheremade: 1. The heat, mass, and radiation transfer are treatedOne- dimensional heat, mass, and radiation transfers were

  7. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1986-01-01

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  8. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  9. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under...

  10. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    Kaviany and B.P. Singh, “Radiative heat transfer in porousmedia”, Advances in Heat Transfer, vol. 23, no. 23, pp. 133–Thermal radiation heat transfer, Hemisphere Publishing Co. ,

  11. Heat pipes for NEP spacecraft radiators

    SciTech Connect (OSTI)

    Ernst, D.M.

    1981-01-01

    Reliable, low mass, passive radiators for the Nuclear Electric Propulsion Spacecraft require innovative system designs and the use of high performance, high temperature liquid metal heat pipes. This paper covers the evolution of the NEP spacecraft and radiator. 1 ref.

  12. Radiative heat transfer between dielectric bodies

    E-Print Network [OSTI]

    Svend-Age Biehs

    2011-03-16

    The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.

  13. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  14. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  15. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    SciTech Connect (OSTI)

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  16. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    SciTech Connect (OSTI)

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  17. Radiative Heat Transfer between Neighboring Particles

    E-Print Network [OSTI]

    Alejandro Manjavacas; F. Javier Garcia de Abajo

    2012-01-26

    The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

  18. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  19. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Houze, Jr., Robert A.

    2013-11-13

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  20. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

    2013-03-14

    This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar observations to evaluate model simulations In cooperation with Profs. Bob Houze at University of Washington and Steven Rutledge at Colorado State University, numerical model results were evaluated with observations from W- and C-band radars and CloudSat/TRMM satellites. These studies exhibited some shortcomings of current numerical models, such as too little of thin anvil clouds, directing the future improvement of cloud microphysics parameterization in CRMs. Two papers of Powell et al (2012) and Zeng et al. (2013), summarizing these studies, were published in the Journal of the Atmospheric Sciences. 4. Analyzed the water budgets of MCSs Using ARM data from TWP-ICE, ARM-SGP and other field campaigns, the Goddard CRM simulations were carried out to analyze the water budgets of clouds from TWP-ICE and AMMA. The simulations generated a set of datasets on clouds and radiation, which are available http://cloud.gsfc.nasa.gov/. The cloud datasets were available for modelers and other researchers aiming to improve the representation of cloud processes in multi-scale modeling frameworks, GCMs and climate models. Special datasets, such as 3D cloud distributions every six minutes for TWP-ICE, were requested and generated for ARM/ASR investigators. Data server records show that 86,206 datasets were downloaded by 120 users between April of 2010 and January of 2012. 5. MMF simulations The Goddard MMF (multi-scale modeling framework) has been improved by coupling with the Goddard Land Information System (LIS) and the Goddard Earth Observing System Model, Version 5 (GOES5). It has also been optimized on NASA HEC supercomputers and can be run over 4000 CPUs. The improved MMF with high horizontal resolution (1 x 1 degree) is currently being applied to cases covering 2005 and 2006. The results show that the spatial distribution pattern of precipitation rate is well simulated by the MMF through comparisons with satellite retrievals from the CMOPRH and GPCP data sets. In addition, the MMF results were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends

  1. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  2. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  3. Heating Rate Profiles in Galaxy Clusters

    E-Print Network [OSTI]

    Edward C. D. Pope; Georgi Pavlovski; Christian R. Kaiser; Hans Fangohr

    2006-01-05

    In recent years evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here we calculate the heating rates required to maintain a physically motived mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor, of the clasical Spitzer value, is a different function of radius for each cluster. Based on the observations of plasma bubbles we also calculate the duty cycles for each AGN, in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A it appears that each of the other AGNs in our sample require duty cycles of roughly $10^{6}-10^{7}$ yrs to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller-scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require `fine-tuning` of the thermal conductivity as a function of radius. As a consequence of this work we present the AGN duty cycle as a cooling flow diagnostic.

  4. Project Profile: Heat Transfer and Latent Heat Storage in Inorganic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy storage capacity of a thermocline. The PCM-based TES uses the latent heat of fusion of inorganic salt mixtures for storing thermal energy. The concepts being applied by...

  5. RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS

    E-Print Network [OSTI]

    RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS A. Kersch1 W. Moroko2 A. Schuster1 1Siemens of Quasi-Monte Carlo to this problem. 1.1 Radiative Heat Transfer Reactors In the manufacturing of the problems which can be solved by such a simulation is high accuracy modeling of the radiative heat transfer

  6. Radiative heat transfer in inhomogeneous, nongray, and anisotropically scattering media

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Radiative heat transfer in inhomogeneous, nongray, and anisotropically scattering media Zhixiong Radiative heat transfer in three-dimensional inhomogeneous, nongray and anisotropically scattering of an application of engineering interest, radiative heat transfer in a boiler model with non-isothermal, nongray

  7. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect (OSTI)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  8. RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda

    E-Print Network [OSTI]

    RADIATIVE HEAT TRANSFER WITH QUASI­MONTE CARLO METHODS \\Lambda A. Kersch 1 W. Morokoff 2 A accuracy modeling of the radiative heat transfer from the heater to the wafer. Figure 1 shows the draft Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena

  9. Flexible profile approach to the conjugate heat transfer problem

    E-Print Network [OSTI]

    M. -N. Sabry

    2008-01-07

    The flexible profile approach proposed earlier to create CTM (compact or reduced order thermal models) is extended to cover the area of conjugate heat transfer. The flexible profile approach is a methodology that allows building a highly boundary conditions independent CTM, with any desired degree of accuracy, that may adequately replace detailed 3D models for the whole spectrum of applications in which the modeled object may be used. The extension to conjugate problems radically solves the problem of interfacing two different domains. Each domain, fluid or solid, can be "compacted" independently creating two CTM that can be joined together to produce reliable results for any arbitrary set of external boundary conditions.

  10. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect (OSTI)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day?km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.

  11. Global heat transfer analysis in Czochralski silicon furnace with radiation on curved specular surfaces

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Global heat transfer analysis in Czochralski silicon furnace with radiation on curved specular method are adopted to solve the global heat transfer and the radiative heat exchange, respectively rate QJ diffuse radiation heat transfer rate QX net rate of radiative heat loss QT heat generation rate

  12. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect (OSTI)

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  13. Heat pipe radiation cooling evaluation: Task 2 concept studies report

    SciTech Connect (OSTI)

    Silverstein, C.C.

    1991-10-01

    This report presents the result of Task 2, Concept Studies for Heat Pipe Radiation Cooling (HPRC), which was performed for Los Alamos National Laboratory under Contract 9-XT1-U9567. Studies under a prior contract defined a reference HPRC conceptual design for hypersonic aircraft engines operating at Mach 5 and an altitude of 80,000 ft. Task 2 involves the further investigation of heat pipe radiation cooling (HPRC) systems for additional design and operating conditions.

  14. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  15. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    SciTech Connect (OSTI)

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  16. Enhanced radiative heat transfer between nanostructured gold plates

    E-Print Network [OSTI]

    R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud

    2012-03-07

    We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

  17. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V. Bogy, David B.

    2014-02-10

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  18. Selective radiative heating of nanostructures using hyperbolic metamaterials

    SciTech Connect (OSTI)

    Ding, Ding; Minnich, Austin J

    2015-01-01

    Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

  19. Trace formulae for non-equilibrium Casimir interactions, heat radiation and heat transfer for arbitrary objects

    E-Print Network [OSTI]

    Matthias Krüger; Giuseppe Bimonte; Thorsten Emig; Mehran Kardar

    2012-07-16

    We present a detailed derivation of heat radiation, heat transfer and (Casimir) interactions for N arbitrary objects in the framework of fluctuational electrodynamics in thermal non-equilibrium. The results can be expressed as basis-independent trace formulae in terms of the scattering operators of the individual objects. We prove that heat radiation of a single object is positive, and that heat transfer (for two arbitrary passive objects) is from the hotter to a colder body. The heat transferred is also symmetric, exactly reversed if the two temperatures are exchanged. Introducing partial wave-expansions, we transform the results for radiation, transfer and forces into traces of matrices that can be evaluated in any basis, analogous to the equilibrium Casimir force. The method is illustrated by (re)deriving the heat radiation of a plate, a sphere and a cylinder. We analyze the radiation of a sphere for different materials, emphasizing that a simplification often employed for metallic nano-spheres is typically invalid. We derive asymptotic formulae for heat transfer and non-equilibrium interactions for the cases of a sphere in front a plate and for two spheres, extending previous results. As an example, we show that a hot nano-sphere can levitate above a plate with the repulsive non-equilibrium force overcoming gravity -- an effect that is not due to radiation pressure.

  20. High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, Cyclones and localized heating

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    transmitter radiates a strong beam of high- frequency (HF) waves modulated at ELF. This HF heating modulates-frequency (HF) radiation in the megahertz range [7]. This heating modulates the electron's temperature in the D

  1. Turbulent velocity profiles in a tilted heat pipe J. Salort, X. Riedinger,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Turbulent velocity profiles in a tilted heat pipe J. Salort, X. Riedinger, E. Rusaouen, J the ther- mal behavior of a square heat pipe, depending on its inclination angle and the applied heat flux (stresses). Heat pipes, or gravital flows in vertical or inclined Also at College of Engineering

  2. Radiation Hydrodynamics Test Problems with Linear Velocity Profiles

    SciTech Connect (OSTI)

    Hendon, Raymond C. [Los Alamos National Laboratory; Ramsey, Scott D. [Los Alamos National Laboratory

    2012-08-22

    As an extension of the works of Coggeshall and Ramsey, a class of analytic solutions to the radiation hydrodynamics equations is derived for code verification purposes. These solutions are valid under assumptions including diffusive radiation transport, a polytropic gas equation of state, constant conductivity, separable flow velocity proportional to the curvilinear radial coordinate, and divergence-free heat flux. In accordance with these assumptions, the derived solution class is mathematically invariant with respect to the presence of radiative heat conduction, and thus represents a solution to the compressible flow (Euler) equations with or without conduction terms included. With this solution class, a quantitative code verification study (using spatial convergence rates) is performed for the cell-centered, finite volume, Eulerian compressible flow code xRAGE developed at Los Alamos National Laboratory. Simulation results show near second order spatial convergence in all physical variables when using the hydrodynamics solver only, consistent with that solver's underlying order of accuracy. However, contrary to the mathematical properties of the solution class, when heat conduction algorithms are enabled the calculation does not converge to the analytic solution.

  3. Radiative Heating in Underexplored Bands Campaign (RHUBC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel Ruggirello RachelRadiationRadiative

  4. Radiative Heating in Underexplored Bands Campaign (RHUBC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel Ruggirello RachelRadiationRadiative Bands

  5. Project Profile: Dual-Purpose Heat Transfer Fluids for CSP

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory, under an ARRA CSP Award, is developing advanced heat transfer fluids (HTFs) by incorporating multifunctional engineered nanoparticles in heat transfer applications and thermal energy storage.

  6. Radiative heat transfer in a hydrous mantle transition zone Sylvia-Monique Thomas a,n

    E-Print Network [OSTI]

    Jacobsen, Steven D.

    Radiative heat transfer in a hydrous mantle transition zone Sylvia-Monique Thomas a,n , Craig R contribute significantly to heat transfer in the mantle and demonstrate the importance of radiative heat, radiative heat transfer was considered relatively unimportant in the mantle. Earlier experimental work

  7. Demonstration of Strong Near-Field Radiative Heat Transfer between Integrated Nanostructures

    E-Print Network [OSTI]

    Lipson, Michal

    Demonstration of Strong Near-Field Radiative Heat Transfer between Integrated Nanostructures-polariton Recently, there has been a growing interest in controlling radiative heat transfer in the near-field,1 ultrahigh contrast rectification of heat transfer.27 Here we show strong near-field radiative heat transfer

  8. Numerical Passage from Radiative Heat Transfer to Nonlinear Diffusion Models \\Lambda

    E-Print Network [OSTI]

    Schmeiser, Christian

    Numerical Passage from Radiative Heat Transfer to Nonlinear Diffusion Models \\Lambda A. Klar y C. Schmeiser z Abstract Radiative heat transfer equations including heat conduction are consid­ ered situations are presented. Keywords. radiative heat transfer, asymptotic analysis, nonlinear diffusion limit

  9. Downflow heat transfer in a heated ribbed vertical annulus with a cosine power profile

    SciTech Connect (OSTI)

    Anderson, J.L.; Condie, K.G.; Larson, T.K.

    1991-10-01

    Experiments designed to investigate downflow heat transfer in a heated, ribbed annulus test section simulating one of the annular coolant channels of a Savannah River Plant production reactor Mark 22 fuel assembly have been conducted at the Idaho National Engineering Laboratory. The inner surface of the annulus was constructed of aluminum and was electrically heated to provide an axial cosine power profile and a flat azimuthal power shape. Data presented in this report are from the ECS-2c series, which was a follow on series to the ECS-2b series, conducted specifically to provide additional data on the effect of different powers at the same test conditions, for use in evaluation of possible power effects on the aluminum temperature measurements. Electrical powers at 90%, 100%, and 110% of the power required to result in the maximum aluminum temperature at fluid saturation temperature were used at each set of test conditions previously used in the ECS-2b series. The ECS-2b series was conducted in the same test rig as the previous ECS-2b series. Data and experimental description for the ECS-2b series is provided in a previous report. 18 refs., 25 figs., 3 tabs.

  10. Temporal profile of optical transmission probe for pulsed-laser heating of amorphous silicon films

    E-Print Network [OSTI]

    Leung, Pui-Tak "Peter"

    Temporal profile of optical transmission probe for pulsed-laser heating of amorphous silicon films is studied. Experimental optical transmission data are compared with heat transfer modeling results; accepted for publication 4 June 1992) The transient temperature field development during heating

  11. Lineage specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host

    E-Print Network [OSTI]

    Palumbi, Stephen

    treatments (i.e. attributable solely to type, not heat exposure). These include many genes related to known!"#$%$ $ Lineage specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress unexplored. Here, we examine the transcriptome-wide response to heat stress via RNA- Seq of two types

  12. A new method for solving radiative heat problems in glass

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    RANA 99­06 A new method for solving radiative heat problems in glass B.J. van der Linden --- R, The Netherlands e­mail: linden@win.tue.nl 15th May 2000 #12; Abstract In the production of glass, temperature Conclusion 25 2 #12; Chapter 1 Introduction The production of glass belongs to the oldest forms of human

  13. A new method for solving radiative heat problems in glass

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    RANA 99-06 A new method for solving radiative heat problems in glass B.J. van der Linden -- R, The Netherlands e-mail: linden@win.tue.nl 15th May 2000 #12;Abstract In the production of glass, temperature plays Conclusion 25 2 #12;Chapter 1 Introduction The production of glass belongs to the oldest forms of human

  14. The multiple absorption coefficient zonal method (MACZM), an efficient computational approach for the analysis of radiative heat transfer in multidimensional inhomogeneous nongray media

    E-Print Network [OSTI]

    Yuen, W W

    2006-01-01

    the effect of radiation heat transfer in multi-dimensionaleffects of the radiation heat transfer, particularly in3-D Surface Radiation Calculation”, Numerical heat Transfer,

  15. Radiative heat transfer in 2D Dirac materials

    E-Print Network [OSTI]

    Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit

    2015-02-02

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  16. Cloud properties and associated radiative heating rates in the tropical western Pacific

    E-Print Network [OSTI]

    Cloud properties and associated radiative heating rates in the tropical western Pacific James H radiative fluxes and heating rates. Maxima in cloud occurrence are found in the boundary layer and the upper radiative heating rates in the tropical western Pacific, J. Geophys. Res., 112, D05201, doi:10.1029/2006JD

  17. TWO-DIMENSIONAL TRANSIENT RADIATIVE HEAT TRANSFER USING DISCRETE ORDINATES METHOD

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    TWO-DIMENSIONAL TRANSIENT RADIATIVE HEAT TRANSFER USING DISCRETE ORDINATES METHOD Zhixiong Guo for the first time to solve transient radiative heat transfer in a two-dimensional rectangular enclosure of solution method of radiative heat transfer in participating media in recent decades. However, the analysis

  18. Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations R. Arambakam 2013 Keywords: Radiative heat transfer Dual-scale modeling Insulation media Fibrous media a b s t r a c a fiber diameter for which radiation heat transfer through a fibrous media is min- imal, ranging between 3

  19. Modeling the role of microstructural parameters in radiative heat transfer through disordered fibrous media

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    Modeling the role of microstructural parameters in radiative heat transfer through disordered high-tempera- tures. Traditional studies of radiative heat transfer in fibrous materials have been the performance of fibrous materials used as radiative heat transfer insulation media. Although effective

  20. Glass foams: formation, transport properties, and heat, mass, and radiation transfer

    E-Print Network [OSTI]

    Pilon, Laurent

    Glass foams: formation, transport properties, and heat, mass, and radiation transfer Andrei G models for thermophysical and transport properties and heat, mass, and radiation transfer in glass foams. In addition, the new results on simulation of combined conduction and radiation heat transfer in glass foams

  1. Calculating Radiative Heat Transfer in an Axisymmetric Closed Chamber: An Application

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    Calculating Radiative Heat Transfer in an Axisymmetric Closed Chamber: An Application to Crystal University of New York at Stony Brook Stony Brook N.Y. 11794 ABSTRACT Radiative heat transfer plays simulating radiative heat transfer in the crystal and in the region above the melt containing gas under

  2. Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces R. S. Ottens,1

    E-Print Network [OSTI]

    Tanner, David B.

    Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces R. S. Ottens,1 V. Quetschke-field, blackbody radiation. Although heat transfer via near-field effects has been discussed for many years.014301 PACS numbers: 44.40.+a, 78.20.Ci Humans knew of radiative heat transfer at least as early

  3. An Investigation of the Radiative Heat Transfer through Nonwoven Fibrous Materials

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    An Investigation of the Radiative Heat Transfer through Nonwoven Fibrous Materials Imad Qashou1 of the Fluent CFD code is used to investigate the response of a fibrous material to the radiative heat transfer in agreement with our experimental study. INTRODUCTION Radiative heat transfer through fibrous media has been

  4. Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the ZonalGEF Method

    E-Print Network [OSTI]

    Yuen, Walter W.

    Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the Zonal­GEF Method Walter to analyze radiative heat transfer in high porosity insulation materials which have a large scattering. Radiative heat transfer in this class of material is nonlocalized in the optically thick limit

  5. Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped Emmanuel Rousseau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near- field heat transfer. We also

  6. Radiative heat transfer in anisotropic many-body systems: Tuning and enhancement

    SciTech Connect (OSTI)

    Nikbakht, Moladad, E-mail: mnik@znu.ac.ir [Department of Physics, Faculty of Sciences, University of Zanjan, Zanjan 45371-38791 (Iran, Islamic Republic of)

    2014-09-07

    A general formalism for calculating the radiative heat transfer in many body systems with anisotropic component is presented. Our scheme extends the theory of radiative heat transfer in isotropic many body systems to anisotropic cases. In addition, the radiative heating of the particles by the thermal bath is taken into account in our formula. It is shown that the radiative heat exchange (HE) between anisotropic particles and their radiative cooling/heating (RCH) could be enhanced several order of magnitude than that of isotropic particles. Furthermore, we demonstrate that both the HE and RCH can be tuned dramatically by particles relative orientation in many body systems.

  7. ARM - PI Product - Tropical Cloud Properties and Radiative Heating Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSAProductsMerged

  8. Heat transmission between a profiled nanowire and a thermal bath

    SciTech Connect (OSTI)

    Blanc, Christophe; Heron, Jean-Savin; Fournier, Thierry; Bourgeois, Olivier

    2014-07-28

    Thermal transport through profiled and abrupt contacts between a nanowire and a reservoir has been investigated by thermal conductance measurements. It is demonstrated that above 1?K the transmission coefficients are identical between abrupt and profiled junctions. This shows that the thermal transport is principally governed by the nanowire itself rather than by the resistance of the thermal contact. These results are perfectly compatible with the previous theoretical models. The thermal conductance measured at sub-Kelvin temperatures is discussed in relation to the universal value of the quantum of thermal conductance.

  9. AOSC 621AOSC 621 Radiative Heating/CoolingRadiative Heating/Cooling

    E-Print Network [OSTI]

    Li, Zhanqing

    ? Why drop off near sfc? 4 #12;Net flux Net flux: F = F+ - F- 1 2 F-(1) F+(1) F-(2) F+(2) Net energy at the top of the atmosphere is zero. Then we can write 1' ' )',( )'()0,()( 0 * dz dz zzdT zBzTBzF z z F F · The heating rate at z is defined as follows: )( )( d zdF zH net four termsofconsistwilland dz A

  10. Project Profile: Polyaromatic Naphthalene Derivatives as Solar Heat Transfer Fluids

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oak Ridge National Laboratory, under an ARRA CSP Award, is addressing the need for heat transfer fluids (HTFs) for solar power generation that are stable to temperatures approaching 600°C, have good thermal characteristics, and do not react with the vessels in which they are contained.

  11. Thermal self-oscillations in radiative heat exchange

    E-Print Network [OSTI]

    Dyakov, Sergey; Yan, Min; Qiu, Min

    2014-01-01

    We report the effect of relaxation-type self-induced temperature oscillations in the system of two parallel plates of SiO$_2$ and VO$_2$ which exchange heat by thermal radiation in vacuum. The nonlinear feedback in the self-oscillating system is provided by metal-insulator transition in VO$_2$. Using the method of fluctuational electrodynamics we show that under the action of external laser of a constant power, the temperature of VO$_2$ plate oscillates around its phase transition value.

  12. Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone

    E-Print Network [OSTI]

    Yakovlev, Vadim

    Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone Shawn M (electromagnetic and thermal) modeling to cover practically valuable scenarios of hybrid (heat radiation is applied to the process of hybrid heating of cylindrical samples of limestone in Ceralink's MAT TM kiln

  13. Heat transfer through a water spray curtain under the effect of a strong radiative source

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

  14. Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials

    E-Print Network [OSTI]

    Svend-Age Biehs

    2011-03-15

    We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

  15. Geometry for web microwave heating or drying to a desired profile in a waveguide

    DOE Patents [OSTI]

    Habeger, Jr., Charles C.; Patterson, Timothy F.; Ahrens, Frederick W.

    2005-11-15

    A microwave heater and/or dryer has a nonlinear or curvilinear relative slot profile geometry. In one embodiment, the microwave dryer has at least one adjustable field modifier making it possible to change the geometry of the heater or dryer when drying different webs. In another embodiment, the microwave dryer provides more uniform drying of a web when the field modifier is adjusted in response to a sensed condition of the web. Finally, a method of microwave heating and/or drying a web achieves a uniform heating and/or drying profile.

  16. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore »and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day?1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II underlying the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less

  17. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore »and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day?1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II underlying the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less

  18. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    with lamp heating than with furnace heating and (2) hydrogensilica tube and heated in a furnace or by an incandescentan incandescent lamp than within furnace. Here, sample and

  19. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    the same heat input, the maximum release rate from samplesThe same heat (a) Normalized hydrogen release rate Numericalrelease rate under otherwise identical heat input. 5. Lamp

  20. Non-Targeted Effects of Ionizing Radiation: Implications for Risk Assessment and the Radiation Dose Response Profile

    SciTech Connect (OSTI)

    Morgan, William F.; Sowa, Marianne B.

    2009-11-01

    Radiation risks at low doses remain a hotly debated topic. Recent experimental advances in our understanding of effects occurring in the progeny of irradiated cells, and/or the non-irradiated neighbors of irradiated cells, i.e., non-targeted effects associated with exposure to ionizing radiation, have influenced this debate. The goal of this document is to summarize the current status of this debate and speculate on the potential impact of non-targeted effects on radiation risk assessment and the radiation dose response profile.

  1. Near field radiative heat transfer between two nonlocal dielectrics

    E-Print Network [OSTI]

    Singer, F; Joulain, Karl

    2015-01-01

    We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...

  2. RADIATION HEAT TRANSFER IN TISSUE WELDING AND SOLDERING WITH ULTRAFAST LASERS

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    RADIATION HEAT TRANSFER IN TISSUE WELDING AND SOLDERING WITH ULTRAFAST LASERS Kyunghan Kim to incorporate transient radiation heat transfer in tissue welding and soldering with use of ultrafast lasers are performed between laser welding and laser soldering. The use of solder is found to substantially enhance

  3. Simultaneous radiation pressure induced heating and cooling of an opto-mechanical resonator

    E-Print Network [OSTI]

    Afshari, Ehsan

    Simultaneous radiation pressure induced heating and cooling of an opto- mechanical resonator://apl.aip.org/about/rights_and_permissions #12;Simultaneous radiation pressure induced heating and cooling of an opto-mechanical resonator to a combination of large mechanical oscillations and necessary saturation of amplification, the noise floor

  4. Radiative Heating and the Buoyant Rise of Magnetic Flux Tubes in the Solar Interior

    E-Print Network [OSTI]

    California at Berkeley, University of

    Radiative Heating and the Buoyant Rise of Magnetic Flux Tubes in the Solar Interior Y. Fan National the e ect of radiative heating on the evolution of thin magnetic ux tubes in the solar interior Solar Observatoryy, 950 N. Cherry Ave., Tucson, AZ 85719. G. H. Fisher Space Sciences Laboratory, Univ

  5. Heat transfer in ice hockey halls: measurements, energy analysis and analytical ice pad temperature profile

    E-Print Network [OSTI]

    Ferrantelli, Andrea

    2015-01-01

    We consider heat transfer processes in an ice hockey hall, during operating conditions, with a bottom-up approach based upon on-site measurements. Detailed temperature data of both the ice pad and the air above the ice rink are used for a heat balance calculation in the steady-state regime, which quantifies the impact of each single heat source. We solve the heat equation in the ice slab in transient regime, and obtain a general analytical formula for the temperature profile. This solution is then applied to the resurfacing process by using our measurements as (time-dependent) boundary conditions (b.c.), and compared to an analogous numerical computation with good agreement. Our analytical formula is given with implicit initial condition and b.c., therefore it can be used not only in ice halls, but in a large variety of engineering applications.

  6. Heat transfer in ice hockey halls: measurements, energy analysis and analytical ice pad temperature profile

    E-Print Network [OSTI]

    Andrea Ferrantelli; Klaus Viljanen

    2015-06-30

    We consider heat transfer processes in an ice hockey hall, during operating conditions, with a bottom-up approach based upon on-site measurements. Detailed temperature data of both the ice pad and the air above the ice rink are used for a heat balance calculation in the steady-state regime, which quantifies the impact of each single heat source. We solve the heat equation in the ice slab in transient regime, and obtain a general analytical formula for the temperature profile. This solution is then applied to the resurfacing process by using our measurements as (time-dependent) boundary conditions (b.c.), and compared to an analogous numerical computation with good agreement. Our analytical formula is given with implicit initial condition and b.c., therefore it can be used not only in ice halls, but in a large variety of engineering applications.

  7. Author's personal copy Thermal radiators with embedded pulsating heat pipes: Infra-red thermography

    E-Print Network [OSTI]

    Khandekar, Sameer

    Author's personal copy Thermal radiators with embedded pulsating heat pipes: Infra-red thermography December 2010 Accepted 9 January 2011 Available online 18 January 2011 Keywords: Pulsating heat pipes t With the aim of exploring potential applications of Pulsating Heat Pipes (PHP), for space/terrestrial sectors

  8. Polarization of Astronomical Maser Radiation. IV. Circular Polarization Profiles

    E-Print Network [OSTI]

    Moshe Elitzur

    1998-04-03

    Profile comparison of the Stokes parameters $V$ and $I$ is a powerful tool for maser data analysis, providing the first direct methods for unambiguous determination of (1) the maser saturation stage, (2) the amplification optical depth and intrinsic Doppler width of unsaturated masers, and (3) the comparative magnitudes of Zeeman splitting and Doppler linewidth. Circular polarization recently detected in OH 1720 MHz emission from the Galactic center appears to provide the first direct evidence for maser saturation.

  9. An experimental and theoretical study of radiative and conductive heat transfer in nongray semitransparent media

    E-Print Network [OSTI]

    Eryou, N. Dennis

    1969-01-01

    One dimensional temperature profiles and heat fluxes within a slab of molten glass were measured experimentally. The glass slab was contained in a platinum foil lined ceramic tray inside a high temperature furnace. An ...

  10. Modulation and amplification of radiative far field heat transfer : towards a simple radiative thermal transistor

    E-Print Network [OSTI]

    Joulain, Karl; Drevillon, Jeremie; Ben-Abdallah, Philippe

    2015-01-01

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see, that the more the material is reflective in the metallic state, the more switching effect is realized whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO2 that exhibits an insulator-metallic transition at 68{\\textdegree}C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. F...

  11. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    hydro- gen [10]. The authors suggested that “infrared radiation is contributing the activation energy

  12. Hanford waste treatment plant Immobilized High Level Waste (IHLW) canister radiation dose rate and radiolytic heat load analysis

    SciTech Connect (OSTI)

    PIERSON, R.M.

    2003-09-02

    This document provides an analysis of anticipated radiation dose rates and heat loads for immobilized high level waste (IHW) canisters

  13. STATUS OF THE BROADBAND HEATING RATE PROFILE (BBHRP) VAP Mlawer, E., Clough, S., and Delamere, J., Atmospheric and Environmental Research, Inc.

    E-Print Network [OSTI]

    STATUS OF THE BROADBAND HEATING RATE PROFILE (BBHRP) VAP Mlawer, E., Clough, S., and Delamere, J.bnl.gov ABSTRACT The Broadband Heating Rate Profile (BBHRP) VAP is a collaborative effort of all ARM Working Groups spatial/temporal scales; and b) produce a dataset of computed heating rates profiles for use by the Cloud

  14. ELSEVIER Earth and PlanetaryScienceLetters 125(1994)255-266 The potential influence of radiative heat transfer

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    1994-01-01

    of radiative heat transfer on the formation of megaplumes in the lower mantle Ctirad Matyska a, Ji~i Moser influence from radiative heat transfer on mantle upwellings and the production of extremely hot thermal and cold regions in lower mantle dynamics. We have considered the possible impact from radiative heat

  15. Analytical Monte Carlo Ray Tracing simulation of radiative heat transfer through bimodal fibrous insulations with translucent fibers

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    Analytical Monte Carlo Ray Tracing simulation of radiative heat transfer through bimodal fibrous-state radiative heat transfer through fibrous insulation materials. The simulations are conducted in 3-D disor radiation and conduc- tion to be the only modes of heat transfer in fibrous insulation materials

  16. CONVERGENCE OF A NUMERICAL SCHEME FOR A NONLINEAR COUPLED SYSTEM OF RADIATIVE---CONDUCTIVE HEAT TRANSFER EQUATIONS

    E-Print Network [OSTI]

    Henri Poincaré -Nancy-Université, Université

    . Introduction And Main Results Radiative heat transfer coupled with conduction through semi---transparent media---state combined radiative---conductive heat transfer. The media studied were assumed to be homogeneous, grey1 CONVERGENCE OF A NUMERICAL SCHEME FOR A NONLINEAR COUPLED SYSTEM OF RADIATIVE---CONDUCTIVE HEAT

  17. I: Heat equation II: Schrdinger equation III: Wave equation IV: Radiative transfer equation Quantitative uniqueness for some PDE's

    E-Print Network [OSTI]

    Phung, Kim-dang.- Le Laboratoire de Mathématiques

    I: Heat equation II: Schrödinger equation III: Wave equation IV: Radiative transfer equation;I: Heat equation II: Schrödinger equation III: Wave equation IV: Radiative transfer equation QUCP: Heat equation II: Schrödinger equation III: Wave equation IV: Radiative transfer equation QUCP

  18. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-06-23

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  19. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. ); Silverstein, C.C. )

    1992-01-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  20. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1992-06-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  1. ANALYSIS OF THE RADIATION FLUX PROFILE OF THE 100 SUN PROMOTEO FACETTED DISH CONCENTRATOR

    E-Print Network [OSTI]

    ANALYSIS OF THE RADIATION FLUX PROFILE OF THE 100 SUN PROMOTEO FACETTED DISH CONCENTRATOR J, due to the need for both a tightly toleranced mirror support structure and a precise solar tracking on a commercially available satellite dish tracking actuation system, although a more cost effective tracking system

  2. Electrically tunable near-field radiative heat transfer via ferroelectric materials

    E-Print Network [OSTI]

    Huang, Yi

    We explore ways to actively control near-field radiative heat transfer between two surfaces that relies on electrical tuning of phonon modes of ferroelectric materials. Ferroelectrics are widely used for tunable electrical ...

  3. Impact of cloud radiative heating on East Asian summer monsoon circulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore »different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less

  4. Reduce Radiation Losses from Heating Equipment; Industrial Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in which opening size cannot be reduced, you can use flexible materials such as ceramic strips, chains, or ceramic textiles as "curtains." These generally reduce heat loss...

  5. Radiative Impacts on the Growth of Drops within Simulated Marine Stratocumulus. Part I: Maximum Solar Heating

    E-Print Network [OSTI]

    Harrington, Jerry Y.

    Radiative Impacts on the Growth of Drops within Simulated Marine Stratocumulus. Part I: Maximum Solar Heating CHRISTOPHER M. HARTMAN AND JERRY Y. HARRINGTON Department of Meteorology, The Pennsylvania November 2004) ABSTRACT The effects of solar heating and infrared cooling on the vapor depositional growth

  6. Radiative heat transfer in a parallelogram shaped cavity

    E-Print Network [OSTI]

    Dez, V Le

    2015-01-01

    An exact analytical description of the internal radiative field inside an emitting-absorbing gray semi-transparent medium enclosed in a two-dimensional parallelogram cavity is proposed. The expressions of the incident radiation and the radiative flux field are angularly and spatially discretized with a double Gauss quadrature, and the temperature field is obtained by using an iterative process. Some numerical solutions are tabulated and graphically presented as the benchmark solutions. Temperature and two components of the radiative flux are finally sketched on the whole domain. It is shown that the proposed method gives perfectly smooth results.

  7. Heat flux splitter for near-field thermal radiation

    E-Print Network [OSTI]

    Ben-Abdallah, Philippe; Frechette, Luc; Biehs, Svend-Age

    2015-01-01

    We demonstrate the possibility to efficiently split the near-field heat flux exchanged between graphene nano-disks by tuning their doping. This result paves the way for the developement of an active control of propagation directions for heat fluxes exchanged in near-field throughout integrated nanostructures networks.

  8. Modulation of radiative heating by the MaddenJulian Oscillation and convectively coupled Kelvin waves

    E-Print Network [OSTI]

    Kuang, Zhiming

    of radiative heating affects the moist static energy budget and potentially the maintenance and propagation are clearly seen in the Outgoing Long- wave Radiation (OLR) data, and its temperature, moisture and wind buoyancy driven convectively coupled waves, processes that alter the column integrated moist static energy

  9. ULTRAFAST RADIATION HEAT TRANSFER IN LASER TISSUE WELDING AND SOLDERING

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    , respectively. 1. INTRODUCTION The study of short-pulsed laser radiation transport and ultrafast matter­ radiation interactions is of great scientific and technological significance and is attracting increasing­9], to name a few. Due to the very short time duration of the radia- tion­matter interaction and transport

  10. Thermal radiation of laser heated niobium clusters Nb{sub N}{sup +}, 8 ? N ? 22

    SciTech Connect (OSTI)

    Hansen, Klavs [Department of Physics, University of Gothenburg, 41296 Gothenburg (Sweden); Li, Yejun; Kaydashev, Vladimir; Janssens, Ewald [Laboratory of Solid State Physics and Magnetism, KU Leuven, B-3001 Leuven (Belgium)

    2014-07-14

    The thermal radiation from small, laser heated, positively charged niobium clusters has been measured. The emitted power was determined by the quenching effect on the metastable decay, employing two different experimental protocols. The radiative power decreases slightly with cluster size and shows no strong size-to-size variations. The magnitude is 40–50 keV/s at the timescale of several microseconds, which is the measured crossover time from evaporative to radiative cooling.

  11. Multi-frequency Radio Profiles of PSR B1133+16: radiation location and particle energy

    E-Print Network [OSTI]

    Ji-Guang, Lu; Long-Fei, Hao; Zhen, Yan; Zhi-Yong, Liu; Ke-Jia, Lee; Guo-Jun, Qiao; Lun-Hua, Shang; Min, Wang; Ren-Xin, Xu; Qi-Jun, Zhi

    2015-01-01

    The pulse profile of PSR B1133+16 is usually regarded as a conal-double structure. However, its multifrequency profiles cannot simply be fitted with two Gaussian functions, and a third component is always needed to fit the bridge region (between two peaks). This would introduce additional, redundant parameters. In this paper, through a comparison of five fitting functions (Gaussian, von Mises, hyperbolic secant, square hyperbolic secant, and Lorentz), it is found that the square hyperbolic secant function can best reproduce the profile, yielding an improved fit. Moreover, a symmetric 2D radiation beam function, instead of a simple 1D Gaussian function, is used to fit the profile. Each profile with either well-resolved or not-so-well-resolved peaks could be fitted adequately using this beam function, and the bridge emission between the two peaks does not need to be a new component. Adopting inclination and impact angles based on polarization measurements, the opening angle ({\\theta}_{\\mu}0) of the radiation be...

  12. Method for heat treating and sintering metal oxides with microwave radiation

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  13. Influence of Infrared Radiation on Attic Heat Transfer 

    E-Print Network [OSTI]

    Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

    1985-01-01

    An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat...

  14. Radiation Heat Transfer in Particle-Laden Gaseous Flame: Flame Acceleration and Triggering Detonation

    E-Print Network [OSTI]

    Liberman, M A; Kiverin, A D

    2015-01-01

    In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase due to the radiation preheating becomes larger for a flame with lower velocity. For a flame with small enough velocity temperature of the radiation preheating may exceed the crossover temperature, so that the radiation heat transfer may become a dominant mechanism of the flame propagation. In the case of non-uniform distribution of particles, the temperature gradient formed due to the radiation preheating can initiate either deflagration or detonation ahead of the original flame via the Zel'dovich's gradient mechanism. Th...

  15. Radiative Heating in Underexplored Bands Campaign, Phase II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel Ruggirello RachelRadiationRadiative

  16. 14th International Heat Pipe Conference (14th IHPC), Florianpolis, Brazil, April 22-27, 2007. EMBEDDED PULSATING HEAT PIPE RADIATORS

    E-Print Network [OSTI]

    Khandekar, Sameer

    14th International Heat Pipe Conference (14th IHPC), Florianópolis, Brazil, April 22-27, 2007. EMBEDDED PULSATING HEAT PIPE RADIATORS Sameer Khandekar and Ashish Gupta Department of Mechanical heat pipe (PHP) technology for space as well as terrestrial sectors, experimental study of embedded

  17. A Radiative Transport Model for Heating Paints using High Density Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Duty, Chad E; Dinwiddie, Ralph Barton; Nichols, Mark; Blue, Craig A; Ott, Ronald D

    2009-01-01

    The energy distribution and ensuing temperature evolution within paint-like systems under the influence of infrared radiation was studied. Thermal radiation effects as well as those due to heat conduction were considered. A complete set of material properties was derived and discussed. Infrared measurements were conducted to obtain experimental data for the temperature in the paint film. The heat flux of the incident radiation from the plasma arc lamp was measured using a heat flux sensor with a very short response time. The comparison between the computed and experimental results for temperature show that the models that are based on spectral four-flux RTE and accurate optical properties yield accurate results for the black paint systems.

  18. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect (OSTI)

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  19. Asymptotic solution for heat convection-radiation equation

    SciTech Connect (OSTI)

    Mabood, Fazle; Ismail, Ahmad Izani Md [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Khan, Waqar A. [Department of Engineering Sciences, National University of Sciences and Technology, PN Engineering College, Karachi, 75350 (Pakistan)

    2014-07-10

    In this paper, we employ a new approximate analytical method called the optimal homotopy asymptotic method (OHAM) to solve steady state heat transfer problem in slabs. The heat transfer problem is modeled using nonlinear two-point boundary value problem. Using OHAM, we obtained the approximate analytical solution for dimensionless temperature with different values of a parameter ?. Further, the OHAM results for dimensionless temperature have been presented graphically and in tabular form. Comparison has been provided with existing results from the use of homotopy perturbation method, perturbation method and numerical method. For numerical results, we used Runge-Kutta Fehlberg fourth-fifth order method. It was found that OHAM produces better approximate analytical solutions than those which are obtained by homotopy perturbation and perturbation methods, in the sense of closer agreement with results obtained from the use of Runge-Kutta Fehlberg fourth-fifth order method.

  20. A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes

    E-Print Network [OSTI]

    Birkholzer, Jens T.

    2004-01-01

    change and capillarity—the heat pipe effect, Int. J. Heatgeothermal reservoirs as heat pipes in fractured porousfor the radial-symmetric heat pipe system (without gravity)

  1. Nonlocal study of the near field radiative heat transfer between two n-doped semiconductors

    E-Print Network [OSTI]

    Singer, F; Joulain, Karl

    2015-01-01

    We study in this work the near-field radiative heat transfer between two semi-infinite parallel planes of highly n-doped semiconductors. Using a nonlocal model of the dielectric permittivity, usually used for the case of metallic planes, we show that the radiative heat transfer coefficientsaturates as the separation distance is reduced for high doping concentration. These results replace the 1/d${}^2$ infinite divergence obtained in the local model case. Different features of the obtained results are shown to relate physically to the parameters of the materials, mainly the doping concentration and the plasmon frequency.

  2. Clostridium thermocellum Transcriptomic Profiles after Exposure to Furfural or Heat Stress

    SciTech Connect (OSTI)

    Wilson, Charlotte M [ORNL; Yang, Shihui [ORNL; Rodriguez, Jr., Miguel [ORNL; Ma, Qin [University of Georgia, Athens, GA; Johnson, Courtney M [ORNL; Dice, Lezlee T [ORNL; Xu, Ying [University of Georgia, Athens, GA; Brown, Steven D [ORNL

    2013-01-01

    Background The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP)biocatalyst for cellulosic ethanol production. It is capable of both cellulose solubilization and its fermentation to produce lignocellulosic ethanol. Intolerance to stresses routinely encountered during industrial fermentations may hinder the commercial development of this organism. A previous C. thermocellum ethanol stress study showed that largest transcriptomic response was in genes and proteins related to nitrogen uptake and metabolism. Results In this study, C. thermocellum was grown to mid-exponential phase and treated with furfural or heat to a final concentration of 3 g.L-1 or 68 C respectively to investigate general and specific physiological and regulatory stress responses. Samples were taken at 10, 30, 60 and 120 min post-shock, and from untreated control fermentations, for transcriptomic analyses and fermentation product determinations and compared to a published dataset from an ethanol stress study. Urea uptake genes were induced following furfural stress, but not to the same extent as ethanol stress and transcription from these genes was largely unaffected by heat stress. The largest transcriptomic response to furfural stress was genes for sulfate transporter subunits and enzymes in the sulfate assimilatory pathway, although these genes were also affected late in the heat and ethanol stress responses. Lactate production was higher in furfural treated culture, although the lactate dehydrogenase gene was not differentially expressed under this condition. Other redox related genes such as a copy of the rex gene, a bifunctional acetaldehyde-CoA/alcohol dehydrogenase and adjacent genes did show lower expression after furfural stress compared to the control, heat and ethanol fermentation profiles. Heat stress induced expression from chaperone related genes and overlap was observed with the responses to the other stresses. This study suggests the involvement of C. thermocellum genes with functions in oxidative stress protection, electron transfer, detoxification, sulfur and nitrogen acquisition, and DNA repair mechanisms in its stress responses and the use of different regulatory networks to coordinate and control adaptation. Conclusions This study has identified C. thermocellum gene regulatory motifs and aspects of physiology and gene regulation for further study. The nexus between future systems biology studies and recently developed genetic tools for C. thermocellum offers the potential for more rapid strain development and for broader insights into this organism s physiology and regulation.

  3. O Star X-ray Line Profiles Explained by Radiation Transfer in Inhomogeneous Stellar Wind

    E-Print Network [OSTI]

    L. M. Oskinova; A. Feldmeier; W. -R. Hamann

    2005-11-01

    It is commonly adopted that X-rays from O stars are produced deep inside the stellar wind, and transported outwards through the bulk of the expanding matter which attenuates the radiation and affects the shape of emission line profiles. The ability of Chandra and XMM-Newton to resolve these lines spectroscopically provided a stringent test for the theory of X-ray production. It turned out that none of the existing models was able to reproduce the observations consistently. The major caveat of these models was the underlying assumption of a smooth stellar wind. Motivated by the various observational evidence that the stellar winds are in fact structured, we present a 2-D model of a stochastic, inhomogeneous wind. The X-ray radiative transfer is derived for such media. It is shown that profiles from a clumped wind differ drastically from those predicted by conventional homogeneous models. We review the up-to-date observations of X-ray line profiles from stellar winds and present line fits obtained from the inhomogeneous wind model. The necessity to account for inhomogeneities in calculating the X-ray transport in massive star winds, including for HMXB is highlighted.

  4. A uniformly moving and rotating polarizable particle in thermal radiation field: frictional force and torque, radiation and heating

    E-Print Network [OSTI]

    G. V. Dedkov; A. A. Kyasov

    2015-04-07

    We study the fluctuation-electromagnetic interaction and dynamics of a small polarizable particle with own rotation and relativistic velocity moving in a vacuum background of arbitrary temperature. A full set of equations describing decelerating tangential force, frictional torque (at arbitrary direction of angular velocity) and intensity of nonthermal and thermal radiation is obtained, along with equations describing the particle dynamics and kinetics of heating. An interplay between different parameters is discussed. Numerical calculations are given in the case of graphite particles.

  5. Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics - Energy InnovationOscillationSensitivity of Radiative Fluxes

  6. Renewable Energy Carriers Research Profile

    E-Print Network [OSTI]

    Giger, Christine

    Renewable Energy Carriers Research Profile The research program of the Professorship of Renewable applied to renewable energy technologies. The fundamental research focus comprises high-temperature heat (radiative fluxes >10 000 kW/m2 ; temperatures >1000°C; heating rates >1000°C/s) + Renewable Energy

  7. PARALLEL COMPUTATIONS OF RADIATIVE HEAT TRANSFER USING THE DISCRETE ORDINATES METHOD

    E-Print Network [OSTI]

    Utah, University of

    of the important radiatively active species (CO2, H2O, soot) and temperature, which are calculated on the spatially increasingly tractable. Issues relating to the use of high-performance computing in participating media heat properties. First we summarize previous applications of spatial decomposition strategies to finite

  8. AEROSOL-CLOUD INTERACTIONS CONTROL OF EARTH RADIATION AND LATENT HEAT RELEASE BUDGETS

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    AEROSOL-CLOUD INTERACTIONS CONTROL OF EARTH RADIATION AND LATENT HEAT RELEASE BUDGETS D. ROSENFELD simulations show that cloud development is strongly mod- ulated by the impact of cloud-aerosol interactions on precipitation forming processes. New insights into the mechanisms by which aerosols dominate the cloud cover

  9. Effects of self-heating and phase change on the thermal profile of hydrogen isotopes in confined geometries

    SciTech Connect (OSTI)

    Baxamusa, S. Field, J.; Dylla-Spears, R.; Kozioziemski, B.; Suratwala, T.; Sater, J.

    2014-03-28

    Growth of high-quality single-crystal hydrogen in confined geometries relies on the in situ formation of seed crystals. Generation of deuterium-tritium seed crystals in a confined geometry is governed by three effects: self-heating due to tritium decay, external thermal environment, and latent heat of phase change at the boundary between hydrogen liquid and vapor. A detailed computation of the temperature profile for liquid hydrogen inside a hollow shell, as is found in inertial confinement fusion research, shows that seeds are likely to form at the equatorial plane of the shell. Radioactive decay of tritium to helium slowly alters the composition of the hydrogen vapor, resulting in a modified temperature profile that encourages seed formation at the top of the shell. We show that the computed temperature profile is consistent with a variety of experimental observations.

  10. Using Bayesian statistics in the estimation of heat source in radiation Jingbo Wang and Nicholas Zabaras1

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    Using Bayesian statistics in the estimation of heat source in radiation Jingbo Wang and Nicholas distributed (i.i.d.) Gauss random variables. `Maximum A Posteriori' (MAP) and posterior mean estimates of the inverse radiation problem. 1 Introduction Study of thermal radiation has been stimulated by a wide range

  11. Tangential force, Frictional Torque and Heating Rate of a Small Neutral Rotating Particle Moving through the Equilibrium Background Radiation

    E-Print Network [OSTI]

    G. V. Dedkov; A. A. Kyasov

    2013-02-04

    For the first time, based on the fluctuation-electromagnetic theory, we have calculated the drug force, the radiation heat flux and the frictional torque on a small rotating particle moving at a relativistic velocity through the equilibrium background radiation (photon gas). The particle and background radiation are characterized by different temperatures corresponding to the local thermodynamic equilibrium in their own reference frames.

  12. The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and Benchmark Exercises

    E-Print Network [OSTI]

    Jordan Hristov

    2010-12-12

    The heat-balance integral method of Goodman has been thoroughly analyzed in the case of a parabolic profile with unspecified exponent depending on the boundary condition imposed. That the classical Good man's boundary conditions defining the time-dependent coefficients of the prescribed temperature profile do not work efficiently at the front of the thermal layers if the specific parabolic profile at issue is employed. Additional constraints based on physical assumption enhance the heat-balance integral method and form a robust algorithm defining the parabola exponent . The method has been compared by results provided by the Veinik's method that is by far different from the Good man's idea but also assume forma tion of thermal layer penetrating the heat body. The method has been demonstrated through detailed solutions of 4 1-D heat-conduction problems in Cartesian co-ordinates including a spherical problem (through change of vari ables) and over-specified boundary condition at the face of the thermal layer.

  13. Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; Canik, John M.; Gray, Travis K.; Zweben, Stewart J.

    2015-09-01

    The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured inmore »the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.« less

  14. On stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well

    SciTech Connect (OSTI)

    Krasheninnikov, S. I.

    2014-10-15

    A simple model developed by Paradkar et al. [Phys. Plasmas 19, 060703 (2012)] for the study of synergistic effects of electrostatic potential well and laser radiation is extended for the case where electric field of the well is accelerating electrons moving in the direction of the laser field propagation. It was found that in these cases, the rate of stochastic heating of energetic electrons remains virtually the same as in Paradkar et al. [Phys. Plasmas 19, 060703 (2012)], where electric field in electrostatic potential was slowing down electrons moving in the direction of the laser field propagation. However, the heating of electrons with relatively low energy can be sensitive to the orientation of the electrostatic potential well with respect to the direction of the laser radiation propagation.

  15. The radiative heat transfer between a rotating nanoparticle and a plane surface

    E-Print Network [OSTI]

    Vahid Ameri; Mehdi Shafei Aporvari; Fardin Kheirandish

    2015-06-03

    Based on a microscopic approach, we propose a Lagrangian for the combined system of a rotating dielectric nanoparticle above a plane surface in the presence of electromagnetic vacuum fluctuations. In the framework of canonical quantization, the electromagnetic vacuum field is quantized in the presence of dielectric fields describing the nanoparticle and a semi-infinite dielectric with planar interface. The radiative heat power absorbed by the rotating nanoparticle is obtained and the result is in agreement with previous results when the the rotational frequency of the nanoparticle is zero or much smaller than the relaxation frequency of the dielectrics. The well known near field effect is reexamined and discussed in terms of the rotational frequency. The radiative heat power absorbed by the nanoparticle for well-known peak frequencies, is plotted in terms of the rotational frequency showing an interesting effect resembling a phase transition around a critical frequency, determined by the relaxation frequency of the dielectrics.

  16. A parametric study of shock jump chemistry, electron temperature, and radiative heat transfer models in hypersonic flows 

    E-Print Network [OSTI]

    Greendyke, Robert Brian

    1988-01-01

    will examine the radiance model and various step models in order to determine their appropriateness to the flight regime of the AOTV. The final area to be investigated will be the effect of nonequilibrium corrections on the radiative heat transfer models... of T and e T will be valid as long as there is a reasonable amount vNs of nitrogen molecules in the flow. Radiative Heat Transfer Models For this study, four radiative heat transfer models were examined. One of these models is an optically thin radiance...

  17. Shape-independent limits to near-field radiative heat transfer

    E-Print Network [OSTI]

    Miller, Owen D; Rodriguez, Alejandro W

    2015-01-01

    We derive shape-independent limits to the spectral radiative heat-transfer rate between two closely spaced bodies, generalizing the concept of a black body to the case of near-field energy transfer. By conservation of energy, we show that each body of susceptibility $\\chi$ can emit and absorb radiation at enhanced rates bounded by $|\\chi|^2 / \\operatorname{Im} \\chi$, optimally mediated by near-field photon transfer proportional to $1/d^2$ across a separation distance $d$. Dipole--dipole and dipole--plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and s...

  18. Near-Field Radiative Heat Transfer between Metamaterials coated with Silicon Carbide Film

    E-Print Network [OSTI]

    Basu, Soumyadipta; Wang, Liping

    2014-01-01

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC.By careful tuning of the optical properties of metamaterial it is possible to excite electrical and magnetic resonance for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  19. Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1994-03-25

    The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

  20. Project Profile: Hybrid Organic Silicone HTF Utilizing Endothermic Chemical Reactions for Latent Heat Storage

    Broader source: Energy.gov [DOE]

    Los Alamos National Laboratory, under an ARRA CSP Award, is developing a thermally stable, working heat transfer fluid (HTF) that is integrated with chemical reactions as a methodology to store large amounts of latent heat.

  1. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  2. Divertor heat fluxes and profiles during mitigated and unmitigated Edge Localised Modes (ELMs) on the Mega Amp Spherical Tokamak (MAST)

    E-Print Network [OSTI]

    Thornton, A J; Chapman, I T; Harrison, J R

    2013-01-01

    Edge localised modes (ELMs) are a concern for future devices as they can limit the operational lifetime of the divertor. The mitigation of ELMs can be performed by the application of resonant magnetic perturbations (RMPs) which act to degrade the pressure gradient in the edge of the plasma. Investigations of the effect of RMPs on MAST have been performed in a range of plasmas using perturbations with toroidal mode numbers of n=3, 4 and 6. It has been seen that the RMPs increase the ELM frequency, which gives rise to a corresponding decrease in the ELM energy. The reduced ELM energy decreases the peak heat flux to the divertor, with a three fold reduction in the ELM energy, generating a 1.5 fold reduction in the peak heat flux. Measurements of the divertor heat flux profile show evidence of strike point splitting consistent with modelling using the vacuum code ERGOS.

  3. The Sensitivity of Latent Heat Flux to Changes in the Radiative Forcing: A Framework for Comparing Models and Observations

    E-Print Network [OSTI]

    Eltahir, Elfatih A. B.

    A climate model must include an accurate surface physics scheme in order to examine the interactions between the land and atmosphere. Given an increase in the surface radiative forcing, the sensitivity of latent heat flux ...

  4. Spectrally enhancing near-field radiative heat transfer by exciting magnetic polariton in SiC gratings

    E-Print Network [OSTI]

    Yang, Yue

    2015-01-01

    In the present work, we theoretically demonstrate, for the first time, that near field radiative transport between 1D periodic grating microstructures separated by subwavelength vacuum gaps can be significantly enhanced by exciting magnetic resonance or polariton. Fluctuational electrodynamics that incorporates scattering matrix theory with rigorous coupled wave analysis is employed to exactly calculate the near field radiative heat flux between two SiC gratings. Besides the well known coupled surface phonon polaritons (SPhP), an additional spectral radiative heat flux peak, which is due to magnetic polariton, is found within the phonon absorption band of SiC. The mechanisms, behaviors and interplays between magnetic polariton, coupled SPhP, single interface SPhP, and Wood's anomaly in the near field radiative transport are elucidated in detail. The findings will open up a new way to control near field radiative heat transfer by magnetic resonance with micro or nanostructured metamaterials.

  5. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01

    eld radiative heat transfer dominates radiation transferstudy Far field radiation Heat transfer coefficient, h r (W/nanoscale radiation to enhance radiative heat transfer. The

  6. Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    Broader source: Energy.gov [DOE]

    Halotechnics, under the Thermal Storage FOA, is conducting high-throughput, combinatorial research and development of salt formulations for use as highly efficient heat transfer fluids (HTFs).

  7. Project Profile: Thermochemical Heat Storage for CSP Based on Multivalent Metal Oxides

    Broader source: Energy.gov [DOE]

    General Atomics (GA), under the Thermal Storage FOA, is developing a high-density thermochemical heat storage system based on solid metal oxides.

  8. Eurotherm Seminar N81 Reactive Heat Transfer in Porous Media, Ecole des Mines d'Albi, France June 4-6, 2007 ET81-1 HEAT TRANSFER BY SIMULTANEOUS RADIATION-CONDUCTION

    E-Print Network [OSTI]

    Boyer, Edmond

    Eurotherm Seminar N°81 Reactive Heat Transfer in Porous Media, Ecole des Mines d'Albi, France June 4-6, 2007 ET81- 1 HEAT TRANSFER BY SIMULTANEOUS RADIATION-CONDUCTION AND CONVECTION IN A HIGH for the packed bed. The comparison between the radiative heat transfer and the exchanges by conduction and forced

  9. Radiative heat transfer between two dielectric nanogratings in the scattering approach

    E-Print Network [OSTI]

    J. Lussange; R. Guérout; F. S. S. Rosa; J. -J. Greffet; A. Lambrecht; S. Reynaud

    2012-06-01

    We present a theoretical study of radiative heat transfer between dielectric nanogratings in the scattering approach. As a comparision with these exact results, we also evaluate the domain of validity of Derjaguin's Proximity Approximation (PA). We consider a system of two corrugated silica plates with various grating geometries, separation distances, and lateral displacement of the plates with respect to one another. Numerical computations show that while the PA is a good approximation for aligned gratings, it cannot be used when the gratings are laterally displaced. We illustrate this by a thermal modulator device for nanosystems based on such a displacement.

  10. Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials

    E-Print Network [OSTI]

    Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries

  11. Generalized assessment of heat-storage accumulators based on energy profiles

    SciTech Connect (OSTI)

    Hemzal, K. [Czech Technical Univ., Prague (Czech Republic). Mechanical Engineering Dept.; Wurm, J. [Institute of Gas Technology, Chicago, IL (United States)

    1994-09-01

    The analytical and experimental work described in this paper has to do with the development of a new and practical method for designing and rating heat-storage systems operating on a heat-capacity duty cycle of several days. It was carried out as part of a broader project evaluating equipment for exploiting solar energy and heat produced by animals on animal farms. Water-type heat accumulators were found to be an essential component of these systems; however, no generalized or specialized criteria were available for their effective design. Therefore, design optimization was carried out analytically, and the resulting approach was experimentally verified. This process led to the development of generalized criteria for rating the efficiency of stored heat utilization and to the development of reservoir design guidelines that, for practical design purposes, eliminated the need for knowing storage temperature histograms. The analysis is based on defining the storage quality as the degree of perfection ({zeta}{sub e}) in terms of the initial and final exergy (available energy) ratios of the stored heat during the storage period. This function was determined analytically, experimentally verified for four design cases (with and without insulation), and related to the normalized design parameters, rate of temperature degradation, and fluid properties by time-dependent Fourier similarity number Fo. The resulting relationship of the form -- {zeta}{sub e} = k log Fo + q was correlated with the measurements. For a specified storage, the ``degree of perfection`` ({zeta}{sub e}) can then be optimized and the desirable dimensions of a reservoir selected by calculating the characteristic (or normalized) dimension from the Fourier number (Fo).

  12. Heating Profiles Derived From Cm-wavelength Radar During TWP-ICE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for AccidentalHealth,HeatState EnergyMapsHeating

  13. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    SciTech Connect (OSTI)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  14. Comparison of collisional radiative models for edge electron density reconstruction from Li I (2s-2p) emission profiles

    SciTech Connect (OSTI)

    Stoschus, H.; Hudson, B.; Munoz Burgos, J. M. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831-0117 (United States); Thomas, D. M. [General Atomics, San Diego, California 92186-5608 (United States); Schweinzer, J. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, 85748 Garching (Germany)

    2012-10-15

    Four collisional radiative models (CRMs) for reconstruction of the edge electron density profile from the measured Li I (2s-2p) emission profile of an accelerated lithium beam are compared using experimental data from DIII-D. It is shown for both L- and H-mode plasmas that edge density profiles reconstructed with the CRMs DDD2, ABSOLUT, [Sasaki et al. Rev. Sci. Instrum. 64, 1699 (1993)] and a new model developed at DIII-D agree in a density scan from n{sub e}{sup ped}= (2.0-6.5) Multiplication-Sign 10{sup 19} m{sup -3} within 20%, 20%, <5%, and 40%, respectively, of the pedestal density measured with Thomson scattering. Profile shape and absolute density vary in a scan of the effective ion charge Z{sub eff}= 1-6 up to a factor of two but agree with Thomson data for Z{sub eff}= 1-2 within the error bars.

  15. Large area directly heated lanthanum hexaboride cathode structure having predetermined emission profile

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Gordon, K.C.; Kippenhan, D.O.; Purgalis, P.; Moussa, D.; Williams, M.D.; Wilde, S.B.; West, M.W.

    1987-10-16

    A large area directly heated lanthanum hexaboride (LaB/sub 6/) cathode system is disclosed. The system comprises a LaB/sub 6/ cathode element generally circular in shape about a central axis. The cathode element has a head with an upper substantially planar emission surface, and a lower downwardly and an intermediate body portion which diminishes in cross-section from the head towards the base of the cathode element. A central rod is connected to the base of the cathode element and extends along the central axis. Plural upstanding spring fingers are urged against an outer peripheral contact surface of the head end to provide a mechanical and electrical connection to the cathode element. 7 figs

  16. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    SciTech Connect (OSTI)

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  17. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    SciTech Connect (OSTI)

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides with 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.

  18. Magnetic-field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters

    E-Print Network [OSTI]

    Moncada-Villa, Edwin; Garcia-Vidal, Francisco J; Garcia-Martin, Antonio; Cuevas, Juan Carlos

    2015-01-01

    We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semicond...

  19. A new scheme of radiation transfer in H II regions including transient heating of grains

    E-Print Network [OSTI]

    S. K. Ghosh; R. P. Verma

    2000-09-21

    A new scheme of radiation transfer for understanding infrared spectra of H II regions, has been developed. This scheme considers non-equilibrium processes (e. g. transient heating of the very small grains, VSG; and the polycyclic aromatic hydrocarbon, PAH) also, in addition to the equilibrium thermal emission from normal dust grains (BG). The spherically symmetric interstellar dust cloud is segmented into a large number of "onion skin" shells in order to implement the non-equilibrium processes. The scheme attempts to fit the observed SED originating from the dust component, by exploring the following parameters : (i) geometrical details of the dust cloud, (ii) PAH size and abundance, (iii) composition of normal grains (BG), (iv) radial distribution of all dust (BG, VSG & PAH). The scheme has been applied to a set of five compact H II regions (IRAS 18116- 1646, 18162-2048, 19442+2427, 22308+5812 & 18434-0242) whose spectra are available with adequate spectral resolution. The best fit models and inferences about the parameters for these sources are presented.

  20. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    SciTech Connect (OSTI)

    Minami, R., E-mail: minami@prc.tsukuba.ac.jp; Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2014-11-15

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  1. Transitional regimes of natural convection in a differentially heated cubical cavity under the effects of wall and molecular gas radiation

    SciTech Connect (OSTI)

    Soucasse, L.; Rivière, Ph.; Soufiani, A., E-mail: anouar.soufiani@ecp.fr [CNRS, UPR 288, Laboratoire EM2C, 92290 Châtenay-Malabry (France); École Centrale Paris, 92290 Châtenay-Malabry (France)] [France; Xin, S. [CNRS/INSA-Lyon, UMR 5008, CETHIL, 69621 Villeurbanne (France)] [CNRS/INSA-Lyon, UMR 5008, CETHIL, 69621 Villeurbanne (France); Le Quéré, P. [CNRS, UPR 3251, LIMSI, 91403 Orsay Cedex (France)] [CNRS, UPR 3251, LIMSI, 91403 Orsay Cedex (France)

    2014-02-15

    The transition to unsteadiness and the dynamics of weakly turbulent natural convection, coupled to wall or gas radiation in a differentially heated cubical cavity with adiabatic lateral walls, are studied numerically. The working fluid is air with small contents of water vapor and carbon dioxide whose infrared spectral radiative properties are modelled by the absorption distribution function model. A pseudo spectral Chebyshev collocation method is used to solve the flow field equations and is coupled to a direct ray tracing method for radiation transport. Flow structures are identified by means of either the proper orthogonal decomposition or the dynamic mode decomposition methods. We first retrieve the classical mechanism of transition to unsteadiness without radiation, characterized by counter-rotating streamwise-oriented vortices generated at the exit of the vertical boundary layers. Wall radiation through a transparent medium leads to a homogenization of lateral wall temperatures and the resulting transition mechanism is similar to that obtained with perfectly conducting lateral walls. The transition is due to an unstable stratification upstream the vertical boundary layers and is characterized by periodically oscillating transverse rolls of axis perpendicular to the main flow. When molecular gas radiation is accounted for, no periodic solution is found and the transition to unsteadiness displays complex structures with chimneys-like rolls whose axes are again parallel to the main flow. The origin of this instability is probably due to centrifugal forces, as suggested previously for the case without radiation. Above the transition to unsteadiness, at Ra = 3 × 10{sup 8}, it is shown that both wall and gas radiation significantly intensify turbulent fluctuations, decrease the thermal stratification in the core of the cavity, and increase the global circulation.

  2. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  3. Filamentation of femtosecond laser radiation with a non-Gaussian transverse spatial profile

    SciTech Connect (OSTI)

    Biryukov, A A; Panov, N A; Volkov, M V; Uryupina, D S; Volkov, Roman V; Kosareva, O G; Savel'ev-Trofimov, Andrei B

    2011-11-30

    The filamentation of a femtosecond laser pulse with a non-Gaussian transverse intensity profile has been studied experimentally and by numerical simulation. The results demonstrate that the distance to the filamentation region can be evaluated using the Marburger formula in which the critical power of self-focusing at a beam quality factor M{sup 2} exceeds that for a Gaussian beam by a factor of (M{sup 2}){sup 2}. The characteristics of the filament resulting from self-focusing depend little on the beam quality factor: both the filament energy and diameter coincide. If the beam is passed through an aperture, a filament forms on a diffraction ring, and its parameters coincide with those of a filament formed with no slit (provided the initial pulse parameters coincide).

  4. ANALYSIS OF THE RADIATION FLUX PROFILE ALONG A PV TROUGH CONCENTRATOR J.S. Coventry, A. Blakers, E. Franklin and G. Burgess

    E-Print Network [OSTI]

    , the main cost driver in a flat plate system. PV systems, whether flat plate or concentrating, normally haveANALYSIS OF THE RADIATION FLUX PROFILE ALONG A PV TROUGH CONCENTRATOR J.S. Coventry, A. Blakers, E, ACT, 0200 Australia, email: Joe.Coventry@anu.edu.au ABSTRACT: The primary advantage of a PV

  5. Benchmarking the Calculation of Stochastic Heating and Emissivity of Dust Grains in the Context of Radiative Transfer Simulations

    E-Print Network [OSTI]

    Camps, Peter; Bianchi, Simone; Lunttila, Tuomas; Pinte, Christophe; Natale, Giovanni; Juvela, Mika; Fischera, Joerg; Fitzgerald, Michael P; Gordon, Karl; Baes, Maarten; Steinacker, Juergen

    2015-01-01

    We define an appropriate problem for benchmarking dust emissivity calculations in the context of radiative transfer (RT) simulations, specifically including the emission from stochastically heated dust grains. Our aim is to provide a self-contained guide for implementors of such functionality, and to offer insights in the effects of the various approximations and heuristics implemented by the participating codes to accelerate the calculations. The benchmark problem definition includes the optical and calorimetric material properties, and the grain size distributions, for a typical astronomical dust mixture with silicate, graphite and PAH components; a series of analytically defined radiation fields to which the dust population is to be exposed; and instructions for the desired output. We process this problem using six RT codes participating in this benchmark effort, and compare the results to a reference solution computed with the publicly available dust emission code DustEM. The participating codes implement...

  6. Solar Radiative Heating in First Year Sea Ice M.J. McGuinness 1 , K.A. Landman 2 , H.J. Trodahl 3 , A.E. Pantoja 3

    E-Print Network [OSTI]

    Solar Radiative Heating in First Year Sea Ice M.J. McGuinness 1 , K.A. Landman 2 , H.J. Trodahl 3 ice show daily oscillations consistent with heating by solar radiation. We present and solve a heat for solar power absorption based on Monte Carlo scatter­ ing simulations of penetrating photons. We observe

  7. Analysis of a flexible polymeric film with imbedded micro heat pipes for spacecraft radiators 

    E-Print Network [OSTI]

    McDaniels, Deborah Marie

    2001-01-01

    times higher. Greater flexibility and lower mass make it more amenable to structural integration than the graphite material. Recently developed space-stable polymers offer resistance to harsh temperature and radiation environments, helping to clear...

  8. Laboratory optical spectroscopy of the thiophenoxy radical and its profile simulation as a diffuse interstellar band based on rotational distribution by radiation and collisions

    SciTech Connect (OSTI)

    Araki, Mitsunori; Niwayama, Kei; Tsukiyama, Koichi

    2014-11-01

    The gas-phase optical absorption spectrum of the thiophenoxy radical (C{sub 6}H{sub 5}S), a diffuse interstellar band (DIB) candidate molecule, was observed in the discharge of thiophenol using a cavity ringdown spectrometer. The ground-state rotational constants of the thiophenoxy radical were theoretically calculated, and the excited-state rotational constants were determined from the observed rotational profile. The rotational profile of a near prolate molecule having C {sub 2v} symmetry was simulated on the basis of a rotational distribution model by radiation and collisions. Although the simulated profile did not agree with the observed DIBs, the upper limit of the column density for the thiophenoxy radical in the diffuse clouds toward HD 204827 was evaluated to be 2 × 10{sup 13} cm{sup –2}. The profile simulation indicates that rotational distribution by radiation and collisions is important to reproduce a rotational profile for a DIB candidate and that the near prolate C {sub 2v} molecule is a possible candidate for DIB with a band width variation dependent on the line of sight.

  9. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    E-Print Network [OSTI]

    Levinson, Ronnen

    2010-01-01

    the coe?cients of heat transfer by convection, radiation andconduction heat transfer coe?cient radiation heat transfer

  10. Order Reduction of the Radiative Heat Transfer Model for the Simulation of Plasma Arcs

    E-Print Network [OSTI]

    Fagiano, Lorenzo

    2015-01-01

    An approach to derive low-complexity models describing thermal radiation for the sake of simulating the behavior of electric arcs in switchgear systems is presented. The idea is to approximate the (high dimensional) full-order equations, modeling the propagation of the radiated intensity in space, with a model of much lower dimension, whose parameters are identified by means of nonlinear system identification techniques. The low-order model preserves the main structural aspects of the full-order one, and its parameters can be straightforwardly used in arc simulation tools based on computational fluid dynamics. In particular, the model parameters can be used together with the common approaches to resolve radiation in magnetohydrodynamic simulations, including the discrete-ordinate method, the P-N methods and photohydrodynamics. The proposed order reduction approach is able to systematically compute the partitioning of the electromagnetic spectrum in frequency bands, and the related absorption coefficients, tha...

  11. Minimum entropy production closure of the photo-hydrodynamic equations for radiative heat transfer

    E-Print Network [OSTI]

    Thomas Christen; Frank Kassubek

    2008-12-17

    In the framework of a two-moment photo-hydrodynamic modelling of radiation transport, we introduce a concept for the determination of effective radiation transport coefficients based on the minimization of the local entropy production rate of radiation and matter. The method provides the nonequilibrium photon distribution from which the effective absorption coefficients and the variable Eddington factor (VEF) can be calculated. The photon distribution depends on the frequency dependence of the absorption coefficient, in contrast to the distribution obtained by methods based on entropy maximization. The calculated mean absorption coefficients are not only correct in the limit of optically thick and thin media, but even provide a reasonable interpolation in the cross-over regime between these limits, notably without introducing any fit parameter. The method is illustrated and discussed for grey matter and for a simple example of non-grey matter with a two-band absorption spectrum. The method is also briefly compared with the maximum entropy concept.

  12. Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 or PARP

    SciTech Connect (OSTI)

    Stenerlöw, Bo; Karlsson, Karin H.; Radulescu, Irina; Rydberg, Bjorn; Stenerlow, Bo

    2008-04-29

    Ionizing radiation induces a variety of different DNA lesions: in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have previously shown that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites (HLS) within clustered lesions, thus reflecting an artifact of preparation of genomic DNA at elevated temperature. To further characterize the influence of HLS on DSB induction and repair, four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for bi-phasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements the fraction of fast rejoining decreased to less than 50% of the total. However, neither the half-times of the fast (t{sub 1/2} = 7-8 min) or slow (t{sub 1/2} = 2.5 h) DSB rejoining were changed significantly. At t=0 the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSB/cell/Gy in the initial DSB yield. These heat-released DSBs were repaired within 60-90 min in all tested cells, including M059K cells treated with wortmannin or DNA-PKcs defect M059J cells. Furthermore, cells lacking XRCC1 or Poly(ADP-ribose) polymerase-1 (PARP-1) rejoined both total DSBs and heat-released DSBs similar to normal cells. In summary, the presence of heat-labile sites have a substantial impact on DSB induction yields and DSB rejoining rates measured by pulsed-field gel electrophoresis, and HLS repair is independent of DNA-PKcs, XRCC1 and PARP.

  13. Downflow dryout in a heated ribbed vertical annulus with a cosine power profile (Results from test series ECS-2, WSR, and ECS-2cE)

    SciTech Connect (OSTI)

    Larson, T.K.; Anderson, J.L.; Condie, K.G.

    1990-12-01

    Experiments designed to investigate surface dryout in a heated, ribbed annulus test section simulating one of the annular coolant channels of a Savannah River Plant production reactor Mark 22 fuel assembly have been conducted at the Idaho National Engineering Laboratory. The inner surface of the annulus was constructed of aluminum and was electrically heated to provide an axial cosine power profile and a flat azimuthal power shape. Data presented in this report are from the ECS-2, WSR, and ECS-2cE series of tests. These experiments were conducted to examine the onset of wall thermal excursion for a range of flow, inlet fluid temperature, and annulus outlet pressure. Hydraulic boundary conditions on the test section represent flowrates (0.1--1.4 1/s), inlet fluid temperatures (293--345 K), and outlet pressures (-18--139.7 cm of water relative to the bottom of the heated length (61--200 cm of water relative to the bottom of the lower plenum)) expected to occur during the Emergency Coolant System (ECS) phase of postulated Loss-of-Coolant Accident in a production reactor. The onset of thermal excursion based on the present data is consistent with data gathered in test rigs with flat axial power profiles. The data indicate that wall dryout is primarily a function of liquid superficial velocity. Air entrainment rate was observed to be a strong function of the boundary conditions (primarily flowrate and liquid temperature), but had a minor effect on the power at the onset of thermal excursion for the range of conditions examined. 14 refs., 33 figs., 13 tabs.

  14. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    influence on the heat transfer as the radiation. Since thethe heat transfer analysis, the difference of net radiationheat transfer involved i n this project were conduction, convection and radiation.

  15. Measurements of net radiation, ground heat flux and surface temperature in an urban canyon

    SciTech Connect (OSTI)

    Gouveia, F J; Leach, M J; Shinn, J H

    2003-11-06

    The Joint Urban 2003 (JU2003) field study was conducted in Oklahoma City in July 2003 to collect data to increase our knowledge of dispersion in urban areas. Air motions in and around urban areas are very complicated due to the influence of urban structures on both mechanical and thermal forcing. During JU2003, meteorological instruments were deployed at various locations throughout the urban area to characterize the processes that influence dispersion. Some of the instruments were deployed to characterize urban phenomena, such as boundary layer development. In addition, particular sites were chosen for more concentrated measurements to investigate physical processes in more detail. One such site was an urban street canyon on Park Avenue between Broadway and Robinson Avenues in downtown Oklahoma City. The urban canyon study was designed to examine the processes that control dispersion within, into and out of the urban canyon. Several towers were deployed in the Park Avenue block, with multiple levels on each tower for observing the wind using sonic anemometers. Infrared thermometers, net radiometers and ground heat flux plates were deployed on two of the towers midway in the canyon to study the thermodynamic effects and to estimate the surface energy balance. We present results from the surface energy balance observations.

  16. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    Menguc, Thermal radiation heat transfer, CRC Press, 2011.convection and radiation heat transfer are compared to theused for this study. Radiation Heat Transfer In the ASHRAE

  17. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    Gustavsen, Arild

    2009-01-01

    of convection and radiation heat transfer and developconvection and radiation heat transfer in three dimensionsaccount for 3- D radiation heat transfer on indoor surfaces.

  18. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOE Patents [OSTI]

    Kee, Robert J. (864 Lucille St., Livermore, CA 94550); Ting, Aili (7329 Stonedale Dr., Pleasanton, CA 94558)

    1996-01-01

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  19. Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in dust cloud flames: Origins of dust explosion

    E-Print Network [OSTI]

    Ivanov, Michael A Liberman M F

    2015-01-01

    We examines regimes of the hydrogen flames propagation and ignition of mixtures heated by the radiation emitted from the flame. The gaseous phase is assumed to be transparent for radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. Depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the unreacted mixture can be either the increase of the flame velocity for uniformly dispersed particles or ignition deflagration or detonation ahead of the flame via the Zel'dovich gradient mechanism in the...

  20. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  1. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  2. Radiative cooling of laser ablated vapor plumes: experimental and theoretical analyses

    E-Print Network [OSTI]

    Wen, Sy-Bor; Mao, Xianglei; Grief, Ralph; Russo, Richard E.

    2006-01-01

    J. , Thermal radiation heat transfer, 4 th ed, (Taylor &in the calculation of the radiation heat transfer, only thelines, the thermal radiation heat transfer is given by [16

  3. Libration points in the R3BP under combined effects of oblateness, radiation and power-law profile

    E-Print Network [OSTI]

    Falaye, B J; Oyewumi, K J; Joshua, E S; Omojola, J; Abimbola, O J; Falaiye, O A; Ikhdair, S M; Kalu, O

    2015-01-01

    We study the effect of oblateness up to $J_4$ of the primaries and power-law density profile (PDP) on the linear stability of libration location of an infinitesimal mass within the framework of restricted three body problem (R3BP), by using a more realistic model in which a disc with PDP is rotating around the common center of the system mass with perturbed mean motion. The existence and stability of triangular equilibrium points have been explored. It has been shown that triangular equilibrium points are stable for $0Earth-Moon and Jupiter-Moons systems. In the limi...

  4. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    E-Print Network [OSTI]

    Huang, Yi

    The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength ...

  5. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  6. Impact of subgrid-scale radiative heating variability on the stratocumulus-to-trade cumulus transition in climate models

    SciTech Connect (OSTI)

    Xiao, Heng; Gustafson, William I.; Wang, Hailong

    2014-04-29

    Subgrid-scale interactions between turbulence and radiation are potentially important for accurately reproducing marine low clouds in climate models. To better understand the impact of these interactions, the Weather Research and Forecasting (WRF) model is configured for large eddy simulation (LES) to study the stratocumulus-to-trade cumulus (Sc-to-Cu) transition. Using the GEWEX Atmospheric System Studies (GASS) composite Lagrangian transition case and the Atlantic Trade Wind Experiment (ATEX) case, it is shown that the lack of subgrid-scale turbulence-radiation interaction, as is the case in current generation climate models, accelerates the Sc-to-Cu transition. Our analysis suggests that in cloud-topped boundary layers subgrid-scale turbulence-radiation interactions contribute to stronger production of temperature variance, which in turn leads to stronger buoyancy production of turbulent kinetic energy and helps to maintain the Sc cover.

  7. Comparison of ICRF and NBI heated plasmas performances in the JET ITER-like wall

    SciTech Connect (OSTI)

    Mayoral, M.-L. [EFDA Close Support Unit, Garching, Germany and Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Pütterich, T.; Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Jacquet, P. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Lerche, E.; Van-Eester, D.; Bourdelle, C.; Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Mlynar, J. [Association Euratom-IPP.CR, Institute of Plasma Physics AS CR, 18200 Prague (Czech Republic); Neu, R. [EFDA Close Support Unit, Garching, Germany and Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Collaboration: JET-EFDA Contributors

    2014-02-12

    During the initial operation of the JET ITER-like wall, particular attention was given to the characterization of the Ion Cyclotron Resonance Frequency (ICRF) heating in this new metallic environment. In this contribution we compare L-modes plasmas heated by ICRF or by Neutral Beam Injection (NBI). ICRF heating as expected led to a much higher centrally peaked power deposition on the electrons and due to the central fast ion population to stronger sawtooth activity. Surprisingly, although a higher bulk radiation was observed during the ICRF phase, the thermal plasma energy was found similar for both cases, showing that a higher radiation inside the separatrix was not incompatible with an efficient central heating scheme. The higher radiation was attributed to the presence Tungsten (W). Tomographic inversion of SXR emissions allowed a precise observation of the sawtooth effect on the radiation pattern. W concentration profiles deconvolved from SXR emission showed the flattening of the profiles due to sawtooth for both heating and the peaking of the profiles in the NBI case only hinting for extra transport effect in the ICRF case.

  8. PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES

    E-Print Network [OSTI]

    of heating power, with ion cyclotron resonant heating producing a more peaked profile than neutral beam injection. Given the heating type dependence, the L­mode temperature shape is nearly independent , increases. The line average L­mode temperature scales as B :96 t (Power per particle) :385 . The L

  9. Effects of radiation transfer on the structure of self-gravitating disks, their fragmentation and evolution of the fragments

    E-Print Network [OSTI]

    Tsukamoto, Yusuke; Machida, Masahiro N; Inutsuka, Shu-ichiro

    2014-01-01

    We investigate the structure of self-gravitating disks, their fragmentation and the evolution of the resulting fragments (the clumps). We show that the assumption of a globally constant viscous parameter $\\alpha$ can only describe a globally isothermal disk. On the other hand, under the assumption that local viscous heating balances local radiation cooling, a quasi-steady self gravitating disk has very steep radial profiles. Then, we explore the structure of the self-gravitating disk using three-dimensional radiation hydrodynamics simulations. The simulations show that non-local radiation transfer determines the disk temperature and local balance between radiation cooling and viscous heating does not hold. Because the radiation process is not local and radiation from the interstellar medium cannot be ignored, efficient radiation cooling would not be realized in a massive disk around a low mass star. Thus, we conclude the fragmentation criterion based on the assumption of local radiation cooling cannot be appl...

  10. THE IMPORTANCE OF PHYSICAL MODELS FOR DERIVING DUST MASSES AND GRAIN SIZE DISTRIBUTIONS IN SUPERNOVA EJECTA. I. RADIATIVELY HEATED DUST IN THE CRAB NEBULA

    SciTech Connect (OSTI)

    Temim, Tea; Dwek, Eli, E-mail: tea.temim@nasa.gov [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-09-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 M{sub Sun }, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 {mu}m. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in external galaxies.

  11. PERFORMANCE EFFECTS OF AIR VELOCITY PROFILES IN

    E-Print Network [OSTI]

    PERFORMANCE EFFECTS OF AIR VELOCITY PROFILES IN A RESIDENTIAL HEAT PUMP By NATHAN ANDREW WEBER PROFILES IN A RESIDENTIAL HEAT PUMP Thesis Approved: _______________________________________ Thesis Advisor the air speed transducer mount and the Plexiglas model of the heat pump. Ipseng Iu and myself worked side

  12. Thermal evolution of a radiating anisotropic star with shear

    E-Print Network [OSTI]

    N F Naidu; M Govender; K S Govinder

    2005-12-02

    We study the effects of pressure anisotropy and heat dissipation in a spherically symmetric radiating star undergoing gravitational collapse. An exact solution of the Einstein field equations is presented in which the model has a Friedmann-like limit when the heat flux vanishes. The behaviour of the temperature profile of the evolving star is investigated within the framework of causal thermodynamics. In particular, we show that there are significant differences between the relaxation time for the heat flux and the relaxation time for the shear stress.

  13. Efficiency Factors and Radiation Characteristics of Spherical Scatterers in Absorbing Media

    E-Print Network [OSTI]

    Yin, Juan; Pilon, Laurent

    2006-01-01

    Howell, Thermal radiation heat transfer - Third Edition,properties, and heat, mass, and radiation transfer”, Journalradiation characteristics of fused quartz containing bubbles”, Journal of Thermophysics and Heat Transfer, (

  14. Modified Method of Characteristics for Transient Radiative Transfer

    E-Print Network [OSTI]

    Katika, Kamal M.; Pilon, Laurent

    2006-01-01

    dimensional transient radiation heat transfer modeling usingradiation transport and laser applications”, Advances in Heat Transfer,Radiation element method for transient hyperbolic radiative transfer in plane parallel inhomogenous media”, Numerical Heat

  15. Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    , USA HT2009-88261 SIMULATION OF FOCUSED RADIATION PROPAGATION AND TRANSIENT HEAT TRANSFER IN TURBID-dependent radiation and conduction bio-heat transfer model. Ultrashort pulsed radiation transport in the cylindrical dissipation and the heat-affected zone. Two characteristics in ultrafast radiation heat transfer are worth

  16. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  17. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  18. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  19. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) inmore »high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.« less

  20. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

  1. People Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Profiles Featured Profile Peter Thelin The art of optics Read More Lisa Burrows Lisa Burrows Jeremy Huckins Jeremy Huckins Ibo Matthews Ibo Matthews Susanna Reyes Susana...

  2. Heat transfer pathways in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Bauman, F.; Jin, H.; Webster, T.

    2006-01-01

    radiative heat transfer, since radiation was neglectedradiation striking the floor makes up the majority of the total heat transferheat transfer processes: conduction through the slab and floor panels and into the supply plenum via convection; radiation

  3. Low profile thermite igniter

    DOE Patents [OSTI]

    Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1991-03-05

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  4. TURBULENT HEAT TRANSPORT IN TWO-AND THREE-DIMENSIONAL TEMPERATURE FIELDS

    E-Print Network [OSTI]

    Samaraweera, D.S.A.

    2011-01-01

    convective heat and mass transport in pipes, which arisesof three-dimensional heat transfer in pipes by QUARMBY andFully developed pipe flow: Streamwise heat flux profiles

  5. Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in EUV applications.

    SciTech Connect (OSTI)

    Sizyuk, V.; Hassanein, A.; Morozov, V.; Sizyuk, T.; Mathematics and Computer Science

    2007-01-16

    The HEIGHTS integrated model has been developed as an instrument for simulation and optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) lithography. The model combines three general parts: hydrodynamics, radiation transport, and heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit schemes with sparse matrix technology. All model parts consider physical processes in three-dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was estimated, and it was found that this effect could be neglected for laser intensities relevant to EUV (up to {approx}10{sup 12} W/cm{sup 2}). All applied schemes were tested on analytical problems separately. Benchmark modeling of the full EUV source problem with a planar tin target showed good correspondence with experimental and theoretical data. Preliminary results are presented for tin droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV properties of source is discussed.

  6. EXPERIMENTAL TEST FACILITY FOR SELECTIVE RADIATIVE COOLING SURFACES

    E-Print Network [OSTI]

    Sakkal, Fateh

    2011-01-01

    heating purposes in solar collectors. For such applicationsthe inverse of the solar collector case. Visible radiation

  7. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  8. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  9. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01

    the structure and radiation heat transfer in a pure methanolHowell, Thermal Radiation Heat Transfer, McGraw-Hill Bookof in- creased radiation heat transfer from the flame zone

  10. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    Gustavsen, Arild

    2009-01-01

    free convection. In: Heat Transfer and Turbulent Buoyantof convection heat transfer and develop correlations.and radiation heat transfer and develop correlations for

  11. Radiatively Important Parameters Best Estimate (RIPBE): An ARM Value-Added Product

    SciTech Connect (OSTI)

    McFarlane, S; Shippert, T; Mather, J

    2011-06-30

    The Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to create a complete set of clearly identified set of parameters on a uniform vertical and temporal grid to use as input to a radiative transfer model. One of the main drivers for RIPBE was as input to the Broadband Heating Rate Profile (BBHRP) VAP, but we also envision using RIPBE files for user-run radiative transfer codes, as part of cloud/aerosol retrieval testbeds, and as input to averaged datastreams for model evaluation.

  12. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Homepolarization ARM Data Discovery Browse Data

  13. Fragmentation and Evolution of Molecular Clouds. II: The Effect of Dust Heating

    E-Print Network [OSTI]

    Urban, Andrea; Evans, Neal J

    2009-01-01

    We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations, two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 Msun and 671 Msun, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations which include dust heating are drastically different. In the isothermal simulation, we do not form any objects with masses above 1 Msun. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects (~20 Msun) which have a distribution similar to the Salpeter IMF. The envelope density profiles around the stars formed in our simulation match observed values around isolated, l...

  14. Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Horizontal Window Frames with Internal Cavities

    E-Print Network [OSTI]

    Gustavsen, Arlid

    2008-01-01

    be used to calculate radiation heat transfer. The convectionat about 5×10 -10 ). Radiation heat transfer was included inof rays in the radiation heat-transfer algorithm of the CFD

  15. Midwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. 

  16. Northwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  17. Pacific Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  18. Northeast Region Combined Heat and Power Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  19. 5. Heat transfer Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: BÖ88 Åbo Akademi University1/120 5. Heat transfer Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering / Värme | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer Åbo Akademi

  20. Near-field heat transfer between a nanoparticle and a rough surface

    E-Print Network [OSTI]

    Svend-Age Biehs; Jean-Jacques Greffet

    2011-03-11

    In this work we focus on the surface roughness correction to the near-field radiative heat transfer between a nanoparticle and a material with a rough surface utilizing a direct perturbation theory up to second order in the surface profile. We discuss the different distance regimes for the local density of states above the rough material and the heat flux analytically and numerically. We show that the heat transfer rate is larger than that corresponding to a flat surface at short distances. At larger distances it can become smaller due to surface polariton scattering by the rough surface. For distances much smaller than the correlation length of the surface profile, we show that the results converge to a proximity approximation, whereas in the opposite limit the rough surface can be replaced by an equivalent surface layer.

  1. Modeling the comfort effects of short-wave solar radiation indoors

    E-Print Network [OSTI]

    Arens, Edward; Hoyt, Tyler; Zhou, Xin; Huang, Li; Zhang, Hui; Schiavon, Stefano

    2015-01-01

    7]); h r is the radiation heat transfer coefficient (W/m 2Unit °C W/m 2 h r Radiation heat transfer coefficient W/m

  2. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  3. Heat transfers in a double-skin roof ventilated by natural convection in summer time

    E-Print Network [OSTI]

    Biwole, Pascal; Pompeo, C

    2013-01-01

    The double-skin roofs investigated in this paper are formed by adding a metallic screen on an existing sheet metal roof. The system enhances passive cooling of dwellings and can help diminishing power costs for air conditioning in summer or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers are investigated. Depending on its surface properties, the screen reflects a large amount of oncoming solar radiation. Natural convection in the channel underneath drives off the residual heat. The bi-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters for the system's efficiency. They are, by order of importance, the sheet metal surface emissivity, the screen internal and external surface emissivity, the insulation thickness and the inclination angle for a channel width over 6 cm. The influence of those parameters on Rayleigh and Nusselt numbers is also investigated. Temperature and air velocity profiles on seve...

  4. ME 544 Advanced Heat Transfer Spring 2013 Time: 2pm-3pm MWF

    E-Print Network [OSTI]

    Connors, Daniel A.

    and engineering applications of heat transfer including conduction, convection, and radiation. Course Learning, convection, and radiation heat transfer modes. 2. Determine the dominant modes of heat transfer, and apply fields. The last part of the course is concerned with radiation heat transfer, specifically radiation

  5. Impact of the Position of a Radiator to Energy Consumption and Thermal Comfort in a Mixed Radiant and Convective Heating System 

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2005-01-01

    Heating energy consumption in winter is an important component of the whole building energy consumption in the severe cold zone in north China. This paper presents a heating water system of a hotel building in Harbin, finishes the testing of its...

  6. Heat transfer model of large shipping containers 1Chemical Engineering Department -Carnegie Mellon University

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Forced convective heat transfer Solar radiation heat transfer Atmospheric radiation Natural convective number #12;Solar radiation heat transfer Heat transfer at the wall of the shipping container Direct solarHeat transfer model of large shipping containers 1Chemical Engineering Department - Carnegie Mellon

  7. Stromal Modulation of Radiation Carcinogenesis in Breast Cancer

    E-Print Network [OSTI]

    Nguyen, David Hiendat Hua

    2011-01-01

    human exposures, we focused subsequent radiation-chimera experimentstumors of the radiation chimera experiments to human breastradiation chimera experiments and compares them to gene expression profiles of human

  8. A High-Order-Accurate GPU-Based Radiative Transfer Equation Solver for Combustion and Propulsion Applications

    E-Print Network [OSTI]

    He, Xing; Lee, Euntaek; Wilcox, Lucas; Munipalli, Ramakanth; Pilon, Laurent

    2013-01-01

    and M. P. Meng¨ u¸c, “Radiation heat transfer in combustionThermal radiation is a dominant mode of heat transfer inand radiation in the Atlas plume”, AIAA J. Thermophys. Heat Transfer,

  9. Heat Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heat arriving in the radiators. As a result, steam systems make it difficult to implement control strategies such as a night setback system. The first central heating systems for...

  10. Project Profile: Hybrid Organic Silicone HTF Utilizing Endothermic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Organic Silicone HTF Utilizing Endothermic Chemical Reactions for Latent Heat Storage Project Profile: Hybrid Organic Silicone HTF Utilizing Endothermic Chemical Reactions...

  11. Heat and Mass Transfer Wrme-und Stoffbertragung

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Transfer (2013) 49:405-412 DOI 10.1007/s00231-012-1077-8 Natural convection and radiation heat transfer 12 months after publication. #12;ORIGINAL Natural convection and radiation heat transfer wall temperature, both the natural convection and radiation heat transfer are enhanced

  12. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect (OSTI)

    None

    2011-12-05

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  13. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect (OSTI)

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative transfer calculations, will be acquired using the aircraft and surface facilities available to ARESE. This document outlines the scientific approach and measurement requirements of the project.

  14. Heat transfer pathways in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Bauman, F.; Jin, H.; Webster, T.

    2006-01-01

    is little radiative heat transfer and little impact on thereturn air extrac- tion and heat transfer to the plenum. ItUFAD is often used and heat transfer out of the room through

  15. The Broadband Heating Rate Profile (BBHRP) VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(active tab) 2016 «The Breakthrough

  16. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  17. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  18. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  19. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  20. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  1. Photochemistry Radiation and Photolysis

    E-Print Network [OSTI]

    Toohey, Darin W.

    energy is done (i.e. energy per unit time) #12;Sample Problem: A microwave oven puts out radiation at 50? How does a microwave oven heat food anyway? First note that 50 GHz is a frequency (Hz = s-1) E = hn, as a function of l · Amount of solar radiation, as a function of

  2. NREL GHP [Geothermal Heat Pump] Showcase: GHP Installation and Intensive in situ and Performance Monitoring at NREL's Solar Radiation and Research Laboratory; Preprint

    SciTech Connect (OSTI)

    Anderson, E. R.

    2010-07-01

    This document provides an overview of the geothermal heat pump (GHP) showcase at NREL and how it will help the SRRL site move forward with the goal of being a model of sustainability within the NREL campus, providing an effective demonstration of GHP systems and needed space conditioning for laboratory expansion.

  3. Heat transport within the Earth

    E-Print Network [OSTI]

    Herndon, J Marvin

    2011-01-01

    Numerous attempts have been made to interpret Earth's dynamic processes based upon heat transport concepts derived from ordinary experience. But, ordinary experience can be misleading, especially when underlain by false assumptions. Geodynamic considerations traditionally have embraced three modes of heat transport: conduction, convection, and radiation. Recently, I introduced a fourth, "mantle decompression thermal tsunami" that, I submit, is responsible for emplacing heat at the base of the Earth's crust. Here, I review thermal transport within the Earth and speculate that there might be a fifth mode: "heat channeling", involving heat transport from the core to "hot-spots" such as those that power the Hawaiian Islands and Iceland.

  4. Heat Transfer (4 units) Class/Laboratory Schedule: four lecture hours per week, eight hours outside preparation. 12

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    to heat transfer in ducts and external boundary layers. Introduction to heat conduction and radiation and radiative heat transfer 1.2 Students will be able to recognize applications in which heat transfer transfer by radiation Objective 3 3.1 Students will demonstrate the ability to analyze heat exchangers 3

  5. Heating and Ionization of the Primordial Intergalactic Medium by High Mass X-ray Binaries

    E-Print Network [OSTI]

    Knevitt, Gillian; Power, Chris; Bolton, James

    2014-01-01

    We investigate the influence of High Mass X-ray Binaries on their high redshift environments. Using a one-dimensional radiative transfer code, we predict the ionization and temperature profiles surrounding a coeval stellar population, composed of main sequence stars and HMXBs, at various times after its formation. We consider both uniform density surroundings, and a cluster embedded in a 10^8 solar mass NFW halo. HMXBs in a constant density environment produce negligible enhanced ionization because of their high-energy SEDs and short lifetimes. In this case, HMXBs only marginally contribute to the local heating rate. For NFW profiles, radiation from main sequence stars cannot prevent the initially ionized volume from recombining since it is unable to penetrate the high density galactic core. However, HMXB photons stall recombinations behind the front, keeping it partially ionized for longer. The increased electron density in these partially ionized regions promotes further cooling, resulting in lower IGM temp...

  6. Micro/Nanoscale Heat Transfer: Interfacial Effects Dominate the

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    conduction 2. Convective heat transfer 3. Thermal radiation 4. Conclusions 1.1 Thermal conductivity3/15/2012 1 Micro/Nanoscale Heat Transfer: Interfacial Effects Dominate the Heat Transfer 1 Xing/nanoscale heat transfer becomes critical. What is the dominant factor in micro/nanosclae heat transfer

  7. ME 339 Heat Transfer ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 339­ Heat Transfer Page 1 ABET EC2000 syllabus ME 339 ­ Heat Transfer Spring 2010 Required convection; radiation; introduction to phase change heat transfer and to heat exchangers. Prerequisite(s): ME, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley Other Required Material: NA Course Objectives

  8. Industry Profile

    Broader source: Energy.gov [DOE]

    Combined heat and power (CHP)—sometimes referred to as cogeneration—involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

  9. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  10. Radiative Properties of Biological Surfaces , J. Preciado1

    E-Print Network [OSTI]

    led researchers to also study the effects of radiation heat transfer1 . Previous research has focused the radiation heat transfer. PROPOSED METHODS Transmission and reflection measurements of single polar bear to determine the radiation heat transfer. #12;ACKNOWLEDGMENTS We are indebted to Dr. Michael Martin of the ALS

  11. Water Vapor Turbulence Profiles in Stationary Continental Convective Mixed Layers

    SciTech Connect (OSTI)

    Turner, D. D.; Wulfmeyer, Volker; Berg, Larry K.; Schween, Jan

    2014-10-08

    The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program’s Raman lidar at the ARM Southern Great Plains (SGP) site in north-central Oklahoma has collected water vapor mixing ratio (q) profile data more than 90% of the time since October 2004. Three hundred (300) cases were identified where the convective boundary layer was quasi-stationary and well-mixed for a 2-hour period, and q mean, variance, third order moment, and skewness profiles were derived from the 10-s, 75-m resolution data. These cases span the entire calendar year, and demonstrate that the q variance profiles at the mixed layer (ML) top changes seasonally, but is more related to the gradient of q across the interfacial layer. The q variance at the top of the ML shows only weak correlations (r < 0.3) with sensible heat flux, Deardorff convective velocity scale, and turbulence kinetic energy measured at the surface. The median q skewness profile is most negative at 0.85 zi, zero at approximately zi, and positive above zi, where zi is the depth of the convective ML. The spread in the q skewness profiles is smallest between 0.95 zi and zi. The q skewness at altitudes between 0.6 zi and 1.2 zi is correlated with the magnitude of the q variance at zi, with increasingly negative values of skewness observed lower down in the ML as the variance at zi increases, suggesting that in cases with larger variance at zi there is deeper penetration of the warm, dry free tropospheric air into the ML.

  12. Mid-Atlantic Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  13. Code Number :.............. HEAT TRANSFER QUALIFYING EXAM

    E-Print Network [OSTI]

    Feeny, Brian

    is at 40 °C, estimate the heat transfer per unit length by radiation and convection between the twoCode Number :.............. HEAT TRANSFER QUALIFYING EXAM January 2010 OPEN BOOK (only one book) The heat transfer coefficient c) The length of pipe needed for a 35 °C increase in mean temperature d

  14. Micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  15. FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING

    SciTech Connect (OSTI)

    Urban, Andrea; Evans, Neal J. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Martel, Hugo [Departement de Physique, genie physique et optique, Universite Laval, Quebec, QC G1K 7P4 (Canada)

    2010-02-20

    We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In the isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.

  16. Appendix G. Radiation Appendix G. Radiation

    E-Print Network [OSTI]

    Pennycook, Steve

    energy, is energy in the form of waves or particles moving through space. Visi- ble light, heat, radio in the form of electromagnetic waves. Examples include gamma rays, ultraviolet light, and radio waves waves, and alpha particles are examples of radiation. When people feel warmth from sunlight

  17. A numerical study of local heat transfer and velocity distributions between blockages with holes in a rectangular channel 

    E-Print Network [OSTI]

    Lee, Sang Won

    2002-01-01

    influence the velocity profiles, therefore, the heat transfer performance. Location of the hole of the upstream blockage significantly changes the velocity profiles; therefore, heat transfer results. The jets through the holes of the upstream blockage...

  18. 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion ISMF2009, Xi'an, China, 11-15 July 2009

    E-Print Network [OSTI]

    Khandekar, Sameer

    Pulsating Heat Pipe Radiators by Infrared Thermography Vadiraj A. Hemadri1 , Sameer Khandekar2 1: Dept of Closed Loop Pulsating Heat pipe (CLPHP) embedded radiator plates subjected to conjugate heat transfer by embedding PHP structure. Keywords: Pulsating Heat Pipes, Space Radiators, Conjugate Heat Transfer 1

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  3. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  4. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  5. ATHENA radiation model

    SciTech Connect (OSTI)

    Shumway, R.W.

    1987-10-01

    The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs.

  6. Deflagration Wave Profiles

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  7. ME 360N Intermediate Heat Transfer ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    and Internal), Heat Exchangers (1) 3. Heat Exchanger Analysis (1) 4. Radiation (Intro) (Properties, Surface (1) 22. Nat'l. Conv. (1) 23. Intro Heat Exchangers & Energy Balances (1) 24. Overall H.T. Coeff ­ Intermediate Heat Transfer Page 2 ABET EC2000 syllabus Class/Laboratory Schedule (Type, number and duration

  8. The Economics of Steam Vs. Electric Pipe Heating 

    E-Print Network [OSTI]

    Schilling, R. E.

    1985-01-01

    To properly design a pipe heating system, the basic principles of heat transfer from an insulated pipe must be understood. The three methods of heat flow are conduction, convection (both forced and natural) and radiation. The total heat loss from a...

  9. Washington State University Vancouver Mech 404 Heat Transfer Mechanical Engineering Spring 2013 Syllabus

    E-Print Network [OSTI]

    and the basic rate equations for conduction, convection, and radiation. 2. Analyze conduction heat transfer the appropriate correlation for convective heat transfer process. 6. Analyze radiation exchange within methods for 2-D conduction 4. Forced Convection 5. Natural/Free Convection 6. Radiation Heat Transfer #12

  10. Radiative Forcing EarthRadiative Forcing, Earth Temperature, and Climate

    E-Print Network [OSTI]

    Li, Zhanqing

    trapped by the additional absorption goes inot heating the surface. Some , for example goes as additional latent heat. · So one should view the inference of the equationSo one should view the inference transmission of the atmosphereWhere Teff is the effective transmission of the atmosphere to thermal radiation

  11. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  12. Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers

    SciTech Connect (OSTI)

    Tundee, Sura; Terdtoon, Pradit; Sakulchangsatjatai, Phrut; Singh, Randeep; Akbarzadeh, Aliakbar

    2010-09-15

    This paper presents the results of experimental and theoretical analysis on the heat extraction process from solar pond by using the heat pipe heat exchanger. In order to conduct research work, a small scale experimental solar pond with an area of 7.0 m{sup 2} and a depth of 1.5 m was built at Khon Kaen in North-Eastern Thailand (16 27'N102 E). Heat was successfully extracted from the lower convective zone (LCZ) of the solar pond by using a heat pipe heat exchanger made from 60 copper tubes with 21 mm inside diameter and 22 mm outside diameter. The length of the evaporator and condenser section was 800 mm and 200 mm respectively. R134a was used as the heat transfer fluid in the experiment. The theoretical model was formulated for the solar pond heat extraction on the basis of the energy conservation equations and by using the solar radiation data for the above location. Numerical methods were used to solve the modeling equations. In the analysis, the performance of heat exchanger is investigated by varying the velocity of inlet air used to extract heat from the condenser end of the heat pipe heat exchanger (HPHE). Air velocity was found to have a significant influence on the effectiveness of heat pipe heat exchanger. In the present investigation, there was an increase in effectiveness by 43% as the air velocity was decreased from 5 m/s to 1 m/s. The results obtained from the theoretical model showed good agreement with the experimental data. (author)

  13. RADIATION AND CLOUD MONITORING STATIONS

    E-Print Network [OSTI]

    Reeves, Geoffrey D.

    how they affect the energy balance between incoming solar radiation and heat re-radiated from Earth's surface back into space -- is crucial to improving the general circulation models used for climate students. #12;A MONTHLY PUBLICATION OF THE PUBLIC AFFAIRS OFFICE OF LOS ALAMOS NATIONAL LABORATORY LOS

  14. Modeling of Heat Transfer in Rooms in the Modelica Buildings Library

    E-Print Network [OSTI]

    Wetter, Michael

    2013-01-01

    infrared radia- tion and solar radiation. Figure 1 shows theconvective and infrared and solar radiation heat transfer inIn the window model, a solar radiation balance is solved for

  15. Thermostatic Radiator Valve Evaluation

    SciTech Connect (OSTI)

    Dentz, Jordan; Ansanelli, Eric

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  16. Electron Heat Transport Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAward |Electron CorrelationHeat Transport

  17. Temperature distribution in a flowing fluid heated in a microwave resonant cavity

    SciTech Connect (OSTI)

    Thomas, J.R. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Nelson, E.M.; Kares, R.J.; Stringfield, R.M. [Los Alamos National Lab., NM (United States)

    1996-04-01

    This paper presents results of an analytical study of microwave heating of a fluid flowing through a tube situated along the axis of a cylindrical microwave applicator. The interaction of the microwave field pattern and the fluid velocity profiles is illustrated for both laminar and turbulent flow. Resulting temperature profiles are compared with those generated by conventional heating through a surface heat flux. It is found that microwave heating offers several advantages over conventional heating.

  18. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    SciTech Connect (OSTI)

    Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

    1993-04-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  19. Extended Heat Deposition in Hot Jupiters: Application to Ohmic Heating

    E-Print Network [OSTI]

    Ginzburg, Sivan

    2015-01-01

    Many giant exoplanets in close orbits have observed radii which exceed theoretical predictions. One suggested explanation for this discrepancy is heat deposited deep inside the atmospheres of these "hot Jupiters". Here, we study extended power sources which distribute heat from the photosphere to the deep interior of the planet. Our analytical treatment is a generalization of a previous analysis of localized "point sources". We model the deposition profile as a power law in the optical depth and find that planetary cooling and contraction halt when the internal luminosity (i.e. cooling rate) of the planet drops below the heat deposited in the planet's convective region. A slowdown in the evolutionary cooling prior to equilibrium is possible only for sources which do not extend to the planet's center. We estimate the Ohmic dissipation resulting from the interaction between the atmospheric winds and the planet's magnetic field, and apply our analytical model to Ohmically heated planets. Our model can account fo...

  20. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  1. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  2. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  3. Extreme-ultraviolet radiation transport in small scale length laser-produced tin plasmas

    E-Print Network [OSTI]

    Sequoia, Kevin Lamar Williams

    2009-01-01

    radiation heated sio2 aerogel plasma in "dog-bone" targetsspectra from Ti-doped aerogels. Journal of Quantitative

  4. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-07-16

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  5. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-04-22

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  6. Heat transport system

    DOE Patents [OSTI]

    Harkness, Samuel D. (McMurray, PA)

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  7. Visual Simulation of Heat Shimmering and Mirage

    E-Print Network [OSTI]

    Mueller, Klaus

    with the surrounding air. The temperature distribution on the objects can be calculated from radiators (e.g., the sun) or defined by the user with other physical or nonphysical methods. Such temperature distribution is applied environment, which includes conduction, convection, and radiation. The heat distribution of the objects

  8. Selective radiative heating of nanostructures using hyperbolic...

    Office of Scientific and Technical Information (OSTI)

    1184806 GrantContract Number: SC0001293 Type: Accepted Manuscript Journal Name: Optics Express Additional Journal Information: Journal Volume: 23; Journal Issue: 7; Journal...

  9. Selective radiative heating of nanostructures using hyperbolic

    Office of Scientific and Technical Information (OSTI)

    Research (BER) (SC-23) United States 2015-01-01 English Journal Article Journal Name: Optics Express; Journal Volume: 23; Journal Issue: 7 Medium: ED; Size: p. A299-A308 OSTI ID:...

  10. Proceedings of HTSC 2005: Heat Transfer Summer Conference

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    for describing radiation transfer and heat transfer in the micro/nanoscale devices is presented firstProceedings of HTSC 2005: Heat Transfer Summer Conference San Francisco, CA, July 17-22, 2005 HT's equations which govern the propagation of electromagnetic field and the radiation energy transport

  11. Divertor configuration and heat load studies for the ARIES-CS fusion power plant

    SciTech Connect (OSTI)

    Mau, T. K. [University of California, San Diego; Kaiser, T. [Lawrence Livermore National Laboratory (LLNL); Grossman, A. [University of California, San Diego; Raffray, R. [University of California, San Diego; Wang, X. [University of California, San Diego; Lyon, James F [ORNL; Maingi, R. [Oak Ridge National Laboratory (ORNL); Ku, L. P. [Princeton Plasma Physics Laboratory (PPPL); Zarnstorff, M. C. [Princeton Plasma Physics Laboratory (PPPL)

    2008-01-01

    The critical issue of divertor configuration for heat and particle flux control in a conceptual ARIES compact stellarator (CS) reactor is addressed. The goal is to determine a divertor location and geometry with a peak heat load of not more than 10 MW/m(2) for a CS equilibrium based on the configuration to be used in the NCSX experiment, optimized for high beta (6.4%) and designed for low alpha-particle power loss fraction (<= 5%). The surface heat flux on the target has three components: thermal particles, lost energetic alphas, and radiation from the core and the scrape-off layer. The first two components are dominant and their magnitudes can be comparable. To maintain a tritium-breeding ratio of 1.1, the total target area should not exceed 15% of the boundary plasma surface area. The divertor concept consists of two pairs of target plates per field period, one pair each at the top and bottom of the plasma. The heat flux profile is assessed by assuming that the parallel transport can be represented by field line mapping and that cross-field transport can be modeled with a prescribed field line diffusion scheme. In this manner, the poloidal and toroidal extents of the plates and their shape and distance to the plasma are designed to intercept all the heat flux and to minimize the peak thermal heat load. An approximate scheme, based on particle drift orbits in the core and field line tracing in the edge, is derived to estimate the alpha-particle heat load distribution over the plates and the first wall. The best plate configuration to date yields total peak heat loads (thermal + alpha) ranging from 5 to 18 MW/m(2). Further optimization of the target plates is required to reach the design goal, which will be addressed in a future study.

  12. PLEASE HELP SAVE ENERGY!! Learn how to control the heating system for your room.

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    PLEASE HELP SAVE ENERGY!! Learn how to control the heating system for your room. Meredith Hall Steam Heating System Manual steam heat control valve Steam and condensate piping are run to each room. The heat is controlled by a manually adjustable heat control valve on the radiator, which appears in every

  13. Thermal radiation, radiation force and dynamics of a polarizable particle

    E-Print Network [OSTI]

    G. V. Dedkov; A. A. Kyasov

    2015-08-26

    We discuss basic expressions and interrelations between various physical quantities describing the fluctuation-electromagnetic interaction of a small polarizable particle during relativistic motion relative to the blackbody radiation, namely tangential radiation force, rate of heating, intensity of thermal radiation/absorption, the change of the rest mass of a particle, and acceleration. We obtain an explicit formula for the frictional force acting on the particle in its rest frame and discuss its connection with the particle acceleration and the tangential force given in the reference frame of background radiation. The criticism of our previous results in recent paper by A. I. Volokitin (Phys. Rev. A81, 2015, 032505) is refuted.

  14. ABSORPTION HEAT PUMP IN THE DISTRICT HEATING

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation of the DH plant Imanta · Selection of the heat pump/chiller · Operation of the heat pump/chiller · Summary

  15. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation

    SciTech Connect (OSTI)

    Shabani, Bahman; Andrews, John; Watkins, Simon

    2010-01-15

    A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

  16. Development of a Heat Transfer Model for the Integrated Facade Heating 

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01

    of mullion radiators have been analyzed. The analysis shows that the supply water temperature is the primary factor which affects the heating or cooing capacity of window mullions and the mullion surface temperature. Return water temperature and mullion...

  17. Bridging conduction and radiation : investigating thermal transport in nanoscale gaps

    E-Print Network [OSTI]

    Chiloyan, Vazrik

    2015-01-01

    Near field radiation transfer between objects separated by small gaps is a widely studied field in heat transfer and has become more important than ever. Many technologies such as heat assisted magnetic recording, aerogels, ...

  18. Thermal effects in radiation processing

    SciTech Connect (OSTI)

    Zagorski, Z.P.

    1984-10-21

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

  19. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  20. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  1. Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion. Final report

    SciTech Connect (OSTI)

    Moriarty, M.P.

    1993-11-01

    NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

  2. Plasma density from Cerenkov radiation, betatron oscillations, and beam steering in a plasma wakefield experiment at 30 GeV

    SciTech Connect (OSTI)

    Catravas, P.; Chattopadhyay, S.; Esarey, E.; Leemans, W.P.; Assmann, R.; Decker, F.-J.; Hogan, M.J.; Iverson, R.; Siemann, R.H.; Walz, D.; Whittum, D.; Blue, B.; Clayton, C.; Joshi, C.; Marsh, K.; Mori, W.B.; Wang, S.; Katsouleas, T.; Lee, S.; Muggli, P.

    2001-01-01

    A method for using Cerenkov radiation near atomic spectral lines to measure plasma source properties for plasma wakefield applications has been discussed and experimentally verified. Because the radiation co-propagates with the electron beam, the radiation samples the source properties exactly along the path of interest with perfect temporal synchronization. Observation wavelengths were chosen with respect to the atomic resonances of the plasma source, where the relative change in the index of refraction strongly affects the Cerenkov cone angle, and permits flexible diagnostic design. The Cerenkov spatial profiles were systematically studied for a Lithium heat pipe oven as a function of oven temperature and observation wavelength. Neutral densities and plasma densities were extracted from the measurements.

  3. High flux heat transfer in a target environment

    E-Print Network [OSTI]

    McDonald, Kirk

    Valid for: Consider turbulent heat transfer in a 1.5mm diameter pipe ­ Dittus Boelter correlationHigh flux heat transfer in a target environment T. Davenne High Power Targets Group Rutherford · Radiation Cooling · Forced Convection · Nucleate Boiling · Critical Heat Flux · Other ideas · Summary #12

  4. Glass heat pipe evacuated tube solar collector

    DOE Patents [OSTI]

    McConnell, Robert D. (Lakewood, CO); Vansant, James H. (Tracy, CA)

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  5. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  6. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  7. HEATING AND COOLING PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-05-10

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  8. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  9. Process for forming retrograde profiles in silicon

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA); Sigmon, Thomas W. (Phoenix, AZ)

    1996-01-01

    A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  10. Heat transport through ion crystals

    E-Print Network [OSTI]

    Nahuel Freitas; Esteban Martinez; Juan Pablo Paz

    2014-12-09

    We study the thermodynamical properties of crystals of trapped ions which are laser cooled to two different temperatures in two separate regions. We show that these properties strongly depend on the structure of the ion crystal. Such structure can be changed by varying the trap parameters and undergoes a series of phase transitions from linear to zig-zag or helicoidal configurations. Thus, we show that these systems are ideal candidates to observe and control the transition from anomalous to normal heat transport. All structures behave as `heat superconductors', with a thermal conductivity increasing linearly with system size and a vanishing thermal gradient inside the system. However, zig-zag and helicoidal crystals turn out to be hyper sensitive to disorder having a linear temperature profile and a length independent conductivity. Interestingly, disordered 2D ion crystals are heat insulators. Sensitivity to disorder is much smaller in the 1D case.

  11. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ living --- HEATERâ??ACTIVE --- ACTIVATINGâ??HEATER --- HEATERâ??RUNNING ; #12; APPENDIX A. HEATING SYSTEM SPECIFICATION

  12. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    The Small Particle Heat Exchange Receiver (SPHER) for Solarof the small particle heat exchange receiver (or SPHER), asabsorption process, the heat exchange to the gas, the choice

  13. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  14. Thermostatic Radiator Valve Evaluation

    SciTech Connect (OSTI)

    Dentz, J.; Ansanelli, E.

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market. In this project, the ARIES team sought to better understand the current usage of TRVs by key market players in steam and hot water heating and to conduct limited experiments on the effectiveness of new and old TRVs as a means of controlling space temperatures and reducing heating fuel consumption. The project included a survey of industry professionals, a field experiment comparing old and new TRVs, and cost-benefit modeling analysis using BEopt™ (Building Energy Optimization software).

  15. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  16. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  17. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect (OSTI)

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  18. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  19. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  20. A container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  1. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, Kwan H. (Naperville, IL); Ahluwalia, Rajesh K. (Burr Ridge, IL)

    1994-01-01

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  2. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  3. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  4. Heat Transfer between Graphene and Amorphous SiO2

    E-Print Network [OSTI]

    B. N. J. Persson; H. Ueba

    2010-07-22

    We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer result from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  5. Use of photovoltaics for waste heat recovery

    DOE Patents [OSTI]

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  6. Recent advances in coronal heating

    E-Print Network [OSTI]

    De Moortel, Ineke

    2015-01-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.

  7. Integrated heat pump and heat storage system

    SciTech Connect (OSTI)

    Katz, A.

    1983-09-13

    An integrated heat pump and heat storage system is disclosed comprising a heat pump, a first conduit for supplying return air from an enclosure to the heat pump, a second conduit for supplying heated air from the heat pump to the enclosure, heat storage apparatus. A first damper is operative in a first orientation to permit return air from the enclosure to enter the first conduit and to prevent return air from passing through the heat storage apparatus and operative in a second orientation to cause return air to pass through the heat storage apparatus for being heated thereby before entering the first conduit. A second damper is operative in a first orientation to cause heated air from the second conduit to pass through the heat storage apparatus for giving up a portion of its heat for storage and operative in a second orientation to prevent heated air from the second conduit from passing through the heat storage apparatus and to permit the heated air from the second conduit to reach the enclosure. The heat storage apparatus may comprise phase change materials.

  8. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  9. Recent Heat Transfer Improvements to the RELAP5-3D Code

    SciTech Connect (OSTI)

    Riemke, Richard A; Davis, Cliff B; Oh, Chang

    2007-05-01

    The heat transfer section of the RELAP5-3D computer program has been recently improved. The improvements are as follows: (1) the general cladding rupture model was modified (more than one heat structure segment connected to the hydrodynamic volume and heat structure geometry’s internal gap pressure), (2) the cladding rupture model was modified for reflood, and (3) the heat transfer minor edits/plots were extended to include radiation/enclosure heat flux and generation (internal heat source).

  10. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  11. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  12. Heat flux solarimeter

    SciTech Connect (OSTI)

    Sartarelli, A.; Vera, S.; Cyrulies, E.; Echarri, R.; Samson, I.

    2010-12-15

    The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

  13. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  14. Appendix G. Radiation Appendix G. Radiation G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    , radio waves, and alpha particles are examples of radiation. When people feel warmth from sunlight in the form of electromagnetic waves. Examples include gamma rays, ultraviolet light, and radio waves, or radiant energy, is energy in the form of waves or particles moving through space. Visi- ble light, heat

  15. Appendix F. Radiation Appendix F. Radiation F-3

    E-Print Network [OSTI]

    Pennycook, Steve

    energy, is energy in the form of waves or particles moving through space. Visi- ble light, heat, radio in the form of electromagnetic waves. Examples include gamma rays, ultraviolet light, and radio waves waves, and alpha particles are examples of radiation. When people feel warmth from sunlight

  16. Simulation of plasmaneutral dynamics for radiation cooling

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    of America Abstract. An advanced heat removal scenario is required to handle the high input power of magnetic the heat flux effectively for future power plants. That is, radiation due to impurities will lower which is limited, but the momentum exhaust due to charge exchange (CX) friction and viscosity may allow

  17. Sea surface exchanges of momentum, heat, and freshwater determined by satellite remote sensing

    E-Print Network [OSTI]

    Yu, Lisan

    1 Sea surface exchanges of momentum, heat, and freshwater determined by satellite remote sensing Sensible heat flux Shortwave radiation Surface wind fields 2 #12;Sea surface exchanges of momentum, heat and the atmosphere communicate through the interfacial exchanges of heat, freshwater, and momentum. While

  18. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  19. Beyond ITER: RF Heating and Current Drive Issues for DEMO

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Current devices Need flexible RF systems for heating, CD, start-up, instability suppression, and profileBeyond ITER: RF Heating and Current Drive Issues for DEMO C. K. Phillips, J. C. Hosea, G. Taylor under development ­ May need Lower Hybrid for r/a > 0.6 (not currently on ITER) ­ Need feedback control

  20. Oil production response to in situ electrical resistance heating 

    E-Print Network [OSTI]

    McDougal, Fred William

    1987-01-01

    gO 190 170 160 170 1eo 120 00 IMP ERMEABL E (HEATED) P ERMEABLE lMP ERMEABLE (HEATED) PERMEABLE 0. 25' LOG(r) 640' FIG. 19 ? STEADY ? STATE TEMPERATURE PROFILE FOR CASE S ? 1 P ERMEABLE ~ U1 o cL- NM a5 $o ZP 4 1 170 190 20...

  1. An Evaluation of Shadow Shielding for Lunar System Waste Heat Rejection 

    E-Print Network [OSTI]

    Worn, Cheyn

    2012-07-16

    Shadow shielding is a novel and practical concept for waste heat rejection from lunar surface spacecraft systems. A shadow shield is a light shield that shades the radiator from parasitic thermal radiation emanating from the sun or lunar surface...

  2. Harvesting the Sun's Energy Through Heat as Well as Light | U...

    Office of Science (SC) Website

    new approach to harvesting solar energy, developed by MIT researchers, could improve efficiency by using sunlight to heat a high-temperature material whose infrared radiation would...

  3. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    load and capacity; solar heat gain; Radiant design standardssignificance of solar radiation in the design process andthe magnitude of solar impacts under various design/control

  4. Suppression of energetic particle driven instabilities with HHFW heating

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; Darrow, D. S.; Gorelenkov, N.; Kramer, G.; Liu, D.; Crocker, N. A.; Kubota, S.; White, R.

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fastmore »Wave heating.« less

  5. Two-dimensional heat transfer from earth-sheltered buildings

    SciTech Connect (OSTI)

    Krarti, M. (Steven Winter Associates, Inc., Norwalk, CT (US)); Claridge, D.E. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering)

    1990-02-01

    This paper describes use of the interzone temperature profile estimation (or ITPE) technique, an analytical calculation procedure to predict heat transfer within earth in contact with a structure. The solutions governing steady-state and steady-periodic heat conduction are derived for rectangular earth-sheltered buildings. The procedure accepts continuously variable values of geometric dimensions, insulation levels, and constant soil thermal characteristics and considers the presence of a finite water table level. Soil temperature profiles are shown for both steady-state and steady periodic conditions. The effects of insulation and water table depth on the heat losses from an earth-sheltered building envelope are discussed.

  6. Suppression of energetic particle driven instabilities with HHFW heating

    SciTech Connect (OSTI)

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; Darrow, D. S.; Gorelenkov, N.; Kramer, G.; Liu, D.; Crocker, N. A.; Kubota, S.; White, R.

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fast Wave heating.

  7. Instant Profiling: Instrumentation Sampling for Profiling Datacenter Applications

    E-Print Network [OSTI]

    Cortes, Corinna

    Instant Profiling: Instrumentation Sampling for Profiling Datacenter Applications Hyoun Kyu Cho Profile-guided optimization possesses huge potential to save costs for datacenters. Hardware performance programmers find code regions to optimize by monitoring datacenter applications continuously on live traffic

  8. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  9. Project Profile: High Operating Temperature Liquid Metal Heat...

    Office of Environmental Management (EM)

    multi-target co-sputtering system to create massive compositional libraries in thin-film forms and employ high-throughput characterization methods to rapidly screen candidate...

  10. Project Profile: Thermochemical Heat Storage for CSP Based on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and A. Woerner, "Metal Oxide Based Thermochemical Energy Storage for Concentrated Solar Power - Thermodynamics and Parasitic Loads for Packed Bed Reactors," in Proceedings of...

  11. ARM - Evaluation Product - Broadband Heating Rate Profile Project (BBHRP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA Contacts ENA Related Links(AVIRIS)ProductsBarrow

  12. Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefine ReviewImpact

  13. Status of the Broadband Heating Rate Profile (BBHRP) VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays IlluminateStateIntentchange.Status ofStatus of

  14. Project Profile: High Operating Temperature Liquid Metal Heat Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |Project Management Project ManagementProjectFluids

  15. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    efficient use of renewable energy in district heating · individual heat pumps solar heating and wood pellets· individual heat pumps, solar heating and wood pellets 6Risø International Energy Conference 2009Heat Plan

  16. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  17. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump ...

  18. Introduction to Heat Exchangers

    E-Print Network [OSTI]

    Heller, Barbara

    . Since, the effectiveness can be written in terms of heat capacitance rate [W/K], C, and change in temperature [K], . The heat capacitance rate is defined in terms of mass flow rate [kg/s], , and specific heat: ! ! ! " # = ! ! "# ! ! ! - ! ! ! ! ! ! = ! !! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! Heat%Capacitance%Rate % ! = ! !! ! ! Heat%Capacitance%Rate%[W % ! = ! ! ! ! ! ! ! = ! ! !! ! ! ! max

  19. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshire Nuclear Profile 2010

  20. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshire Nuclear Profile

  1. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshire Nuclear ProfileYork

  2. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshireTexas profile Texas

  3. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshireTexas profile

  4. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshireTexas profileVirginia

  5. RADIATION MONITORING

    E-Print Network [OSTI]

    Thomas, R.H.

    2010-01-01

    Radiation Exposure due to a Boiling Water Reactor Plume fromIN THE VICINITY OF A BOILING WATER REACTOR EXPOSURE RATE

  6. Radiative Flow in a Luminous Disk

    E-Print Network [OSTI]

    Jun Fukue

    2006-01-07

    Radiatively-driven flow in a luminous disk is examined in the subrelativistic regime of $(v/c)^1$, taking account of radiation transfer. The flow is assumed to be vertical, and the gravity and gas pressure are ignored. When internal heating is dropped, for a given optical depth and radiation pressure at the flow base (disk ``inside''), where the flow speed is zero, the flow is analytically solved under the appropriate boundary condition at the flow top (disk ``surface''), where the optical depth is zero. The loaded mass and terminal speed of the flow are both determined by the initial conditions; the mass-loss rate increases as the initial radiation pressure increases, while the flow terminal speed increases as the initial radiation pressure and the loaded mass decrease. In particular, when heating is ignored, the radiative flux $F$ is constant, and the radiation pressure $P_0$ at the flow base with optical depth $\\tau_0$ is bound in the range of $2/3 flow terminal speed becomes zero, while, in the limit of $cP_0/F = 2/3$, the loaded mass becomes zero and the terminal speed approaches $(3/8)c$, which is the terminal speed above the luminous flat disk under an approximation of the order of $(v/c)^1$. We also examine the case where heating exists, and find that the flow properties are qualitatively similar to the case without heating.

  7. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  8. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  9. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating...

  10. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low...

  11. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  12. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  13. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  14. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  15. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  16. Simulation of the Two Stages Stretch-Blow Molding Process: Infrared Heating and Blowing Modeling

    SciTech Connect (OSTI)

    Bordival, M.; Schmidt, F. M.; Le Maoult, Y.; Velay, V. [CROMeP - Ecole des Mines d'Albi Carmaux - Campus Jarlard - 81013 Albi cedex 09 (France)

    2007-05-17

    In the Stretch-Blow Molding (SBM) process, the temperature distribution of the reheated perform affects drastically the blowing kinematic, the bottle thickness distribution, as well as the orientation induced by stretching. Consequently, mechanical and optical properties of the final bottle are closely related to heating conditions. In order to predict the 3D temperature distribution of a rotating preform, numerical software using control-volume method has been developed. Since PET behaves like a semi-transparent medium, the radiative flux absorption was computed using Beer Lambert law. In a second step, 2D axi-symmetric simulations of the SBM have been developed using the finite element package ABAQUS registered . Temperature profiles through the preform wall thickness and along its length were computed and applied as initial condition. Air pressure inside the preform was not considered as an input variable, but was automatically computed using a thermodynamic model. The heat transfer coefficient applied between the mold and the polymer was also measured. Finally, the G'sell law was used for modeling PET behavior. For both heating and blowing stage simulations, a good agreement has been observed with experimental measurements. This work is part of the European project ''APT{sub P}ACK'' (Advanced knowledge of Polymer deformation for Tomorrow's PACKaging)

  17. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    SciTech Connect (OSTI)

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T. [Laboratory for Plasmaphysics, Ecole Royale Militaire–Koninklijke Militaire School, TEC Partner, Brussels (Belgium); Borsuk, V.; Neubauer, O.; Schmitz, O. [IEK-4/Plasmaphysik, Forschungszentrum Juelich, TEC Partner, Juelich (Germany); Offermans, G. [ZEA-1, Forschungszentrum Juelich, Juelich (Germany); Altenburg, Y.; Baylard, C. [Max-Planck Institute für Plasmaphysik, Teilinstitut Greifswald, Greifswald (Germany); and others

    2014-06-15

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25–38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  18. Polymer Physics Research Profile

    E-Print Network [OSTI]

    Giger, Christine

    Polymer Physics Research Profile Our main interests are the theory of simplification and some behavior on different autonomous levels of description. Our favorite applications range from polymer + Nonequilibrium Thermodynamics + Coarse Graining + Soft Matter + Polymer Physics + Rheology + Competences

  19. Code Number HEAT TRANSFER QUALIFYING EXAM

    E-Print Network [OSTI]

    Feeny, Brian

    is a device that uses inadiation from the sun to heat water. A solar collector is insulated on the bottom the rate of energy transfer to the water ifthe solar collector has a temperature of 45°C and ifthe sun.e. that all the energy received is radiated back in space. #12;Question #4) A water solar collector

  20. Preliminary SP-100/Stirling heat exchanger designs

    SciTech Connect (OSTI)

    Schmitz, P.; Tower, L.; Dawson, R.; Blue, B.; Dunn, P.

    1994-09-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC`s are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems.

  1. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    heat exchangers. These types of heat exchangers have limitedheat exchanger to solar collection systems that utilize linear trough- typenon-solar heat exchangers. These may be of the type used to

  2. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  3. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  4. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  5. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  6. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile Kansas total

  7. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile Kansas

  8. International Heat Pipe Conference (13th IHPC), Shanghai, China, September 21-25, 2004.

    E-Print Network [OSTI]

    Khandekar, Sameer

    13th International Heat Pipe Conference (13th IHPC), Shanghai, China, September 21-25, 2004. 678$&7 AlSiC based flat thin heat pipe prototypes (143.8 x 80.8 x 5 mm3 outer dimensions) are manufactured are carried out. The temperature profiles over the entire heat pipe are measured by means of infrared (IR

  9. Title of dissertation: Trinity: A Unified Treatment of Turbulence, Transport, and Heating

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: Trinity: A Unified Treatment of Turbulence, Transport, and Heating-state background profiles and corresponding turbulent fluxes and heating. This approach is embodied in a new code and implemented, allowing for the study of collisional turbulent heating, which has not been extensively studied

  10. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  11. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  12. The budgets of heat and salinity in NEMO M. Hieronymus

    E-Print Network [OSTI]

    Nycander, Jonas

    of the ocean is seen to be dominated by penetrative shortwave radiation, which is so influ- ential that we Keywords: Heat budget Salinity budget NEMO Isoneutral diffusion Shortwave penetration a b s t r a c in the Nucleus for European Modelling of the Ocean (NEMO) model. It is seen that the heat fluxes in NEMO

  13. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  14. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  15. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  16. Survivable pulse power space radiator

    DOE Patents [OSTI]

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  17. IntroductiontoProcessEngineering(PTG) 5. Heat transfer

    E-Print Network [OSTI]

    Zevenhoven, Ron

    #5/6 IntroductiontoProcessEngineering(PTG) VST rz13 1/114 5. Heat transfer Ron Zevenhoven ÅboProcessEngineering(PTG) VST rz13 Three heat transfer mechanisms Conduction Convection Radiation 2/114 Pic: BÖ88 #12;#5/6 IntroductiontoProcessEngineering(PTG) VST rz13 3/114 5.1 Conductive heat transfer #5/6 Introductionto

  18. RESEARCH Open Access Spatial variation of net radiation and its

    E-Print Network [OSTI]

    Chen, Jiquan

    and decreased by 4 W m-2 at night in the unclipped treatments. Net radiation decreased by 25 W m-2 (6% of Rn treatments. The Rn was lower by 11­21 W m-2 (~20­40% of Rn) measured by CNR1 than by Q7.1 at night, while is the sensible heat flux, LE is the latent heat flux, G is the soil heat flux, Q is the sum of other heat fluxes

  19. Galaxies that Shine: radiation-hydrodynamical simulations of disk galaxies

    E-Print Network [OSTI]

    Rosdahl, Joakim; Teyssier, Romain; Agertz, Oscar

    2015-01-01

    Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy disks of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photo-ionisation heating and radiation pressure, from both direct optical/UV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star formation about as much as the inclusion of ("thermal dump") supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but ...

  20. Confinement and the safety factor profile

    SciTech Connect (OSTI)

    Batha, S.H.; Levinton, F.M.; Scott, S.D.

    1995-12-01

    The conjecture that the safety factor profile, q(r), controls the improvement in tokamak plasmas from poor confinement in the Low (L-) mode regime to improved confinement in the supershot regime has been tested in two experiments on the Tokamak Fusion Test Reactor (TFTR). First, helium was puffed into the beam-heated phase of a supershot discharge which induced a degradation from supershot to L-mode confinement in about 100 msec, far less than the current relaxation time. The q and shear profiles measured by a motional Stark effect polarimeter showed little change during the confinement degradation. Second, rapid current ramps in supershot plasmas altered the q profile, but were observed not to change significantly the energy confinement. Thus, enhanced confinement in supershot plasmas is not due to a particular q profile which has enhanced stability or transport properties. The discharges making a continuous transition between supershot and L-mode confinement were also used to test the critical-electron-temperature-gradient transport model. It was found that this model could not reproduce the large changes in electron and ion temperature caused by the change in confinement.

  1. NOMENCLATURE (Journal of Heat Transfer, Vol. 121, No. 4. pp 770-773, November 1999)

    E-Print Network [OSTI]

    NOMENCLATURE (Journal of Heat Transfer, Vol. 121, No. 4. pp 770-773, November 1999) QUANTITY SYMBOL (constant v or p) molar (constant v or p) ratio cp/cv C pcvc , pcvc , J/K J/kg K J/kmol K Heat Transfer COHERENT SI UNIT Absorptivity (radiation) Absorption Coefficient (radiation) m-1 Activation Energy

  2. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  3. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  4. Microscreen radiation shield for thermoelectric generator

    DOE Patents [OSTI]

    Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1990-01-01

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  5. Effect on Non-Uniform Heat Generation on Thermionic Reactions

    SciTech Connect (OSTI)

    Schock, Alfred

    2012-01-19

    The penalty resulting from non-uniform heat generation in a thermionic reactor is examined. Operation at sub-optimum cesium pressure is shown to reduce this penalty, but at the risk of a condition analogous to burnout. For high pressure diodes, a simple empirical correlation between current, voltage and heat flux is developed and used to analyze the performance penalty associated with two different heat flux profiles, for series-and parallel-connected converters. The results demonstrate that series-connected converters require much finer power flattening than parallel converters. For example, a ±10% variation in heat generation across a series array can result in a 25 to 50% power penalty.

  6. Flow and heat transfer in vertical annuli

    SciTech Connect (OSTI)

    Ulke, A.; Goldberg, I.

    1993-11-01

    In shell-side boiling heat exchangers narrow crevices that are formed between the tubes and the tube support structure provide areas for local conditions which differ significantly from the bulk fluid conditions. A quasi-two-dimensional model which was developed to describe the local phenomena in a vertical, cylindrical crevice was described previously. The present work compares experimentally obtained flow and tube temperature distributions to those predicted by the model. The results confirm the characteristic ``W`` shape of the tube temperature profile centered at the line contact between a heated tube and tube support.

  7. Modeling the comfort effects of short-wave solar radiation indoors

    E-Print Network [OSTI]

    Arens, Edward; Hoyt, Tyler; Zhou, Xin; Huang, Li; Zhang, Hui; Schiavon, Stefano

    2015-01-01

    2004. [3] Blum HF. Solar heat load, its relationship to theS, Parsons K. The effects of solar radiation on thermalParsons K. The effects of solar radiation and black body re-

  8. Integrating the Healthcare Enterprise in Radiation Oncology Plug and Play-The Future of Radiation Oncology?

    SciTech Connect (OSTI)

    Abdel-Wahab, May; Rengan, Ramesh; Curran, Bruce; Swerdloff, Stuart; Miettinen, Mika; Field, Colin; Ranjitkar, Sunita; Palta, Jatinder; Tripuraneni, Prabhakar

    2010-02-01

    Purpose: To describe the processes and benefits of the integrating healthcare enterprises in radiation oncology (IHE-RO). Methods: The IHE-RO process includes five basic steps. The first step is to identify common interoperability issues encountered in radiation treatment planning and the delivery process. IHE-RO committees partner with vendors to develop solutions (integration profiles) to interoperability problems. The broad application of these integration profiles across a variety of vender platforms is tested annually at the Connectathon event. Demonstration of the seamless integration and transfer of patient data to the potential users are then presented by vendors at the public demonstration event. Users can then integrate these profiles into requests for proposals and vendor contracts by institutions. Results: Incorporation of completed integration profiles into requests for proposals can be done when purchasing new equipment. Vendors can publish IHE integration statements to document the integration profiles supported by their products. As a result, users can reference integration profiles in requests for proposals, simplifying the systems acquisition process. These IHE-RO solutions are now available in many of the commercial radiation oncology-related treatment planning, delivery, and information systems. They are also implemented at cancer care sites around the world. Conclusions: IHE-RO serves an important purpose for the radiation oncology community at large.

  9. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  10. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, Roger R. (Idaho Falls, ID)

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  11. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  12. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  13. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  14. Stellar feedback by radiation pressure and photoionization

    E-Print Network [OSTI]

    Sales, Laura V; Springel, Volker; Petkova, Margarita

    2013-01-01

    The relative impact of radiation pressure and photoionization feedback from young stars on surrounding gas is studied with hydrodynamic radiative transfer (RT) simulations. The calculations focus on the single-scattering (direct radiation pressure) and optically thick regime, and adopt a moment-based RT-method implemented in the moving-mesh code AREPO. The source luminosity, gas density profile and initial temperature are varied. At typical temperatures and densities of molecular clouds, radiation pressure drives velocities of order ~20 km/s over 1-5 Myr; enough to unbind the smaller clouds. However, these estimates ignore the effects of photoionization that naturally occur concurrently. When radiation pressure and photoionization act together, the latter is substantially more efficient, inducing velocities comparable to the sound speed of the hot ionized medium (10-15 km/s) on timescales far shorter than required for accumulating similar momentum with radiation pressure. This mismatch allows photoionization ...

  15. Heat Treating Apparatus

    DOE Patents [OSTI]

    De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  16. Integrated heat pump system

    SciTech Connect (OSTI)

    Reedy, W.R.

    1988-03-01

    An integrated heat pump and hot water system is described that includes: a heat pump having an indoor heat exchanger and an outdoor heat exchanger that are selectively connected to the suction line and the discharge line respectively of a compressor by a flow reversing means, and to each other by a liquid line having an expansion device mounted therein, whereby heating and cooling is provided to an indoor comfort zone by cycling the flow reversing means, a refrigerant to water heat exchanger having a hot water flow circuit in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit, a connection mounted in the liquid between the indoor heat exchanger and the expansion device, control means for regulating the flow of refrigerant through the refrigerant to water heat exchanger to selectively transfer heat into and out of the hot water flow circuit.

  17. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile Kansas total electric power

  18. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile Kansas total electric powerLouisiana

  19. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile Kansas total electric

  20. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile Kansas total electricMassachusetts

  1. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile Kansas totalMinnesota Nuclear

  2. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile Kansas totalMinnesota

  3. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile Kansas totalMinnesotaMissouri

  4. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshire Nuclear

  5. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshire NuclearOhio Nuclear

  6. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshire NuclearOhio

  7. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshire NuclearOhioSouth

  8. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshire

  9. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshireTexas

  10. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 Kansas profile KansasHampshireTexasWisconsin

  11. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  12. Thermal radiation and conduction in microscale structures. Final report

    SciTech Connect (OSTI)

    Tien, C.L.

    1998-09-02

    The general objective of the current research program is to achieve a better understanding of the fundamental mechanisms of thermal radiation and heat conduction in microscale structures commonly encountered in engineering applications. Specifically, the program includes both experimental and analytical investigations of radiative heat transfer in microstructures, conductive heat transfer in micro devices, and short-pulse laser material interactions. Future work is planned to apply the knowledge of microscale heat transfer gained in this project to developing thermal insulating aerogel materials, thermal design schemes for quantum well lasers, and short-pulse laser micro-fabrication techniques. A listing of publications by Chang-Lin Tien is included.

  13. Optimizing PT Arun LNG main heat exchanger

    SciTech Connect (OSTI)

    Irawan, B.

    1995-12-01

    The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

  14. RESEARCH AND INNOVATION PROFILE

    E-Print Network [OSTI]

    Haase, Markus

    RESEARCH AND INNOVATION PROFILE Create knowledge. Make an impact. Leeds University Business School #12;Contents 01 Leeds University Business School research and you | 04 02 A collaborative approach | 06 03 Developing research leaders | 08 04 Impacting on people's lives | 10 05 Accounting and Finance

  15. Optimum Design of Micro Bare-Tube Heat Exchanger Tomohisa OKU, Nobuhide KASAGI and Yuji SUZUKI

    E-Print Network [OSTI]

    Tokyo, University of

    , optimum design is made for three types of micro bare-tube heat exchangers, i.e., heater core and radiator2313 Optimum Design of Micro Bare-Tube Heat Exchanger Tomohisa OKU, Nobuhide KASAGI and Yuji SUZUKI@thtlab.t.u-tokyo.ac.jp Micro bare-tube heat exchangers can accomplish high performance and compactness with their simple

  16. Optimal Regulation of Heating Systems with Metering Based on Dynamic Simulation 

    E-Print Network [OSTI]

    Zhao, H.; Wang, P.; Zeng, G.; Tian, Y.

    2006-01-01

    The mathematical models of heat networks and heat users are established using the node method. The physical model of a typical room instead of a heat user is used; meanwhile the equation of radiator controlled by thermostat is put forward to compute...

  17. HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME

    E-Print Network [OSTI]

    Boyer, Edmond

    1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters

  18. Suppression MHD instabilities by IBW heating in HT-7 Tokamak

    E-Print Network [OSTI]

    C. M. Qin; Y. P. Zhao; X. J. Zhang; P. Xu; Y. Yang; the HT-7 team

    2010-01-21

    In HT-7 tokamak, the m= 2/1 tearing mode can be effectively suppressed by the ion bernstein wave (IBW) when the location of power deposition is near the q=2 rational surface. Off-axis electron heating and greatly increase of electron density was observed, in the meantime, the particle confinement appears to be improved with the increased of the central line averaged electron density and the drop of Da emission. Induced large ne gradients and pressures were spatially correlated with the IBW deposition profile by theoretical calculation >. It is suggested that off-axis IBW heating modifies the electron pressure profile, and so the current density profile could be redistributed resulting in the suppression of the magnetohydrodynamics (MHD) instability. It provides an integrated way for making combined effects on both the stabilization of tearing modes and controlling of pressure profile.

  19. Environmental radiation detection via thermoluminescence

    DOE Patents [OSTI]

    Miller, S.D.

    1993-03-23

    The method and apparatus of the present invention relate to cryogenically cooling a thermoluminescent material, exposing it to a low level of radiation (less than about 1 R) while it is at the cooled temperature, warming the thermoluminescent material to room temperature'' and counting the photons emitted during heating. Sufficient sensitivity is achieved without exposing the thermoluminescent material to ultraviolet light thereby simplifying the measurements.

  20. Environmental radiation detection via thermoluminescence

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1993-01-01

    The method and apparatus of the present invention relate to cryogenically cooling a thermoluminescent material, exposing it to a low level of radiation (less than about 1 R) while it is at the cooled temperature, warming the thermoluminescent material to "room temperature", and counting the photons emitted during heating. Sufficient sensitivity is achieved without exposing the thermoluminescent material to ultraviolet light thereby simplifying the measurements.

  1. PHYSICAL REVIEW B 85, 155422 (2012) Near-field thermal radiation transfer controlled by plasmons in graphene

    E-Print Network [OSTI]

    2012-01-01

    -field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange blackbodies in the far field. In general, the radiative heat transfer between two bodies at temperatures T1PHYSICAL REVIEW B 85, 155422 (2012) Near-field thermal radiation transfer controlled by plasmons

  2. Proceedings of Eurotherm78 Computational Thermal Radiation in Participating Media II 5-7 April 2006, Poitiers, France

    E-Print Network [OSTI]

    2006, Poitiers, France A diffusion-based approximate model for radiation heat transfer in a solar An approximate method for fast calculations of the radiation heat transfer in a solar thermochemical reactor cavity is proposed. The two-step method with separate calculations for solar and thermal radiation

  3. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dzambo, A. M.; Turner, D. D.; Mlawer, E. J.

    2015-10-20

    Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),more »downwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km MSL), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, mid-latitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RH are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. The cause of this statistical significance is likely explained by the fact the WANG correction also accounts for cloud cover – a condition not accounted for in the radiance closure experiments.« less

  4. 11th International Conference of Radiation Research

    SciTech Connect (OSTI)

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

  5. Methods for fabricating a micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  6. Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Terrafore, under the Thermal Storage FOA, is developing an economically feasible thermal energy storage (TES) system based on phase change materials (PCMs), for CSP plants.

  7. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  8. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  9. Wound tube heat exchanger

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  10. Electroweak Hall Effect of Neutrino and Coronal Heating

    E-Print Network [OSTI]

    Ishikawa, Kenzo

    2015-01-01

    The inversion of temperature at the solar corona is hard to understand from classical physics, and the coronal heating mechanism remains unclear. The heating in the quiet region seems contradicting with the thermodynamics and is a keen problem for physicists. A new mechanism for the coronal heating based on the neutrino radiative transition unique in the corona region is studied. The probability is enormously amplified by an electroweak Chern-Simons form and overlapping waves, and the sufficient energy is transfered. Thus the coronal heating is understood from the quantum effects of the solar neutrino.

  11. PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES

    E-Print Network [OSTI]

    PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES Beatrix Schunke JET temperature profile shapes have been parameterised in terms of the engineering variablesMRK,RI,IRS . In this article, we report the results of the parame- terisation of the Joint European TorusRebut (JET) electron

  12. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  13. Profiled spectral lines generated in the field of Kerr superspinars

    SciTech Connect (OSTI)

    Schee, Jan; Stuchlík, Zdenek E-mail: zdenek.stuchlik@fpf.slu.cz

    2013-04-01

    String Theory suggests existence of primordial Kerr superspinars, extremely compact objects with external spacetime described by the Kerr naked singularity geometry. The primordial Kerr superspinars have to be converted to a near-extreme black hole due to accretion, but they could survive to the era of highly redshifted quasars. We study the shape of the profiled spectral lines generated by radiating rings or the innermost parts of Keplerian discs orbiting the Kerr superspinars. Influence of the superspinar surface location on the profiled lines is also considered. We demonstrate strong difference of the character of the profiled lines generated by radiating rings for all values of the superspinar spin and all values of the inclination angles of the observer when compared to those generated in the field of Kerr black holes. For small and mediate inclination angles there are large quantitative differences in the extension and position of the lines. For large inclination angles even strong qualitative difference appears as the profiled lines have a clear doubled character. The smaller, redshifted region of the profiled line is related to the photons reaching the regions near the superspinar surface. Strong differences are obtained also for profiled lines generated by the innermost parts of Keplerian discs especially in the shape of the line. The influence of the superspinar surface location is reflected in the intermediate parts of the the profiled lines. The line profiles can give a clear signature of the presence of a Kerr superspinar and in principle enable estimates of its surface location since the signatures of the superspinar surface location are of different character as those corresponding to the presence of the black hole horizon.

  14. Instrument Development Tethered Balloon Sounding System for Vertical Radiation Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity a particleInstructionalWagetoTethered Balloon

  15. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013

  16. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile

  17. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity Profile

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  19. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  20. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  1. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  2. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  3. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  4. Experimental Investigation of Forced Convection Heat Transfer of Nanofluids in a Microchannel using Temperature Nanosensors 

    E-Print Network [OSTI]

    Yu, Jiwon 1982-

    2012-12-03

    of convective heat transfer involving suspensions of nanoparticles in coolants (or nanofluids). Flow visualization and quantitative estimation of near-wall temperature profiles were performed using quantum dots and fluorescent dyes. This non-contact measurement...

  5. Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma

    SciTech Connect (OSTI)

    Shurygin, R. V., E-mail: regulxx@rambler.ru; Morozov, D. Kh. [National Research Centre Kurchatov Institute (Russian Federation)

    2014-12-15

    Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li{sup 0} atoms and Li{sup +1} ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li{sup +1} ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li{sup 0} atoms and Li{sup +1} ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li{sup 0} atoms on the wall are obtained. The calculations show that the presence of Li{sup +1} ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 20–30% with increasing Li{sup +1} density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of radiative cooling of the near-wall plasma layer becomes appreciable when the near-wall density of neutral lithium atoms exceeds 7 × 10{sup 11} cm{sup ?3}. In this case, the density of radiative loss power in the center of the layer is estimated to be about 500–600 kW/m{sup 3}.

  6. Geothermal Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in the summer to sub-zero cold in the winter—the ground a few feet below the earth's surface remains at a relatively constant temperature.

  7. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  8. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  9. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  10. Modeling of Vertical Ground Loop Heat Exchangers with Variable Convective Resistance and Thermal Mass of the Fluid

    E-Print Network [OSTI]

    source heat pump (GSHP) systems. Thermal load profiles vary significantly from building to buildingModeling of Vertical Ground Loop Heat Exchangers with Variable Convective Resistance and Thermal-term behavior of ground loop heat exchangers (GLHE) is critical to the design and energy analysis of ground

  11. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualN ATIONAL L ABORATORY Heat Recovery in Building Envelopes

  12. Heat Recovery in Building Envelopes

    E-Print Network [OSTI]

    Sherman, Max H.; Walker, Iain S.

    2001-01-01

    Model For Infiltration Heat Recovery. Proceedings 21st AivcLBNL 47329 HEAT RECOVERY IN BUILDING ENVELOPES Max H.contribution because of heat recovery within the building

  13. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualWalker, I.S. (2001). "Heat Recovery in Building Envelopes".

  14. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  15. DETECTORS FOR RADIATION DOSIMETRY

    E-Print Network [OSTI]

    Perez-Mendez, V.

    2010-01-01

    I. Applications of Radiation Detectors 1) X-Rays, Gammaof the Conference DETECTORS FOR RADIATION DOSIMETRY VictorT E D LBL9651 DETECTORS FOR RADIATION DOSIMETRY - DISCLAIM*

  16. Smith-Purcell radiation on a surface wave

    E-Print Network [OSTI]

    A. A. Saharian

    2010-10-11

    We consider the radiation from an electron in flight over a surface wave of an arbitrary profile excited in a plane interface. For an electron bunch the conditions are specified under which the overall radiation essentially exceeds the incoherent part. It is shown that the radiation from the bunch with asymmetric density distribution of electrons in the longitudinal direction is partially coherent for waves with wavelengths much shorter than the characteristic longitudinal size of the bunch.

  17. Heating by Acoustic Waves of Multiphase Media

    E-Print Network [OSTI]

    Doron Chelouche

    2007-08-02

    We study the emission and dissipation of acoustic waves from cool dense clouds in pressure equilibrium with a hot, volume-filling dilute gas component. In our model, the clouds are exposed to a source of ionizing radiation whose flux level varies with time, forcing the clouds to pulsate. We estimate the rate at which acoustic energy is radiated away by an ensemble of clouds and the rate at which it is absorbed by, and dissipated in, the hot dilute phase. We show that acoustic energy can be a substantial heating source of the hot gas phase when the mass in the cool component is a substantial fraction of the total gas mass. We investigate the applicability of our results to the multiphase media of several astrophysical systems, including quasar outflows and cooling flows. We find that acoustic heating can have a substantial effect on the thermal properties of the hot phase in those systems.

  18. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  19. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  20. Investigations of Heat Shock Protein Expression in the Swordtail Fishes Xiphophorus birchmanni and X. malinche 

    E-Print Network [OSTI]

    Meaders, Ashley M.

    2011-08-04

    such as exposure to heat, toxins, and ultraviolet radiation. To protect cells against such stressors, animals employ an evolutionarily ancient mechanism: the heat shock response. During a heat shock response, heat shock proteins (Hsps) act as ?chaperones... environmental temperatures for 14 months prior to the experiment. If phenotypic plasticity was responsible for the higher levels of Hsps expression in X. birchmanni than X. malinche, then both species would have equally adapted to the minimal amount...

  1. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  2. A Profile of Profiles: A Meta-analysis of Organizational Commitment Profiles 

    E-Print Network [OSTI]

    Kabins, Adam H

    2013-11-26

    of commitment, this study combined latent profile analysis (LPA) with meta-analysis to examine the antecedents and bases of commitment profiles, utilizing a large archival data set (K = 40; N = 16,052). LPA results revealed five commitment profiles (weak...

  3. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  4. X-ray emission line profile modeling of hot stars Roban H. Kramer

    E-Print Network [OSTI]

    Cohen, David

    stars. These outflows, or winds, are driven by radiation pressure and carry a tremendous amount of kinetic energy, which can be converted to x rays by shock-heating even a small fraction of the wind plasma. The unshocked, cold wind is a source of continuum opacity to the x rays generated in the shock-heated portion

  5. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  6. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  7. State Nuclear Profiles 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays IlluminateState Nuclear Profiles 2010 April 2012

  8. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013 Table 1. 2013

  9. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013 Table 1.

  10. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013 Table

  11. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013 TableIndiana

  12. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013Kansas

  13. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity Profile 2013KansasKentucky

  14. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity ProfileMaine Electricity

  15. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity ProfileMaine

  16. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaii Electricity ProfileMaineMassachusetts

  17. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity Profile 2013 Table 1.

  18. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity Profile 2013 Table

  19. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity Profile 2013

  20. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratoryDestinationHawaiiNevada Electricity Profile 2013Mexico