Sample records for radiative flux analysis

  1. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  2. ARM - PI Product - Radiative Flux Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheatProductsISDACProductsRadiative Flux Analysis ARM

  3. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  4. Examining How Radiative Fluxes Are Affected by Cloud and Particle...

    Office of Science (SC) Website

    How Radiative Fluxes Are Affected by Cloud and Particle Characteristics Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights...

  5. An Analysis of Fluxes by Duality

    E-Print Network [OSTI]

    Paul S. Aspinwall

    2005-04-05T23:59:59.000Z

    M-theory on K3xK3 with non-supersymmetry-breaking G-flux is dual to M-theory on a Calabi-Yau threefold times a 2-torus without flux. This allows for a thorough analysis of the effects of flux without relying on supergravity approximations. We discuss several dual pairs showing that the usual rules of G-flux compactifications work well in detail. We discuss how a transition can convert M2-branes into G-flux. We see how new effects can arise at short distances allowing fluxes to obstruct more moduli than one expects from the supergravity analysis.

  6. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25T23:59:59.000Z

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  7. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08T23:59:59.000Z

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  8. Fast Flux Test Facility final safety analysis report. Amendment 73

    SciTech Connect (OSTI)

    Gantt, D.A.

    1993-08-01T23:59:59.000Z

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  9. Coherent Synchrotron Radiation Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upton, NY 11973, USA Abstract Coherent Synchrotron Radiation (CSR) effects in bunch compressors are analyzed. Schemes for reducing the CSR effects are presented. 1 INTRODUCTION...

  10. Effects of Radiative Diffusion on Thin Flux Tubes in Turbulent Solar-like Convection

    E-Print Network [OSTI]

    Weber, Maria A

    2015-01-01T23:59:59.000Z

    We study the combined effects of convection and radiative diffusion on the evolution of thin magnetic flux tubes in the solar interior. Radiative diffusion is the primary supplier of heat to convective motions in the lower convection zone, and it results in a heat input per unit volume of magnetic flux tubes that has been ignored by many previous thin flux tube studies. We use a thin flux tube model subject to convection taken from a rotating spherical shell of turbulent, solar-like convection as described by Weber, Fan, and Miesch (2011, Astrophys. J., 741, 11; 2013, Solar Phys., 287, 239), now taking into account the influence of radiative heating on flux tubes of large-scale active regions. Our simulations show that flux tubes of less than or equal to 60 kG subject to solar-like convective flows do not anchor in the overshoot region, but rather drift upward due to the increased buoyancy of the flux tube earlier in its evolution as a result of the inclusion of radiative diffusion. Flux tubes of magnetic fie...

  11. Radiative Heating and the Buoyant Rise of Magnetic Flux Tubes in the Solar Interior

    E-Print Network [OSTI]

    California at Berkeley, University of

    Radiative Heating and the Buoyant Rise of Magnetic Flux Tubes in the Solar Interior Y. Fan National the e ect of radiative heating on the evolution of thin magnetic ux tubes in the solar interior Solar Observatoryy, 950 N. Cherry Ave., Tucson, AZ 85719. G. H. Fisher Space Sciences Laboratory, Univ

  12. A Module for Radiation Hydrodynamic Calculations With ZEUS-2D Using Flux-Limited Diffusion

    E-Print Network [OSTI]

    N. J. Turner; J. M. Stone

    2001-02-08T23:59:59.000Z

    A module for the ZEUS-2D code is described which may be used to solve the equations of radiation hydrodynamics to order unity in v/c, in the flux-limited diffusion (FLD) approximation. In this approximation, the tensor Eddington factor f which closes the radiation moment equations is chosen to be an empirical function of radiation energy density. This is easier to implement and faster than full-transport techniques, in which f is computed by solving the transfer equation. However, FLD is less accurate when the flux has a component perpendicular to the gradient in radiation energy density, and in optically thin regions when the radiation field depends strongly on angle. The material component of the fluid is here assumed to be in local thermodynamic equilibrium. The energy equations are operator-split, with transport terms, radiation diffusion term, and other source terms evolved separately. Transport terms are applied using the same consistent transport algorithm as in ZEUS-2D. The radiation diffusion term is updated using an alternating-direction implicit method with convergence checking. Remaining source terms are advanced together implicitly using numerical root-finding. However when absorption opacity is zero, accuracy is improved by treating compression and expansion source terms using time-centered differencing. Results are discussed for test problems including radiation-damped linear waves, radiation fronts propagating in optically-thin media, subcritical and supercritical radiating shocks, and an optically-thick shock in which radiation dominates downstream pressure.

  13. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat fluxChinaNews :ProductsAerosol Retrievals from

  14. Photodegradation effects in materials exposed to high flux solar and solar simulated radiation

    SciTech Connect (OSTI)

    Ignatiev, A. [Houston Univ., TX (United States)

    1992-04-01T23:59:59.000Z

    This report contains study results about photodegradation effects in materials exposed to high flux solar and solar simulated radiation. The studies show that high flux photoirradiation of materials can result in significant changes in the stability of materials. Photodesorption and photo-enhanced oxidation were determined to be the major mechanisms. These mechanisms were shown to affect, in extremely adverse ways, the expected thermal stability of solar relevant materials, especially stainless steels, (It is expected that related high temperature alloy steels will be similarly affected.) An analytical expression was generated to predict the flux behavior of the steels using {number_sign}304 as a prototypical stainless steel system.

  15. Photodegradation effects in materials exposed to high flux solar and solar simulated radiation

    SciTech Connect (OSTI)

    Ignatiev, A [Houston Univ., TX (United States)

    1992-04-01T23:59:59.000Z

    This report contains study results about photodegradation effects in materials exposed to high flux solar and solar simulated radiation. The studies show that high flux photoirradiation of materials can result in significant changes in the stability of materials. Photodesorption and photo-enhanced oxidation were determined to be the major mechanisms. These mechanisms were shown to affect, in extremely adverse ways, the expected thermal stability of solar relevant materials, especially stainless steels, (It is expected that related high temperature alloy steels will be similarly affected.) An analytical expression was generated to predict the flux behavior of the steels using {number sign}304 as a prototypical stainless steel system.

  16. Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations

    E-Print Network [OSTI]

    M. C. M. Cheung; M. Schuessler; T. D. Tarbell; A. M. Title

    2008-10-31T23:59:59.000Z

    We present results from numerical modeling of emerging flux regions on the solar surface. The modeling was carried out by means of 3D radiative MHD simulations of the rise of buoyant magnetic flux tubes through the convection zone and into the photosphere. Due to the strong stratification of the convection zone, the rise results in a lateral expansion of the tube into a magnetic sheet, which acts as a reservoir for small-scale flux emergence events at the scale of granulation. The interaction of the convective downflows and the rising magnetic flux undulates it to form serpentine field lines emerging into the photosphere. Observational characteristics including the pattern of emerging flux regions, the cancellation of surface flux and associated high speed downflows, the convective collapse of photospheric flux tubes, the appearance of anomalous darkenings, the formation of bright points and the possible existence of transient kilogauss horizontal fields are discussed in the context of new observations from the Hinode Solar Optical Telescope. Implications for the local helioseismology of emerging flux regions are also discussed.

  17. MEASUREMENT AND ANALYSIS OF CIRCUMSOLAR RADIATION

    E-Print Network [OSTI]

    Grether, Donald

    2013-01-01T23:59:59.000Z

    cloud transient studies); Sandia, Albuquerque (input to performance calculation program Helios); SERI (analysis of effect of circumsolar radiation

  18. Overview of observations from the RADAGAST experiment in Niamey, Niger. Part 2: Radiative fluxes and divergences

    SciTech Connect (OSTI)

    Slingo, A.; White, H. E.; Bharmal, N.; Robinson, G. J.

    2009-02-25T23:59:59.000Z

    Broadband shortwave and longwave radiative fluxes observed both at the surface and from space during the RADAGAST experiment in Niamey, Niger in 2006 are presented. The surface fluxes were measured by the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport, while the fluxes at the top of the atmosphere (TOA) are from the Geostationary Earth Radiation Budget (GERB) instrument on the Meteosat-8 satellite. The data are analyzed as daily averages, in order to minimise sampling differences between the surface and top of atmosphere instruments, while retaining the synoptic and seasonal changes that are the main focus of this study. A cloud mask is used to identify days with cloud from those with predominantly clear skies. The influence of temperature, water vapor, aerosols and clouds is investigated. Aerosols are ubiquitous throughout the year and have a significant impact on both the shortwave and longwave fluxes. The large and systematic seasonal changes in temperature and column integrated water vapor (CWV) through the dry and wet seasons are found to exert strong influences on the longwave fluxes. These influences are often in opposition to each other, because the highest temperatures occur at the end of the dry season when the CWV is lowest, while in the wet season the lowest temperatures are associated with the highest values of CWV. Apart from aerosols, the shortwave fluxes are also affected by clouds and by the seasonal changes in CWV. The fluxes are combined to provide estimates of the divergence of radiation across the atmosphere throughout 2006. The longwave divergence is remarkably constant through the year, because of a compensation between the seasonal variations in the outgoing longwave radiation (OLR) and surface net longwave radiation. A simple model of the greenhouse effect is used to interpret this result in terms of the dependence of the normalized greenhouse effect at the TOA and of the effective emissivity of the atmosphere at the surface on the CWV. It is shown that, as the CWV increases, the atmosphere loses longwave energy to the surface with about the same increasing efficiency with which it traps the OLR, thus keeping the atmospheric longwave divergence roughly constant. The shortwave divergence is mainly determined by the CWV and aerosol loadings and the effect of clouds is much smaller than on the component fluxes.

  19. Metabolic Flux Analysis for Succinic Acid Production by Recombinant Escherichia

    E-Print Network [OSTI]

    some pyruvate and succinic acid were accumulated intracellularly. Therefore, a new flux analysis method was proposed by introducing intra- cellular pyruvate and succinic acid pools. By this new method dehydrogenase (Mdh). Malic acid can also be synthesized from pyruvate by the action of malic enzyme (coded

  20. On-chip radiation detection from stacked Josephson flux-flow oscillators S. V. Shitov,a)

    E-Print Network [OSTI]

    Wallraff, Andreas

    On-chip radiation detection from stacked Josephson flux-flow oscillators S. V. Shitov,a) A. V been proposed.7 In this study, we report direct radiation detection experi- ments with stacked double different mutually phase-locked modes of two junctions, the in phase and the out of phase. The radiation

  1. Calculation of thermal fluxes of plasma torch reradiation under the action of laser radiation on a condensed target

    SciTech Connect (OSTI)

    Rudenko, V. V. [Russian Federation Ministry of Defense, 12th Central Scientific Research Institute (Russian Federation)

    2010-12-15T23:59:59.000Z

    The problem of laser deposition with allowance for thermal radiation transport inside and outside the laser torch is considered in a multigroup approximation. The energy fluxes of laser torch thermal radiation onto a target in the far and near zones are calculated as functions of time and the character of the exposure. It is shown that absorption of thermal fluxes in the substrate and target in the course of laser deposition results in their substantial heating. The possibility of diagnosing thermal radiation fluxes from the laser torch by using photodetectors is demonstrated.

  2. Multigroup radiation hydrodynamics with flux-limited diffusion and adaptive mesh refinement

    E-Print Network [OSTI]

    González, Matthias; Commerçon, Benoît; Masson, Jacques

    2015-01-01T23:59:59.000Z

    Radiative transfer plays a key role in the star formation process. Due to a high computational cost, radiation-hydrodynamics simulations performed up to now have mainly been carried out in the grey approximation. In recent years, multi-frequency radiation-hydrodynamics models have started to emerge, in an attempt to better account for the large variations of opacities as a function of frequency. We wish to develop an efficient multigroup algorithm for the adaptive mesh refinement code RAMSES which is suited to heavy proto-stellar collapse calculations. Due to prohibitive timestep constraints of an explicit radiative transfer method, we constructed a time-implicit solver based on a stabilised bi-conjugate gradient algorithm, and implemented it in RAMSES under the flux-limited diffusion approximation. We present a series of tests which demonstrate the high performance of our scheme in dealing with frequency-dependent radiation-hydrodynamic flows. We also present a preliminary simulation of a three-dimensional p...

  3. Back-reaction of the Hawking radiation flux on a gravitationally collapsing star II: Fireworks instead of firewalls

    E-Print Network [OSTI]

    Laura Mersini-Houghton; Harald P. Pfeiffer

    2014-09-05T23:59:59.000Z

    A star collapsing gravitationally into a black hole emits a flux of radiation, knowns as Hawking radiation. When the initial state of a quantum field on the background of the star, is placed in the Unruh vacuum in the far past, then Hawking radiation corresponds to a flux of positive energy radiation travelling outwards to future infinity. The evaporation of the collapsing star can be equivalently described as a negative energy flux of radiation travelling radially inwards towards the center of the star. Here, we are interested in the evolution of the star during its collapse. Thus we include the backreaction of the negative energy Hawking flux in the interior geometry of the collapsing star and solve the full 4-dimensional Einstein and hydrodynamical equations numerically. We find that Hawking radiation emitted just before the star passes through its Schwarzschild radius slows down the collapse of the star and substantially reduces its mass thus the star bounces before reaching the horizon. The area radius starts increasing after the bounce. Beyond this point our program breaks down due to shell crossing. We find that the star stops collapsing at a finite radius larger than its horizon, turns around and its core explodes. This study provides a more realistic investigation of the backreaction of Hawking radiation on the collapsing star, that was first presented in [1].

  4. Finite element analysis of the distortion of a crystal monochromator from synchrotron radiation thermal loading

    SciTech Connect (OSTI)

    Edwards, W.R.; Hoyer, E.H.; Thompson, A.C.

    1985-10-01T23:59:59.000Z

    The first crystal of the Brown-Hower x-ray monochromator of the LBL-EXXON 54 pole wiggler beamline at Stanford Synchrotron Radiation Laboratory (SSRL) is subjected to intense synchrotron radiation. To provide an accurate thermal/structural analysis of the existing monochromator design, a finite element analysis (FEA) was performed. A very high and extremely localized heat flux is incident on the Si (220) crystal. The crystal, which possesses pronouncedly temperature-dependent orthotropic properties, in combination with the localized heat load, make the analysis ideally suited for finite element techniques. Characterization of the incident synchrotron radiation is discussed, followed by a review of the techniques employed in modeling the monochromator and its thermal/structural boundary conditions. The results of the finite element analysis, three-dimensional temperature distributions, surface displacements and slopes, and stresses, in the area of interest, are presented. Lastly, the effects these results have on monochromator output flux and resolution are examined.

  5. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    SciTech Connect (OSTI)

    Nakos, James Thomas

    2005-12-01T23:59:59.000Z

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  6. ARM: Short Wave Flux Analysis: 15-min resolution on SIRS data, Long algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, Tom; Kay, Bev; Habte, Aron; Anderberg, Mary; Kutchenreiter, Mark

    Short Wave Flux Analysis: 15-min resolution on SIRS data, Long algorithm. Measurements began in January, 1994, and have continued to the present time. Data collected are from the Southern Great Plains (SGP) location.

  7. Use of a moments method for the analysis of flux distributions in subcritical assemblies

    E-Print Network [OSTI]

    Cheng, Hsiang-Shou

    1968-01-01T23:59:59.000Z

    A moments method has been developed for the analysis of flux distributions in subcritical neutron-multiplying assemblies. The method determines values of the asymptotic axial and radial buckling, and of the extrapolated ...

  8. A multi-site analysis of random error2 in tower-based measurements of carbon and energy fluxes3

    E-Print Network [OSTI]

    1 A multi-site analysis of random error2 in tower-based measurements of carbon and energy fluxes3 4 Forest Service, 271 Mast Road, Durham, NH 03824 USA.25 #12;RANDOM ERRORS IN ENERGY AND CO2 FLUX MEASUREMENTS Richardson et al. 1 January 13, 2006 Abstract1 Measured surface-atmosphere fluxes of energy

  9. ANALYSIS OF SHORT-TERM SOLAR RADIATION DATA Gayathri Vijayakumar

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    ANALYSIS OF SHORT-TERM SOLAR RADIATION DATA Gayathri Vijayakumar Sanford A. Klein William A beckman@engr.wisc.edu ABSTRACT Solar radiation data are available for many locations on an hourly basis annual performance, although solar radiation can exhibit wide variations during an hour. Variations

  10. RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK

    E-Print Network [OSTI]

    Shultis, J. Kenneth

    RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical;Radiation Analysis of a Spect-Fuel Storage Cask by J.K.Shultis Dept. Mechanical and Nuclear Engineering a single Transnuclear spent-fuel storage cask holding 68 design-basis fuel assemblies (a TN-68 cask

  11. AN ANALYSIS OF MAGNETOHYDRODYNAMIC INVARIANTS OF MAGNETIC FLUCTUATIONS WITHIN INTERPLANETARY FLUX ROPES

    SciTech Connect (OSTI)

    Telloni, D. [National Institute for Astrophysics, Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Perri, S.; Carbone, V. [Department of Physics, University of Calabria, Ponte P. Bucci Cubo 31C, I-87036 Rende (Italy); Bruno, R.; D Amicis, R. [National Institute for Astrophysics, Institute for Space Astrophysics and Planetology, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2013-10-10T23:59:59.000Z

    A statistical analysis of magnetic flux ropes, identified by large-amplitude, smooth rotations of the magnetic field vector and a low level of both proton density and temperature, has been performed by computing the invariants of the ideal magnetohydrodynamic (MHD) equations, namely the magnetic helicity, the cross-helicity, and the total energy, via magnetic field and plasma fluctuations in the interplanetary medium. A technique based on the wavelet spectrograms of the MHD invariants allows the localization and characterization of those structures in both scales and time: it has been observed that flux ropes show, as expected, high magnetic helicity states (|?{sub m}| in [0.6: 1]), but extremely variable cross-helicity states (|?{sub c}| in [0: 0.8]), which, however, are not independent of the magnetic helicity content of the flux rope itself. The two normalized MHD invariants observed within the flux ropes tend indeed to distribute, neither trivially nor automatically, along the ?(?{sub m}{sup 2}+?{sub c}{sup 2})=1 curve, thus suggesting that some constraint should exist between the magnetic and cross-helicity content of the structures. The analysis carried out has further showed that the flux rope properties are totally independent of their time duration and that they are detected either as a sort of interface between different portions of solar wind or as isolated structures embedded in the same stream.

  12. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements

    E-Print Network [OSTI]

    Silver, Whendee

    Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux Abstract High ground-level ozone concentrations are typical of Mediterranean climates. Plant exposure to this oxidant is known to reduce carbon assimilation. Ozone damage has been traditionally measured through

  13. MATERIAL FLUX ANALYSIS (MFA) FOR PLANNING OF DOMESTIC WASTES AND WASTEWATER MANAGEMENT

    E-Print Network [OSTI]

    Richner, Heinz

    i MATERIAL FLUX ANALYSIS (MFA) FOR PLANNING OF DOMESTIC WASTES AND WASTEWATER MANAGEMENT: CASE of Nonthaburi, Statistical office of Nonthaburi and Agricultural extension office of Pak Kret for their kind nutrient management, organic waste, wastewater and septage that contained high concentration of nutrients

  14. Comparison of different global information sources used in surface radiative flux calculation

    E-Print Network [OSTI]

    ), the Laboratoire de Me´te´orologie Dynamique, NOAA/NASA Pathfinder Advanced Very High Resolution Radiometer project Spectroradiometer product, the NASA Global Energy and Water Cycle Experiment Surface Radiation Budget project surface albedos in the near-infrared remain poorly constrained (highly uncertain), they do not cause too

  15. Fourier analysis of the flux-tube distribution in SU(3) lattice QCD

    E-Print Network [OSTI]

    Arata Yamamoto

    2010-04-16T23:59:59.000Z

    This letter presents a novel analysis of the action/energy density distribution around a static quark-antiquark pair in SU(3) lattice quantum chromodynamics. Using the Fourier transformation of the link variable, we remove the high-momentum gluon and extract the flux-tube component from the action/energy density. When the high-momentum gluon is removed, the statistical fluctuation is drastically suppressed, and the singularities from the quark self-energy disappear. The obtained flux-tube component is broadly distributed around the line connecting the quark and the antiquark.

  16. An analysis of pavement heat flux to optimize the1 water efficiency of a pavement-watering method2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An analysis of pavement heat flux to optimize the1 water efficiency of a pavement-watering method2.hendel@paris.fr)8 9 Preprint version. Uploaded on May 12th , 2014.10 Abstract: Pavement-watering as a technique rarely been conducted. We propose an15 analysis of pavement heat flux at a depth of 5 cm and solar

  17. Thunderhead Radiation Measurements and Radiative Flux Analysis in Support of STORMVEX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003 (Next ReleaseThomasTheories |20

  18. advanced radiation detector: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the different particles, the radiation flux and the energy channels. Then the detector system based on analysis results were built by the Monte Carlo simulation. Finally,...

  19. An Analysis of Universality in Blackbody Radiation

    E-Print Network [OSTI]

    Pierre-Marie Robitaille

    2005-07-01T23:59:59.000Z

    Through the formulation of his law of thermal emission, Kirchhoff conferred upon blackbody radiation the quality of universality [G.Kirchhoff, Annalen der Physik 109, 275 (1860)]. Consequently, modern physics holds that such radiation is independent of the nature and shape of the emitted object. Recently, Kirchhoff's experimental work and theoretical conclusions have been reconsidered [P.M.L. Robitaille, IEEE Transactions on Plasma Science 31(6), 1263 (2003). In this work, Einstein's derivation of the Planckian relation is reexamined. It is demonstrated that claims of universality in blackbody radiation are invalid.

  20. Statistical Analysis of Microgravity Two-Phase Slug Flow via the Drift Flux Model

    E-Print Network [OSTI]

    Larsen, Benjamin A

    2014-05-01T23:59:59.000Z

    STATISTICAL ANALYSIS OF MICROGRAVITY TWO-PHASE SLUG FLOW VIA THE DRIFT FLUX MODEL A Thesis by BENJAMIN ANDREW LARSEN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment... made their data available to me and willingly took the time to converse about their work. Finally I would like to thank my parents Donald and Christine Larsen for their love and support in completing my graduate work. v NOMENCLATURE Symbol...

  1. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes

    E-Print Network [OSTI]

    A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes 2006 Abstract Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE of which include ``tall tower'' instrumentation), one grassland site, and one agricultural site, to conduct

  2. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect (OSTI)

    NELSON RL

    2008-07-18T23:59:59.000Z

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  3. Flux and energy analysis of species in hollow cathode magnetron ionized physical vapor deposition of copper

    SciTech Connect (OSTI)

    Wu, L.; Ko, E.; Dulkin, A.; Park, K. J.; Fields, S.; Leeser, K. [Novellus Systems, Inc., 4000 North 1st St., San Jose, California 95134 (United States); Meng, L.; Ruzic, D. N. [Center for Plasma-Material Interactions, University of Illinois at Urbana-Champaign, 201 South Goodwin, Urbana, Illinois 61801 (United States)

    2010-12-15T23:59:59.000Z

    To meet the stringent requirements of interconnect metallization for sub-32 nm technologies, an unprecedented level of flux and energy control of film forming species has become necessary to further advance ionized physical vapor deposition technology. Such technology development mandates improvements in methods to quantify the metal ion fraction, the gas/metal ion ratio, and the associated ion energies in the total ion flux to the substrate. In this work, a novel method combining planar Langmuir probes, quartz crystal microbalance (QCM), and gridded energy analyzer (GEA) custom instrumentation is developed to estimate the plasma density and temperature as well as to measure the metal ion fraction and ion energy. The measurements were conducted in a Novellus Systems, Inc. Hollow Cathode Magnetron (HCM{sup TM}) physical vapor deposition source used for deposition of Cu seed layer for 65-130 nm technology nodes. The gridded energy analyzer was employed to measure ion flux and ion energy, which was compared to the collocated planar Langmuir probe data. The total ion-to-metal neutral ratio was determined by the QCM combined with GEA. The data collection technique and the corresponding analysis are discussed. The effect of concurrent resputtering during the deposition process on film thickness profile is also discussed.

  4. FAQS Gap Analysis Qualification Card – Radiation Protection

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  5. Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing

    E-Print Network [OSTI]

    Brunsell, Nathaniel A.; Gillies, Robert R.

    2003-01-01T23:59:59.000Z

    the variability across different spatial res- olutions in input data translates into variation across scales in modeled output. This issue is of prime im- portance to the remote sensing community involved in the modeling of land–atmosphere interactions...1212 VOLUME 4J O U R N A L O F H Y D R O M E T E O R O L O G Y q 2003 American Meteorological Society Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing NATHANIEL A. BRUNSELL* Department of Plants, Soils, and Biometeorology...

  6. Comparative Analysis of GALLEX-GNO Solar Neutrino Data and SOHO/MDI Helioseismology Data; Further Evidence for Rotational Modulation of the Solar Neutrino Flux

    E-Print Network [OSTI]

    Peter A. Sturrock; Mark A. Weber

    2001-03-10T23:59:59.000Z

    We carry out a comparative analysis of the GALLEX-GNO solar neutrino data and estimates of the solar internal rotation rate derived from the MDI helioseismology experiment on the SOHO spacecraft. We introduce a statistic, which we evaluate as a function of radius and latitude, that is a measure of the degree of "resonance" of oscillations in the neutrino flux and the synodic solar rotation rate at that radius and latitude. A map of this statistic indicates that the probable location is deep in the convection zone near the equator. We also examine the integral of this statistic over the equatorial section of the convection zone. This provides a measure of the likelihood that the variability of the solar neutrino flux, as measured by the GALLEX-GNO data, has its origin in the equatorial section of the convection zone. We apply the shuffle test, randomly reassigning measurements among runs, to estimate the significance of the value of the statistic computed from the actual data. This test implies that the result is significant at the 0.2% level. When, for comparison, we repeat this analysis for the radiative zone, we find that the integral resonance statistic is not significant. These results support earlier evidence for rotational modulation of the solar neutrino flux.

  7. Time Variations of the Superkamiokande Solar Neutrino Flux Data by Rayleigh Power Spectrum Analysis

    E-Print Network [OSTI]

    Koushik Ghosh; Probhas Raychaudhuri

    2006-06-05T23:59:59.000Z

    We have used the Rayleigh Power Spectrum Analysis of the solar neutrino flux data from 1) 5-day-long samples from Super-Kamiokande-I detector during the period from June, 1996 to July, 2001; 2) 10 -day-long samples from the same detector during the same period and (3) 45-day long from the same detector during the same period. According to our analysis (1) gives periodicities around 0.25, 23.33, 33.75 and 42.75 months; (2) exhibits periodicities around 0.5, 1.0, 28.17, 40.67 and 52.5 months and (3) shows periodicities around 16.5 and 28.5 months. We have found almost similar periods in the solar flares, sunspot data, solar proton data.

  8. Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation

    E-Print Network [OSTI]

    Santolik, Ondrej

    12 Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation, containing waves which simultaneously propagate in different directions and/or wave modes the concept emission is found to propagate predominantly in the R-X mode with wave energy distributed in relatively

  9. Measurement and analysis of near ultraviolet solar radiation

    SciTech Connect (OSTI)

    Mehos, M.S.; Pacheco, K.A.; Link, H.F.

    1991-12-01T23:59:59.000Z

    The photocatalytic detoxification of organic contaminants is currently being investigated by a number of laboratories, universities, and institutions throughout the world. The photocatalytic oxidation process requires that contaminants come in contact with a photocatalyst such as titanium dioxide, under illumination of ultraviolet (UV) radiation in order for the decomposition reaction to take place. Researches from the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories are currently investigating the use of solar energy as a means of driving this photocatalytic process. Measurements of direct-normal and global-horizontal ultraviolet (280--385 nm) and full-spectrum (280--4000 nm) solar radiation taken in Golden, Colorado over a one-year period are analyzed, and comparisons are made with data generated from a clear-sky solar radiation model (BRITE) currently in use for predicting the performance of solar detoxification processes. Analysis of the data indicates a ratio of global-horizontal ultraviolet to full-spectrum radiation of 4%--6% that is weakly dependent on air mass. Conversely, data for direct-normal ultraviolet radiation indicate a much large dependence on air mass, with a ratio of approximately 5% at low air mass to 1% at higher at masses. Results show excellent agreement between the measured data and clear-sky predictions for both the ultraviolet and the full-spectrum global-horizontal radiation. For the direct-normal components, however, the tendency is for the clear-sky model to underpredict the measured that. Averaged monthly ultraviolet radiation available for the detoxification process indicates that the global-horizontal component of the radiation exceeds the direct-normal component throughout the year. 9 refs., 7 figs.

  10. Analysis of radiation measurement data of the BUSS cask

    SciTech Connect (OSTI)

    Liu, Y.Y. [Argonne National Lab., IL (United States); Tang, J.S. [Oak Ridge National Lab., TN (United States)

    1995-12-31T23:59:59.000Z

    The Beneficial Uses Shipping System (BUSS) is a Type-B packaging developed for shipping nonfissile, special-form radioactive materials to facilities such as sewage, food, and medical-product irradiators. The primary purpose of the BUSS cask is to provide shielding and confinement, as well as impact, puncture, and thermal protection for its certified special-form contents under both normal transport and hypothetical accident conditions. A BUSS cask that contained 16 CsCl capsules (2.723 {times} 10{sup 4} TBq total activity) was recently subjected to radiation survey measurements at a Westinghouse Hanford facility, which provided data that could be used to validate computer codes. Two shielding analysis codes, MICROSHIELD (User`s Manual 1988) and SAS4 (Tan 1993), that are used at Argonne National Laboratory to evaluate the safety of packaging of radioactive materials during transportation, have been selected for analysis of radiation data obtained from the BUSS cask. MICROSHIELD, which performs only gamma radiation shielding calculation, is based on a point-kernel model with idealized geometry, whereas SAS4 is a control module in the SCALE code system (1995) that can perform three-dimensional Monte Carlo shielding calculation for photons and neutrons, with built-in procedures for cross-section data processing and automated variance reduction. The two codes differ in how they model the details of the physics of gamma photon attenuation in materials, and this difference is reflected in the associated engineering cost of the analysis. One purpose of the analysis presented in this paper, therefore, is to examine the effects of the major modeling assumptions in the two codes on calculated dose rates, and to use the measured dose rates for comparison. The focus in this paper is on analysis of radiation dose rates measured on the general body of the cask and away from penetrations.

  11. Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Primm, Trent [ORNL; Gehin, Jess C [ORNL

    2009-04-01T23:59:59.000Z

    A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

  12. A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5

    SciTech Connect (OSTI)

    Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

    2013-11-08T23:59:59.000Z

    In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model uncertainty via calibration of uncertain model parameters with the largest sensitivity.

  13. Root cause analysis of solder flux residue incidence in the manufacture of electronic power modules

    E-Print Network [OSTI]

    Jain, Pranav

    2011-01-01T23:59:59.000Z

    This work investigates the root causes of the incidence of solder flux residue underneath electronic components in the manufacture of power modules. The existing deionized water-based centrifugal cleaning process was ...

  14. Occupational Radiation Exposure Analysis of US ITER DCLL TBM

    SciTech Connect (OSTI)

    Merrill, Brad J; Cadwallader, Lee C; Dagher, Mohamad

    2007-08-01T23:59:59.000Z

    This report documents an Occupational Radiation Exposure (ORE) analysis that was performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This analysis was performed with the QADMOD dose code for anticipated maintenance activities for this TBM concept and its ancillary systems. The QADMOD code was used to model the PbLi cooling loop of this TBM concept by specifying gamma ray source terms that simulated radioactive material within the piping, valves, heat exchanger, permeator, pump, drain tank, and cold trap of this cooling system. Estimates of the maintenance tasks that will have to be performed and the time required to perform these tasks where developed based on either expert opinion or on industrial maintenance experience for similar technologies. This report details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM.

  15. Analysis of tropical radiative heating profiles: A comparison...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diurnal variability in the radiative heating profiles; and a significantly lower level of zero net radiative heating. Citation: McFarlane SA, JH Mather, and TP...

  16. As-Run Thermal Analysis of the GTL-1 Experiment Irradiated in the ATR South Flux Trap

    SciTech Connect (OSTI)

    Donna P. Guillen

    2011-05-01T23:59:59.000Z

    The GTL-1 experiment was conducted to assess corrosion the performance of the proposed Boosted Fast Flux Loop booster fuel at heat flux levels {approx}30% above the design operating condition. Sixteen miniplates fabricated from 25% enriched, high-density U3Si2/Al dispersion fuel with 6061 aluminum cladding were subjected to peak beginning of cycle (BOC) heat fluxes ranging from 411 W/cm2 to 593 W/cm2. Miniplates fabricated with three different fuel variations (without fines, annealed, and with standard powder) performed equally well, with negligible irradiation-induced swelling and a normal fission density gradient. Both the standard and the modified prefilm procedures produced hydroxide films that adequately protected the miniplates from failure. A detailed finite element model was constructed to calculate temperatures and heat flux for an as-run cycle average effective south lobe power of 25.4 MW(t). Results of the thermal analysis are given at four times during the cycle: BOC at 0 effective full power days (EFPD), middle of cycle (MOC) at 18 EFPD, MOC at 36 EFPD, and end of cycle at 48.9 EFPD. The highest temperatures and heat fluxes occur at the BOC and decrease in a linear manner throughout the cycle. Miniplate heat flux levels and fuel, cladding, hydroxide, and coolant-hydroxide interface temperatures were calculated using the average measured hydroxide thickness on each miniplate. The hydroxide layers are the largest on miniplates nearest to the core midplane, where heat flux and temperature are highest. The hydroxide layer thickness averages 20.4 {mu}m on the six hottest miniplates (B3, B4, C1, C2, C3, and C4). This tends to exacerbate the heating of these miniplates, since a thicker hydroxide layer reduces the heat transfer from the fuel to the coolant. These six hottest miniplates have the following thermal characteristics at BOC: (1) Peak fuel centerline temperature >300 C; (2) Peak cladding temperature >200 C; (3) Peak hydroxide temperature >190 C; (4) Peak hydroxide-water interface temperature >140 C; and (5) Peak heat flux >565 W/cm2.

  17. Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

    SciTech Connect (OSTI)

    Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.

    2009-08-19T23:59:59.000Z

    Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.

  18. Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility

    SciTech Connect (OSTI)

    Salah, Wa'el [Synchrotron-light for Experimental Science and Application in the Middle East (SESAME), P.O. Box 7, Allan 19252 (Jordan); Department of Physics, The Hashemite University, Zarqa 13115 (Jordan); Sanchez del Rio, M. [European Synchrotron Radiation Facility, Bp 220, 38043 Grenoble Cedex (France); Hoorani, H. [Synchrotron-light for Experimental Science and Application in the Middle East (SESAME), P.O. Box 7, Allan 19252 (Jordan)

    2009-09-15T23:59:59.000Z

    The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x10{sup 11} photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

  19. ANALYSIS OF THE RADIATION FLUX PROFILE OF THE 100 SUN PROMOTEO FACETTED DISH CONCENTRATOR

    E-Print Network [OSTI]

    @fe.infn.it 2 Centre for Sustainable Energy Systems, Australian National University, Canberra ACT 0200 AUSTRALIA on the incident light, the current in a string of identical solar cells will be limited by the cell with the least, due to the need for both a tightly toleranced mirror support structure and a precise solar tracking

  20. MEAN-FLUX-REGULATED PRINCIPAL COMPONENT ANALYSIS CONTINUUM FITTING OF SLOAN DIGITAL SKY SURVEY Ly{alpha} FOREST SPECTRA

    SciTech Connect (OSTI)

    Lee, Khee-Gan; Spergel, David N. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Suzuki, Nao, E-mail: lee@astro.princeton.edu [E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2012-02-15T23:59:59.000Z

    Continuum fitting is an important aspect of Ly{alpha} forest science, since errors in the derived optical depths scale with the fractional continuum error. However, traditional methods of estimating continua in noisy and moderate-resolution spectra (e.g., Sloan Digital Sky Survey, SDSS; S/N {approx}< 10 pixel{sup -1} and R {approx} 2000), such as power-law extrapolation or dividing by the mean spectrum, achieve no better than {approx}15% rms accuracy. To improve on this, we introduce mean-flux-regulated principal component analysis (MF-PCA) continuum fitting. In this technique, PCA fitting is carried out redward of the quasar Ly{alpha} line in order to provide a prediction for the shape of the Ly{alpha} forest continuum. The slope and amplitude of this continuum prediction is then corrected using external constraints for the Ly{alpha} forest mean flux. This requires prior knowledge of the mean flux, (F), but significantly improves the accuracy of the flux transmission, F {identical_to} exp (- {tau}), estimated from each pixel. From tests on mock spectra, we find that MF-PCA reduces the errors to 8% rms in S/N {approx} 2 spectra, and <5% rms in spectra with S/N {approx}> 5. The residual Fourier power in the continuum is decreased by a factor of a few in comparison with dividing by the mean continuum, enabling Ly{alpha} flux power spectrum measurements to be extended to {approx}2 Multiplication-Sign larger scales. Using this new technique, we make available continuum fits for 12,069 z > 2.3 Ly{alpha} forest spectra from SDSS Data Release 7 for use by the community. This technique is also applicable to future releases of the ongoing Baryon Oscillations Spectroscopic Survey, which obtains spectra for {approx}150, 000 Ly{alpha} forest spectra at low signal-to-noise (S/N {approx} 2).

  1. Radiation Detection Scenario Analysis Toolbox (RADSAT) Test Case Implementation Final Report

    SciTech Connect (OSTI)

    Shaver, Mark W.

    2010-09-27T23:59:59.000Z

    Final report for the project. This project was designed to demonstrate the use of the Radiation Detection Scenario Analysis Toolbox (RADSAT) radiation detection transport modeling package (developed in a previous NA-22 project) for specific radiation detection scenarios important to proliferation detection.

  2. Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

    2009-01-01T23:59:59.000Z

    This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

  3. Radiation and thermal analysis of production solenoid for Mu2e experimental setup

    SciTech Connect (OSTI)

    Pronskikh, V.S.; Kashikhin, V.V.; Mokhov, N.V.; /Fermilab

    2011-03-01T23:59:59.000Z

    The Muon-to-Electron (Mu2e) experiment at Fermilab, will seek the evidence of direct muon to electron conversion at the sensitivity level where it cannot be explained by the Standard Model. An 8-GeV 25-kW proton beam will be directed onto a tilted gold target inside a large-bore superconducting Production Solenoid (PS) with the peak field on the axis of {approx}5T. The negative muons resulting from the pion decay will be captured in the PS aperture and directed by an S-shaped Transport Solenoid towards the stopping target inside the Detector Solenoid. In order for the superconducting magnets to operate reliably and with a sufficient safety margin, the peak neutron flux entering the coils must be reduced by 3 orders of magnitude that is achieved by means of a sophisticated absorber placed in the magnet aperture. The proposed absorber, consisting of W- and Cu-based alloy parts, is optimized for the performance and cost. Results of MARS15 simulations of energy deposition and radiation are reported. The results of the PS magnet thermal analysis, coordinated with the coil cooling scheme, are reported as well for the selected absorber design.

  4. Detection of coincident radiations in a single transducer by pulse shape analysis

    DOE Patents [OSTI]

    Warburton, William K. (Menlo Park, CA)

    2008-03-11T23:59:59.000Z

    Pulse shape analysis determines if two radiations are in coincidence. A transducer is provided that, when it absorbs the first radiation produces an output pulse that is characterized by a shorter time constant and whose area is nominally proportional to the energy of the absorbed first radiation and, when it absorbs the second radiation produces an output pulse that is characterized by a longer time constant and whose area is nominally proportional to the energy of the absorbed second radiation. When radiation is absorbed, the output pulse is detected and two integrals are formed, the first over a time period representative of the first time constant and the second over a time period representative of the second time constant. The values of the two integrals are examined to determine whether the first radiation, the second radiation, or both were absorbed in the transducer, the latter condition defining a coincident event.

  5. Analysis of Piston Heat Flux for Highly Complex Piston Shapes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformanceof Energy Piston Heat Flux for Highly

  6. Analysis and results of a hydrogen moderated isotope production assembly in the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, D.W.; Rawlins, J.A.; Carter, L.L.; Brager, H.R.; Schenter, R.E.

    1988-06-01T23:59:59.000Z

    A cobalt test assembly containing yttrium hydride pins for neutron moderation was irradiated in the Fast Flux Test Facility during Cycle 9A for 137.7 equivalent full-power days at a power level of 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal used to produce /sup 60/Co and a set of four pins with europium oxide to produce /sup 153/Gd, a radioisotope used in detection of the bone disease osteoporosis. Postirradiation examination of the cobalt pins determined the /sup 60/Co was produced with an accuracy of about 5%. The measured /sup 60/Co spatially distributed concentrations were within 20% of the calculated concentrations. The assembly average /sup 60/Co measured activity was 4% less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes /sup 152/Eu and /sup 154/Eu to an absolute accuracy of about 10%. The measured europium radioisotope and /sup 153/Gd concentrations were within 20% of calculated values. The hydride assembly performed well and is an excellent vehicle for many Fast Flux Test Facility isotope production applications. The results also demonstrate the accuracy of the calculational methods developed by the Westinghouse Hanford Company for predicting isotope production rates in this type of assembly. 4 refs., 5 figs., 2 tabs.

  7. analysis radiation therapy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    therapy treatment for cancer Venue: Science Gallery Trinity College Therapist, Zagreb, Croatia 17.00-17.30: Radiation Therapy for Prostate Cancer: Professional and Patient...

  8. Scattering of particles by radiation fields: a comparative analysis

    E-Print Network [OSTI]

    Donato Bini; Andrea Geralico; Maria Haney; Robert T. Jantzen

    2014-08-22T23:59:59.000Z

    The features of the scattering of massive neutral particles propagating in the field of a gravitational plane wave are compared with those characterizing their interaction with an electromagnetic radiation field. The motion is geodesic in the former case, whereas in the case of an electromagnetic pulse it is accelerated by the radiation field filling the associated spacetime region. The interaction with the radiation field is modeled by a force term entering the equations of motion proportional to the 4-momentum density of radiation observed in the particle's rest frame. The corresponding classical scattering cross sections are evaluated too.

  9. Analysis of the empirical relations between visible solar radiation, the solar altitude and the transparency of the atmosphere 

    E-Print Network [OSTI]

    Garcia Occhipinti, Antonio

    1965-01-01T23:59:59.000Z

    ls determined by a four parameter system including the two parameters which characterize the transmission of the direct solar radiation. The four parameter model ls )ustified in terms of actual measurements for clear sky conditions. The system... Sketch Illustrating Coordinate System, . 39 4, 2 The Coordinate System Used to Describe the Multiple Scattering Radiation Field 41 4, 3 Optical Thickness Coordinate Schematic of the Zv + 2 Radiant Fluxes of the Diffuse Radiation Field Model 47 4. 5...

  10. Efficient Energy Transfer in Light-Harvesting Systems, II: Quantum-Classical Comparison, Flux Network, and Robustness Analysis

    E-Print Network [OSTI]

    Jianlan Wu; Fan Liu; Jian Ma; Robert J. Silbey; Jianshu Cao

    2012-09-05T23:59:59.000Z

    Following the calculation of optimal energy transfer in thermal environment in our first paper (Wu et al., New J. Phys., 2010, 12, 105012), full quantum dynamics and leading-order `classical' hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time or in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model, the quantum-classical comparison with the flux network analysis is summarized in the appendix. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse distribution of energy transfer pathways.

  11. Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the ZonalGEF Method

    E-Print Network [OSTI]

    Yuen, Walter W.

    Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the Zonal­GEF Method Walter to analyze radiative heat transfer in high porosity insulation materials which have a large scattering for LI900, a material used in the insulation tile for the space shuttle. Comparisons are presented

  12. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling

    E-Print Network [OSTI]

    Gitelson, Anatoly

    Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative for Sciences, 260 Panama Street, Stanford, CA 94305, USA d Center for Advanced Land Management Information squares regression We used synthetic reflectance spectra generated by a radiative transfer model, PROSPECT

  13. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling

    E-Print Network [OSTI]

    Gitelson, Anatoly

    Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative for Sciences, 260 Panama Street, Stanford, CA 94305, USA d Center for Advanced Land Management Information regression We used synthetic reflectance spectra generated by a radiative transfer model, PROSPECT-5

  14. Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.; Delanoe, Julien; Deng, Min

    2013-05-22T23:59:59.000Z

    Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on the cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.

  15. A DATA-CENTERED COLLABORATION PORTAL TO SUPPORT GLOBAL CARBON-FLUX ANALYSIS

    SciTech Connect (OSTI)

    Agarwal, Deborah A.; Humphrey, Marty; Beekwilder, Norm; Jackson, Keith; Goode, Monte; van Ingen, Catharine

    2009-04-07T23:59:59.000Z

    Carbon-climate, like other environmental sciences, has been changing. Large-scalesynthesis studies are becoming more common. These synthesis studies are often conducted by science teams that are geographically distributed and on datasets that are global in scale. A broad array of collaboration and data analytics tools are now available that could support these science teams. However, building tools that scientists actually use is hard. Also, moving scientists from an informal collaboration structure to one mediated by technology often exposes inconsistencies in the understanding of the rules of engagement between collaborators. We have developed a scientific collaboration portal, called fluxdata.org, which serves the community of scientists providing and analyzing the global FLUXNET carbon-flux synthesis dataset. Key things we learned or re-learned during our portal development include: minimize the barrier to entry, provide features on a just-in-time basis, development of requirements is an on-going process, provide incentives to change leaders and leverage the opportunity they represent, automate as much as possible, and you can only learn how to make it better if people depend on it enough to give you feedback. In addition, we also learned that splitting the portal roles between scientists and computer scientists improved user adoption and trust. The fluxdata.org portal has now been in operation for ~;;1.5 years and has become central to the FLUXNET synthesis efforts.

  16. Physics of String Flux Compactifications

    E-Print Network [OSTI]

    Frederik Denef; Michael R. Douglas; Shamit Kachru

    2007-01-06T23:59:59.000Z

    We provide a qualitative review of flux compactifications of string theory, focusing on broad physical implications and statistical methods of analysis.

  17. Efficient energy transfer in light-harvesting systems: Quantum-classical comparison, flux network, and robustness analysis

    SciTech Connect (OSTI)

    Wu Jianlan [Physics Department, Zhejiang University, 38 ZheDa Road, Hangzhou, Zhejiang 310027 (China); Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Liu Fan; Silbey, Robert J.; Cao Jianshu [Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Ma Jian [Physics Department, Zhejiang University, 38 ZheDa Road, Hangzhou, Zhejiang 310027 (China)

    2012-11-07T23:59:59.000Z

    Following the calculation of optimal energy transfer in thermal environment in our first paper [J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010)], full quantum dynamics and leading-order 'classical' hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time or in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S. Cao, J. Phys. Chem. Lett. 2, 3045 (2011)], the quantum-classical comparison with the flux network analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse distribution of energy transfer pathways.

  18. Near-Core and In-Core Neutron Radiation Monitors for Real Time Neutron Flux Monitoring and Reactor Power Level Measurements

    SciTech Connect (OSTI)

    Douglas S. McGregor; Marvin L. Adams; Igor Carron; Paul Nelson

    2006-06-12T23:59:59.000Z

    MPFDs are a new class of detectors that utilize properties from existing radiation detector designs. A majority of these characteristics come from fission chamber designs. These include radiation hardness, gamma-ray background insensitivity, and large signal output.

  19. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect (OSTI)

    Feng, Mary, E-mail: maryfeng@umich.edu [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Normolle, Daniel [Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (United States)] [Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Pan, Charlie C. [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Dawson, Laura A. [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada)] [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Amarnath, Sudha [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Ensminger, William D. [Department of Internal Medicine, Division of Hematology Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)] [Department of Internal Medicine, Division of Hematology Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Lawrence, Theodore S.; Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)

    2012-09-01T23:59:59.000Z

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  20. Modeling and Analysis of Solar Radiation Potentials on Building Rooftops

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Kodysh, Jeffrey B [ORNL; Bhaduri, Budhendra L [ORNL

    2012-01-01T23:59:59.000Z

    The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  1. Flux and flexibility : a comparative institutional analysis of evolving university-industry relationships in MIT, Cambridge and Tokyo

    E-Print Network [OSTI]

    Hatakenaka, Sachi, 1961-

    2002-01-01T23:59:59.000Z

    University-industry relationships are in a state of flux. They represent important strategic issues for universities, for industry, and for governments alike. This confluence of interests has led to experimentation in which ...

  2. Nuisance Source Population Modeling for Radiation Detection System Analysis

    SciTech Connect (OSTI)

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05T23:59:59.000Z

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial source frequencies, but leave the task of estimating these frequencies for future work. Modeling of nuisance source populations is only useful if it helps in understanding detector system performance in real operational environments. Examples of previous studies in which nuisance source models played a key role are briefly discussed. These include screening of in-bound urban traffic and monitoring of shipping containers in transit to U.S. ports.

  3. Folie 1 > DESY, 14.11.2006 Analysis of coherent terahertz synchrotron radiation with a

    E-Print Network [OSTI]

    Folie 1 > DESY, 14.11.2006 Analysis of coherent terahertz synchrotron radiation Planetenforschung Rutherfordstr. 2, 12489 Berlin #12;Folie 2 > DESY, 14.11.2006 Outline Coherent synchrotron Outlook #12;Folie 3 > DESY, 14.11.2006 BESSY II reference orbit: L = 240 m L bunch Revolution: 1.25 MHz, 0

  4. Non-destructive metallurgical analysis of astrolabes utilizing synchrotron radiation.

    SciTech Connect (OSTI)

    Newbury, B.; Stephenson, B.; Almer, J. D.; Notis, M.; Haeffner, D. R.; Slade Cargill, G., III

    2002-05-22T23:59:59.000Z

    From the experiments performed it is possible to determine a wide range of information about the metallurgy of the astrolabes studied. It was found that different brass alloys were used for components that were cast and those that were mechanically deformed. Chemical composition, forming history, and thickness measurements are all determined non-destructively, illustrating that this technique could be useful for many applications with metal artifact analysis where non-intrusive methods are required.

  5. Radiative component and combined heat transfer in the thermal calculation of finned tube banks

    SciTech Connect (OSTI)

    Stehlik, P. [Technical Univ. of Brno (Czech Republic). Dept. of Process Engineering] [Technical Univ. of Brno (Czech Republic). Dept. of Process Engineering

    1999-01-01T23:59:59.000Z

    For more exact calculation of combined heat transfer in the case of finned tube banks (e.g., in the convective section of a furnace), the radiative heat transfer cannot be neglected. A new method for relatively simple calculation of total heat flux (convection + radiation + conduction in fins) is fully compatible with that for bare tube banks/bundles developed earlier. It is based on the method of radiative coefficients. However, the resulting value of heat flux must be corrected due to fin thickness and especially due to the fin radiative influence. For this purpose the so-called multiplicator of heat flux was introduced. The applicability of this methods has been demonstrated on a tubular fired heater convective section. A developed computer program based on the method has also been used for an analysis of the influence of selected parameters to show the share of radiation on the total heat flux.

  6. Symmetry analysis of radiative spacetimes with a null isotropy using GHP formalism

    E-Print Network [OSTI]

    S. Brian Edgar; Michael Bradley; M. Piedade Machado Ramos

    2014-06-30T23:59:59.000Z

    A complete and simple invariant classification of the conformally flat pure radiation metrics with a negative cosmological constant that were obtained by integration using the generalised invariant formalism is presented. We show equivalence between these metrics and the corresponding type O subclass of the more general spacetime studied by Siklos. The classification procedure indicates that the metrics possess a one degree of null isotropy freedom which has very interesting repercussions in the symmetry analysis. The Killing and homothetic vector analysis in GHP formalism is then generalised to this case were there is only one null direction defined geometrically. We determine the existing Killing vectors for the different subclasses that arise in the classification and compare these results to those obtained in the symmetry analysis performed by Siklos for a larger class of metrics with Ricci tensor representing a pure radiation field and a negative cosmological constant. It is also shown that there are no homothetic Killing vectors present.

  7. Thermal stress analysis of eccentric tube receiver using concentrated solar radiation

    SciTech Connect (OSTI)

    Wang, Fuqiang; Shuai, Yong; Yuan, Yuan; Yang, Guo; Tan, Heping [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China)

    2010-10-15T23:59:59.000Z

    In the parabolic trough concentrator with tube receiver system, the heat transfer fluid flowing through the tube receiver can induce high thermal stress and deflection. In this study, the eccentric tube receiver is introduced with the aim to reduce the thermal stresses of tube receiver. The ray-thermal-structural sequential coupled numerical analyses are adopted to obtain the concentrated heat flux distributions, temperature distributions and thermal stress fields of both the eccentric and concentric tube receivers. During the sequential coupled numerical analyses, the concentrated heat flux distribution on the bottom half periphery of tube receiver is obtained by Monte-Carlo ray tracing method, and the fitting function method is introduced for the calculated heat flux distribution transformation from the Monte-Carlo ray tracing model to the CFD analysis model. The temperature distributions and thermal stress fields are obtained by the CFD and FEA analyses, respectively. The effects of eccentricity and oriented angle variation on the thermal stresses of eccentric tube receiver are also investigated. It is recommended to adopt the eccentric tube receiver with optimum eccentricity and 90 oriented angle as tube receiver for the parabolic trough concentrator system to reduce the thermal stresses. (author)

  8. Assessment of energetic costs of AhR activation by ?-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    SciTech Connect (OSTI)

    Nault, Rance, E-mail: naultran@msu.edu [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Abdul-Fattah, Hiba [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Mironov, Gleb G.; Berezovski, Maxim V. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Moon, Thomas W. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)

    2013-08-15T23:59:59.000Z

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist ?-naphthoflavone (?NF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 ?M ?NF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by ?NF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to ?NF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  9. Radiation and Thermal Analysis of Superconducting Quadrupoles in the Interaction Region of Linear Collider

    SciTech Connect (OSTI)

    Drozhdin, A.I.; Kashikhin, V.V.; Kashikhin, V.S.; Lopes, M.L.; Mokhov, N.V.; Zlobin, A.V.; /Fermilab; Seryi, Andrei; /SLAC

    2011-10-14T23:59:59.000Z

    Radiation heat deposition in the superconducting magnets of the Interaction Region (IR) of a linear collider can be a serious issue that limits the magnet operating margins and shortens the material lifetime. Radiation and thermal analyses of the IR quadrupoles in the incoming and extraction beam lines of the ILC are performed in order to determine the magnet limits. This paper presents an analysis of the radial, azimuthal and longitudinal distributions of heat deposition in the incoming and disrupted beam doublets. Operation margins of the magnets based on NbTi superconductor are calculated and compared. The radiation and thermal analysis of the ILC IR quadrupoles based on Rutherford type cables was performed. It was found that the peak radiation heat deposition takes place in the second extraction quadrupole QFEX2. The maximum power density in the coil is {approx}17mW/g. This is rather high, comparing to the proton machines (LHC). However, the fast radial decay of the heat deposition together with the high thermal conductivity of the Rutherford type cable limits the coil temperatures to a moderate level. It was determined that both 2-layer and 4-layer QFEX2 magnet designs have thermal margins of a factor of {approx}4 at the nominal gradient of 31.3 T/m. Because of the large margins, these magnets can easily accommodate possible changes in the IR optics and heat deposition levels.

  10. Performance Evaluation of Undulator Radiation at CEBAF

    SciTech Connect (OSTI)

    Chuyu Liu, Geoffrey Krafft, Guimei Wang

    2010-05-01T23:59:59.000Z

    The performance of undulator radiation (UR) at CEBAF with a 3.5 m helical undulator is evaluated and compared with APS undulator-A radiation in terms of brilliance, peak brilliance, spectral flux, flux density and intensity distribution.

  11. Collection and analysis of environmental radiation data using a desktop computer

    SciTech Connect (OSTI)

    Gogolak, C V

    1982-04-01T23:59:59.000Z

    A portable instrumentation sytem using a Hewlett-Packard HP-9825 desktop computer for the collection and analysis of environmental radiation data is described. Procedures for the transmission of data between the HP-9825 and various nuclear counters are given together with a description of the necessary hardware and software. Complete programs for the analysis of Ge(Li) and NaI(Tl) gamma-ray spectra, high pressure ionization chamber monitor data, /sup 86/Kr monitor data and air filter sample alpha particle activity measurements are presented. Some utility programs, intended to increase system flexibility, are included.

  12. Reliability analysis of solar photovoltaic system using hourly mean solar radiation data

    SciTech Connect (OSTI)

    Moharil, Ravindra M. [Department of Electrical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, Maharashtra (India); Kulkarni, Prakash S. [Department of Electrical Engineering, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440011, Maharashtra (India)

    2010-04-15T23:59:59.000Z

    This paper presents the hourly mean solar radiation and standard deviation as inputs to simulate the solar radiation over a year. Monte Carlo simulation (MCS) technique is applied and MATLAB program is developed for reliability analysis of small isolated power system using solar photovoltaic (SPV). This paper is distributed in two parts. Firstly various solar radiation prediction methods along with hourly mean solar radiation (HMSR) method are compared. The comparison is carried on the basis of predicted electrical power generation with actual power generated by SPV system. Estimation of solar photovoltaic power using HMSR method is close to the actual power generated by SPV system. The deviation in monsoon months is due to the cloud cover. In later part of the paper various reliability indices are obtained by HMSR method using MCS technique. Load model used is IEEE-RTS. Reliability indices, additional load hours (ALH) and additional power (AP) reduces exponentially with increase in load indicates that a SPV source will offset maximum fuel when all of its generated energy is utilized. Fuel saving calculation is also investigated. Case studies are presented for Sagardeep Island in West Bengal state of India. (author)

  13. Analysis of the empirical relations between visible solar radiation, the solar altitude and the transparency of the atmosphere

    E-Print Network [OSTI]

    Garcia Occhipinti, Antonio

    1965-01-01T23:59:59.000Z

    ANALYSIS OF THE EMPIRICAL RELATIONS BETWEEN VISUAL SOLAR RADIATION, THE SOLAR ALTITUDE AND THE TRANSPARENCY OF THE ATMOSPHERE A Thesis A. Garcia Occhipinti Submitted to the Graduate College of the Texas ARM Untverstty in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January 1965 Major Subject: Oceanography ANALYSIS OF THE EMPIRICAL RELATIONS BETWEEN VISIBLE SOLAR RADIATION, THE SOLAR ALTITUDE AND THE TRANSPARENCY OF THE ATMOSPHERE A Thesis A. Garcia Occhipinti...

  14. Analysis of the spectroscopy of a hybrid system composed of a superconducting flux qubit and diamond NV centers

    E-Print Network [OSTI]

    H. Cai; Y. Matsuzaki; K. Kakuyanagi; H. Toida; X. Zhu; N. Mizuochi; K. Nemoto; K. Semba; W. J. Munro; S. Saito; H. Yamaguchi

    2015-05-28T23:59:59.000Z

    A hybrid system that combines the advantages of a superconducting flux qubit and an electron spin ensemble in diamond is one of the promising devices to realize quantum information processing. Exploring the properties of the superconductor diamond system is essential for the efficient use of this device. When we perform spectroscopy of this system, significant power broadening is observed. However, previous models to describe this system are known to be applicable only when the power broadening is negligible. Here, we construct a new approach to analyze this system with strong driving, and succeed to reproduce the spectrum with the power broadening. Our results provide an efficient way to analyze this hybrid system.

  15. Thermality of the Hawking flux

    E-Print Network [OSTI]

    Matt Visser

    2015-02-09T23:59:59.000Z

    Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only "approximately" Planck-shaped over a bounded frequency range. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is "approximately" Planck-shaped from both above and below --- the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.

  16. Flux analysis of central metabolic pathways in the Fe(III)-reducing organism Geobacter metallireducens via 13C isotopiclabeling

    SciTech Connect (OSTI)

    Tang, Yinjie J.; Chakraborty, Romy; Martin, Hector Garcia; Chu,Jeannie; Hazen, Terry C.; Keasling, Jay D.

    2007-08-13T23:59:59.000Z

    We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The model indicated that over 90 percent of the acetate wascompletely oxidized to CO2 via a complete tricarboxylic acid (TCA) cyclewhile reducing iron. Pyruvate carboxylase and phosphoenolpyruvatecarboxykinase were present under these conditions, but enzymes in theglyoxylate shunt and malic enzyme were absent. Gluconeogenesis and thepentose phosphate pathway were mainly employed for biosynthesis andaccounted for less than 3 percent of total carbon consumption. The modelalso indicated surprisingly high reversibility in the reaction betweenoxoglutarate and succinate. This step operates close to the thermodynamicequilibrium possibly because succinate is synthesized via a transferasereaction, and its product, acetyl-CoA, inhibits the conversion ofoxoglutarate to succinate. These findings enable a better understandingof the relationship between genome annotation and extant metabolicpathways in G. metallireducens.

  17. EUV mirror based absolute incident flux detector

    DOE Patents [OSTI]

    Berger, Kurt W.

    2004-03-23T23:59:59.000Z

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  18. Harmonic Analysis of Time Variations Observed in the Solar Radio Flux Measured at 810 MHz from 1957 to 2004

    E-Print Network [OSTI]

    S. Zieba; J. Maslowski; A. Michalec; G. Michalek; A. Kulak

    2007-01-15T23:59:59.000Z

    Long-running measurements of the solar radio flux density at 810 MHz were processed. Based on the least-squares method and using modified periodograms and an iterative technique of fitting and subtracting sinusoids in the time domain, frequency, amplitude, and phase characteristics of any analyzed time series were obtained. Solar cycles 20, 21, and 22 and shorter segments around solar minima and maxima were examined separately. Also, dynamic studies with 405, 810, and 1620 day windows were undertaken. The harmonic representations obtained for all these time series indicate large differences among solar cycles and their segments. We show that the solar radio flux at 810 MHz violates the Gnevyshev-Ohl rule for the pair of cycles 22-23. Analyzing the period 1957-2004, the following spectral periods longer than 1350 days were detected: 10.6, 8.0, 28.0, 5.3, 55.0, 3.9, 6.0, 4.4, and 14.6 yr. For spectral periods between 270 and 1350 days the 11 yr cycle is not recognized. We think that these harmonics form ``impulses of activity'' or a quasi-biennial cycle defined in the Benevolenskaya model of the ``double magnetic cycle.'' The value of about 0.09 is proposed for the interaction parameter (between the low- and high-frequency components) of this model. We confirm the intermittent behavior of the periodicity near 155 days. Correlation coefficients between the radio emission at 810 MHz and sunspot numbers, as well as the radio emission at 2800 MHz calculated for 540 day intervals, depend on the solar cycle phase.

  19. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  20. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    SciTech Connect (OSTI)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01T23:59:59.000Z

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying the most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC.

  1. Analysis of Gamma Radiation from a Radon Source: Indications of a Solar Influence

    E-Print Network [OSTI]

    Peter A. Sturrock; Gideon Steinitz; Ephraim Fischbach; Daniel Javorsek, II; Jere H. Jenkins

    2012-05-01T23:59:59.000Z

    This article presents an analysis of about 29,000 measurements of gamma radiation associated with the decay of radon in a sealed container at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between 28 January 2007 and 10 May 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis reveals a number of periodicities, including two at approximately 11.2 year$^{-1}$ and 12.5 year$^{-1}$. We have previously found these oscillations in nuclear-decay data acquired at the Brookhaven National Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB), and we have suggested that these oscillations are attributable to some form of solar radiation that has its origin in the deep solar interior. A curious property of the GSI data is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. This may be a systematic effect but, if it is not, this property should help narrow the theoretical options for the mechanism responsible for decay-rate variability.

  2. Feasibility of Economic Analysis of Radiation Therapy Oncology Group (RTOG) 91-11 Using Medicare Data

    SciTech Connect (OSTI)

    Konski, Andre, E-mail: akonski@med.wayne.ed [Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, MI (United States); Bhargavan, Mythreyi [American College of Radiology, Reston, VA (United States); Owen, Jean [Radiation Therapy Oncology Group, Philadelphia, PA (United States); Paulus, Rebecca [Department of Radiation Oncology, Maimonides Medical Center, Brooklyn, NY (United States); Cooper, Jay [Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Forastiere, Arlene [Department of Radiation Oncology, Maimonides Medical Center, Brooklyn, NY (United States); Ang, K. Kian [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX (United States); Watkins-Bruner, Deborah [Department of Nursing, University of Pennsylvania, Philadelphia, PA (United States)

    2011-02-01T23:59:59.000Z

    Purpose: The specific aim of this analysis was to evaluate the feasibility of performing a cost-effectiveness analysis using Medicare data from patients treated on a randomized Phase III clinical trial. Methods and Materials: Cost data included Medicare Part A and Part B costs from all providers-inpatient, outpatient, skilled nursing facility, home health, hospice, and physicians-and were obtained from the Centers for Medicare and Medicaid Services for patients eligible for Medicare, treated on Radiation Therapy Oncology Group (RTOG) 9111 between 1992 and 1996. The 47-month expected discounted (annual discount rate of 3%) cost for each arm of the trial was calculated in 1996 dollars, with Kaplan-Meier sampling average estimates of survival probabilities for each month and mean monthly costs. Overall and disease-free survival was also discounted 3%/year. The analysis was performed from a payer's perspective. Incremental cost-effectiveness ratios were calculated comparing the chemotherapy arms to the radiation alone arm. Results: Of the 547 patients entered, Medicare cost data and clinical outcomes were available for 66 patients. Reasons for exclusion included no RTOG follow-up, Medicare HMO enrollment, no Medicare claims since trial entry, and trial entry after 1996. Differences existed between groups in tumor characteristics, toxicity, and survival, all which could affect resource utilization. Conclusions: Although we were able to test the methodology of economic analysis alongside a clinical trial using Medicare data, the results may be difficult to translate to the entire trial population because of non-random missing data. Methods to improve Medicare data capture and matching to clinical trial samples are required.

  3. Analysis and results of a hydrogen-moderated isotope production assembly in the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, D.W.; Rawlins, J.A.; Carter, L.L.; Brager, H.R.; Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (USA))

    1989-10-01T23:59:59.000Z

    This paper reports on a cobalt test assembly containing yttrium hydride pins for neutron moderation irradiated in the Fast Flux Test Facility (FFTF) during cycle 9A for 137.7 equivalent full-power days at a power level of 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal used to produce {sup 60}Co and a set of four pins with europium oxide to produce {sup 153}Gd, a radioisotope used in detection of the bone disease osteoporosis. Postirradiation examination of the cobalt pins determined the {sup 60}Co production to be predictable to an accuracy of {approximately} 5%. The measured {sup 60}Co spatially distributed concentrations were within 20% of the calculated concentrations. The assembly average {sup 60}Co measured activity was 4% less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes {sup 152}Eu and {sup 154}Eu to an absolute accuracy of {approx equal} 10%. The measured europium radioisotope and {sup 153}Gd concentrations were within 20% of calculated values. The hydride assembly performed well and is an excellent vehicle for many FFTF isotope production applications. The results also demonstrate the accuracy of the calculational methods developed by the Westinghouse Hanford Company for predicting isotope production rates in this type of assembly.

  4. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10T23:59:59.000Z

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  5. Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using

    E-Print Network [OSTI]

    Protat, Alain

    Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm. The effect of uncertainty in retrieved quantities on the cloud radiative effect and radiative heating rates translates into sometimes large differences in cloud shortwave radiative effect (CRE) though the majority

  6. abscopal radiation effects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of symmetry. Numerical calculations in three dimensions of the radiative energy density, flux and pressure created by a stationary shock wave show how the radiation decreases...

  7. High-Flux Microchannel Solar Receiver

    Broader source: Energy.gov [DOE]

    This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

  8. Plutonium radiation surrogate

    DOE Patents [OSTI]

    Frank, Michael I. (Dublin, CA)

    2010-02-02T23:59:59.000Z

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  9. MicroShield analysis to calculate external radiation dose rates for several spent fuel casks

    SciTech Connect (OSTI)

    Marincel, M.K. [Missouri Univ., Rolla, MO (United States); Weiner, R.F.; Osborn, D.M. [Sandia National Laboratories, Albuquerque, NM (United States)

    2007-07-01T23:59:59.000Z

    The purpose of this MicroShield analysis is to calculate the external radiation, primarily gamma, dose rate for spent fuel casks. The reason for making this calculation is that currently all analyses of transportation risk assume that this external dose rate is the maximum allowed by regulation, 10 mrem/hr at 2 m from the casks, and the risks of incident-free transportation are thus always overestimated to an unknown extent. In order to do this, the program by Grove Software, MicroShield 7.01, was used to model three Nuclear Regulatory Commission (NRC) approved casks: HI-STAR 100, GA-4, and NAC-STC, loaded with specific source material. Dimensions were obtained from NUREG/CR-6672 and the Certificates of Compliance for each respective cask. Detectors were placed at the axial point at 1 m and 2 m from the outer gamma shielding of the casks. In the April 8, 2004 publication of the Federal Register, a notice of intent to prepare a Supplemental Yucca Mountain Environmental Impact Statement (DOE/EIS-0250F-S1) was published by the Office of Civilian Radioactive Waste Management (OCRWM) in order to consider design, construction, operation, and transportation of spent nuclear fuel to the Yucca Mountain repository [1]. These more accurate estimates of the external dose rates could be used in order to provide a more risk-informed analysis. (authors)

  10. On solar neutrino fluxes in radiochemical experiments

    E-Print Network [OSTI]

    R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky

    2005-12-08T23:59:59.000Z

    We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.

  11. Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report

    SciTech Connect (OSTI)

    Jerry Y. Harrington

    2012-09-21T23:59:59.000Z

    This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

  12. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  13. Gamma-Ray Signatures for State-Of-Health Analysis and Monitoring of Widely-Arrayed Radiation Portal Monitor Systems

    SciTech Connect (OSTI)

    Woodring, Mitchell L.; Ely, James H.; Angel, Linda K.; Wright, Ingrid H.; Eslinger, Melany A.; Pospical, A. Jill; Ellis, John E.

    2008-05-15T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) has deployed a large array of radiation portal monitors for the Department of Homeland Security U.S. Customs and Border Protection. These portal monitors scan incoming vehicles crossing the U.S. border and shipping containers leaving international ports for radioactive material via gamma-ray and neutron detection. Data produced and captured by these systems are recorded for every vehicle related to radiation signature, sensor/system status, and local background, as well as a host of other variables. Within the Radiation Portal Monitor Project at PNNL, state-of-health observation and analysis for the whole RPM system using these data to determine functionality and performance is being developed. (PIET-43741-TM-492)

  14. Radiation densitometry in tree-ring analysis: a review and procedure manual

    SciTech Connect (OSTI)

    Parker, M.L.; Taylor, F.G.; Doyle, T.W.; Foster, B.E.; Cooper, C.; West, D.C.

    1985-01-01T23:59:59.000Z

    An x-ray densitometry of wood facility is being established by the Environmental Sciences Division, Oak Ridge Natioanl Laboratory (ORNL). The objective is to apply tree-ring data to determine whether or not there is a fertilizer effect on tree growth from increased atmospheric carbon dioxide since the beginning of the industrial era. Intra-ring width and density data, including ring-mass will be detemined from tree-ring samples collected from sites located throughout the United States and Canada. This report is designed as a guide to assist ORNL scientists in building the x-ray densitometry system. The history and development of x-ray densitometry in tree-ring research is examined and x-ray densitometry is compared with other techniques. Relative wood and tree characteristics are described as are environmental and genetic factors affecting tree growth responses. Methods in x-ray densitometry are examined in detail and the techniques used at four operating laboratories are described. Some ways that dendrochronology has been applied in dating, in wood quality, and environmental studies are presented, and a number of tree-ring studies in Canada are described. An annotated bibliography of radiation densitometry in tree-ring analysis and related subjects is included.

  15. Failure Mode and Effect Analysis for Delivery of Lung Stereotactic Body Radiation Therapy

    SciTech Connect (OSTI)

    Perks, Julian R., E-mail: julian.perks@ucdmc.ucdavis.edu [University of California Davis Medical Center, Sacramento, CA (United States); Stanic, Sinisa; Stern, Robin L.; Henk, Barbara; Nelson, Marsha S.; Harse, Rick D.; Mathai, Mathew; Purdy, James A.; Valicenti, Richard K.; Siefkin, Allan D.; Chen, Allen M. [University of California Davis Medical Center, Sacramento, CA (United States)

    2012-07-15T23:59:59.000Z

    Purpose: To improve the quality and safety of our practice of stereotactic body radiation therapy (SBRT), we analyzed the process following the failure mode and effects analysis (FMEA) method. Methods: The FMEA was performed by a multidisciplinary team. For each step in the SBRT delivery process, a potential failure occurrence was derived and three factors were assessed: the probability of each occurrence, the severity if the event occurs, and the probability of detection by the treatment team. A rank of 1 to 10 was assigned to each factor, and then the multiplied ranks yielded the relative risks (risk priority numbers). The failure modes with the highest risk priority numbers were then considered to implement process improvement measures. Results: A total of 28 occurrences were derived, of which nine events scored with significantly high risk priority numbers. The risk priority numbers of the highest ranked events ranged from 20 to 80. These included transcription errors of the stereotactic coordinates and machine failures. Conclusion: Several areas of our SBRT delivery were reconsidered in terms of process improvement, and safety measures, including treatment checklists and a surgical time-out, were added for our practice of gantry-based image-guided SBRT. This study serves as a guide for other users of SBRT to perform FMEA of their own practice.

  16. The effects of radiation on spermatogenesis in the albino rat as determined by semen analysis

    E-Print Network [OSTI]

    Lawson, Rommon Loy

    1964-01-01T23:59:59.000Z

    AND ANIMAL RESTRAINT 10 V. EffECTS OF VARIOUS LEVELS OF ACUTE AND CHRONIC RADIATION ON SPERM VOLUME, TOTAL SPERM COUNT, PER CENT MOTILITY, PER CENT LIVE AND NORMAL SPERM, AND PER CENT ABNORMAL SPERM. . . . . . . . . . . . 17 VI. DISCUSSION..., and Probes 14 6. Complete Equipment Used 14 7. Collecting Platform 8. Animal in Collecting Position. 15 9. Effect of Radiation on Weight Changes (Acute). 23 10. Effect of Radiation on Packed Cell Volume (Acute) 11. Removing Copulation Plug from Glans...

  17. High-Flux Stress Testing of Encapsulants for Medium-Concentration CPV Applications

    SciTech Connect (OSTI)

    Kempe, M. D.; Kilkenny, M.; Moricone, T. J.; Zhang, J. Z.

    2009-09-01T23:59:59.000Z

    This study involved developing methods to expose transparent encapsulant materials to high (40 to 45 UV suns) optical fluxes of UV radiation to enable rapid evaluation of materials.

  18. An Analysis of a Spreader Bar Crane Mounted Gamma-Ray Radiation Detection System 

    E-Print Network [OSTI]

    Grypp, Matthew D

    2013-04-08T23:59:59.000Z

    photoelectric effect PMT photomultiplier tube PNNL Pacific Northwest National Laboratory viii PoT Port of Tacoma PVT poly-vinyl toluene R resolution RT real time RPM radiation portal monitor s second SBC spreader.... LITERATURE REVIEW ......................................................................................... 9 3.1 Radiation Portal Monitors ............................................................................ 9 3.2 General Areas...

  19. Time Variations of the Solar Neutrino Flux Data from Sage and Gallex-Gno Detectors Obtained by Rayleigh Power Spectrum Analysis

    E-Print Network [OSTI]

    Koushik Ghosh; Probhas Raychaudhuri

    2006-06-05T23:59:59.000Z

    We have used Rayleigh power spectrum analysis of the monthly solar neutrino flux data from (1) SAGE detector during the period from 1st January 1990 to 31st December 2000; (2) SAGE detector during the period from April 1998 to December 2001; (3) GALLEX detector during the period from May 1991 to January 1997; (4) GNO detector during the period from May 1998 to December 2001; (5) GALLEX-GNO detector (combined data) from May 1991 to December 2001 and (6) average of the data from GNO and SAGE detectors during the period from May 1998 to December 2001. (1) exhibits periodicity around 1.3, 4.3, 5.5, 6.3, 7.9, 8.7, 15.9, 18.7, 23.9, 32.9 and 48.7 months. (2) shows periodicity around 1.5, 2.9, 4.5, 10.1 months. For (3) we observe periodicity around 1.7, 18.7 and 26.9 months. For (4) periodicity is seen around 3.5, 5.5, 7.7 and 10.5 months. (5) gives periodicity around 1.7, 18.5, 28.5 and 42.1 months while (6) shows periodicity around 4.3, 6.9, 10.3 and 18.1 months. We have found almost similar periods in the solar flares, sunspot data, solar proton data which indicates that the solar activity cycle may be due to the variable character of nuclear energy generation inside the sun.

  20. Hypofractionation vs Conventional Radiation Therapy for Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Matched-Cohort Analysis

    SciTech Connect (OSTI)

    Janssens, Geert O., E-mail: g.janssens@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Jansen, Marc H. [Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam (Netherlands)] [Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam (Netherlands); Lauwers, Selmer J. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)] [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Nowak, Peter J. [Department of Radiation Oncology, Erasmus Medical Centre, Rotterdam (Netherlands)] [Department of Radiation Oncology, Erasmus Medical Centre, Rotterdam (Netherlands); Oldenburger, Foppe R. [Department of Radiation Oncology, Academic Medical Centre, Amsterdam (Netherlands)] [Department of Radiation Oncology, Academic Medical Centre, Amsterdam (Netherlands); Bouffet, Eric [Department of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto (Canada)] [Department of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto (Canada); Saran, Frank [Department of Pediatric Oncology, The Royal Marsden NHS Foundation Trust, Sutton (United Kingdom)] [Department of Pediatric Oncology, The Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Kamphuis-van Ulzen, Karin [Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)] [Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Lindert, Erik J. van [Department of Neurosurgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)] [Department of Neurosurgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Schieving, Jolanda H. [Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)] [Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Boterberg, Tom [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium)] [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium); Kaspers, Gertjan J. [Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam (Netherlands)] [Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam (Netherlands); Span, Paul N.; Kaanders, Johannes H. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)] [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Gidding, Corrie E. [Department of Pediatric Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)] [Department of Pediatric Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Hargrave, Darren [Department of Oncology, Great Ormond Street Hospital, London (United Kingdom)] [Department of Oncology, Great Ormond Street Hospital, London (United Kingdom)

    2013-02-01T23:59:59.000Z

    Purpose: Despite conventional radiation therapy, 54 Gy in single doses of 1.8 Gy (54/1.8 Gy) over 6 weeks, most children with diffuse intrinsic pontine glioma (DIPG) will die within 1 year after diagnosis. To reduce patient burden, we investigated the role of hypofractionation radiation therapy given over 3 to 4 weeks. A 1:1 matched-cohort analysis with conventional radiation therapy was performed to assess response and survival. Methods and Materials: Twenty-seven children, aged 3 to 14, were treated according to 1 of 2 hypofractionation regimens over 3 to 4 weeks (39/3 Gy, n=16 or 44.8/2.8 Gy, n=11). All patients had symptoms for {<=}3 months, {>=}2 signs of the neurologic triad (cranial nerve deficit, ataxia, long tract signs), and characteristic features of DIPG on magnetic resonance imaging. Twenty-seven patients fulfilling the same diagnostic criteria and receiving at least 50/1.8 to 2.0 Gy were eligible for the matched-cohort analysis. Results: With hypofractionation radiation therapy, the overall survival at 6, 9, and 12 months was 74%, 44%, and 22%, respectively. Progression-free survival at 3, 6, and 9 months was 77%, 43%, and 12%, respectively. Temporary discontinuation of steroids was observed in 21 of 27 (78%) patients. No significant difference in median overall survival (9.0 vs 9.4 months; P=.84) and time to progression (5.0 vs 7.6 months; P=.24) was observed between hypofractionation vs conventional radiation therapy, respectively. Conclusions: For patients with newly diagnosed DIPG, a hypofractionation regimen, given over 3 to 4 weeks, offers equal overall survival with less treatment burden compared with a conventional regimen of 6 weeks.

  1. Correlation analysis of mean global radiation values with mean brightness values for one year 

    E-Print Network [OSTI]

    Kolczynski, Edward Franklin

    1971-01-01T23:59:59.000Z

    quantities of global radiation, = kb. sin h i oi where i denotes the number of the month (1 to 12), Q. is the individual monthly quantity of global radiation, h . is the solar altitude relat- oi ed to noon of the middle day of the month, and k is the coei... which now exists in the data bank of this field. B. ~Db' t' The objective of the proposed research is to investigate a pos- sible relationship between global radiation, as measured from ground- based instruments, and mean brightness values...

  2. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  3. Analysis of a flexible polymeric film with imbedded micro heat pipes for spacecraft radiators

    E-Print Network [OSTI]

    McDaniels, Deborah Marie

    2001-01-01T23:59:59.000Z

    radiators are being developed to accommodate deployment mechanisms. An analytical model suggests that a lightweight polymeric material with imbedded micro heat pipe arrays can meet heat dissipation requirements while contributing less mass than competing...

  4. Analysis of the probability distribution of photocount number of the onemode stochastic radiation

    E-Print Network [OSTI]

    Yu. P. Virchenko; N. N. Vitokhina

    2005-02-11T23:59:59.000Z

    The Mandel probability distribution of one-mode stochastic radiation photocounts is analized. Approximations of n-photon registration probabilities with guaranteed accuracy are obtained in the case when the registration time is sufficiently small.

  5. Adaptation, Speciation, and Convergence: A Hierarchical Analysis of Adaptive Radiation in Caribbean Anolis Lizards

    E-Print Network [OSTI]

    Losos, Jonathan B.; Glor, Richard E.; Kolbe, Jason J.; Nicholson, Kirsten

    2006-05-01T23:59:59.000Z

    Caribbean Anolis lizards are a classic case of adaptive radiation, repeated four times across islands of the Greater Antilles. On each island, very similar patterns of evolutionary divergence have occurred, resulting in the evolution of the same set...

  6. axial flux permanent: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 13 Design and analysis aspects of radial flux air-cored permanent magnet wind generator system for direct battery charging applications. Open Access Theses and...

  7. Measurement and Analysis of Radio-frequency Radiation Exposure Level from Different Mobile Base Transceiver Stations in Ajaokuta and Environs, Nigeria

    E-Print Network [OSTI]

    Ushie, P O; Bolaji, Ayinmode; Osahun, O D

    2013-01-01T23:59:59.000Z

    We present the result of a preliminary assessment of radio-frequency radiation exposure from selected mobile base stations in Ajaokuta environs. The Power density of RF radiation within a radial distance of 125m was measured. Although values fluctuated due to the influence of other factors, including wave interference from other electromagnetic sources around reference base stations, we show from analysis that radiation exposure level is below the standard limit (4.5W/sqm for 900MHz and 9W/sqm for 18000MHz) set by the International Commission on Non-ionizing Radiation Protection (ICNIRP) and other regulatory agencies.

  8. Solar UV-B in tropical forest gaps: Analysis using direct and diffuse radiation

    SciTech Connect (OSTI)

    Flint, S.D.; Caldwell, M.M. [Utah State Univ., Logan, UT (United States)

    1995-06-01T23:59:59.000Z

    Experiments with natural levels of solar ultraviolet-B radiation (UV-B) have recently shown inhibition of the growth of some tropical forest tree seedlings. A knowledge of forest radiation environments is needed to help assess UV-B effects in natural situations. Although forest canopies strongly attenuate solar radiation, treefall gaps provide a very different radiation environment. We simultaneously measured both UV-B and photosynthetically active radiation (PAR) in forest gaps on Barro Colorado Island, Panama. Outside the forest, UV-B is predominately diffuse even under clear sky conditions. In sunflecks of small forest gaps, most of the UV-B was in the direct beam component. Compared to conditions outside the forest, the UV-B in these sunflecks was low relative to PAR. Shaded portions of the gap, in contrast, had proportionately high levels of UV-B relative to PAR. There are indications in the literature that relatively low UV-B levels may be effective under low PFD. Seasonal trends of PAR and UV-B in different locations in gaps can be inferred from hemispherical canopy photographs.

  9. Method and apparatus for simultaneous detection and measurement of charged particles at one or more levels of particle flux for analysis of same

    DOE Patents [OSTI]

    Denton, M. Bonner (Tucson, AZ); Sperline, Roger (Tucson, AZ), Koppenaal, David W. (Richland, WA), Barinaga, Charles J. (Richland, WA), Hieftje, Gary (Bloomington, IN), Barnes, IV, James H. (Santa Fe, NM); Atlas, Eugene (Irvine, CA)

    2009-03-03T23:59:59.000Z

    A charged particle detector and method are disclosed providing for simultaneous detection and measurement of charged particles at one or more levels of particle flux in a measurement cycle. The detector provides multiple and independently selectable levels of integration and/or gain in a fully addressable readout manner.

  10. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    SciTech Connect (OSTI)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen

    2012-10-02T23:59:59.000Z

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.

  11. Updated mortality analysis of radiation workers at Rocketdyne (Atomics International), 1948-2008

    SciTech Connect (OSTI)

    Boice, John [Vanderbilt University; Cohen, Sarah [IEI; Mumma, Michael [IEI; Ellis, Elizabeth D [ORNL; Eckerman, Keith F [ORNL; Leggett, Richard Wayne [ORNL; Boecker, Bruce [LRRI; Brill, Bertrand [Vanderbilt University; Henderson, Brian [University of Southern California, Los Angeles

    2011-01-01T23:59:59.000Z

    Updated analyses of mortality data are presented on 5,801 radiation workers, including 2,232 monitored for radionuclide intakes, and 41,169 non-radiation workers employed 1948-1999 at Rocketdyne (Atomics International). The worker population is unique in that lifetime occupational doses from all places of employment were sought and incorporated into the analyses. Further, radiation doses from intakes of 14 different radionuclides were calculated for 16 organs or tissues using biokinetic models of the International Commission on Radiation Protection (ICRP). The mean dose from external radiation was 13.5 mSv (maximum 1 Sv), and the mean lung dose from external and internal radiation combined was 19.0 mSv (maximum 3.6 Sv). An additional nine years of follow-up, from December 31,1999 through 2008, increased the person-years of observation by 21.7% to 196,674 (mean 33.9 years) and the number of cancer deaths by 50% to 684. Analyses included comparisons with the general population and the computation of standardized mortality ratios (SMRs), and internal comparisons using proportional hazards models. All cancers taken together (SMR 0.88; 95% CI 0.81-0.95), lung cancer (SMR 0.87; 95% CI 0.76-1.00) and leukemia other than chronic lymphocytic leukemia (CLL) (SMR 1.04; 95% 0.67-1.53) were not significantly elevated. Cox regression analyses revealed no significant dose-response trends for any cancer. For all cancers excluding leukemia, the relative risk (RR) at 100 mSv was estimated as 0.98 (95% CI 0.82-1.17) and for all leukemia other than CLL it was 1.06 (95% CI 0.50-2.23). Uranium was the primary radionuclide contributing to internal exposures, but significant increases in lung and kidney disease were not seen. The extended follow-up re-enforces the findings in the previous study in failing to observe a detectable increase in cancer deaths associated with radiation, but strong conclusions still cannot be drawn because of small numbers and relatively low career doses. Larger combined studies of early workers in the United States following similar methodologies are warranted to refine and clarify radiation risks following protracted exposures.

  12. Energy Fluxes optimization for PV integrated Rim.Missaoui, Ghaith.Warkozek, Seddik. Bacha, Stphane.Ploix.

    E-Print Network [OSTI]

    Boyer, Edmond

    -time simulation I. NOMENCLATURE t Sampling step time, [hour]. Sampling time of the anticipatory layer. i, Ksun, : Constants. heater Heat flux given by the radiator. sun Heat flux of sunlight through the window

  13. Updated Mortality Analysis of Radiation Workers at Rocketdyne (Atomics International), 1948-2008

    SciTech Connect (OSTI)

    Boice Jr JD, Colen SS, Mumma MT, Ellis ED, Eckerman DF, Leggett RW, Boecker BB, Brill B, Henderson BE

    2011-08-01T23:59:59.000Z

    Updated analyses of mortality data are presented on 46,970 workers employed 1948-1999 at Rocketdyne (Atomics International). Overall, 5,801 workers were involved in radiation activities, including 2,232 who were monitored for intakes of radionuclides, and 41,169 workers were engaged in rocket testing or other non-radiation activities. The worker population is unique in that lifetime occupational doses from all places of employment were sought, updated and incorporated into the analyses. Further, radiation doses from intakes of 14 different radionuclides were calculated for 16 organs or tissues using biokinetic models of the International Commission on Radiation Protection (ICRP). Because only negligible exposures were received by the 247 workers monitored for radiation activities after 1999, the mean dose from external radiation remained essentially the same at 13.5 mSv (maximum 1 Sv) as reported previously, as did the mean lung dose from external and internal radiation combined at 19.0 mSv (maximum 3.6 Sv). An additional 9 years of follow-up, from December 31,1999 through 2008, increased the person-years of observation for the radiation workers by 21.7% to 196,674 (mean 33.9 years) and the number of cancer deaths by 50% to 684. Analyses included external comparisons with the general population and the computation of standardized mortality ratios (SMRs) and internal comparisons using proportional hazards models and the computation of relative risks (RRs). A low SMR for all causes of death (SMR 0.82; 95% CI 0.78-0.85) continued to indicate that the Rocketdyne radiation workers were healthier than the general population and were less likely to die. The SMRs for all cancers taken together (SMR 0.88; 95% CI 0.81-0.95), lung cancer (SMR 0.87; 95% CI 0.76-1.00) and leukemia other than chronic lymphocytic leukemia (CLL) (SMR 1.04; 95% 0.67-1.53) were not significantly elevated. Cox regression analyses revealed no significant dose-response trends for any cancer. For all cancers excluding leukemia, the RR at 100 mSv was estimated as 0.98 (95% CI 0.82-1.17), and for all leukemia other than CLL it was 1.06 (95% CI 0.50-2.23). Uranium was the primary radionuclide contributing to internal exposures, but no significant increases in lung and kidney disease were seen. The extended follow-up reinforces the findings in the previous study in failing to observe a detectable increase in cancer deaths associated with radiation, but strong conclusions still cannot be drawn because of small numbers and relatively low career doses. Larger combined studies of early workers in the United States using similar methodologies are warranted to refine and clarify radiation risks after protracted exposures.

  14. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B [ORNL] [ORNL; Bass, Bennett Richard [ORNL] [ORNL; Williams, Paul T [ORNL] [ORNL; Phillips, Rick [ORNL] [ORNL; Erickson, Marjorie A [ORNL] [ORNL; Kirk, Mark T [ORNL] [ORNL; Stevens, Gary L [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  15. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    SciTech Connect (OSTI)

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-11-06T23:59:59.000Z

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.

  16. Structural design and analysis of a lightweight composite sandwich space radiator panel 

    E-Print Network [OSTI]

    Mukundan, Sudharsan

    2005-02-17T23:59:59.000Z

    The goal of this study is to design and analyze a sandwich composite panel with lightweight graphite foam core and carbon epoxy face sheets that can function as a radiator for the given payload in a satellite. This arrangement provides a lightweight...

  17. Spatial and dose–response analysis of fibrotic lung changes after stereotactic body radiation therapy

    SciTech Connect (OSTI)

    Vinogradskiy, Yevegeniy; Diot, Quentin; Kavanagh, Brian; Schefter, Tracey; Gaspar, Laurie; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)] [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)

    2013-08-15T23:59:59.000Z

    Purpose: Stereotactic body radiation therapy (SBRT) is becoming the standard of care for early stage nonoperable lung cancers. Accurate dose–response modeling is challenging for SBRT because of the decreased number of clinical toxicity events. As a surrogate for a clinical toxicity endpoint, studies have proposed to use radiographic changes in follow up computed tomography (CT) scans to evaluate lung SBRT normal tissue effects. The purpose of the current study was to use local fibrotic lung regions to spatially and dosimetrically evaluate lung changes in patients that underwent SBRT.Methods: Forty seven SBRT patients treated at our institution from 2003 to 2009 were used for the current study. Our patient cohort had a total of 148 follow up CT scans ranging from 3 to 48 months post-therapy. Post-treatment scans were binned into intervals of 3, 6, 12, 18, 24, 30, and 36 months after the completion of treatment. Deformable image registration was used to align the follow up CT scans with the pretreatment CT and dose distribution. Areas of visible fibrotic changes were contoured. The centroid of each gross tumor volume (GTV) and contoured fibrosis volume was calculated and the fibrosis volume location and movement (magnitude and direction) relative to the GTV and 30 Gy isodose centroid were analyzed. To perform a dose–response analysis, each voxel in the fibrosis volume was sorted into 10 Gy dose bins and the average CT number value for each dose bin was calculated. Dose–response curves were generated by plotting the CT number as a function of dose bin and time posttherapy.Results: Both fibrosis and GTV centroids were concentrated in the upper third of the lung. The average radial movement of fibrosis centroids relative to the GTV centroids was 2.6 cm with movement greater than 5 cm occurring in 11% of patients. Evaluating dose–response curves revealed an overall trend of increasing CT number as a function of dose. The authors observed a CT number plateau at doses ranging from 30 to 50 Gy for the 3, 6, and 12 months posttherapy time points. There was no evident plateau for the dose–response curves generated using data from the 18, 24, 30, and 36 months posttherapy time points.Conclusions: Regions of local fibrotic lung changes in patients that underwent SBRT were evaluated spatially and dosimetrically. The authors found that the average fibrosis movement was 2.6 cm with movement greater than 5 cm possible. Evaluating dose–response curves revealed an overall trend of increasing CT number as a function of dose. Furthermore, our dose–response data also suggest that one of the possible explanations of the CT number plateau effect may be the time posttherapy of the acquired data. Understanding normal tissue dose–response is important for reducing toxicity after SBRT, especially in cases where larger tumors are treated. The methods presented in the current work build on prior quantitative studies and further enhance the understanding of normal lung dose–response after SBRT.

  18. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  19. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  20. Radiation environment along the INTEGRAL orbit measured with the IREM monitor

    E-Print Network [OSTI]

    W. Hajdas; P. Bühler; C. Eggel; P. Favre; A. Mchedlishvili; A. Zehnder

    2003-08-15T23:59:59.000Z

    The INTEGRAL Radiation Environment Monitor (IREM) is a payload supporting instrument on board the INTEGRAL satellite. The monitor continually measures electron and proton fluxes along the orbit and provides this information to the spacecraft on board data handler. The mission alert system broadcasts it to the payload instruments enabling them to react accordingly to the current radiation level. Additionally, the IREM conducts its autonomous research mapping the Earth radiation environment for the space weather program. Its scientific data are available for further analysis almost without delay.

  1. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect (OSTI)

    Law, B E

    2012-12-12T23:59:59.000Z

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  2. ANALYSIS OF THE RADIATION FLUX PROFILE ALONG A PV TROUGH CONCENTRATOR J.S. Coventry, A. Blakers, E. Franklin and G. Burgess

    E-Print Network [OSTI]

    concentrator is that concentrating light allows a significant reduction in the area of solar cell coverage groups of solar cells connected in series in order to increase voltage and limit current. However, low simultaneously, as cost tends to increase with better mirror quality, improved tracking accuracy, and the use

  3. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    SciTech Connect (OSTI)

    Janssens, K.; Adams, F. [Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry; Rivers, M.L.; Jones, K.W. [Brookhaven National Lab., Upton, NY (United States)

    1992-10-01T23:59:59.000Z

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ({mu}-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  4. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy

    SciTech Connect (OSTI)

    Janssens, K.; Adams, F. (Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry); Rivers, M.L.; Jones, K.W. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01T23:59:59.000Z

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ([mu]-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  5. Synchrotron radiation x-ray topography and defect selective etching analysis of threading dislocations in GaN

    SciTech Connect (OSTI)

    Sintonen, Sakari, E-mail: sakari.sintonen@aalto.fi; Suihkonen, Sami; Jussila, Henri; Tuomi, Turkka O.; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University School of Electrical Engineering, 02150 Espoo (Finland); Rudzi?ski, Mariusz [Epitaxy Department, Institute of Electronic Materials Technology, 01-919 Warsaw (Poland); Knetzger, Michael; Meissner, Elke [Fraunhofer Institute for Integrated Systems and Device Technology, 91058 Erlangen (Germany); Danilewsky, Andreas [Kristallographie Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg (Germany)

    2014-08-28T23:59:59.000Z

    The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrate was recorded using SR-XRT and the image contrast caused by the dislocation induced microstrain was simulated. The simulations and experimental observations agree excellently and the SR-XRT image contrasts of mixed and screw dislocations were determined. Apart from a few exceptions, defect selective etching measurements were shown to correspond one to one with the SR-XRT results.

  6. Structural design and analysis of a lightweight composite sandwich space radiator panel

    E-Print Network [OSTI]

    Mukundan, Sudharsan

    2005-02-17T23:59:59.000Z

    Model???????????????????.31 3.5.1 Cutout??...????????????????????32 3.5.2 Antenna????????????...?????????..32 3.6 Preliminary Design????????????????????...33 IV. VIBRATION AND THERMAL CHARACTERISTICS OF SANDWICH RADIATOR PANEL....??..??????????????..35 4.1 Plate Theory???????????????????????..35 4.2 Free Vibration of a Simply Supported Rectangular Plate?????....36 4.3 Parametric Study of Simply Supported Plates and Sandwiches.???..38 4.3.1 Aluminum 2024-T3 Isotropic Plate???????????..38...

  7. Estimation of isodose curves in radiation therapy and related response analysis

    E-Print Network [OSTI]

    Goodlett, James Campbell

    1967-01-01T23:59:59.000Z

    by a review of literature and the second by a computer program. Accompanying the literature review is a bibliography of interstitial and intracavitary radiation therapy dealing with radium and radon sources with emphasis on references dealing...- 2 active seed (usually radon or gold-198) could be made the proper strength to destroy only the tumor when placed in the center of the tumor, However, tumors are rarely or never truly spheroid and, in addition, economic considerations dictate...

  8. Preliminary Analysis of Surface Radiation Measurement Data Quality at the SGP Extended Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARD ACCOUNTING SYSTEMMeso-ScalePPOSurface Radiation

  9. Parametric analysis of radiative-convective heat transfer around a circular cylinder in a cross flow using the finite volume radiation solution method

    SciTech Connect (OSTI)

    Lee, K.H.; Lee, J.S.; Choi, M. [Seoul National Univ. (Korea, Republic of). Dept. of Mechanical Engineering

    1996-02-09T23:59:59.000Z

    In the outside vapor deposition (OVD) process, silica particles are deposited by thermophoretic force on the surface of a cylinder. This process is associated with complex physical phenomena such as heat transfer between a torch and a cylinder, chemical reaction for silica particle formation, and particle deposition. Since the OVD process is carried out in a very high temperature environment, radiative heat transfer should be taken into consideration. Here, the radiative-convective heat transfer around a circular cylinder in a cross flow of a radiating gas has been numerically analyzed using the finite volume radiation solution method in a nonorthogonal coordinate system. The cross-flow Reynolds number based on the cylinder diameter is 40, and the fluid Prandtl number is assumed to be 0.7. The radiative heat transfer coupled with convection is reasonably predicted by the finite volume radiation solution method. Distributions of the local Nusselt number are investigated according to the variation of radiation parameters such as conduction-to-radiation parameter, optical thickness, scattering albedo, and cylinder wall emissivity.

  10. Production flux of sea spray aerosol

    SciTech Connect (OSTI)

    de Leeuw, G.; Lewis, E.; Andreas, E. L.; Anguelova, M. D.; Fairall, C. W.; O’Dowd, C.; Schulz, M.; Schwartz, S. E.

    2011-05-07T23:59:59.000Z

    Knowledge of the size- and composition-dependent production flux of primary sea spray aerosol (SSA) particles and its dependence on environmental variables is required for modeling cloud microphysical properties and aerosol radiative influences, interpreting measurements of particulate matter in coastal areas and its relation to air quality, and evaluating rates of uptake and reactions of gases in sea spray drops. This review examines recent research pertinent to SSA production flux, which deals mainly with production of particles with r{sub 80} (equilibrium radius at 80% relative humidity) less than 1 {micro}m and as small as 0.01 {micro}m. Production of sea spray particles and its dependence on controlling factors has been investigated in laboratory studies that have examined the dependences on water temperature, salinity, and the presence of organics and in field measurements with micrometeorological techniques that use newly developed fast optical particle sizers. Extensive measurements show that water-insoluble organic matter contributes substantially to the composition of SSA particles with r{sub 80} < 0.25 {micro}m and, in locations with high biological activity, can be the dominant constituent. Order-of-magnitude variation remains in estimates of the size-dependent production flux per white area, the quantity central to formulations of the production flux based on the whitecap method. This variation indicates that the production flux may depend on quantities such as the volume flux of air bubbles to the surface that are not accounted for in current models. Variation in estimates of the whitecap fraction as a function of wind speed contributes additional, comparable uncertainty to production flux estimates.

  11. Radiation Modeling In Fluid Flow Iain D. Boyd

    E-Print Network [OSTI]

    Wang, Wei

    Collector #12;4 Fundamentals of Radiation (1) · All matter with non-zero temperature emits thermal radiation with energy flux given by the Stefan-Boltzmann Law: e.g., Sun: T=5800 K, total radiated power = 4 distribution (Planck spectrum) !q =T 4 W/m2 #12;5 Planck Radiation Spectrum #12;6 Solar Radiation Spectrum

  12. Signal and noise analysis of a-Si:H radiation detector-amplifier system

    SciTech Connect (OSTI)

    Cho, Gyuseong

    1992-03-01T23:59:59.000Z

    Hydrogenated amorphous silicon (a-Si:H) has potential advantages in making radiation detectors for many applications because of its deposition capability on a large-area substrate and its high radiation resistance. Position-sensitive radiation detectors can be made out of a 1d strip or a 2-d pixel array of a Si:H pin diodes. In addition, signal processing electronics can be made by thin-film transistors on the same substrate. The calculated radiation signal, based on a simple charge collection model agreed well with results from various wave length light sources and 1 MeV beta particles on sample diodes. The total noise of the detection system was analyzed into (a) shot noise and (b) 1/f noise from a detector diode, and (c) thermal noise and (d) 1/f noise from the frontend TFT of a charge-sensitive preamplifier. the effective noise charge calculated by convoluting these noise power spectra with the transfer function of a CR-RC shaping amplifier showed a good agreement with the direct measurements of noise charge. The derived equations of signal and noise charge can be used to design an a-Si:H pixel detector amplifier system optimally. Signals from a pixel can be readout using switching TFTs, or diodes. Prototype tests of a double-diode readout scheme showed that the storage time and the readout time are limited by the resistances of the reverse-biased pixel diode and the forward biased switching diodes respectively. A prototype charge-sensitive amplifier was made using poly-Si TFTs to test the feasibility of making pixel-level amplifiers which would be required in small-signal detection. The measured overall gain-bandwidth product was {approximately}400 MHz and the noise charge {approximately}1000 electrons at a 1 {mu}sec shaping time. When the amplifier is connected to a pixel detector of capacitance 0.2 pF, it would give a charge-to-voltage gain of {approximately}0.02 mV/electron with a pulse rise time less than 100 nsec and a dynamic range of 48 dB.

  13. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Mo; Xu, B.; Cao, J.; Tie, X.; Wang, Hailong; Zhang, Rudong; Qian, Yun; Rasch, Philip J.; Zhao, Shuyu; Wu, Guangjian; et al

    2015-01-01T23:59:59.000Z

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia hasmore »the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.« less

  14. Carbonaceous Aerosols Recorded in a Southeastern Tibetan Glacier: Analysis of Temporal Variations and Model Estimates of Sources and Radiative Forcing

    SciTech Connect (OSTI)

    Wang, Mo; Xu, B.; Cao, J.; Tie, X.; Wang, Hailong; Zhang, Rudong; Qian, Yun; Rasch, Philip J.; Zhao, Shuyu; Wu, Guangjian; Zhao, Huabiao; Joswiak, Daniel R.; Li, Jiule; Xie, Ying

    2015-01-01T23:59:59.000Z

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956-2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of OC/BC ratio with higher values in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source-receptor relationships between four Asian source regions and the southern Tibetan Plateau as a receptor. The model results show that South Asia is a primary contributor during the non-monsoon season (October to May) (81%) and on an annual basis (74%), followed by East Asia (14% and 21%, respectively). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia as the primary contributor. Moreover, the increasing trend of OC/BC ratio since the early 1990s indicates a growing contribution of coal combustion and biomass burning to the emissions. The estimated radiative forcing induced by BC/OC impurities in snow has increased since 1980, suggesting an increasing influence of carbonaceous aerosols on the Tibetan glacier melting, influencing the availability of water resources in the surrounding regions. Our study indicates that the role of OC deserves more attention because of its non-negligible light absorption and the more rapid increase than BC

  15. Older Age Predicts Decreased Metastasis and Prostate Cancer-Specific Death for Men Treated With Radiation Therapy: Meta-Analysis of Radiation Therapy Oncology Group Trials

    SciTech Connect (OSTI)

    Hamstra, Daniel A., E-mail: dhamm@umich.edu [University of Michigan, Ann Arbor, Michigan (United States); Bae, Kyounghwa [Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Pilepich, Miljenko V. [UCLA Medical Center, Los Angeles, California (United States); Hanks, Gerald E. [Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Grignon, David J. [Indiana University-Purdue University Indianapolis, Indiana (United States); McGowan, David G. [Cross Cancer Institute, Edmonton, Alberta (Canada); Roach, Mack [UCSF, San Francisco, California (United States); Lawton, Colleen [Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Lee, R. Jeffrey [Intermountain Medical Center, Salt Lake City, Utah (United States); Sandler, Howard [Cedars-Sinai Medical Center, Los Angeles, California (United States)

    2011-12-01T23:59:59.000Z

    Purpose: The impact of age on prostate cancer (PCa) outcome has been controversial; therefore, we analyzed the effect of age on overall survival (OS), distant metastasis, prostate cancer-specific death (PCSD), and nonprostate cancer death (NPCD) on patients with locally advanced PCa. Methods and Materials: Patients who participated in four Radiation Therapy Oncology Group (RTOG) phase III trials, 8531, 8610, 9202, and 9413, were studied. Cox proportional hazards regression was used for OS analysis, and cumulative events analysis with Fine and Gray's regression was used for analyses of metastasis, PCSD, and NPCD. Results: Median follow-up of 4,128 patients with median age of 70 (range, 43-88 years) was 7.3 years. Most patients had high-risk disease: cT3 to cT4 (54%) and Gleason scores (GS) of 7 (45%) and 8 to 10 (27%). Older age ({<=}70 vs. >70 years) predicted for decreased OS (10-year rate, 55% vs. 41%, respectively; p < 0.0001) and increased NPCD (10-year rate, 28% vs. 46%, respectively; p < 0.0001) but decreased metastasis (10-year rate, 27% vs. 20%, respectively; p < 0.0001) and PCSD (10-year rate, 18% vs. 14%, respectively; p < 0.0001). To account for competing risks, outcomes were analyzed in 2-year intervals, and age-dependent differences in metastasis and PCSD persisted, even in the earliest time periods. When adjusted for other covariates, an age of >70 years remained associated with decreased OS (hazard ratio [HR], 1.56 [95% confidence interval [CI], 1.43-1.70] p < 0.0001) but with decreased metastasis (HR, 0.72 [95% CI, 0.63-0.83] p < 0.0001) and PCSD (HR, 0.78 [95% CI, 0.66-0.92] p < 0.0001). Finally, the impact of the duration of androgen deprivation therapy as a function of age was evaluated. Conclusions: These data support less aggressive PCa in older men, independent of other clinical features. While the biological underpinning of this finding remains unknown, stratification by age in future trials appears to be warranted.

  16. Analysis of radiation doses from operation of postulated commercial spent fuel transportation systems: Main report

    SciTech Connect (OSTI)

    Schneider, K.J.; Hostick, C.J.; Ross, W.A.; Peterson, R.W.; Smith, R.I.; Stiles, D.L.; Daling, P.M.; Weakley, S.A.; Grinde, R.B.; Young, J.R.

    1987-11-01T23:59:59.000Z

    This report contains a system study of estimated radiation doses to the public and workers resulting from the transport of spent fuel from commercial nuclear power reactors to a geologic repository. The report contains a detailed breakdown of activities and a description of time/distance/dose-rate estimates for each activity within the system. Collective doses are estimated for each of the major activities at the reactor site, in transit, and at the repository receiving facility. Annual individual doses to the maximally exposed individuals or groups of individuals are also estimated. A total of 17 alternatives and subalternatives to the postulated reference transportation system are identified, conceptualized, and their dose-reduction potentials and costs estimated. Resulting ratios of ..delta..cost/..delta..collective system dose for each alternative relative to the postulated reference transportation system are given. Most of the alternatives evaluated are estimated to provide both cost and dose reductions. Major reductions in transportation system dose and cost are estimated to result from using higher-capacity rail and truck casks, and particularly when replacing legalweight truck casks with ''advanced design'' overweight truck casks. The greatest annual dose reduction to the highest exposed individual workers (i.e., at the repository) is estimated to be achieved by using remote handling equipment for the cask handling operations at the repository. Additional shielding is also effective in reducing doses to both radiation workers at the reactor and repository and to transport workers. 69 refs., 36 figs., 156 tabs.

  17. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: practical guidelines for the crystalline sponge method

    SciTech Connect (OSTI)

    Ramadhar, Timothy R. [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115 (United States); Zheng, Shao-Liang [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, 02138 (United States); Chen, Yu-Sheng [ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago c/o Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, 60439 (United States); Clardy, Jon, E-mail: jon-clardy@hms.harvard.edu [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115 (United States)

    2015-01-01T23:59:59.000Z

    This report describes complete practical guidelines and insights for the crystalline sponge method, which have been derived through the first use of synchrotron radiation on these systems, and includes a procedure for faster synthesis of the sponges. These guidelines will be applicable to crystal sponge data collected at synchrotrons or in-house facilities, and will allow researchers to obtain reliable high-quality data and construct chemically and physically sensible models for guest structural determination. A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.

  18. Radiation response analysis of wide-gap p-AlInGaP for superhigh-efficiency space photovoltaics

    SciTech Connect (OSTI)

    Khan, Aurangzeb; Marupaduga, S.; Anandakrishnan, S.S.; Alam, M.; Ekins-Daukes, N.J.; Lee, H.S.; Sasaki, T.; Yamaguchi, M.; Takamoto, T.; Agui, T.; Kamimura, K.; Kaneiwa, M.; Imazumi, M. [Department of Electrical and Computer Engineering, University of South Alabama, Mobile, Alabama 36688 (United States); Toyota Technological Institute, Nagoya (Japan); Sharp Corporation, Nara (Japan); JAXA, Tsukuba (Japan)

    2004-11-29T23:59:59.000Z

    We present here the direct observation of the majority and minority carrier defects generation from wide-band-gap (2.04 eV) and thick (2 {mu}m) p-AlInGaP diodes and solar cells structures before and after 1 MeV electron irradiation by deep level transient spectroscopy (DLTS). One dominant hole-emitting trap H1 (E{sub V}+0.37{+-}0.05 eV) and two electron-emitting traps, E1 (E{sub C}-0.22{+-}0.04 eV) and E3 (E{sub C}-0.78{+-}0.05 eV) have been observed in the temperature range, which we could scan by DLTS. Detailed analysis of the minority carrier injection annealing experiment reveals that the H1 center has shown the same annealing characteristics, which has been previously observed in all phosphide-based materials such as InP, InGaP, and InGaAsP. The annealing property of the radiation-induced defects in p-AlInGaP reveals that multijunction solar cells and other optoelectronic devices such as light-emitting diodes based on this material could be considerably better to Si and GaAs in a radiation environment.

  19. Experiences in the Performance Analysis and Optimization of a Deterministic Radiation Transport Code on the Cray SV1

    SciTech Connect (OSTI)

    Peter Cebull

    2004-05-01T23:59:59.000Z

    The Attila radiation transport code, which solves the Boltzmann neutron transport equation on three-dimensional unstructured tetrahedral meshes, was ported to a Cray SV1. Cray's performance analysis tools pointed to two subroutines that together accounted for 80%-90% of the total CPU time. Source code modifications were performed to enable vectorization of the most significant loops, to correct unfavorable strides through memory, and to replace a conjugate gradient solver subroutine with a call to the Cray Scientific Library. These optimizations resulted in a speedup of 7.79 for the INEEL's largest ATR model. Parallel scalability of the OpenMP version of the code is also discussed, and timing results are given for other non-vector platforms.

  20. RELAP5/MOD2. 5 analysis of the HFBR (High Flux Beam Reactor) for a loss of power and coolant accident

    SciTech Connect (OSTI)

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01T23:59:59.000Z

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs.

  1. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04T23:59:59.000Z

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  2. Suggestions for the measurement and derivation of fluxes and flux divergences from a satellite

    SciTech Connect (OSTI)

    Man-Li C. Wu (NASA Goddard Space Flight Center, Greenbelt, MD (United States))

    1990-04-15T23:59:59.000Z

    The theoretical studies shown here indicate that the best bands to measure and derive the total outgoing longwave radiation (OLR), surface downward flux (SDF), and cooling rates (CRs) using linear regression are (1) the band between 800 and 1,200 cm{sup {minus}1} for OLR, (2) the band between 500 and 660 cm{sup {minus}1} or 660 and 800 cm{sup {minus}1} for SDF, and (3) the band between 660 and 800 cm{sup {minus}1} for CRs. These results are obtained from scatter plots of total fluxes and cooling rates associated with the various bands. The advanced very high resolution radiometer OLR is damped compared with the Nimbus 7 Earth radiation budget (ERB) OLR, which is derived from the broadband, narrow field of view ERB instrument, owing to its use of only one narrow band (centered around the 11-{mu}m window region) measurement.

  3. Photochemistryand Photobiology,2006, 82: 781-786 Environmental Controls of UV-B Radiation in Forested Streams of

    E-Print Network [OSTI]

    Notre Dame, University of

    Photochemistryand Photobiology,2006, 82: 781-786 Environmental Controls of UV-B Radiation-B radiation flux and its environmental control within and among streams of northernMichigan. UV- B flux measurement of solar radiation. During the summer of 2004, UV-B flux was measured across depth gradients

  4. The use of synchrotron radiation for the analysis of coal combustion products

    SciTech Connect (OSTI)

    Manowitz, B.; Gordon, B.

    1992-05-01T23:59:59.000Z

    An understanding of the chemical composition of such slags under boiler operating conditions and as function of the mineral composition of various coals is the ultimate goal of this program. The experiment involves scanning through the K- or L-shell absorption edge of the element in question. The structure of the absorption edge, consisting of transitions to unoccupied molecular levels, can be compared to those of model compounds for identification. The relative position of the absorption edge can yield information regarding the oxidation state of the element. This portion is the X-ray Absorption Near Edge Structure (XANES) portion of the spectrum. The Extended X-ray Absorption Fine Structure (EXFAS) region, extending from about 60 eV above the absorption edge, represents scattering from neighboring constituents and can be used to determine the coordination number of coordination distance of a specific element from its neighboring atoms. The best source of excitation energy for these experiments is an electron storage ring emitting synchrotron radiation (SR). The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory is a 2.5 GeV storage ring and emits a continuous spectrum of x rays to an energy of about 30 keV. Beam line X-19A is dedicated to XANES and EXAFS and is being adapted to the performance of this investigation.

  5. Integrated Molecular Analysis Indicates Undetectable Change in DNA Damage in Mice after Continuous Irradiation at ~ 400-fold Natural Background Radiation

    E-Print Network [OSTI]

    Olipitz, Werner

    Background: In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation.

  6. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09T23:59:59.000Z

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  7. Molecular analysis of radiation-induced albino (c)-locus mutations that cause death at preimplantation stages of development

    SciTech Connect (OSTI)

    Rinchik, E.M. (Oak Ridge National Lab., TN (United States)); Toenjes, R.R.; Paul, D. (Fraunhofer-Instituet fuer Toxikologie und Aerosolforschung, Hannover (Germany)); Potter, M.D. (Univ. of Tenn.-Oak Ridge Graduate School of Biomedical Sciences, Oak Ridge, TN (United States))

    1993-12-01T23:59:59.000Z

    Deletion mutations at the albino (c) locus have been useful for continuing the development of fine-structure physical and functional maps of the Fes-Hbb region of mouse chromosome 7. This report describes the molecular analysis of a number of radiation-induced c deletions that, when homozygous, cause death of the embryo during preimplantation stages. The distal extent of these deletions defines a locus, pid, (preimplantation development) genetically associated with this phenotype. The proximal breakpoints of eight of these deletions were mapped with respect to the Tyr (tyrosinase; albino) gene as well as to anonymous loci within the Fah-Tyr region that are defined by the Pmv-31 viral integration site and by chromosome-microdissection clones. Rearrangements corresponding to the proximal breakpoints of two of these deletions were detected by Southern blot analysis, and a size-altered restriction fragment carrying the breakpoint of one of them was cloned. A probe derived from this deletion fusion fragment defines a locus, D7Rn6, which maps within (or distal to) the pid region, and which discriminates among the distal extents of deletions eliciting the pid phenotype. Extension of physical maps from D7Rn6 should provide access both to the pid region and to loci mapping distal to pid that are defined by N-ethyl-N-nitrosourea-induced lethal mutations. 36 refs., 10 figs.

  8. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01T23:59:59.000Z

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  9. ARM Energy Balance Bowen Ratio (EBBR) station: surf. heat flux and related data, 30-min

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cook, David

    The Energy Balance Bowen Ratio (EBBR) system produces 30-min estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity. Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  10. Semiquantitative Analysis Using Thallium-201 SPECT for Differential Diagnosis Between Tumor Recurrence and Radiation Necrosis After Gamma Knife Surgery for Malignant Brain Tumors

    SciTech Connect (OSTI)

    Matsunaga, Shigeo, E-mail: shigeo-m@mui.biglobe.ne.jp [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan)] [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan); Shuto, Takashi; Takase, Hajime; Ohtake, Makoto; Tomura, Nagatsuki; Tanaka, Takahiro; Sonoda, Masaki [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan)] [Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Kanagawa (Japan)

    2013-01-01T23:59:59.000Z

    Purpose: Semiquantitative analysis of thallium-201 chloride single photon emission computed tomography ({sup 201}Tl SPECT) was evaluated for the discrimination between recurrent brain tumor and delayed radiation necrosis after gamma knife surgery (GKS) for metastatic brain tumors and high-grade gliomas. Methods and Materials: The medical records were reviewed of 75 patients, including 48 patients with metastatic brain tumor and 27 patients with high-grade glioma who underwent GKS in our institution, and had suspected tumor recurrence or radiation necrosis on follow-up neuroimaging and deteriorating clinical status after GKS. Analysis of {sup 201}Tl SPECT data used the early ratio (ER) and the delayed ratio (DR) calculated as tumor/normal average counts on the early and delayed images, and the retention index (RI) as the ratio of DR to ER. Results: A total of 107 tumors were analyzed with {sup 201}Tl SPECT. Nineteen lesions were removed surgically and histological diagnoses established, and the other lesions were evaluated with follow-up clinical and neuroimaging examinations after GKS. The final diagnosis was considered to be recurrent tumor in 65 lesions and radiation necrosis in 42 lesions. Semiquantitative analysis demonstrated significant differences in DR (P=.002) and RI (P<.0001), but not in ER (P=.372), between the tumor recurrence and radiation necrosis groups, and no significant differences between metastatic brain tumors and high-grade gliomas in all indices (P=.926 for ER, P=.263 for DR, and P=.826 for RI). Receiver operating characteristics analysis indicated that RI was the most informative index with the optimum threshold of 0.775, which provided 82.8% sensitivity, 83.7% specificity, and 82.8% accuracy. Conclusions: Semiquantitative analysis of {sup 201}Tl SPECT provides useful information for the differentiation between tumor recurrence and radiation necrosis in metastatic brain tumors and high-grade gliomas after GKS, and the RI may be the most valuable index for this purpose.

  11. SYNCHROTRON RADIATION SOURCES

    SciTech Connect (OSTI)

    HULBERT,S.L.; WILLIAMS,G.P.

    1998-07-01T23:59:59.000Z

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

  12. Stabilization of moduli by fluxes

    SciTech Connect (OSTI)

    Behrndt, Klaus [Albert-Einstein-Institute, Am Muehlenberg 1, 14476 Golm (Germany)

    2004-12-10T23:59:59.000Z

    In order to fix the moduli, non-trivial fluxes might the essential input. We summarize different aspects of compactifications in the presence of fluxes, as there is the relation to generalized Scherk-Schwarz reductions and gauged supergravity but also the description of flux-deformed geometries in terms of G-structures and intrinsic torsion.

  13. Impact of Boost Radiation in the Treatment of Ductal Carcinoma In Situ: A Population-Based Analysis

    SciTech Connect (OSTI)

    Rakovitch, Eileen, E-mail: Eileen.rakovitch@sunnybrook.ca [Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario (Canada) [Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario (Canada); Institute for Clinical Evaluative Sciences, Toronto, Ontario (Canada); University of Toronto, Toronto, Ontario (Canada); Narod, Steven A. [University of Toronto, Toronto, Ontario (Canada) [University of Toronto, Toronto, Ontario (Canada); Women’s College Research Institute, Toronto, Ontario (Canada); Nofech-Moses, Sharon; Hanna, Wedad [Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario (Canada) [Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario (Canada); University of Toronto, Toronto, Ontario (Canada); Thiruchelvam, Deva; Saskin, Refik; Taylor, Carole [Institute for Clinical Evaluative Sciences, Toronto, Ontario (Canada)] [Institute for Clinical Evaluative Sciences, Toronto, Ontario (Canada); Tuck, Alan [London Health Sciences Center, London, Ontario (Canada)] [London Health Sciences Center, London, Ontario (Canada); Youngson, Bruce; Miller, Naomi; Done, Susan J. [University Health Network, Toronto, Ontario (Canada)] [University Health Network, Toronto, Ontario (Canada); Sengupta, Sandip [Kingston General Hospital, Kingston, Ontario (Canada)] [Kingston General Hospital, Kingston, Ontario (Canada); Elavathil, Leela [University of Toronto, Toronto, Ontario (Canada) [University of Toronto, Toronto, Ontario (Canada); Henderson General Hospital, 711 Concession Street, Hamilton, Ontario (Canada); Jani, Prashant A. [University of Toronto, Toronto, Ontario (Canada) [University of Toronto, Toronto, Ontario (Canada); Regional Health Sciences Centre, Thunder Bay, Ontario (Canada); Bonin, Michel [Sudbury Regional Hospital, Sudbury, Ontario (Canada)] [Sudbury Regional Hospital, Sudbury, Ontario (Canada); Metcalfe, Stephanie [Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario (Canada)] [Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario (Canada); Paszat, Lawrence [Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario (Canada) [Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario (Canada); Institute for Clinical Evaluative Sciences, Toronto, Ontario (Canada); University of Toronto, Toronto, Ontario (Canada)

    2013-07-01T23:59:59.000Z

    Purpose: To report the outcomes of a population of women with ductal carcinoma in situ (DCIS) treated with breast-conserving surgery and radiation and to evaluate the independent effect of boost radiation on the development of local recurrence. Methods and Materials: All women diagnosed with DCIS and treated with breast-conserving surgery and radiation therapy in Ontario from 1994 to 2003 were identified. Treatments and outcomes were identified through administrative databases and validated by chart review. The impact of boost radiation on the development of local recurrence was determined using survival analyses. Results: We identified 1895 cases of DCIS that were treated by breast-conserving surgery and radiation therapy; 561 patients received boost radiation. The cumulative 10-year rate of local recurrence was 13% for women who received boost radiation and 12% for those who did not (P=.3). The 10-year local recurrence-free survival (LRFS) rate among women who did and who did not receive boost radiation was 88% and 87%, respectively (P=.27), 94% and 93% for invasive LRFS (P=.58), and was 95% and 93% for DCIS LRFS (P=.31). On multivariable analyses, boost radiation was not associated with a lower risk of local recurrence (hazard ratio = 0.82, 95% confidence interval 0.59-1.15) (P=.25). Conclusions: Among a population of women treated with breast-conserving surgery and radiation for DCIS, additional (boost) radiation was not associated with a lower risk of local or invasive recurrence.

  14. Radiation from Accelerated Branes

    E-Print Network [OSTI]

    Mohab Abou-Zeid; Miguel S. Costa

    2000-01-29T23:59:59.000Z

    The radiation emitted by accelerated fundamental strings and D-branes is studied within the linear approximation to the supergravity limit of string theory. We show that scalar, gauge field and gravitational radiation is generically emitted by such branes. In the case where an external scalar field accelerates the branes, we derive a Larmor-type formula for the emitted scalar radiation and study the angular distribution of the outgoing energy flux. The classical radii of the branes are calculated by means of the corresponding Thompson scattering cross sections. Within the linear approximation, the interaction of the external scalar field with the velocity fields of the branes gives a contribution to the observed gauge field and gravitational radiation.

  15. A Measurement of the Flux of Cosmic Ray Iron at 5 x 10^13 eV

    E-Print Network [OSTI]

    J. Clem; W. Droege; P. A. Evenson; H. Fischer; G. Green; D. Huber; H. Kunow; D. Seckel

    2001-03-23T23:59:59.000Z

    We present results from the initial flight of our Balloon Air CHerenkov (BACH) payload. BACH detects air Cherenkov radiation from cosmic ray nuclei as coincident flashes in two optical modules. The flight (dubbed PDQ BACH) took place on April 22, 1998 from Ft. Sumner, New Mexico. During an exposure of 2.75 hours, with a typical threshold energy for iron nuclei of 2.2$\\times10^{13}$ eV, we observed several events cleanly identifiable as iron group nuclei. Analysis of the data yields a new flux measurement that is fully consistent with that reported by other investigations.

  16. Charged Particle Radiation Therapy for Uveal Melanoma: A Systematic Review and Meta-Analysis

    SciTech Connect (OSTI)

    Wang, Zhen, E-mail: Wang.Zhen@mayo.edu [Mayo Clinic, Rochester, Minnesota (United States)] [Mayo Clinic, Rochester, Minnesota (United States); Nabhan, Mohammed [Mayo Clinic, Rochester, Minnesota (United States)] [Mayo Clinic, Rochester, Minnesota (United States); Schild, Steven E. [Mayo Clinic, Scottsdale, Arizona (United States)] [Mayo Clinic, Scottsdale, Arizona (United States); Stafford, Scott L.; Petersen, Ivy A.; Foote, Robert L.; Murad, M. Hassan [Mayo Clinic, Rochester, Minnesota (United States)] [Mayo Clinic, Rochester, Minnesota (United States)

    2013-05-01T23:59:59.000Z

    Charged particle therapy (CPT) delivered with either protons, helium ions, or carbon ions, has been used to treat uveal melanoma. The present analysis was performed to systematically evaluate the efficacy and adverse effects of CPT for uveal melanoma. We searched EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and SciVerse Scopus and cross-referenced recent systematic reviews through January 2012. Two independent reviewers identified clinical trials and observational studies of CPT (protons, helium ions, and carbon ions). These reviewers extracted data and assessed study quality. Twenty-seven studies enrolling 8809 uveal melanoma patients met inclusion criteria. The rate of local recurrence was significantly less with CPT than with brachytherapy (odds ratio [OR] = 0.22, 95% confidence interval [CI], 0.21-0.23). There were no significant differences in mortality or enucleation rates. Results were robust in multiple sensitivity analyses. CPT was also associated with lower retinopathy and cataract formation rates. Data suggest better outcomes may be possible with charged particle therapy with respect to local recurrence, retinopathy, and cataract formation rates. The overall quality of the evidence is low, and higher quality comparative effectiveness studies are needed to provide better evidence.

  17. Quantifying the Impact of Immediate Reconstruction in Postmastectomy Radiation: A Large, Dose-Volume Histogram-Based Analysis

    SciTech Connect (OSTI)

    Ohri, Nisha [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Cordeiro, Peter G. [Department of Plastic Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Plastic Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Keam, Jennifer [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ballangrud, Ase [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shi Weiji; Zhang Zhigang [Department of Biostatistics and Epidemiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Biostatistics and Epidemiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Nerbun, Claire T.; Woch, Katherine M.; Stein, Nicholas F.; Zhou Ying [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); McCormick, Beryl; Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ho, Alice Y., E-mail: HoA1234@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-10-01T23:59:59.000Z

    Purpose: To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Methods and Materials: Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Results: Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Conclusions: Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary determinant of target coverage and normal tissue doses.

  18. Suppressed gross erosion of high-temperature lithium films under high-flux deuterium bombardment

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    P1-030 Suppressed gross erosion of high-temperature lithium films under high-flux deuterium) and thick (~500 m) lithium films under high-flux deuterium and neon plasma bombardment were studied. For Ne plasmas, Li erosion rates inferred from measurements of Li-I radiation are consistent

  19. Pamphlet, A Basic Overview of Occupational Radiation Exposure...

    Energy Savers [EERE]

    Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis &...

  20. High efficiency, radiation-hard solar cells

    E-Print Network [OSTI]

    Ager III, J.W.; Walukiewicz, W.

    2004-01-01T23:59:59.000Z

    J. F. Geisz, “Superior radiation resistance of In 1-x Ga x Nand H. Itoh, “Proton radiation analysis of multi-junction56326 High efficiency, radiation-hard solar cells Final

  1. Recursive Partitioning Analysis Index Is Predictive for Overall Survival in Patients Undergoing Spine Stereotactic Body Radiation Therapy for Spinal Metastases

    SciTech Connect (OSTI)

    Chao, Samuel T., E-mail: chaos@ccf.org [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Brain Tumor and Neuro-oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Koyfman, Shlomo A.; Woody, Neil [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Angelov, Lilyana [Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Brain Tumor and Neuro-oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Soeder, Sherry L. [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Brain Tumor and Neuro-oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Reddy, Chandana A. [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Rybicki, Lisa A. [Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Djemil, Toufik [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Suh, John H. [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Brain Tumor and Neuro-oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States); Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195 (United States)

    2012-04-01T23:59:59.000Z

    Purpose: To generate a prognostic index using recursive partitioning analysis (RPA) for patients undergoing spine stereotactic body radiation therapy (sSBRT) for spinal metastases (sMet). Methods and Materials: From an institutional review board-approved database, 174 patients were treated for sMet with sSBRT between February 2006 and August 2009. Median dose was 14 Gy (range, 8-24 Gy), typically in a single fraction (range, 1-5). Kaplan-Meier analysis was performed to detect any correlation between survival and histology. Histologies were divided into favorable (breast and prostate), radioresistant (renal cell, melanoma and sarcoma), and other (all other histologies). RPA was performed to identify any association of the following variables with overall survival (OS) following sSBRT: histology, gender, age, Karnofsky performance status (KPS), control of primary, extraosseous metastases, time from primary diagnosis (TPD), dose of sSBRT ({<=}14 Gy vs. >14 Gy), extent of spine disease (epidural only, bone and epidural, bone only), upfront or salvage treatment, presence of paraspinal extension, and previous surgery. Results: Median follow-up was 8.9 months. Median OS time from sSBRT was 10.7 months. Median OS intervals for favorable histologies were 14 months, 11.2 months for radioresistant histologies, and 7.3 months for other histologies (p = 0.02). RPA analysis resulted in three classes (p < 0.0001). Class 1 was defined as TPD of >30 months and KPS of >70; Class 2 was TPD of >30 months and KPS of {<=}70 or a TPD of {<=}30 months and age <70 years old; Class 3 was TPD of {<=}30 months and age {>=}70 years old. Median OS was 21.1 months for Class 1 (n = 59), 8.7 months for Class 2 (n = 104), and 2.4 months for Class 3 (n = 11). Conclusion: sSBRT patients treated for sMet have a wide variability in OS. We developed an RPA classification system that is predictive of OS. While many patients are treated for palliation of pain or to avoid symptomatic progression, this index may be used to predict which patients may benefit most from sSBRT.

  2. Diagnostic options for radiative divertor feedback control on NSTX-U

    SciTech Connect (OSTI)

    Soukhanovskii, V. A.; McLean, A. G. [Lawrence Livermore National Laboratory, Livermore, California, 94550 (United States); Gerhardt, S. P.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Raman, R. [University of Washington, Seattle, Washington 98195 (United States)

    2012-10-15T23:59:59.000Z

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (q{sub peak} Less-Than-Or-Slanted-Equal-To 15 MW/m{sup 2}), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D{sub 2} or CD{sub 4} gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m{sup 2}, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic 'security' monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  3. Angular Ordering in Gluon Radiation

    E-Print Network [OSTI]

    Jong B. Choi; Byeong S. Choi; Su K. Lee

    2002-01-28T23:59:59.000Z

    The assumption of angular ordering in gluon radiation is essential to obtain quantitative results concerning gluonic behaviors. In order to prove the validity of this assumption, we have applied our momentum space flux-tube formalism to check out the angular dependences of gluon radiation. We have calculated the probability amplitudes to get new gluon, and have found that the new gluon is generally expected to have the maximum amplitude when it is produced between the momentum directions of the last two partons.

  4. Analytical and experimental determination of radiation and temperature distributions inside solar receivers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    concentrated solar radiation is modelized, using the diffuse and semi-gray surface hypothesis and the net absorptance for solar radiation. Theoretical thermal efficiency of the cavity. Surface hemispherical emittance PHYSIQUE APPLIQU�E - TS, N° 2, F�VRIER1980 Incident solar flux density. Net radiative flux density. Net

  5. Fluxes, Gaugings and Gaugino Condensates

    E-Print Network [OSTI]

    J. -P. Derendinger; C. Kounnas; P. M. Petropoulos

    2006-02-10T23:59:59.000Z

    Based on the correspondence between the N = 1 superstring compactifications with fluxes and the N = 4 gauged supergravities, we study effective N = 1 four-dimensional supergravity potentials arising from fluxes and gaugino condensates in the framework of orbifold limits of (generalized) Calabi-Yau compactifications. We give examples in heterotic and type II orientifolds in which combined fluxes and condensates lead to vacua with small supersymmetry breaking scale. We clarify the respective roles of fluxes and condensates in supersymmetry breaking, and analyze the scaling properties of the gravitino mass.

  6. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  7. Pathway confirmation and flux analysis of central metabolicpathways in Desulfovibrio vulgaris Hildenborough using gaschromatography-mass spectrometry and fourier transform-ion cyclotronresonance mass spectrometry

    SciTech Connect (OSTI)

    Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan,Richard; Hazen, Terry C.; Keasling, Jay D.

    2006-07-11T23:59:59.000Z

    It has been proposed that during growth under anaerobic oroxygen-limited conditions Shewanella oneidensis MR-1 uses theserine-isocitrate lyase pathway common to many methylotrophic anaerobes,in which formaldehyde produced from pyruvate is condensed with glycine toform serine. The serine is then transformed through hydroxypyruvate andglycerate to enter central metabolism at phosphoglycerate. To examine itsuse of the serine-isocitrate lyase pathway under anaerobic conditions, wegrew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source witheither trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor.Analysis of cellular metabolites indicates that a large percentage(>75 percent) of lactate was partially oxidized to either acetate orpyruvate. The 13C isotope distributions in amino acids and other keymetabolites indicate that, under anaerobic conditions, a complete serinepathway is not present, and lactate is oxidized via a highly reversibleserine degradation pathway. The labeling data also suggest significantactivity in the anaplerotic (malic enzyme and phosphoenolpyruvatecarboxylase) and glyoxylate shunt (isocitrate lyase and malate synthase)reactions. Although the tricarboxylic acid (TCA) cycle is often observedto be incomplete in many other anaerobes (absence of 2-oxoglutaratedehydrogenase activity), isotopic labeling supports the existence of acomplete TCA cycle in S. oneidensis MR-1 under TMAO reductioncondition.

  8. RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES

    SciTech Connect (OSTI)

    Jacquet, Emmanuel [Laboratoire de Mineralogie et Cosmochimie de Museum (LMCM), CNRS and Museum National d'Histoire Naturelle, UMR 7202, 57 rue Cuvier, 75005 Paris (France); Krumholz, Mark R., E-mail: ejacquet@mnhn.fr, E-mail: krumholz@ucolick.org [Department of Astronomy, University of California, Santa Cruz, CA 95064 (United States)

    2011-04-01T23:59:59.000Z

    We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick 'adiabatic' regime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.

  9. Simulation of plasmaneutral dynamics for radiation cooling

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    the heat flux effectively for future power plants. That is, radiation due to impurities will lower and increase the required pumping speed con- siderably in a power plant. In principle, the plasma energySimulation of plasma­neutral dynamics for radiation cooling Bong Ju Lee , F. Najmabadi Fusion

  10. The AmeriFlux Network of Long-Term CO{sub 2} Flux Measurement Stations: Methodology and Intercomparability

    SciTech Connect (OSTI)

    Hollinger, D. Y.; Evans, R. S.

    2003-05-20T23:59:59.000Z

    A portable flux measurement system has been used within the AmeriFlux network of CO{sub 2} flux measurement stations to enhance the comparability of data collected across the network. No systematic biases were observed in a comparison between portable system and site H, LE, or CO{sub 2} flux values although there were biases observed between the portable system and site measurement of air temperature and PPFD. Analysis suggests that if values from two stations differ by greater than 26% for H, 35% for LE, and 32% for CO{sub 2} flux they are likely to be significant. Methods for improving the intercomparability of the network are also discussed.

  11. Prognostic Value of External Beam Radiation Therapy in Patients Treated With Surgical Resection and Intraoperative Electron Beam Radiation Therapy for Locally Recurrent Soft Tissue Sarcoma: A Multicentric Long-Term Outcome Analysis

    SciTech Connect (OSTI)

    Calvo, Felipe A. [Department of Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); School of Medicine, Complutense University, Madrid (Spain); Sole, Claudio V., E-mail: cvsole@uc.cl [Department of Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); School of Medicine, Complutense University, Madrid (Spain); Service of Radiation Oncology, Instituto de Radiomedicina, Santiago (Chile); Cambeiro, Mauricio [Service of Radiation Oncology, Clínica Universitaria, Universidad de Navarra, Pamplona (Spain); Montero, Angel; Polo, Alfredo [Service of Radiation Oncology, Hospital Universitario Ramón y Cajal, Universidad de Alcala, Madrid (Spain); Gonzalez, Carmen [School of Medicine, Complutense University, Madrid (Spain); Service of Radiation Oncology, Instituto de Radiomedicina, Santiago (Chile); Service of Radiation Oncology, Clínica Universitaria, Universidad de Navarra, Pamplona (Spain); Service of Radiation Oncology, Hospital Universitario Ramón y Cajal, Universidad de Alcala, Madrid (Spain); Service of Radiation Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); Cuervo, Miguel [Service of Orthopedics and Traumatology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); San Julian, Mikel [Service of Orthopedics and Traumatology, Clínica Universitaria, Universidad de Navarra, Pamplona (Spain); and others

    2014-01-01T23:59:59.000Z

    Background: A joint analysis of data from centers involved in the Spanish Cooperative Initiative for Intraoperative Electron Radiotherapy was performed to investigate long-term outcomes of locally recurrent soft tissue sarcoma (LR-STS) patients treated with a multidisciplinary approach. Methods and Materials: Patients with a histologic diagnosis of LR-STS (extremity, 43%; trunk wall, 24%; retroperitoneum, 33%) and no distant metastases who underwent radical surgery and intraoperative electron radiation therapy (IOERT; median dose, 12.5 Gy) were considered eligible for participation in this study. In addition, 62% received external beam radiation therapy (EBRT; median dose, 50 Gy). Results: From 1986 to 2012, a total of 103 patients from 3 Spanish expert IOERT institutions were analyzed. With a median follow-up of 57 months (range, 2-311 months), 5-year local control (LC) was 60%. The 5-year IORT in-field control, disease-free survival (DFS), and overall survival were 73%, 43%, and 52%, respectively. In the multivariate analysis, no EBRT to treat the LR-STS (P=.02) and microscopically involved margin resection status (P=.04) retained significance in relation to LC. With regard to IORT in-field control, only not delivering EBRT to the LR-STS retained significance in the multivariate analysis (P=.03). Conclusion: This joint analysis revealed that surgical margin and EBRT affect LC but that, given the high risk of distant metastases, DFS remains modest. Intensified local treatment needs to be further tested in the context of more efficient concurrent, neoadjuvant, and adjuvant systemic therapy.

  12. High precision photon flux determination for photon tagging experiments

    SciTech Connect (OSTI)

    Teymurazyan, A.; Ahmidouch, A.; Ambrozewicz, P.; Asratyan, A.; Baker, K.; Benton, L.; Burkert, V.; Clinton, E.; Cole, P.; Collins, P.; Dale, D.; Danagoulian, S.; Davidenko, G.; Demirchyan, R.; Deur, A.; Dolgolenko, A.; Dzyubenko, G.; Ent, R.; Evdokimov, A.; Feng, J.; Gabrielyan, M.; Gan, L.; Gasparian, A.; Glamazdin, A.; Goryachev, V.; Hardy, K.; He, J.; Ito, M.; Jiang, L.; Kashy, D.; Khandaker, M.; Kolarkar, A.; Konchatnyi, M.; Korchin, A.; Korsch, W.; Kosinov, O.; Kowalski, S.; Kubantsev, M.; Kubarovsky, V.; Larin, I.; Lawrence, D.; Li, X.; Martel, P.; Matveev, V.; McNulty, D.; Mecking, B.; Milbrath, B.; Minehart, R.; Miskimen, R.; Mochalov, V.; Nakagawa, I.; Overby, S.; Pasyuk, E.; Payen, M.; Pedroni, R.; Prok, Y.; Ritchie, B.; Salgado, C.; Shahinyan, A.; Sitnikov, A.; Sober, D.; Stepanyan, S.; Stevens, W.; Underwood, J.; Vasiliev, A.; Vishnyakov, V.; Wood, M.; Zhou, S.

    2014-07-01T23:59:59.000Z

    The Jefferson Laboratory PrimEx Collaboration has developed and implemented a method to control the tagged photon flux in photoproduction experiments at the 1% level over the photon energy range from 4.9 to 5.5 GeV. This method has been successfully implemented in a high precision measurement of the neutral pion lifetime. Here, we outline the experimental equipment and the analysis techniques used to accomplish this. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and a new method for post-bremsstrahlung electron counting.

  13. Trapped proton fluxes at low Earth orbits measured by the PAMELA experiment

    E-Print Network [OSTI]

    Adriani, O; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Danilchenko, I A; De Donato, C; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Zverev, V G

    2014-01-01T23:59:59.000Z

    We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above > 70 MeV performed by the PAMELA mission at low Earth orbits (350-610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.

  14. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01T23:59:59.000Z

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: • Direct normal shortwave (solar beam) • Diffuse horizontal shortwave (sky) • Global horizontal shortwave (total hemispheric) • Upwelling shortwave (reflected) • Downwelling longwave (atmospheric infrared) • Upwelling longwave (surface infrared)

  15. Modeling radiation characteristics of semitransparent media

    E-Print Network [OSTI]

    Pilon, Laurent

    and Viskanta8 have proposed a model for the effective radiation characteristics of glass foams. Their analysis

  16. Shortwave Radiative Impacts from Aerosol Effects on Marine Shallow Cumuli

    E-Print Network [OSTI]

    Zuidema, Paquita

    is because of the cloud radiation Bony & Dufresne, 2005 #12;ultimately we'll want global (satellite indirect effects, 1) what is the relative radiative importance of cloud microphysical versus macrophysical effects matter to the fluxes for small&thicker clouds) 3D ICA #12;what is the relative radiative

  17. High Heat Flux Components Program

    SciTech Connect (OSTI)

    Whitley, J.B.

    1983-01-01T23:59:59.000Z

    Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

  18. Equipment and methods for rapid analysis of PWO full-sized scintillation crystal radiation hardness during mass production

    E-Print Network [OSTI]

    Drobychev, G Yu; Fedorov, A; Korzhik, M V; Lecoq, P; Lopatik, A; Missevitch, O V; Peigneux, J P; Singovsky, A V; Zouevski, R F

    2001-01-01T23:59:59.000Z

    The mass production of lead tungstate crystals (PWO) for the Compact Muon Solenoid (CMS) Project at CERN began at the Bogoroditsk Techno- Chemical Plant (BTCP, Tula Region, Russia) in 2000. Mass production technology, developed in recent years, is based on a set of methods and instrumentation for crystal growth and machining, as well as quality control and certification of crystals. One of the most crucial categories of tolerances is the radiation hardness of crystals. Control of the PWO radiation hardness during the mass production phase requires a reliable, easy-to-use measuring tool with high productivity. A semiautomatic spectrometric setup for PWO radiation hardness monitoring was developed and tested at CERN. After final crosschecks, the setup was put into operation at BTCP. (13 refs).

  19. Entanglement-assisted electron microscopy based on a flux qubit

    SciTech Connect (OSTI)

    Okamoto, Hiroshi, E-mail: okamoto@akita-pu.ac.jp [Department of Electronics and Information Systems, Akita Prefectural University, Yurihonjo 015-0055 (Japan); Nagatani, Yukinori [National Institute for Physiological Sciences, Okazaki 444-8787 (Japan)

    2014-02-10T23:59:59.000Z

    A notorious problem in high-resolution biological electron microscopy is radiation damage caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device, inserted in a transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.

  20. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    SciTech Connect (OSTI)

    Pannala, S; D'Azevedo, E; Zacharia, T

    2002-02-26T23:59:59.000Z

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of work in section F.

  1. The Solar Wind Energy Flux

    E-Print Network [OSTI]

    Chat, G Le; Meyer-Vernet, N

    2012-01-01T23:59:59.000Z

    The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.

  2. Supporting Information (SI) Section Effect of Solar Radiation on the Optical Properties and Molecular

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    S1 Supporting Information (SI) Section Effect of Solar Radiation on the Optical Properties..................................................................................................7 Figure S3. A typical solar and spectral flux density of radiation, D0(), from the irradiation

  3. Posters Mean Fluxes of Visible Solar Radiation in Broken Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal observations7197 Posters

  4. The Sensitivity of Radiative Fluxes to Parameterized Cloud Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth'sConnect The Science

  5. Measurements and model calculations of radiative fluxes for the Cabauw

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew1, 20121 H( 7radialMHD

  6. Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is TakingDepartmentSensitivities of SCMs

  7. Title: Prompt Creation of New Radiation Belts Cluster: Cross-Theme Theory and Data Analysis/SECTP

    E-Print Network [OSTI]

    Lotko, William

    energization rates that are orders of magnitude too slow for such events; and they only describe-pushing code for radiation belt particles in a global MHD simulation of the solar wind energy (>20 MeV), trapping and transporting inward the extreme solar energetic protons produced

  8. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    SciTech Connect (OSTI)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07T23:59:59.000Z

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  9. Effective Action and Hawking Flux from Covariant Perturbation Theory

    E-Print Network [OSTI]

    D. Hofmann; W. Kummer

    2004-08-26T23:59:59.000Z

    The computation of the radiation flux related to the Hawking temperature of a Schwarzschild Black Hole or another geometric background is still well-known to be fraught with a number of delicate problems. In spherical reduction, as shown by one of the present authors (W. K.) with D.V. Vassilevich, the correct black body radiation follows when two ``basic components'' (conformal anomaly and a ``dilaton'' anomaly) are used as input in the integrated energy-momentum conservation equation. The main new element in the present work is the use of a quite different method, the covariant perturbation theory of Barvinsky and Vilkovisky, to establish directly the full effective action which determines these basic components. In the derivation of W. K. and D.V. Vassilevich the computation of the dilaton anomaly implied one potentially doubtful intermediate step which can be avoided here. Moreover, the present approach also is sensitive to IR (renormalisation) effects. We realize that the effective action naturally leads to expectation values in the Boulware vacuum which, making use of the conservation equation, suffice for the computation of the Hawking flux in other quantum states, in particular for the relevant Unruh state. Thus, a rather comprehensive discussion of the effects of (UV and IR) renormalisation upon radiation flux and energy density is possible.

  10. Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments

    E-Print Network [OSTI]

    Cucoanes, Andi; Cabrera, Anatael; Fallot, Muriel; Onillon, Anthony; Obolensky, Michel; Yermia, Frederic

    2015-01-01T23:59:59.000Z

    This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications o...

  11. Solar Model Parameters and Direct Measurements of Solar Neutrino Fluxes

    E-Print Network [OSTI]

    Abhijit Bandyopadhyay; Sandhya Choubey; Srubabati Goswami; S. T. Petcov

    2006-08-30T23:59:59.000Z

    We explore a novel possibility of determining the solar model parameters, which serve as input in the calculations of the solar neutrino fluxes, by exploiting the data from direct measurements of the fluxes. More specifically, we use the rather precise value of the $^8B$ neutrino flux, $\\phi_B$ obtained from the global analysis of the solar neutrino and KamLAND data, to derive constraints on each of the solar model parameters on which $\\phi_B$ depends. We also use more precise values of $^7Be$ and $pp$ fluxes as can be obtained from future prospective data and discuss whether such measurements can help in reducing the uncertainties of one or more input parameters of the Standard Solar Model.

  12. Multiscale Interactions between Water and Carbon Fluxes and Environmental Variables in A Central U.S. Grassland

    E-Print Network [OSTI]

    Brunsell, Nathaniel A.; Wilson, Cassandra J.

    2013-04-10T23:59:59.000Z

    field in the central U.S. Time-series of the entropy of water and carbon fluxes exhibit pronounced annual cycles, primarily explained by the modulation of the diurnal flux amplitude by other variables, such as the net radiation. Entropies of soil...

  13. Simplified model for determining local heat flux boundary conditions for slagging wall

    SciTech Connect (OSTI)

    Bingzhi Li; Anders Brink; Mikko Hupa [Aabo Akademi University, Turku (Finland). Process Chemistry Centre

    2009-07-15T23:59:59.000Z

    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

  14. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  15. atmosphere radiation budget: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2D observations of radiative fluxes seems promising for the observational study of extra-solar metrics for the validation of climate models, as asked for by the Intergovernmental...

  16. Radiative heat transfer in a parallelogram shaped cavity

    E-Print Network [OSTI]

    Dez, V Le

    2015-01-01T23:59:59.000Z

    An exact analytical description of the internal radiative field inside an emitting-absorbing gray semi-transparent medium enclosed in a two-dimensional parallelogram cavity is proposed. The expressions of the incident radiation and the radiative flux field are angularly and spatially discretized with a double Gauss quadrature, and the temperature field is obtained by using an iterative process. Some numerical solutions are tabulated and graphically presented as the benchmark solutions. Temperature and two components of the radiative flux are finally sketched on the whole domain. It is shown that the proposed method gives perfectly smooth results.

  17. Flux-Limited Diffusion Approximation Models of Giant Planet Formation by Disk Instability

    E-Print Network [OSTI]

    Boss, Alan P

    2008-01-01T23:59:59.000Z

    Both core accretion and disk instability appear to be required as formation mechanisms in order to explain the entire range of giant planets found in extrasolar planetary systems. Disk instability is based on the formation of clumps in a marginally-gravitationally unstable protoplanetary disk. These clumps can only be expected to contract and survive to become protoplanets if they are able to lose thermal energy through a combination of convection and radiative cooling. Here we present several new three dimensional, radiative hydrodynamics models of self-gravitating protoplanetary disks, where radiative transfer is handled in the flux-limited diffusion approximation. We show that while the flux-limited models lead to higher midplane temperatures than in a diffusion approximation model without the flux-limiter, the difference in temperatures does not appear to be sufficiently high to have any significant effect on the formation of self-gravitating clumps. Self-gravitating clumps form rapidly in the models both...

  18. A density-temperature description of the outer electron radiation belt during geomagnetic storms

    SciTech Connect (OSTI)

    Borovsky, Joseph E [Los Alamos National Laboratory; Cayton, Thomas E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

    2009-01-01T23:59:59.000Z

    Electron flux measurements from 7 satellites in geosynchronous orbit from 1990-2007 are fit with relativistic bi-Maxwellians, yielding a number density n and temperature T description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value ofn is 3.7x10-4 cm-3 and the median value ofT is 142 keY. General statistical properties of n, T, and the 1.1-1.5 MeV flux J are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis triggered on storm onset, the evolution of the outer electron radiation belt through high-speed-steam-driven storms is investigated. The number density decay during the calm before the storm is seen, relativistic-electron dropouts and recoveries from dropout are investigated, and the heating of the outer electron radiation belt during storms is examined. Using four different triggers (SSCs, southward-IMF CME sheaths, southward-IMF magnetic clouds, and minimum Dst), CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms an absence of a density decay prior to storm onset is found, the compression of the outer electron radiation belt at time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase is seen, and the increase in density and temperature during storm recovery phase is observed. Differences are found between the density-temperature and the flux descriptions, with more information for analysis being available in the density-temperature description.

  19. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  20. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  1. Beta ray flux measuring device

    DOE Patents [OSTI]

    Impink, Jr., Albert J. (Murrysville, PA); Goldstein, Norman P. (Murrysville, PA)

    1990-01-01T23:59:59.000Z

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  2. Experimental determination of radiated internal wave power without pressure field Frank M. Lee,1

    E-Print Network [OSTI]

    Morrison, Philip J.,

    = S d2 x pv · ^n , (1) where J = pv is the baroclinic energy flux, p is the perturbed pressure field, v to determine, using only velocity field data, the time-averaged energy flux J and total radiated power P) that can be used to compute the energy flux and power from any two-dimensional velocity field data. PACS

  3. Type II superconductivity and magnetic flux transport in neutrons stars

    E-Print Network [OSTI]

    P. B. Jones

    2005-10-13T23:59:59.000Z

    The transition to a type II proton superconductor which is believed to occur in a cooling neutron star is accompanied by changes in the equation of hydrostatic equilibrium and by the formation of proton vortices with quantized magnetic flux. Analysis of the electron Boltzmann equation for this system and of the proton supercurrent distribution formed at the transition leads to the derivation of a simple expression for the transport velocity of magnetic flux in the liquid interior of a neutron star. This shows that flux moves easily as a consequence of the interaction between neutron and proton superfluid vortices during intervals of spin-down or spin-up in binary systems. The differences between the present analysis and those of previous workers are reviewed and an error in the paper of Jones (1991) is corrected.

  4. Preoperative Intensity Modulated Radiation Therapy and Chemotherapy for Locally Advanced Vulvar Carcinoma: Analysis of Pattern of Relapse

    SciTech Connect (OSTI)

    Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)] [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Shukla, Gaurav; Shinde, Ashwin; Heron, Dwight E. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)] [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Kelley, Joseph L.; Edwards, Robert P.; Sukumvanich, Paniti; Richards, Scott; Olawaiye, Alexander B.; Krivak, Thomas C. [Division of Gynecologic Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)] [Division of Gynecologic Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)

    2013-04-01T23:59:59.000Z

    Purpose: To examine clinical outcomes and relapse patterns in locally advanced vulvar carcinoma treated using preoperative chemotherapy and intensity modulated radiation therapy (IMRT). Methods and Materials: Forty-two patients with stage I-IV{sub A} (stage I, n=3; stage II, n=13; stage III, n=23; stage IV{sub A}, n=3) vulvar cancer were treated with chemotherapy and IMRT via a modified Gynecological Oncology Group schema using 5-fluorouracil and cisplatin with twice-daily IMRT during the first and last weeks of treatment or weekly cisplatin with daily radiation therapy. Median dose of radiation was 46.4 Gy. Results: Thirty-three patients (78.6%) had surgery for resection of vulva; 13 of these patients also had inguinal lymph node dissection. Complete pathologic response was seen in 48.5% (n=16) of these patients. Of these, 15 had no recurrence at a median time of 26.5 months. Of the 17 patients with partial pathological response, 8 (47.1%) developed recurrence in the vulvar surgical site within a median of 8 (range, 5-34) months. No patient had grade ?3 chronic gastrointestinal/genitourinary toxicity. Of those having surgery, 8 (24.2%) developed wound infections requiring debridement. Conclusions: Preoperative chemotherapy/IMRT was well tolerated, with good pathologic response and clinical outcome. The most common pattern of recurrence was local in patients with partial response, and strategies to increase pathologic response rate with increasing dose or adding different chemotherapy need to be explored to help further improve outcomes.

  5. Electron loss rates from the outer radiation belt caused by the filling of the outer plasmasphere: the calm before the storm

    SciTech Connect (OSTI)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

    2009-01-01T23:59:59.000Z

    Measurements from 7 spacecraft in geosynchronous orbit are analyzed to determine the decay rate of the number density of the outer electron radiation belt prior to the onset of high-speed-stream-driven geomagnetic storms. Superposed-data analysis is used wan(?) a collection of 124 storms. When there is a calm before the storm, the electron number density decays exponentially before the storm with a 3.4-day e-folding time: beginning about 4 days before storm onset, the density decreases from {approx}4x10{sup -4} cm{sup -3} to {approx}1X 10{sup -4} cm{sup -3}. When there is not a calm before the storm, the number-density decay is very smalL The decay in the number density of radiation-belt electrons is believed to be caused by pitch-angle scattering of electrons into the atmospheric loss cone as the outer plasmasphere fills during the calms. While the radiation-belt electron density decreases, the temperature of the electron radiation belt holds approximately constant, indicating that the electron precipitation occurs equally at all energies. Along with the number density decay, the pressure of the outer electron radiation belt decays and the specific entropy increases. From the measured decay rates, the electron flux to the atmosphere is calculated and that flux is 3 orders of magnitude less than thermal fluxes in the magnetosphere, indicating that the radiation-belt pitch-angle scattering is 3 orders weaker than strong diffusion. Energy fluxes into the atmosphere are calculated and found to be insufficient to produce visible airglow.

  6. Influence of clouds and diffuse radiation on ecosystem-atmosphere CO 2 and CO 18 O exchanges

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    surface model with BOREAS aspen and jack pine tower fluxes,to diffuse radiation by an aspen-dominated northern hardwood

  7. Preliminary analysis of the possibility of making use of part of the energy flow of zero-point radiation

    E-Print Network [OSTI]

    R. Alvargonzalez; L. S. Soto

    2008-03-07T23:59:59.000Z

    The energy flow of zero-point radiation is very great, but difficult to put to use. However, the observations made by Sparnaay in 1958 and by Lamoureux in 1997 reveal the possibility of making use of a very small fraction of that immense amount. This possibility is big enough for such a minute fraction to have significant importance, but such a possibility requires miniaturisation to a degree which may be unattainable. It is worth trying to achieve it, since it would open the way to interstellar travel.

  8. Modification of flux profiles using a faceted concentrator

    SciTech Connect (OSTI)

    Lewandowski, A; Scholl, K; Bingham, C

    1993-01-01T23:59:59.000Z

    The use of a faceted solar concentrator allows for some flexibility in aiming strategy and in the intensity of the resulting flux profile at the target. This can be an advantage when considering applications that do not necessarily require maximum concentration, particularly emerging, new applications in solar processed advanced materials. This paper will describe both an analysis of predicted flux profiles for several different aiming strategies using the SOLFUR computer code and experiments to characterize the actual flux profiles realized with a selected aiming strategy. The SOLFUR code models each of the furnace components explicitly. Aim points for each facet can be specified. Thus many strategies for adjusting aim points can be easily explored. One strategy calls for creating as uniform a flux over as large an area as possible. We explored this strategy analytically and experimentally. The experimental data consist of flux maps generated by a video imaging system calibrated against absolute flux measurements taken with circular foil calorimeters. Results from the analytical study and a comparison with the experimental data indicate that uniform profiles can be produced over fairly large areas.

  9. Radiation source with shaped emission

    DOE Patents [OSTI]

    Kubiak, Glenn D.; Sweatt, William C.

    2003-05-13T23:59:59.000Z

    Employing a source of radiation, such as an electric discharge source, that is equipped with a capillary region configured into some predetermined shape, such as an arc or slit, can significantly improve the amount of flux delivered to the lithographic wafers while maintaining high efficiency. The source is particularly suited for photolithography systems that employs a ringfield camera. The invention permits the condenser which delivers critical illumination to the reticle to be simplified from five or more reflective elements to a total of three or four reflective elements thereby increasing condenser efficiency. It maximizes the flux delivered and maintains a high coupling efficiency. This architecture couples EUV radiation from the discharge source into a ring field lithography camera.

  10. Plasma focus ion beam fluence and flux—For various gases

    SciTech Connect (OSTI)

    Lee, S. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia); Physics Department, University of Malaya (Malaysia); Saw, S. H. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia)

    2013-06-15T23:59:59.000Z

    A recent paper derived benchmarks for deuteron beam fluence and flux in a plasma focus (PF) [S. Lee and S. H. Saw, Phys. Plasmas 19, 112703 (2012)]. In the present work we start from first principles, derive the flux equation of the ion beam of any gas; link to the Lee Model code and hence compute the ion beam properties of the PF. The results show that, for a given PF, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow, and damage factors are relatively constant from H{sub 2} to N{sub 2} but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper provides much needed benchmark reference values and scaling trends for ion beams of a PF operated in any gas.

  11. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14T23:59:59.000Z

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  12. Characterizing Vertical Mass Flux Profiles in Aeolian Saltation Systems

    E-Print Network [OSTI]

    Farrell, Eugene

    2012-07-16T23:59:59.000Z

    to November, 2008. These data were supplemented with 621 profiles gathered from an extensive review of the aeolian literature. From the field experiment, the analysis of the grain-size statistics for the flux caught in each trap shows that a reverse in grain...

  13. Quantum Fusion of Domain Walls with Fluxes

    E-Print Network [OSTI]

    S. Bolognesi; M. Shifman; M. B. Voloshin

    2009-07-20T23:59:59.000Z

    We study how fluxes on the domain wall world volume modify quantum fusion of two distant parallel domain walls into a composite wall. The elementary wall fluxes can be separated into parallel and antiparallel components. The parallel component affects neither the binding energy nor the process of quantum merger. The antiparallel fluxes, instead, increase the binding energy and, against naive expectations, suppress quantum fusion. In the small flux limit we explicitly find the bounce solution and the fusion rate as a function of the flux. We argue that at large (antiparallel) fluxes there exists a critical value of the flux (versus the difference in the wall tensions), which switches off quantum fusion altogether. This phenomenon of flux-related wall stabilization is rather peculiar: it is unrelated to any conserved quantity. Our consideration of the flux-related all stabilization is based on substantiated arguments that fall short of complete proof.

  14. Reversal of Hugoniot locus for strong shocks due to radiation

    SciTech Connect (OSTI)

    Li Jiwei; Li Jinghong; Meng Guangwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2011-04-15T23:59:59.000Z

    Shock Hugoniot can be used to express the response of a material to shocks, and the compression ratio of the shock can be determined by the Hugoiot locus. When the shock is strong, it will become radiating, and the radiation will affect the Hugoniot. The role of radiation on the Hugoniot condition is studied in the paper. For the radiative flux-dominated shocks, the radiative flux if large enough may render the structure of the shock Hugoniot locus totally different with the case for the pure hydrodynamic shock: the two branches with one in quadrant I and the other in quadrant III are reversed into two in quadrants IV and II, respectively, correspondingly the compression ratio may be larger than the limiting value ({gamma}+1)/({gamma}-1) for ideal gases with index {gamma}. For the radiative shock in which the radiative heat wave propagates supersonically, a threshold value for the net radiative flux to the preshock is also defined which determines whether the Hugoniot locus is reversed and the compression ratio exceeds the limiting value. Numerical results also verify the reversal of the Hugoniot locus of the shocks if the net radiative flux to the preshock exceeds the threshold value.

  15. Analysis of the Failures and Corrective Actions for the LHC Cryogenics Radiation Tolerant Electronics and its Field Instruments

    E-Print Network [OSTI]

    Balle, Ch; Vauthier, N

    2014-01-01T23:59:59.000Z

    The LHC cryogenic system radiation tolerant electronics and their associated field instruments have been in nominal conditions since before the commissioning of the first LHC beams in September 2008. This system is made of about 15’000 field instruments (thermometers, pressure sensors, liquid helium level gauges, electrical heaters and position switches), 7’500 electronic cards and 853 electronic crates. Since mid-2008 a software tool has been deployed, this allows an operator to report a problem and then lists the corrective actions. The tool is a great help in detecting recurrent problems that may be tackled by a hardware or software consolidation. The corrective actions range from simple resets, exchange of defective equipment, repair of electrical connectors, etc. However a recurrent problem that heals by itself is present on some channels. This type of fault is extremely difficult to diagnose and it appears as a temporary opening of an electrical circuit; its duration can range from a few minutes to ...

  16. Gender, Race, and Survival: A Study in Non-Small-Cell Lung Cancer Brain Metastases Patients Utilizing the Radiation Therapy Oncology Group Recursive Partitioning Analysis Classification

    SciTech Connect (OSTI)

    Videtic, Gregory M.M., E-mail: videtig@ccf.or [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Reddy, Chandana A. [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Chao, Samuel T. [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Brain Tumor and NeuroOncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Rice, Thomas W. [Department of Thoracic and Cardiovascular Surgery, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Adelstein, David J. [Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Barnett, Gene H. [Brain Tumor and NeuroOncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Department of Neurosurgery, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Mekhail, Tarek M. [Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Vogelbaum, Michael A. [Brain Tumor and NeuroOncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Department of Neurosurgery, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Suh, John H. [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Brain Tumor and NeuroOncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States)

    2009-11-15T23:59:59.000Z

    Purpose: To explore whether gender and race influence survival in non-small-cell lung cancer (NSCLC) in patients with brain metastases, using our large single-institution brain tumor database and the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) brain metastases classification. Methods and materials: A retrospective review of a single-institution brain metastasis database for the interval January 1982 to September 2004 yielded 835 NSCLC patients with brain metastases for analysis. Patient subsets based on combinations of gender, race, and RPA class were then analyzed for survival differences. Results: Median follow-up was 5.4 months (range, 0-122.9 months). There were 485 male patients (M) (58.4%) and 346 female patients (F) (41.6%). Of the 828 evaluable patients (99%), 143 (17%) were black/African American (B) and 685 (83%) were white/Caucasian (W). Median survival time (MST) from time of brain metastasis diagnosis for all patients was 5.8 months. Median survival time by gender (F vs. M) and race (W vs. B) was 6.3 months vs. 5.5 months (p = 0.013) and 6.0 months vs. 5.2 months (p = 0.08), respectively. For patients stratified by RPA class, gender, and race, MST significantly favored BFs over BMs in Class II: 11.2 months vs. 4.6 months (p = 0.021). On multivariable analysis, significant variables were gender (p = 0.041, relative risk [RR] 0.83) and RPA class (p < 0.0001, RR 0.28 for I vs. III; p < 0.0001, RR 0.51 for II vs. III) but not race. Conclusions: Gender significantly influences NSCLC brain metastasis survival. Race trended to significance in overall survival but was not significant on multivariable analysis. Multivariable analysis identified gender and RPA classification as significant variables with respect to survival.

  17. New solar opacities, abundances, helioseismology, and neutrino fluxes

    E-Print Network [OSTI]

    John N. Bahcall; Aldo M. Serenelli; Sarbani Basu

    2005-01-19T23:59:59.000Z

    We construct solar models with the newly calculated radiative opacities from the Opacity Project (OP) and recently determined (lower) heavy element abundances. We compare results from the new models with predictions of a series of models that use OPAL radiative opacities, older determinations of the surface heavy element abundances, and refinements of nuclear reaction rates. For all the variations we consider, solar models that are constructed with the newer and lower heavy element abundances advocated by Asplund et al. (2005) disagree by much more than the estimated measuring errors with helioseismological determinations of the depth of the solar convective zone, the surface helium composition, the internal sound speeds, and the density profile. Using the new OP radiative opacities, the ratio of the 8B neutrino flux calculated with the older and larger heavy element abundances (or with the newer and lower heavy element abundances) to the total neutrino flux measured by the Sudbury Neutrino Observatory is 1.09 (0.87) with a 9% experimental uncertainty and a 16% theoretical uncertainty, 1 sigma errors.

  18. Heisenberg groups and noncommutative fluxes

    SciTech Connect (OSTI)

    Freed, Daniel S. [Department of Mathematics, University of Texas at Austin, TX 78712 (United States)]. E-mail: dafr@math.utexas.edu; Moore, Gregory W. [Department of Physics, Rutgers University, Piscataway, NJ 08854-8019 (United States); Segal, Graeme [All Souls College, Oxford (United Kingdom)

    2007-01-15T23:59:59.000Z

    We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z{sub 2}-graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k+2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured.

  19. ARM - Measurement - Soil moisture flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARM Data Discovery Browse Data

  20. Center vortices as composites of monopole fluxes

    E-Print Network [OSTI]

    Deldar, Sedigheh

    2015-01-01T23:59:59.000Z

    We study the relation between the flux of a center vortex obtained from the center vortex model and the flux formed between monopoles obtained from the Abelian gauge fixing method. Motivated by the Monte Carlo simulations which have shown that almost all monopoles are sitting on the top of vortices, we construct the fluxes of center vortices for $SU(2)$ and $SU(3)$ gauge groups using fractional fluxes of monopoles. Then, we compute the potentials in the fundamental representation induced by center vortices and fractional fluxes of monopoles. We show that by combining the fractional fluxes of monopoles one can produce the center vortex fluxes for $SU(3)$ gauge group in a "center vortex model". Comparing the potentials, we conclude that the fractional fluxes of monopoles attract each other.

  1. Turbulent Fluxes in Stably Stratified Boundary Layers

    E-Print Network [OSTI]

    L'vov, Victor S; Rudenko, Oleksii; 10.1088/0031-8949/2008/T132/014010

    2008-01-01T23:59:59.000Z

    We present an extended version of an invited talk given on the International Conference "Turbulent Mixing and Beyond". The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations, and dimensional estimates of the turbulent thermal flux run into a well known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction with observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations removing t...

  2. Cellular telephone-based radiation detection instrument

    DOE Patents [OSTI]

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2011-06-14T23:59:59.000Z

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  3. Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks

    SciTech Connect (OSTI)

    Robert J. Goldston

    2009-08-20T23:59:59.000Z

    The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

  4. DCE-MRI defined subvolumes of a brain metastatic lesion by principle component analysis and fuzzy-c-means clustering for response assessment of radiation therapy

    SciTech Connect (OSTI)

    Farjam, Reza; Tsien, Christina I.; Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, SPC 5010, Ann Arbor, Michigan 48109-5010 (United States)] [Department of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, SPC 5010, Ann Arbor, Michigan 48109-5010 (United States); Cao, Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, SPC 5010, Ann Arbor, Michigan 48109-5010 (United States) [Department of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, SPC 5010, Ann Arbor, Michigan 48109-5010 (United States); Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Med Inn Building C478, Ann Arbor, Michigan 48109-5842 (United States); Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States)

    2014-01-15T23:59:59.000Z

    Purpose: To develop a pharmacokinetic modelfree framework to analyze the dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data for assessment of response of brain metastases to radiation therapy. Methods: Twenty patients with 45 analyzable brain metastases had MRI scans prior to whole brain radiation therapy (WBRT) and at the end of the 2-week therapy. The volumetric DCE images covering the whole brain were acquired on a 3T scanner with approximately 5 s temporal resolution and a total scan time of about 3 min. DCE curves from all voxels of the 45 brain metastases were normalized and then temporally aligned. A DCE matrix that is constructed from the aligned DCE curves of all voxels of the 45 lesions obtained prior to WBRT is processed by principal component analysis to generate the principal components (PCs). Then, the projection coefficient maps prior to and at the end of WBRT are created for each lesion. Next, a pattern recognition technique, based upon fuzzy-c-means clustering, is used to delineate the tumor subvolumes relating to the value of the significant projection coefficients. The relationship between changes in different tumor subvolumes and treatment response was evaluated to differentiate responsive from stable and progressive tumors. Performance of the PC-defined tumor subvolume was also evaluated by receiver operating characteristic (ROC) analysis in prediction of nonresponsive lesions and compared with physiological-defined tumor subvolumes. Results: The projection coefficient maps of the first three PCs contain almost all response-related information in DCE curves of brain metastases. The first projection coefficient, related to the area under DCE curves, is the major component to determine response while the third one has a complimentary role. In ROC analysis, the area under curve of 0.88 ± 0.05 and 0.86 ± 0.06 were achieved for the PC-defined and physiological-defined tumor subvolume in response assessment. Conclusions: The PC-defined subvolume of a brain metastasis could predict tumor response to therapy similar to the physiological-defined one, while the former is determined more rapidly for clinical decision-making support.

  5. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  6. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  7. CRAD, Radiological Controls- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Radiation Protection Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  8. Flux-Limited Diffusion Approximation Models of Giant Planet Formation by Disk Instability

    E-Print Network [OSTI]

    Alan P. Boss

    2008-01-28T23:59:59.000Z

    Both core accretion and disk instability appear to be required as formation mechanisms in order to explain the entire range of giant planets found in extrasolar planetary systems. Disk instability is based on the formation of clumps in a marginally-gravitationally unstable protoplanetary disk. These clumps can only be expected to contract and survive to become protoplanets if they are able to lose thermal energy through a combination of convection and radiative cooling. Here we present several new three dimensional, radiative hydrodynamics models of self-gravitating protoplanetary disks, where radiative transfer is handled in the flux-limited diffusion approximation. We show that while the flux-limited models lead to higher midplane temperatures than in a diffusion approximation model without the flux-limiter, the difference in temperatures does not appear to be sufficiently high to have any significant effect on the formation of self-gravitating clumps. Self-gravitating clumps form rapidly in the models both with and without the flux-limiter. These models suggest that the reason for the different outcomes of numerical models of disk instability by different groups cannot be attributed solely to the handling of radiative transfer, but rather appears to be caused by a range of numerical effects and assumptions. Given the observational imperative to have disk instability form at least some extrasolar planets, these models imply that disk instability remains as a viable giant planet formation mechanism.

  9. Thermal response of a flat heat pipe sandwich structure to a localized heat flux

    E-Print Network [OSTI]

    Wadley, Haydn

    The temperature distribution across a flat heat pipe sandwich structure, subjected to an intense localized thermal metal foam wick and distilled water as the working fluid. Heat was applied via a propane torch and radiative heat transfer. A novel method was developed to estimate experimentally, the heat flux distribution

  10. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  11. Estimation of advective fluxes from CO2 flux profile observations at the Cabauw Tower

    E-Print Network [OSTI]

    Stoffelen, Ad

    Estimation of advective fluxes from CO2 flux profile observations at the Cabauw Tower Kasper O profile observations at the Cabauw Tower Version 1.0 Date April 2012 Status Final #12;#12;Estimation of Advective Fluxes from CO2 Flux Profile Observations at the Cabauw Tower Master of Science Thesis Kasper O

  12. Analysis of radiation doses from operation of postulated commercial spent fuel transportation systems: Analysis of a system containing a monitored retrievable storage facility. Addendum 1

    SciTech Connect (OSTI)

    Smith, R.I.; Daling, P.M. [Pacific Northwest Lab., Richland, WA (United States); Faletti, D.W. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-04-01T23:59:59.000Z

    This addendum report extends the original study of the estimated radiation doses to the public and to workers resulting from transporting spent nuclear fuel from commercial nuclear power reactor stations through the federal waste management system (FWMS), to a system that contains a monitored retrievable storage (MRS) facility. The system concepts and designs utilized herein are consistent with those used in the original study (circa 1985--1987). Because the FWMS design is still evolving, the results of these analyses may no longer apply to the design for casks and cask handling systems that are currently being considered. Four system scenarios are examined and compared with the reference No-MRS scenario (all spent fuel transported directly from the reactors to the western repository in standard-capacity truck and rail casks). In Scenarios 1 and 2, an MRS facility is located in eastern United States and ships either intact fuel assemblies or consolidated fuel rods and compacted assembly hardware in canisters. In Scenarios 3 and 4, an MRS facility is located in the western United States and ship either intact fuel assemblies or consolidated fuel rods and compacted assembly hardware in canisters.

  13. An experimental investigation of critical heat flux in subcooled internal flow

    E-Print Network [OSTI]

    Shatto, Donald Patrick

    1997-01-01T23:59:59.000Z

    diameters, tube lengths, and mass flow rates. Methods of developing predictive correlations for subcooled critical heat flux based on dimensional analysis, and the sublayer dryout model, are described and applied to the data from these experiments. When...

  14. Analysis of Vision Loss Caused by Radiation-Induced Optic Neuropathy After Particle Therapy for Head-and-Neck and Skull-Base Tumors Adjacent to Optic Nerves

    SciTech Connect (OSTI)

    Demizu, Yusuke, E-mail: y_demizu@nifty.co [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Murakami, Masao; Miyawaki, Daisuke; Niwa, Yasue [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Akagi, Takashi [Department of Accelerator Managing, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Sasaki, Ryohei [Division of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Terashima, Kazuki [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Suga, Daisaku [Department of Radiation Technology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan); Kamae, Isao [Division of Medical Statistics, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Hishikawa, Yoshio [Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo (Japan)

    2009-12-01T23:59:59.000Z

    Purpose: To assess the incident rates of vision loss (VL; based on counting fingers or more severe) caused by radiation-induced optic neuropathy (RION) after particle therapy for tumors adjacent to optic nerves (ONs), and to evaluate factors that may contribute to VL. Methods and Materials: From August 2001 to August 2006, 104 patients with head-and-neck or skull-base tumors adjacent to ONs were treated with carbon ion or proton radiotherapy. Among them, 145 ONs of 75 patients were irradiated and followed for greater than 12 months. The incident rate of VL and the prognostic factors for occurrence of VL were evaluated. The late effects of carbon ion and proton beams were compared on the basis of a biologically effective dose at alpha/beta = 3 gray equivalent (GyE{sub 3}). Results: Eight patients (11%) experienced VL resulting from RION. The onset of VL ranged from 17 to 58 months. The median follow-up was 25 months. No significant difference was observed between the carbon ion and proton beam treatment groups. On univariate analysis, age (>60 years), diabetes mellitus, and maximum dose to the ON (>110 GyE{sub 3}) were significant, whereas on multivariate analysis only diabetes mellitus was found to be significant for VL. Conclusions: The time to the onset of VL was highly variable. There was no statistically significant difference between carbon ion and proton beam treatments over the follow-up period. Based on multivariate analysis, diabetes mellitus correlated with the occurrence of VL. A larger study with longer follow-up is warranted.

  15. ARM - Measurement - Soil heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARM Data Discovery Browse Data Comments? We

  16. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    SciTech Connect (OSTI)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S. [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan); Institute for Cosmic Ray Research, and Institute for the Physics and Mathematical of the Universe, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo, 169-8555 (Japan); Faculty of Software and Information Technology, Aomori University, Aomori, 030-0943 Japan (Japan)

    2011-06-15T23:59:59.000Z

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  17. A Basic Overview of the Occupational Radiation Exposure Monitoring...

    Broader source: Energy.gov (indexed) [DOE]

    Operating Experience Program, requires collection, analysis, and dissemination of performance indicators, such as occupational radiation exposure information. DOE System of...

  18. A Multi-institutional Clinical Trial of Rectal Dose Reduction via Injected Polyethylene-Glycol Hydrogel During Intensity Modulated Radiation Therapy for Prostate Cancer: Analysis of Dosimetric Outcomes

    SciTech Connect (OSTI)

    Song, Danny Y., E-mail: dsong2@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Herfarth, Klaus K.; Uhl, Matthias [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Eble, Michael J.; Pinkawa, Michael [Department of Radiation Oncology, RWTH Aachen University, Aachen (Germany); Triest, Baukelien van; Kalisvaart, Robin [Department of Radiation Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Ziekenhuis, Amsterdam (Netherlands); Weber, Damien C.; Miralbell, Raymond [Department of Radiation Oncology, Geneva University, Geneva (Switzerland); DeWeese, Theodore L. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Ford, Eric C. [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States)

    2013-09-01T23:59:59.000Z

    Purpose: To characterize the effect of a prostate-rectum spacer on dose to rectum during external beam radiation therapy for prostate cancer and to assess for factors correlated with rectal dose reduction. Methods and Materials: Fifty-two patients at 4 institutions were enrolled into a prospective pilot clinical trial. Patients underwent baseline scans and then were injected with perirectal spacing hydrogel and rescanned. Intensity modulated radiation therapy plans were created on both scans for comparison. The objectives were to establish rates of creation of ?7.5 mm of prostate-rectal separation, and decrease in rectal V70 of ?25%. Multiple regression analysis was performed to evaluate the associations between preinjection and postinjection changes in rectal V70 and changes in plan conformity, rectal volume, bladder volume, bladder V70, planning target volume (PTV), and postinjection midgland separation, gel volume, gel thickness, length of PTV/gel contact, and gel left-to-right symmetry. Results: Hydrogel resulted in ?7.5-mm prostate-rectal separation in 95.8% of patients; 95.7% had decreased rectal V70 of ?25%, with a mean reduction of 8.0 Gy. There were no significant differences in preinjection and postinjection prostate, PTV, rectal, and bladder volumes. Plan conformities were significantly different before versus after injection (P=.02); plans with worse conformity indexes after injection compared with before injection (n=13) still had improvements in rectal V70. In multiple regression analysis, greater postinjection reduction in V70 was associated with decreased relative postinjection plan conformity (P=.01). Reductions in V70 did not significantly vary by institution, despite significant interinstitutional variations in plan conformity. There were no significant relationships between reduction in V70 and the other characteristics analyzed. Conclusions: Injection of hydrogel into the prostate-rectal interface resulted in dose reductions to rectum for >90% of patients treated. Rectal sparing was statistically significant across a range of 10 to 75 Gy and was demonstrated within the presence of significant interinstitutional variability in plan conformity, target definitions, and injection results.

  19. RADIATION PROTECTION STANDARDS FOR SCRAP METAL

    E-Print Network [OSTI]

    RADIATION PROTECTION STANDARDS FOR SCRAP METAL: PRELIMINARY COST-BENEFIT ANALYSIS Prepared for: Radiation Protection Division Office of Air and Radiation U.S. Environmental Protection Agency Prepared from nuclear facilities. Upon their completion, EPA plans to release the preliminary draft regulations

  20. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  1. Application of three-dimensional solar radiative transfer to mountains Y. Chen,1,2

    E-Print Network [OSTI]

    Liou, K. N.

    Application of three-dimensional solar radiative transfer to mountains Y. Chen,1,2 A. Hall,1 and K November 2006. [1] We developed a three-dimensional radiative transfer model simulating solar fluxes over (2006), Application of three-dimensional solar radiative transfer to mountains, J. Geophys. Res., 111, D

  2. Radiation Belt Activity Indices and Solar Proton Event Alarm on the CRATERRE Project Web Site

    E-Print Network [OSTI]

    Radiation Belt Activity Indices and Solar Proton Event Alarm on the CRATERRE Project Web Site D--Two Radiation Belt Activity Indices, based on electron flux measurement >300 keV and >1.6 MeV, and one Solar updated. Index Terms- CRATERRE project, Radiation belts activity, Space environment I. INTRODUCTION

  3. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The Federal Regulation

  4. Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments

    E-Print Network [OSTI]

    Andi Cucoanes; Pau Novella; Anatael Cabrera; Muriel Fallot; Anthony Onillon; Michel Obolensky; Frederic Yermia

    2015-01-02T23:59:59.000Z

    This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications on the global $\\theta_{13}$ knowledge today. First, Double Chooz, in its final configuration, is the only experiment benefiting from a negligible reactor flux error due to a $\\sim$90\\% geometrical suppression. Second, Daya Bay and RENO could benefit from their partial geometrical cancellation, yielding a potential $\\sim$50\\% error suppression, thus significantly improving the global $\\theta_{13}$ precision today. And third, we illustrate the rationale behind further error suppression upon the exploitation of the inter-reactor error correlations, so far neglected. So, our publication is a key step forward in the context of high precision neutrino reactor experiments providing insight on the suppression of their intrinsic flux error uncertainty, thus affecting past and current experimental results, as well as the design of future experiments.

  5. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    SciTech Connect (OSTI)

    Bingham, C.E.

    1991-12-01T23:59:59.000Z

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

  6. Building wall heat flux calculations

    SciTech Connect (OSTI)

    Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.

    1987-01-01T23:59:59.000Z

    Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall.

  7. The Statistics of the Prompt-to-Afterglow GRB Flux Ratios and the Supercritical Pile GRB Model

    E-Print Network [OSTI]

    Kazanas, D; Sultana, J; Mastichiadis, A

    2015-01-01T23:59:59.000Z

    We present the statistics of the ratio, ${\\mathrm R}$, between the prompt and afterglow "plateau" fluxes of GRB. This we define as the ratio between the mean prompt energy flux in the {\\em Swift} BAT and the {\\em Swift} XRT, immediately following the steep transition between these two states and the beginning of the afterglow stage referred to as the "plateau". Like the distribution of other GRB observables, the histogram of ${\\mathrm R}$ is close to log-normal, with maximum at ${\\mathrm R = R}_{\\rm m} \\simeq 2,000$, FWHM of about 2 decades and with the entire distribution spanning about 6 decades in the value of ${\\mathrm R}$. We note that the peak of the distribution is close to the proton-to-electron mass ratio $({\\mathrm R}_{\\rm m} \\simeq m_p/m_e = 1836)$, as proposed by us earlier, on the basis of a specific model for the conversion of the GRB blast wave kinetic energy into radiation, before any similar analysis were made. It therefore appears that, in addition to the values of the energy of peak luminos...

  8. Building wall heat flux calculations

    SciTech Connect (OSTI)

    Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.

    1987-06-01T23:59:59.000Z

    Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall. All of the other model elements (conduction through wall board, sheathing, and siding; convection from siding and wallboard to ambients; and radiation across the wall cavity) are required to accurately predict the heat transfer through a wall. Addition of a foil liner on one inner surface of the wall cavity reduces the total heat transferred by almost 50%.

  9. Radiative acceleration and transient, radiation-induced electric fields

    E-Print Network [OSTI]

    L. Zampieri; R. Turolla; L. Foschini; A. Treves

    2003-04-14T23:59:59.000Z

    The radiative acceleration of particles and the electrostatic potential fields that arise in low density plasmas hit by radiation produced by a transient, compact source are investigated. We calculate the dynamical evolution and asymptotic energy of the charged particles accelerated by the photons and the radiation-induced electric double layer in the full relativistic, Klein-Nishina regime. For fluxes in excess of $10^{27}$ ${\\rm erg} {\\rm cm}^{-2} {\\rm s}^{-1}$, the radiative force on a diluted plasma ($n\\la 10^{11}$ cm$^{-3}$) is so strong that electrons are accelerated rapidly to relativistic speeds while ions lag behind owing to their larger inertia. The ions are later effectively accelerated by the strong radiation-induced double layer electric field up to Lorentz factors $\\approx 100$, attainable in the case of negligible Compton drag. The asymptotic energies achieved by both ions and electrons are larger by a factor 2--4 with respect to what one could naively expect assuming that the electron-ion assembly is a rigidly coupled system. The regime we investigate may be relevant within the framework of giant flares from soft gamma-repeaters.

  10. Radiation issues for the nuclear industry

    SciTech Connect (OSTI)

    Harward, E.D. (ed.)

    1983-01-01T23:59:59.000Z

    These proceedings are organized under the following categories: Radiation Control: New Issues; Exploring the Use of a De Minimus Concept in Radiation Protection; Evolving Radiation Protection Standards; Occupational Radiation Protection: Are We Doing Enough; and Emergency Planning: the Potassium Iodide Issue. A separate abstract was prepared for each of 22 papers for the Energy Data Base (EDB) and for Energy Abstracts for Policy Analysis (EAPA); 6 of the papers are included in Energy Research Abstracts (ERA). Three papers were processed earlier.

  11. A Basic Overview of Occupational Radiation Exposure Monitoring...

    Office of Environmental Management (EM)

    Analysis & Reporting A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting September 2012 This pamphlet is intended to provide a short summary...

  12. Comparative analysis of radiation effects on the electroluminescence of Si and SiGe/Si(001) heterostructures with self-assembled Islands

    SciTech Connect (OSTI)

    Krasilnik, Z. F.; Kudryavtsev, K. E. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Kachemtsev, A. N. [Sedakov Scientific-Research Institute (Russian Federation); Lobanov, D. N., E-mail: dima@ipm.sci-nnov.ru; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Obolenskiy, S. V. [Nizhni Novgorod State University (Russian Federation); Shengurov, D. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2011-02-15T23:59:59.000Z

    The effect of neutron radiation on the electroluminescence of the Si p-i-n diode containing a multilayered Ge/Si heterostructure with self-assembled nanoislands is studied. In comparison with bulk Si, the diodes containing Ge(Si) nanoislands exhibit a higher radiation hardness of the electroluminescence signal, which is attributed to spatial localization of charge carriers in the Ge/Si nanostructures. The spatial localization of charge carriers impedes their diffusion to radiation defects followed by nonradiative recombination at the defects. The results show the possibilities of using Ge/Si heterostructures with self-assembled nanoislands for the development of optoelectronic devices resistant to radiation.

  13. Atmospheric neutrino flux at INO site

    SciTech Connect (OSTI)

    Honda, Morihiro [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan)

    2011-11-23T23:59:59.000Z

    To illustrate the calculation of the atmospheric neutrino flux, we briefly explain our calculation scheme and important components, such as primary cosmic ray spectra, interaction model, and geomagnetic model. Then, we calculate the atmospheric neutrino flux at INO site in our calculation scheme. We compare the calculated atmospheric neutrino fluxes predicted at INO with those at other major neutrino detector sites, especially that at SK site.

  14. Fluxing agent for metal cast joining

    DOE Patents [OSTI]

    Gunkel, Ronald W. (Lower Burrell, PA); Podey, Larry L. (Greensburg, PA); Meyer, Thomas N. (Murrysville, PA)

    2002-11-05T23:59:59.000Z

    A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.

  15. Confinement and the Short Type I' Flux Tube

    E-Print Network [OSTI]

    Shyamoli Chaudhuri

    2000-07-18T23:59:59.000Z

    We show that the recent world-sheet analysis of the quantum fluctuations of a short flux tube in type II string theory leads to a simple and precise description of a pair of stuck D0branes in an orientifold compactification of the type I' string theory. The existence of a stable type I' flux tube of sub-string-scale length is a consequence of the confinement of quantized flux associated with the scalar dualized ten-form background field strength *F_{10}, evidence for a -2brane in the BPS spectrum of M theory. Using heterotic-type I duality, we infer the existence of an M2brane of finite width O(\\sqrt{\\alpha'}) in M-theory, the strong coupling resolution of a spacetime singularity in the D=9 twisted and toroidally compactified E_8 x E_8 heterotic string. This phenomenon has a bosonic string analog in the existence of a stable short electric flux tube arising from the confinement of photons due to tachyon field dynamics. The appendix clarifies the appearance of nonperturbative states and enhanced gauge symmetry in toroidal compactifications of the type I' string. We account for all of the known disconnected components of the moduli space of theories with sixteen supercharges, in striking confirmation of heterotic-type I duality.

  16. Contribution of GRB Emission to the GeV Extragalactic Diffuse Gamma-Ray Flux

    E-Print Network [OSTI]

    S. Casanova; B. L. Dingus; Bing Zhang

    2006-11-03T23:59:59.000Z

    TeV gamma rays emitted by GRBs are converted into electron-positron pairs via interactions with the extragalactic infrared radiation fields. In turn the pairs produced, whose trajectories are randomized by magnetic fields, will inverse Compton scatter off the cosmic microwave background photons. The beamed TeV gamma ray flux from GRBs is thus transformed into a GeV isotropic gamma ray flux, which contributes to the total extragalactic gamma-ray background emission. Assuming a model for the extragalactic radiation fields, for the GRB redshift distribution and for the GRB luminosity function, we evaluate the contribution of the GRB prompt and scattered emissions to the measured extragalactic gamma-ray flux. To estimate this contribution we optimistically require that the energy flux at TeV energies is about 10 times stronger than the energy flux at MeV energies. The resulting gamma-ray diffuse background is only a small fraction of what is observed, allowing blazars and other sources to give the dominant contribution.

  17. Cardiac Mortality in Patients With Stage I and II Diffuse Large B-Cell Lymphoma Treated With and Without Radiation: A Surveillance, Epidemiology, and End-Results Analysis

    SciTech Connect (OSTI)

    Pugh, Thomas J., E-mail: thomas.pugh@ucdenver.ed [Department of Radiation Oncology, University of Colorado Comprehensive Cancer Center, Aurora, Colorado (United States); Ballonoff, Ari; Rusthoven, Kyle E.; McCammon, Robert; Kavanagh, Brian; Newman, Francis; Rabinovitch, Rachel [Department of Radiation Oncology, University of Colorado Comprehensive Cancer Center, Aurora, Colorado (United States)

    2010-03-01T23:59:59.000Z

    Purpose: Standard therapy for stage I and II diffuse large B-cell lymphoma consists of combined modality therapy with anthracycline-based chemotherapy, anti-CD20 antibody, and radiation therapy (RT). Curative approaches without RT typically utilize more intensive and/or protracted chemotherapy schedules. Anthracycline-based chemotherapy regimens are associated with a dose-dependent risk of left ventricular systolic dysfunction. We hypothesize that patients treated without RT, i.e., those who are treated with greater total chemotherapy cycles and hence cumulative anthracycline exposure, are at increased risk of cardiac mortality. Methods and Materials: The rate of cardiac-specific mortality (CSM) was analyzed in patients with stage I and II diffuse large B-cell lymphoma diagnosed between 1988 and 2004 by querying the National Cancer Institute Surveillance, Epidemiology, and End-Results database. Analyzable data included gender, age, race, stage, presence of extranodal disease, and RT administration. Results: A total of 15,454 patients met selection criteria; 6,021 (39%) patients received RT. The median follow-up was 36 months (range, 6-180 months). The median age was 64 years. The actuarial incidence rates of CSM at 5, 10, and 15 years were 4.3%, 9.0%, and 13.8%, respectively, in patients treated with RT vs. 5.9%, 10.8% and 16.1%, respectively, in patients treated without RT (p < 0.0001; hazard ratio, 1.35; 95% confidence interval [CI]: 1.16-1.56). The increase in cardiac deaths for patients treated without RT persisted throughout the follow-up period. On multivariate analysis, treatment without RT remained independently associated with an increased risk of CSM (Cox hazard ratio, 1.32; 95% CI: 1.13-1.54; p = 0.0005). Conclusions: Increased anthracycline exposure in patients treated only with chemotherapy regimens may result in an increase in cardiac deaths, detectable only through analysis of large sample sizes. Confirmatory evaluation through meta-analysis of randomized data and design of large prospective trials is warranted.

  18. Handheld CZT radiation detector

    DOE Patents [OSTI]

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24T23:59:59.000Z

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  19. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  20. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  1. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01T23:59:59.000Z

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  2. Gravitational Radiation

    E-Print Network [OSTI]

    Bernard F Schutz

    2000-03-16T23:59:59.000Z

    Gravity is one of the fundamental forces of Nature, and it is the dominant force in most astronomical systems. In common with all other phenomena, gravity must obey the principles of special relativity. In particular, gravitational forces must not be transmitted or communicated faster than light. This means that when the gravitational field of an object changes, the changes ripple outwards through space and take a finite time to reach other objects. These ripples are called gravitational radiation or gravitational waves. This article gives a brief introduction to the physics of gravitational radiation, including technical material suitable for non-specialist scientists.

  3. Data system for automatic flux mapping applications

    SciTech Connect (OSTI)

    Couch, R.D.; Kasinoff, A.M.; Neuner, J.A.; Oates, R.M.

    1980-12-16T23:59:59.000Z

    In an automatic flux mapping system utilizing a microprocessor for control and data information processing, signals from the incore detectors providing the flux mapping operation are converted to a frequency link and are made available to the microprocessor via a programmable timer thus minimizing the participation of the microprocessor so that the microprocessor can be made more available to satisfy other tasks.

  4. URANIUM MILL TAILINGS RADON FLUX CALCULATIONS

    E-Print Network [OSTI]

    URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÃ?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November

  5. PHELIX for flux compression studies

    SciTech Connect (OSTI)

    Turchi, Peter J [Los Alamos National Laboratory; Rousculp, Christopher L [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory; Reass, William A [Los Alamos National Laboratory; Griego, Jeffrey R [Los Alamos National Laboratory; Oro, David M [Los Alamos National Laboratory; Merrill, Frank E [Los Alamos National Laboratory

    2010-06-28T23:59:59.000Z

    PHELIX (Precision High Energy-density Liner Implosion eXperiment) is a concept for studying electromagnetic implosions using proton radiography. This approach requires a portable pulsed power and liner implosion apparatus that can be operated in conjunction with an 800 MeV proton beam at the Los Alamos Neutron Science Center. The high resolution (< 100 micron) provided by proton radiography combined with similar precision of liner implosions driven electromagnetically can permit close comparisons of multi-frame experimental data and numerical simulations within a single dynamic event. To achieve a portable implosion system for use at high energy-density in a proton laboratory area requires sub-megajoule energies applied to implosions only a few cms in radial and axial dimension. The associated inductance changes are therefore relatively modest, so a current step-up transformer arrangement is employed to avoid excessive loss to parasitic inductances that are relatively large for low-energy banks comprising only several capacitors and switches. We describe the design, construction and operation of the PHELIX system and discuss application to liner-driven, magnetic flux compression experiments. For the latter, the ability of strong magnetic fields to deflect the proton beam may offer a novel technique for measurement of field distributions near perturbed surfaces.

  6. High-heat-flux removal by phase-change fluid and particulate flow

    SciTech Connect (OSTI)

    Gorbis, Z.R.; Raffray, A.R.; Abdou, M.A. (Univ. of California, Los Angeles (United States))

    1993-07-01T23:59:59.000Z

    A new concept based on particulate flow in which either or both the particulates and the fluid could undergo phase changes is proposed. The presence of particulates provides not only a mechanism for additional heat removal through phase change but also the potential for increasing the rate of heat transfer by enhancing convection through surface region/bulk [open quotes]mixing[close quotes], by enhancing radiation, particularly for high-temperature cases; and for the case of multiphase fluid, by enhancing the boiling process. One particularly interesting coolant system based on this concept is [open quotes]subcooled boiling water-ice particulate[close quotes] flow. A preliminary analysis of this coolant system is presented, the results of which indicate that such a coolant system is better applied for cooling of relatively small surface areas with high local heat fluxes, where a conventional cooling system would come short of providing the required heat removal at acceptable coolant pressure levels. 14 refs., 8 figs.

  7. Prognostic Importance of Gleason 7 Disease Among Patients Treated With External Beam Radiation Therapy for Prostate Cancer: Results of a Detailed Biopsy Core Analysis

    SciTech Connect (OSTI)

    Spratt, Daniel E.; Zumsteg, Zach; Ghadjar, Pirus; Pangasa, Misha; Pei, Xin [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Fine, Samson W. [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Yamada, Yoshiya; Kollmeier, Marisa [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Zelefsky, Michael J., E-mail: zelefskm@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-04-01T23:59:59.000Z

    Purpose: To analyze the effect of primary Gleason (pG) grade among a large cohort of Gleason 7 prostate cancer patients treated with external beam radiation therapy (EBRT). Methods and Materials: From May 1989 to January 2011, 1190 Gleason 7 patients with localized prostate cancer were treated with EBRT at a single institution. Of these patients, 613 had a Gleason 7 with a minimum of a sextant biopsy with nonfragmented cores and full biopsy core details available, including number of cores of cancer involved, percentage individual core involvement, location of disease, bilaterality, and presence of perineural invasion. Median follow-up was 6 years (range, 1-16 years). The prognostic implication for the following outcomes was analyzed: biochemical recurrence-free survival (bRFS), distant metastasis-free survival (DMFS), and prostate cancer-specific mortality (PCSM). Results: The 8-year bRFS rate for pG3 versus pG4 was 77.6% versus 61.3% (P<.0001), DMFS was 96.8% versus 84.3% (P<.0001), and PCSM was 3.7% versus 8.1% (P=.002). On multivariate analysis, pG4 predicted for significantly worse outcome in all parameters. Location of disease (apex, base, mid-gland), perineural involvement, maximum individual core involvement, and the number of Gleason 3+3, 3+4, or 4+3 cores did not predict for distant metastases. Conclusions: Primary Gleason grade 4 independently predicts for worse bRFS, DMFS, and PCSM among Gleason 7 patients. Using complete core information can allow clinicians to utilize pG grade as a prognostic factor, despite not having the full pathologic details from a prostatectomy specimen. Future staging and risk grouping should investigate the incorporation of primary Gleason grade when complete biopsy core information is used.

  8. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  9. Barotropic Impacts of Surface Friction on Eddy Kinetic Energy and Momentum Fluxes: An Alternative to the Barotropic Governor

    E-Print Network [OSTI]

    Garfinkel, Chaim I.

    Barotropic Impacts of Surface Friction on Eddy Kinetic Energy and Momentum Fluxes: An Alternative energy decreases, a response that is inconsistent with the conventional barotropic governor mechanism on eddy momentum fluxes and eddy kinetic energy. Analysis of the pseudomomentum budget shows

  10. Flux penetration into superconducting Nb3Sn in oblique magnetic fields Diana G. Gheorghe, Mariela Menghini, and Rinke J. Wijngaarden

    E-Print Network [OSTI]

    Wijngaarden, Rinke J.

    Flux penetration into superconducting Nb3Sn in oblique magnetic fields Diana G. Gheorghe, Mariela; published 14 June 2006 Penetration of magnetic flux into a rectangular platelet of superconducting Nb3Sn-II superconductors. For such an analysis, often the simplest solutions of the critical state problem are used, which

  11. AIP/123-QED Experimental determination of radiated internal wave power without pressure field

    E-Print Network [OSTI]

    Texas at Austin. University of

    S is given by, P = S d2 x J · ^n = S d2 x pv · ^n , (1) where J = pv is the baroclinic energy flux, p, using only velocity field data, the time-averaged energy flux J and total radiated power P for two the energy flux and power from any two-dimensional velocity field data. PACS numbers: Valid PACS appear here

  12. Evaluation of Arctic Broadband Surface Radiation Measurements

    SciTech Connect (OSTI)

    Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

    2012-02-24T23:59:59.000Z

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  13. Coherent Transition Radiation in Askaryan radio detectors

    E-Print Network [OSTI]

    de Vries, Krijn D; van Eijndhoven, Nick; Meures, Thomas; O'Murchadha, Aongus; Scholten, Olaf

    2015-01-01T23:59:59.000Z

    We discuss the coherent transition radiation emitted by a macroscopic bunch of particles with a net charge traversing the boundary of two different media. The obtained expression is compared to the emission from a relativistically moving steady charge, as well the emission from a time-varying charge or current. As a first application, we discuss the transition radiation from high-energy cosmic-ray induced air showers hitting Earth's surface before the cascade has died out in the atmosphere. The induced emission gives rise to a radio signal which should be detectable in the currently operating Askaryan radio detectors built to search for the GZK neutrino flux.

  14. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2011-01-31T23:59:59.000Z

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  15. An Assessment of the Parameterization of Subgrid-Scale Cloud Effects on Radiative Transfer. Part II: Horizontal Inhomogeneity

    E-Print Network [OSTI]

    Stephens, Graeme L.

    in downwelling radiative fluxes at the surface induced by changes in cloud cover and water vapor distributions. 1An Assessment of the Parameterization of Subgrid-Scale Cloud Effects on Radiative Transfer. Part II form 5 January 2005) ABSTRACT The role of horizontal inhomogeneity in radiative transfer through cloud

  16. Signatures of Energy Flux in Particle Production: A Black Hole Birth Cry and Death Gasp

    E-Print Network [OSTI]

    Good, Michael R R

    2015-01-01T23:59:59.000Z

    It is recently argued that if the Hawking radiation process is unitary, then a black hole's mass cannot be monotonically decreasing. We examine the time dependent particle count and negative energy flux in the non-trivial conformal vacuum via the moving mirror approach. A new, exactly unitary solution is presented which emits a characteristic above-thermal positive energy burst, a thermal plateau, and negative energy flux. It is found that the characteristic positive energy flare and thermal plateau is observed in the particle outflow. However, the results of time dependent particle production show no overt indication of negative energy flux. Therefore, a black hole's birth cry is detectable by asymptotic observers via particle count, whereas its death gasp is not.

  17. A link between solar events and congenital malformations: Is ionizing radiation enough to explain it?

    E-Print Network [OSTI]

    Overholt, A C; Atri, D

    2015-01-01T23:59:59.000Z

    Cosmic rays are known to cause biological effects directly and through ionizing radiation produced by their secondaries. These effects have been detected in airline crews and other specific cases where members of the population are exposed to above average secondary fluxes. Recent work has found a correlation between solar particle events and congenital malformations. In this work we use the results of computational simulations to approximate the ionizing radiation from such events as well as longer term increases in cosmic ray flux. We find that the amounts of ionizing radiation produced by these events are insufficient to produce congenital malformations under the current paradigm regarding muon ionizing radiation. We believe that further work is needed to determine the correct ionizing radiation contribution of cosmogenic muons. We suggest that more extensive measurements of muon radiation effects may show a larger contribution to ionizing radiation dose than currently assumed.

  18. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, S.B.

    1989-10-24T23:59:59.000Z

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  19. A low cost high flux solar simulator

    E-Print Network [OSTI]

    Codd, Daniel S.

    A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

  20. Coupled Deterministic-Monte Carlo Transport for Radiation Portal Modeling

    SciTech Connect (OSTI)

    Smith, Leon E.; Miller, Erin A.; Wittman, Richard S.; Shaver, Mark W.

    2008-01-14T23:59:59.000Z

    Radiation portal monitors are being deployed, both domestically and internationally, to detect illicit movement of radiological materials concealed in cargo. Evaluation of the current and next generations of these radiation portal monitor (RPM) technologies is an ongoing process. 'Injection studies' that superimpose, computationally, the signature from threat materials onto empirical vehicle profiles collected at ports of entry, are often a component of the RPM evaluation process. However, measurement of realistic threat devices can be both expensive and time-consuming. Radiation transport methods that can predict the response of radiation detection sensors with high fidelity, and do so rapidly enough to allow the modeling of many different threat-source configurations, are a cornerstone of reliable evaluation results. Monte Carlo methods have been the primary tool of the detection community for these kinds of calculations, in no small part because they are particularly effective for calculating pulse-height spectra in gamma-ray spectrometers. However, computational times for problems with a high degree of scattering and absorption can be extremely long. Deterministic codes that discretize the transport in space, angle, and energy offer potential advantages in computational efficiency for these same kinds of problems, but the pulse-height calculations needed to predict gamma-ray spectrometer response are not readily accessible. These complementary strengths for radiation detection scenarios suggest that coupling Monte Carlo and deterministic methods could be beneficial in terms of computational efficiency. Pacific Northwest National Laboratory and its collaborators are developing a RAdiation Detection Scenario Analysis Toolbox (RADSAT) founded on this coupling approach. The deterministic core of RADSAT is Attila, a three-dimensional, tetrahedral-mesh code originally developed by Los Alamos National Laboratory, and since expanded and refined by Transpire, Inc. [1]. MCNP5 is used to calculate sensor pulse-height tallies. RADSAT methods, including adaptive, problem-specific energy-group creation, ray-effect mitigation strategies and the porting of deterministic angular flux to MCNP for individual particle creation are described in [2][3][4]. This paper discusses the application of RADSAT to the modeling of gamma-ray spectrometers in RPMs.

  1. Surface energy budget over the South Pole and turbulent heat fluxes as a function of an empirical bulk Richardson number

    E-Print Network [OSTI]

    Walden, Von P.

    as a residual of the energy budget, temperature inversion strength, and wind shear as a function of the bulkSurface energy budget over the South Pole and turbulent heat fluxes as a function of an empirical 2009; accepted 12 August 2009; published 26 November 2009. [1] Routine radiation and meteorological

  2. Constraints on GRB TeV Emission from the GeV Extragalactic Diffuse Gamma-Ray Flux

    E-Print Network [OSTI]

    Casanova, S; Zhang, B; Zhang, Bing

    2006-01-01T23:59:59.000Z

    TeV gamma rays emitted by GRBs are converted into electron-positron pairs via interactions with the extragalactic infrared radiation fields. In turn the pairs produced, whose trajectories are randomized by magnetic fields, will inverse Compton scatter off the cosmic microwave background photons. The beamed TeV gamma ray flux from GRBs is thus transformed into a GeV isotropic gamma ray flux, which contributes to the total extragalactic gamma-ray background emission. Assuming a model for the extragalactic radiation fields, for the GRB redshift distribution and for the GRB luminosity function, we use the measured GeV extragalactic gamma-ray flux to set upper limits on the GRB emission in TeV gamma rays that is predicted in several models.

  3. Thermal analysis of the horizontal shipping container for normal conditions of transport with solar insolation

    SciTech Connect (OSTI)

    Stumpfl, E.; Feldman, M.R.; Anderson, J.C.

    1993-04-02T23:59:59.000Z

    A thermal analysis of the horizontal shipping container (HSC) was performed to determine the temperatures at the outer surface of the inner container during normal conditions of transport with incident solar radiation. There are two methods by which this analysis can be performed: (1) it can be run as a steady-state problem where it is assumed that the incident solar radiation is applied to the package 24 hours per day, or (2) it can be run as a cyclic transient problem where the incident solar radiation is applied for 12 hours per day and the other 12 hours there is assumed to be no incident solar radiation. The steady-state method was initially attempted, but the temperatures determined from this analysis were judged to be significantly higher than one would find in the cyclic case. Thus, it was deemed necessary to perform a transient analysis to determine a more realistic temperature distribution within the HSC during normal conditions of transport. The heat transfer code HEATING 7.1 was used to perform these calculations. HEATING 7.1 is a heat conduction code capable of handling radiation, convection (forced and natural), and heat flux boundary conditions. Heat generation within a material is also possible with HEATING 7.1 but was not used in any of the models presented here. The models used here are one-dimensional in the radial direction.

  4. Modeling high-energy cosmic ray induced terrestrial muon flux: A lookup table

    E-Print Network [OSTI]

    Dimitra Atri; Adrian L. Melott

    2011-05-09T23:59:59.000Z

    On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. Typical cosmic ray energies may be much higher than the ~ 1 GeV flux which normally dominates. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the radiation dose. Muons contribute 85% to the radiation dose from cosmic rays. This enhanced dose could be potentially harmful to the biosphere. This mechanism has been discussed extensively in literature but has never been quantified. Here, we have developed a lookup table that can be used to quantify this effect by modeling terrestrial muon flux from any arbitrary cosmic ray spectra with 10 GeV - 1 PeV primaries. This will enable us to compute the radiation dose on terrestrial planetary surfaces from a number of astrophysical sources.

  5. Constraints on the ionizing flux emitted by T Tauri stars

    E-Print Network [OSTI]

    R. D. Alexander; C. J. Clarke; J. E. Pringle

    2005-01-06T23:59:59.000Z

    We present the results of an analysis of ultraviolet observations of T Tauri Stars (TTS). By analysing emission measures taken from the literature we derive rates of ionizing photons from the chromospheres of 5 classical TTS in the range ~10^41-10^44 photons/s, although these values are subject to large uncertainties. We propose that the HeII/CIV line ratio can be used as a reddening-independent indicator of the hardness of the ultraviolet spectrum emitted by TTS. By studying this line ratio in a much larger sample of objects we find evidence for an ionizing flux which does not decrease, and may even increase, as TTS evolve. This implies that a significant fraction of the ionizing flux from TTS is not powered by the accretion of disc material onto the central object, and we discuss the significance of this result and its implications for models of disc evolution. The presence of a significant ionizing flux in the later stages of circumstellar disc evolution provides an important new constraint on disc photoevaporation models.

  6. Quantum radiation from a partially reflecting moving mirror

    E-Print Network [OSTI]

    Nistor Nicolaevici

    2000-03-29T23:59:59.000Z

    We consider the quantum radiation from a partially reflecting moving mirror for the massless scalar field in 1+1 Minkowski space. Partial reflectivity is achieved by localizing a delta-type potential at the mirror's position. The radiated flux is exactly obtained for arbitrary motions as an integral functional of the mirror's past trajectory. Partial reflectivity corrections to the perfect mirror result are discussed.

  7. au flux diffus: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contribution of the GRB prompt and scattered emissions to the measured extragalactic gamma-ray flux. To estimate this contribution we optimistically require that the energy flux...

  8. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation ape034hsu2011p.pdf More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling...

  9. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

  10. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

  11. RADIATIVE HEATING OF THE SOLAR CORONA

    SciTech Connect (OSTI)

    Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

    2011-10-20T23:59:59.000Z

    We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

  12. Meeting Report--NASA Radiation Biomarker Workshop

    SciTech Connect (OSTI)

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01T23:59:59.000Z

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  13. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, Hal O. (Berkeley, CA); Martin, Donn C. (Berkeley, CA); Lampton, Michael L. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

  14. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, H.O.; Martin, D.C.; Lampton, M.L.

    1983-07-26T23:59:59.000Z

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

  15. Modeling of the recycling particle flux and electron particle transport in the DIII-D tokamak

    SciTech Connect (OSTI)

    Baker, D.R.; Jackson, G.L. [General Atomics, San Diego, CA (United States); Maingi, R. [Oak Ridge Associated Universities, Inc., TN (United States); Owen, L.W. [Oak Ridge National Lab., TN (United States); Porter, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01T23:59:59.000Z

    One of the most difficult aspects of performing an equilibrium particle transport analysis in a diverted tokamak is the determination of the particle flux which enters the plasma after recycling from the divertor plasma, the divertor target plates or the vessel wall. An approach which has been utilized in the past is to model the edge, scrape-off layer (SOL), and divertor plasma to match measured plasma parameters and then use a neutral transport code to obtain an edge recycling flux while trying to match the measured divertor D(x emissivity. Previous simulations were constrained by electron density (n{sub e}) and temperature (T{sub e}), ion temperature (T{sub i}) data at the outer midplane, divertor heat flux from infrared television cameras, and n{sub e}, T{sub e} and particle flux at the target from fixed Langmuir probes, along with the divertor D{sub {alpha}} emissivity. In this paper, we present results of core fueling calculations from the 2-D modeling for ELM-free discharges, constrained by data from the new divertor diagnostics. In addition, we present a simple technique for estimating the recycling flux just after the L-H transition and demonstrate how this technique is supported by the detailed modeling. We will show the effect which inaccuracies in the recycling flux have on the calculated particle flux in the plasma core. For some specific density profiles, it is possible to separate the convective flux from the conductive flux. The diffusion coefficients obtained show a sharp decrease near a normalized radius of 0.9 indicating the presence of a transport barrier.

  16. Possibility to Determine the Astrophysical S-Factor for the Be-7(p,gamma)b-8 Radiative-Capture from Analysis of the Be-7(he-3,d)b-8 Reaction

    E-Print Network [OSTI]

    Mukhamedzhanov, AM; Tribble, Robert E.; imofeyuk, N. K.

    1995-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 51, NUMBER 6 JUNE 1995 Possibility to determine the astrophysical S factor for the Be(p, p)sB radiative capture from analysis of the Be(sHe, d)sB reaction A. M. Mukhamedzhanov and R. E. Tribble Cyclotron Institute, Texas...) of the internal bound-state wave functions of B and Be, IsB'rB, (r) = ($?~~PsB), where r is the relative coordinate between the proton and the center of mass of Be, is approximated by S,&,B &P?, ?(r) . Here S887B is the spectroscopic factor of the configura...

  17. Divertor Heat Flux Amelioration in Highly-Shaped Plasma in NSTX

    SciTech Connect (OSTI)

    Soukhanovskii, V; Maingi, R; Gates, D; Menard, J; Raman, R; Bell, R; Bush, C; Kaita, R; Kugel, H; LeBlanc, B; Paul, S; Roquemore, A

    2007-07-02T23:59:59.000Z

    Steady-state handling of divertor heat flux is a critical issue for both the International Thermonuclear Experimental Reactor and spherical torus (ST) based devices with compact high power density divertors. The ST compact divertor with a small plasma volume, a small plasma-wetted area, and a short parallel connection length can reduce the operating space of heat flux dissipation techniques based on induced edge and/or scrape-off layer (SOL) power and momentum loss, such as the radiative and dissipative divertors and radiative mantles. Access to these regimes is studied in the National Spherical Torus Experiment (NSTX) with an open geometry horizontal carbon plate divertor in 2-6 MW NBI-heated H-mode plasmas in a lower single null (LSN) configuration in a range of elongations {kappa} = 1.8-2.4 and triangularities {delta}= 0.40-0.75. Experiments conducted in a lower end {kappa}{approx}1.8-2.0 and {delta}{approx} 0.4-0.5 LSN shape using deuterium injection in the divertor region have achieved the outer strike point (OSP) peak heat flux reduction from 4-6 MW/m2 to a manageable level of 1-2 MW/m2. However, only the high-recycling radiative divertor (RD) regime was found to be compatible with good performance and H-mode confinement. A partially detached divertor (PDD) could only be obtained at a high D2 injection rate that led to an X-point MARFE formation and confinement degradation. Also in the low {kappa}{approx} 2,{delta}{approx} 0.45 shape, peak heat flux q{sub pk} and heat flux width {lambda}{sub q} scaling studies have been conducted. Similar to tokamak divertor studies, q{sub pk} was found to be a strong function of input power PNBI and plasma current Ip, and the heat flux midplane scale length {lambda}{sub q} was found to be large as compared with simple SOL models. In this paper, we report on the first experiments to assess steady-state divertor heat flux amelioration in highly shaped plasmas in NSTX.

  18. The Effect of Radiation Timing on Patients With High-Risk Features of Parameningeal Rhabdomyosarcoma: An Analysis of IRS-IV and D9803

    SciTech Connect (OSTI)

    Spalding, Aaron C., E-mail: Aaron.Spalding@nortonhealthcare.org [Kosair Children's Hospital and Brain Tumor Center, Louisville, Kentucky (United States); Hawkins, Douglas S. [Division of Hematology/Oncology, Seattle Children's Hospital, and Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington (United States); Donaldson, Sarah S. [Department of Radiation Oncology, Stanford University Medical Center, Stanford, California (United States); Anderson, James R.; Lyden, Elizabeth [University of Nebraska Medical Center, Omaha, Nebraska (United States); Laurie, Fran [Quality Assurance Review Center, Providence, Rhode Island and Seattle, Washington (United States); Wolden, Suzanne L. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Arndt, Carola A.S. [Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota (United States); Michalski, Jeff M. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2013-11-01T23:59:59.000Z

    Purpose: Radiation therapy remains an essential treatment for patients with parameningeal rhabdomyosarcoma (PMRMS), and early radiation therapy may improve local control for patients with intracranial extension (ICE). Methods and Materials: To address the role of radiation therapy timing in PMRMS in the current era, we reviewed the outcome from 2 recent clinical trials for intermediate-risk RMS: Intergroup Rhabdomyosarcoma Study (IRS)-IV and Children's Oncology Group (COG) D9803. The PMRMS patients on IRS-IV with any high-risk features (cranial nerve palsy [CNP], cranial base bony erosion [CBBE], or ICE) were treated immediately at day 0, and PMRMS patients without any of these 3 features received week 6-9 radiation therapy. The D9803 PMRMS patients with ICE received day 0 X-Ray Therapy (XRT) as well; however, those with either CNP or CBBE had XRT at week 12. Results: Compared with the 198 PMRMS patients from IRS-IV, the 192 PMRMS patients from D9803 had no difference (P<.05) in 5-year local failure (19% vs 19%), failure-free-survival (70% vs 67%), or overall survival (75% vs 73%) in aggregate. The 5-year local failure rates by subset did not differ when patients were classified as having no risk features (None, 15% vs 19%, P=.25), cranial nerve palsy/cranial base of skull erosion (CNP/CBBE, 15% vs 28%, P=.22), or intracranial extension (ICE, 21% vs 15%, P=.27). The D9083 patients were more likely to have received initial staging by magnetic resonance imaging (71% vs 53%). Conclusions: These data support that a delay in radiation therapy for high-risk PMRMS features of CNP/CBBE does not compromise clinical outcomes.

  19. Radiative Flow in a Luminous Disk II

    E-Print Network [OSTI]

    Jun Fukue

    2006-01-07T23:59:59.000Z

    Radiatively-driven transfer flow perpendicular to a luminous disk is examined in the subrelativistic regime of $(v/c)^1$, taking into account the gravity of the central object. The flow is assumed to be vertical, and the gas pressure is ignored, while internal heating is assumed to be proportional to the gas density. The basic equations were numerically solved as a function of the optical depth, and the flow velocity, the height, the radiative flux, and the radiation pressure were obtained for a given radius, an initial optical depth, and initial conditions at the flow base (disk ``inside''), whereas the mass-loss rate was determined as an eigenvalue of the boundary condition at the flow top (disk ``surface''). For sufficiently luminous cases, the flow resembles the case without gravity. For less-luminous cases, however, the flow velocity decreases, and the flow would be impossible due to the existence of gravity in the case that the radiative flux is sufficiently small. Application to a supercritical accretion disk with mass loss is briefly discussed.

  20. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22T23:59:59.000Z

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  1. Cellular telephone-based wide-area radiation detection network

    DOE Patents [OSTI]

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2009-06-09T23:59:59.000Z

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  2. Cloud properties and associated radiative heating rates in the tropical western Pacific

    E-Print Network [OSTI]

    Cloud properties and associated radiative heating rates in the tropical western Pacific James H set of atmospheric remote sensing instruments at sites around the world, including three radiative fluxes and heating rates. Maxima in cloud occurrence are found in the boundary layer and the upper

  3. A Coupled AtmosphereOcean Radiative Transfer System Using the Analytic Four-Stream Approximation

    E-Print Network [OSTI]

    Liou, K. N.

    of the ocean. Shortwave radiation from the sun contributes most of the heat fluxes that penetrate the airA Coupled Atmosphere­Ocean Radiative Transfer System Using the Analytic Four-Stream Approximation WEI-LIANG LEE AND K. N. LIOU Department of Atmospheric and Oceanic Sciences, University of California

  4. A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields

    E-Print Network [OSTI]

    Robert, Pincus

    A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud.-J. Morcrette, A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud, which computes fluxes at each level. [3] The description of clouds in current LSMs is quite simple: Most

  5. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01T23:59:59.000Z

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  6. Coronal mass ejections and magnetic flux buildup in the heliosphere

    E-Print Network [OSTI]

    California at Berkeley, University of

    electron heat flux. The first panel shows the preeruption heliospheric flux, which consists of the an open the observed doubling in the magnetic field intensity at 1 AU over the solar cycle. Such timescales signatures; no flux buildup results. The dynamic simulation yields a solar cycle flux variation with high

  7. environmental management radiation protection

    E-Print Network [OSTI]

    Entekhabi, Dara

    EHS environmental management biosafety radiation protection industrial hygiene safety Working: Biosafety, Environmental Management, Industrial Hygiene, Radiation Protection and Safety. Each specialized Management Program, Industrial Hygiene, Radiation Protection Program, and the Safety Program. (http

  8. DETECTORS FOR RADIATION DOSIMETRY

    E-Print Network [OSTI]

    Perez-Mendez, V.

    2010-01-01T23:59:59.000Z

    J. Price, "Nuclear Radiation Detection" (2nd ed. , New York:4) G. F. Knoll, "Radiation Detection and Measurement" (NewSons, Inc. from "Radiation Detection and Measurement," G. F.

  9. Uniform flux dish concentrators for photovoltaic application

    SciTech Connect (OSTI)

    Jorgensen, G; Wendelin, T

    1992-05-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) have designed a unique and innovative molded dish concentrator capable of producing a uniform flux profile on a flat target plane. Concentration levels of 100--200 suns, which are uniform over an area of several square inches, can be directly achieved for collection apertures of a reasonable size ({approximately}1.5-m diameter). Such performance would be immediately applicable to photovoltaic (PV) use. Economic concerns have shown that the proposed approach would be less expensive thatn Fresnel lens concepts or other dish concentrator designs that require complicated and costly receivers to mix the flux to obtain a uniform distribution. 12 refs.

  10. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, Fulvio (Rome, IT); Cohen, Samuel A. (Hopewell, NJ); Bennett, Timothy (Princeton, NJ); Timberlake, John R. (Allentown, NJ)

    1993-01-01T23:59:59.000Z

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  11. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04T23:59:59.000Z

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  12. Shining On: A primer on solar radiation data

    SciTech Connect (OSTI)

    Dunlap, M.A.; Cook, G. [eds.; Marion, B.; Riordan, C.; Renne, D.

    1992-05-01T23:59:59.000Z

    This document is a primer on solar radiation data. General uses of solar energy are presented. The manner in which solar radiation data is used to aid engineers in optimizing the use of solar thermal conversion and photovoltaic conversion is discussed. Methods for acquiring and assimilating the solar radiation data are illustrated. This would include the design and use of pyranometers and pyrheliometers. Seasonal and geographical variations in solar flux reaching the earth are evaluated. Other uses of compiled data include the determination of meteorological impacts of atmospheric disturbances such as volcano eruptions.

  13. Numerical analysis of the effect of the TEM{sub 00} radiation mode polarisation on the cut shape in laser cutting of thick metal sheets

    SciTech Connect (OSTI)

    Zaitsev, A V; Kovalev, O B; Orishich, Anatolii M; Fomin, V M [Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2005-02-28T23:59:59.000Z

    The effect of polarisation of a Gaussian beam on the radiation absorption during laser cutting of metals is investigated. A generalised formula is proposed for calculating the absorption coefficient, which describes the polarisation of three types (linear, elliptical, and circular), taking into account the fact that the beam may interact with a metal surface of an arbitrary shape. A comparison with the existing analogues (in the cases of linear and circular radiation polarisation) confirmed the advantage of employing the formula for the spatial description of the shape of the surface produced, which is highly important for processing (cutting, welding, drilling) of thick materials. The effect of laser radiation characteristics on the surface shape and cut depth in cutting stainless steel sheets is investigated numerically. It is shown for the first time that the cutting of materials by the TEM{sub 00} beam is most efficient when the beam has elliptical polarisation directed along the direction of beam displacement and characterised by a specific axial ratio. (laser applications and other topics in quantum electronics)

  14. annealing radiation defects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is also investigated. Ionel Lazanu; Sorina Lazanu 2002-08-07 6 Radiation Damage in Silicon -Defect Analysis and Detector Properties - Physics Websites Summary:...

  15. FFTF (Fast Flux Test Facility) reactor shutdown system reliability reevaluation

    SciTech Connect (OSTI)

    Pierce, B.F.

    1986-07-01T23:59:59.000Z

    The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations.

  16. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    SciTech Connect (OSTI)

    Zou, Shiyang; Song, Peng; Pei, Wenbing [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Guo, Liang [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)

    2013-09-15T23:59:59.000Z

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.

  17. Courses on Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation The following is an incomplete list of courses on Synchrotron Radiation. For additional courses, check lightsources.org. XAFS School The APS XAFS School...

  18. Solar radiation resource assessment

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  19. Radiation Control (Virginia)

    Broader source: Energy.gov [DOE]

    The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

  20. Divertor Heat Flux Mitigation in High-Performance H-mode Plasmas in the National Spherical Torus Experiment.

    SciTech Connect (OSTI)

    Soukhanovskii, V A; Maingi, R; Gates, D; Menard, J; Paul, S F; Raman, R; Roquemore, A L; Bell, R E; Bush, C; Kaita, R

    2008-09-22T23:59:59.000Z

    Experiments conducted in high-performance 1.0-1.2 MA 6 MW NBI-heated H-mode plasmas with a high flux expansion radiative divertor in NSTX demonstrate that significant divertor peak heat flux reduction and access to detachment may be facilitated naturally in a highly-shaped spherical torus (ST) configuration. Improved plasma performance with high {beta}{sub p} = 15-25%, a high bootstrap current fraction f{sub BS} = 45-50%, longer plasma pulses, and an H-mode regime with smaller ELMs has been achieved in the lower single null configuration with higher-end elongation 2.2-2.4 and triangularity 0.6-0.8. Divertor peak heat fluxes were reduced from 6-12 MW/m{sup 2} to 0.5-2 MW/m{sup 2} in ELMy H-mode discharges using high magnetic flux expansion and partial detachment of the outer strike point at several D{sub 2} injection rates, while good core confinement and pedestal characteristics were maintained. The partially detached divertor regime was characterized by a 30-60% increase in divertor plasma radiation, a peak heat flux reduction by up to 70%, measured in a 10 cm radial zone, a five-fold increase in divertor neutral pressure, and a significant volume recombination rate increase.

  1. Radiation Shielding for Fusion Reactors

    SciTech Connect (OSTI)

    Santoro, R.T.

    1999-10-01T23:59:59.000Z

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel.

  2. Simple Waves in Ideal Radiation Hydrodynamics

    E-Print Network [OSTI]

    Bryan M. Johnson

    2008-11-24T23:59:59.000Z

    In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material component with a large number of internal degrees of freedom and an internal energy greater than that of the radiation, the sound speed increases as the fluid is rarefied. These solutions are an excellent test for radiation hydrodynamic codes operating in the dynamic diffusion regime. The general approach may be useful in the development of Godunov numerical schemes for radiation hydrodynamics.

  3. SYNOPTIC MAPPING OF CHROMOSPHERIC MAGNETIC FLUX

    SciTech Connect (OSTI)

    Jin, C. L. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Harvey, J. W.; Pietarila, A., E-mail: cljin@nao.cas.cn, E-mail: jharvey@nso.edu, E-mail: apietarila@nso.edu [National Solar Observatory, Tucson, AZ 85719 (United States)

    2013-03-10T23:59:59.000Z

    We used daily full-disk Ca II 854.2 nm magnetograms from the Synoptic Optical Long Term Investigations of the Sun (SOLIS) facility to study the chromospheric magnetic field from 2006 April through 2009 November. We determined and corrected previously unidentified zero offsets in the SOLIS magnetograms. By tracking the disk passages of stable unipolar regions, the measured net flux densities were found to systematically decrease from the disk center to the limb by a factor of about two. This decrease was modeled using a thin flux tube model with a difference in signal formation height between the center and limb sides. Comparison of photospheric and chromospheric observations shows that their differences are largely due to horizontal spreading of magnetic flux with increasing height. The north polar magnetic field decreased nearly linearly with time during our study period while the south polar field was nearly constant. We used the annual change in the viewing angle of the polar regions to estimate the radial and meridional components of the polar fields and found that the south polar fields were tilted away from the pole. Synoptic maps of the chromospheric radial flux density distribution were used as boundary conditions for extrapolation of the field from the chromosphere into the corona. A comparison of modeled and observed coronal hole boundaries and coronal streamer positions showed better agreement when using the chromospheric rather than the photospheric synoptic maps.

  4. Energies of Quantum QED Flux Tubes

    E-Print Network [OSTI]

    H Weigel

    2006-01-26T23:59:59.000Z

    In this talk I present recent studies on vacuum polarization energies and energy densities induced by QED flux tubes. I focus on comparing three and four dimensional scenarios and the discussion of various approximation schemes in view of the exact treatment.

  5. Flux tubes in the SU(3) vacuum

    E-Print Network [OSTI]

    Mario S. Cardaci; Paolo Cea; Leonardo Cosmai; Rossella Falcone; Alessandro Papa

    2011-09-30T23:59:59.000Z

    We analyze the distribution of the chromoelectric field generated by a static quark-antiquark pair in the SU(3) vacuum. We find that the transverse profile of the flux tube resembles the dual version of the Abrikosov vortex field distribution and give an estimate of the London penetration length in the confined vacuum.

  6. BROOKHAVEN NATIONAL LABORATORY'S HIGH FLUX BEAM REACTOR

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 BROOKHAVEN NATIONAL LABORATORY'S HIGH FLUX BEAM REACTOR Compiled by S. M. Shapiro I. PICTORIAL with fiberglass insulation and a protective aluminum skin. The reactor vessel is shaped somewhat like a very large at the spherical end. It is located at the center of the reactor building and is surrounded by a lead and steel

  7. Flux Exclusion Superconducting Quantum Metamaterial: Towards

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Flux Exclusion Superconducting Quantum Metamaterial: Towards Quantum-level Switching V. Savinov1, they require extremely high levels of nanofabrication. Here we introduce a new quantum superconducting properties of the mac- roscopic quantum state of superconducting carriers1 , and essentially plasmonic nature

  8. Additional measurements of the radiation environment at the Los Alamos Spallation Radiation Effects Facility at LAMPF

    SciTech Connect (OSTI)

    Davidson, D.R.; Reedy, R.C.; Greenwood, L.R.; Sommer, W.F.; Wechsler, M.S.

    1986-01-01T23:59:59.000Z

    Foil activation dosimetry experiments were conducted in a ''rabbit'' system at the completed Los Alamos Spallation Radiation Effects Facility (LASREF). The ''raffit'' system contains four tubes spaced radially outward 0.12, 0.18, 0.27, and 0.38 meters off beam centerline. Foils were irradiated for 3 to 62 hours to measure the neutron flux and energy spectrum radially from beam centerline, along the beamline, and the effect of the Isotope Production (IP) target loadings on the neutron flux in the neutron irradiation locations. Irradiations showed a decrease in the radial flux by a factor of 6 in 0.15 meters of iron outside the IP targets. An enchancement was seen in the 24-keV energy region outside 0.15 meters. There was little difference in the shape of the spectra outside the IP targets and the beam stop with the exception of the high energy tail (energies above 20 MeV). The decrease in the high energy tail outside the beam stop is due to the degradation of the energy of the proton beam in the IP targets. Irradiations outside the beam stop with zero and eight IP targets gave the same spectral shape with the exception of the high energy tail. The magnitude of the integral flux decreased by a factor of 2 when eight IP targets were present. Irradiations with five ''rabbits'' stacked on top of each other showed no difference in the integral flux below, on and above beam centerline.

  9. Higher order treatment on temporal derivative of angular flux for time-dependent MOC

    SciTech Connect (OSTI)

    Tsujita, K.; Endo, T.; Yamamoto, A. [Nagoya University, Department of Material, Physics and Energy Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Kamiyama, Y.; Kirimura, K. [Mitsubishi Heavy Industries, Ltd., Wadasakicho1-1-1, Hyogo-ku, Kobe, 652-8585 (Japan)

    2013-07-01T23:59:59.000Z

    A new kinetic analysis method, whose angular dependence of temporal derivative for angular flux is accurately treated within practical memory requirement, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, the computational resources, i.e., the memory capacity, can be still a crucial problem for rigorous kinetic calculations using MOC. In the straightforward approach for kinetic calculation using MOC, the segment-averaged angular fluxes should be stored on the memory in order to explicitly calculate the temporal derivative of the angular flux, which would require huge memory. Thus, in the conventional kinetic calculation code using MOC, the temporal derivative of the angular flux has been approximated as angularly isotropic in order to reduce the memory requirement (isotropic assumption). However, the approximation error caused by the conventional isotropic assumption has not been thoroughly and quantitatively investigated so far and an accurate kinetic calculation method, which can quantitatively estimate the above approximation error within practical memory storage, has not been developed. The present study tries to address this issue with a newly developed approach. Effect of the approximate treatment for the temporal derivative of angular flux is evaluated through benchmark calculations. (authors)

  10. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research

    SciTech Connect (OSTI)

    Kim, Dong-Gill; Vargas, Rodrigo; Bond-Lamberty, Benjamin; Turetsky, Merritt

    2012-07-09T23:59:59.000Z

    Rewetting of dry soils and thawing of frozen soils are short-term, transitional phenomena in terms of hydrology and thermodynamics in soil systems. The impact of these short-term phenomena on larger-scale ecosystem fluxes has only recently been fully appreciated, and a growing number of studies show that these events affect various biogeochemical processes including fluxes of biogenic gases such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), ammonia (NH{sub 3}) and nitric oxide (NO). Global climate models predict that future climatic change is likely to alter the frequency and intensity of drying-rewetting events and thawing of frozen soils, highlighting the importance of understanding how rewetting and thawing will influence biogenic gas fluxes. Here we summarize findings in an acquired database from 338 studies conducted from 1956-2010, and propose future research questions. Studies have reported conflicting results, ranging from large increases in gas fluxes to non-significant changes following rewetting and thawing in various terrestrial ecosystems. An analysis of published data revealed that CO{sub 2}, CH{sub 4}, N{sub 2}O, NO and NH{sub 3} fluxes increase 7.6 (standard error 1.1) times following rewetting and thawing with no significant difference between these events. We explore possible mechanisms and controls that regulate flux responses, and note that there is a lack of studies on variation of CH{sub 4}, NO and NH{sub 3} fluxes following rewetting and thawing events. High temporal resolution of flux measurements is critical to capture rapid changes in the gas fluxes after these soil perturbations. Finally, we propose that future studies should investigate the interactions between biological (i.e., microbial community) and physical (i.e., gas production, flux, and dissolution) changes in biogenic gas fluxes, and explore synergistic experimental and modelling approaches.

  11. Iso-Flux Tension Propagation Theory of Driven Polymer Translocation: The Role of Initial Configurations

    E-Print Network [OSTI]

    Jalal Sarabadani; Timo Ikonen; Tapio Ala-Nissila

    2014-09-30T23:59:59.000Z

    We investigate the dynamics of pore-driven polymer translocation by theoretical analysis and molecular dynamics (MD) simulations. Using the tension propagation theory within the constant flux approximation we derive an explicit equation of motion for the tension front. From this we derive a scaling relation for the average translocation time $\\tau$, which captures the asymptotic result $\\tau \\propto N_0^{1+\

  12. THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 {mu}m: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES

    SciTech Connect (OSTI)

    Claire, Mark W. [School of Environmental Sciences, University of East Anglia, Norwich, UK NR4 7TJ (United Kingdom); Sheets, John; Meadows, Victoria S. [Virtual Planetary Laboratory and Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Cohen, Martin [Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Ribas, Ignasi [Institut de Ciencies de l'Espai (CSIC-IEEC), Facultat de Ciencies, Torre C5 parell, 2a pl, Campus UAB, E-08193 Bellaterra (Spain); Catling, David C., E-mail: M.Claire@uea.ac.uk [Virtual Planetary Laboratory and Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195 (United States)

    2012-09-20T23:59:59.000Z

    Understanding changes in the solar flux over geologic time is vital for understanding the evolution of planetary atmospheres because it affects atmospheric escape and chemistry, as well as climate. We describe a numerical parameterization for wavelength-dependent changes to the non-attenuated solar flux appropriate for most times and places in the solar system. We combine data from the Sun and solar analogs to estimate enhanced UV and X-ray fluxes for the young Sun and use standard solar models to estimate changing visible and infrared fluxes. The parameterization, a series of multipliers relative to the modern top of the atmosphere flux at Earth, is valid from 0.1 nm through the infrared, and from 0.6 Gyr through 6.7 Gyr, and is extended from the solar zero-age main sequence to 8.0 Gyr subject to additional uncertainties. The parameterization is applied to a representative modern day flux, providing quantitative estimates of the wavelength dependence of solar flux for paleodates relevant to the evolution of atmospheres in the solar system (or around other G-type stars). We validate the code by Monte Carlo analysis of uncertainties in stellar age and flux, and with comparisons to the solar proxies {kappa}{sup 1} Cet and EK Dra. The model is applied to the computation of photolysis rates on the Archean Earth.

  13. The effect of nonuniform axial heat flux distribution on the critical heat flux

    E-Print Network [OSTI]

    Todreas, Neil E.

    1965-01-01T23:59:59.000Z

    A systematic experimental and analytic investigation of the effect of nonuniform axial heat flux distribution on critical heat rilux was performed with water in the quality condition. Utilizing a model which ascribes the ...

  14. Validation of a Monte Carlo based depletion methodology via High Flux Isotope Reactor HEU post-irradiation examination measurements

    SciTech Connect (OSTI)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

    2010-01-01T23:59:59.000Z

    The purpose of this study is to validate a Monte Carlo based depletion methodology by comparing calculated post-irradiation uranium isotopic compositions in the fuel elements of the High Flux Isotope Reactor (HFIR) core to values measured using uranium mass-spectrographic analysis. Three fuel plates were analyzed: two from the outer fuel element (OFE) and one from the inner fuel element (IFE). Fuel plates O-111-8, O-350-1, and I-417-24 from outer fuel elements 5-O and 21-O and inner fuel element 49-I, respectively, were selected for examination. Fuel elements 5-O, 21-O, and 49-1 were loaded into HFIR during cycles 4, 16, and 35, respectively (mid to late 1960s). Approximately one year after each of these elements were irradiated, they were transferred to the High Radiation Level Examination Laboratory (HRLEL) where samples from these fuel plates were sectioned and examined via uranium mass-spectrographic analysis. The isotopic composition of each of the samples was used to determine the atomic percent of the uranium isotopes. A Monte Carlo based depletion computer program, ALEPH, which couples the MCNP and ORIGEN codes, was utilized to calculate the nuclide inventory at the end-of-cycle (EOC). A current ALEPH/MCNP input for HFIR fuel cycle 400 was modified to replicate cycles 4, 16, and 35. The control element withdrawal curves and flux trap loadings were revised, as well as the radial zone boundaries and nuclide concentrations in the MCNP model. The calculated EOC uranium isotopic compositions for the analyzed plates were found to be in good agreement with measurements, which reveals that ALEPH/MCNP can accurately calculate burn-up dependent uranium isotopic concentrations for the HFIR core. The spatial power distribution in HFIR changes significantly as irradiation time increases due to control element movement. Accurate calculation of the end-of-life uranium isotopic inventory is a good indicator that the power distribution variation as a function of space and time is accurately calculated, i.e. an integral check. Hence, the time dependent heat generation source terms needed for reactor core thermal hydraulic analysis, if derived from this methodology, have been shown to be accurate for highly enriched uranium (HEU) fuel.

  15. An Index for the Dirac Operator on D3 Brane withBackground Fluxes

    SciTech Connect (OSTI)

    Bergshoeff, Eric; /Groningen U.; Kallosh, Renata; /Stanford U., Phys. Dept. /Kyoto U., Yukawa Inst., Kyoto; Kashani-Poor, Amir-Kian; /Stanford U., Phys. Dept. /SLAC; Sorokin, Dmitri; /INFN, Padua /Padua U.; Tomasiello, Alessandro; /Stanford U., Phys. Dept.

    2005-08-03T23:59:59.000Z

    We study the problem of instanton generated superpotentials in Calabi-Yau orientifold compactifications directly in type IIB string theory. To this end, we derive the Dirac equation on a Euclidean D3 brane in the presence of background fluxes. We propose an index which governs whether the generation of a superpotential in the effective 4d theory by D3 brane instantons is possible. Applying the formalism to various classes of examples, including the K3 x T{sup 2}/Z{sub 2} orientifold, in the absence and presence of fluxes, we show that our results are consistent with conclusions attainable via duality from an M-theory analysis.

  16. Vacuum Tunneling in an Electroweak Model in Extra Dimensions With an External Flux

    E-Print Network [OSTI]

    Aaron J. Roy

    2009-04-14T23:59:59.000Z

    With the standard system for an SU(2) Higgs field in M_4 X S_1, the top and bottom component of the Higgs spinor have exactly the same coeficients for the quadratic and quadric terms. This makes the vacuum degenerate and thus there are no tunneling effects to zeroth order in radiative corrections of the vector gauge felds in the standard model with this extra dimensional geometry. However, if we include an external magnetic flux that permeates our manifold, then the top component of the Higgs spinor will have an additional term in its coefficient due to this theoretical flux with the usual charge assignments for the standard model. This extra term gives rise to two nondegenerate vacuum states for the resulting potential. We will compute the tunneling probability per unit time per unit volume between these vacuum states for the zero modes of our system as well as investigate the masses for the fields of the model using the false vacuum.

  17. International Lige Colloquium on Ocean Dynamics, GAS TRANSFER AT WATER SURFACES, May 2 -6 2005 Estimation of air-sea gas and heat fluxes from infrared imagery and

    E-Print Network [OSTI]

    Jaehne, Bernd

    2005 Estimation of air-sea gas and heat fluxes from infrared imagery and surface wave measurements and much higher heat fluxes. In addition, the infrared imagery analysis reveals potentially significant the infrared images. It is also shown that the difference in the surface boundary conditions for heat and gas

  18. Mathematical Modeling and Analysis Detecting Nuclear

    E-Print Network [OSTI]

    Kurien, Susan

    technologies include passive radiation detectors and active interrogation methods. The latter involves produce im- ages in which the contrast is provided by differ- ent radiation intensities being measured at differ- ent places in the image. On the one hand, the flux of cosmic-ray muons is too low to provide

  19. Hazards analysis for the E.O. Lawrence Berkeley National Laboratory x-ray absorption experiments to be performed at Stanford Synchrotron Radiation Laboratory

    SciTech Connect (OSTI)

    Edelstein, N.M.; Shuh, D.K.; Bucher, J.B. [Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

    1995-04-01T23:59:59.000Z

    The objective of this experiment is to determine the oxidation state(s) of neptunium (Np) in mouse skeleton and in soft tissue by X-ray Absorption Near Edge Structure (XANES). If Np is present in sufficient concentration, X-ray Absorption Fine Structure (XAFS) data will be obtained in order to further identify the Np species present. These data will be crucial in understanding the metabolic pathway of Np in mammals which will help in the design of reagents which can eliminate Np from mammals in the event of accidental exposure. It is proposed to run these experiments at the Standard Synchrotron Radiation Laboratory (SSRL). This laboratory is a DOE national user facility located at the Stanford Linear Accelerator Center (SLAC). The {sup 237}Np nucleus decays by the emission of an alpha particle and this particle emission is the principal hazard in handling Np samples. This hazard is mitigated by physical containment of the sample which stops the alpha particles within the containment. The total amount of Np material that will be shipped to and be at SSRL at any one time will be less than 1 gram. This limit on the amount of Np will ensure that SLAC remains a low hazard, non-nuclear facility. The Np samples will be solids or Np ions in aqueous solution. The Np samples will be shipped to SSRL/SLAC OHP. SLAC OHP will inventory the samples and swipe the containers holding the triply contained samples, and then bring them to the SSRL Actinide trailer located outside building 131. The QA counting records from the samples, as measured at LBNL, will be provided to SSRL and SLAC OHP prior to the arrival of the samples at SLAC OHP. In addition, strict monitoring of the storage and experimental areas will be performed in accordance with SLAC/OHP radiation protection procedures to ensure against the release of contamination.

  20. Surface Magnetic Flux Maintenance In Quiet Sun

    E-Print Network [OSTI]

    Y. Iida

    2012-12-27T23:59:59.000Z

    We investigate surface processes of magnetic patches, namely merging, splitting, emergence, and cancellation, by using an auto-detection technique. We find that merging and splitting are locally predominant in the surface level, while the frequencies of the other two are less by one or two orders of magnitude. The frequency dependences on flux con- tent of surface processes are further investigated. Based on these observations, we discuss a possible whole picture of the maintenance. Our conclusion is that the photospheric magnetic field structure, especially its power-law nature, is maintained by the processes locally in the surface not by the interactions between different altitudes. We suggest a scenario of the flux maintenance as follows: The splitting and merging play a crucial role for the generation of the power-law distribution, not the emergence nor cancellation do. This power-law distribution results in another power-law one of the cancellation with an idea of the random convective transport. The cancellation and emergence have a common value for the power-law indices in their frequency distributions, which may suggest a "recycle of fluxes by submergence and re-emergence".

  1. Coupling spin ensembles via superconducting flux qubits

    E-Print Network [OSTI]

    Yueyin Qiu; Wei Xiong; Lin Tian; J. Q. You

    2014-09-10T23:59:59.000Z

    We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively coupled via a flux qubit.We show that the coupling strengths between flux qubits and spin ensembles can reach the strong and even ultrastrong coupling regimes by either engineering the hybrid structure in advance or tuning the excitation frequencies of spin ensembles via external magnetic fields. When extending the hybrid structure to an array with equal coupling strengths, we find that in the strong-coupling regime, the hybrid array is reduced to a tight-binding model of a one-dimensional bosonic lattice. In the ultrastrong-coupling regime, it exhibits quasiparticle excitations separated from the ground state by an energy gap. Moreover, these quasiparticle excitations and the ground state are stable under a certain condition that is tunable via the external magnetic field. This may provide an experimentally accessible method to probe the instability of the system.

  2. High Flux Isotope Reactor named Nuclear Historic Landmark | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Flux Isotope Reactor named Nuclear Historic Landmark The High Flux Isotope Reactor vessel at Oak Ridge National Laboratory resides in a pool of water illuminated by the blue...

  3. First measurements of the flux integral with the NIST-4 watt balance

    E-Print Network [OSTI]

    Haddad, D; Chao, L S; Cao, A; Sineriz, G; Pratt, J R; Newell, D B; Schlamminger, S

    2015-01-01T23:59:59.000Z

    In early 2014, construction of a new watt balance, named NIST-4, has started at the National Institute of Standards and Technology (NIST). In a watt balance, the gravitational force of an unknown mass is compensated by an electromagnetic force produced by a coil in a magnet system. The electromagnetic force depends on the current in the coil and the magnetic flux integral. Most watt balances feature an additional calibration mode, referred to as velocity mode, which allows one to measure the magnetic flux integral to high precision. In this article we describe first measurements of the flux integral in the new watt balance. We introduce measurement and data analysis techniques to assess the quality of the measurements and the adverse effects of vibrations on the instrument.

  4. Controlling the level of the ideal invariant fluxes for MHD turbulence using TURBO spectral solver

    E-Print Network [OSTI]

    Teaca, B; Knaepen, B; Carati, D

    2011-01-01T23:59:59.000Z

    The ideal invariants present in the formalism of magnetohydrodynamics (MHD), i.e. global quantities that are conserved in the absence of sources and dissipative effects, play an important role in various theoretical and numerical studies of MHD turbulence. The fluxes of these ideal invariants represent separate channels that transfer the information across different scales in a turbulent system. Once a statistically stationary state of turbulence is reached, the amount of any ideal invariant quantity introduced in the system by a forcing mechanism equals the amount of the same quantity removed by the dissipative effects from the system. For highly developed turbulence, these two mechanisms act predominantly at different scales that are largely separated. Since the ideal invariant quantities cascade between scales, a constant flux is generated with great implication on the state of the system. Numerically, controlling the ideal invariant fluxes levels for a turbulent MHD system is important for the analysis of...

  5. Cataractogenic effects of proton radiation

    E-Print Network [OSTI]

    Kyzar, James Ronald

    1972-01-01T23:59:59.000Z

    vulnerable organs, created an urgent need for investigation of proton radiation cataracto- genesis. In a statistical analysis of collected data on solar proton events taking into consideration possible shield- ing and mission duration, an investigator... energy group to a high of 74 for the 20 Mev proton energy group. As previously stated, the maximum possible numerical value was 400. The mean values for degree of lens opacities for the controls and the five dosage subgroups within the 10 Mev, 20 Mev...

  6. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30T23:59:59.000Z

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  7. Spheromak reactor with poloidal flux-amplifying transformer

    DOE Patents [OSTI]

    Furth, Harold P. (Princeton, NJ); Janos, Alan C. (East Windsor, NJ); Uyama, Tadao (Osaka, JP); Yamada, Masaaki (Lawrenceville, NJ)

    1987-01-01T23:59:59.000Z

    An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

  8. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    E-Print Network [OSTI]

    Li, Ting; Ji, Haisheng

    2015-01-01T23:59:59.000Z

    We make a comparative analysis for two filaments that showed quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) are carried out to analyze the two filaments on 2013 August 17-20 and September 29. The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4*10^21 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed within 3 days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2*10^20 Mx, about one ...

  9. Geometrical investigation of the kinetic evolution of the magnetic field in a periodic flux rope

    SciTech Connect (OSTI)

    Restante, A. L.; Lapenta, G. [Afdeling Plasma-astrofysica, Departement Wiskunde, KULeuven, University of Leuven, Leuven (Belgium)] [Afdeling Plasma-astrofysica, Departement Wiskunde, KULeuven, University of Leuven, Leuven (Belgium); Markidis, S. [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden); Intrator, T. [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States)

    2013-08-15T23:59:59.000Z

    Flux ropes are bundles of magnetic field wrapped around an axis. Many laboratory, space, and astrophysics processes can be represented using this idealized concept. Here, a massively parallel 3D kinetic simulation of a periodic flux rope undergoing the kink instability is studied. The focus is on the topology of the magnetic field and its geometric structures. The analysis considers various techniques such as Poincaré maps and the quasi-separatrix layer (QSL). These are used to highlight regions with expansion or compression and changes in the connectivity of magnetic field lines and consequently to outline regions where heating and current may be generated due to magnetic reconnection. The present study is, to our knowledge, the first QSL analysis of a fully kinetic 3D particle in cell simulation and focuses the existing QSL method of analysis to periodic systems.

  10. Scattering in the inner accretion disk and the waveforms and polarization of millisecond flux oscillations in LMXBs

    E-Print Network [OSTI]

    Sergei Y. Sazonov; Rashid A. Sunyaev

    2000-11-19T23:59:59.000Z

    The scattering by the inner accretion disk of X-ray radiation generated near the surface of a spinning neutron star in a low-mass X-ray binary (LMXB) has observable effects on the waveforms of millisecond X-ray flux oscillations produced e.g. during type-I bursts or in the millisecond pulsar SAX J1808.4--3658. We study these effects in the framework of a simplified model in which there is a single emitting spot on the stellar surface, which is visible both directly and in X-rays scattered from the disk. The main signature of scattering from a thin disk is that the pulse of scattered flux leads (if the star rotates in the same sense as the disk) or lags (in the contrary case) the primary pulse of direct emission by a quarter of a spin cycle. This is caused by Doppler boosting of radiation in the sub-relativistic Keplerian flow. The disk-scattered flux is revealed better in energy-resolved waveforms and the phase dependence of the polarized flux component. The phenomenon discussed permits direct testing of the presence of standard thin disks near the neutron stars in LMXBs and should be observable with future X-ray timing experiments having a few times better sensitivity than RXTE and also with sensitive X-ray polarimeters.

  11. The porous media model for the hydraulic system of a conifer tree: linking sap flux data to1 transpiration rate2

    E-Print Network [OSTI]

    Soatto, Stefano

    hydraulic system but also11 requires a direct estimation of its properties. Our proposed PM model play a dominant role in controlling CO2 uptake and4 partitioning of net radiation between latent-atmosphere flux measurement networks6 and free air CO2 enrichment (FACE) experiments require a quantitative

  12. Radiation Protection Guidance Hospital Staff

    E-Print Network [OSTI]

    Kay, Mark A.

    Page 1 Radiation Protection Guidance For Hospital Staff Prepared for Stanford ..................................................................................................................... 17 The Basic Principles of Radiation Protection........................................................... 17 Protection against Radiation Exposure

  13. Health effects models for nuclear power plant accident consequence analysis: Modifications of models resulting from recent reports on health effects of ionizing radiation

    SciTech Connect (OSTI)

    Abrahamson, S. (Wisconsin Univ., Madison, WI (United States)); Bender, M.A. (Brookhaven National Lab., Upton, NY (United States)); Boecker, B.B.; Scott, B.R. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States). Inhalation Toxicology Research Inst.); Gilbert, E.S. (Pacific Northwest Lab., Richland, WA (United States))

    1991-08-01T23:59:59.000Z

    The Nuclear Regulatory Commission has sponsored several studies to identify and quantify the potential health effects of accidental releases of radionuclides from nuclear power plants. The most recent health effects models resulting from these efforts were published in two reports, NUREG/CR-4214, Rev. 1, Part 1 (1990) and Part 2 (1989). Several major health effects reports have been published recently that may impact the health effects models presented in these reports. This addendum to the Part 2 (1989) report, provides a review of the 1986 and 1988 reports by the United Nations Scientific Committee on the Effects of Atomic Radiation, the National Academy of Sciences/National Research Council BEAR 5 Committee report and Publication 60 of the International Commission on Radiological Protection as they relate to this report. The three main sections of this addendum discuss early occurring and continuing effects, late somatic effects, and genetic effects. The major changes to the NUREG/CR-4214 health effects models recommended in this addendum are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies like that on the Japanese A-bomb survivors. The results presented in this addendum should be used with the basic NUREG/CR-4214 reports listed above to obtain the most recent views on the potential health effects of radionuclides released accidentally from nuclear power plants. 48 refs., 4 figs., 24 tabs.

  14. AmeriFlux Network Data from the ORNL AmeriFlux Website

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AmeriFlux network was established in 1996 to provide continuous observations of ecosystem level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. It is fed by sites from North America, Central America, and South America. DOE's CDIAC stores and maintains AmeriFlux data, and this web site explains the different levels of data available there, with links to the CDIAC ftp site. A separate web-based data interface is also provided; it allows users to graph, query, and download Level 2 data for up to four sites at a time. Data may be queried by site, measurement period, or parameter. More than 550 site-years of level 2 data are available from AmeriFlux sites through the interface.

  15. Maryland Radiation Act (Maryland)

    Broader source: Energy.gov [DOE]

    The policy of the state is to provide for the constructive use of radiation and control radiation emissions. This legislation authorizes the Department of the Environment to develop comprehensive...

  16. WI Radiation Protection

    Broader source: Energy.gov [DOE]

    This statute seeks to regulate radioactive materials, to encourage the constructive uses of radiation, and to prohibit and prevent exposure to radiation in amounts which are or may be detrimental...

  17. DOE Occupational Radiation Exposure, 2001 report

    SciTech Connect (OSTI)

    none,

    2001-12-31T23:59:59.000Z

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  18. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-06-23T23:59:59.000Z

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  19. Parylene-based active micro space radiator with thermal contact switch

    SciTech Connect (OSTI)

    Ueno, Ai; Suzuki, Yuji [Department of Mechanical Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-03-03T23:59:59.000Z

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% has been achieved.

  20. SU(2) Flux Distributions on Finite Lattices

    E-Print Network [OSTI]

    Peng, Y; Peng, Yingcai; Haymaker, Richard W.

    1993-01-01T23:59:59.000Z

    We studied SU(2) flux distributions on four dimensional euclidean lattices with one dimension very large. By choosing the time direction appropriately we can study physics in two cases: one is finite volume in the zero temperature limit, another is finite temperature in the the intermediate to large volume limit. We found that for cases of beta > beta crit there is no intrinsic string formation. Our lattices with beta > beta crit belong to intermediate volume region, and the string tension in this region is due to finite volume effects. In large volumes we found evidence for intrinsic string formation.

  1. Semiconducting glasses with flux pinning inclusions

    DOE Patents [OSTI]

    Johnson, William L. (Pasadena, CA); Poon, Siu-Joe (Palo Alto, CA); Duwez, Pol E. (Pasadena, CA)

    1981-01-01T23:59:59.000Z

    A series of amorphous superconducting glassy alloys containing 1% to 10% by volume of flux pinning crystalline inclusions have been found to have potentially useful properties as high field superconducting magnet materials. The alloys are prepared by splat cooling by the piston and anvil technique. The alloys have the composition (TM).sub.90-70 (M).sub.10-30 where TM is a transition metal selected from at least one metal of Groups IVB, VB, VIB, VIIB or VIIIB of the Periodic Table such as Nb, Mo, Ru, Zr, Ta, W or Re and M is at least one metalloid such as B, P, C, N, Si, Ge or Al.

  2. Resonant absorption in dissipative flux tubes

    E-Print Network [OSTI]

    Safari, H; Karami, K; Sobouti, Y

    2005-01-01T23:59:59.000Z

    Oscillations of coronal loops are believed to be the primary cause of the solar corona heating. We study the resonant absorbtion of MHD waves in magnetized flux tubes with graded densities across the cross section of the tube. Within the approximation that resistive and viscous processes are operative in thin layers surrounding the singularities of the MHD equations, we give the full spectrum of the eigenfrequencies, damping rates, as well as, the eigenfields of the normal MHD modes of the tube. Both surface and body modes are analyzed and the contribution of each class to heating of the corona is commented on.

  3. Cosmic-ray Muon Flux In Belgrade

    SciTech Connect (OSTI)

    Banjanac, R.; Dragic, A.; Jokovic, D.; Udovicic, V. [Institute of Physics, University of Belgrade, Belgrade (Serbia and Montenegro); Puzovic, J.; Anicin, I. [Faculty of Physics, University of Belgrade, Belgrade (Serbia and Montenegro)

    2007-04-23T23:59:59.000Z

    Two identical plastic scintillator detectors, of prismatic shape (50x23x5)cm similar to NE102, were used for continuous monitoring of cosmic-ray intensity. Muon {delta}E spectra have been taken at five minute intervals, simultaneously from the detector situated on the ground level and from the second one at the depth of 25 m.w.e in the low-level underground laboratory. Sum of all the spectra for the years 2002-2004 has been used to determine the cosmic-ray muon flux at the ground level and in the underground laboratory.

  4. Contactless heat flux control with photonic devices

    E-Print Network [OSTI]

    Ben-Abdallah, Philippe

    2015-01-01T23:59:59.000Z

    The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

  5. Flux Power Incorporated | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergyInformationOpenOpenFlux Power

  6. ARM - Field Campaign - ISDAC - Hemispheric Flux Spectroradiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric Flux

  7. Radiation protection at CERN

    E-Print Network [OSTI]

    Forkel-Wirth, Doris; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

    2013-01-01T23:59:59.000Z

    This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

  8. RADIONUCLIDE RADIATION PROTECTION

    E-Print Network [OSTI]

    Healy, Kevin Edward

    RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2002 D. Delacroix* J. P. Guerre** P. Leblanc'Energie Atomique, CEA/Saclay, France ISBN 1 870965 87 6 RADIATION PROTECTION DOSIMETRY Vol. 98 No 1, 2002 Published by Nuclear Technology Publishing #12;RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2nd Edition (2002

  9. Radiation Processing -an overview

    E-Print Network [OSTI]

    of radiation · Facilities ­ Gamma ­ electrons ­ X-ray ­ Safety · Sterilisation of medical devices · Food irradiation · Material modification #12;3 Content ­ Part 2 · Environmental applications · Other applications Radiation · Energy in the form of waves or moving subatomic particles Irradiation · Exposure to radiation

  10. COSMOS: A Radiation-Chemo-Hydrodynamics Code for Astrophysical Problems

    E-Print Network [OSTI]

    Peter Anninos; P. Chris Fragile; Stephen D. Murray

    2003-03-10T23:59:59.000Z

    We have developed a new massively-parallel radiation-hydrodynamics code (Cosmos) for Newtonian and relativistic astrophysical problems that also includes radiative cooling, self-gravity, and non-equilibrium, multi-species chemistry. Several numerical methods are implemented for the hydrodynamics, including options for both internal and total energy conserving schemes. Radiation is treated using flux-limited diffusion. The chemistry incorporates 27 reactions, including both collisional and radiative processes for atomic hydrogen and helium gases, and molecular hydrogen chains. In this paper we discuss the equations and present results from test problems carried out to verify the robustness and accuracy of our code in the Newtonian regime. An earlier paper presented tests of the relativistic capabilities of Cosmos.

  11. COSMOS A Radiation-Chemo-Hydrodynamics Code for Astrophysical Problems

    E-Print Network [OSTI]

    Anninos, P; Murray, S D; Anninos, Peter; Murray, Stephen D.

    2003-01-01T23:59:59.000Z

    We have developed a new massively-parallel radiation-hydrodynamics code (Cosmos) for Newtonian and relativistic astrophysical problems that also includes radiative cooling, self-gravity, and non-equilibrium, multi-species chemistry. Several numerical methods are implemented for the hydrodynamics, including options for both internal and total energy conserving schemes. Radiation is treated using flux-limited diffusion. The chemistry incorporates 27 reactions, including both collisional and radiative processes for atomic hydrogen and helium gases, and molecular hydrogen chains. In this paper we discuss the equations and present results from test problems carried out to verify the robustness and accuracy of our code in the Newtonian regime. An earlier paper presented tests of the relativistic capabilities of Cosmos.

  12. Impurity feedback control for enhanced divertor and edge radiation in DIII-D discharges

    SciTech Connect (OSTI)

    Jackson, G.L.; Staebler, G.M.; Allen, S.L. [and others

    1996-10-01T23:59:59.000Z

    Long pulse and steady state fusion ignition devices will require a significant radiated power fraction to minimize heat flux to, and sputtering of, the first wall. While impurity gases have been proposed to enhance radiation, precise control of impurity gas injection is essential to achieve an adequate radiative power fraction while maintaining good energy confinement and low central impurity concentration. We report here the first experiments in the DIII-D tokamak using feedback control of the rate of impurity gas injection. These experiments were carried out with active divertor pumping using the in-situ DIII-D cryopump. The radiated power fraction was controlled by sensing either UN edge line radiation (Ne{sup +7}) or mantle radiation from selected bolometer channels and using the DIII-D digital plasma control system to calculate radiated power real-time and generate an error signal to control an impurity gas injector valve.

  13. Numerical Study on In-Situ Prominence Formation by Radiative Condensation in the Solar Corona

    E-Print Network [OSTI]

    Kaneko, Takafumi

    2015-01-01T23:59:59.000Z

    We propose an in-situ formation model for inverse-polarity solar prominence and demonstrate it using self-consistent 2.5-dimensional magnetohydrodynamics simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearing motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the t...

  14. Modulation and amplification of radiative far field heat transfer : towards a simple radiative thermal transistor

    E-Print Network [OSTI]

    Joulain, Karl; Drevillon, Jeremie; Ben-Abdallah, Philippe

    2015-01-01T23:59:59.000Z

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see, that the more the material is reflective in the metallic state, the more switching effect is realized whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO2 that exhibits an insulator-metallic transition at 68{\\textdegree}C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. F...

  15. Radiation detector using a bulk high T[sub c] superconductor

    DOE Patents [OSTI]

    Artuso, J.F.; Franks, L.A.; Hull, K.L.; Symko, O.G.

    1993-12-07T23:59:59.000Z

    A radiation detector is provided, wherein a bulk high T[sub c] superconducting sample is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil which is coupled by an input coil to an rf SQUID. 4 figures.

  16. Radiation effects on reactor pressure vessel supports

    SciTech Connect (OSTI)

    Johnson, R.E. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lipinski, R.E. [Idaho National Engineering Lab., Rockville, MD (United States)

    1996-05-01T23:59:59.000Z

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

  17. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  18. TERSat: Trapped Energetic Radiation Satellite

    E-Print Network [OSTI]

    Clements, Emily B.

    2012-01-01T23:59:59.000Z

    Radiation damage caused by interactions with high-energy particles in the Van Allen Radiation Belts is a leading

  19. FLUX MEASUREMENTS FROM A TALL TOWER IN A COMPLEX LANDSCAPE

    SciTech Connect (OSTI)

    Kurzeja, R.; Weber, A.; Chiswell, S.; Parker, M.

    2010-07-22T23:59:59.000Z

    The accuracy and representativeness of flux measurements from a tall tower in a complex landscape was assessed by examining the vertical and sector variability of the ratio of wind speed to momentum flux and the ratio of vertical advective to eddy flux of heat. The 30-60 m ratios were consistent with theoretical predictions which indicate well mixed flux footprints. Some variation with sector was observed that were consistent with upstream roughness. Vertical advection was negligible compared with vertical flux except for a few sectors at night. This implies minor influence from internal boundary layers. Flux accuracy is a function of sector and stability but 30-60 m fluxes were found to be generally representative of the surrounding landscape. This paper will study flux data from a 300 m tower, with 4 levels of instruments, in a complex landscape. The surrounding landscape will be characterized in terms of the variation in the ratio of mean wind speed to momentum flux as a function of height and wind direction. The importance of local advection will be assessed by comparing vertical advection with eddy fluxes for momentum and heat.

  20. Small Scale Magnetic Flux Emergence Observed with Hinode/Solar Optical Telescope

    E-Print Network [OSTI]

    Kenichi Otsuji; Kazunari Shibata; Reizaburo Kitai; Satoru Ueno; Shin'ichi Nagata; Takuma Matsumoto; Tahei Nakamura; Hiroko Watanabe; Saku Tsuneta; Yoshinori Suematsu; Kiyoshi Ichimoto; Toshifumi Shimizu; Yukio Katsukawa; Theodore D. Tarbell; Bruce W. Lites; Richard A. Shine; Alan M. Title

    2007-09-20T23:59:59.000Z

    We observed small scale magnetic flux emergence in a sunspot moat region by the Solar Optical Telescope (SOT) aboard the Hinode satellite. We analyzed filtergram images observed in the wavelengths of Fe 6302 angstrom, G-band and Ca II H. In Stokes I images of Fe 6302 angstrom, emerging magnetic flux were recognized as dark lanes. In G-band, they showed their shapes almost the same as in Stokes I images. These magnetic flux appeared as dark filaments in Ca II H images. Stokes V images of Fe 6302 angstrom showed pairs of opposite polarities at footpoints of each filament. These magnetic concentrations are identified to correspond to bright points in G-band/Ca II H images. From the analysis of time-sliced diagrams, we derived following properties of emerging flux, which are consistent with the previous works. (1) Two footpoints separate each other at a speed of 4.2 km/s during the initial phase of evolution and decreases to about 1 km/s in 10 minutes later. (2) Ca II H filaments appear almost simultaneously with the formation of dark lanes in Stokes I in the observational cadence of 2 minutes. (3) The lifetime of the dark lanes in Stokes I and G-band is 8 minutes, while that of Ca filament is 12 minutes. An interesting phenomena was observed that an emerging flux tube expands laterally in the photosphere with a speed of 3.8 km/s. Discussion on the horizontal expansion of flux tube will be given with refernce to previous simulation studies.

  1. MULTIWAVELENGTH OBSERVATIONS AND MODELING OF 1ES 1959+650 IN A LOW FLUX STATE

    SciTech Connect (OSTI)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T.; Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Beilicke, M.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Boettcher, M. [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); and others

    2013-09-20T23:59:59.000Z

    We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation ({sigma}) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan {gamma}-ray flare exhibited by this source in 2002, the X-ray flux of the source is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of {approx}< 2 in the high energy (E > 1 MeV) and very high energy (E > 100 GeV) {gamma}-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.

  2. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V., E-mail: bair@berkeley.edu; Bogy, David B., E-mail: dbogy@berkeley.edu [University of California, Etcheverry Hall, MC 1740, Berkeley, California 94720-1740 (United States)

    2014-02-10T23:59:59.000Z

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  3. Irradiators for measuring the biological effects of low dose-rate ionizing radiation fields

    E-Print Network [OSTI]

    Davidson, Matthew Allen

    2011-01-01T23:59:59.000Z

    Biological response to ionizing radiation differs with radiation field. Particle type, energy spectrum, and dose-rate all affect biological response per unit dose. This thesis describes methods of spectral analysis, ...

  4. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24T23:59:59.000Z

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  5. Permanent-magnet switched-flux machine

    DOE Patents [OSTI]

    Trzynadlowski, Andrzej M.; Qin, Ling

    2010-01-12T23:59:59.000Z

    A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  6. Comparison of surface radiative flux data sets over the Arctic Ocean Jiping Liu,1,2

    E-Print Network [OSTI]

    . The reduced surface heat loss is partly offset by the reduction of solar heating due to much higher snow of these surface parameters was compared to the high-quality in situ measurements from the Surface Heat Budget; Intergovernmental Panel on Climate Change, 2001]. However, physical processes in the Arctic are not well understood

  7. Best Estimate Radiation Flux Value-Added Procedure: Algorithm Operational Details and Explanations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrence Berkeley Industrial8 Best Estimate

  8. Techniques and Methods Used to Determine the Best Estimate of Radiation Fluxes at SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8,, 20153 To.T. J. Determine

  9. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11T23:59:59.000Z

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  10. Divertor Heat Flux Mitigation in High-Performance H-mode Discharges in the National Spherical Torus Experiment.

    SciTech Connect (OSTI)

    Soukhanovskii, V A; Maingi, R; Gates, D; Menard, J

    2008-12-31T23:59:59.000Z

    Experiments conducted in high-performance 1.0 MA and 1.2 MA 6 MW NBI-heated H-mode discharges with a high magnetic flux expansion radiative divertor in NSTX demonstrate that significant divertor peak heat flux reduction and access to detachment may be facilitated naturally in a highly-shaped spherical torus (ST) configuration. Improved plasma performance with high {beta}{sub t} = 15-25%, a high bootstrap current fraction f{sub BS} = 45-50%, longer plasma pulses, and an H-mode regime with smaller ELMs has been achieved in the strongly-shaped lower single null configuration with elongation {kappa} = 2.2-2.4 and triangularity {delta} = 0.6-0.8. Divertor peak heat fluxes were reduced from 6-12 MW/m{sup 2} to 0.5-2 MW/m{sup 2} in ELMy H-mode discharges using the inherently high magnetic flux expansion f{sub m} = 16-25 and the partial detachment of the outer strike point at several D{sub 2} injection rates. A good core confinement and pedestal characteristics were maintained, while the core carbon concentration and the associated Z{sub eff} were reduced. The partially detached divertor regime was characterized by an increase in divertor radiated power, a reduction of ion flux to the plate, and a large neutral compression ratio. Spectroscopic measurements indicated a formation of a high-density, low temperature region adjacent to the outer strike point, where substantial increases in the volume recombination rate and CII, CIII emission rates was measured.

  11. Flux avalanches in superconducting films with periodic arrays of holes.

    SciTech Connect (OSTI)

    Vlasko-Vlasov, V.; Welp, U.; Metlushko, V.; Crabtree, G. W.; Materials Science Division; Inst. of Solid State Physics RAS

    2000-01-01T23:59:59.000Z

    The magnetic flux dynamics in Nb films with periodic hole arrays is studied magneto-optically. Flux motion in the shape of microavalanches along {l_brace}100{r_brace} and {l_brace}110{r_brace} directions of the hole lattice is observed. At lower temperatures anisotropic large scale thermo-magnetic avalanches dominate flux entry and exit. At T-T{sub c} critical-state-like field patterns periodically appear at fractions of the matching field.

  12. Radiation physics, biophysics, and radiation biology

    SciTech Connect (OSTI)

    Hall, E.J.; Zaider, M.

    1993-05-01T23:59:59.000Z

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  13. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...

  14. antineutrino flux measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Terrestrial Antineutrino Flux Measurements CERN Preprints Summary: Uranium and thorium are the main heat producing elements in the earth. Their quantities and...

  15. analyze magnetic flux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the cracks are the objective of the inversion process. The proposed procedure Reilly, James P. 47 Quantitative observation of magnetic flux distribution in new magnetic...

  16. achieve high flux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of mass immunization William M. Weiss; Gilbert Burnham; Peter J. Winch 2 Ultra-High Energy Neutrino Fluxes and Their Constraints HEP - Phenomenology (arXiv) Summary: Applying...

  17. ambipolar particle flux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a cascade Wehrli, Bernhard 32 Earth Planets Space, 62, 333345, 2010 Cosmic ray and solar energetic particle flux in paleomagnetospheres Biology and Medicine Websites Summary:...

  18. annual particle flux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a cascade Wehrli, Bernhard 20 Earth Planets Space, 62, 333345, 2010 Cosmic ray and solar energetic particle flux in paleomagnetospheres Biology and Medicine Websites Summary:...

  19. as4 flux morfologiya: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guido D'Amico; Roberto Gobbetti; Matthew Kleban; Marjorie Schillo 2012-11-14 11 Solar Magnetic Flux Ropes CERN Preprints Summary: The most probable initial magnetic...

  20. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...

    Open Energy Info (EERE)

    Lewicki, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki, Et Al.,...

  1. Elevated carbon dioxide flux at the Dixie Valley geothermal field...

    Open Energy Info (EERE)

    Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada- relations between surface phenomena and the geothermal reservoir Jump to: navigation, search OpenEI...

  2. airborne flux measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    covariance (EC) flux measurements of the atmospheresurface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to...

  3. Ising interaction between capacitively-coupled superconducting flux qubits

    E-Print Network [OSTI]

    Takahiko Satoh; Yuichiro Matsuzaki; Kosuke Kakuyanagi; Koichi Semba; Hiroshi Yamaguchi; Shiro Saito

    2015-01-30T23:59:59.000Z

    Here, we propose a scheme to generate a controllable Ising interaction between superconducting flux qubits. Existing schemes rely on inducting couplings to realize Ising interactions between flux qubits, and the interaction strength is controlled by an applied magnetic field On the other hand, we have found a way to generate an interaction between the flux qubits via capacitive couplings. This has an advantage in individual addressability, because we can control the interaction strength by changing an applied voltage that can be easily localized. This is a crucial step toward the realizing superconducting flux qubit quantum computation.

  4. Gaugino Condensates and Fluxes in N = 1 Effective Superpotentials

    E-Print Network [OSTI]

    Jean-Pierre Derendinger; Costas Kounnas; P. Marios Petropoulos

    2008-01-30T23:59:59.000Z

    In the framework of orbifold compactifications of heterotic and type II orientifolds, we study effective N = 1 supergravity potentials arising from fluxes and gaugino condensates. These string solutions display a broad phenomenology which we analyze using the method of N = 4 supergravity gaugings. We give examples in type II and heterotic compactifications of combined fluxes and condensates leading to vacua with naturally small supersymmetry breaking scale controlled by the condensate, cases where the supersymmetry breaking scale is specified by the fluxes even in the presence of a condensate and also examples where fluxes and condensates conspire to preserve supersymmetry.

  5. Current Status of the Synchrotron Radiation Center

    SciTech Connect (OSTI)

    Kinraide, R.; Moore, C.J.; Jacobs, K.D.; Severson, M.; Bissen, M.J.; Frazer, B.; Bisognano, J.J.; Bosch, R.A.; Eisert, D.; Fisher, M.; Green, M.A.; Gundelach, C.T.; Hansen, R.W.C.; Hochst, H.; Julian, R.L.; Keil, R.; Kleman, K.; Kubala, T.; Legg, R.A.; Pedley, B. [Synchrotron Radiation Center (United States)] [and others

    2004-05-12T23:59:59.000Z

    The Synchrotron Radiation Center (SRC) operates the Aladdin electron storage ring at energies of 800 MeV or 1 GeV in support of a broad range of national and international research programs. A low emittance configuration is in routine operation during 800-MeV shifts and offers improved photon flux density with about the same beam lifetime. An improved undulator compensation algorithm and new optical beam position monitors have been implemented improving beam stability and maintaining vertical beam size variations to < 2% peak-to-peak during undulator scanning. Instrumentation initiatives include construction of a modified Wadsworth beamline (7.8 - 50 eV) and a variable-line-spacing plane-grating monochromator (VLS-PGM, 75 - 2000 eV) to utilize radiation from a permanent magnet undulator. The Wadsworth beamline is being commissioned for photoelectron spectroscopy (PES) experiments using high-resolution Scienta analyzers. The VLS-PGM is being constructed for experiments that require higher photon energies and high flux density such as x-ray photoemission electron microscopy (X-PEEM) and x-ray absorption spectroscopy (XAS). It is scheduled to be available in early 2004. Recent research at the SRC has produced exciting results in a variety of fields, culminating in eight articles published in Physical Review Letters and three in Nature since October 2002, in addition to articles in many other publications. An outreach program offers research experiences for undergraduates and provides the general public with an awareness of synchrotron radiation. Hands-on workshops and activities on FTIR microscopy and X-PEEM are offered for graduate students and scientists. SRC sponsors a summer Research Experience for Undergraduates (REU) program and offers opportunities to non-research universities and high schools. Tours and educational events are coordinated with local civic groups and schools. Open houses are offered that include tours, demonstrations, and family activities.

  6. The Influence of Filaments in the Private Flux Region on Divertor Particle and Power Deposition

    E-Print Network [OSTI]

    Harrison, J R; Thornton, A J; Walkden, N R

    2015-01-01T23:59:59.000Z

    The transport of particles via intermittent filamentary structures in the private flux region of plasmas in the MAST tokamak has been investigated using a fast framing camera recording visible light emission from the volume of the lower divertor, as well as Langmuir probes and IR thermography monitoring particle and power fluxes to plasma-facing surfaces in the divertor. The visible camera data suggests that, in the divertor volume, fluctuations in light emission above the X-point are strongest in the scrape-off layer (SOL). Conversely, in the region below the X-point, it is found that these fluctuations are strongest in the private flux region (PFR) of the inner divertor leg. Detailed analysis of the appearance of these filaments in the camera data suggests that they are approximately circular, around 1-2cm in diameter. The most probable toroidal mode number is between 2 and 3. These filaments eject plasma deeper into the private flux region, sometimes by the production of secondary filaments, moving at a sp...

  7. Solar radiation intensity calculations

    E-Print Network [OSTI]

    Levine, Randolph Steven

    1978-01-01T23:59:59.000Z

    SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Submitted to the Graduate College of Texas A&M University in partia'l fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject...: Physics SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Approved as to style and content by: (Chairman of Committee) (Member) (Member) ( member) (Head of Department) December 1978 f219 037 ABSTRACT Solar Radiation...

  8. Analytical Solutions for Radiative Transfer: Implications for Giant Planet Formation by Disk Instability

    E-Print Network [OSTI]

    Alan P. Boss

    2008-12-12T23:59:59.000Z

    The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally-gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (theta) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.

  9. Analysis of dosimetry from the H.B. Robinson unit 2 pressure vessel benchmark using RAPTOR-M3G and ALPAN

    SciTech Connect (OSTI)

    Fischer, G.A. [Westinghouse Electric Company, LLC, 1000 Westinghouse Dr., Cranberry Township, PA 16066 (United States)

    2011-07-01T23:59:59.000Z

    Document available in abstract form only, full text of document follows: The dosimetry from the H. B. Robinson Unit 2 Pressure Vessel Benchmark is analyzed with a suite of Westinghouse-developed codes and data libraries. The radiation transport from the reactor core to the surveillance capsule and ex-vessel locations is performed by RAPTOR-M3G, a parallel deterministic radiation transport code that calculates high-resolution neutron flux information in three dimensions. The cross-section library used in this analysis is the ALPAN library, an Evaluated Nuclear Data File (ENDF)/B-VII.0-based library designed for reactor dosimetry and fluence analysis applications. Dosimetry is evaluated with the industry-standard SNLRML reactor dosimetry cross-section data library. (authors)

  10. Atomic Radiation (Illinois)

    Broader source: Energy.gov [DOE]

    This article states permissible levels of radiation in unrestricted areas, environmental standards for uranium fuel cycle and information about notification of incidents.

  11. Radiation Hazards Program (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

  12. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J. (West Richland, WA); Coomes, Edmund P. (West Richland, WA)

    1988-12-06T23:59:59.000Z

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  13. analysis reveals permanent: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index 21 Design and analysis aspects of radial flux air-cored permanent magnet wind generator system for direct battery charging applications. Open Access Theses and...

  14. Radiation physics, biophysics, and radiation biology

    SciTech Connect (OSTI)

    Hall, E.J.

    1992-05-01T23:59:59.000Z

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  15. Using Surface Remote Sensors to Derive Radiative Characteristics of Mixed-Phase Clouds: An Example from M-PACE

    SciTech Connect (OSTI)

    de Boer, Gijs; Collins, William D.; Menon, Surabi; Long, Charles N.

    2011-12-02T23:59:59.000Z

    Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

  16. CognitiveEngineeringinRadiationScreeningfor HomelandSecurity

    E-Print Network [OSTI]

    Parasuraman, Raja

    areas through work domain analysis, signal detection modeling, design of displays for radiation threatCognitiveEngineeringinRadiationScreeningfor HomelandSecurity Thomas F. Sanquist Brian Minsk Pacific for illicit radioactive material involves substantial staff, technology, and human operator decision making

  17. Cellular telephone-based radiation sensor and wide-area detection network

    DOE Patents [OSTI]

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2006-12-12T23:59:59.000Z

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  18. Isotope-labeled immunoassays without radiation waste

    E-Print Network [OSTI]

    Hammock, Bruce D.

    of California, Davis, CA 95616; and Center for Accelerator Mass Spectrometry, Lawrence Livermore National, such as liquid scintillation counting (LSC) and autoradiography, use the radiation generated in the isotope in areas such as environmental monitoring and food analysis. Accelerator mass spectrometry (AMS) developed

  19. Radiation-damaged tyrosinase molecules are inactive

    SciTech Connect (OSTI)

    Kempner, E.S.; Miller, J.H.

    1989-01-01T23:59:59.000Z

    Target analysis of radiation inactivation of mushroom tyrosinase yields different target sizes for diphenoloxidase and monophenoloxidase activities, which correspond to the subunits H and HL2 (or HL), respectively. After gel electrophoresis of irradiated samples, all diphenoloxidase activity is observed at the same position as seen in the original material. Radiolytic fragments contain no detectable activity, consistent with a fundamental assumption of target theory.

  20. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    for increased protection from ionizing radiation for declared pregnant radiation workers. The radiation doseCOLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 regulations of the Rules of the City of New York, Article 175, Radiation Control, there is a requirement

  1. NIST Measurement Services: Heat-Flux Sensor Calibration

    E-Print Network [OSTI]

    NIST Measurement Services: Heat-Flux Sensor Calibration NIST Special Publication 250-65 Benjamin K Special Publication 250-65 NIST MEASUREMENT SERVICES: Heat-Flux Sensor Calibration Benjamin K. Tsai GAITHERSBURG, MD: 2004 #12;iii PREFACE The calibration and related measurement services of the National

  2. Wave momentum flux parameter: a descriptor for nearshore waves

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution

  3. Anomaly-free representations of the holonomy-flux algebra

    E-Print Network [OSTI]

    SangChul Yoon

    2008-09-07T23:59:59.000Z

    We work on the uniqueness, gr-qc/0504147, of representations of the holonomy-flux algebra in loop quantum gravity. We argue that for analytic diffeomorphisms, the flux operators can be only constants as functions on the configuration space in representations with no anomaly, which are zero in the standard representation.

  4. Advanced methods of flux identification for clarifierthickener simulation models q

    E-Print Network [OSTI]

    Bürger, Raimund

    with mathematical models for the batch and continuous sedimentation of finely divided solid par- ticles dispersed: Solid­liquid separation Thickener simulation Batch sedimentation Flux identification Mathematical modelAdvanced methods of flux identification for clarifier­thickener simulation models q Fernando

  5. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Murata, Tomoya

    2015-01-01T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  6. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Tomoya Murata; Toru Sato

    2015-01-23T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  7. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2010-06-15T23:59:59.000Z

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  8. Nonclassicality of Thermal Radiation

    E-Print Network [OSTI]

    Lars M. Johansen

    2004-02-16T23:59:59.000Z

    It is demonstrated that thermal radiation of small occupation number is strongly nonclassical. This includes most forms of naturally occurring radiation. Nonclassicality can be observed as a negative weak value of a positive observable. It is related to negative values of the Margenau-Hill quasi-probability distribution.

  9. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2007-01-09T23:59:59.000Z

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  10. Radiation detection system

    DOE Patents [OSTI]

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA); Lyons, Peter B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  11. Surface aerosol radiative forcing derived from collocated ground-based radiometric

    E-Print Network [OSTI]

    Liou, K. N.

    Surface aerosol radiative forcing derived from collocated ground-based radiometric observations-Filter Rotating Shadowband Radiometer data match closely with those from the Cimel sun- photometer data for two of the sunphotometer to retrieve aerosol optical depths, a, along with observed surface flux data from field campaigns

  12. Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle

    E-Print Network [OSTI]

    Jin, Menglin

    . Instruments on polar orbiting satellites, such as advanced very high resolution radiometer (AVHRR) or Moderate. This approach is based on the surface energy balance with the soil heat flux being treated by a conventional in temperate and tropical regions, observed empirical relationships between solar radiative energy and skin

  13. Protostellar Accretion Flows Destabilized by Magnetic Flux Redistribution

    E-Print Network [OSTI]

    Krasnopolsky, Ruben; Shang, Hsien; Zhao, Bo

    2012-01-01T23:59:59.000Z

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known "magnetic flux problem" can in principle be resolved through non-ideal MHD effects. Two dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the pres...

  14. Calculation of Heating Values for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Peterson, Joshua L [ORNL] [ORNL; Ilas, Germina [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

  15. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Schively, Dixon P. (Richland, WA)

    1985-01-01T23:59:59.000Z

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  16. Coherent radiation from neutral molecules moving above a grating

    E-Print Network [OSTI]

    Alexey Belyanin; Federico Capasso; Vitaly Kocharovsky; Vladimir Kocharovsky

    2001-10-10T23:59:59.000Z

    We predict and study the quantum-electrodynamical effect of parametric self-induced excitation of a molecule moving above the dielectric or conducting medium with periodic grating. In this case the radiation reaction force modulates the molecular transition frequency which results in a parametric instability of dipole oscillations even from the level of quantum or thermal fluctuations. The present mechanism of instability of electrically neutral molecules is different from that of the well-known Smith-Purcell and transition radiation in which a moving charge and its oscillating image create an oscillating dipole. We show that parametrically excited molecular bunches can produce an easily detectable coherent radiation flux of up to a microwatt.

  17. Radiation induced strand breakage analyzed by tunel technique 

    E-Print Network [OSTI]

    Reynolds, Marissa Dawn

    2003-01-01T23:59:59.000Z

    The objective of this research is to fully characterize the effectiveness and limits of using the terminal deoxynucleotidyl transferase mediated biotin-dUTP nick end labeling (TUNEL) technique for analysis of radiation induced strand breakage...

  18. Radiation induced strand breakage analyzed by tunel technique

    E-Print Network [OSTI]

    Reynolds, Marissa Dawn

    2003-01-01T23:59:59.000Z

    The objective of this research is to fully characterize the effectiveness and limits of using the terminal deoxynucleotidyl transferase mediated biotin-dUTP nick end labeling (TUNEL) technique for analysis of radiation induced strand breakage...

  19. RADIATION SAFETY MANUAL POLICIES AND PROCEDURES

    E-Print Network [OSTI]

    Zhang, Yuanlin

    RADIATION SAFETY MANUAL POLICIES AND PROCEDURES FOR RADIATION PROTECTION AT TEXAS TECH UNIVERSITY................................................................................................................I-1 B. Radiation Protection Program...............................................................................I-3 D. Radiation Safety Management

  20. Radiative and climate impacts of absorbing aerosols

    E-Print Network [OSTI]

    Zhu, Aihua

    2010-01-01T23:59:59.000Z

    V. Ramanathan (2008), Solar radiation budget and radiativeV. Ramanathan (2008), Solar radiation budget and radiativeapproximation for solar radiation in the NCAR Community

  1. Control of Induction Motor with Cbrientation on Rotor Flux or on Stator Flux in a very wide Field Weakening Regiori -

    E-Print Network [OSTI]

    Paderborn, Universität

    inductance of stator and rotor winding (Ls = L, = L,,, +Lo is assumed here). Rotor speed. Number of pole pairs. Resistances of stator and rotor winding. Rotor time constant. Electromagnetic torque. Load torqueControl of Induction Motor with Cbrientation on Rotor Flux or on Stator Flux in a very wide Field

  2. Level 1 Tornado PRA for the High Flux Beam Reactor

    SciTech Connect (OSTI)

    Bozoki, G.E.; Conrad, C.S.

    1994-05-01T23:59:59.000Z

    This report describes a risk analysis primarily directed at providing an estimate for the frequency of tornado induced damage to the core of the High Flux Beam Reactor (HFBR), and thus it constitutes a Level 1 Probabilistic Risk Assessment (PRA) covering tornado induced accident sequences. The basic methodology of the risk analysis was to develop a ``tornado specific`` plant logic model that integrates the internal random hardware failures with failures caused externally by the tornado strike and includes operator errors worsened by the tornado modified environment. The tornado hazard frequency, as well as earlier prepared structural and equipment fragility data, were used as input data to the model. To keep modeling/calculational complexity as simple as reasonable a ``bounding`` type, slightly conservative, approach was applied. By a thorough screening process a single dominant initiating event was selected as a representative initiator, defined as: ``Tornado Induced Loss of Offsite Power.`` The frequency of this initiator was determined to be 6.37E-5/year. The safety response of the HFBR facility resulted in a total Conditional Core Damage Probability of .621. Thus, the point estimate of the HFBR`s Tornado Induced Core Damage Frequency (CDF) was found to be: (CDF){sub Tornado} = 3.96E-5/year. This value represents only 7.8% of the internal CDF and thus is considered to be a small contribution to the overall facility risk expressed in terms of total Core Damage Frequency. In addition to providing the estimate of (CDF){sub Tornado}, the report documents, the relative importance of various tornado induced system, component, and operator failures that contribute most to (CDF){sub Tornado}.

  3. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 Psychiatric Institute Radiation Safety Office (Please complete this form within 24 hours and send a copy to your supervisor and The Radiation Safety Office) Your Name

  4. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212: _______________ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Radiation Safety Office Approval: ______________________ Date: ________________________ Waste containers in place: Yes ___ No ___ Radiation signage on door: Yes ___ No ___ Room monitoring: Dates

  5. Radiation Safety (Revised March 2010)

    E-Print Network [OSTI]

    Kay, Mark A.

    to Workers; Inspections 27 10 CFR Part 20Standards for Protection Against Radiation 28 10 CFR Part 35Radiation Safety Manual (Revised March 2010) Updated December 2012 Stanford University, Stanford California #12; #12; Radiation Safety Manual (Revised March 2010) Updated

  6. Radiative Reactions and Coherence Modeling in the High Altitude Electromagnetic Pulse

    E-Print Network [OSTI]

    Charles N. Vittitoe; Mario Rabinowitz

    2003-06-03T23:59:59.000Z

    A high altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10^4 V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self field effect. The Compton electron interaction with the self generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self generated electric field accounts for the energy flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  7. Ultraviolet radiation in the southern seas in early spring 1993

    SciTech Connect (OSTI)

    Wendler, G.; Quakenbush, T. [Univ. of Alaska, Fairbanks, AK (United States)

    1994-12-31T23:59:59.000Z

    The National Science Foundation research vessel Nathaniel B. Palmer carried out a cruise to Antarctica in early spring of 1993. It left Punta Arenas, Chile, close to the tip of South America on 11 August 1993. sailed south for 3 days to the tip of The Antarctic Peninsula, stopping at O`Higgens and Palmer Stations, and from there went southwest and into the Bellingshausen sea. On 10 September, it reached the most southerly position, 71{degrees}S, some distance north of the Thurston Island. From there, it went as far as 110{degrees}W before returning to Punta Arenas. The main purpose of the cruise was to investigate the snow- and sea-ice thickness, properties, and structures in this part of the southern oceans. It also allowed us to carry out continuous radiation measurements. We measured the following fluxes: global radiation (Eppley PSP), infrared incoming radiation (Eppley Pyrgeometer PIR), ultraviolet-A radiation (Eppley UV meter), ultraviolet-B radiation (Yankee Environmental Systems), and pitch and roll of the ship (Lucas Sensing Systems, Inc.). All instruments were sampled twice per second (Campbell Scientific, Model 21 X), and a notebook computer (ASI Patriot) stored 1-minute averages of the radiation data and 1-minute standard deviation of the ship`s pitch and roll. Visual observations of cloud cover were also recorded. 2 refs., 3 figs.

  8. Calculation of the scattering function of a multichannel scintillation detector used to record high-energy photon radiation

    SciTech Connect (OSTI)

    Zav'yalkin, F.M.; Osipov, S.P.

    1986-08-01T23:59:59.000Z

    This paper describes a method of calculating the scattering function for a linear array of detectors. The authors consider the detector arrangement which in the best way utilizes the radiation flux but which to the greatest extent is affected by the scattering of radiation from one detector to another: optically separated scintillatorsf in the form of parallelepipeds are assumed to be closely packed in a linear array and directed toward the radiation source. In order to obtain estimates of the scattering function with an accuracy of 3-5% for x close to zero at radiation not less than 2 MeV, the leakage of secondary electrons are taken into account.

  9. GENII. Environmental Radiation Dosimetry Suite

    SciTech Connect (OSTI)

    Napier, B.A. [Pacific Northwest Lab., Richland, WA, (United States)

    1988-12-01T23:59:59.000Z

    GENII was developed to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) into the environmental pathway analysis models used at Hanford. GENII is a coupled system of seven programs and the associated data libraries that comprise the Hanford Dosimetry System (Generation II) to estimate potential radiation doses to individuals or populations from both routine and accidental releases of radionuclides to air or water and residual contamination from spills or decontamination operations. The GENII system includes interactive menu-driven programs to assist the user with scenario generation and data input,internal and external dose factor generators, and environmental dosimetry programs. The programs analyze environmental contamination resulting from both far-field and near-field scenarios. A far-field scenario focuses outward from a source, while a near-field scenario focuses in toward a receptor. GENII can calculate annual dose, committed dose, and accumulated dose from acute and chronic releases from ground or elevated sources to air or water and from initial contamination of soil or surfaces and can evaluate exposure pathways including direct exposure via water, soil, air, inhalation pathways, and ingestion pathways. In addition, GENII can perform 10,000 years migration analyses and can be used for retrospective calculations of potential radiation doses resulting from routine emissions and for prospective dose calculations for purposes such as siting facilities, environmental impact statements, and safety analysis reports.

  10. A FLUX ROPE ERUPTION TRIGGERED BY JETS

    SciTech Connect (OSTI)

    Guo Juan; Zhang Hongqi; Deng Yuanyong; Lin Jiaben; Su Jiangtao [Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Liu Yu, E-mail: guojuan@bao.ac.c [Yunnan Astronomical Observatory, National Astronomical Observatories, Kunming 650011 (China)

    2010-03-10T23:59:59.000Z

    We present an observation of a filament eruption caused by recurrent chromospheric plasma injections (surges/jets) on 2006 July 6. The filament eruption was associated with an M2.5 two-ribbon flare and a coronal mass ejection (CME). There was a light bridge in the umbra of the main sunspot of NOAA 10898; one end of the filament was terminated at the region close to the light bridge, and recurrent surges were observed to be ejected from the light bridge. The surges occurred intermittently for about 8 hr before the filament eruption, and finally a clear jet was found at the light bridge to trigger the filament eruption. We analyzed the evolutions of the relative darkness of the filament and the loaded mass by the continuous surges quantitatively. It was found that as the occurrence of the surges, the relative darkness of the filament body continued growing for about 3-4 hr, reached its maximum, and kept stable for more than 2 hr until it erupted. If suppose 50% of the ejected mass by the surges could be trapped by the filament channel, then the total loaded mass into the filament channelwill be about 0.57x10{sup 16} g with a momentum of 0.57x10{sup 22} g cm s{sup -1} by 08:08 UT, which is a non-negligible effect on the stability of the filament. Based on the observations, we present a model showing the important role that recurrent chromospheric mass injection play in the evolution and eruption of a flux rope. Our study confirms that the surge activities can efficiently supply the necessary material for some filament formation. Furthermore, our study indicates that the continuous mass with momentum loaded by the surge activities to the filament channel could make the filament unstable and cause it to erupt.

  11. Florida Radiation Protection Act (Florida)

    Broader source: Energy.gov [DOE]

    The Department of Public Health is responsible for administering a statewide radiation protection program. The program is designed to permit development and utilization of sources of radiation for...

  12. Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters

    E-Print Network [OSTI]

    Thomas Schwetz; Mariam Tórtola; J. W. F. Valle

    2011-03-28T23:59:59.000Z

    We present the results of a global neutrino oscillation data analysis within the three-flavour framework. We include latest results from the MINOS long-baseline experiment (including electron neutrino appearance as well as anti-neutrino data), updating all relevant solar (SK II+III), atmospheric (SK I+II+III) and reactor (KamLAND) data. Furthermore, we include a recent re-calculation of the anti-neutrino fluxes emitted from nuclear reactors. These results have important consequences for the analysis of reactor experiments and in particular for the status of the mixing angle $\\theta_{13}$. In our recommended default analysis we find from the global fit that the hint for non-zero $\\theta_{13}$ remains weak, at 1.8$\\sigma$ for both neutrino mass hierarchy schemes. However, we discuss in detail the dependence of these results on assumptions concerning the reactor neutrino analysis.

  13. Varying trends in surface energy fluxes and associated climatebetween 1960-2002 based on transient climate simulations

    SciTech Connect (OSTI)

    Nazarenko, Larissa; Menon, Surabi

    2005-07-20T23:59:59.000Z

    The observed reduction in land surface radiation over the last several decades (1960-1990)---the so-called ''dimming effect''--- and the more recent evidence of a reversal in ''dimming'' over some locations beyond 1990 suggest several consequences on climate, notably on the hydrological cycle. Such a reduction in radiation should imply reduced surface temperature (Ts) and precipitation, which have not occurred. We have investigated the possible causes for the above climate features using a climate model coupled to a dynamic ocean model under natural and anthropogenic conditions. To isolate the aerosol influence on surface radiation trends, we have analyzed transient climate simulations from1960 to 2002 with and without anthropogenic aerosols. Based on a linear trend with aerosol effects included, the global mean change in the surface solar radiation absorbed over land is -0.021+-0.0033 Wm-2yr-1. Although the overall trend is negative, we do note a reversal in dimming after 1990, consistent with observations. Without aerosol effects, the surface solar radiation absorbed over land increases throughout 1960 to 2002, mainly due to the decrease in cloud cover associated with increased greenhouse warming. In spite of a simulated increase in Ts of 0.012 Kyr-1 for 1960 to 2002, the global mean latent heat flux and associated intensity of the hydrological cycle decrease overall, however with increases over some land locations due mainly to moisture advection. Simulated changes correspond more closely to observed changes when accounting for aerosol effects on climate.

  14. Benchmarking gyrokinetic simulations in a toroidal flux-tube

    SciTech Connect (OSTI)

    Chen, Y.; Parker, S. E.; Wan, W. [University of Colorado at Boulder, Boulder, Colorado 80309 (United States)] [University of Colorado at Boulder, Boulder, Colorado 80309 (United States); Bravenec, R. [Fourth-State Research, Austin, Texas 78704 (United States)] [Fourth-State Research, Austin, Texas 78704 (United States)

    2013-09-15T23:59:59.000Z

    A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ?B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementation shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v{sub ||}-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.

  15. PROMINENCE FORMATION ASSOCIATED WITH AN EMERGING HELICAL FLUX ROPE

    SciTech Connect (OSTI)

    Okamoto, Takenori J.; Tsuneta, Saku; Katsukawa, Yukio; Suematsu, Yoshinori [National Astronomical Observatory, Mitaka, Tokyo, 181-8588 (Japan); Lites, Bruce W.; Kubo, Masahito [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Yokoyama, Takaaki [Department of Earth and Planetary Science, School of Science, University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033 (Japan); Berger, Thomas E.; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M. [Lockheed Martin Solar and Astrophysics Laboratory, B/252, 3251 Hanover St., Palo Alto, CA 94304 (United States); Ichimoto, Kiyoshi; Nagata, Shin'ichi; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto, 607-8471 (Japan); Shimizu, Toshifumi [ISAS/JAXA, Sagamihara, Kanagawa, 229-8510 (Japan)], E-mail: joten.okamoto@nao.ac.jp

    2009-05-20T23:59:59.000Z

    The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Telescope on the Hinode satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) a dark region with absence of strong vertical magnetic fields broadens and then narrows in Ca II H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence.

  16. Lyman Alpha Flux Power Spectrum and Its Covariance

    E-Print Network [OSTI]

    Hu Zhan; Romeel Dave; Daniel Eisenstein; Neal Katz

    2005-08-10T23:59:59.000Z

    We analyze the flux power spectrum and its covariance using simulated Lyman alpha forests. We find that pseudo-hydro techniques are good approximations of hydrodynamical simulations at high redshift. However, the pseudo-hydro techniques fail at low redshift because they are insufficient for characterizing some components of the low-redshift intergalactic medium, notably the warm-hot intergalactic medium. Hence, to use the low-redshift Lyman alpha flux power spectrum to constrain cosmology, one would need realistic hydrodynamical simulations. By comparing one-dimensional mass statistics with flux statistics, we show that the nonlinear transform between density and flux quenches the fluctuations so that the flux power spectrum is much less sensitive to cosmological parameters than the one-dimensional mass power spectrum. The covariance of the flux power spectrum is nearly Gaussian. As such, the uncertainties of the underlying mass power spectrum could still be large, even though the flux power spectrum can be precisely determined from a small number of lines of sight.

  17. Colour flux-tubes in static Pentaquark systems

    E-Print Network [OSTI]

    Pedro Bicudo; Nuno Cardoso; Marco Cardoso

    2011-11-01T23:59:59.000Z

    The colour fields created by the static tetraquark and pentaquark systems are computed in quenched SU(3) lattice QCD, with gauge invariant lattice operators, in a 24^3 x 48 lattice at beta=6.2 . We generate our quenched configurations with GPUs, and detail the respective benchmanrks in different SU(N) groups. While at smaller distances the coulomb potential is expected to dominate, at larger distances it is expected that fundamental flux tubes, similar to the flux-tube between a quark and an antiquark, emerge and confine the quarks. In order to minimize the potential the fundamental flux tubes should connect at 120o angles. We compute the square of the colour fields utilizing plaquettes, and locate the static sources with generalized Wilson loops and with APE smearing. The tetraquark system is well described by a double-Y-shaped flux-tube, with two Steiner points, but when quark-antiquark pairs are close enough the two junctions collapse and we have an X-shaped flux-tube, with one Steiner point. The pentaquark system is well described by a three-Y-shaped flux-tube where the three flux the junctions are Steiner points.

  18. Dynamic Modeling of Aerobic Growth of Shewanella oneidensis. Predicting Triauxic Growth, Flux Distributions and Energy Requirement for Growth

    SciTech Connect (OSTI)

    Song, Hyun-Seob; Ramkrishna, Doraiswami; Pinchuk, Grigoriy E.; Beliaev, Alex S.; Konopka, Allan; Fredrickson, Jim K.

    2013-01-01T23:59:59.000Z

    A model-based analysis is conducted to investigate metabolism of Shewanella oneidensis MR-1 strain in aerobic batch culture, which exhibits an intriguing growth pattern by sequentially consuming substrate (i.e., lactate) and by-products (i.e., pyruvate and acetate). A general protocol is presented for developing a detailed network-based dynamic model for S. oneidensis based on the Lumped Hybrid Cybernetic Model (LHCM) framework. The L-HCM, although developed from only limited data, is shown to accurately reproduce exacting dynamic metabolic shifts, and provide reasonable estimates of energy requirement for growth. Flux distributions in S. oneidensis predicted by the L-HCM compare very favorably with 13C-metabolic flux analysis results reported in the literature. Predictive accuracy is enhanced by incorporating measurements of only a few intracellular fluxes, in addition to extracellular metabolites. The L-HCM developed here for S. oneidensis is consequently a promising tool for the analysis of intracellular flux distribution and metabolic engineering.

  19. Prognostic Significance of Carbohydrate Antigen 19-9 in Unresectable Locally Advanced Pancreatic Cancer Treated With Dose-Escalated Intensity Modulated Radiation Therapy and Concurrent Full-Dose Gemcitabine: Analysis of a Prospective Phase 1/2 Dose Escalation Study

    SciTech Connect (OSTI)

    Vainshtein, Jeffrey M., E-mail: jvainsh@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Schipper, Matthew [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Zalupski, Mark M. [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States)] [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Abrams, Ross [Department of Radiation Oncology, Rush Medical Center, Chicago, Illinois (United States)] [Department of Radiation Oncology, Rush Medical Center, Chicago, Illinois (United States); Francis, Isaac R. [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Khan, Gazala [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States)] [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Leslie, William [Division of Hematology Oncology, Department of Internal Medicine, Rush Medical Center, Chicago, Illinois (United States)] [Division of Hematology Oncology, Department of Internal Medicine, Rush Medical Center, Chicago, Illinois (United States); Ben-Josef, Edgar [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)] [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-05-01T23:59:59.000Z

    Purpose: Although established in the postresection setting, the prognostic value of carbohydrate antigen 19-9 (CA19-9) in unresectable locally advanced pancreatic cancer (LAPC) is less clear. We examined the prognostic utility of CA19-9 in patients with unresectable LAPC treated on a prospective trial of intensity modulated radiation therapy (IMRT) dose escalation with concurrent gemcitabine. Methods and Materials: Forty-six patients with unresectable LAPC were treated at the University of Michigan on a phase 1/2 trial of IMRT dose escalation with concurrent gemcitabine. CA19-9 was obtained at baseline and during routine follow-up. Cox models were used to assess the effect of baseline factors on freedom from local progression (FFLP), distant progression (FFDP), progression-free survival (PFS), and overall survival (OS). Stepwise forward regression was used to build multivariate predictive models for each endpoint. Results: Thirty-eight patients were eligible for the present analysis. On univariate analysis, baseline CA19-9 and age predicted OS, CA19-9 at baseline and 3 months predicted PFS, gross tumor volume (GTV) and black race predicted FFLP, and CA19-9 at 3 months predicted FFDP. On stepwise multivariate regression modeling, baseline CA19-9, age, and female sex predicted OS; baseline CA19-9 and female sex predicted both PFS and FFDP; and GTV predicted FFLP. Patients with baseline CA19-9 ?90 U/mL had improved OS (median 23.0 vs 11.1 months, HR 2.88, P<.01) and PFS (14.4 vs 7.0 months, HR 3.61, P=.001). CA19-9 progression over 90 U/mL was prognostic for both OS (HR 3.65, P=.001) and PFS (HR 3.04, P=.001), and it was a stronger predictor of death than either local progression (HR 1.46, P=.42) or distant progression (HR 3.31, P=.004). Conclusions: In patients with unresectable LAPC undergoing definitive chemoradiation therapy, baseline CA19-9 was independently prognostic even after established prognostic factors were controlled for, whereas CA19-9 progression strongly predicted disease progression and death. Future trials should stratify by baseline CA19-9 and incorporate CA19-9 progression as a criterion for progressive disease.

  20. The Intense Radiation Gas

    E-Print Network [OSTI]

    M. Marklund; P. K. Shukla; B. Eliasson

    2005-03-08T23:59:59.000Z

    We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

  1. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  2. Miniaturized radiation chirper

    DOE Patents [OSTI]

    Umbarger, C. John (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  3. The Method of Manufactured Solutions for RattleSnake A SN Radiation Transport Solver Inside the MOOSE Framework

    SciTech Connect (OSTI)

    Yaqi Wang

    2012-06-01T23:59:59.000Z

    The Method of Manufactured Solutions (MMS) is an accepted technique to verify that a numerical discretization for the radiation transport equation has been implemented correctly. This technique offers a few advantages over other methods such as benchmark problems or analytical solutions. The solution can be manufactured such that properties for the angular flux are either stressed or preserved. For radiation transport, these properties can include desired smoothness, positiveness and arbitrary order of anisotropy in angle. Another advantage is that the angular flux solution can be manufactured for multidimensional problems where analytical solutions are difficult to obtain in general.

  4. Materials Compatibility and Aging for Flux and Cleaner Combinations.

    SciTech Connect (OSTI)

    Archuleta, Kim; Piatt, Rochelle

    2015-01-01T23:59:59.000Z

    A materials study of high reliability electronics cleaning is presented here. In Phase 1, mixed type substrates underwent a condensed contaminants application to view a worst- case scenario for unremoved flux with cleaning agent residue for parts in a silicone oil filled environment. In Phase 2, fluxes applied to copper coupons and to printed wiring boards underwent gentle cleaning then accelerated aging in air at 65% humidity and 30 O C. Both sets were aged for 4 weeks. Contaminants were no-clean (ORL0), water soluble (ORH1 liquid and ORH0 paste), and rosin (RMA; ROL0) fluxes. Defluxing agents were water, solvents, and engineered aqueous defluxers. In the first phase, coupons had flux applied and heated, then were placed in vials of oil with a small amount of cleaning agent and additional coupons. In the second phase, pairs of copper coupons and PWB were hand soldered by application of each flux, using tin-lead solder in a strip across the coupon or a set of test components on the PWB. One of each pair was cleaned in each cleaning agent, the first with a typical clean, and the second with a brief clean. Ionic contamination residue was measured before accelerated aging. After aging, substrates were removed and a visual record of coupon damage made, from which a subjective rank was applied for comparison between the various flux and defluxer combinations; more corrosion equated to higher rank. The ORH1 water soluble flux resulted in the highest ranking in both phases, the RMA flux the least. For the first phase, in which flux and defluxer remained on coupons, the aqueous defluxers led to worse corrosion. The vapor phase cleaning agents resulted in the highest ranking in the second phase, in which there was no physical cleaning. Further study of cleaning and rinsing parameters will be required.

  5. SCALE 6: Comprehensive Nuclear Safety Analysis Code System

    SciTech Connect (OSTI)

    Bowman, Stephen M [ORNL

    2011-01-01T23:59:59.000Z

    Version 6 of the Standardized Computer Analyses for Licensing Evaluation (SCALE) computer software system developed at Oak Ridge National Laboratory, released in February 2009, contains significant new capabilities and data for nuclear safety analysis and marks an important update for this software package, which is used worldwide. This paper highlights the capabilities of the SCALE system, including continuous-energy flux calculations for processing multigroup problem-dependent cross sections, ENDF/B-VII continuous-energy and multigroup nuclear cross-section data, continuous-energy Monte Carlo criticality safety calculations, Monte Carlo radiation shielding analyses with automated three-dimensional variance reduction techniques, one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations, two- and three-dimensional lattice physics depletion analyses, fast and accurate source terms and decay heat calculations, automated burnup credit analyses with loading curve search, and integrated three-dimensional criticality accident alarm system analyses using coupled Monte Carlo criticality and shielding calculations.

  6. MEASUREMENT AND ANALYSIS OF CIRCUMSOLAR RADIATION

    E-Print Network [OSTI]

    Grether, Donald

    2013-01-01T23:59:59.000Z

    Total Energy System (proposed) Jet Propulsion Laboratory Parabolic Dish Test Facility Quality Control,

  7. MEASUREMENT AND ANALYSIS OF CIRCUMSOLAR RADIATION

    E-Print Network [OSTI]

    Grether, Donald

    2013-01-01T23:59:59.000Z

    the performance of a solar plant. Subsequent to these earlySolar 1, the Barstow 10 Mw Central Receiver pilot plant; the

  8. Water clarity, maternal behavior, and physiology combine to eliminate UV radiation risk to

    E-Print Network [OSTI]

    Palen, Wendy J.

    Water clarity, maternal behavior, and physiology combine to eliminate UV radiation risk for review November 10, 2009) Increasing UV-B radiation (UV-B; 290­320 nm) due to stratospheric across natural landscapes. amphibian declines | ultraviolet radiation | risk analysis | dissolved organic

  9. Bounded limit for the Monte Carlo point-flux-estimator

    SciTech Connect (OSTI)

    Grimesey, R.A.

    1981-01-01T23:59:59.000Z

    In a Monte Carlo random walk the kernel K(R,E) is used as an expected value estimator at every collision for the collided flux phi/sub c/ r vector,E) at the detector point. A limiting value for the kernel is derived from a diffusion approximation for the probability current at a radius R/sub 1/ from the detector point. The variance of the collided flux at the detector point is thus bounded using this asymptotic form for K(R,E). The bounded point flux estimator is derived. (WHK)

  10. Energy flux fluctuations in a finite volume of turbulent flow

    E-Print Network [OSTI]

    Mahesh Bandi; Walter Goldburg; John Cressman Jr.; Alain Pumir

    2006-07-19T23:59:59.000Z

    The flux of turbulent kinetic energy from large to small spatial scales is measured in a small domain B of varying size R. The probability distribution function of the flux is obtained using a time-local version of Kolmogorov's four-fifths law. The measurements, made at a moderate Reynolds number, show frequent events where the flux is backscattered from small to large scales, their frequency increasing as R is decreased. The observations are corroborated by a numerical simulation based on the motion of many particles and on an explicit form of the eddy damping.

  11. Lessons Learned in the Update of a Safety Limit for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Cook, David Howard [ORNL

    2009-01-01T23:59:59.000Z

    A recent unreviewed safety question (USQ) regarding a portion of the High Flux Isotope Reactor (HFIR) transient decay heat removal analysis focused on applicability of a heat transfer correlation at the low flow end of reactor operations. During resolution of this issue, review of the correlations used to establish the safety limit (SL) on reactor flux-to-flow ratio revealed the need to change the magnitude of the SL at the low flow end of reactor operations and the need to update the hot spot fuel damage criteria to incorporate current knowledge involving parallel channel flow stability. Because of the original safety design strategy for the reactor, resolution of the issues for the flux-to-flow ratio involved reevaluation of all key process variable SLs and limiting control settings (LCSs) using the current version of the heat transfer analysis code for the reactor. Goals of the work involved updating and upgrading the SL analysis where necessary, while preserving the safety design strategy for the reactor. Changes made include revisions to the safety design criteria at low flows to address the USQ, update of the process- and analysis input-variable uncertainty considerations, and upgrade of the safety design criteria at high flow. The challenges faced during update/upgrade of this SL and LCS are typical of the problems found in the integration of safety into the design process for a complex facility. In particular, the problems addressed in the area of instrument uncertainties provide valuable lessons learned for establishment and configuration control of SLs for large facilities.

  12. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Veron, Dana E

    2009-03-12T23:59:59.000Z

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  13. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Dana E. Veron

    2012-04-09T23:59:59.000Z

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  14. Radiation levels in the SSC interaction regions

    SciTech Connect (OSTI)

    Groom, D.E. [ed.

    1988-06-10T23:59:59.000Z

    The radiation environment in a typical SSC detector has been evaluated using the best available particle production models coupled with Monte Carlo simulations of hadronic and electromagnetic cascades. The problems studied include direct charged particle dose, dose inside a calorimeter from the cascades produced by incident photons and hadrons, the flux of neutrons and photons backscattered from the calorimeter into a central cavity, and neutron flux in the calorimeter. The luminosity lifetime at the SSC is dominated by collision losses in the interaction regions, where the luminosity is equivalent to losing an entire full-energy proton beam into the apparatus every six days. The result of an average p-p collision can be described quite simply. The mean charged multiplicity is about 110, and the particles are distributed nearly uniformly in pseudorapidity ({eta}) over all the angles of interest. The transverse momentum distribution is independent of angle, and for our purposes may be written as p{perpendicular}exp(-p{perpendicular}/{beta}). The mean value of p{perpendicular} may be as high as 0.6 GeV/c. Most of the radiation is produced by the very abundant low-p{perpendicular} particles. The dose or neutron fluence produced by individual particles in this energy region are simulated over a wide variety of conditions, and several measurements serve to confirm the simulation results. In general, the response (a dose, fluence, the number of backscattered neutrons, etc.) for an incident particle of momentum p can be parameterized in the form Np{sup {alpha}}, where 0.5 < {alpha}< 1.0. The authors believe most of their results to be accurate to within a factor of two or three, sufficiently precise to serve as the basis for detailed designs.

  15. Multiple Scattering of Seismic Waves from Ensembles of Upwardly Lossy Thin Flux Tubes

    E-Print Network [OSTI]

    Hanson, Chris S

    2015-01-01T23:59:59.000Z

    Our previous semi-analytic treatment of f- and p-mode multiple scattering from ensembles of thin flux tubes (Hanson and Cally, Astrophys. J. 781, 125; 791, 129, 2014) is extended by allowing both sausage and kink waves to freely escape at the top of the model using a radiative boundary condition there. As expected, this additional avenue of escape, supplementing downward loss into the deep solar interior, results in substantially greater absorption of incident f- and p-modes. However, less intuitively, it also yields mildly to substantially smaller phase shifts in waves emerging from the ensemble. This may have implications for the interpretation of seismic data for solar plage regions, and in particular their small measured phase shifts.

  16. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  17. The Gravitational Cherenkov Radiation

    E-Print Network [OSTI]

    A. M. Ignatov

    2001-10-26T23:59:59.000Z

    An example of discontinuity of the energy-momentum tensor moving at superluminal velocity is discussed. It is shown that the gravitational Mach cone is formed. The power spectrum of the corresponding Cherenkov radiation is evaluated.

  18. Adaptive multigroup radiation diffusion

    E-Print Network [OSTI]

    Williams, Richard B., Sc. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    This thesis describes the development and implementation of an algorithm for dramatically increasing the accuracy and reliability of multigroup radiation diffusion simulations at low group counts. This is achieved by ...

  19. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  20. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1992-01-01T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.