National Library of Energy BETA

Sample records for radiation transfer models

  1. RRTM: A rapid radiative transfer model

    SciTech Connect (OSTI)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A.

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  2. Improvements to the SHDOM Radiative Transfer Modeling Package

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvements to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Introduction The spherical harmonic discrete ordinate method (SHDOM) is an algorithm and FORTRAN computer code for three-dimensional (3D) atmospheric radiative transfer modeling (Evans 1998). The optical properties (extinction, single scattering albedo, and phase function)

  3. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect (OSTI)

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  4. Validation of the Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models T. B. Zhuravleva Institute of Atmospheric Optics Tomsk, Russia A. Marshak National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Background Starting from a very simple stochastic cloud model by Mullamaa et al. (1972), several different stochastic models have been developed to describe radiative transfer regime in single-layer broken clouds (Kargin 1984; Titov 1990; Malvagi and

  5. Mathematical modeling of sulfide flash smelting process. Part 2; Quantitative analysis of radiative heat transfer

    SciTech Connect (OSTI)

    Hahn, Y.B. ); Sohn, H.Y. )

    1990-12-01

    This paper reports on a mathematical model developed to describe the rate processes in an axisymmetric copper flash smelting furnace shaft. A particular feature of the model is the incorporation of the four-flux model to describe the radiative heat transfer by combining the absorbing, emitting, and anisotropic scattering phenomena. The importance of various subprocesses of the radiative heat transfer in a flash smelting furnace has been studied. Model predictions showed that the radiation from the furnace walls and between the particles and the surrounding is the dominant mode of heat transfer in a flash smelting furnace.

  6. Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Introduction An important step toward improving radiative transfer codes in general circulation models (GCMs) is their thorough evaluation by comparison to measurements directly, or

  7. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    SciTech Connect (OSTI)

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P.J.

    2014-10-15

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  8. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect (OSTI)

    Mirmoosa, M. S. Nefedov, I. S. Simovski, C. R.; Rüting, F.

    2014-06-21

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  9. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect (OSTI)

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  10. Improving computer simulations of heat transfer for projecting fenestration products: Using radiation view-factor models

    SciTech Connect (OSTI)

    Griffith, B.; Tuerler, D.; Arasteh, D.K.; Curcija, D.

    1998-10-01

    The window well formed by the concave surface on the warm side of skylights and garden windows can cause surface heat-flow rates to be different for these projecting types of fenestration products than for normal planar windows. Current methods of simulating fenestration thermal conductance (U-factor) use constant boundary condition values for overall surface heat transfer. Simulations that account for local variations in surface heat transfer rates (radiation and convection) may be more accurate for rating and labeling window products whose surfaces project outside a building envelope. This paper, which presents simulation and experimental results for one projecting geometry, is the first step in documenting the importance of these local effects. A generic specimen, called the foam garden window, was used in simulations and experiments to investigate heat transfer of projecting surfaces. Experiments focused on a vertical cross section (measurement plane) located at the middle of the window well on the warm side of the specimen. The specimen was placed between laboratory thermal chambers that were operated at American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) winter heating design conditions. Infrared thermography was used to map surface temperatures. Air temperature and velocity were mapped throughout the measurement plane using a mechanical traversing system. Finite-element computer simulations that directly modeled element-to-element radiation were better able to match experimental data than simulations that used fixed coefficients for total surface heat transfer. Air conditions observed in the window well suggest that localized convective effects were the reason for the difference between actual and modeled surface temperatures. U-value simulation results were 5% to 10% lower when radiation was modeled directly.

  11. Posters Comparison of Stochastic Radiation Transfer Predictions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models for estimating the effects of broken cloud on radiative transfer in the context of a general circulation model (GCM). These schemes are required to be very fast and...

  12. Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud

  13. Simulation of solar radiative transfer in cumulus clouds

    SciTech Connect (OSTI)

    Zuev, V.E.; Titov, G.A.

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  14. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  15. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  16. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hakel, Peter

    2016-06-16

    Here we report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  17. Fast All-sky Radiation Models for Solar applications (FARMS)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Fast All-sky Radiation Models for Solar applications ... Radiative transfer (RT) models simulating broadband solar radiation have been widely used ...

  18. Radiative transfer in atmosphere-sea ice-ocean system

    SciTech Connect (OSTI)

    Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S.C.

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  19. A study of Monte Carlo radiative transfer through fractal clouds

    SciTech Connect (OSTI)

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P.

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  20. HYDRODYNAMIC AND RADIATIVE MODELING OF TEMPORAL H{alpha} EMISSION V/R VARIATIONS CAUSED BY DISCONTINUOUS MASS TRANSFER IN BINARIES

    SciTech Connect (OSTI)

    Chadima, Pavel; Harmanec, Petr; Wolf, Marek; Firt, Roman; Ruzdjak, Domagoj; Bozic, Hrvoje; Koubsky, Pavel

    2011-07-15

    H{alpha} emission V/R variations caused by discontinuous mass transfer in interacting binaries with a rapidly rotating accreting star are modeled qualitatively for the first time. The program ZEUS-MP was used to create a non-linear three-dimensional hydrodynamical model of a development of a blob of gaseous material injected into an orbit around a star. It resulted in the formation of an elongated disk with a slow prograde revolution. The LTE radiative transfer program SHELLSPEC was used to calculate the H{alpha} profiles originating in the disk for several phases of its revolution. The profiles have the form of a double emission and exhibit V/R and radial velocity variations. However, these variations should be a temporal phenomenon since imposing a viscosity in the given model would lead to a circularization of the disk and fading-out of the given variations.

  1. Fractional integration and radiative transfer in a multifractal atmosphere

    SciTech Connect (OSTI)

    Naud, C.; Schertzer, D.; Lovejoy, S.

    1996-04-01

    Recently, Cess et al. (1995) and Ramathan et al. (1995) cited observations which exhibit an anomalous absorption of cloudy skies in comparison with the value predicted by usual models and which thus introduce large uncertainties for climatic change assessments. These observation raise questions concerning the way general circulation models have been tuned for decades, relying on classical methods, of both radiative transfer and dynamical modeling. The observations also tend to demonstrate that homogeneous models are simply not relevant in relating the highly variable properties of clouds and radiation fields. However smoothed, the intensity of cloud`s multi-scattered radiation fields reflect this extreme variability.

  2. Fire Intensity Data for Validation of the Radiative Transfer Equation

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Jernigan, Dann A.

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  3. (Validity of environmental transfer models)

    SciTech Connect (OSTI)

    Blaylock, B.G.; Hoffman, F.O.; Gardner, R.H.

    1990-11-07

    BIOMOVS (BIOspheric MOdel Validation Study) is an international cooperative study initiated in 1985 by the Swedish National Institute of Radiation Protection to test models designed to calculate the environmental transfer and bioaccumulation of radionuclides and other trace substances. The objective of the symposium and workshop was to synthesize results obtained during Phase 1 of BIOMOVS (the first five years of the study) and to suggest new directions that might be pursued during Phase 2 of BIOMOVS. The travelers were an instrumental part of the development of BIOMOVS. This symposium allowed the travelers to present a review of past efforts at model validation and a synthesis of current activities and to refine ideas concerning future development of models and data for assessing the fate, effect, and human risks of environmental contaminants. R. H. Gardner also visited the Free University, Amsterdam, and the National Institute of Public Health and Environmental Protection (RIVM) in Bilthoven to confer with scientists about current research in theoretical ecology and the use of models for estimating the transport and effect of environmental contaminants and to learn about the European efforts to map critical loads of acid deposition.

  4. Statistical characteristics of cloud variability. Part 2: Implication for parameterizations of microphysical and radiative transfer processes in climate models

    SciTech Connect (OSTI)

    Huang, Dong; Liu, Yangang

    2014-09-27

    The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific, Southern Great Plains, and North Slope of Alaska sites of the Department of Energy's Atmospheric Radiation Measurement program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The probability density functions are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate, whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest, and thus, there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.

  5. Statistical characteristics of cloud variability. Part 2: Implication for parameterizations of microphysical and radiative transfer processes in climate models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Dong; Liu, Yangang

    2014-09-27

    The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific, Southern Great Plains, and North Slope of Alaska sites of the Department of Energy's Atmospheric Radiation Measurement program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The probability density functions are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results inmoreup to 30% mean bias in autoconversion rate, whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest, and thus, there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.less

  6. Application of Improved Radiation Modeling to General Circulation Models

    SciTech Connect (OSTI)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  7. Validation of the RRTM Shortwave Radiation Model and Comparison to GCM Shortwave Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of the RRTM Shortwave Radiation Model and Comparison to GCM Shortwave Models M. J. Iacono, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts Introduction An important step toward improving radiative transfer codes in general circulation models (GCMs) is to thoroughly evaluate them either by comparison to measurements directly or by comparing them to other data-validated radiation models. The Rapid Radiative Transfer Model (RRTM)

  8. Posters The Effects of Radiative Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with difluence and sinking motion during cyclogenesis over ... How is the greater baroclinicity generated? Radiative ... The similar time structure of the water averages between the ...

  9. Collisional-Radiative Modeling for Radiation Hydrodynamics (Book...

    Office of Scientific and Technical Information (OSTI)

    Publisher: Modern Methods in Collisional-Radiative Modelling of Plasmas, Collisional-Radiative Modeling for Radiation Hydrodynamics, Springer International Publishing, unknown, ...

  10. NNSA Transfers Responsibility for Radiation Detection System to China

    National Nuclear Security Administration (NNSA)

    Customs | National Nuclear Security Administration | (NNSA) Transfers Responsibility for Radiation Detection System to China Customs January 13, 2015 SHANGHAI, CHINA - Today, the Nuclear Security Administration's (NNSA) Principal Assistant Deputy Administrator for Defense Nuclear Nonproliferation (DNN), David Huizenga, participated in a ceremony commemorating the transition of a radiation detection system at the Port of Yangshan to the General Administration of Customs of China (GACC). This

  11. THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS

    SciTech Connect (OSTI)

    Whitney, B. A.; Honor, J.; Robitaille, T. P.; Bjorkman, J. E.; Dong, R.; Wolff, M. J.; Wood, K.

    2013-08-15

    We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, ''puffed-up inner rims'' in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations.

  12. Test plan for validation of the radiative transfer equation.

    SciTech Connect (OSTI)

    Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.

    2010-09-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).

  13. Coupling radiative heat transfer in participating media with other heat transfer modes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tencer, John; Howell, John R.

    2015-09-28

    The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

  14. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Veron, Dana E

    2009-03-12

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  15. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  16. Radiative heat transfer in 2D Dirac materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  17. Present and Future Computing Requirements Radiative Transfer of Astrophysical Explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Radiative Transfer of Astrophysical Explosions Daniel Kasen (UCB/LBNL) SciDAC computational astrophysics consortium Stan Woosley, Ann Almgren, John Bell, Haitao Ma, Peter Nugent, Rollin Thomas, Weiquin Zhang, Adam Burrows, Jason Nordhaus, Louis Howell, Mike Zingale topics and open questions * thermonuclear supernova: What are the progenitors: 1 or 2 white dwarfs? How does the nuclear runaway ignite and develop? How regular are these "standard candles" for cosmology? * core

  18. The Radiative Transfer Of CH{sub 4}-N{sub 2} Plasma Arc

    SciTech Connect (OSTI)

    Benallal, R.; Liani, B.

    2008-09-23

    Any physical modelling of a circuit-breaker arc therefore requires an understanding of the radiated energy which is taken into account in the form of a net coefficient. The evaluation of the net emission coefficient is performed by the knowledge of the chemical plasma composition and the resolution of the radiative transfer equation. In this paper, the total radiation which escapes from a CH{sub 4}-N{sub 2} plasma is calculated in the temperature range between 5000 and 30000K on the assumption of a local thermodynamic equilibrium and we have studied the nitrogen effect in the hydrocarbon plasmas.

  19. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect (OSTI)

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  20. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not

  1. Very large radiative transfer over small distances from a black body for thermophotovoltaic applications

    SciTech Connect (OSTI)

    Pan, J.L.; Choy, H.K.H.; Fonstad, C.G. Jr.

    2000-01-01

    The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index n{sub BB} to an object of refractive index n{sub OBJ} located a short distance away is shown to be n{sup 2}{sub smaller} times the free space Planck distribution, where n{sub smaller} is the smaller of n{sub BB} and n{sub OBJ}, and where n{sub BB} and n{sub OBJ} are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of, and the distance separating, the black body and the object. The expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the gap region are all modeled as lossless dielectrics.

  2. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer

    SciTech Connect (OSTI)

    Chang, Jui-Yung; Basu, Soumyadipta Wang, Liping

    2015-02-07

    We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150?nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150?nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

  3. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect (OSTI)

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and

  4. Constraining the physical conditions in the jets of ?-ray flaring blazars using centimeter-band polarimetry and radiative transfer simulations. I. Data and models for 0420014, OJ 287, and 1156+295

    SciTech Connect (OSTI)

    Aller, M. F.; Hughes, P. A.; Aller, H. D.; Latimer, G. E.; Hovatta, T.

    2014-08-10

    To investigate parsec-scale jet flow conditions during GeV ?-ray flares detected by the Fermi Large Angle Telescope, we obtained centimeter-band total flux density and linear polarization monitoring observations from 2009.5 through 2012.5 with the 26 m Michigan radio telescope for a sample of core-dominated blazars. We use these data to constrain radiative transfer simulations incorporating propagating shocks oriented at an arbitrary angle to the flow direction in order to set limits on the jet flow and shock parameters during flares temporally associated with ?-ray flares in 0420014, OJ 287, and 1156+295; these active galactic nuclei exhibited the expected signature of shocks in the linear polarization data. Both the number of shocks comprising an individual radio outburst (3 and 4) and the range of the compression ratios of the individual shocks (0.5-0.8) are similar in all three sources; the shocks are found to be forward-moving with respect to the flow. While simulations incorporating transverse shocks provide good fits for 0420014 and 1156+295, oblique shocks are required for modeling the OJ 287 outburst, and an unusually low value of the low-energy cutoff of the radiating particles' energy distribution is also identified. Our derived viewing angles and shock speeds are consistent with independent Very Long Baseline Array results. While a random component dominates the jet magnetic field, as evidenced by the low fractional linear polarization, to reproduce the observed spectral character requires that a significant fraction of the magnetic field energy is in an ordered axial component. Both straight and low pitch angle helical field lines are viable scenarios.

  5. Boiler heat transfer modeling using CEMS data with application to fouling analysis

    SciTech Connect (OSTI)

    Zibas, S.J.; Idem, S.A.

    1996-12-31

    A mathematical boiler heat transfer simulation for coal-fired plants is described. Required model input includes boiler geometry, fuel composition, and limited CEMS data that are typically available. Radiation heat transfer in the furnace is calculated using curve-fits to the Hottel charts. The model employs empirical heat transfer coefficient correlations to evaluate convection heat transfer to various boiler component surfaces. Fouling/slagging can be accounted for by including fouling resistance in the calculation of the overall heat transfer coefficient of each component. Model performance predictions are compared to cases available in the literature. Results from parametric studies are presented.

  6. A transient heat transfer model for high temperature solar thermochemi...

    Office of Scientific and Technical Information (OSTI)

    Search Results Journal Article: A transient heat transfer model for high temperature solar ... Title: A transient heat transfer model for high temperature solar thermochemical reactors ...

  7. Differential total absorptivity solution to the radiative transfer equation for mixtures of combustion gases and soot

    SciTech Connect (OSTI)

    Bressloff, N.W.; Moss, J.B.; Rubini, P.A.

    1997-01-01

    The differential total absorptivity (DTA) solution to the radiative transfer equation, originally devised for combustion gases in the discrete transfer radiation model, is extended to mixtures of gaseous combustion products and soot. The method is compared to other solution techniques for representative mixtures across single lines of sight and across a layer bounded by solid walls. Intermediate soot loadings are considered such that the total radiance is not dominated by either the gaseous or soot components. The DTA solution is shown to yield excellent accuracy relative to a narrow-band solution, with a considerable saving in computational cost. Thus, explicit treatment of the source temperature dependence of absorption is successfully demonstrated without the need for spectral integration.

  8. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    SciTech Connect (OSTI)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2015-03-15

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.

  9. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    SciTech Connect (OSTI)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  10. Accounting for sub-pixel variability of clouds and/or unresolved spectral variability, as needed, with generalized radiative transfer theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, Anthony B.; Xu, Feng; Collins, William D.

    2015-03-01

    Atmospheric hyperspectral VNIR sensing struggles with sub-pixel variability of clouds and limited spectral resolution mixing molecular lines. Our generalized radiative transfer model addresses both issues with new propagation kernels characterized by power-law decay in space.

  11. General Relativistic Radiative Transfer and GeneralRelativistic...

    Office of Scientific and Technical Information (OSTI)

    43 PARTICLE ACCELERATORS; ACCRETION DISKS; BLACK HOLES; MAGNETIC FIELDS; MORPHOLOGY; OSCILLATIONS; RADIANT HEAT TRANSFER; SYNCHROTRONS; VISIBILITY Astrophysics,ASTRO, SYNCHRAD...

  12. Modeling of Heat and Mass Transfer in Fusion Welding (Book) ...

    Office of Scientific and Technical Information (OSTI)

    Book: Modeling of Heat and Mass Transfer in Fusion Welding Citation Details In-Document Search Title: Modeling of Heat and Mass Transfer in Fusion Welding In fusion welding, parts...

  13. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, Z. M.

    2014-06-23

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  14. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as

  15. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    SciTech Connect (OSTI)

    Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung

    1999-07-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  16. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    SciTech Connect (OSTI)

    Ito, Kota; Miura, Atsushi; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2015-02-23

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.

  17. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  18. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect (OSTI)

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  19. Materials Modeling for High-Performance Radiation Detectors ...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Materials Modeling for High-Performance Radiation Detectors Citation Details In-Document Search Title: Materials Modeling for High-Performance Radiation Detectors ...

  20. GPS Radiation Instrument Modeling and Simulation (Project w14...

    Office of Scientific and Technical Information (OSTI)

    GPS Radiation Instrument Modeling and Simulation (Project w14gpsradiation) Citation Details In-Document Search Title: GPS Radiation Instrument Modeling and Simulation (Project ...

  1. Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF

    SciTech Connect (OSTI)

    Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

    2012-10-30

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain

  2. Lyalpha RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES

    SciTech Connect (OSTI)

    Laursen, Peter; Sommer-Larsen, Jesper; Andersen, Anja C. E-mail: jslarsen@astro.ku.d

    2009-10-20

    The Lyalpha emission line is an essential diagnostic tool for probing galaxy formation and evolution. Not only is it commonly the strongest observable line from high-redshift galaxies, but from its shape detailed information about its host galaxy can be revealed. However, due to the scattering nature of Lyalpha photons increasing their path length in a nontrivial way, if dust is present in the galaxy, the line may be severely suppressed and its shape altered. In order to interpret observations correctly, it is thus of crucial significance to know how much of the emitted light actually escapes the galaxy. In the present work, using a combination of high-resolution cosmological hydrosimulations and an adaptively refinable Monte Carlo Lyalpha radiative transfer code including an environment dependent model of dust, the escape fractions f {sub esc} of Lyalpha radiation from high-redshift (z = 3.6) galaxies are calculated. In addition to the average escape fraction, the variation of f {sub esc} in different directions and from different parts of the galaxies is investigated, as well as the effect on the emergent spectrum. Escape fractions from a sample of simulated galaxies of representative physical properties are found to decrease for increasing galaxy virial mass M {sub vir}, from f {sub esc} approaching unity for M {sub vir} approx 10{sup 9} M {sub sun} to f {sub esc} less than 10% for M {sub vir} approx 10{sup 12} M {sub sun}. In spite of dust being almost gray, it is found that the emergent spectrum is affected nonuniformly, with the escape fraction of photons close to the line center being much higher than of those in the wings, thus effectively narrowing the Lyalpha line.

  3. Modeling heat conduction and radiation transport with the diffusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat conduction and radiation transport with the diffusion equation in NIF ALE-AMR This ... IOPscience Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in ...

  4. Posters Radiation Impacts on Global Climate Models F. Baer, N...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters Radiation Impacts on Global Climate Models F. Baer, N. Arsky, and K. Rocque ... Heating Rates Generated from Longwave Radiation Algorithms LWR algorithms calculate ...

  5. Model-Observation "Data Cubes" for the DOE Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model-Observation "Data Cubes" for the DOE Atmospheric Radiation Measurement Facility's ... Program through its Atmospheric Radiation Measurement Facility. 2. Data Cube ...

  6. Evaluation of GCM Column Radiation Models Under Cloudy Conditions with The Arm BBHRP Value Added Product

    SciTech Connect (OSTI)

    Oreopoulos, Lazaros; Norris, Peter M.

    2010-03-14

    The overarching goal of the project was to improve the transfer of solar and thermal radiation in the most sophisticated computer tools that are currently available for climate studies, namely Global Climate Models (GCMs). This transfer can be conceptually separated into propagation of radiation under cloudy and under cloudless conditions. For cloudless conditions, the factors that affect radiation propagation are gaseous absorption and scattering, aerosol particle absorption and scattering and surface albedo and emissivity. For cloudy atmospheres the factors are the various cloud properties such as cloud fraction, amount of cloud condensate, the size of the cloud particles, and morphological cloud features such as cloud vertical location, cloud horizontal and vertical inhomogeneity and cloud shape and size. The project addressed various aspects of the influence of the above contributors to atmospheric radiative transfer variability. In particular, it examined: (a) the quality of radiative transfer for cloudless and non-complex cloudy conditions for a substantial number of radiation algorithms used in current GCMs; (b) the errors in radiative fluxes from neglecting the horizontal variabiity of cloud extinction; (c) the statistical properties of cloud horizontal and vertical cloud inhomogeneity that can be incorporated into radiative transfer codes; (d) the potential albedo effects of changes in the particle size of liquid clouds; (e) the gaseous radiative forcing in the presence of clouds; and (f) the relative contribution of clouds of different sizes to the reflectance of a cloud field. To conduct the research in the various facets of the project, data from both the DOE ARM project and other sources were used. The outcomes of the project will have tangible effects on how the calculation of radiative energy will be approached in future editions of GCMs. With better calculations of radiative energy in GCMs more reliable predictions of future climate states will be

  7. Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor

    SciTech Connect (OSTI)

    Joulain, Karl; Ezzahri, Younès; Drevillon, Jérémie; Ben-Abdallah, Philippe

    2015-03-30

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see that the more the material is reflective in the metallic state, the more switching effect is realized, whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO{sub 2} that exhibits an insulator-metallic transition at 68 °C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. Far-field thermal radiation experiments are proposed to back the results presented.

  8. Radiation Heat Transfer in 3 Dimensions for Semi-Transparent Materials....

    Energy Science and Technology Software Center (OSTI)

    2010-12-02

    The RAD3D software solves the critical heat transfer mechanisms that occur in production glass furnaces. The code includes state-of-the-art solution algorithms for efficient radiant interaction of the heating elements, furnace walls and internal furnace components. The code specifically solves the coupled radiative and conductive heating of semi-transparent materials such as glass to calculate the temperature distribution in the glass during processing.

  9. Non-contact pumping of light emitters via non-radiative energy transfer

    DOE Patents [OSTI]

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  10. Estimating Three-Dimensional Cloudy Radiative Transfer Effects from Time-Height Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Three-Dimensional Cloudy Radiative Transfer Effects from Time-Height Cross Sections C. Hannay and R. Pincus National Oceanic and Atmospheric Administration Climate Diagnostics Center Boulder, Colorado K. F. Evans Program in Atmospheric and Oceanic Sciences University of Colorado Boulder, Colorado Introduction Clouds in the atmosphere are finite in extent and variable in every direction and in time. Long data sets from ground-based profilers, such as lidars or cloud radars, could

  11. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect (OSTI)

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  12. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    SciTech Connect (OSTI)

    Basu, Soumyadipta Yang, Yue; Wang, Liping

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  13. Principles of the radiative ablation modeling

    SciTech Connect (OSTI)

    Saillard, Yves; Arnault, Philippe; Silvert, Virginie

    2010-12-15

    Indirectly driven inertial confinement fusion (ICF) rests on the setting up of a radiation temperature within a laser cavity and on the optimization of the capsule implosion ablated by this radiation. In both circumstances, the ablation of an optically thick medium is at work. The nonlinear radiation conduction equations that describe this phenomenon admit different kinds of solutions called generically Marshak waves. In this paper, a completely analytic model is proposed to describe the ablation in the subsonic regime relevant to ICF experiments. This model approximates the flow by a deflagrationlike structure where Hugoniot relations are used in the stationary part from the ablation front up to the isothermal sonic Chapman-Jouguet point and where the unstationary expansion from the sonic point up to the external boundary is assumed quasi-isothermal. It uses power law matter properties. It can also accommodate arbitrary boundary conditions provided the ablation wave stays very subsonic and the surface temperature does not vary too quickly. These requirements are often met in realistic situations. Interestingly, the ablated mass rate, the ablation pressure, and the absorbed radiative energy depend on the time history of the surface temperature, not only on the instantaneous temperature values. The results compare very well with self-similar solutions and with numerical simulations obtained by hydrodynamic code. This analytic model gives insight into the physical processes involved in the ablation and is helpful for optimization and sensitivity studies in many situations of interest: radiation temperature within a laser cavity, acceleration of finite size medium, and ICF capsule implosion, for instance.

  14. Biologically based multistage modeling of radiation effects

    SciTech Connect (OSTI)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage

  15. Fast All-Sky Radiation Model for Solar Applications (FARMS):...

    Office of Scientific and Technical Information (OSTI)

    Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of ... Citation Details In-Document Search Title: Fast All-Sky Radiation Model for Solar ...

  16. Collisional-radiative modeling of tungsten at temperatures of...

    Office of Scientific and Technical Information (OSTI)

    Collisional-radiative modeling of tungsten at temperatures of 1200-2400 eV Citation Details In-Document Search Title: Collisional-radiative modeling of tungsten at temperatures of ...

  17. Investigation of Radiation and Chemical Resistance of Flexible HLW Transfer Hose

    SciTech Connect (OSTI)

    E. Skidmore; Billings, K.; Hubbard, M.

    2010-03-24

    A chemical transfer hose constructed of an EPDM (ethylene-propylene diene monomer) outer covering with a modified cross-linked polyethylene (XLPE) lining was evaluated for use in high level radioactive waste transfer applications. Laboratory analysis involved characterization of the hose liner after irradiation to doses of 50 to 300 Mrad and subsequent exposure to 25% NaOH solution at 93 C for 30 days, simulating 6 months intermittent service. The XLPE liner mechanical and structural properties were characterized at varying dose levels. Burst testing of irradiated hose assemblies was also performed. Literature review and test results suggest that radiation effects below doses of 100 kGy are minimal, with acceptable property changes to 500 kGy. Higher doses may be feasible. At a bounding dose of 2.5 MGy, the burst pressure is reduced to the working pressure (1.38 MPa) at room temperature. Radiation exposure slightly reduces liner tensile strength, with more significant decrease in liner elongation. Subsequent exposure to caustic solutions at elevated temperature slightly increases elongation, suggesting an immersion/hydrolytic effect or possible thermal annealing of radiation damage. This paper summarizes the laboratory results and recommendations for field deployment.

  18. SCDAP/RELAP5 modeling of heat transfer and flow losses in lower head porous debris. Revision 1

    SciTech Connect (OSTI)

    Siefken, L.J.; Coryell, E.W.; Paik, S.; Kuo, H.

    1999-05-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate ma nner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  19. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  20. AN ALGORITHM FOR RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT TRANSFER EQUATION

    SciTech Connect (OSTI)

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-07-01

    We describe a new algorithm for solving the coupled frequency-integrated transfer equation and the equations of magnetohydrodynamics in the regime that light-crossing time is only marginally shorter than dynamical timescales. The transfer equation is solved in the mixed frame, including velocity-dependent source terms accurate to O(v/c). An operator split approach is used to compute the specific intensity along discrete rays, with upwind monotonic interpolation used along each ray to update the transport terms, and implicit methods used to compute the scattering and absorption source terms. Conservative differencing is used for the transport terms, which ensures the specific intensity (as well as energy and momentum) are conserved along each ray to round-off error. The use of implicit methods for the source terms ensures the method is stable even if the source terms are very stiff. To couple the solution of the transfer equation to the MHD algorithms in the ATHENA code, we perform direct quadrature of the specific intensity over angles to compute the energy and momentum source terms. We present the results of a variety of tests of the method, such as calculating the structure of a non-LTE atmosphere, an advective diffusion test, linear wave convergence tests, and the well-known shadow test. We use new semi-analytic solutions for radiation modified shocks to demonstrate the ability of our algorithm to capture the effects of an anisotropic radiation field accurately. Since the method uses explicit differencing of the spatial operators, it shows excellent weak scaling on parallel computers.

  1. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    SciTech Connect (OSTI)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  2. Transfers

    Broader source: Energy.gov [DOE]

    Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. 

  3. Forming chondrules in impact splashes. I. Radiative cooling model

    SciTech Connect (OSTI)

    Dullemond, Cornelis Petrus; Stammler, Sebastian Markus; Johansen, Anders

    2014-10-10

    The formation of chondrules is one of the oldest unsolved mysteries in meteoritics and planet formation. Recently an old idea has been revived: the idea that chondrules form as a result of collisions between planetesimals in which the ejected molten material forms small droplets that solidify to become chondrules. Pre-melting of the planetesimals by radioactive decay of {sup 26}Al would help produce sprays of melt even at relatively low impact velocity. In this paper we study the radiative cooling of a ballistically expanding spherical cloud of chondrule droplets ejected from the impact site. We present results from numerical radiative transfer models as well as analytic approximate solutions. We find that the temperature after the start of the expansion of the cloud remains constant for a time t {sub cool} and then drops with time t approximately as T ≅ T {sub 0}[(3/5)t/t {sub cool} + 2/5]{sup –5/3} for t > t {sub cool}. The time at which this temperature drop starts t {sub cool} depends via an analytical formula on the mass of the cloud, the expansion velocity, and the size of the chondrule. During the early isothermal expansion phase the density is still so high that we expect the vapor of volatile elements to saturate so that no large volatile losses are expected.

  4. Residual Monte Carlo high-order solver for Moment-Based Accelerated Thermal Radiative Transfer equations

    SciTech Connect (OSTI)

    Willert, Jeffrey Park, H.

    2014-11-01

    In this article we explore the possibility of replacing Standard Monte Carlo (SMC) transport sweeps within a Moment-Based Accelerated Thermal Radiative Transfer (TRT) algorithm with a Residual Monte Carlo (RMC) formulation. Previous Moment-Based Accelerated TRT implementations have encountered trouble when stochastic noise from SMC transport sweeps accumulates over several iterations and pollutes the low-order system. With RMC we hope to significantly lower the build-up of statistical error at a much lower cost. First, we display encouraging results for a zero-dimensional test problem. Then, we demonstrate that we can achieve a lower degree of error in two one-dimensional test problems by employing an RMC transport sweep with multiple orders of magnitude fewer particles per sweep. We find that by reformulating the high-order problem, we can compute more accurate solutions at a fraction of the cost.

  5. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    SciTech Connect (OSTI)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  6. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CWmore » solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.« less

  7. Grey transport acceleration method for time-dependent radiative transfer problems

    SciTech Connect (OSTI)

    Larsen, E.

    1988-10-01

    A new iterative method for solving hte time-dependent multifrequency radiative transfer equations is described. The method is applicable to semi-implicit time discretizations that generate a linear steady-state multifrequency transport problem with pseudo-scattering within each time step. The standard ''lambda'' iteration method is shown to often converge slowly for such problems, and the new grey transport acceleration (GTA) method, based on accelerating the lambda method by employing a grey, or frequency-independent transport equation, is developed. The GTA method is shown, theoretically by an iterative Fourier analysis, and experimentally by numerical calculations, to converge significantly faster than the lambda method. In addition, the GTA method is conceptually simple to implement for general differencing schemes, on either Eulerian or Lagrangian meshes. copyright 1988 Academic Press, Inc.

  8. GPS Radiation Instrument Modeling and Simulation (Project w14...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: GPS Radiation Instrument Modeling and ... DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los ...

  9. Improved models for synchrotron radiation sources in SHADOW ...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Improved models for synchrotron radiation sources in SHADOW Citation ... DOE Contract Number: DE-AC02-98CH10886 Resource Type: Journal Article Resource Relation: ...

  10. CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING...

    Open Energy Info (EERE)

    is qualified according to BSRN 5 criteria and are available at each minute interval. The ground site at Caic is this small city located in the semi-arid region of the Brazilian...

  11. A stochastic reorganizational bath model for electronic energy transfer

    SciTech Connect (OSTI)

    Fujita, Takatoshi E-mail: aspuru@chemistry.harvard.edu; Huh, Joonsuk; Aspuru-Guzik, Aln E-mail: aspuru@chemistry.harvard.edu

    2014-06-28

    Environmentally induced fluctuations of the optical gap play a crucial role in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker (HSR) model, in which the energy-gap fluctuation is approximated as white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to account for excitation energies thermal fluctuations. On the other hand, since the original work of HSR, many groups have employed stochastic models to simulate the same transfer dynamics. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on this connection, we propose a novel scheme to take account of reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. We find a simple expression that relates the reorganization contribution to the Stokes shifts the reorganization shift to the ideal or non-ideal exciton delocalization in a J-aggregate. The reorganization shift can be described by three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This

  12. A meshless method for modeling convective heat transfer

    SciTech Connect (OSTI)

    Carrington, David B

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  13. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    SciTech Connect (OSTI)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  14. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,moreallowing for more realistic representation of cloud radiation interactions in large-scale models.less

  15. A grey diffusion acceleration method for time-dependent radiative transfer calculations

    SciTech Connect (OSTI)

    Nowak, P.F.

    1991-07-01

    The equations of thermal radiative transfer describe the emission, absorption and transport of photons in a material. As photons travel through the material they are absorbed and re-emitted in a Planckian distribution characterized by the material temperature. As a result of these processes, the material can change resulting in a change in the Planckian emission spectrum. When the coupling between the material and radiation is strong, as occurs when the material opacity or the time step is large, standard iterative techniques converge very slowly. As a result, nested iterative algorithms have been applied to the problem. One algorithm, is to use multifrequency DSA to accelerate the convergence of the multifrequency transport iteration and a grey transport acceleration (GTA) followed by a single group DSA. Here we summarize a new method which uses a grey diffusion equation (GDA) to directly solve the multifrequency transport (S{sub N}) problem. Results of Fourier analysis for both the continuous and discretized equations are discussed and the computational efficiency of GDA is compared with the DSA and GTA nested algorithms. 5 refs., 1 fig., 1 tab.

  16. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect (OSTI)

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  17. Physics-based dimension reduction in uncertainty quantification for radiative transfer

    SciTech Connect (OSTI)

    Hetzler, A. C.; Adams, M. L.; Stripling Iv, H. F.; Hawkins, W. D.

    2013-07-01

    We present a physics-based methodology for quantifying the uncertainty in a given quantity of interest (QOI) that is contributed by uncertainties in opacities in radiation transport problems. Typically, opacities are tabulated as a function of density, temperature, and photon energy group. The size of this table makes a study of uncertainties at this level challenging because of the well-known 'curse of dimensionality.' We address this by studying uncertain parameters in the underlying physical model that generates the opacity tables. At this level, there are fewer uncertain parameters but still too many to analyze directly through computationally expensive radiation transport simulations. In order to explore this large uncertain parameter space, we develop two simplified radiation transport problems that are much less computationally demanding than the target problem of interest. An emulator is created for each QOI for each simplified problem using Bayesian Multivariate Adaptive Regression Splines (BMARS). This emulator is used to create a functional relationship between the QOIs and the uncertain parameters. Sensitivity analysis is performed using the emulator to determine which parameters contribute significantly to the uncertainty. This physics-based screening process reduces the dimension of the parameter space that is then studied via the computationally expensive radiation transport calculation to generate distributions of quantities of interest. Results of this research demonstrate that the QOIs for the target problem agree for varying screening criteria determined by the sensitivity analysis, and the QOIs agree well for varying Latin Hypercube Design (LHD) sample sizes for the uncertain space. (authors)

  18. Magnetohydrodynamic Models of Accretion Including Radiation Transport |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Snapshot of the global structure of a radiation-dominated accretion flow around a black hole computed using the Athena++ code Snapshot of the global structure of a radiation-dominated accretion flow around a black hole computed using the Athena++ code. Left half of the image shows the density (in units of 0.01g/cm^3), and the right half shows the radiation energy density (in units of the energy density for a 10^7 degree black body). Coordinate axes are

  19. Radiative accelerations for evolutionary model calculations

    SciTech Connect (OSTI)

    Richer, J.; Michaud, G.; Rogers, F.; Iglesias, C.; Turcotte, S.; LeBlanc, F.

    1998-01-01

    Monochromatic opacities from the OPAL database have been used to calculate radiative accelerations for the 21 included chemical species. The 10{sup 4} frequencies used are sufficient to calculate the radiative accelerations of many elements for T{gt}10{sup 5}K, using frequency sampling. This temperature limit is higher for less abundant elements. As the abundances of Fe, He, or O are varied, the radiative acceleration of other elements changes, since abundant elements modify the frequency dependence of the radiative flux and the Rosseland opacity. Accurate radiative accelerations for a given element can only be obtained by allowing the abundances of the species that contribute most to the Rosseland opacity to vary during the evolution and recalculating the radiative accelerations and the Rosseland opacity during the evolution. There are physical phenomena that cannot be included in the calculations if one uses only the OPAL data. For instance, one should correct for the momentum given to the electron in a photoionization. Such effects are evaluated using atomic data from Opacity Project, and correction factors are given. {copyright} {ital 1998} {ital The American Astronomical Society}

  20. Analysis of light scattering by two-dimensional inhomogeneities in paper using general radiative transfer theory

    SciTech Connect (OSTI)

    Nukala, Madhuri; Mendrok, Jana

    2014-12-10

    Lateral light scattering simulations of printed dots are analyzed using general radiative transfer theory. We investigated the appearance of a printed paper in relation to the medium parameters like thickness of the paper sample, its optical properties, and the asymmetry factor. It was found that the appearance of a print greatly depends on these factors making it either brighter or darker. A thicker substrate with higher single scattering albedo backed with an absorbing surface makes the dots brighter due to increased number of scattering events. Additionally, it is shown that the optical effects of print also depend on illuminating and viewing angles along with the depth of ink penetration. A larger single scattering angle implies less intensity and the dots appear much blurred due to the shadowing effect prominent when viewed from sides. A fully penetrated dot of the same extinction coefficient as a partial penetrated one is darker due to increased absorption. These results can be used in applications dealing with lateral light scattering.

  1. Treatment of cloud radiative effects in general circulation models

    SciTech Connect (OSTI)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M.

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  2. TRANSIENT HEAT TRANSFER MODEL FOR SRS WASTE TANK OPERATIONS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-27

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation. The analysis model took a parametric approach. A series of the modeling analyses was performed to examine how submersible mixer pumps affect tank temperature during waste removal operation in the Type-I tank. The model domain included radioactive decay heat load, two SMP's, and one Submersible Transfer Pump (STP) as heat source terms. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. Transient modeling calculations for two potential scenarios of sludge mixing and removal operations have been made to estimate transient waste temperatures within a Type-I waste tank. When two 200-HP submersible mixers and 12 active cooling coils are continuously operated in 100-in tank level and 40 C initial temperature for 40 days since the initiation of mixing operation, waste temperature rises about 9 C in 48 hours at a maximum. Sensitivity studies for the key operating variables were performed. The sensitivity results showed that the chromate cooling coil system provided the primary cooling mechanism to remove process

  3. Modeling the Transfer Function for the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.

    2015-03-04

    We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function—a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with themore » corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples—star-galaxy classification and proximity effects on object detection—are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.« less

  4. Modeling the transfer function for the Dark Energy Survey

    SciTech Connect (OSTI)

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; Peiris, H.; Abbott, T.; Abdalla, F. B.; Balbinot, E.; Banerji, M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Carnero, A.; Desai, S.; da Costa, L. N.; Cunha, C. E.; Eifler, T.; Evrard, A. E.; Fausti Neto, A.; Gerdes, D.; Gruen, D.; James, D.; Kuehn, K.; Maia, M. A. G.; Makler, M.; Ogando, R.; Plazas, A.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Zuntz, J.

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.

  5. Modeling the transfer function for the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; et al

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulationmoreoutput is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.less

  6. TH-C-17A-02: New Radioluminescence Strategies Based On CRET (Cerenkov Radiation Energy Transfer) for Imaging and Therapy

    SciTech Connect (OSTI)

    Volotskova, O; Sun, C; Pratx, G; Xing, L

    2014-06-15

    Purpose: Cerenkov photons are produced when charged particles, emitted from radionuclides, travel through a media with a speed greater than that of the light in the media. Cerenkov radiation is mostly in the UV/Blue region and, thus, readily absorbed by biological tissue. Cerenkov Radiation Energy Transfer (CRET) is a wavelength-shifting phenomenon from blue Cerenkov light to more penetrating red wavelengths. We demonstrate the feasibility of in-depth imaging of CRET light originating from radionuclides realized by down conversion of gold nanoclusters (AuNCs, a novel particle composed of few atoms of gold coated with serum proteins) in vivo. Methods: Bovine Serum Albumin, Human Serum Albumin and Transferrin conjugated gold nanoclusters were synthesized, characterized and examined for CRET. Three different clinically used radiotracers: 18F-FDG, 90Y and 99mTc were used. Optical spectrum (440–750 nm) was recorded by sensitive bioluminescence imaging system at physiological temperature. Dose dependence (activity range from 0.5 up to 800uCi) and concentration dependence (0.01 to 1uM) studies were carried out. The compound was also imaged in a xenograft mouse model. Results: Only β+ and β--emitting radionuclides (18F-FDG, 90Y) are capable of CRET; no signal was found in 99mTc (γ-emitter). The emission peak of CRET by AuNCs was found to be ∼700 nm and was ∼3 fold times of background. In vitro studies showed a linear dependency between luminescence intensity and dose and concentration. CRET by gold nanoclusters was observed in xenografted mice injected with 100uCi of 18F-FDG. Conclusion: The unique optical, transport and chemical properties of AuNCs (gold nanoclusters) make them ideal candidates for in-vivo imaging applications. Development of new molecular imaging probes will allow us to achieve substantially improved spatiotemporal resolution, sensitivity and specificity for tumor imaging and detection.

  7. Modeling Momentum Transfer from Kinetic Impacts: Implications for Redirecting Asteroids

    SciTech Connect (OSTI)

    Stickle, A. M.; Atchison, J. A.; Barnouin, O. S.; Cheng, A. F.; Crawford, D. A.; Ernst, C. M.; Fletcher, Z.; Rivkin, A. S.

    2015-05-19

    Kinetic impactors are one way to deflect a potentially hazardous object headed for Earth. The Asteroid Impact and Deflection Assessment (AIDA) mission is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is composed of a ~300-kg spacecraft designed to impact the moon of the binary system 65803 Didymos. The deflection of the moon will be measured by the ESA-led Asteroid Impact Mission (AIM) (which will characterize the moon) and from ground-based observations. Because the material properties and internal structure of the target are poorly constrained, however, analytical models and numerical simulations must be used to understand the range of potential outcomes. Here, we describe a modeling effort combining analytical models and CTH simulations to determine possible outcomes of the DART impact. We examine a wide parameter space and provide predictions for crater size, ejecta mass, and momentum transfer following the impact into the moon of the Didymos system. For impacts into “realistic” asteroid types, these models produce craters with diameters on the order of 10 m, an imparted Δv of 0.5–2 mm/s and a momentum enhancement of 1.07 to 5 for a highly porous aggregate to a fully dense rock.

  8. Modeling Momentum Transfer from Kinetic Impacts: Implications for Redirecting Asteroids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stickle, A. M.; Atchison, J. A.; Barnouin, O. S.; Cheng, A. F.; Crawford, D. A.; Ernst, C. M.; Fletcher, Z.; Rivkin, A. S.

    2015-05-19

    Kinetic impactors are one way to deflect a potentially hazardous object headed for Earth. The Asteroid Impact and Deflection Assessment (AIDA) mission is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is composed of a ~300-kg spacecraft designed to impact the moon of the binary system 65803 Didymos. The deflection of the moon will be measured by the ESA-led Asteroid Impact Mission (AIM) (which will characterize the moon) and from ground-based observations. Because the material properties and internal structure ofmore » the target are poorly constrained, however, analytical models and numerical simulations must be used to understand the range of potential outcomes. Here, we describe a modeling effort combining analytical models and CTH simulations to determine possible outcomes of the DART impact. We examine a wide parameter space and provide predictions for crater size, ejecta mass, and momentum transfer following the impact into the moon of the Didymos system. For impacts into “realistic” asteroid types, these models produce craters with diameters on the order of 10 m, an imparted Δv of 0.5–2 mm/s and a momentum enhancement of 1.07 to 5 for a highly porous aggregate to a fully dense rock.« less

  9. A new facility for the synchrotron radiation-based calibration of transfer radiation sources in the ultraviolet and vacuum ultraviolet spectral range

    SciTech Connect (OSTI)

    Thornagel, Reiner; Fliegauf, Rolf; Klein, Roman Kroth, Simone; Paustian, Wolfgang; Richter, Mathias

    2015-01-15

    The Physikalisch-Technische Bundesanstalt (PTB) has a long tradition in the calibration of radiation sources in the ultraviolet and vacuum ultraviolet spectral range, with traceability to calculable synchrotron radiation. Within this context, new instrumentation in the PTB laboratory at the Metrology Light Source (MLS) has been put into operation that opens up extended and improved calibration possibilities. A new facility for radiation source calibrations has been set up in the spectral range from 7 nm to 400 nm based on a combined normal incidence-grazing incidence monochromator. The facility can be used for the calibration of transfer sources in terms of spectral radiant intensity or mean spectral radiance, with traceability to the MLS primary source standard. We describe the design and performance of the experimental station and give examples of some commissioning results.

  10. Development of Aerosol Models for Radiative Flux Calculations at ARM Sites

    SciTech Connect (OSTI)

    Ogren, John A.; Dutton, Ellsworth G.; McComiskey, Allison C.

    2006-09-30

    The direct radiative forcing (DRF) of aerosols, the change in net radiative flux due to aerosols in non-cloudy conditions, is an essential quantity for understanding the human impact on climate change. Our work has addressed several key issues that determine the accuracy, and identify the uncertainty, with which aerosol DRF can be modeled. These issues include the accuracy of several radiative transfer models when compared to measurements and to each other in a highly controlled closure study using data from the ARM 2003 Aerosol IOP. The primary focus of our work has been to determine an accurate approach to assigning aerosol properties appropriate for modeling over averaged periods of time and space that represent the observed regional variability of these properties. We have also undertaken a comprehensive analysis of the aerosol properties that contribute most to uncertainty in modeling aerosol DRF, and under what conditions they contribute the most uncertainty. Quantification of these issues enables the community to better state accuracies of radiative forcing calculations and to concentrate efforts in areas that will decrease uncertainties in these calculations in the future.

  11. Validation of nuclear models used in space radiation shielding applications

    SciTech Connect (OSTI)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-15

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  12. A model code for the radiative theta pinch

    SciTech Connect (OSTI)

    Lee, S.; Saw, S. H.; Lee, P. C. K.; Akel, M.; Damideh, V.; Khattak, N. A. D.; Mongkolnavin, R.; Paosawatyanyong, B.

    2014-07-15

    A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor f{sub m}. These values are taken from experiments carried out in the Chulalongkorn theta pinch.

  13. MCNP model for the many KE-Basin radiation sources

    SciTech Connect (OSTI)

    Rittmann, P.D.

    1997-05-21

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with.

  14. Measurements and model calculations of radiative fluxes for the Cabauw

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Site for Atmospheric Research, the Netherlands Measurements and model calculations of radiative fluxes for the Cabauw Experimental Site for Atmospheric Research, the Netherlands Knap, Wouter Royal Netherlands Meteorological Institute KNMI Los, Alexander KNMI Boers, Reinout KNMI Category: Radiation The Cabauw Experimental Site for Atmospheric Research (CESAR), the Netherlands (52.0N, 4.9E), contains an extensive set of instruments for atmospheric research, such as radar, lidar

  15. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower

  16. A Study of Longwave Radiation Codes for Climate Studies: Validation with ARM Observations and Tests in General Circulation Models

    SciTech Connect (OSTI)

    Robert G. Ellingson

    2004-09-28

    One specific goal of the Atmospheric Radiation Measurements (ARM) program is to improve the treatment of radiative transfer in General Circulation Models (GCMs) under clear-sky, general overcast and broken cloud conditions. Our project was geared to contribute to this goal by attacking major problems associated with one of the dominant radiation components of the problem --longwave radiation. The primary long-term project objectives were to: (1) develop an optimum longwave radiation model for use in GCMs that has been calibrated with state-of-the-art observations for clear and cloudy conditions, and (2) determine how the longwave radiative forcing with an improved algorithm contributes relatively in a GCM when compared to shortwave radiative forcing, sensible heating, thermal advection and convection. The approach has been to build upon existing models in an iterative, predictive fashion. We focused on comparing calculations from a set of models with operationally observed data for clear, overcast and broken cloud conditions. The differences found through the comparisons and physical insights have been used to develop new models, most of which have been tested with new data. Our initial GCM studies used existing GCMs to study the climate model-radiation sensitivity problem. Although this portion of our initial plans was curtailed midway through the project, we anticipate that the eventual outcome of this approach will provide both a better longwave radiative forcing algorithm and from our better understanding of how longwave radiative forcing influences the model equilibrium climate, how improvements in climate prediction using this algorithm can be achieved.

  17. Atmospheric transmittance model for photosynthetically active radiation

    SciTech Connect (OSTI)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  18. Radiation Background and Attenuation Model Validation and Development

    SciTech Connect (OSTI)

    Peplow, Douglas E.; Santiago, Claudio P.

    2015-08-05

    This report describes the initial results of a study being conducted as part of the Urban Search Planning Tool project. The study is comparing the Urban Scene Simulator (USS), a one-dimensional (1D) radiation transport model developed at LLNL, with the three-dimensional (3D) radiation transport model from ORNL using the MCNP, SCALE/ORIGEN and SCALE/MAVRIC simulation codes. In this study, we have analyzed the differences between the two approaches at every step, from source term representation, to estimating flux and detector count rates at a fixed distance from a simple surface (slab), and at points throughout more complex 3D scenes.

  19. Radiative heating in global climate models

    SciTech Connect (OSTI)

    Baer, F.; Arsky, N.; Rocque, K.

    1996-04-01

    LWR algorithms from various GCMs vary significantly from one another for the same clear sky input data. This variability becomes pronounced when clouds are included. We demonstrate this effect by intercomparing the various models` output using observed data including clouds from ARM/CART data taken in Oklahoma.

  20. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    SciTech Connect (OSTI)

    Williams, W.R.

    1991-12-31

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  1. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    SciTech Connect (OSTI)

    von Neubeck, Claere; Geniza, Matthew; Kauer, Paula M.; Robinson, Joseph E.; Chrisler, William B.; Sowa, Marianne B.

    2015-05-01

    Outside the protection of earth’s atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin’s barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.

  2. Curve fitting methods for solar radiation data modeling

    SciTech Connect (OSTI)

    Karim, Samsul Ariffin Abdul E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder E-mail: balbir@petronas.com.my

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  3. Posters Single-Column Model for Atmospheric Radiation Measurement Sites: Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Single-Column Model for Atmospheric Radiation Measurement Sites: Model Development and Sensitivity Test Q. Xu and M. Dong Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma A single-column model (SCM) is constructed by extracting the physical subroutines from the community climate model (CCM1) of the National Center for Atmospheric Research. Using observational data obtained from the Oklahoma Atmospheric Radiation Measurement (ARM) site

  4. Geometric Modeling, Radiation Simulation, Rendering, Analysis Package

    Energy Science and Technology Software Center (OSTI)

    1995-01-17

    RADIANCE is intended to aid lighting designers and architects by predicting the light levels and appearance of a space prior to construction. The package includes programs for modeling and translating scene geometry, luminaire data and material properties, all of which are needed as input to the simulation. The lighting simulation itself uses ray tracing techniques to compute radiance values (ie. the quantity of light passing through a specific point in a specific direction), which aremore » typically arranged to form a photographic quality image. The resulting image may be analyzed, displayed and manipulated within the package, and converted to other popular image file formats for export to other packages, facilitating the production of hard copy output.« less

  5. Compendium of Material Composition Data for Radiation Transport Modeling

    SciTech Connect (OSTI)

    Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.

    2006-10-31

    Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: 1) to provide a quick reference of material compositions for analysts and 2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

  6. Glass Furnace Model (GFM) development and technology transfer program final report.

    SciTech Connect (OSTI)

    Lottes, S. A.; Petrick, M.; Energy Systems

    2007-12-04

    A Glass Furnace Model (GFM) was developed under a cost-shared R&D program by the U.S. Department of Energy's Argonne National Laboratory in close collaboration with a consortium of five glass industry members: Techneglas, Inc., Owens-Corning, Libbey, Inc., Osram Sylvania, Inc., and Visteon, Inc. Purdue University and Mississippi State University's DIAL Laboratory were also collaborators in the consortium. The GFM glass furnace simulation model that was developed is a tool industry can use to help define and evaluate furnace design changes and operating strategies to: (1) reduce energy use per unit of production; (2) solve problems related to production and glass quality by defining optimal operating windows to reduce cullet generation due to rejects and maximize throughput; and (3) make changes in furnace design and/or operation to reduce critical emissions, such as NO{sub x} and particulates. A two-part program was pursued to develop and validate the furnace model. The focus of the Part I program was to develop a fully coupled furnace model which had the requisite basic capabilities for furnace simulation. The principal outcome from the Phase I program was a furnace simulation model, GFM 2.0, which was copyrighted. The basic capabilities of GFM 2.0 were: (1) built-in burner models that can be included in the combustion space simulation; (2) a participating media spectral radiation model that maintains local and global energy balances throughout the furnace volume; and (3) a multiphase (liquid, solid) melt model that calculates (does not impose) the batch-melting rate and the batch length. The key objectives of the Part II program, which overlapped the Part I program were: (1) to incorporate a full multiphase flow analytical capability with reduced glass chemistry models in the glass melt model and thus be able to compute and track key solid, gas, and liquid species through the melt and the combustion space above; and (2) to incorporate glass quality indices into

  7. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    SciTech Connect (OSTI)

    Pannala, S; D'Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  8. Fast, narrow-band computer model for radiation calculations

    SciTech Connect (OSTI)

    Yan, Z.; Holmstedt, G.

    1997-01-01

    A fast, narrow-band computer model, FASTNB, which predicts the radiation intensity in a general nonisothermal and nonhomogeneous combustion environment, has been developed. The spectral absorption coefficients of the combustion products, including carbon dioxide, water vapor, and soot, are calculated based on the narrow-band model. FASTNB provides an accurate calculation at reasonably high speed. Compared with Grosshandler`s narrow-band model, RADCAL, which has been verified quite extensively against experimental measurements, FASTNB is more than 20 times faster and gives almost exactly the same results.

  9. Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System

    SciTech Connect (OSTI)

    Ying, Alice; Popov, Emilian L

    2011-01-01

    ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and to provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.

  10. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect (OSTI)

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  11. Application Of A Spherical-Radial Heat Transfer Model To Calculate...

    Open Energy Info (EERE)

    A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  12. Modeling radiation loads to detectors in a SNAP mission

    SciTech Connect (OSTI)

    Nikolai V. Mokhov et al.

    2004-05-12

    In order to investigate degradation of optical detectors of the Supernova Acceleration Project (SNAP) space mission due to irradiation, a three-dimensional model of the satellite has been developed. Realistic radiation environment at the satellite orbit, including both galactic and trapped in radiation belts cosmic rays, has been taken into account. The modeling has been performed with the MARS14 Monte Carlo code. In a current design, the main contribution to dose accumulated in the photodetectors is shown to be due to trapped protons. A contribution of primary {alpha}-particles is estimated. Predicted performance degradation for the photo-detector for a 4-year space mission is 40% and can be reduced further by means of shielding optimization.

  13. Transient PVT measurements and model predictions for vessel heat transfer. Part II.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

    2010-07-01

    Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

  14. Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters

    SciTech Connect (OSTI)

    Hope, Andrew J.; Lindsay, Patricia E.; El Naqa, Issam; Alaly, James R.; Vicic, Milos; Bradley, Jeffrey D.; Deasy, Joseph O. . E-mail: jdeasy@radonc.wustl.edu

    2006-05-01

    Purpose: To determine the clinical, dosimetric, and spatial parameters that correlate with radiation pneumonitis. Methods and Materials: Patients treated with high-dose radiation for non-small-cell lung cancer with three-dimensional treatment planning were reviewed for clinical information and radiation pneumonitis (Rp) events. Three-dimensional treatment plans for 219 eligible patients were recovered. Treatment plan information, including parameters defining tumor position and dose-volume parameters, was extracted from non-heterogeneity-corrected dose distributions. Correlation to RP events was assessed by Spearman's rank correlation coefficient (R). Mathematical models were generated that correlate with RP. Results: Of 219 patients, 52 required treatment for RP (median interval, 142 days). Tumor location was the most highly correlated parameter on univariate analysis (R = 0.24). Multiple dose-volume parameters were correlated with RP. Models most frequently selected by bootstrap resampling included tumor position, maximum dose, and D{sub 35} (minimum dose to the 35% volume receiving the highest doses) (R 0.28). The most frequently selected two- or three-parameter models outperformed commonly used metrics, including V{sub 2} (fractional volume of normal lung receiving >20 Gy) and mean lung dose (R = 0.18). Conclusions: Inferior tumor position was highly correlated with pneumonitis events within our population. Models that account for inferior tumor position and dosimetric information, including both high- and low-dose regions (D{sub 35}, International Commission on Radiation Units and Measurements maximum dose), risk-stratify patients more accurately than any single dosimetric or clinical parameter.

  15. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect (OSTI)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  16. Monte Carlo simulation methods in moment-based scale-bridging algorithms for thermal radiative-transfer problems

    SciTech Connect (OSTI)

    Densmore, J.D.; Park, H.; Wollaber, A.B.; Rauenzahn, R.M.; Knoll, D.A.

    2015-03-01

    We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption–emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck–Cummings algorithm.

  17. Modeling and Analysis of Solar Radiation Potentials on Building Rooftops

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Kodysh, Jeffrey B; Bhaduri, Budhendra L

    2012-01-01

    The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  18. Multi-Dimensional Effects in Longwave Radiative Forcing of PBL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ellingson Florida State University Tallahassee, Florida 1. Introduction Numerical cloud models nearly universally employ one-dimensional (1D) treatments of radiative transfer (RT). ...

  19. Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics J. Simmons, O. Lie-Svendsen, and K. Stamnes Geophysical Institute University of Alaska Fairbanks, Alaska The Arctic is a key element in determining the radiation budget of the earth. Within the polar regions, the net radiation (incoming solar radiation minus outgoing infrared radiation) is negative. To understand the role this energy deficit plays in the overall radiation budget, one must examine the

  20. Spreader-Bar Radiation Detection System Enhancements: A Modeling and Simulation Study

    SciTech Connect (OSTI)

    Ely, James H.; Ashbaker, Eric D.; Batdorf, Michael T.; Baciak, James E.; Hensley, Walter K.; Jarman, Kenneth D.; Robinson, Sean M.; Sandness, Gerald A.; Schweppe, John E.

    2012-11-13

    This report provides the modeling and simulation results of the investigation of enhanced spreader bar radiation detection systems.

  1. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect (OSTI)

    Zhang, Wei [ORNL

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  2. Radiative Importance of ThinŽ Liquid Water Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Accomplishments of the Instantaneous Radiative Flux (IRF) Working Group August 2006 AERI Observations at Southern Great Plains Improve Infrared Radiative Transfer Models Turner et al., JAS, 2004 * AERI observations used to evaluate clear sky IR radiative transfer models * Long-term comparisons have improved - Spectral line database parameters - Water vapor continuum absorption models * Reduced errors in computation of downwelling radiative IR flux by approx 4; current uncertainty is on

  3. New model of calculating the energy transfer efficiency for the spherical theta-pinch device

    SciTech Connect (OSTI)

    Xu, G.; Hock, C.; Loisch, G.; Jacoby, J.; Xiao, G.; Zhao, Y.; Weyrich, K.; Li, Y.

    2015-05-15

    Ion-beam-plasma-interaction plays an important role in the field of warm dense matter and inertial confinement fusion. A spherical theta pinch is proposed to act as a plasma target in various applications including a plasma stripper cell. One key parameter for such applications is the free electron density. A linear dependency of this density to the amount of energy transferred into the plasma from an energy storage was found by Teske. Since the amount of stored energy is known, the energy transfer efficiency is a reliable parameter for the design of a spherical theta pinch device. As the main assumption of a constant reflected plasma resistance is contradictory by the measured data, the traditional two models of energy transfer efficiency will lead to wrong results. From measurements, the parasitic resistance is derived as constant. Based on this key parameter, a new model is proposed. Due to no assumption, the new model is considered as exact. Further, a comparison of these three different models is given at a fixed operation voltage for the full range of working gas pressures. Due to the inappropriate assumptions included in the traditional models, one owns a tendency to overestimate the energy transfer efficiency whereas the other leads to an underestimation. Applying our new model to a wide spread set of operation voltages and gas pressures, an overall picture of the energy transfer efficiency results.

  4. Measurement and modeling of transfer functions for lightning coupling into the Sago mine.

    SciTech Connect (OSTI)

    Morris, Marvin E.; Higgins, Matthew B.

    2007-04-01

    This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.

  5. Modeling of ionizing radiation effects in short-channel MOSFETs

    SciTech Connect (OSTI)

    Wilson, C.L.; Blue, J.L.

    1982-12-01

    The effect of ionizing radiation on short-channel MOSFETs is modeled using a charge-sheet approach. The primary effect of ionizing radiation is the introduction of oxide trapped charge (OTC) and interface trapped charge (ITC). Using a two-dimensional charge-sheet model, transistors with channel lengths between 4.65 ..mu..m and 0.27 ..mu..m were studied. A range of net OTC and ITC values of + 4.0 X 10/sup 11/ cm/sup -2/ corresponding to a dose of approximately 10/sup 6/ rad (SiO/sub 2/) was used to study total dose effects. ITC and OTC cause significant effects in each region of operation. In the subthreshold region, the sensitivity of drain current to these charges is exponential. A more realistic model must include the energy distribution of the ITC charge as well as two-dimensional charge sharing effects. In the triode region, the effects of ITC and OTC are indistinguishable from two-dimensional charge sharing effects.

  6. A mass transfer model of ammonia volatilisation from anaerobic digestate

    SciTech Connect (OSTI)

    Whelan, M.J.; Everitt, T.; Villa, R.

    2010-10-15

    Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilisation from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilisation was approximately 5.2 g N m{sup -2} week{sup -1}. The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high.

  7. Compendium of Material Composition Data for Radiation Transport Modeling

    SciTech Connect (OSTI)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  8. Modeling and validating tritium transfer in a grassland ecosystem in response to {sup 3}H releases

    SciTech Connect (OSTI)

    Le Dizes, S.

    2015-03-15

    In this paper a radioecological model (TOCATTA) for tritium transfer in a grassland ecosystem developed on an hourly time-step basis is proposed and compared with the first data set obtained in the vicinity of the AREVA-NC reprocessing plant of La Hague (France). The TOCATTA model aims at simulating dynamics of tritium transfer in agricultural soil and plant ecosystems exposed to time-varying HTO concentrations in air water vapour and possibly in irrigation and rain water. In the present study, gaseous releases of tritium from the AREVA NC nuclear reprocessing plant in normal operation can be intense and intermittent over a period of less than 24 hours. A first comparison of the model predictions with the field data has shown that TOCATTA should be improved in terms of kinetics of tritium transfer.

  9. Nuisance Source Population Modeling for Radiation Detection System Analysis

    SciTech Connect (OSTI)

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial source frequencies, but leave the task of

  10. The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes

    SciTech Connect (OSTI)

    Zhu, Xuejun; Ye, Shichao; Pan, Xiaoheng

    2008-05-15

    A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model is able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)

  11. Modeling Background Radiation in our Environment Using Geochemical Data

    SciTech Connect (OSTI)

    Malchow, Russell L.; Marsac, Kara; Burnley, Pamela; Hausrath, Elisabeth; Haber, Daniel; Adcock, Christopher

    2015-02-01

    Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation: D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.

  12. On the multidimensional modeling of fluid flow and heat transfer in SCWRS

    SciTech Connect (OSTI)

    Gallaway, T.; Antal, S. P.; Podowski, M. Z.

    2012-07-01

    The Supercritical Water Reactor (SCWR) has been proposed as one of the six Generation IV reactor design concepts under consideration. The key feature of the SCWR is that water at supercritical pressures is used as the reactor coolant. Although at such pressures, fluids do not undergo phase change as they are heated, the fluid properties experience dramatic variations throughout what is known as the pseudo-critical region. Highly nonuniform temperature and fluid property distributions are expected in the reactor core, which will have a significant impact on turbulence and heat transfer in future SCWRs. The goal of the present work has been to understand and predict the effects of these fluid property variations on turbulence and heat transfer throughout the reactor core. Spline-type property models have been formulated for water at supercritical pressures in order to include the dependence of properties on both temperature and pressure into a numerical solver. New models of turbulence and heat transfer for variable-property fluids have been developed and implemented into the NPHASE-CMFD software. The results for these models have been compared to experimental data from the Korea Atomic Energy Research Inst. (KAERI) for various heat transfer regimes. It is found that the Low-Reynolds {kappa}-{epsilon} model performs best at predicting the experimental data. (authors)

  13. Coupling of an average-atom model with a collisional-radiative equilibrium model

    SciTech Connect (OSTI)

    Faussurier, G. Blancard, C.; Cossé, P.

    2014-11-15

    We present a method to combine a collisional-radiative equilibrium model and an average-atom model to calculate bound and free electron wavefunctions in hot dense plasmas by taking into account screening. This approach allows us to calculate electrical resistivity and thermal conductivity as well as pressure in non local thermodynamic equilibrium plasmas. Illustrations of the method are presented for dilute titanium plasma.

  14. The Impact of Spatial Resolution on Model-Derived Radiative Heating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Spatial Resolution on Model-Derived Radiative Heating W. O'Hirok and C. Gautier Institute for Computational Earth System Science University of California Santa Barbara, ...

  15. An enriched finite element model with q-refinement for radiative boundary layers in glass cooling

    SciTech Connect (OSTI)

    Mohamed, M. Shadi; Seaid, Mohammed; Trevelyan, Jon; Laghrouche, Omar

    2014-02-01

    Radiative cooling in glass manufacturing is simulated using the partition of unity finite element method. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary simplified P{sub 1} approximation for the radiation in non-grey semitransparent media. To integrate the coupled equations in time we consider a linearly implicit scheme in the finite element framework. A class of hyperbolic enrichment functions is proposed to resolve boundary layers near the enclosure walls. Using an industrial electromagnetic spectrum, the proposed method shows an immense reduction in the number of degrees of freedom required to achieve a certain accuracy compared to the conventional h-version finite element method. Furthermore the method shows a stable behaviour in treating the boundary layers which is shown by studying the solution close to the domain boundaries. The time integration choice is essential to implement a q-refinement procedure introduced in the current study. The enrichment is refined with respect to the steepness of the solution gradient near the domain boundary in the first few time steps and is shown to lead to a further significant reduction on top of what is already achieved with the enrichment. The performance of the proposed method is analysed for glass annealing in two enclosures where the simplified P{sub 1} approximation solution with the partition of unity method, the conventional finite element method and the finite difference method are compared to each other and to the full radiative heat transfer as well as the canonical Rosseland model.

  16. Three-dimensional modeling of heat transfer from slab floors. Final report

    SciTech Connect (OSTI)

    Bahnfleth, W.P.

    1989-07-01

    Earth-coupled heat-transfer processes have been recognized in recent years as a potential source of significant energy savings in both conventional and earth-sheltered designs, Because of the complexity of the building/soil/atmosphere interaction, however, important aspects of earth-coupled heat transfer are not well understood. There is a particular lack of three-dimensional foundation heat-loss data. In this study, a detailed three-dimensional finite-difference model of a slab floor was used to generate 93 annual simulations in parametric groups focusing on effects of size and shape, soil properties, boundary conditions, climate, insulation, and building shadow. These results indicate that soil thermal conductivity, ground surface conditions, foundation design, and floor shape/size are essential elements of a general change in heat-transfer rate.

  17. Oxidative Stress and Skeletal Health with Low-Dose, Low-LET (Linear Energy Transfer) Ionizing Radiation

    SciTech Connect (OSTI)

    Globus, Ruth K.

    2014-11-03

    We performed in vivo and in vitro experiments to accomplish the following specific aims of this project: 1) determine if low dose, low LET radiation affects skeletal remodeling at structural, cellular and molecular levels and 2) determine if low dose, low LET radiation modulates skeletal health during aging via oxidative mechanisms. A third aim is supported by NASA supplement to this DOE grant focusing on the influence of high LET radiation on bone. A series of experiments were conducted at the NASA Space Radiation Laboratory at Brookhaven, NSRL-BNL, using iron (56Fe) or a sequential exposure to protons / iron / protons, and separate experiments at NASA Ames Research Center (ARC) using 137Cs. The following provides a summary of key findings. (1) Exposure of nine-week old female mice to priming doses of gamma radiation (10cGy x 5) did not significantly affect bone volume/total volume (BV/TV) or microarchitecture as analyzed by 3D microcomputed tomography. As expected, exposure to the challenge dose of 2 Gy gamma irradiation resulted in significant decreases in BV/TV. The priming dose combined with the 2Gy challenge dose had no further effect on BV/TV compared to challenge dose alone, with the sole exception of the Structural Model Index (SMI). SMI reflects the ratio of rods-to-plates in cancellous bone tissue, such that higher SMI values indicate a tendency toward a weaker structure compared to lower SMI values. Mice treated with both priming and challenge dose had 25% higher SMI values compared to sham-irradiated controls and 7% higher values compared to mice treated with the challenge dose alone. Thus, although this priming regimen had relatively modest effects on cancellous tissue, the difference in SMI suggests this fractionated priming doses have adverse, rather than beneficial, effects on bone structure. (2) In 10-week old male mice, a single exposure to 100cGy of 137Cs reduces trabecular bone number and connectivity density by 20% and 36% respectively one

  18. RELAP5 Model of the Vacuum Vessel Primary Heat Transfer System

    SciTech Connect (OSTI)

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    2010-07-01

    This report describes the RELAP5 models that have been developed for the Vacuum Vessel (VV) Primary Heat Transfer System (PHTS). The models are intended to be used to examine the transient performance of the VV PHTS, and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the models and to examine general VV PHTS transient behavior. The models can be used as a starting point to develop transient modeling capability in several directions including control system modeling, safety evaluations, etc, and are not intended to represent the final VV PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, heat exchanger control may not be necessary, and that temperatures within the vacuum vessel during decay heat operation remain low.

  19. Incorporating Radiation Effects into Edge Plasma Transport Models...

    Office of Scientific and Technical Information (OSTI)

    radiation can significantly affect the ionization and energy balance in these plasmas. ... Subject: 70 PLASMA PHYSICS AND FUSION; DIMENSIONS; ENERGY BALANCE; HYDROGEN; IONIZATION; ...

  20. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  1. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect (OSTI)

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  2. Lubricating bacteria model for the growth of bacterial colonies exposed to ultraviolet radiation

    SciTech Connect (OSTI)

    Zhang Shengli; Zhang Lei; Liang Run; Zhang Erhu; Liu Yachao; Zhao Shumin

    2005-11-01

    In this paper, we study the morphological transition of bacterial colonies exposed to ultraviolet radiation by modifying the bacteria model proposed by Delprato et al. Our model considers four factors: the lubricant fluid generated by bacterial colonies, a chemotaxis initiated by the ultraviolet radiation, the intensity of the ultraviolet radiation, and the bacteria's two-stage destruction rate with given radiation intensities. Using this modified model, we simulate the ringlike pattern formation of the bacterial colony exposed to uniform ultraviolet radiation. The following is shown. (1) Without the UV radiation the colony forms a disklike pattern and reaches a constant front velocity. (2) After the radiation is switched on, the bacterial population migrates to the edge of the colony and forms a ringlike pattern. As the intensity of the UV radiation is increased the ring forms faster and the outer velocity of the colony decreases. (3) For higher radiation intensities the total population decreases, while for lower intensities the total population increases initially at a small rate and then decreases. (4) After the UV radiation is switched off, the bacterial population grows both outward as well as into the inner region, and the colony's outer front velocity recovers to a constant value. All these results agree well with the experimental observations [Phys. Rev. Lett. 87, 158102 (2001)]. Along with the chemotaxis, we find that lubricant fluid and the two-stage destruction rate are critical to the dynamics of the growth of the bacterial colony when exposed to UV radiation, and these were not previously considered.

  3. Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modeling

    SciTech Connect (OSTI)

    Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.; Krupka, Kenneth M.; Sasser, Lyle B.

    2003-07-20

    A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants, including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cow’s milk, sheep’s milk, goat’s milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.

  4. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    SciTech Connect (OSTI)

    Yao, Yi; Berkowitz, Max L. E-mail: ykanai@unc.edu; Kanai, Yosuke E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  5. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    SciTech Connect (OSTI)

    Feist, AM; Nagarajan, H; Rotaru, AE; Tremblay, PL; Zhang, T; Nevin, KP; Lovley, DR; Zengler, K

    2014-04-24

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. Author Summary The ability of microorganisms to exchange electrons directly with their environment has large implications for our knowledge of industrial and environmental processes. For decades, it has been known that microbes can use electrodes as electron acceptors in microbial fuel cell settings. Geobacter metallireducens has been one of the model organisms for characterizing microbe-electrode interactions as well as environmental processes such as bioremediation. Here, we significantly expand the knowledge of metabolism and energetics of this model organism by employing constraint-based metabolic modeling. Through this analysis, we build the metabolic pathways necessary for carbon fixation, a desirable property for industrial chemical production. We

  6. Improved Scheme for Modeling Mass Transfer between Fracture and Matrix Continua with Particle Tracking Method

    SciTech Connect (OSTI)

    L. Pan; Y. Seol; G. Bodvarsson

    2004-04-29

    The dual-continuum random-walk particle tracking approach is an attractive simulation method for simulating transport in a fractured porous medium. In order to be truly successful for such a model, however, the key issue is to properly simulate the mass transfer between the fracture and matrix continua. In a recent paper, Pan and Bodvarsson (2002) proposed an improved scheme for simulating fracture-matrix mass transfer, by introducing the concept of activity range into the calculation of fracture-matrix particle-transfer probability. By comparing with analytical solutions, they showed that their scheme successfully captured the transient diffusion depth into the matrix without any additional subgrid (matrix) cells. This technical note presents an expansion of their scheme to cases in which significant water flow through the fracture-matrix interface exists. The dual-continuum particle tracker with this new scheme was found to be as accurate as a numerical model using a more detailed grid. The improved scheme can be readily incorporated into the existing particle-tracking code, while still maintaining the advantage of needing no additional matrix cells to capture transient features of particle penetration into the matrix.

  7. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    2016-01-01

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  8. CKow -- A More Transparent and Reliable Model for Chemical Transfer to Meat and Milk

    SciTech Connect (OSTI)

    Rosenbaum, Ralph K.; McKone, Thomas E.; Jolliet, Olivier

    2009-03-01

    The objective of this study is to increase the understanding and transparency of chemical biotransfer modeling into meat and milk and explicitly confront the uncertainties in exposure assessments of chemicals that require such estimates. In cumulative exposure assessments that include food pathways, much of the overall uncertainty is attributable to the estimation of transfer into biota and through food webs. Currently, the most commonly used meat and milk-biotransfer models date back two decades and, in spite of their widespread use in multimedia exposure models few attempts have been made to advance or improve the outdated and highly uncertain Kow regressions used in these models. Furthermore, in the range of Kow where meat and milk become the dominant human exposure pathways, these models often provide unrealistic rates and do not reflect properly the transfer dynamics. To address these issues, we developed a dynamic three-compartment cow model (called CKow), distinguishing lactating and non-lactating cows. For chemicals without available overall removal rates in the cow, a correlation is derived from measured values reported in the literature to predict this parameter from Kow. Results on carry over rates (COR) and biotransfer factors (BTF) demonstrate that a steady-state ratio between animal intake and meat concentrations is almost never reached. For meat, empirical data collected on short term experiments need to be adjusted to provide estimates of average longer term behaviors. The performance of the new model in matching measurements is improved relative to existing models--thus reducing uncertainty. The CKow model is straight forward to apply at steady state for milk and dynamically for realistic exposure durations for meat COR.

  9. NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR

    SciTech Connect (OSTI)

    Chen, Y. Y.; Luo, E. C.; Dai, W.

    2008-03-16

    Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermal regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.

  10. Simple protocols for oblivious transfer and secure identification in the noisy-quantum-storage model

    SciTech Connect (OSTI)

    Schaffner, Christian

    2010-09-15

    We present simple protocols for oblivious transfer and password-based identification which are secure against general attacks in the noisy-quantum-storage model as defined in R. Koenig, S. Wehner, and J. Wullschleger [e-print arXiv:0906.1030]. We argue that a technical tool from Koenig et al. suffices to prove security of the known protocols. Whereas the more involved protocol for oblivious transfer from Koenig et al. requires less noise in storage to achieve security, our ''canonical'' protocols have the advantage of being simpler to implement and the security error is easier control. Therefore, our protocols yield higher OT rates for many realistic noise parameters. Furthermore, a proof of security of a direct protocol for password-based identification against general noisy-quantum-storage attacks is given.

  11. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy

    SciTech Connect (OSTI)

    Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan

    2013-02-01

    Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented normal tissue

  12. High-energy radiation damage in zirconia: Modeling results

    SciTech Connect (OSTI)

    Zarkadoula, E.; Devanathan, R.; Weber, W. J.; Seaton, M. A.; Todorov, I. T.; Nordlund, K.; Dove, M. T.; Trachenko, K.

    2014-02-28

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.10.5?MeV energies with account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution, and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  13. High-energy radiation damage in zirconia: modeling results

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Devanathan, Ram; Weber, William J.; Seaton, Michael; Todorov, Ilian; Nordlund, Kai; Dove, Martin T.; Trachenko, Kostya

    2014-02-28

    Zirconia has been viewed as a material of exceptional resistance to amorphization by radiation damage, and was consequently proposed as a candidate to immobilize nuclear waste and serve as a nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with the account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely disjoint from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  14. High-energy radiation damage in zirconia: modeling results

    SciTech Connect (OSTI)

    Zarkadoula, Evangelia; Devanathan, Ram; Weber, William J; Seaton, M; Todorov, I T; Nordlund, Kai; Dove, Martin T; Trachenko, Kostya

    2014-01-01

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with account of electronic energy losses. We nd that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  15. Radiative Heating Profiles in the Convective Tropics: A Comparison of Observations and Models

    SciTech Connect (OSTI)

    McFarlane, Sally A.; Mather, Jim H.; Ackerman, Thomas P.

    2005-01-10

    Radiative heating is one of the principal drivers of tropical circulation. While we have good knowledge of radiative fluxes at the top-of-atmosphere and at specific surface sites, observations of atmospheric profiles of radiative heating, particular in cloudy conditions, have been largely unavailable. The Atmospheric Radiation Measurement (ARM) Program has begun a program to compute radiative heating profiles routinely at its observational sites at Nauru and Manus Island, Papua New Guinea, using observed and retrieved inputs of water vapor and condensed water phase, particle size, and mass. The accuracy of these profiles can be assessed by comparing the calculated TOA and surface fluxes with observations. We have computed radiative heating profiles every 20 minutes for several months at each of these two sites in the 1999-2000 time period, which represent a unique dataset for model comparison. Here, we compare this dataset to model output from the European Center for Medium-Range Weather Forecasting (ECMWF) analysis, the NCAR Community Atmosphere Model (CAM 3.0) and the Multi-Scale Modeling Framework (MMF). These three models, all run using observed SST for this comparison, provide an interesting range of resolution from the 4 km cloud resolving model in the MMF to the approximately 280 km grid-scale of the CAM and a contrast between forecasting and climate models. In general, the model results fail to capture the structure of the observed heating in the upper troposphere because of their failure to simulate cirrus and stratiform cloud adequately.

  16. A simplified model for heat transfer in heat exchangers and stack plates for thermoacoustic devices

    SciTech Connect (OSTI)

    Chen, Y.; Herman, C.

    1999-07-01

    A simplified model of heat transfer in heat exchangers and stack plates of thermoacoustic devices was developed. The model took advantage of previous results regarding the thermal behavior of the thermoacoustic core for investigations of the performance of heat exchangers attached to the core. Geometrical and operational parameters as well as thermophysical properties of the heat exchangers, the plate, and the working medium were organized into dimensionless groups that allowed to account for their impact on the performance of the heat exchangers. Numerical simulations with the model were carried out. Nonlinear temperature distributions and heat fluxes near the edge of the stack plate were observed. Effects of different parameters on the thermal performance of the heat exchangers were investigated.

  17. Mathematical modeling of mass transfer during centrifugal filtration of polydisperse suspensions

    SciTech Connect (OSTI)

    V.F. Pozhidaev; Y.B. Rubinshtein; G.Y. Golberg; S.A. Osadchii

    2009-07-15

    A mass-transfer equation, the solution of which for given boundary conditions makes it possible to derive in analytical form a relationship between the extraction of the solid phase of a suspension into the centrifuge effluent and the fineness of the particles, is suggested on the basis of a model; this is of particular importance in connection with the development of a new trend in the utilization of filtering centrifuges - concentration of coal slurries by extraction into the centrifuge effluent of the finest particles, the ash content of which is substantially higher than that of particles of the coarser classes. Results are presented for production studies under conditions at an active establishment (the Neryungrinskaya Enrichment Factory); these results confirmed the adequacy of the mathematical model proposed: convergence of computed and experimental data was within the limits of the experimental error (no more than 3%). The model in question can be used to predict results of suspension separation by centrifugal filtration.

  18. Picosecond electron transfer in diporphyrin models of Photosystem II of green plants

    SciTech Connect (OSTI)

    Netzel, T L; Fujita, I; Wang, C B; Fajer, J

    1980-01-01

    Green plants and photosynthetic bacteria efficiently transform the energy of an absorbed photon into redox products. Current in vivo and in vitro studies on Photosystem II (PS II) suggest the electron donor is a chlorophyll monomer, ligated to produce the high oxidation potential of P680, and the electron acceptor is pheophytin, a metal-free chlorophyll. This study probes the behavior of this PS II model in solvents of high dielectric constant and tests the sensitivity of its charge transfer reactions to increases in linking chain length as well as to changes in the relative orientation of the porphyrin subunits. (ACR)

  19. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect (OSTI)

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of

  20. Modeling of dissociation and energy transfer in shock-heated nitrogen flows

    SciTech Connect (OSTI)

    Munafò, A.; Liu, Y.; Panesi, M.

    2015-12-15

    This work addresses the modeling of dissociation and energy transfer processes in shock heated nitrogen flows by means of the maximum entropy linear model and a newly proposed hybrid bin vibrational collisional model. Both models aim at overcoming two of the main limitations of the state of the art non-equilibrium models: (i) the assumption of equilibrium between rotational and translational energy modes of the molecules and (ii) the reliance on the quasi-steady-state distribution for the description of the population of the internal levels. The formulation of the coarse-grained models is based on grouping the energy levels into bins, where the population is assumed to follow a Maxwell-Boltzmann distribution at its own temperature. Different grouping strategies are investigated. Following the maximum entropy principle, the governing equations are obtained by taking the zeroth and first-order moments of the rovibrational master equations. The accuracy of the proposed models is tested against the rovibrational master equation solution for both flow quantities and population distributions. Calculations performed for free-stream velocities ranging from 5 km/s to 10 km/s demonstrate that dissociation can be accurately predicted by using only 2-3 bins. It is also shown that a multi-temperature approach leads to an under-prediction of dissociation, due to the inability of the former to account for the faster excitation of high-lying vibrational states.

  1. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    SciTech Connect (OSTI)

    Li, Ben; He, Feng; Ouyang, Jiting; Duan, Xiaoxi

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  2. An Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29

  3. Modeling of the radiation belt megnetosphere in decisional timeframes

    DOE Patents [OSTI]

    Koller, Josef; Reeves, Geoffrey D; Friedel, Reiner H.W.

    2013-04-23

    Systems and methods for calculating L* in the magnetosphere with essentially the same accuracy as with a physics based model at many times the speed by developing a surrogate trained to be a surrogate for the physics-based model. The trained model can then beneficially process input data falling within the training range of the surrogate model. The surrogate model can be a feedforward neural network and the physics-based model can be the TSK03 model. Operatively, the surrogate model can use parameters on which the physics-based model was based, and/or spatial data for the location where L* is to be calculated. Surrogate models should be provided for each of a plurality of pitch angles. Accordingly, a surrogate model having a closed drift shell can be used from the plurality of models. The feedforward neural network can have a plurality of input-layer units, there being at least one input-layer unit for each physics-based model parameter, a plurality of hidden layer units and at least one output unit for the value of L*.

  4. RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System

    SciTech Connect (OSTI)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-06-01

    ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature of the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.

  5. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore » heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  6. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime...

    Office of Scientific and Technical Information (OSTI)

    Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in the multi-model median direct BC forcing from fossil fuel and biofuel ...

  7. Measurement and modeling of external radiation during 1985 from LAMPF (Los Alamos Meson Physics Facility) emissions

    SciTech Connect (OSTI)

    Bowen, B.M.; Olsen, W.A.; Chen, Ili; Van Etten, D.M.

    1987-11-01

    An array of three portable, pressurized ionization chambers (PICs) continued to measure external radiation levels during 1985 caused by radionuclides emitted from the Los Alamos Meson Physics Facility (LAMPF). A Gaussian-type atmospheric dispersion model, using onsite meteorological and stack release data, was tested during this study. A more complex finite model, which takes into account the contribution of radiation at a receptor from different locations of the passing plume, was also tested. Monitoring results indicate that, as in 1984, a persistent wind up the Rio Grande Valley during the evening and early morning hours is largely responsible for causing the highest external radiation levels to occur to the northeast and north-northeast of LAMPF. However, because of increased turbulent mixing during the day, external radiation levels are generally much less during the day than at night. External radiation levels during 1985 show approximately a 75% reduction over 1984 levels. This resulted from a similar percentage reduction in LAMPF emissions caused by newly implemented emission controls. Comparison of predicted and measured daily external radiation levels indicates a high degree of correlation. The model also gives accurate estimates of measured concentrations over longer time periods. Comparison of predicted and measured hourly values indicates that the model generally tends to overpredict during the day and underpredict at night. 9 refs., 14 figs., 13 tabs.

  8. Induction and Persistence of Large ?H2AX Foci by High Linear Energy Transfer Radiation in DNA-Dependent protein kinaseDeficient Cells

    SciTech Connect (OSTI)

    Bracalente, Candelaria; Ibaez, Irene L.; Molinari, Beatriz; Palmieri, Mnica; Kreiner, Andrs; Valda, Alejandro; and others

    2013-11-15

    Purpose: To evaluate the cell response to DNA double-strand breaks induced by low and high linear energy transfer (LET) radiations when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an essential protein of the nonhomologous end-joining repair pathway, lacks kinase activity. Methods and Materials: CHO10B2, a Chinese hamster ovary cell line, and its derived radiosensitive mutant cell line, irs-20, lacking DNA-PKcs activity, were evaluated after 0 to 3 Gy of ?-rays, plateau and Bragg peak protons, and lithium beams by clonogenic assay, and as a measurement of double-strand breaks, phosphorylated H2AX (?H2AX) foci number and size were quantified by immunocytofluorescence. Results: Irs-20 exhibited greater radiosensitivity and a higher amount of ?H2AX foci than CHO10B2 at 6 hours after irradiation for all types of radiations. Remarkably, CHO10B2 and irs-20 maintained their difference in radiosensitivity after high-LET radiation. Six hours after low-LET radiations, irs-20 did not reach basal levels of ?H2AX at high doses, whereas CHO10B2 recovered basal levels for all doses. After high-LET radiation, only CHO10B2 exhibited a reduction in ?H2AX foci, but it never reached basal levels. Persistent foci in irs-20 confirmed a repair deficiency. Interestingly, after 30 minutes of high-LET radiation both cell lines exhibited large foci (size >0.9 ?m{sup 2}) related to the damage nature, whereas at 6 hours irs-20 showed a higher amount of large foci than CHO10B2, with a 7-fold increase at 3 Gy, that could also be associated to radiosensitivity. Conclusions: We demonstrated, for the first time, an association between deficient DNA-PKcs activity and not only high levels of H2AX phosphorylation but also persistence and size increase of ?H2AX foci after high-LET irradiation.

  9. Interactions between a tropical mixed boundary layer and cumulus convection in a radiative-convective model

    SciTech Connect (OSTI)

    Dean, C.L.

    1993-05-01

    This report details a radiative-convective model, combining previously developed cumulus, stable cloud and radiation parameterizations with a boundary layer scheme, which was developed in the current study. The cloud model was modified to incorporate the effects of both small and large clouds. The boundary layer model was adapted from a mixed layer model was only slightly modified to couple it with the more sophisticated cloud model. The model was tested for a variety of imposed divergence profiles, which simulate the regions of the tropical ocean from approximately the intertropical Convergence Zone (ITCZ) to the subtropical high region. The sounding used to initialize the model for most of the runs is from the trade wind region of ATEX. For each experiment, the model was run with a timestep of 300 seconds for a period of 7 days.

  10. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    SciTech Connect (OSTI)

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  11. The Radiative Properties of Small Clouds: Multi-Scale Observations and Modeling

    SciTech Connect (OSTI)

    Feingold, Graham; McComiskey, Allison

    2013-09-25

    Warm, liquid clouds and their representation in climate models continue to represent one of the most significant unknowns in climate sensitivity and climate change. Our project combines ARM observations, LES modeling, and satellite imagery to characterize shallow clouds and the role of aerosol in modifying their radiative effects.

  12. ARM - Publications: Science Team Meeting Documents: ARM Radiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD. Atmospheric Radiative Transfer Modeling: a Summary of the AER Codes. J Quant Spectrosc...

  13. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect (OSTI)

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  14. Use of ARM observations and numerical models to determine radiative...

    Office of Scientific and Technical Information (OSTI)

    We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the ...

  15. Low Dose Radiation Cancer Risks: Epidemiological and Toxicological Models

    SciTech Connect (OSTI)

    David G. Hoel, PhD

    2012-04-19

    The basic purpose of this one year research grant was to extend the two stage clonal expansion model (TSCE) of carcinogenesis to exposures other than the usual single acute exposure. The two-stage clonal expansion model of carcinogenesis incorporates the biological process of carcinogenesis, which involves two mutations and the clonal proliferation of the intermediate cells, in a stochastic, mathematical way. The current TSCE model serves a general purpose of acute exposure models but requires numerical computation of both the survival and hazard functions. The primary objective of this research project was to develop the analytical expressions for the survival function and the hazard function of the occurrence of the first cancer cell for acute, continuous and multiple exposure cases within the framework of the piece-wise constant parameter two-stage clonal expansion model of carcinogenesis. For acute exposure and multiple exposures of acute series, it is either only allowed to have the first mutation rate vary with the dose, or to have all the parameters be dose dependent; for multiple exposures of continuous exposures, all the parameters are allowed to vary with the dose. With these analytical functions, it becomes easy to evaluate the risks of cancer and allows one to deal with the various exposure patterns in cancer risk assessment. A second objective was to apply the TSCE model with varing continuous exposures from the cancer studies of inhaled plutonium in beagle dogs. Using step functions to estimate the retention functions of the pulmonary exposure of plutonium the multiple exposure versions of the TSCE model was to be used to estimate the beagle dog lung cancer risks. The mathematical equations of the multiple exposure versions of the TSCE model were developed. A draft manuscript which is attached provides the results of this mathematical work. The application work using the beagle dog data from plutonium exposure has not been completed due to the fact

  16. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    SciTech Connect (OSTI)

    Feister, Uwe; Meyer, Gabriele; Kirst, Ulrich

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  17. Resonance energy transfer: Dye to metal nanoparticles

    SciTech Connect (OSTI)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R.

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  18. Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System

    SciTech Connect (OSTI)

    Carbajo, Juan J; Yoder Jr, Graydon L; Dell'Orco, Giovanni; Curd, Warren; Kim, Seokho H

    2010-01-01

    A RELAP5-3D model of the ITER (Latin for the way ) vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.

  19. Predictive Modeling of Terrestrial Radiation Exposure from Geologic Materials

    SciTech Connect (OSTI)

    Malchow, Russell L.; Haber, Daniel University of Nevada, Las Vegas; Burnley, Pamela; Marsac, Kara; Hausrath, Elisabeth; Adcock, Christopher

    2015-01-01

    Aerial gamma ray surveys are important for those working in nuclear security and industry for determining locations of both anthropogenic radiological sources and natural occurrences of radionuclides. During an aerial gamma ray survey, a low flying aircraft, such as a helicopter, flies in a linear pattern across the survey area while measuring the gamma emissions with a sodium iodide (NaI) detector. Currently, if a gamma ray survey is being flown in an area, the only way to correct for geologic sources of gamma rays is to have flown the area previously. This is prohibitively expensive and would require complete national coverage. This project’s goal is to model the geologic contribution to radiological backgrounds using published geochemical data, GIS software, remote sensing, calculations, and modeling software. K, U and Th are the three major gamma emitters in geologic material. U and Th are assumed to be in secular equilibrium with their daughter isotopes. If K, U, and Th abundance values are known for a given geologic unit the expected gamma ray exposure rate can be calculated using the Grasty equation or by modeling software. Monte Carlo N-Particle Transport software (MCNP), developed by Los Alamos National Laboratory, is modeling software designed to simulate particles and their interactions with matter. Using this software, models have been created that represent various lithologies. These simulations randomly generate gamma ray photons at energy levels expected from natural radiologic sources. The photons take a random path through the simulated geologic media and deposit their energy at the end of their track. A series of nested spheres have been created and filled with simulated atmosphere to record energy deposition. Energies deposited are binned in the same manner as the NaI detectors used during an aerial survey. These models are used in place of the simplistic Grasty equation as they take into account absorption properties of the lithology which the

  20. Linear Energy Transfer Painting With Proton Therapy: A Means of Reducing Radiation Doses With Equivalent Clinical Effectiveness

    SciTech Connect (OSTI)

    Fager, Marcus; Toma-Dasu, Iuliana; Kirk, Maura; Dolney, Derek; Diffenderfer, Eric S.; Vapiwala, Neha; Carabe, Alejandro

    2015-04-01

    Purpose: The purpose of this study was to propose a proton treatment planning method that trades physical dose (D) for dose-averaged linear energy transfer (LET{sub d}) while keeping the radiobiologically weighted dose (D{sub RBE}) to the target the same. Methods and Materials: The target is painted with LET{sub d} by using 2, 4, and 7 fields aimed at the proximal segment of the target (split target planning [STP]). As the LET{sub d} within the target increases with increasing number of fields, D decreases to maintain the D{sub RBE} the same as the conventional treatment planning method by using beams treating the full target (full target planning [FTP]). Results: The LET{sub d} increased 61% for 2-field STP (2STP) compared to FTP, 72% for 4STP, and 82% for 7STP inside the target. This increase in LET{sub d} led to a decrease of D with 5.3 ± 0.6 Gy for 2STP, 4.4 ± 0.7 Gy for 4STP, and 5.3 ± 1.1 Gy for 7STP, keeping the DRBE at 90% of the volume (DRBE, 90) constant to FTP. Conclusions: LET{sub d} painting offers a method to reduce prescribed dose at no cost to the biological effectiveness of the treatment.

  1. Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During...

    Office of Scientific and Technical Information (OSTI)

    transfer of high burnup fuel during a Reactivity Initiated Accident (RIA) which is ... LIQUIDS; NUCLEAR FUELS; OXIDATION; REACTIVITY; SUBCOOLING; SURFACES; THERMAL ...

  2. Cosmic strings in hidden sectors: 1. Radiation of standard model particles

    SciTech Connect (OSTI)

    Long, Andrew J.; Hyde, Jeffrey M.; Vachaspati, Tanmay E-mail: jmhyde@asu.edu

    2014-09-01

    In hidden sector models with an extra U(1) gauge group, new fields can interact with the Standard Model only through gauge kinetic mixing and the Higgs portal. After the U(1) is spontaneously broken, these interactions couple the resultant cosmic strings to Standard Model particles. We calculate the spectrum of radiation emitted by these ''dark strings'' in the form of Higgs bosons, Z bosons, and Standard Model fermions assuming that string tension is above the TeV scale. We also calculate the scattering cross sections of Standard Model fermions on dark strings due to the Aharonov-Bohm interaction. These radiation and scattering calculations will be applied in a subsequent paper to study the cosmological evolution and observational signatures of dark strings.

  3. Modeling tropical Pacific sea surface temperature with satellite-derived solar radiative forcing

    SciTech Connect (OSTI)

    Seager, R.; Blumenthal, M.B.

    1994-12-01

    Two independent datasets for the solar radiation at the surface derived from satellites are compared. The data derived from the Earth Radiation Budget Experiment (ERBE) is for the net solar radiation at the surface whereas the International Satellite Cloud Climatology Project (ISCCP) data is for the downward flux only and was corrected with a space- and time-varying albedo. The ISCCP net flux is at all times higher than the ERBE flux. The difference can be divided into an offset that decreases with latitude and another component that correlates with high tropical cloud cover. With this latter exception the two datasets provide spatial patterns of solar flux that are very similar. A tropical Pacific Ocean model is forced with these two datasets and observed climatological winds. The upward heat flux is parameterized taking into account separately the longwave radiative, latent, and sensible heat fluxes. Best fit values for the uncertain parameters are found using an optimization procedure that seeks to minimize the difference between model and observed SST by varying the parameters within a reasonable range of uncertainty. The SST field the model produces with the best fit parameters is the best the model can do. If the differences between the model and data are larger than can be accounted for by remaining uncertainties in the heat flux parameterization and forcing data then the ocean model must be held to be at fault. Using this method of analysis, a fundamental model fault is identified. Inadequate treatment of mixed layer/entrainment processes in upwelling regions of the eastern tropical Pacific leads to a large and seasonally varying error in the model SST. Elsewhere the model SST is insufficiently different from observed to be able to identify model errors.

  4. Measurement and modeling of external radiation during 1984 from LAMPF atmospheric emissions

    SciTech Connect (OSTI)

    Bowen, B.M.; Olsen, W.A.; Van Etten, D.; Chen, I.

    1986-07-01

    An array of three portable, pressurized ionization chambers (PICs) measured short-term external radiation levels produced by air activation products from the Los Alamos Meson Physics Facility (LAMPF). The monitoring was at the closet offsite location, 700-900 m north and northeast of the source, and across a large, deep canyon. A Gaussian-type atmospheric dispersion model, using onsite meteorological and stack release data, was tested during their study. Monitoring results indicate that a persistent, local up-valley wind during the evening and early morning hours is largely responsible for causing the highest radiation levels to the northeast and north-northeast of LAMPF. Comparison of predicted and measured daily external radiation levels indicates a high degree of correlation. The model also gives accurate estimates of measured concentrations over longer periods of time.

  5. Modelling of micromachining of human tooth enamel by erbium laser radiation

    SciTech Connect (OSTI)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    2014-08-31

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  6. Handbook of heat transfer fundamentals

    SciTech Connect (OSTI)

    Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

    1985-01-01

    This handbook is on the fundamentals of heat transfer. It provides coverage on conduction, convection, and radiation and on thermophysical properties of materials.

  7. A stochastic model for tumor geometry evolution during radiation therapy in cervical cancer

    SciTech Connect (OSTI)

    Liu, Yifang; Lee, Chi-Guhn; Chan, Timothy C. Y.; Cho, Young-Bin; Islam, Mohammad K.; Department of Radiation Oncology, University of Toronto, 148-150 College Street, Toronto, Ontario M5S 3S2; Techna Institute for the Advancement of Technology for Health, 124-100 College Street, Toronto, Ontario M5G 1P5

    2014-02-15

    Purpose: To develop mathematical models to predict the evolution of tumor geometry in cervical cancer undergoing radiation therapy. Methods: The authors develop two mathematical models to estimate tumor geometry change: a Markov model and an isomorphic shrinkage model. The Markov model describes tumor evolution by investigating the change in state (either tumor or nontumor) of voxels on the tumor surface. It assumes that the evolution follows a Markov process. Transition probabilities are obtained using maximum likelihood estimation and depend on the states of neighboring voxels. The isomorphic shrinkage model describes tumor shrinkage or growth in terms of layers of voxels on the tumor surface, instead of modeling individual voxels. The two proposed models were applied to data from 29 cervical cancer patients treated at Princess Margaret Cancer Centre and then compared to a constant volume approach. Model performance was measured using sensitivity and specificity. Results: The Markov model outperformed both the isomorphic shrinkage and constant volume models in terms of the trade-off between sensitivity (target coverage) and specificity (normal tissue sparing). Generally, the Markov model achieved a few percentage points in improvement in either sensitivity or specificity compared to the other models. The isomorphic shrinkage model was comparable to the Markov approach under certain parameter settings. Convex tumor shapes were easier to predict. Conclusions: By modeling tumor geometry change at the voxel level using a probabilistic model, improvements in target coverage and normal tissue sparing are possible. Our Markov model is flexible and has tunable parameters to adjust model performance to meet a range of criteria. Such a model may support the development of an adaptive paradigm for radiation therapy of cervical cancer.

  8. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    SciTech Connect (OSTI)

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-09-07

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust{sup 2} and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  9. Combined Treatment Effects of Radiation and Immunotherapy: Studies in an Autochthonous Prostate Cancer Model

    SciTech Connect (OSTI)

    Wada, Satoshi; Harris, Timothy J.; Tryggestad, Erik; Yoshimura, Kiyoshi; Zeng, Jing; Yen, Hung-Rong; Getnet, Derese; Grosso, Joseph F.; Bruno, Tullia C.; De Marzo, Angelo M.; and others

    2013-11-15

    Purpose: To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Methods and Materials: Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. Results: The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Conclusions: Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting.

  10. Transfer matrix computation of critical polynomials for two-dimensional Potts models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacobsen, Jesper Lykke; Scullard, Christian R.

    2013-02-04

    We showed, In our previous work, that critical manifolds of the q-state Potts model can be studied by means of a graph polynomial PB(q, v), henceforth referred to as the critical polynomial. This polynomial may be defined on any periodic two-dimensional lattice. It depends on a finite subgraph B, called the basis, and the manner in which B is tiled to construct the lattice. The real roots v = eK — 1 of PB(q, v) either give the exact critical points for the lattice, or provide approximations that, in principle, can be made arbitrarily accurate by increasing the size ofmore » B in an appropriate way. In earlier work, PB(q, v) was defined by a contraction-deletion identity, similar to that satisfied by the Tutte polynomial. Here, we give a probabilistic definition of PB(q, v), which facilitates its computation, using the transfer matrix, on much larger B than was previously possible.We present results for the critical polynomial on the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively 96, 162, and 243 edges, compared to the limit of 36 edges with contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. The critical temperatures vc obtained for ferromagnetic (v > 0) Potts models are at least as precise as the best available results from Monte Carlo simulations or series expansions. For instance, with q = 3 we obtain vc(4, 82) = 3.742 489 (4), vc(kagome) = 1.876 459 7 (2), and vc(3, 122) = 5.033 078 49 (4), the precision being comparable or superior to the best simulation results. More generally, we trace the critical manifolds in the real (q, v) plane and discuss the intricate structure of the phase diagram in the antiferromagnetic (v < 0) region.« less

  11. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    SciTech Connect (OSTI)

    Huang, Hai; Spencer, Benjamin W.; Cai, Guowei

    2015-09-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture

  12. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    SciTech Connect (OSTI)

    Cressault, Y.

    2015-05-15

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas.

  13. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; Zender, C. S.; Kok, J. F.; Liu, Xiaohong; Zhang, Y.; Albani, Samuel

    2015-01-01

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmorein place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm? for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm?) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm?, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.less

  14. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    SciTech Connect (OSTI)

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; Zender, C. S.; Kok, J. F.; Liu, Xiaohong; Zhang, Y.; Albani, Samuel

    2015-01-01

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral components in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm? for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm?) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm?, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.

  15. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.; Albani, S.

    2015-01-15

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm−2 for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 Wm−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  16. Heat transfer modelling of the saltstone pouring and curing process. Task Number: 93-016-0

    SciTech Connect (OSTI)

    Shadday, M.A. Jr.

    1993-11-01

    A byproduct of the in tank precipitation, ITP, process will be 25 million gallons of low-level salt solution. This salt solution will be mixed with cement and a flyash/slag mixture and solidified in surface vaults in the Z-area Saltstone Facility. The curing process of saltstone involves exothermic reactions, and there is a maximum temperature limit of 90{degree}C for the curing saltstone. If this temperature limit is exceeded, the physical properties of the saltstone can be degraded. A heat transfer model of the saltstone pouring and curing process has been developed that predicts transient temperature distributions in the curing saltstone. The purpose of this model is to predict peak temperatures as functions of the several independent variables in this process: pour temperature, the pour schedule, and seasonal variations in the ambient temperature. The peak temperature of the saltstone is very sensitive to the internal heat generation that accompanies the curing process. Most of the energy is released over a short period of several hours, and the balance is released slowly over a period of time that can be in excess of a month. This long term low level internal heat generation is difficult to measure in laboratory calorimetry tests, and it can significantly influence the peak temperature in the saltstone. Due to the low thermal conductivity of the saltstone, the central region of the poured saltstone will essentially heat up adiabatically. The time dependence of the internal heat generation rate was determined from an analysis of the 1991 pilot pour test. With a pour schedule of eight hours a day and five days a week in the summer, the model predicts that the saltstone will have a peak temperature of 98 C with a pour temperature of 45 C, and a peak temperature of 88 C with a pour temperature of 30 C. With a pour schedule of three days a week, the peak temperature will be 88{degree}C with a pour temperature of 45 C, and 80 C with a pour temperature of 30 C.

  17. A Radiative Transport Model for Heating Paints using High Density Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Duty, Chad E; Dinwiddie, Ralph Barton; Nichols, Mark; Blue, Craig A; Ott, Ronald D

    2009-01-01

    The energy distribution and ensuing temperature evolution within paint-like systems under the influence of infrared radiation was studied. Thermal radiation effects as well as those due to heat conduction were considered. A complete set of material properties was derived and discussed. Infrared measurements were conducted to obtain experimental data for the temperature in the paint film. The heat flux of the incident radiation from the plasma arc lamp was measured using a heat flux sensor with a very short response time. The comparison between the computed and experimental results for temperature show that the models that are based on spectral four-flux RTE and accurate optical properties yield accurate results for the black paint systems.

  18. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models

    SciTech Connect (OSTI)

    Thorek, Daniel L.J.; Kramer, Robin M.; Chen, Qing; Jeong, Jeho; Lupu, Mihaela E.; Lee, Alycia M.; Moynahan, Mary E.; Lowery, Maeve; Ulmert, David; Zanzonico, Pat; Deasy, Joseph O.; Humm, John L.; Russell, James

    2015-10-01

    Purpose: To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials: After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Mice could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. Results: Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions: This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response.

  19. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    SciTech Connect (OSTI)

    FJELDLY,T.A.; DENG,Y.; SHUR,M.S.; HJALMARSON,HAROLD P.; MUYSHONDT,ARNOLDO

    2000-04-25

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p

  20. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    SciTech Connect (OSTI)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  1. Effects of turbulence model on convective heat transfer of coolant flow in a prismatic very high temperature reactor core

    SciTech Connect (OSTI)

    Lee, S. N.; Tak, N. I.; Kim, M. H.; Noh, J. M.

    2012-07-01

    The existing study of Spall et al. shows that only {nu}{sup 2}-f turbulence model well matches with the experimental data of Shehata and McEligot which were obtained under strongly heated gas flows. Significant over-predictions in those literatures were observed in the convective heat transfer with the other famous turbulence models such as the k-{epsilon} and k-{omega} models. In spite of such good evidence about the performance of the{nu}{sup 2}-f model, the application of the {nu}{sup 2}-f model to the thermo-fluid analysis of a prismatic core is very rare. In this paper, therefore, the convective heat transfer of the coolant flow in a prismatic core has been investigated using the {nu}{sup 2}-f model. Computational fluid dynamics (CFD) calculations have been carried out for the typical unit cell geometry of a prismatic fuel column with typical operating conditions of prismatic designs. The tested Reynolds numbers of the coolant flow are 10,000, 20,000, 30,000 and 50,000. The predicted Nusselt numbers with the {nu}{sup 2}-f model are compared with the results by the other turbulence models (k-{epsilon} and SST) as well as the empirical correlations. (authors)

  2. SCDAP/RELAP5 Modeling of Fluid Heat Transfer and Flow Losses Through Porous Debris in a Light Water Reactor

    SciTech Connect (OSTI)

    Harvego, Edwin Allan; Siefken, Larry James

    2000-04-01

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident.

  3. SCDAP/RELAP5 modeling of fluid heat transfer and flow losses through porous debris in a light water reactor

    SciTech Connect (OSTI)

    E. A. Harvego; L. J. Siefken

    2000-04-02

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident.

  4. ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative

    Office of Scientific and Technical Information (OSTI)

    of Oklahoma Univ. of Oklahoma 79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer, Dark Energy, Type Ia supernovae, radiative transfer, The...

  5. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Colgan, James; Fontes, Christopher; Zhang, Honglin; Abdallah, Jr., Joseph

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less

  6. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.

    2014-07-02

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05 W m−2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 W m−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 W m−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  7. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    Energy Science and Technology Software Center (OSTI)

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specificmore » characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.« less

  8. Wind-dependent desert aerosol model: radiative properties. Technical report, November 1986-April 1988

    SciTech Connect (OSTI)

    Longtin, D.R.; Shettle, E.P.; Hummel, J.R.; Pryce, J.D.

    1988-04-19

    This report presents a desert aerosol model that predicts aerosol radiative properties during background and severe dust-storm conditions. The model treats the desert aerosol as an external mixture of natural carbon, water soluble, and sand particles. The sand consists of two kinds of particles, pure quartz and quartz contaminated with a small amount of hematite. Mie calculations are performed using different size distributions and indices of refraction for each type of particle, and then a volume-weighting scheme is used to obtain the radiative properties of the aerosol as a whole. Attenuation coefficients, single scattering albedo, and asymmetry parameter are given for 68 wavelengths between 0.2 and 300 micro. The results indicate that extinction is wavelength-dependent for background conditions, but increases and becomes nearly constant for dust-storm conditions.

  9. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    SciTech Connect (OSTI)

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  10. Evaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Sa...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Satellite and Cloud Radar Y. Luo and S. K. Krueger University of Utah Salt Lake City, Utah Introduction Because of both the various effects clouds exert on the earth-atmospheric system and the cloud feedback, correct representations of clouds in numerical models are critical for accurate climate modeling and weather forecast. Unfortunately, determination of clouds and their radiative

  11. 11th International Conference of Radiation Research

    SciTech Connect (OSTI)

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

  12. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    SciTech Connect (OSTI)

    Espinoza, I.; Peschke, P.; Karger, C. P.

    2015-01-15

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the

  13. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    SciTech Connect (OSTI)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li Minghuan [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China)] [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Xu Ting; Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yuan Xianglin [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)] [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yu Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China)] [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy [University of Colorado School of Medicine, Aurora, Colorado (United States)] [University of Colorado School of Medicine, Aurora, Colorado (United States); Martel, Mary [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  14. Adaptive Breast Radiation Therapy Using Modeling of Tissue Mechanics: A Breast Tissue Segmentation Study

    SciTech Connect (OSTI)

    Juneja, Prabhjot; Harris, Emma J.; Kirby, Anna M.; Evans, Philip M.

    2012-11-01

    Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue segmentation

  15. Final Report - Epigenetics of low dose radiation effects in an animal model

    SciTech Connect (OSTI)

    Kovalchuk, Olga

    2014-10-22

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis of induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their targets in low

  16. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    SciTech Connect (OSTI)

    Wang, Jingfu Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  17. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  18. Sensitivity of Clear-Sky Diffuse Radiation to In Situ Aerosol Scattering Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitivity of Clear-Sky Diffuse Radiation to In Situ Aerosol Scattering Parameters P. J. Ricchiazzi and C. Gautier University of California Santa Barbara, California Introduction Recent studies of clear-sky radiation indicate that current radiative transfer (RT) models underestimate atmospheric absorption when standard aerosol properties are used. This so-called clear-sky anomaly is manifested in predicted levels of diffuse radiation significantly below those observed at Southern Great Plains

  19. Gray and multigroup radiation transport models for two-dimensional binary stochastic media using effective opacities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, Gordon L.

    2015-09-24

    One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less

  20. Gray and multigroup radiation transport models for two-dimensional binary stochastic media using effective opacities

    SciTech Connect (OSTI)

    Olson, Gordon L.

    2015-09-24

    One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. In every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.

  1. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    SciTech Connect (OSTI)

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Lee, Seung-Sook; Park, Sunhoo

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudins were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.

  2. Selective radiative heating of nanostructures using hyperbolic...

    Office of Scientific and Technical Information (OSTI)

    to break the diffraction limit for imaging and enhance near-field radiative heat transfer. ... Our result can find applications in radiative thermal management. Authors: Ding, Ding 1 ...

  3. Ownership transfer for non-federate object and time management in developing an hla compliant logistics model.

    SciTech Connect (OSTI)

    Li, Z.

    1998-01-12

    A seaport simulation model, PORTSIM, has been developed for the Department of Defense (DOD) at Argonne National Laboratory. PORTSIM simulates the detailed processes of cargo loading and unloading in a seaport and provides throughput capability, resource utilization, and other important information on the bottlenecks in a seaport operation, which are crucial data in determining troop and equipment deployment capability. There are two key problems to solve in developing the HLA-compliant PORTSIM model. The first is the cargo object ownership transfer problem. In PORTSIM, cargo items, e.g. vehicles, containers, and pallets, are objects having asset attributes. Cargo comes to a seaport for loading or unloading. The ownership of a cargo object transfers from its carrier to the port and then from the port to a new carrier. Each owner of the cargo object is responsible for publishing and updating the attributes of the cargo object when it has the ownership. This creates a unique situation in developing the PORTSIM federate object model, that is, the ownership of the object instead of the attributes needs to be changed in handling the cargo object in the PORTSIM federate. The ownership management service provided by the current RTI does not directly address this issue. The second is the time management issue. PORTSIM is an event-driven simulation that models seaport operations over time. To make PORTSIM HLA compliant, time management must be addressed to allow for synchronization with other simulation models. This paper attempts to address these two issues and methodologies developed for solving these two problems.

  4. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.

    SciTech Connect (OSTI)

    Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

    2004-06-01

    Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

  5. Computational model of collisional-radiative nonequilibrium plasma in an air-driven type laser propulsion

    SciTech Connect (OSTI)

    Ogino, Yousuke; Ohnishi, Naofumi

    2010-05-06

    A thrust power of a gas-driven laser-propulsion system is obtained through interaction with a propellant gas heated by a laser energy. Therefore, understanding the nonequilibrium nature of laser-produced plasma is essential for increasing available thrust force and for improving energy conversion efficiency from a laser to a propellant gas. In this work, a time-dependent collisional-radiative model for air plasma has been developed to study the effects of nonequilibrium atomic and molecular processes on population densities for an air-driven type laser propulsion. Many elementary processes are considered in the number density range of 10{sup 12}/cm{sup 3}<=N<=10{sup 19}/cm{sup 3} and the temperature range of 300 K<=T<=40,000 K. We then compute the unsteady nature of pulsively heated air plasma. When the ionization relaxation time is the same order as the time scale of a heating pulse, the effects of unsteady ionization are important for estimating air plasma states. From parametric computations, we determine the appropriate conditions for the collisional-radiative steady state, local thermodynamic equilibrium, and corona equilibrium models in that density and temperature range.

  6. Validated Models for Radiation Response and Signal Generation in Scintillators: Final Report

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Van Ginhoven, Renee M.; Wang, Zhiguo; Prange, Micah P.; Wu, Dangxin

    2014-12-01

    This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under the project entitled “Validated Models for Radiation Response and Signal Generation in Scintillators” (Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project was divided into four tasks: 1) Electronic response functions (ab initio data model) 2) Electron-hole yield, variance, and spatial distribution 3) Ab initio calculations of information carrier properties 4) Transport of electron-hole pairs and scintillation efficiency Detailed information on the results obtained in each of the four tasks is provided in this Final Report. Furthermore, published peer-reviewed articles based on the work carried under this project are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  7. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy

    SciTech Connect (OSTI)

    Shirzadi, Zahra; Sadeghi-Naini, Ali; Samani, Abbas

    2013-05-15

    Purpose: A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Estimating lung tissue incompressibility parameter variations resulting from air content variation throughout respiration is critical for computer assisted tumor motion tracking. Continuous tumor motion is a major challenge in lung cancer radiotherapy, especially with external beam radiotherapy. If not accounted for, this motion may lead to areas of radiation overdosage for normal tissue. Given the unavailability of imaging modality that can be used effectively for real-time lung tumor tracking, computer assisted approach based on tissue deformation estimation can be a good alternative. This approach involves lung biomechanical model where its fidelity depends on input tissue properties. This investigation shows that considering variable tissue incompressibility parameter is very important for predicting tumor motion accurately, hence improving the lung radiotherapy outcome. Methods: First, an in silico lung phantom study was conducted to demonstrate the importance of employing variable Poisson's ratio for tumor motion predication. After it was established that modeling this variability is critical for accurate tumor motion prediction, an optimization based technique was developed to estimate lung tissue Poisson's ratio as a function of respiration cycle time. In this technique, the Poisson's ratio and lung pressure value were varied systematically until optimal values were obtained, leading to maximum similarity between acquired and simulated 4D CT lung images. This technique was applied in an ex vivo porcine lung study where simulated images were constructed using the end exhale CT image and deformation fields obtained from the lung's FE modeling of each respiration time increment. To model the tissue, linear elastic and Marlow hyperelastic material models in conjunction with variable Poisson's ratio were used. Results: The phantom study showed that

  8. Data Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Data Transfer DQ2 is an ATLAS tool for defining and handling datasets and transferring the datasets on the grid. It was developed as part of the ATLAS Distributed...

  9. Transferring Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data fromto NERSC - scp...

  10. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol

    SciTech Connect (OSTI)

    Haywood, J.M.; Roberts, D.L.; Slingo, A.

    1997-07-01

    A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different aerosol profiles, relative humidity parameterizations, chemical compositions, and internal and external mixtures of the two aerosol types are investigated. The contribution to the radiative forcing from cloudy sky regions is found to be negligible for sulfate aerosol; this is in contrast to recent studies where the cloudy sky contribution was estimated using a method in which the spatial correlation between cloud amount and sulfate burden was ignored. However, the radiative forcing due to fossil-fuel soot aerosol is enhanced in cloudy regions if soot aerosol exists within or above the cloud. The global solar radiative forcing due to sulfate aerosol is estimated to be -0.38 W m{sup -2} and the global thermal radiative forcing is estimated to be +0.01 W m{sup -2}. The hemispheric mean radiative forcings vary by only about 10% for reasonable assumptions about the chemical form of the sulfate aerosol and the relative humidity dependence; the uncertainties in the aerosol loading are far more significant. If a soot/sulfate mass ratio of 0.075 is assumed, then the global solar radiative forcing weakens to -0.18 W m{sup -2} for an external mixture and weakens further for an internal mixture. Additionally, the spatial distribution of the radiative forcing shows strong negative/positive forcing contrasts that may influence the dynamical response of the atmosphere. Although these results are extremely sensitive to the adopted soot/sulfate ratio and the assumed vertical profile, they indicate that fossil-fuel soot aerosol may exert a nonnegligible radiative forcing and emphasize the need to consider each anthropogenic aerosol species. 58 refs., 8 figs., 1 tab.