Powered by Deep Web Technologies
Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

For the Meyer Fund for Sustainable Development and the University of Oregon Department of Physics and the Solar Radiation Monitoring Laboratory  

E-Print Network [OSTI]

H:PVKitComponents© TableH.1:ContentsofPVKitandpartsrequiredforcomponents Quantity Item Quantity Item 1 Solar panel 1 and the Solar Radiation Monitoring Laboratory

Oregon, University of

2

For the Meyer Fund for Sustainable Development and the University of Oregon Department of Physics and the Solar Radiation Monitoring Laboratory  

E-Print Network [OSTI]

://www.californiasolarcenter.org/history_pv.html http://www.eere.energy.gov/basics/renewable_energy/solar.html http://www.nrel.gov/ncpv/ http://www.fsec.ucf.edu/en/education/index.htm http://www.nrel.gov/data/pix/searchpix.html http://www.ases.org/ http://www.seia.org/cs/about_solar_energy and the Solar Radiation Monitoring Laboratory

Oregon, University of

3

By Asher Tubman for the Meyer Fund for Sustainable Development and the University of Oregon Department of Physics and Solar Radiation Monitoring Laboratory  

E-Print Network [OSTI]

Department of Physics and Solar Radiation Monitoring Laboratory Page F.1 6/20/2011 Appendix F: Review of PV Panels Labs These kits were used for the first year of a two IB physics class, the distance of a light from the panel and the brightness of the small light bulbs, there was a variety

Oregon, University of

4

By Stanley Micklavzina, Asher Tubman, and Frank Vignola for the Meyer Fund for Sustainable Development and the University of Oregon Department of Physics and Solar Radiation Monitoring Laboratory  

E-Print Network [OSTI]

solar cell and light bulb filament. #12;Name: ______________________________________ Kit Development and the University of Oregon Department of Physics and Solar Radiation Monitoring Laboratory as the distance between the solar cell and the lamp changes. The power generated by the solar cell is calculated

Oregon, University of

5

Quality management system and accreditation of the in vivo monitoring laboratory at Karslruhe Institue of Technology  

Science Journals Connector (OSTI)

......Laboratory, Institute for Radiation Research, Karlsruhe Institute...Development Quality Control Radiation Monitoring methods standards Radiation Protection methods standards...Radiometry methods standards Safety Software Total Quality Management......

B. Breustedt; U. Mohr; N. Biegard; G. Cordes

2011-03-01T23:59:59.000Z

6

Idaho National Laboratory Site Environmental Monitoring Plan  

SciTech Connect (OSTI)

This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

Jenifer Nordstrom

2014-02-01T23:59:59.000Z

7

Audible radiation monitor  

SciTech Connect (OSTI)

This invention consists of a method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

Odell, D.M.C.

1992-12-31T23:59:59.000Z

8

A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting  

Broader source: Energy.gov [DOE]

This pamphlet is intended to provide a short summary of the Department of Energy Laboratory Accreditation Program and DOE Radiation Exposure Monitoring

9

Straddle Carrier Radiation Portal Monitoring  

SciTech Connect (OSTI)

U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nations ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

Andersen, Eric S.; Samuel, Todd J.; Mullen, O Dennis

2005-08-01T23:59:59.000Z

10

Solar Radiation Research Laboratory (SRRL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy Laboratory Renewable Energy Laboratory Solar Radiation Research Laboratory (SRRL) Instrument Calibrations Weather Observations Measurement Research Support Measurements & Instrumentation Team Center for Electric & Hydrogen Technologies & Systems http://www.nrel.gov/srrl NREL * * * * 1617 Cole Boulevard * * * * Golden, Colorado 80401-3393 * * * * (303) 275-3000 Operated for the U.S. Department of Energy by Midwest Research Institute * * * * Battelle * * * * Bechtel Mission Provide a unique outdoor research facility for supporting renewable energy conversion technologies and climate change studies for the U.S. Department of Energy (DoE). Objectives * Provide Improved Methods for Radiometer Calibrations * Develop a Solar Resource Climate Database for Golden, Colorado

11

Special nuclear material radiation monitors for the 1980's  

SciTech Connect (OSTI)

During the two decades that automatic gamma-radiation monitors have been applied to detecting special nuclear material (SNM), little attention has been devoted to how well the monitors perform in plant environments. Visits to 11 DOE facilities revealed poor information flow between developers, manufacturers, and maintainers of SNM radiation monitors. To help users achieve best performance from their monitors or select new ones, Los Alamos National Laboratory developed a hand-held monitor user's guide, calibration manuals for some commercial SNM pedestrian monitors, and an application guide for SNM pedestrian monitors. In addition, Los Alamos evaluated new commercial SNM monitors, considered whether to apply neutron detection to SNM monitoring, and investigated the problem of operating gamma-ray SNM monitors in variable plutonium gamma-radiation fields. As a result, the performance of existing SNM monitors will improve and alternative monitoring methods will become commerciallly available during the 1980s. 9 refs., 6 figs., 1 tab.

Fehlau, P.E.

1985-01-01T23:59:59.000Z

12

Radiation Exposure Monitoring Systems Data Reporting Guide  

Broader source: Energy.gov [DOE]

Instructions for preparing occupational exposure data for submittal to the Radiation Exposure Monitoring System (REMS) repository.

13

Idaho National Laboratory Site Environmental Monitoring Plan  

SciTech Connect (OSTI)

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2012-08-01T23:59:59.000Z

14

Idaho National Laboratory Environmental Monitoring Plan  

SciTech Connect (OSTI)

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2008-04-01T23:59:59.000Z

15

ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR  

SciTech Connect (OSTI)

Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data transmission in place of NSA Type 1 devices.

Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

2011-08-03T23:59:59.000Z

16

MULTI-POINT RADIATION MONITOR  

SciTech Connect (OSTI)

A unique radiation monitor has been developed for performing wide-area field surveys for radiation sources. This device integrates the real-time output of multiple radiation detectors into a hand-held personal computer (e.g., a PDA) containing an intuitive graphical user interface. An independent hardware module supplies high voltage to the detectors and contains a rapid sampling system for transferring the detector count rates through an interface to the PDA. The imbedded firmware can be changed for various applications using a programmable memory card. As presently configured, the instrument contains a series of Geiger-Mueller (GM) tubes in a flexible detector string. This linear array of multiple sensors can be used by US Coast Guard and Customs container inspection personnel to measure radiation intensity in stacks of transport containers where physical access is impeded.

Hofstetter, K; Donna Beals, D; Ken Odell, K; Robert Eakle, R; Russell Huffman, R; Larry Harpring, L

2006-05-12T23:59:59.000Z

17

Ris National Laboratory Radiation Research Department  

E-Print Network [OSTI]

Risø National Laboratory Postprint Radiation Research Department Year 2007 Paper: www Radiation Physics, Lund University Hospital, 22185 Lund, Sweden 12 Lab. d'Analyses de Surveillance et d Tokai works, Tokai-mura, Naka-gun, Ibaraki 319-1994, Japan 17 Risoe National Laboratory, 4000 Roskilde

18

ORISE: DOE's Radiation Exposure Monitoring System (REMS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring System (REMS) Monitoring System (REMS) ORISE maintains large database of radition exposure records for the U.S. Department of Energy ORISE staff monitoring radiation data for DOE Rule 10 CFR 835 establishes the U.S. Department of Energy's (DOE) occupational protection rule and requires assessment and recording of radiation doses to individuals who are exposed to sources of radiation or contamination. The Radiation Exposure Monitoring System (REMS) database is the radiation exposure data repository for all monitored DOE employees, contractors, subcontractors and members of the public. REMS maintains dose records for all monitored individuals dating back to 1969. Aggregated, site-specific data are available on the Radiation Exposure Monitoring System website for all years since 1986. Currently,

19

Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999  

SciTech Connect (OSTI)

The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations.

None

2000-12-01T23:59:59.000Z

20

Standardisation of radiation portal monitor controls and readouts  

Science Journals Connector (OSTI)

......Standardisation of radiation portal monitor controls...numbering configuration of radiation portal monitor sensing...addition, second-party software that changes the alarm...Neutrons Nuclear Weapons Radiation Monitoring methods Radiation...Risk Assessment methods Safety Management methods standards......

M. Tinker

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting  

Broader source: Energy.gov [DOE]

This pamphlet is intended to provide a short summary of two specific HSS programs that aid in the oversight of radiation protection activities at DOE, Department of Energy Laboratory Accreditation Program (DOELAP) and Radiation Exposure Monitoring Systems (REMS)

22

The radiation-tolerant x-ray monitor  

SciTech Connect (OSTI)

A vacuum photoelectric detector (monitor) (VPD) designed for plasma tomography, megnetohydrodynamics monitoring, and imaging with the help of thermal x-ray radiation on the ITER facility is described. Laboratory experiments demonstrate that VPD has high sensitivity to thermal x rays and low sensitivity to hard gamma rays and neutrons. The results of tests of a prototype of this monitor on a {sup 60}Co source of gamma rays, on nuclear reactor and its calibration using radiation from an x-ray tube, and tests of its serviceability on the T-10 facility are presented.

Gott, Yu. V.; Stepanenko, M. M. [Nuclear Fusion Institute, Russian Research Center 'Kurchatov Institute', Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

2008-10-15T23:59:59.000Z

23

Ris National Laboratory DTU Radiation Research Department  

E-Print Network [OSTI]

-life of 2.13?105 yeas. Although 99 Tc is a naturally occurring radionuclide, the main sources of 99 TcRisø National Laboratory DTU Postprint Radiation Research Department Year 2007 Paper: www

24

Low Dose Radiation Research Program: National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratories National Laboratories The Low Dose Radiation Program funding encompasses several Scientific Focus Areas (SFAs). The SFAs fund merit-reviewed research at DOE national laboratories. This management approach was created in 2008 by the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's (DOE's) Office of Science. PNNL's Low Dose Radiation Research Program Scientific Focus Area Linear and Nonlinear Tissue-Signaling Mechanisms in Response to Low Dose and Low Dose-Rate Radiation This program is funded as a U.S. Department of Energy Scientific Focus Area (SFA), and is an integrated cooperative program to understand low dose radiation effects in a complex model system. Coordinating Multidisciplinary Expertise The SFAs are designed to take advantage of the multidisciplinary,

25

Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling  

SciTech Connect (OSTI)

The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

NSTec Aerial Measurement Systems

2012-07-31T23:59:59.000Z

26

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purpose: To use beams of heavy ions provided by the Booster accelerator at Brookhaven to study the effects of simulated space radiation on biological and physical systems, with the goal of developing methods and materials to reduce the risk to human beings on prolonged space missions of the effects of ionizing radiation Sponsor: National Aeronautics and Space Administration (NASA) Project cost $34 million over 4 years Operating costs Nearly $8 million per year in 2007 Features * beams of heavy ions extracted from the Booster accelerator with masses and energies similar to the cosmic rays encountered in space: * 1-billion electron volt (GeV)/nucleon iron-56 * 0.3-GeV/nucleon gold-97 * 0.6-GeV/nucleon silicon-28 * 1-GeV/nucleon protons * 1-GeV/nucleon titanium

27

Influence of Extraterrestrial Radiation on Radiation Portal Monitors  

SciTech Connect (OSTI)

Cosmic radiation and solar flares can be a major source of background radiation at the Earths surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

Keller, Paul E.; Kouzes, Richard T.

2009-06-01T23:59:59.000Z

28

NREL: Solar Radiation Research - Solar Radiation Research Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Radiation Research Laboratory Photographs Solar Radiation Research Laboratory Photographs The Solar Radiation Research Laboratory (SRRL) houses more than 70 instruments to analyze and record solar radiation and surface meteorology data. Learn more about this equipment by exploring the photographs below. Click on a thumbnail to view the full image. Photo of researcher working on an instrument platform in front of the SRRL building. The SRRL is located on South Table Mountain in Golden, Colorado, at 39.74° N, 105.18° W, and 1,829 m AMSL. Photo of four researchers working on equipment atop the SRRL instrument deck. The SRRL's instrument deck is 96 ft long and 16 feet wide. Photo of two pyrheliometers mounted to an automatic sun-tracking base. These two SRRL pyrheliometers are mounted to automatically track the sun

29

NREL: Solar Radiation Research - Optical Metrology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Metrology Laboratory Optical Metrology Laboratory Photo of a laser and a spectral irradiance calibration system used to create lamp-detector alignment. Researchers use a spectral irradiance calibration alignment jig and a laser beam to align a calibration source and test unit. The NREL Optical Metrology Laboratory ensures that optical radiation resource measurement equipment is calibrated to national or international standards to ensure the quality and traceability of data. NREL considers optical radiation to range from 250 nm to 2,500 nm and to include the ultraviolet (250-400 nm), visible (400-750 nm), near infrared (750-1,100 nm), and shortwave infrared (1,100-2,500 nm) ranges. Activities The Optical Metrology Laboratory provides National Institute of Standards and Technology-traceable measurements for:

30

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dosimetry Calibration: Primary Ion Chamber Dosimetry Calibration: Primary Ion Chamber Dosimetry Calibration: Secondary Ion Chamber Dosimetry Calibration: Secondary Ion Chamber with Gain Dosimetry Calibration: Scintillator Based Dosimetry Dosimetry Calibration: Primary Ion Chamber The primary method of calibrating the dose delivered at NSRL is via a small ion chamber called a "Calibration Ion Chamber" (aka EGG counter) produced by Far West Technology. This is an air-filled bulb with electrodes for collecting ionization inside a tissue-equivalent plastic cap. The Calibration Ion Chamber is sent back to the manufacturer yearly to be calibrated using a standard gamma ray source (Cs-137). The calibration is based on a standard defied by the International Commission on Radiation Units and Measurements (ICRU) and reported in their ICRU Report 59, 15 December 1998.

31

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Time Users Guide First Time Users Guide The following is a collection of useful facts that First Time Users of NSRL should familiarize themselves with. If you have any questions, contact the NSRL Liaison Physicist (631-344-3072 or 631-344-5830). You MUST have a dry run of your experiment before conducting your first NSRL run. When planning an exposure the time you need for each sample exposure should include time to change samples. If RHIC is running, the sample changing time is approximately 7 minutes. If RHIC is not running, time to change samples is only about 4 minutes. The size of the radiation field that can uniformly expose a set of samples can be as large as 20 x 20 cm2 for most ions and energies. By special request, the NSRL beam can operate in Large Beam mode with a 60 x 60 cm2 usable beam size.

32

Radiation Exposure Monitoring Systems Data Submittal Notification  

Broader source: Energy.gov [DOE]

Monitoring records are required to be reported to the Department of Energy (DOE) Radiation Records Repository by March 31 under DOE Order 231.1B and in accordance with the REMS Reporting Guide.

33

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSRL NSRL Before studying beam fragmentation at NSRL, it is important to understand exactly what is the question that is being studied. This discussion is divided into Beam Fragmentation for Physicists and Beam Characterization for Biologists. Fragmentation for Physicists The LBL team [1] has conducted an exhaustive program to measure the fragmentation cross sections in heavy ion collisions. They use a pencil-thin beam of ion AB incident on a target ion AT at energy EBeam and look at fragments of the beam ions assuming the fragments are co-moving with the beam, i.e. move at the same velocity as the beam and at zero degrees scattering angle. The fragmentation cross sections have been measured very well down to fragment masses AF equal to half the incident ion mass, AB/2. NSRL has continued the work of the LBL team using scintillators to monitor the small angle scattering of beam and target projectiles. Details of these studies are at Fragmentation Physics (pdf).

34

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tech Notes Tech Notes Item Number Title Author(s) Date NSRL-TN-05-001 NSRL Beam Characterization Study I-Hung Chiang, Adam Rusek, Michael Sivertz 10 December 2005 NSRL-TN-05-002 Time of Flight of NSRL Beams I-Hung Chiang, Adam Rusek, Michael Sivertz 18 October 2005 NSRL-TN-06-001 ToF Results From Run 06C I-Hung Chiang, Adam Rusek, Michael Sivertz 15 September 2006 NSRL-TN-07-001 Radiation Levels in the NSRL Target Room Michael Sivertz 27 November 2007 NSRL-TN-09-001 Development of the Pixel Chamber I-Hung Chiang, Adam Rusek, Daniel Ottavio, Dysart Ravenhall and Steve Bellavia 14 July 2009 NSRL-TN-10-001 Iron Beam Characterization Studies at NSRL Michael Sivertz, I-Hung Chiang, Adam Rusek 22 February 2010 NSRL-TN-10-002 Gold Beams at NSRL Michael Sivertz, I-Hung Chiang, Adam Rusek 10 March 2010

35

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activation Decay Times Activation Decay Times The beam used for experimentation at the NSRL facility will result in activation of material exposed to it. All materials irradiated in the NSRL target room are to be controlled as radioactive until surveyed and released by a BNL Radiological Controls Technician (RCT). Samples that have had radioactive tracers such as 3H or 14C added to them shall be controlled as radioactive through out the entire process and will not be released as non-radioactive. When liquid samples are activated, there exists a potential for dispersion of radioactive material through spilling of the sample during handling or manipulation creating a contamination area. Activated samples containing liquids that are manipulated required additional Radiological Training (Benchtop/Dispersable Training), a designated (Posted) radiological area to perform work in, and a Radiation Work Permit (RWP). When samples have had enough time to decay they again become non-dispersible and no special radiological handling is required. Correct and appropriate biological handling techniques always apply regardless of the sample's radiological status.

36

Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000  

SciTech Connect (OSTI)

The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999.

None

2001-12-01T23:59:59.000Z

37

Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991  

SciTech Connect (OSTI)

This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

1992-01-01T23:59:59.000Z

38

Sandia National Laboratories: Better Monitoring and Diagnostics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyRenewable EnergyBiofuelsBetter Monitoring and Diagnostics Tackle Algae Biofuel Pond Crash Problem Better Monitoring and Diagnostics Tackle Algae Biofuel Pond Crash...

39

Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993  

SciTech Connect (OSTI)

This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

Chaloud, D.J; Daigler, D.M.; Davis, M.G. [and others

1996-06-01T23:59:59.000Z

40

Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BROOKHAVEN NATIONAL LABORATORY ENVIRONMENTAL MONITORING PLAN  

SciTech Connect (OSTI)

Triennial update that describes the BNL Environmental Monitoring Program for all media (air, surface water, ground water, etc.) in accordance with DOE ORDER 5400.5

DAUM,M.; DORSCH,WM.; FRY,J.; GREEN,T.; LEE,R.; NAIDU,J.; PAQUETTE,D.; SCARPITTA,S.; SCHROEDER,G.

1999-09-22T23:59:59.000Z

42

Annual environmental monitoring report of the Lawrence Berkeley Laboratory  

SciTech Connect (OSTI)

The Lawrence Berkeley Laboratory (LBL) is a multiprogram national laboratory managed by the University of California (UC) for the US Department of Energy (DOE). LBL's major role is to conduct basic and applied science research that is appropriate for an energy research laboratory. The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1989 are presented, and general trends are discussed. 17 refs., 12 figs., 23 tabs.

Schleimer, G.E.; Pauer, R.O. (eds.)

1990-08-01T23:59:59.000Z

43

Frank Vignola Solar Radiation Monitoring Laboratory  

E-Print Network [OSTI]

for large-scale utility installations . With the solar industry on the verge of contributing meaningfully prompted utilities to either build their own solar generating facilities or, more often, enter into firm off-take agreements for the delivery of elec- tric energy from large or utility-scale solar generating

Oregon, University of

44

Developing a Methodology for Characterizing the Effects of Building Materials Natural Radiation Background on a Radiation Portal Monitoring System  

E-Print Network [OSTI]

the sponsors of this research, Oak Ridge National Laboratory (ORNL). vi NOMENCLATURE EW Energy Windowing FWHM Full-Width at Half Maximum HEU Highly Enriched Uranium HPGe High-Purity Germanium ISOCS In-Situ Object Counting System MCA Multichannel... Naturally Occurring Radioactive Material ? Diameter ORNL Oak Ridge National Laboratory PMT Photomultiplier Tube PNNL Pacific Northwest National Laboratory PVT Polyvinyl Toluene RDD Radiological Dispersal Device vii RPM Radiation Portal Monitor...

Fitzmaurice, Matthew Blake 1988-

2012-11-06T23:59:59.000Z

45

BROOKHAVEN NATIONAL LABORATORY 2013 ENVIRONMENTAL MONITORING  

E-Print Network [OSTI]

during the calendar year 2013 for the Current Landfill (AOC 3) and the Former Landfill Areas (Former Landfill AOC 2A, Interim Landfill AOC 2D, and Slit Trench AOC 2E). Brookhaven National Laboratory

46

Occupational radiation monitoring at a large medical center in Japan  

Science Journals Connector (OSTI)

Occupational radiation dose monitoring is a method of ensuring that radiation levels are within the regulatory limits. Our objective in this study was to evaluate the radiation doses experienced by personnel ...

Hussein Y. ALMasri; Yasumasa Kakinohana

2014-07-01T23:59:59.000Z

47

Autonomous Radiation Monitoring of Small Vessels  

SciTech Connect (OSTI)

Small private vessels are one avenue by which nuclear materials may be smuggled across international borders. While one can contemplate using the terrestrial approach of radiation portal monitors on the navigable waterways that lead to many ports, these systems are ill-suited to the problem. They require vehicles to pass at slow speeds between two closely-spaced radiation sensors, relying on the uniformity of vehicle sizes to space the detectors, and on proximity to link an individual vehicle to its radiation signature. In contrast to roadways where lanes segregate vehicles, and motion is well controlled by inspection booths; channels, inlets, and rivers present chaotic traffic patterns populated by vessels of all sizes. We have developed a unique solution to this problem based on our portal-less portal monitor instrument that is designed to handle free-flowing traffic on roadways with up to five-traffic lanes. The instrument uses a combination of visible-light and gamma-ray imaging to acquire and link radiation images to individual vehicles. It was recently tested in a maritime setting. In this paper we present the instrument, how it functions, and the results of the recent tests.

Fabris, Lorenzo [ORNL; Hornback, Donald Eric [ORNL

2010-01-01T23:59:59.000Z

48

Improving the laboratory monitoring of absorbent oil  

SciTech Connect (OSTI)

The performance of absorbent coal tar oil is analyzed as a function of the constituent and group composition. The qualitative and quantitative composition of the oil that ensures the required absorbent properties is determined. Operative monitoring may be based on absorbent characteristics that permit regulation of the beginning and end of regeneration.

V.S. Shved; S.S. Sychev; I.V. Safina; S.A. Klykov [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

49

Monitoring hydraulic fracture growth: Laboratory experiments  

SciTech Connect (OSTI)

The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

Groenenboom, J.; Dam, D.B. van

2000-04-01T23:59:59.000Z

50

Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1981  

SciTech Connect (OSTI)

Results for 1981 of the LBL Environmental Monitoring Program are given. Data include monitoring results for accelerator-produced radiation, airborne and waterborne radionuclides, and nonradioactive pollutants. Population doses resulting from LBL operations are given in terms of accelerator-produced and airborne radioactivities. Trends in the environmental impacts of LBL operations are discussed in terms of accelerator-produced, airborne, and waterborne radionuclides. (ERB)

Schleimer, G.E. (ed.)

1982-06-01T23:59:59.000Z

51

Neutron radiation area monitoring system for proton therapy facilities  

Science Journals Connector (OSTI)

......Germany A neutron radiation area monitoring system...hardware and a suite of software applications that were...facility. Additional software applications provide...analysis, plotting, radiation protection reporting...ultra-conservative shielding and safety systems, which would......

W. D. Newhauser; X. Ding; D. Giragosian; S. Nill; U. Titt

2005-12-20T23:59:59.000Z

52

DOE TEC Radiation Monitoring Subtopic Group Conference Call 10...  

Broader source: Energy.gov (indexed) [DOE]

consider the issue of radiation monitoring exclusively within the context of dedicated trains. Pat Edwards asked how many states currently had FRA Hazmat inspectors. Kevin...

53

A Basic Overview of the Occupational Radiation Exposure Monitoring...  

Office of Environmental Management (EM)

and accurate, and conforms to national and international performance and quality assurance standards. The DOE Radiation Exposure Monitoring Systems (REMS) program provides for...

54

Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste.

Not Available

1994-10-01T23:59:59.000Z

55

On-line Monitoring [Laser Applications Laboratory] - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On-line Monitoring On-line Monitoring Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory On-line Monitoring Project description: On-line process monitoring for laser-beam welding. Category: Project with industrial partner (USCAR) Bookmark and Share Simulated defects and associated responses from a weld sensor developed at Argonne

56

Gamma-Ray Signatures for State-Of-Health Analysis and Monitoring of Widely-Arrayed Radiation Portal Monitor Systems  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has deployed a large array of radiation portal monitors for the Department of Homeland Security U.S. Customs and Border Protection. These portal monitors scan incoming vehicles crossing the U.S. border and shipping containers leaving international ports for radioactive material via gamma-ray and neutron detection. Data produced and captured by these systems are recorded for every vehicle related to radiation signature, sensor/system status, and local background, as well as a host of other variables. Within the Radiation Portal Monitor Project at PNNL, state-of-health observation and analysis for the whole RPM system using these data to determine functionality and performance is being developed. (PIET-43741-TM-492)

Woodring, Mitchell L.; Ely, James H.; Angel, Linda K.; Wright, Ingrid H.; Eslinger, Melany A.; Pospical, A. Jill; Ellis, John E.

2008-05-15T23:59:59.000Z

57

Extended range radiation dose-rate monitor  

DOE Patents [OSTI]

An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

Valentine, Kenneth H. (Knoxville, TN)

1988-01-01T23:59:59.000Z

58

Field test of the Rapid Transuranic Monitoring Laboratory  

SciTech Connect (OSTI)

A field test of the Rapid Transuranic Monitoring Laboratory (RTML) developed at the Idaho National Engineering Laboratory (INEL) was conducted as part of a demonstration sponsored by the Buried Waste Integrated Demonstration (BWID). The RTML is a mobile, field- deployable laboratory developed for use at buried radioactive waste remediation sites to allow onsite preparation and analysis of soil, smear, and air filter samples for alpha and gamma-emitting contaminants. Analytical instruments installed in the RTML include an extended range, germanium photon analysis spectrometer with an automatic sample changer, two large-area ionization chamber alpha spectrometers, and four alpha continuous air monitors. The performance of the RTML was tested at the Test Reactor Area and Cold Test Pit near the Radioactive Waste Management Complex at the INEL. Objectives, experimental procedures, and an evaluation of the performance of the RTML are presented.

McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.; Amaro, C.R.

1993-12-01T23:59:59.000Z

59

Laboratory Specific Training Form (APPENDIX L) Checklist for Worker Training in Radiation Laboratories  

E-Print Network [OSTI]

, and contamination survey requirements to minimize radiation exposure. 7. Security requirements for radioactive Laboratories This form needs to be filled by every radiation worker who may work with radioactive material have been instructed as to the type and location of all the radioactive materials and/or radiation

Berdichevsky, Victor

60

Sandia National Laboratories: Research: Research Foundations: Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Effects and High Energy Density Science Radiation Effects and High Energy Density Science Rings of Saturn, Sandia's workhorse pulsed-power machine. The Radiation Effects and High Energy Density Science Research Foundation seeks to advance science and engineering in the areas of radiation effects sciences, high energy density science, and pulsed-power science and technology to address critical national security issues. Why our work matters We address several issues key to nuclear security and maintaining a safe, secure, and effective nuclear stockpile. For example, radiation effects science ensures that engineered systems are able to operate as intended in the radiation environments they encounter. In addition, high energy density science validates models that are used to certify the performance of the

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect (OSTI)

This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment.

Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

1993-09-01T23:59:59.000Z

62

JOINT EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation  

Broader source: Energy.gov (indexed) [DOE]

EPA/DOE STATEMENT: Radiation Monitors Confirm That No EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation Levels of Concern Have Reached the United States JOINT EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation Levels of Concern Have Reached the United States March 18, 2011 - 12:00am Addthis WASHINGTON - The United States Government has an extensive network of radiation monitors around the country and no radiation levels of concern have been detected. The U.S. Environmental Protection Agency RadNet system is designed to protect the public by notifying scientists, in near real time, of elevated levels of radiation so they can determine whether protective action is required. The EPA's system has not detected any radiation levels of concern. In addition to EPA's RadNet system, the U.S. Department of Energy has

63

TEST PLAN FOR MONITORING COOLING COILS IN A LABORATORY SETTING  

SciTech Connect (OSTI)

The objective of this research project is to understand and quantify the moisture removal performance of cooling coils at part-load conditions. The project will include a comprehensive literature review, detailed measurement of cooling coil performance in a laboratory facility, monitoring cooling systems at several field test sites, and development/validation of engineering models that can be used in energy calculations and building simulations. This document contains the detailed test plan for monitoring cooling coil performance in a laboratory setting. Detailed measurements will be taken on up to 10 direct expansion (DX) and chilled water cooling coils in various configurations to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation.

Don B. Shirey, III

2002-04-01T23:59:59.000Z

64

Pacific Northwest National Laboratory Potential Impact Categories for Radiological Air Emission Monitoring  

SciTech Connect (OSTI)

In 2002, the EPA amended 40 CFR 61 Subpart H and 40 CFR 61 Appendix B Method 114 to include requirements from ANSI/HPS N13.1-1999 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities for major emission points. Additionally, the WDOH amended the Washington Administrative Code (WAC) 246-247 Radiation protection-air emissions to include ANSI/HPS N13.1-1999 requirements for major and minor emission points when new permitting actions are approved. A result of the amended regulations is the requirement to prepare a written technical basis for the radiological air emission sampling and monitoring program. A key component of the technical basis is the Potential Impact Category (PIC) assigned to an emission point. This paper discusses the PIC assignments for the Pacific Northwest National Laboratory (PNNL) Integrated Laboratory emission units; this revision includes five PIC categories.

Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. M.

2012-06-05T23:59:59.000Z

65

LABORATORY OF NUCLEAR MEDICINE AND RADIATION BIOLOGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MEDICINE AND RADIATION BIOLOGY MEDICINE AND RADIATION BIOLOGY 900 VETERAN AVENUE UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024 AND DEPARTMENT OF RADIOLOGICAL SCIENCES UCLA SCHOOL OF MEDICINE, LOS ANGELES, CALIFORNIA 90024 This manuscript is a contribution to the monograph edited by Daniel S. Berman and Dean Mason, entitled "Clinical Nuclear Cardiology". These studies were supported by Contract #DE-AM03-76-SF00012 between the U.S. Department of Energy and the University of California Prepared for the U.S. Department of Energy under Contract #DE-AM03-76-SF00012 POSITRON EMISSION TOMOGRAPHY OF THE HEART Heinrich R. Schelbert, M.D., Michael E. Phelps, Ph.D. and David E. Kuhl, M.D. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the

66

United States Environmental Monitoring EPAJ60014-901016 Environmental Protection Systems Laboratory DOE/DP/00539-062  

Office of Legacy Management (LM)

EPAJ60014-901016 EPAJ60014-901016 Environmental Protection Systems Laboratory DOE/DP/00539-062 Agency P.O. Box 93478 May 1990 Las Vegas NV 891 93-3478 Research and Development - Offsite Environmental lcrgw Monitoring Report Radiation Monitoring d ,& Around United States Nuclear Test Areas Calendar Year 1989 This page intentionally left blank EPN60014-90/016 DOEIDP100539-062 May 1990 Offsite Environmental Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1989 contributors: C. F. Costa, N. R. Sunderland, S. C. Black, M. W. Chilton, B. B. Dicey, W. G. Phillips, C. A. Fontana, R. W. Holloway, C. K. Liu, A. A. Mullen, V. E. Niemann, C. J. Rizzardi, D. D. Smith, D. J. Thome, E. A. Thompson, and Nuclear Radiation Assessment Division

67

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008  

SciTech Connect (OSTI)

This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

Brenda R. Pace

2009-01-01T23:59:59.000Z

68

An Inverse Source Location Algorithm for Radiation Portal Monitor Applications  

E-Print Network [OSTI]

Radiation portal monitors are being deployed at border crossings throughout the world to prevent the smuggling of nuclear and radiological materials; however, a tension exists between security and the free-flow of commerce. Delays at ports...

Miller, Karen Ann

2011-08-08T23:59:59.000Z

69

COLUMBIA RADIATION LABORATORY RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iVP-^"^^? iVP-^"^^? COLUMBIA RADIATION LABORATORY RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING THE USEFUL RANGE OF THE ELECTROMAGNETIC SPECTRUM Special Technical Report Signal Corps Contract DA-36-039 SC-64630 DA Project No. 3-99-10-022 SC Project No. 102B U. S. Army Laboratory Procurement Office Signal Corps Supply Agency Fort Monmouth, New Jersey The Trustees of Columbia University in the City of New York Box 6, Low Memorial Library New York 27, New York March 1, 1956 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. COLUMBIA RADIATION LABORATORY Collected Papers on the AAASER (Microwave Amplification by Stimulated Emission of Radiation) Special Technical Report

70

Radiation monitoring around United States nuclear test areas, calendar year 1989  

SciTech Connect (OSTI)

This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs.

Not Available

1990-05-01T23:59:59.000Z

71

Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1979  

SciTech Connect (OSTI)

Monitoring data obtained for the calendar year 1979 are described, and general trends are discussed. The following areas are covered: accelerator produced radiation; radionuclide measurements and release (atmospheric, water, and sewer sampling); population dose equivalent resulting from LBL operations; and nonradioactive pollutants. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations.

Schleimer, G.E. (ed.)

1980-06-01T23:59:59.000Z

72

Radiation damage to scintillator in the D0 luminosity monitor  

SciTech Connect (OSTI)

We report the result of evaluating radiation damage to Bicron BC408 plastic scintillator used in the D0 Luminosity Monitor during Run IIa. The Luminosity Monitor provides pseudo-rapidity coverage over the range 2.7 < |{eta}| < 4.4, with the radiation dose in Run IIa estimated to be 0.5 MRad for the region closest to the beams. We find the light yield is degraded by 10-15% due to radiation damage by comparing new and old scintillator in four observables: (1) visual inspection, (2) optical transmittance, (3) response to the radioactive source of {sup 90}Sr and (4) light yield for cosmic rays.

Casey, Brendan; DeVaughan, Kayle; /Brown U. /Nebraska U.; Enari, Yuji; Partridge, Richard; /Brown U.; Yacoob, Sahal; /Northwestern U.

2006-12-01T23:59:59.000Z

73

Aerial Radiation Monitoring Data over Sea Near Fukushima | Department of  

Broader source: Energy.gov (indexed) [DOE]

Aerial Radiation Monitoring Data over Sea Near Fukushima Aerial Radiation Monitoring Data over Sea Near Fukushima Aerial Radiation Monitoring Data over Sea Near Fukushima The enclosed package represents radiation data collected over the ocean with the fixed-wing aircraft (C-12) on April 5th, April 18th, and May 9th. The data were collected with an array of large thallium activated sodium iodide (NaI(T)) crystals and associated readout electronics to produce time and location referenced measurements. These results represent raw data that have been validated. They do not include any further evaluation. AMS C12 Sea Data.csv AMS C12 Sea Data Dictionary.pdf AMS C12 Sea Data.kmz More Documents & Publications Social Security Number Reduction Project 2011 - Federal Viewpoint Survey Reports Appendices for the Basis Document

74

1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect (OSTI)

This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 {times} 10{sup {minus}3} mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had no discernible impact on the general public or on the environment.

Culp, T.; Cox, W.; Hwang, S.; Jones, A.; Longley, S.; Parsons, A.; Wolff, T.; Fish, J.; Ward, S.

1992-11-01T23:59:59.000Z

75

1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect (OSTI)

This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 {times} 10{sup {minus}3} mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs.

Hwang, S.; Yeager, G.; Wolff, T.; Parsons, A.; Dionne, D.; Massey, C.; Schwartz, B.; Fish, J.; Thompson, D. (Sandia National Labs., Albuquerque, NM (United States)); Goodrich, M. (GRAM, Inc., Albuquerque, NM (United States))

1991-05-01T23:59:59.000Z

76

1989 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect (OSTI)

This 1989 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 8.8 {times} 10{sup {minus}4} mrem. The total Albuquerque population received a collective dose of 0.097 person-rem during 1989 from SNL, Albuquerque, operations. As in the previous year, SNL, Albuquerque, operations in 1989 had no adverse impact on the general public or on the environment. 46 refs., 20 figs., 31 tabs.

Hwang, S.; Chavez, G.; Phelan, J.; Parsons, A.; Yeager, G.; Dionne, D.; Schwartz, B.; Wolff, T.; Fish, J.; Gray, C.; Thompson, D.

1990-05-01T23:59:59.000Z

77

Radiation Monitoring Data from Fukushima Area | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area In March, 2011 the U.S. Department of Energy released data recorded from its Aerial Measuring System as well as ground detectors deployed along with its Consequence Management Response Teams. Today, the Department provided the following update on the information gathered by the AMS. This data that was collected and analyzed jointly with the Government of Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT). 051311jointdoegojamstraindatafinalv2-110516163951-phpapp01.pptx 050611jointdoegojamsdatav3-110506164802-phpapp02.pptx 042111amsdataapril21v1-110422102404-phpapp02.pptx 041811amsdataapril18v1-110418170107-phpapp02.pptx 040711amsdataapril7v3-110407170243-phpapp02.pptx

78

Radiation Monitoring Data from Fukushima Area | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area In March, 2011 the U.S. Department of Energy released data recorded from its Aerial Measuring System as well as ground detectors deployed along with its Consequence Management Response Teams. Today, the Department provided the following update on the information gathered by the AMS. This data that was collected and analyzed jointly with the Government of Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT). 051311jointdoegojamstraindatafinalv2-110516163951-phpapp01.pptx 050611jointdoegojamsdatav3-110506164802-phpapp02.pptx 042111amsdataapril21v1-110422102404-phpapp02.pptx 041811amsdataapril18v1-110418170107-phpapp02.pptx 040711amsdataapril7v3-110407170243-phpapp02.pptx

79

Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility  

SciTech Connect (OSTI)

In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

Radev, R

2009-09-04T23:59:59.000Z

80

Radiation portal monitor system and method  

DOE Patents [OSTI]

A portal monitoring system has a cosmic ray charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

Morris, Christopher (Los Alamos, NM); Borozdin, Konstantin N. (Los Alamos, NM); Green, J. Andrew (Los Alamos, NM); Hogan, Gary E. (Los Alamos, NM); Makela, Mark F. (Los Alamos, NM); Priedhorsky, William C. (Los Alamos, NM); Saunders, Alexander (Los Alamos, NM); Schultz, Larry J. (Los Alamos, NM); Sossong, Michael J. (Los Alamos, NM)

2009-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory  

SciTech Connect (OSTI)

This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

Habte, A.; Wilcox, S.; Stoffel, T.

2014-02-01T23:59:59.000Z

82

Climate monitoring with Earth radiation budget measurements  

Science Journals Connector (OSTI)

The Earth Radiation Budget (ERB) and its geographical distribution is intimately linked with the earths climate and with the general circulation. We analyze 10 years of global Clouds and the Earths Radiant Energy System (CERES) measurements from 2000 to 2010 and 8 years of diurnally resolved Geostationary Earth Radiation Budget (GERB) from 2004 to 2011 to illustrate this link and to verify if we can detect climate variability or systematic change. In response to the diurnal wave of solar heating three tropical convection maxima exist over South America Africa and around Indonesia. The Indonesian convection maximum is unstable due to a lack of a stabilizing land mass; this is the root cause of the El Ni?o/La Ni?a inter-annual variation with a global pattern of teleconnected variations through the general Walker circulation. Since 2000 a change in global dynamics seems to have occurred. There was a general strengthening of La Ni?a coinciding with a break in global temperature rise and with an eastern dimming i.e. an increase of aerosols over Asia. There is a resemblance to the period of western dimming from 1945 to 1980 and a contrast with the period of global temperature rise and El Ni?o strengthening from 1980 to 2000. It is of paramount importance that the suspected link between the eastern dimming the strengthening of La Ni?a and the break in global temperature rise is thoroughly investigated. This can best be done by a move of a satellite of the Meteosat Second Generation (MSG) series over the Indian Ocean. MSG provides diurnally resolved measurements of the key variables of the ERB clouds and aerosols and of the auxiliary variables of Sea Surface Temperature (SST) and static stability.

2013-01-01T23:59:59.000Z

83

RADIOLOGICAL EMISSIONS AND ENVIRONMENTAL MONITORING FOR BROOKHAV EN NATIONAL LABORATORY, 1947 - 1961.  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL) has monitored its releases to the environment since its inception in 1947. From 1962 to 1966 and from 1971 to the present, annual reports,were published that recorded the emissions and releases to the environment from Laboratory operations. In 1998, a report was written to summarize the environmental data for the years 1967 to 1970. One of the purposes of the current report is to complete BNL's environmental history by covering the period from 1948 through 1961. The activities in 1947 were primarily organizational and there is no information on the use of radiation at the Laboratory before 1948. An additional objective of this report is to provide environmental data to the Agency for Toxic Substances and Disease Registry (ATSDR). The report does not provide an estimate of the doses associated with BNL operations. The report is comprised of two parts. The first part is a summary of emissions, releases, and environmental monitoring information including a discussion of the uncertainties in these data. Part two contains the detailed information on the approach taken to estimate the releases from the fuel cartridge failures at the Brookhaven Graphite Research Reactor (BGRR). A series of appendices present more detailed information on these events in tabular form. The approach in this report is to be reasonable, conservative, (pessimistic), and transparent in estimating releases from fuel cartridge ruptures. Clearly, reactor stack monitoring records and more extensive records would have greatly improved this effort, but in accordance with Atomic Energy Commission (AEC) Appendix 0230 Annex C-9, many of the detailed records from this time were not retained.

MEINHOLD,C.B.; MEINHOLD,A.F. (EDITED BY BOND,P.D.)

2001-05-30T23:59:59.000Z

84

Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2007  

SciTech Connect (OSTI)

Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection Air Emissions. In these NESHAP assessments, potential unabated offsite doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2007.

Ballinger, Marcel Y.; Barfuss, Brad C.; Gervais, Todd L.

2008-01-01T23:59:59.000Z

85

Environmental monitoring at the Lawrence Livermore National Laboratory: 1986 annual report  

SciTech Connect (OSTI)

This report documents the results of the environmental monitoring program at the Lawrence Livermore National Laboratory (LLNL) for 1986. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical pollutants in ambient air, soil, surface water, groundwater, vegetation, milk, foodstuff, and sewage effluents were made at both the Livermore site and nearby Site 300. This report was prepared to meet the requirements of DOE Order 5484.1. Evaluations are made of LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological releases to the environment. The data indicate that no releases in excess of the applicable standards were made during 1986, and that LLNL operations had no adverse environmental impact.

Holland, R.C.; Buddemeier, R.W.; Brekke, D.D.

1987-04-01T23:59:59.000Z

86

Environmental monitoring at the Lawrence Livermore National Laboratory: Annual report, 1987  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore Laboratory (LLNL) for 1987. To evaluate the effect of LLNL operations on the local environment, measurements were made of direct radiation and a variety of radionuclides and chemical pollutants in ambient air, soil, sewage effluents, surface water, groundwater, vegetation, foodstuff, and milk at both the Livermore site and nearby Site 300. Evaluations were made of LLNL's compliance with the applicable guides, standards, and limits for radiological and nonradiological releases to the environment. The data indicates that the only releases in excess of applicable standards were four releases to the sanitary sewer. LLNL operations had no adverse impact on the environment during 1987. 65 refs., 24 figs.

Holland, R.C.; Brekke, D.D.

1988-04-01T23:59:59.000Z

87

Brookhaven National Laboratory environmental monitoring plan for Calendar Year 1996  

SciTech Connect (OSTI)

As required by DOE Order 5400.1, each U.S. Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials shall provide a written Environmental Monitoring Plan (EMP) covering effluent monitoring and environmental surveillance. DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, provides specific guidance regarding environmental monitoring activities.

Naidu, J.R.; Paquette, D.; Lee, R. [and others

1996-10-01T23:59:59.000Z

88

General Operational Procedure for Pedestrian Radiation Portal Monitors  

SciTech Connect (OSTI)

This document outlines the basic conduct of operation (CONOPS) for a pedestrian radiation portal monitor (RPM), provided that the CONOPS is not facility or RPM specific and that it is based on a general understanding of a pedestrian RPM operation. The described CONOPS for a pedestrian RPM is defined by: (1) RPM design and operational characteristics, (2) type of pedestrian traffic, and (3) goal for RPM installation. Pedestrian RPMs normally are deployed for the continuous monitoring of individuals passing through point of control to detect the unauthorized traffic of radioactive/nuclear materials. RPMs generally are designed to detect gamma- and neutron-emitting materials.

Belooussov, Andrei V. [Los Alamos National Laboratory

2012-08-08T23:59:59.000Z

89

Design and Implementation of a Radiation Portal Monitor Multi-Lane Simulator  

SciTech Connect (OSTI)

Abstract - Deploying radiation portal monitors (RPMs) at U.S. ports of entry requires an understanding of an RPM systems performance at sites with a large number of RPMs. This paper describes an RPM Multi-Lane Simulator that has been designed and implemented to simulate vehicle traffic at these sites. The Simulators flexible architecture simulates vehicle traffic with its associated radiation profiles and emulates each RPMs radiation sensor panels. The RPM vendors embedded control computer firmware and supervisory software are left unchanged, thereby enabling hardware-in-the-loop testing of RPM system performance in configurations that exceed what is experienced in the field. The Simulator has proven to be a valuable and cost effective performance testing tool used by both Pacific Northwest National Laboratory and U.S. Customs and Border Protection systems integration and testing staff.

McKinnon, Archibald D.; Bass, Robert B.; Elder, Matthew S.; Johnson, Michelle Lynn

2009-10-24T23:59:59.000Z

90

Stanford Synchrotron Radiation Laboratory activity report for 1987  

SciTech Connect (OSTI)

During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

Robinson, S.; Cantwell, K. [eds.

1988-12-31T23:59:59.000Z

91

Independent Oversight Assessment of Environmental Monitoring at the Idaho National Laboratory Site, May 2010  

Broader source: Energy.gov (indexed) [DOE]

Assessment of Assessment of Environmental Monitoring at the Idaho National Laboratory Site May 2010 Office of Independent Oversight Office of Health, Safety and Security Office of Health, Safety and Security HSS Independent Oversight Abbreviations i Executive Summary iii 1 Introduction 1 2 Positive Attributes 3 3 Program Enhancements 5 4 INL Site Environmental Monitoring Program 7 4.1 Overall Assessment 7 4.2 Crosscutting Concerns and Recommendations 7 4.3 Media-Specific Perspectives and Recommendations 11 4.3.1 Air Monitoring 11 4.3.2 Liquid Effluent Monitoring 12 4.3.3 Soil Monitoring 12 4.3.4 Agricultural Products and Game Animals Monitoring 13

92

Sandia National Laboratories: high-fidelity data monitoring systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

93

Facility effluent monitoring plan for the 222-S Laboratory  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable Federal, State, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

Nickels, J.M.; Warwick, G.J.

1992-11-01T23:59:59.000Z

94

UCRL-5257 Rev. UNIVERSITY OF CALIFORNIA Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UCRL-5257 Rev. UCRL-5257 Rev. UNIVERSITY OF CALIFORNIA Radiation Laboratory Liver more : California Contract No. W- 7405 -eng -48 PEACEFUL USES OF FUSION Edward Teller July 3, 1958 Printed for the U. S. Atomic Energy Commission f . DISCLAIMER This report was prepared as an account by an agency of t h e United States United States Government nor of their employees, or assumes any legal accuracy, completeness, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and

95

MASTER UCRL-9537 UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MASTER MASTER UCRL-9537 UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley, California Contract No.W-7405-eng-48 A NHARMONIC POTENTIAL CONSTANTS AND THEIR DEPENDENCE UPON BOND LENGTH Dudley R. Herschbach and Victor W. Laurie January 1961 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or

96

Sandia National Laboratories California Environmental Monitoring Program Annual Report.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

Holland, Robert C.

2007-03-01T23:59:59.000Z

97

United States Environmental Monitoring EPA-600/4-81-047 Environmental Protection Systems Laboratory DOE/DP/00539-043  

Office of Legacy Management (LM)

EPA-600/4-81-047 EPA-600/4-81-047 Environmental Protection Systems Laboratory DOE/DP/00539-043 Agency P.O. Box 15027 June 1981 Las Vegas NV 891 14 Research and Development Offsite Environmental Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1980 prepared for the Nevada Operations Office U.S. Department of Energy This page intentionally left blank EPA-60014-81-047 DOE/DP/00539-043 June 1981 OFFSITE ENVIRONMENTAL MONITORING REPORT Radiation moni t o r i ng around U n i t e d States nuclear t e s t areas, calendar y e a r 1980 D. D. Smith, R. F. Grossman, W. D. Corkern, D. J. Thorn6 and R. G. Patzer Envi ronmental Moni t o r i ng Systems Laboratory Las Vegas, Nevada 89114 and J. L. Hopper Reynol ds E l e c t r i c a l & Engineering Company, Inc.

98

Radiation safety and quality control in the cyclotron laboratory  

Science Journals Connector (OSTI)

......and Technical Papers Radiation safety and quality control...Forks, ND 58203, USA Radiation safety was determined to...to save SCADA node software and avoid run failure...prove compliance with radiation safety standards, and minimise......

Sushil Sharma; Gregory Krause; Manuchair Ebadi

2006-07-01T23:59:59.000Z

99

Laboratory Measurement of Geophysical Properties for Monitoring of CO2 Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Measurement of Geophysical Properties for Monitoring of Laboratory Measurement of Geophysical Properties for Monitoring of CO 2 Sequestration Larry R. Myer (LRMyer@lbl.gov; 510/486-6456) Lawrence Berkeley National Laboratory Earth Science Division One Cyclotron Road, MS 90-1116 Berkeley, CA 94720 Introduction Geophysical techniques will be used in monitoring of geologic sequestration projects. Seismic and electrical geophysical techniques will be used to map the movement of CO 2 in the subsurface and to establish that the storage volume is being efficiently utilized and the CO 2 is being safely contained within a known region. Rock physics measurements are required for interpretation of the geophysical surveys. Seismic surveys map the subsurface velocities and attenuation while electrical surveys map the conductivity. Laboratory measurements are required to convert field

100

NRC TLD Direct Radiation Monitoring Network. Progress report, July--September 1993: Volume 13, No. 3  

SciTech Connect (OSTI)

This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the third quarter of 1993.

Struckmeyer, R.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

rev November 2004 Radiation Safety Manual Section 6 -Personnel Exposure and Monitoring  

E-Print Network [OSTI]

. Estimating Fetal Dose Equivalent .................................................6-10 a. Positionrev November 2004 Radiation Safety Manual Section 6 - Personnel Exposure and Monitoring Page 6-1 Contents .............................................................................6-1 A. Radiation

Wilcock, William

102

Testing and Evaluation Protocol for Mobile and Transportable Radiation Monitors Used for Homeland  

E-Print Network [OSTI]

Testing and Evaluation Protocol for Mobile and Transportable Radiation Monitors Used for Homeland................................................................................1 4. Test and evaluation steps .........................................................................................1 5. Recording test results

103

Testing and Evaluation Protocol for Radiation Detection Portal Monitors for Use in Homeland Security  

E-Print Network [OSTI]

Testing and Evaluation Protocol for Radiation Detection Portal Monitors for Use in Homeland................................................................................1 4. Test and evaluation steps .........................................................................................1 5. Recording test results

104

E-Print Network 3.0 - area radiation monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science 59 Nordisk kernesikkerhedsforskning Norrnar kjarnryggisrannsknir Summary: NKS-142 ISBN 87-7893-204-1 Emergency Monitoring Strategy and Radiation Measurements Working...

105

An inverse source location algorithm for radiation portal monitor applications  

SciTech Connect (OSTI)

Radiation portal monitors are being deployed at border crossings throughout the world to prevent the smuggling of nuclear and radiological materials; however, a tension exists between security and the free-flow of commerce. Delays at ports-of-entry have major economic implications, so it is imperative to minimize portal monitor screening time. We have developed an algorithm to locate a radioactive source using a distributed array of detectors, specifically for use at border crossings. To locate the source, we formulated an optimization problem where the objective function describes the least-squares difference between the actual and predicted detector measurements. The predicted measurements are calculated by solving the 3-D deterministic neutron transport equation given an estimated source position. The source position is updated using the steepest descent method, where the gradient of the objective function with respect to the source position is calculated using adjoint transport calculations. If the objective function is smaller than the convergence criterion, then the source position has been identified. This paper presents the derivation of the underlying equations in the algorithm as well as several computational test cases used to characterize its accuracy.

Miller, Karen A [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

106

Nasa Space Radiation Laboratory (NSRL) | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Nasa Space Radiation Laboratory (NSRL) Nasa Space Radiation Laboratory (NSRL) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Nasa Space Radiation Laboratory (NSRL) Print Text Size: A A A RSS Feeds FeedbackShare Page Application/Instrumentation: NASA Space Radiation Laboratory (NSRL) Developed at: Brookhaven National Laboratory, Collider-Accelerator Department (C-AD)

107

An Intelligent Radiation Detector System For Remote Monitoring  

Science Journals Connector (OSTI)

A unique real?time gamma radiation detector and spectroscopic analyzer specifically designed for a Homeland Security Radiological Network has been developed by the Environmental Measurements Laboratory (EML). The Intelligent Radiation Detectors (IRD) sensitivity and rapid sampling cycle assure up?to?the minute radiological data which will indicate fast changes in atmospheric radioactivity. In addition an immediate alert will occur within seconds to signal rapid changes in activity or levels elevated beyond a preset. This feature is particularly valuable to detect radioactivity from moving vehicles. The IRD also supplies spectral data which allows the associated network computer to identify the specific radionuclides detected and to distinguish between natural and manmade radioactivity. To minimize cost and maximize rapid availability the IRD uses readily available off the shelf components combined with an inexpensive unique detector housing made of PVC plastic pipe. Reliability with no required maintenance is inherent in the IRD which operates automatically and unattended on a 24/7 basis. A prototype unit installed on EMLs roof has been in continuous operation since November 27 2001.

Norman Latner; Norman Chiu; Colin G. Sanderson

2002-01-01T23:59:59.000Z

108

NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4  

SciTech Connect (OSTI)

This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

Struckmeyer, R.

1995-03-01T23:59:59.000Z

109

NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996  

SciTech Connect (OSTI)

This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

Struckmeyer, R.

1997-03-01T23:59:59.000Z

110

Community Radiation Monitoring Program. Annual report, October 1, 1991--September 30, 1992  

SciTech Connect (OSTI)

The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE); the US Environmental Protection Agency (EPA); the Desert Research Institute (DRI), a division of the University and Community College System of Nevada and the Nuclear Engineering Laboratory of the University of Utah (UNEL). The twelfth year of the program began in the fall of 1991, and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The program began as an outgrowth of activities that occurred during the Three Mile Island incident in 1979. The local interest and public participation that took place there were thought to be transferrable to the situation at the NTS, so, with adaptations, that methodology was implemented for this program. The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the existing EPA monitoring network, and has since expanded to 19 locations in Nevada, Utah and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with people in the potentially impacted area has been the hiring and training of local citizens as station managers and program representatives in those selected communities in the offsite area. These managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

Cooper, E.N.

1993-05-01T23:59:59.000Z

111

Radiation and Chemical Risk Management | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contaminated soil, military munitions disposal areas, and groundwater contaminated with carbon tetrachloride. Argonne's work in radiation and chemical risk management includes...

112

Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981  

SciTech Connect (OSTI)

This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L. (comps.)

1982-08-01T23:59:59.000Z

113

Mitigation Monitoring and Reporting Program for continued operation of Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

A Mitigation Monitoring and Reporting Program, required by the California Environmental Quality Act, was developed by UC as part of the Final EIS/EIR process. This document describing the program is a companion to the Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) for the Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). The Final EIS/EIR analyzes the potential environmental impacts of the proposed action, which for the purposes of NEPA is: continued operation, including near-term (within 5 to 1 0 years) proposed projects, of LLNL and SNL, Livermore. The proposed action for the EIR is the renewal of the contract between DOE and UC for UC`s continued operation and management of LLNL. The Mitigation Monitoring and Reporting Program is for implementing and monitoring progress of measures taken to mitigate the significant impacts of the proposed action. A complete description of the impacts and proposed mitigations is in Section 5 of Volume I of the Final EIS/EIR. This report summarizes the mitigation measures, identifies the responsible party at the Laboratory for implementing the mitigation measure, states when monitoring will be implemented, when the mitigation measure will be in place and monitoring completed, and who will verify that the mitigation measure was implemented.

Not Available

1992-08-01T23:59:59.000Z

114

IEC standards for individual monitoring of ionising radiation  

Science Journals Connector (OSTI)

......rate) quantities and radiation: H p(10) and H p...general test procedures, radiation characteristics as well...electrical, mechanical, safety and environmental characteristics...performance requirements, radiation characteristics as well...electrical, mechanical and software characteristics. The......

M. Voytchev; P. Ambrosi; R. Behrens; P. Chiaro

2011-03-01T23:59:59.000Z

115

Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor  

E-Print Network [OSTI]

The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped soft protons scattering off the x-ray telescope's mirrors. The primary effect of this damage was to increase the charge-transfer inefficiency (CTI) of the ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented procedures to remove the ACIS from the telescope's focus during high-radiation events: planned protection during radiation-belt transits; autonomous protection triggered by an on-board radiation monitor; and manual intervention based upon assessment of space-weather conditions. However, as Chandra's multilayer insulation ages, elevated temperatures have reduced the effectiveness of the on-board radiation monitor for autonomous protection. Here we investigate using the ACIS CCDs themselves as a radiation monitor. We explore the 10-year database to evaluate the CCDs' ...

Grant, C E; Bautz, M W; O'Dell, S L

2010-01-01T23:59:59.000Z

116

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

SciTech Connect (OSTI)

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2010-07-01T23:59:59.000Z

117

Perimeter radiation monitors for the control and physical security of special nuclear materials  

SciTech Connect (OSTI)

Perimeter radiation monitors are gamma-ray and neutron measurement systems that can provide timely notice of theft or diversion of special nuclear material (SNM). The monitors may be hand-held instruments operated by security inspectors or automatic pedestrian or vehicle monitors located in exit pathways. A monitor's performance depends on its design, the characteristics of SNM and the operating environment, and proper monitor calibration and maintenance. Goals of ASTM Subcommittee C26.12 are to describe monitoring technology, how to apply it, and how to test its performance. 3 refs., 6 figs.

Fehlau, P.E.

1990-01-01T23:59:59.000Z

118

Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications.

Williams, C.H. (Radian Corp., Austin, TX (United States)); Eberhart, C.F. (Los Alamos National Lab., NM (United States))

1992-01-01T23:59:59.000Z

119

Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL`s emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications.

Williams, C.H. [Radian Corp., Austin, TX (United States); Eberhart, C.F. [Los Alamos National Lab., NM (United States)

1992-10-01T23:59:59.000Z

120

ENVIRONMENTAL RADIATION MONITORING IN THE CHERNOBYL EXCLUSION ZONE - HISTORY AND RESULTS 25 YEARS AFTER  

SciTech Connect (OSTI)

This article describes results of the radiation environmental monitoring performed in the Chernobyl Exclusion Zone (ChEZ) during the period following the 1986 Chernobyl Nuclear Power Plant accident. This article presents a brief overview of five comprehensive reports generated under Contract No. DE-AC09-96SR18500 (Washington Savannah River Company LLC, Subcontract No. AC55559N, SOW No. ON8778) and summarizes characteristics of the ChEZ and its post-accident status and the history of development of the radiation monitoring research in the ChEZ is described. This article addresses characteristics of the radiation monitoring in the ChEZ, its major goals and objectives, and changes of these goals and objectives in the course of time, depending on the tasks associated with the phase of mitigation of the ChNPP accident consequences. The results of the radiation monitoring in the ChEZ during the last 25 years are also provided.

Farfan, E.; Jannik, T.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Silicon Carbide Temperature Monitor Measurements at the High Temperature Test Laboratory  

SciTech Connect (OSTI)

Silicon carbide (SiC) temperature monitors are now available for use as temperature sensors in Advanced Test Reactor (ATR) irradiation test capsules. Melt wires or paint spots, which are typically used as temperature sensors in ATR static capsules, are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that may have occurred during irradiation. As part of the efforts initiated by the ATR National Scientific User Facility (NSUF) to make SiC temperature monitors available, a capability was developed to complete post-irradiation evaluations of these monitors. As discussed in this report, the Idaho National Laboratory (INL) selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. This document describes the INL efforts to develop the capability to complete these resistance measurements. In addition, the procedure is reported that was developed to assure that high quality measurements are made in a consistent fashion.

J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

2010-01-01T23:59:59.000Z

122

Sandia National Laboratories, California Quality Assurance Project Plan for Environmental Monitoring Program.  

SciTech Connect (OSTI)

This Quality Assurance Project Plan (QAPP) applies to the Environmental Monitoring Program at the Sandia National Laboratories/California. This QAPP follows DOE Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance (DOE G 414.1-2A June 17, 2005). The Environmental Monitoring Program is located within the Environmental Operations Department. The Environmental Operations Department is responsible for ensuring that SNL/CA operations have minimal impact on the environment. The Department provides guidance to line organizations to help them comply with applicable environmental regulations and DOE orders. To fulfill its mission, the department has groups responsible for waste management; pollution prevention, air quality; environmental planning; hazardous materials management; and environmental monitoring. The Environmental Monitoring Program is responsible for ensuring that SNL/CA complies with all Federal, State, and local regulations and with DOE orders regarding the quality of wastewater and stormwater discharges. The Program monitors these discharges both visually and through effluent sampling. The Program ensures that activities at the SNL/CA site do not negatively impact the quality of surface waters in the vicinity, or those of the San Francisco Bay. The Program verifies that wastewater and stormwater discharges are in compliance with established standards and requirements. The Program is also responsible for compliance with groundwater monitoring, and underground and above ground storage tanks regulatory compliance. The Program prepares numerous reports, plans, permit applications, and other documents that demonstrate compliance.

Holland, Robert C.

2005-09-01T23:59:59.000Z

123

Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002  

SciTech Connect (OSTI)

During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 the Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.

E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

2004-09-01T23:59:59.000Z

124

European Workshop on Individual Monitoring of Ionising Radiation (IM2005) Vienna, Austria April 1115 2005  

Science Journals Connector (OSTI)

......Federal Office for Radiation Protection Radon GERMANY Beeslaar Frik South African...Inessa KATEP-AE Radiation Laboratory KAZAKHSTAN Kim Jang-Lyul Korea Atomic Energy...Iran Radiation protection (Neutron, Radon Dosimetry) ISLAMIC REPUBLIC OF IRAN......

European Workshop on Individual Monitoring of Ionising Radiation (IM2005) Vienna; Austria April 1115 2005

2007-07-01T23:59:59.000Z

125

Test plan for preparing the Rapid Transuranic Monitoring Laboratory for field deployment  

SciTech Connect (OSTI)

This plan describes experimental work that will be performed during fiscal year 1994 to prepare the Rapid Transuranic Monitoring Laboratory (RTML) for routine field use by US Department of Energy (DOE) Environmental Restoration and Waste Management programs. The RTML is a mobile, field-deployable laboratory developed at the Idaho National Engineering Laboratory (INEL) that provides a rapid, cost-effective means of characterizing and monitoring radioactive waste remediation sites for low-level radioactive contaminants. Analytical instruments currently installed in the RTML include an extended-range, germanium photon analysis spectrometer with an automatic sample changer; two, large-area, ionization chamber alpha spectrometers; and four alpha continuous air monitors. The RTML was field tested at the INEL during June 1993 in conjunction with the Buried Waste Integrated Demonstration`s remote retrieval demonstration. The major tasks described in this test plan are to (a) evaluate the beta detectors for use in screening soil samples for {sup 90}Sr, (b) upgrade the alpha spectral analysis software programs, and (c) upgrade the photon spectral analysis software programs.

McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.

1994-04-01T23:59:59.000Z

126

Radiation Monitoring Data from Fukushima Area-5/6/11  

Broader source: Energy.gov [DOE]

This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams.

127

Radiation Monitoring Data from Fukushima Area- 4/22/11  

Broader source: Energy.gov [DOE]

This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams.

128

Radiation Monitoring Data from Fukushima Area- 4/18/11  

Broader source: Energy.gov [DOE]

This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams.

129

Radiation Monitoring Data from Fukushima Area- 4/4/11  

Broader source: Energy.gov [DOE]

This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams.

130

Stanford Synchrotron Radiation Laboratory, BL6-2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Laboratory TXM Overview | TXM Imaging | Researchers | Publications TXM SRL null Full-field Transmission X-ray Microscopy Capabilities The transmission X-ray microscope (TXM) on beam line 6-2c at SSRL is capable of 2D imaging and tomography of many materials including biological and environmental samples, and complex hierarchical systems such as fuel cells and battery electrodes, with chemical information, at 30 nm resolution. The field of view (FOV) is 30 microns, but samples can be raster scanned to increase the FOV while maintaining the same resolution. Because the microscope is equipped with optics that can be used from ~5 to 14 keV, it is useful for characterizing metal distribution and chemical states by imaging at X-ray absorption edges for many metals involved in energy materials. 3D elemental mapping is accomplished via acquisition of tomography above and below the X-ray absorption edge. 2D mapping of chemical states is accomplished with XANES (X-ray absorption near edge structure) imaging, in which many images are acquired along the X-ray absorption edge of a metal, and constructed spectra can be compared to those for model compounds of known structure. It is also possible to acquire 3D XANES tomography, in which chemical states can be mapped in 3D.

131

LABORATORY OF NUCLEAR MEDICIhF ARD RADIATION BIOLOGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MEDICIhF ARD RADIATION BIOLOGY MEDICIhF ARD RADIATION BIOLOGY . - UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORMA 90024 Ah" DEPARTXENT OF RADIOLOGY UCLA SCHOOL OF MEDICINE, LOS ANGELES, CALIFORNIA 90024 This work was p a r t i a l l y supported by ERDA Contract gEY-76-C-03-0012 and N I H g r a n t 7-R01-GM-24839-01. Prepared for U.S. Energy Research and Development Administrat ion under C o n t r a c t gEY-76-C-03-0012 ECAT: A New Computerized Tomographic Imaging System for Positron-Emitting Michael E. Phelps, Edward J . Hoffman Sung-Cheng Huang and David E . Kuhl Radiopharmaceuticals DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

132

1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.

L. V. Street

1999-09-01T23:59:59.000Z

133

Stanford Synchrotron Radiation Laboratory. Activity report for 1989  

SciTech Connect (OSTI)

The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this report.

NONE

1996-01-01T23:59:59.000Z

134

Stanford Synchrotron Radiation Laboratory activity report for 1986  

SciTech Connect (OSTI)

1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

Cantwell, K. [ed.

1987-12-31T23:59:59.000Z

135

U.S. Department of Energy Releases Radiation Monitoring Data from Fukushima  

Broader source: Energy.gov (indexed) [DOE]

Releases Radiation Monitoring Data from Releases Radiation Monitoring Data from Fukushima Area U.S. Department of Energy Releases Radiation Monitoring Data from Fukushima Area March 22, 2011 - 12:00am Addthis Today the U.S. Department of Energy released data recorded from its Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. The information has also been shared with the government of Japan as part of the United States' ongoing efforts to support Japan with the recovery and response effort. On March 15, 33 experts from the Department's National Nuclear Security Administration (NNSA) arrived in Japan along with more than 17,200 pounds of equipment. After initial deployments at U.S. consulates and military installations in Japan, these teams have utilized their unique skills,

136

Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon  

E-Print Network [OSTI]

Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies A. Nizkorodov*, Department of Chemistry, University of California, Irvine, California 92697, United

Nizkorodov, Sergey

137

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

Ballinger, M.Y.; Shields, K.D.

1999-04-02T23:59:59.000Z

138

Noninvasive emittance and energy spread monitor using optical synchrotron radiation  

E-Print Network [OSTI]

We propose a design for a minimally perturbing diagnostic minichicane, which utilizes optical synchrotron radiation (OSR) generated from magnetic bends in the chicane, to measure the rms horizontal and vertical beam sizes, ...

Fiorito, R.

139

Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 2000  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM) in January 1993. This program is to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)-(4) and Article 511.1 of the DOE Standard Radiological Control, personnel dosimetry shall be provided to 1) radiological workers who are likely to receive at least 100 mrem annually, and 2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-2000 confirm that personnel dosimetry is not needed for individuals located in areas monitored by the program.

Bivins, Steven R.; Stoetzel, Gregory A.

2001-07-05T23:59:59.000Z

140

First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

Loar, J.M. (ed.); Adams, S.M.; Blaylock, B.G.; Boston, H.L.; Frank, M.L.; Garten, C.T.; Houston, M.A.; Kimmel, B.L.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Berry, J.B.; Talmage, S.S. (Oak Ridge National Lab., TN (United States)); Amano, H. (JAERI, Tokai Res., Establishment, Ibari-Ken (Japan)); Jimenez, B.D. (School of Pharmacy, Univ. of Puerto Rico (San Juan)); Kitchings, J.T.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hazards analysis for the E.O. Lawrence Berkeley National Laboratory x-ray absorption experiments to be performed at Stanford Synchrotron Radiation Laboratory  

SciTech Connect (OSTI)

The objective of this experiment is to determine the oxidation state(s) of neptunium (Np) in mouse skeleton and in soft tissue by X-ray Absorption Near Edge Structure (XANES). If Np is present in sufficient concentration, X-ray Absorption Fine Structure (XAFS) data will be obtained in order to further identify the Np species present. These data will be crucial in understanding the metabolic pathway of Np in mammals which will help in the design of reagents which can eliminate Np from mammals in the event of accidental exposure. It is proposed to run these experiments at the Standard Synchrotron Radiation Laboratory (SSRL). This laboratory is a DOE national user facility located at the Stanford Linear Accelerator Center (SLAC). The {sup 237}Np nucleus decays by the emission of an alpha particle and this particle emission is the principal hazard in handling Np samples. This hazard is mitigated by physical containment of the sample which stops the alpha particles within the containment. The total amount of Np material that will be shipped to and be at SSRL at any one time will be less than 1 gram. This limit on the amount of Np will ensure that SLAC remains a low hazard, non-nuclear facility. The Np samples will be solids or Np ions in aqueous solution. The Np samples will be shipped to SSRL/SLAC OHP. SLAC OHP will inventory the samples and swipe the containers holding the triply contained samples, and then bring them to the SSRL Actinide trailer located outside building 131. The QA counting records from the samples, as measured at LBNL, will be provided to SSRL and SLAC OHP prior to the arrival of the samples at SLAC OHP. In addition, strict monitoring of the storage and experimental areas will be performed in accordance with SLAC/OHP radiation protection procedures to ensure against the release of contamination.

Edelstein, N.M.; Shuh, D.K.; Bucher, J.B. [Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

1995-04-01T23:59:59.000Z

142

DOE TEC Radiation Monitoring Subtopic Group Conference Call 10_11_07  

Broader source: Energy.gov (indexed) [DOE]

Radiation Monitoring Subtopic Group Conference Call Radiation Monitoring Subtopic Group Conference Call Thursday, October 11, 2007, 3:00 p.m. - 4:30 p.m. EDT Conference Call Minutes Participants: Chair: Cort Richardson (CSG/NE) Members: Mel Massaro (DOT/FRA), Ed Wilds (State of Connecticut), Vernon Jensen (Winnebago Tribe of Nebraska), Sean Kice (SSEB), Ralph Hail (Norfolk Southern), Pat Edwards (CSG/NE), Kevin Blackwell (DOT/FRA), Larry Stern (CVSA), Sarah Wochos (CSG/MW), Tim Runyon (CSG/MW), Christina Nelson (NCSL), Tony Dimond (BLET), Matt Dennis & Doug Osborn (SNL), Jim Williams (WIEB), Ralph Best & Steve Schmid (BSC) Contractor Support: John Smegal (Legin) Summary: Cort Richardson welcomed the participants to the inaugural Radiation Monitoring Subtopic Group conference call and thanked them for their interest. He indicated that his

143

NEPA CX Determination SS-SC-11-02 for Radiation Portal Monitor  

Broader source: Energy.gov (indexed) [DOE]

2 for Radiation Portal Monitor 2 for Radiation Portal Monitor National Environmental Policy Act (NEPA) Categorical Exclusion (CX) Determination A. SSO NEPA Control #: SS-SC-11-02 B. Brief Description of Proposed Action: SLAC has a long-term schedule for the disassembly and disposition (D&D) of metal objects released for offsite disposal from the SLAC B-Factory Detector (BaBar) and the upgraded SLAC positron-electron collider (PEP-II) experiments. As part of this effort, SLAC is proposing to install and operate a radiation portal monitor (RPM) to measure high-energy gamma radioisotopes of trucks transporting metals offsite. The proposed structure comprises two upright columns, one on either side of a turnout lane along the road toward SLAC's south gate at Alpine Road. Vehicles exiting the site will be directed to drive between the columns to have their cargo

144

DOE Radiation Exposure Monitoring System (REMS) Data Update  

SciTech Connect (OSTI)

This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

Rao, Nimi; Hagemeyer, Derek

2012-05-05T23:59:59.000Z

145

JOINT EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation...  

Office of Environmental Management (EM)

and can detect minute amounts of radioactive materials. Today, one of the monitoring stations in Sacramento, California that feeds into the IMS detected miniscule quantities...

146

Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

Wilcox, S.; Andreas, A.

147

CHIPLESS PASSIVE SENSOR FOR WIRELESS MONITORING OF HIGH RADIATION DOSES IN NUCLEAR INFRASTRUCTURES  

E-Print Network [OSTI]

CHIPLESS PASSIVE SENSOR FOR WIRELESS MONITORING OF HIGH RADIATION DOSES IN NUCLEAR INFRASTRUCTURES for Nuclear Research, Otwock, Poland 4 Wroclaw University of Technology, Wroclaw, Poland 5 TRAD, BP 47471, Labège, France ppons@laas.fr ABSTRACT The dosimetry is one of the crucial techniques that are needed

Paris-Sud XI, Université de

148

NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995  

SciTech Connect (OSTI)

This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

Struckmeyer, R.

1996-03-01T23:59:59.000Z

149

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995  

SciTech Connect (OSTI)

During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

NONE

1995-06-01T23:59:59.000Z

150

Standard guide for application of radiation monitors to the control and physical security of special nuclear material  

E-Print Network [OSTI]

1.1 This guide briefly describes the state-of-the-art of radiation monitors for detecting special nuclear material (SNM) (see 3.1.11) in order to establish the context in which to write performance standards for the monitors. This guide extracts information from technical documentation to provide information for selecting, calibrating, testing, and operating such radiation monitors when they are used for the control and protection of SNM. This guide offers an unobtrusive means of searching pedestrians, packages, and motor vehicles for concealed SNM as one part of a nuclear material control or security plan for nuclear materials. The radiation monitors can provide an efficient, sensitive, and reliable means of detecting the theft of small quantities of SNM while maintaining a low likelihood of nuisance alarms. 1.2 Dependable operation of SNM radiation monitors rests on selecting appropriate monitors for the task, operating them in a hospitable environment, and conducting an effective program to test, calibrat...

American Society for Testing and Materials. Philadelphia

1999-01-01T23:59:59.000Z

151

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1995  

SciTech Connect (OSTI)

During second quarter 1995, samples from seven new AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for a comprehensive list of constituents. Two parameters exceeded standards during the quarter. Lead and nickel appear to exceed final Primary Drinking Water Standards (PDWS) in AMB-18A. These data were suspect and a rerun of the samples showed levels below flagging criteria. This data will be monitored in 3Q95. Aluminum, iron, manganese, boron, silver and total organic halogens exceeded Flag 2 criteria in at least one well each during second quarter 1995. This data, as well, will be confirmed by 3Q95 testing. Groundwater flow directions in the M-Area Aquifer Zone were similar to previous quarters; the flow rate estimate, however, differs because of an error noted in the scales of measurements used for previous estimates. The estimate was 470 ft/year during second quarter 1995. Reliable estimates of flow directions and rates in the Upper Lost Lake Aquifer Zone could not be determined in previous quarters because data were insufficient. The first estimate from second quarter 1995 shows a 530 ft/year rate. Reliable estimates of flow directions and rates in the Lower Lost Lake Aquifer Zone and in the Middle Sand Aquifer Zone of the CBCU could not be calculated because of the low horizontal gradient and the near-linear distribution of the monitoring wells. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and was completed in March of this year. Analytical data from these wells are presented in this report for the first time.

Chase, J.A.

1995-09-01T23:59:59.000Z

152

Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time M. Splitt University of Oklahoma Norman, Oklahoma Recent work in this area by Charles Wade (1987) lays out the groundwork for monitoring data quality for projects with large networks of instruments such as the Atmospheric Radiation Measurement (ARM) Program. Wade generated objectively analyzed fields of meteorological variables (temperature, pressure, humidity, and wind) and then compared the objectively analyzed value at the sensor location with the value produced by the sensor. Wade used a Barne's objective analysis scheme to produce objective data values for a given meteorological variable (q) in two- dimensional space. The objectively analyzed value should

153

Radiation Transport Thomas A. Brunner Joint Russian-American Five-Laboratory Conference on  

National Nuclear Security Administration (NNSA)

Forms of Approximate Forms of Approximate Radiation Transport Thomas A. Brunner Joint Russian-American Five-Laboratory Conference on Computational Mathematics/Physics 19-23 June 2005 Vienna, Austria Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The Diffusion Approximation * Taylor Expand Intensity in Angle * Fast, robust, and accurate numerical solutions * Flux can be larger than energy density - More stuff moving than is there to move * Flux Limited Diffusion improves robustness - Limits flux so that it's not larger than energy density - Many different flux limiters Spherical Harmonics (PN) * Intensity expanded further in angle than diffusion

154

The prototype of a detector for monitoring the cosmic radiation neutron flux on ground  

SciTech Connect (OSTI)

This work presents a comparison between the results of experimental tests and Monte Carlo simulations of the efficiency of a detector prototype for on-ground monitoring the cosmic radiation neutron flux. The experimental tests were made using one conventional {sup 241}Am-Be neutron source in several incidence angles and the results were compared to that ones obtained with a Monte Carlo simulation made with MCNPX Code.

Lelis Goncalez, Odair; Federico, Claudio Antonio; Mendes Prado, Adriane Cristina; Galhardo Vaz, Rafael; Tizziani Pazzianotto, Mauricio [Instituto de Estudos Avancados - IEAv/DCTA - Sao Jose dos Campos, SP (Brazil); Semmler, Renato [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP - Sao Paulo, SP (Brazil)

2013-05-06T23:59:59.000Z

155

Integrating and automating the software environment for the Beam and Radiation Monitoring for CMS  

E-Print Network [OSTI]

The real-time online visualization framework used by the Beam and Radiation Monitoring group at the Compact Muon Solenoid at Large Hadron Collider, CERN. The purpose of the visualization framework is to provide real-time diagnostic of beam conditions, which defines the set of the requirements to be met by the framework. Those requirements include data quality assurance, vital safety issues, low latency, data caching, etc. The real-time visualization framework is written in the Java programming language and based on JDataViewer--a plotting package developed at CERN. At the current time the framework is run by the Beam and Radiation Monitoring, Pixel, Tracker groups, Run Field Manager and others. It contributed to real-time data analysis during 2009-2010 runs as a stable monitoring tool. The displays reflect the beam conditions in a real-time with the low latency level, thus it is the first place at the CMS detector where the beam collisions are observed.

Filyushkina, Olga; Juslin, J

2010-01-01T23:59:59.000Z

156

Analyzing Surface Solar Flux Data in Oregon for Changes Due to Aerosols Laura D. Riihimaki1, Frank E. Vignola1, Charles N. Long2, James A. Coakley Jr.3 1 University of Oregon Solar Radiation Monitoring Lab 2 Pacific Northwest National Laboratory 3 Oregon State University, College of Oceanic and Atmospheric Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

76 76 1980 1984 1988 1992 1996 2000 2004 2008 100 150 200 250 Direct Normal Irradiance (W/m 2 ) Eugene Hermiston Burns 3. All-sky direct normal irradiance increases 5% per decade Eppley NIP Conclusions Annual average all-sky total and direct normal irradiance measurements show an overall increase in Oregon between 1980 and 2007. Two measurement sites show statistically significant increases in clear- sky direct normal irradiance in background periods before and after the eruption of Mt. Pinatubo [6] (1987- 2008), consistent with the hypothesis that a reduction in anthropogenic aerosols may contribute to the increase in surface irradiance. References 1. Long, C.N. and T. P. Ackerman, 2000: J. Geophys. Res., 105(D12), 15,609-15,626. 2. Long, C.N., and K.L. Gaustad, 2004: Atmospheric Radiation

157

New portable hand-held radiation instruments for measurements and monitoring  

SciTech Connect (OSTI)

Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification.

Fehlau, P.E.

1987-01-01T23:59:59.000Z

158

Autonomous anthropomorphic robotic arm to monitor plant growth in a laboratory.  

E-Print Network [OSTI]

??An autonomous anthropomorphic robotic arm was designed, fabricated and programmed for monitoring of plant tissue grown in a modified in vitro clonal plant propagation system (more)

Seelye, Mark

2011-01-01T23:59:59.000Z

159

RADIATION PROTECTION, RADIOACTIVE WASTE MANAGEMENT AND SITE MONITORING AT THE NUCLEAR SCIENTIFIC EXPERIMENTAL AND EDUCATIONAL CENTRE IRT-SOFIA AT INRNE-BAS  

Science Journals Connector (OSTI)

......conditions so that the radiation exposure of the staff...resources of the modern radiation monitoring system...in 2006. The staff safety is provided for by using...wirelessly using the software (DOSIMAS) and the...achieved by a stationary radiation monitoring system providing......

Al. Mladenov; D. Stankov; Tz. Nonova; K. Krezhov

2014-07-01T23:59:59.000Z

160

The ''Radiation continuity Checker'', an Instrument for Monitoring Nuclear Disarmament Treaty Compliance  

SciTech Connect (OSTI)

We describe the design, construction and performance of an instrument designed to monitor compliance with future arms control treaties. By monitoring changes in the gamma-ray spectrum emitted by a stored nuclear weapon, our device is able to sense perturbations in the contents of a weapon storage container that would indicate treaty non-compliance. Our instrument (dubbed the Radiation Continuity Checker or RCC) is designed to detect significant perturbations in the gamma-ray spectra (indicative of tampering) while storing no classified information about the weapon, and having a negligible ''false alarm rate''. In this paper we describe the technical details of two prototype instruments and describe the strategies we have adopted to perform signal processing in these instruments. Our first instrument prototype uses a scintillation spectrometer and a massive tungsten alloy collimator to reject the gamma-ray background. Our second prototype instrument makes use of an active collimation scheme employing a multiple detector Compton scatter approach to reject background radiation. The signal processing method we employ uses linear algorithms applied pulse by pulse. This eliminates the need for storage of pulse height spectra, which are in many cases classified.

A. Bernstein; B. A. Brunett; N. R. Hilton; J. C. Lund; J. M. Van Scyoc

2000-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Design of a New Collimation System to Prevent Interference between X-ray Machines and Radiation Portal Monitors  

SciTech Connect (OSTI)

Researchers at Oak Ridge National Laboratory (ORNL) developed a new collimation system that allows radiation portal monitors (RPMs) installed near x-ray machines to operate with a negligible false-positive alarm rate. RPMs are usually installed as far as possible from x-ray machines because false alarms are triggered by escaping x-rays; however, constraints at the installation site sometimes make it necessary that RPMs be installed near x-ray machines. Such RPMs are often plagued by high alarm rates resulting from the simultaneous operation of the RPMs and x-ray machines. Limitations on pedestrian flow, x-ray machine orientation, and RPM location often preclude a simple solution for lowering the alarm rate. Adding additional collimation to the x-ray machines to stop the x-rays at the source can reduce the alarm rate without interfering with site operations or adversely affecting the minimum detectable quantity of material (MDQ). A collimation design has been verified by measurements conducted at a RPM installation site and is applicable to all new and existing RPM installations near x-ray machines.

Guzzardo, Tyler [ORNL] [ORNL; Livesay, Jake [ORNL] [ORNL

2012-01-01T23:59:59.000Z

162

Biological monitoring and abatement program plan for Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The overall purpose of this plan is to evaluate the receiving streams` biological communities for the duration of the permit and meet the objectives for the ORNL BMAP as outlined in the NPDES permit (Appendix). The ORNL BMAP will focus on those streams in the WOC watershed that (1) receive NPDES discharges and (2) have been identified as ecologically impacted. In response to the newly issued NPDES permit, the tasks that are included in this BMAP plan include monitoring biological communities (fish and benthic invertebrates), monitoring mercury contamination in fish and water, monitoring polychlorinated biphenyl (PCB) contamination in fish, and evaluating temperature loading from ORNL outfalls. The ORNL BMAP will evaluate the effects of sediment and oil and grease, as well as the chlorine control strategy through the use of biological community data. Monitoring will be conducted at sites in WOC, First Creek, Fifth Creek, Melton Branch, and WOL.

Kszos, L.A.; Anderson, G.E.; Gregory, S.M.; Peterson, M.J.; Ryon, M.G.; Schilling, E.M.; Smith, J.G.; Southworth, G.R. [Oak Ridge National Lab., TN (United States); Phipps, T.L. [CKY, Inc., Oak Ridge, TN (United States)

1997-06-01T23:59:59.000Z

163

Quality management system and accreditation of the in vivo monitoring laboratory at Karslruhe Institue of Technology  

Science Journals Connector (OSTI)

......de/Produkte/teamWorks/Intranet.asp (accessed March 2010...radionuclides. (2003) Nuclear Technology Publishing. ICRU Report 69...at Karslruhe Institute of Technology. | The in vivo monitoring...at Karlsruhe Institute of Technology (KIT), with one whole body......

B. Breustedt; U. Mohr; N. Biegard; G. Cordes

2011-03-01T23:59:59.000Z

164

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

165

Sandia National Laboratories, California Environmental Monitoring Program annual report for 2011.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the SNL/California Environmental Monitoring Program. It functions as supporting documentation to the SNL/California Environmental Management System Program Manual. The 2010 program report describes the activities undertaken during the previous year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/California.

Holland, Robert C.

2011-03-01T23:59:59.000Z

166

Sandia National Laboratories California Environmental Monitoring Program Annual Report for Calendar Year 2005.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 Update program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

Holland, Robert C.

2006-02-01T23:59:59.000Z

167

Radiation dose survey in a paediatric cardiac catheterisation laboratory equipped with flat-panel detectors  

Science Journals Connector (OSTI)

......investigate the radiation doses delivered...using the PCXMC software. For diagnostic...the E are the radiation field size at...DAP. The PCXMC software calculates organ...Finnish Centre for Radiation and Nuclear Safety. Report No......

O. Dragusin; M. Gewillig; W. Desmet; K. Smans; L. Struelens; H. Bosmans

2008-01-01T23:59:59.000Z

168

Demonstration of a vapor density monitoring system using UV radiation generated from quasi-phasematched SHG waveguide devices  

SciTech Connect (OSTI)

Many industrial applications require non-intrusive diagnostics for process monitoring and control. One example is the physical vapor deposition of titanium alloys. In this paper we present a system based on laser absorption spectroscopy for monitoring titanium vapor. Appropriate transitions for monitoring high rate vaporization of titanium require extension of available IR diode technology to the UV. The heart of this vapor density monitoring system is the 390nm radiation generated from quasi-phase matched interactions within periodically poled waveguides. In this paper, key system components of a UV laser absorption spectroscopy based system specific for titanium density monitoring are described. Analysis is presented showing the minimum power levels necessary from the ultraviolet laser source. Performance data for prototype systems using second harmonic generation (SHG) waveguide technology is presented. Application of this technology to other alloy density monitoring systems is discussed.

Galanti, S.A.; Berzins, L.V.; Brown, J.B.; Tamosaitis, R.S.; Bortz, M.L.; Day, T.; Fejer, M.M.; Wang, W.

1996-01-29T23:59:59.000Z

169

Proposal for the award of a blanket purchase contract, without competitive tendering, for the supply of pressurised ionisation chambers for radiation monitoring  

E-Print Network [OSTI]

Proposal for the award of a blanket purchase contract, without competitive tendering, for the supply of pressurised ionisation chambers for radiation monitoring

2013-01-01T23:59:59.000Z

170

United States Environmental Monitoring EPA  

Office of Legacy Management (LM)

United United States Environmental Monitoring EPA 600/R-93/141 Environmental Protection Systems Laboratory January 1992 Agency P.O. Box 93478 Las Vegas NV 89193-3478 Research and Development _EPA Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1991 Available to DOE and DOE contractors from the Office of Scientificand Technical Information, P.O. Box 62, Oak ridge,TN 39831; pricesavailablefrom (615) 576-8401 Availableto the publicfrom the NationalTechnicalInformationService, U.S. Departmentof Commerce, 5285 Port Royal Road, Springfield, VA 22161 Price Code: PrintedCopyof MicroficheA01 Frontand back cover: CommunityMonitorStation (front) and Whole BodyLaboratory(back), Craig A. Tsosle EnvironmentalMonitoringSystemsLaboratory-LasVegas, Nevada Offsite Environmental Monitoring Report:

171

Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 1999  

SciTech Connect (OSTI)

In January 1993, PNNL established an area monitoring dosimeter program in accordance with Article 514 of the DOE Radiological Control Manual. This program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a)(1)-(4) and Article 511.1 of the DOE Standard Radiological Control, personnel dosimetry shall be provided to 1) radiological workers who are likely to receive at least 100 mrem annually and 2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-1998 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 123 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during calendar year 1999. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusion that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas.

Bivins, Steven R.; Stoetzel, Gregory A.

2000-09-19T23:59:59.000Z

172

Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites  

Broader source: Energy.gov (indexed) [DOE]

Annual Site Inspection and Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites November 2012 LMS/S09415 ENERGY Legacy Management U.S. DEPARTMENT OF Sherwood, Washington, Disposal Site, 2012 Sherwood, Washington, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

173

Time Series Evaluation of Radiation Portal Monitor Data for Point Source Detection  

SciTech Connect (OSTI)

The time series of data from a Radiation Portal Monitor (RPM) system are evaluated for the presence of point sources by isolating the contribution of anomalous radiation. Energy-windowed background spectra taken from the RPM are compared with the observed spectra at each time step during a vehicle drive-through. The total signal is turned into a spectral distance index using this method. This provides a time series with reduced systematic fluctuations due to background attenuation by the vehicle, and allows for point source detection by time-series analyses. The anomalous time series is reanalyzed by using a wavelet filter function of similar size to the expected source profile. A number of real drive-through data sets taken at a U.S. port of entry are analyzed in this way. A set of isotopes are injected into the data set, and the resultant benign and injected data sets are analyzed with gross-counting, spectral-ratio, and time-based algorithms. Spectral and time methods together offer a significant increase to detection performance.

Robinson, Sean M.; Bender, Sarah E.; Flumerfelt, Eric L.; Lopresti, Charles A.; Woodring, Mitchell L.

2009-12-08T23:59:59.000Z

174

A screening model for depleted uranium testing using environmental radiation monitoring data  

SciTech Connect (OSTI)

Information from an ecological risk assessment of depleted uranium test areas at Yuma Proving Ground (YPG) was used to update the required environmental radiation monitoring (ERM) plan. Data to be collected for the ERM can also be used to evaluate the potential for adverse radiological and toxicological effects to terrestrial reptiles and mammals in the affected areas. We developed a spreadsheet-based screening model that incorporates the ERM data and associated uncertainties. The purpose of the model is to provide a conservative estimate of radiological exposure of terrestrial, biota to DU using the ERM data. The uncertainty in the estimate is also predicted so that the variation in the radiological exposure can be used in assessing potential adverse effects from DU testing. Toxicological effects are evaluated as well as radiological effects in the same program using the same data. Our presentation shows an example data set, model calculations, and the report of expected radiation dose rates and probable kidney burdens of select mammals and reptiles. The model can also be used in an inverse mode to calculate the soil concentration required to give either a radiological dose that would produce a potential adverse effect such as fatal cancer or a toxicological dose that would result in nephrotoxic effects in mammals.

Dunfrund, F.L. [Yuma Proving Ground, AZ (United States); Ebinger, M.H.; Hansen, W.R. [Los Alamos National Laboratory, NM (United States)] [and others

1996-06-01T23:59:59.000Z

175

Brookhaven National Laboratory site environmental report for calendar year 1994  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

Naidu, J.R.; Royce, B.A. [eds.

1995-05-01T23:59:59.000Z

176

APPLICATION OF BAYESIAN AND GEOSTATISTICAL MODELING TO THE ENVIRONMENTAL MONITORING OF CS-137 AT THE IDAHO NATIONAL LABORATORY  

SciTech Connect (OSTI)

At the Idaho National Laboratory (INL) Cs-137 concentrations above the U.S. Environmental Protection Agency risk-based threshold of 0.23 pCi/g may increase the risk of human mortality due to cancer. As a leader in nuclear research, the INL has been conducting nuclear activities for decades. Elevated anthropogenic radionuclide levels including Cs-137 are a result of atmospheric weapons testing, the Chernobyl accident, and nuclear activities occurring at the INL site. Therefore environmental monitoring and long-term surveillance of Cs-137 is required to evaluate risk. However, due to the large land area involved, frequent and comprehensive monitoring is limited. Developing a spatial model that predicts Cs-137 concentrations at unsampled locations will enhance the spatial characterization of Cs-137 in surface soils, provide guidance for an efficient monitoring program, and pinpoint areas requiring mitigation strategies. The predictive model presented herein is based on applied geostatistics using a Bayesian analysis of environmental characteristics across the INL site, which provides kriging spatial maps of both Cs-137 estimates and prediction errors. Comparisons are presented of two different kriging methods, showing that the use of secondary information (i.e., environmental characteristics) can provide improved prediction performance in some areas of the INL site.

Kara G. Eby

2010-08-01T23:59:59.000Z

177

Review of the Occupational Radiation Protection Program as Implemented and Recently Enhanced at the Idaho National Laboratory, September 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review of the Review of the Occupational Radiation Protection Program as Implemented and Recently Enhanced at the Idaho National Laboratory May 2011 September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ........................................................................................................................1 2.0 Background .................................................................................................................1 3.0 Scope ...........................................................................................................................2 4.0 Results .........................................................................................................................2

178

The use of artificial neural networks in PVT-based radiation portal monitors  

SciTech Connect (OSTI)

Polyvinyl toluene (PVT) based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit radioactive materials at international border crossings. While PVT detectors provide good sensitivity in detecting the presence of radioactive materials, they provide poor spectral resolution, limiting their ability to identify the isotopic content of the source of radiation. Thus using only total-spectrum or gross-count alarm algorithms, PVT-based RPMs cannot distinguish innocent materials that contain low-levels of normally occurring radioactivity from special nuclear materials of concern. To reduce the number of nuisance alarms produced in PVT-based RPMs by innocent materials, algorithms that analyze spectra from PVT detectors must be optimized to make use of the limited information contained in their energy spectra. This paper discusses how artificial neural networks (ANNs) can be used in such an analysis. The objective was to reduce the nuisance/false alarm probability while maintaining high detection probabilities, thus allowing gross count alarm thresholds to be raised without loss of performance and sensitivity to radioactive materials of interest. The spectra used in this study were obtained from actual PVT-based RPM data, and included cases where simulated spectra were inserted into the measured spectra. This paper also includes an analysis of spectral channel importance and shows evaluations of two methods used to rebin energy spectra into smaller sets. The results show that ANNs can be used with RPMs to reduce nuisance alarms. The algorithms described can be used in analyzing PVT spectra, and potentially sodium iodide spectra.

Kangas, Lars J.; Keller, Paul E.; Siciliano, Edward R.; Kouzes, Richard T.; Ely, James H.

2008-03-21T23:59:59.000Z

179

IN-SITU MONITORING OF CORROSION DURING A LABORATORY SIMULATION OF OXALIC ACID CHEMICAL CLEANING  

SciTech Connect (OSTI)

The Savannah River Site (SRS) will disperse or dissolve precipitated metal oxides as part of radioactive waste tank closure operations. Previously SRS used oxalic acid to accomplish this task. To better understand the conditions of oxalic acid cleaning of the carbon steel waste tanks, laboratory simulations of the process were conducted to determine the corrosion rate of carbon steel and the generation of gases such as hydrogen and carbon dioxide. Open circuit potential measurements, linear polarization measurements, and coupon immersion tests were performed in-situ to determine the corrosion behavior of carbon steel during the demonstration. Vapor samples were analyzed continuously to determine the constituents of the phase. The combined results from these measurements indicated that in aerated environments, such as the tank, that the corrosion rates are manageable for short contact times and will facilitate prediction and control of the hydrogen generation rate during operations.

Wiersma, B; John Mickalonis, J; Michael Poirier, M; John Pareizs, J; David Herman, D; David Beam, D; Samuel Fink, S; Fernando Fondeur, F

2007-10-08T23:59:59.000Z

180

Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 1: Pre-coating monitoring and fresh coating results  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. The partnership of these interests is secured through a cooperative research and development agreement (CRADA), in this case between Lockheed Martin Energy Research Corporation, the manager of the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, and ThermShield International, Ltd., the manufacturer of the technology. This is the first volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. This volume describes the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. By including results from roofs at Tyndall AFB and from an outdoor test facility at the BTC, the data cover the range from poorly insulated to well-insulated roofs and two kinds of radiation control coatings on various roof membranes.

Petrie, T.W.; Childs, P.W.

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - australian radiation laboratory Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Laboratory of Numerical Modeling for Atmospheric... , Beijing, China ABSTRACT: A broad-scale Australian monsoon index (AUSMI) describing multi-time scale Source: Wang, Bin...

182

United States Environmental Monitoring  

Office of Legacy Management (LM)

EPA 60014-91/030 EPA 60014-91/030 Environmental Protection Systems Laboratory DOE/DP00539-063 Agency P.O. Box 93478 Las Vegas NV 891 93-3478 Research and Development Offsite Environmental Monitoring Report: 1 - 3 5 Radiation Monitorina Around * / (- P 7 1 United States ~ u c l g a r Test Areas Calendar Year 1990 This page intentionally left blank EPN60014-90 DOWDP Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1990 Contributors: D.J. Chaloud, B.B. Dicey, D.G. Easterly, C.A. Fontana, R.W. Holloway, A.A. Mullen, V.E. Niemann, W.G. Phillips, D.D. Smith, N.R. Sunderland, D.J. Thome, and Nuclear Radiation Assessment Division Prepared for: U.S. Department of Energy under Interagency Agreement Number DE-A108-86-NV10522

183

Monitoring  

SciTech Connect (OSTI)

The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2004-11-23T23:59:59.000Z

184

REVIEW OF CdTe MEDICAL APPLICATIONS Radiation Monitoring Devices, Inc. 44 Hunt St., Watertown, Massachusetts 02172, U. S. A.  

E-Print Network [OSTI]

REVIEW OF CdTe MEDICAL APPLICATIONS G. ENTINE Radiation Monitoring Devices, Inc. 44 Hunt St place de dents synthé- tiques. Par ailleurs, les détecteurs CdTe ont été utilisés pour le diagnostic d développer des photo- conducteurs X à base de CdTe pour les tomo-densitomètres ; toutefois, des progrès

Paris-Sud XI, Université de

185

Environmental radiation monitoring plan for depleted uranium and beryllium areas, Yuma Proving Ground  

SciTech Connect (OSTI)

This Environmental Radiation Monitoring Plan (ERM) discusses sampling soils, vegetation, and biota for depleted uranium (DU) and beryllium (Be) at Yuma Proving Ground (YPG). The existing ERM plan was used and modified to more adequately assess the potential of DU and Be migration through the YPG ecosystem. The potential pathways for DU and Be migration are discussed and include soil to vegetation, soil to animals, vegetation to animals, animals to animals, and animals to man. Sample collection will show DU deposition and will be used to estimate DU migration. The number of samples from each area varies and depends on if the firing range of interest is currently used for DU testing (GP 17A) or if the range is not used currently for DU testing (GP 20). Twenty to thirty-five individual mammals or lizards will be sampled from each transect. Air samples and samples of dust in the air fall will be collected in three locations in the active ranges. Thirty to forty-five sediment samples will be collected from different locations in the arroys near the impact areas. DU and Be sampling in the Hard Impact and Soft Impact areas changed only slightly from the existing ERM. The modifications are changes in sample locations, addition of two sediment transport locations, addition of vegetation samples, mammal samples, and air sampling from three to five positions on the impact areas. Analysis of samples for DU or total U by inductively-coupled mass spectroscopy (ICP/MS), cc spectroscopy, neutron activation analysis (NAA), and kinetic phosphorimetric analysis (KPA) are discussed, and analysis for Be by ICP/MS are recommended. Acquiring total U (no isotope data) from a large number of samples and analysis of those samples with relatively high total U concentrations results in fewer isotopic identifications but more information on U distribution. From previous studies, total U concentrations greater than about 3 times natural background are usually DU by isotopic confirmation.

Ebinger, M.H.; Hansen, W.R.

1994-05-11T23:59:59.000Z

186

Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor  

E-Print Network [OSTI]

The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped ...

Grant, Catherine E.

187

Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992  

SciTech Connect (OSTI)

SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

Cantwell, K.; St. Pierre, M. [eds.

1992-12-31T23:59:59.000Z

188

Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River  

SciTech Connect (OSTI)

In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

Loar, J.M. [ed.] [ed.

1994-04-01T23:59:59.000Z

189

Produce and fish sampling program of Los Alamos National Laboratory's Environmental Surveillance Group  

SciTech Connect (OSTI)

This report describes produce and fish sampling procedures of the Environmental Surveillance Group at the Los Alamos National Laboratory. The program monitors foodstuffs and fish for possible radioactive contamination from Laboratory operations. Data gathered in this program on radionuclide concentrations help to estimate radiation doses to Laboratory personnel and the public. 3 references, 7 figures, 2 tables.

Salazar, J.G.

1984-09-01T23:59:59.000Z

190

Sandia National Laboratories: Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the numbers from 2007. Records are often ... Alaskan North Slope Climate: Hard Data from a Hard Place On October 11, 2012, in Analysis, Climate, Global Climate & Energy,...

191

E-Print Network 3.0 - aerial radiation monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and by convective fluid flows. The Sun as a Star Star-birth Clouds... ) Electromagnetic Interference (communications failure) Radiation Overdose (astronaut health hazard)...

192

UniversityIndustryNational Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing  

Broader source: Energy.gov [DOE]

Lead Performer: Oak Ridge National Laboratory- Oak Ridge, TN Partners: -- University of Tennessee Knoxville, TN -- Richman Surrey, Inc. Scottsdale, AZ

193

Savannah River Laboratory monthly report, February 1992  

SciTech Connect (OSTI)

This report is a progress report for the Savannah River Laboratory for the month of February 1992. The progress and activities in six categories were described in the report. The categories are reactor, tritium, separations, environmental, waste management, and general. Each category described numerous and varied activities. Some examples of these activities described are such things as radiation monitoring, maintenance, modifications, and remedial action.

Ferrell, J.M. (comp.); Ice, L.W. (ed.)

1992-02-01T23:59:59.000Z

194

Determining the Impact of Concrete Roadways on Gamma Ray Background Readings for Radiation Portal Monitoring Systems  

E-Print Network [OSTI]

locations have reported abnormally high gamma background count rates. The higher background data has been attributed, in part, to the concrete surrounding the portal monitors. Higher background can ultimately lead to more material passing through the RPMs...

Ryan, Christopher Michael

2012-07-16T23:59:59.000Z

195

Brookhaven National Laboratory site environmental report for calendar year 1996  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

1998-01-01T23:59:59.000Z

196

Apparatus and method for OSL-based, remote radiation monitoring and spectrometry  

DOE Patents [OSTI]

Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

Smith, Leon Eric (Richland, WA); Miller, Steven D. (Richland, WA); Bowyer, Theodore W. (Oakton, VA)

2008-05-20T23:59:59.000Z

197

Apparatus And Method For Osl-Based, Remote Radiation Monitoring And Spectrometry  

DOE Patents [OSTI]

Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

Miller, Steven D. (Richland, WA); Smith, Leon Eric (Richland, WA); Skorpik, James R. (Kennewick, WA)

2006-03-07T23:59:59.000Z

198

Individual neutron monitoring in workplaces with mixed neutron/photon radiation  

Science Journals Connector (OSTI)

......Sweden 7 Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig, Germany 8 Kernkraftwerk Krummel GmbH, D-21502 Geesthacht, Germany EVIDOS (evaluation of individual dosimetry in mixed neutron and photon radiation fields) is an European Commission......

T. Bolognese-Milsztajn; D. Bartlett; M. Boschung; M. Coeck; G. Curzio; F. d'Errico; A. Fiechtner; V. Giusti; V. Gressier; J. Kyllnen; V. Lacoste; L. Lindborg; M. Luszik-Bhadra; C. Molinos; G. Pelcot; M. Reginatto; H. Schuhmacher; R. Tanner; F. Vanhavere; D. Derdau

2004-08-01T23:59:59.000Z

199

The new EC technical recommendations for monitoring individuals occupationally exposed to external radiation  

Science Journals Connector (OSTI)

......intercomparisons Internal audit Every year External audit Audit by approval authority condition for approval Audit according to accreditation requirements Inspection...States, although with differences. Low-energy electron/beta radiation and neutron dosimetry......

J. G. Alves; P. Ambrosi; D. T. Bartlett; L. Currivan; J. W. E. van Dijk; E. Fantuzzi; V. Kamenopoulou

2011-03-01T23:59:59.000Z

200

Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program  

SciTech Connect (OSTI)

This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

NONE

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

Stoffel, T.; Andreas, A.

202

Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 2: Long-term monitoring and modeling  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. This is the second volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. The first volume described the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. This second volume updates and completes the presentation of data to compare performance of fresh coatings with weathered coatings.

Petrie, T.W.; Childs, P.W.

1998-06-01T23:59:59.000Z

203

I United States Env~ronmental Monitoring EPA-600.4-83-032 Env~ronmental Protect~on Systems Laboratory DOE 'DPt'0539-048  

Office of Legacy Management (LM)

United States Env~ronmental Monitoring United States Env~ronmental Monitoring EPA-600.4-83-032 Env~ronmental Protect~on Systems Laboratory DOE 'DPt'0539-048 Agency P 0 Box 15027 J u l y 1983 Las Vegas NV 891 14-5027 Research and Development Offsite Environmental Monitoring Report Radation monitoring around *bi/ United States nuclear test areas, calendar year 1982 prepared for the U.S. Department of Energy This page intentionally left blank EPA-600/4-83- 032 DOE/DP/00539-048 J u l y 1983 OFFSITE ENVIRONMENTAL MONITORING REPORT Radi a t i o n moni t o r i ng around U n i t e d States n u c l e a r t e s t areas, calendar y e a r 1982 compiled by S. C. Black, R. F. Grossman, A. A. Mullen, G. D. P o t t e r and D. D. Smith, and Nuclear R a d i a t i o n Assessment D i v i s i o n prepared f o r t h e U.S. Department o f Energy under Interagency Agreement

204

Radiation protection for pregnant workers and their offspring: a recommended approach for monitoring  

Science Journals Connector (OSTI)

......The IAEA Basic Safety Standards present similar recommendations...IAEA) Basic Safety Standards (BSS)(1) state that...International Action Plan for Occupational Radiation...provides a detailed review of knowledge regarding...pregnant should provide a standard of protection for any......

Rodolfo Cruz-Suarez; Dietmar Nosske; Denison Souza-Santos

2011-03-01T23:59:59.000Z

205

Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies  

Science Journals Connector (OSTI)

Abstract The Fukushima Daiichi nuclear power plant (FDNPP) incident released a significant mass of radioactive material into the atmosphere. An estimated 22% of this material fell out over land following the incident. Immediately following the disaster, there was a severe lack of information not only pertaining to the identity of the radioactive material released, but also its distribution as fallout in the surrounding regions. Indeed, emergency aid groups including the UN did not have sufficient location specific radiation data to accurately assign exclusion and evacuation zones surrounding the plant in the days and weeks following the incident. A newly developed instrument to provide rapid and high spatial resolution assessment of radionuclide contamination in the environment is presented. The device consists of a low cost, lightweight, unmanned aerial platform with a microcontroller and integrated gamma spectrometer, GPS and LIDAR. We demonstrate that with this instrument it is possible to rapidly and remotely detect ground-based radiation anomalies with a high spatial resolution (<1m). Critically, as the device is remotely operated, the user is removed from any unnecessary or unforeseen exposure to elevated levels of radiation.

J.W. MacFarlane; O.D. Payton; A.C. Keatley; G.P.T. Scott; H. Pullin; R.A. Crane; M. Smilion; I. Popescu; V. Curlea; T.B. Scott

2014-01-01T23:59:59.000Z

206

Test and valuation of portal monitors of nuclear material with the use of plastic scintillators and hand-held radiation detectors. Final report  

SciTech Connect (OSTI)

This report is the final part of work fulfilled under the contract with LANL in the cooperative program of American and Russian nuclear laboratories, aimed at strengthening the system of protection, control, and accountability of nuclear materials. Purpose of this work was to test portal and handheld monitors made by TSA Co. (USA) in order to upgrade the control of unauthorized passout of nuclear and radioactive materials from controlled territory and evaluation of possible application at Russian nuclear facility. Results of tests of PM-700SP pedestrian portal monitors and PRM-470A handheld monitors are given.

Savin, N.I. [Moskovskij Fiziko-Tekhnicheskij Inst., Moscow (Russian Federation)

1995-12-31T23:59:59.000Z

207

Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River  

SciTech Connect (OSTI)

As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

Loar, J.M. [ed.] [ed.; Adams, S.M.; Bailey, R.D. [and others] [and others

1994-03-01T23:59:59.000Z

208

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

Chase, J.

1998-10-30T23:59:59.000Z

209

The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors  

SciTech Connect (OSTI)

Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

Bartlett, W.T.; Walker, B.A.

1996-01-01T23:59:59.000Z

210

U.S. Seafood Safe and Unaffected by Radiation Contamination from Japanese Nuclear Power Plant Incident; U.S. Monitoring Control Strategy Explained  

E-Print Network [OSTI]

U.S. Seafood Safe and Unaffected by Radiation Contamination from Japanese Nuclear Power Plant (NOAA) have high confidence in the safety of seafood products in the U.S. marketplace or exported U.S. seafood products. The U.S. government's measures to monitor and control the three

211

Aerial radiation monitoring around the Fukushima Dai-ichi nuclear power plant using an unmanned helicopter  

Science Journals Connector (OSTI)

Abstract The Great East Japan Earthquake on March 11, 2011 generated a series of large tsunami that seriously damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which resulted in the release of radioactive materials into the environment. To provide further details regarding the distribution of air dose rate and the distribution of radioactive cesium (134Cs and 137Cs) deposition on the ground within a radius of approximately 5km from the nuclear power plant, we carried out measurements using an unmanned helicopter equipped with a radiation detection system. The distribution of the air dose rate at a height of 1m above the ground and the radioactive cesium deposition on the ground was calculated. Accordingly, the footprint of radioactive plumes that extended from the FDNPP was illustrated.

Yukihisa Sanada; Tatsuo Torii

2015-01-01T23:59:59.000Z

212

Relation between clinical and laboratory parameters with radiation dose rates from patients receiving iodine-131 therapy for thyroid carcinoma  

Science Journals Connector (OSTI)

......educate every patient on radiation safety procedures for the dosage...improvised containers; the safety officer transferred...origin of emission, and radiation detection survey metre...significant. SPSS for Windows software package (Release 11......

Isa Neshandar Asli; Nastaran Baharfard; Babak Shafiei; Faraj Tabei; Hamid Javadi; Mohammad Seyedabadi; Iraj Nabipour; Majid Assadi

2010-03-01T23:59:59.000Z

213

Radiation from Small-Scale Magnetic Field Turbulence: Implications for Gamma-Ray Bursts and Laboratory Astrophysical Plasmas  

E-Print Network [OSTI]

a region of current filamentation, and show that the jitter radiation may be used as a radiative diagnostic to determine features of the magnetic field distribution within this region. For gamma-ray bursts, this instability may play a significant...

Reynolds, Sarah J

2012-05-31T23:59:59.000Z

214

Environmental Monitoring  

Science Journals Connector (OSTI)

Cell processing facilities should implement and maintain a program of environmental monitoring regardless of whether product manufacturing occurs in an unclassified laboratory space or in a Class 10,000 cleanroom

A. Gee MI Biol; PhD; D.L. Lyon MT (ASCP); CLSp (MB)

2009-01-01T23:59:59.000Z

215

2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites  

SciTech Connect (OSTI)

This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

none,

2014-03-01T23:59:59.000Z

216

2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites  

SciTech Connect (OSTI)

This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

none,

2013-11-01T23:59:59.000Z

217

New technologies for item monitoring  

SciTech Connect (OSTI)

This report responds to the Department of Energy`s request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence & Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet).

Abbott, J.A. [EG & G Energy Measurements, Albuquerque, NM (United States); Waddoups, I.G. [Sandia National Labs., Albuquerque, NM (United States)

1993-12-01T23:59:59.000Z

218

NAREL Quality Assurance Project Plan Deployment of Air Monitors to the WIPP Site  

E-Print Network [OSTI]

Requirements for Quality Assurance Project Plans," United States Environmental Protection Agency, OfficeNAREL Quality Assurance Project Plan Deployment of Air Monitors to the WIPP Site Effective Date April 5, 2014 WIPP/QAPP-1 National Analytical Radiation Environmental Laboratory Office of Radiation

219

Groundwater quality monitoring well installation for Waste Area Grouping at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This report documents the drilling and installation of 18 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 11. WAG 11 (White Wing Scrap Yard) is located on the west end of East Fork Ridge between White Wing Road and the Oak Ridge Turnpike. The scrap yard is approximately 25 acres in size. The wells at WAG 11 were drilled and developed between January 1990 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at WAG 11 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of four basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 11. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents.

Mortimore, J.A.; Lee, T.A.

1994-09-01T23:59:59.000Z

220

Three-dimensional, Time-Resolved, Intrafraction Motion Monitoring Throughout Stereotactic Liver Radiation Therapy on a Conventional Linear Accelerator  

SciTech Connect (OSTI)

Purpose: To investigate the time-resolved 3-dimensional (3D) internal motion throughout stereotactic body radiation therapy (SBRT) of tumors in the liver using standard x-ray imagers of a conventional linear accelerator. Methods and Materials: Ten patients with implanted gold markers received 11 treatment courses of 3-fraction SBRT in a stereotactic body-frame on a conventional linear accelerator. Two pretreatment and 1 posttreatment cone-beam computed tomography (CBCT) scans were acquired during each fraction. The CBCT projection images were used to estimate the internal 3D marker motion during CBCT acquisition with 11-Hz resolution by a monoscopic probability-based method. Throughout the treatment delivery by conformal or volumetric modulated arc fields, simultaneous MV portal imaging (8 Hz) and orthogonal kV imaging (5 Hz) were applied to determine the 3D marker motion using either MV/kV triangulation or the monoscopic method when marker segmentation was unachievable in either MV or kV images. The accuracy of monoscopic motion estimation was quantified by also applying monoscopic estimation as a test for all treatments during which MV/kV triangulation was possible. Results: Root-mean-square deviations between monoscopic estimations and triangulations were less than 1.0 mm. The mean 3D intrafraction and intrafield motion ranges during liver SBRT were 17.6 mm (range, 5.6-39.5 mm) and 11.3 mm (2.1-35.5mm), respectively. The risk of large intrafraction baseline shifts correlated with intrafield respiratory motion range. The mean 3D intrafractional marker displacement relative to the first CBCT was 3.4 mm (range, 0.7-14.5 mm). The 3D displacements exceeded 8.8 mm 10% of the time. Conclusions: Highly detailed time-resolved internal 3D motion was determined throughout liver SBRT using standard imaging equipment. Considerable intrafraction motion was observed. The demonstrated methods provide a widely available approach for motion monitoring that, combined with motion-adaptive treatment techniques, has the potential to improve the accuracy of radiation therapy for moving targets.

Worm, Esben S., E-mail: esbeworm@rm.dk [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Institute of Clinical Medicine, Aarhus University (Denmark); Hyer, Morten; Fledelius, Walter [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark)] [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Poulsen, Per R. [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark) [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Institute of Clinical Medicine, Aarhus University (Denmark)

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

Chase, J.

2000-10-24T23:59:59.000Z

222

Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

223

University-Industry-National Laboratory Partnership to Improve...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National Laboratory...

224

Human radiation studies: Remembering the early years. Oral history of Merril Eisenbud, January 26, 1995  

SciTech Connect (OSTI)

Merril Eisenbud was interviewed on January 26, 1995 by representatives of the US DOE Office of Human Radiation Experiments. Following a brief biographical sketch, Mr. Eisenbud relates his remembrances as the AEC`s first industrial hygienist, the setting up of AEC`s Health and Safety Laboratory, monitoring radioactive fallout, and use or exposure of humans to radiation.

NONE

1995-05-01T23:59:59.000Z

225

Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory  

SciTech Connect (OSTI)

The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.

Ajemian, R.C. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

1995-12-31T23:59:59.000Z

226

Turbulence radiation interaction in Reynolds-averaged Navier-Stokes simulations of nonpremixed piloted turbulent laboratory-scale flames  

SciTech Connect (OSTI)

Numerical simulation results are presented for two axisymmetric, nonluminous turbulent piloted jet diffusion flames: Sandia Flame D (SFD) and Delft Flame III (DFIII). Turbulence is represented by a Reynolds stress transport model, while chemistry is modeled by means of steady laminar flamelets. We use the preassumed PDF approach for turbulence-chemistry interaction. A weighted sum of gray gases model is used for the gas radiative properties. The radiative transfer equation is solved using the discrete ordinates method in the conservative finite-volume formulation. The radiative loss leads to a decrease in mean temperature, but does not significantly influence the flow and mixing fields, in terms either of mean values or of rms values of fluctuations. A systematic analysis of turbulence-radiation interaction (TRI) is carried out. By considering five different TRI formulations, and comparing also with a simple optically thin model, individual TRI contributions are isolated and quantified. For both flames, effects are demonstrated of (1) influence of temperature fluctuations on the mean Planck function, (2) temperature and composition fluctuations on the mean absorption coefficient, and (3) correlation between absorption coefficient and Planck function. The strength of the last effect is stronger in DFIII than in SFD, because of stronger turbulence-chemistry interaction and lower mean temperature in DFIII. The impact of the choice of TRI model on the prediction of the temperature-sensitive minor species NO is determined in a postprocessing step with fixed flow and mixing fields. Best agreement for NO is obtained using the most complete representation of TRI. (author)

Habibi, A.; Merci, B. [Department of Flow, Heat and Combustion Mechanics, Ghent University, B-9000 Ghent (Belgium); Roekaerts, D. [Delft University of Technology, Delft (Netherlands)

2007-10-15T23:59:59.000Z

227

ORISE: REAC/TS Cytogenetic Biodosimetry Laboratory conducts internatio...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cytogenetic Biodosimetry Laboratory conducts international exercise to assess radiation dose estimation Cytogenetics biodosimetry dicentric analysis ORISE and the Radiation...

228

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

229

Wireless Transmission of Monitoring Data out of an Underground Repository: Results of Field Demonstrations Performed at the HADES Underground Laboratory - 13589  

SciTech Connect (OSTI)

As part of the European 7. framework project MoDeRn, Nuclear Research and Consultancy Group (NRG) performed experiments in order to demonstrate the feasibility of wireless data transmission through the subsurface over large distances by low frequency magnetic fields in the framework of the geological disposal of radioactive waste. The main objective of NRG's contribution is to characterize and optimize the energy use of this technique within the specific context of post-closure monitoring of a repository. For that, measurements have been performed in the HADES Underground Research Laboratory (URL) located at Mol, Belgium, at 225 m depth. The experimental set-up utilizes a loop antenna for the transmitter that has been matched to the existing infrastructure of the HADES. Between 2010 and 2012 NRG carried out several experiments at the HADES URL in order to test the technical set-up and to characterize the propagation behavior of the geological medium and the local background noise pattern. Transmission channels have been identified and data transmission has been demonstrated at several frequencies, with data rates up to 10 bit/s and bit error rates <1%. A mathematical model description that includes the most relevant characteristics of the transmitter, transmission path, and receiver has been developed and applied to analyze possible options to optimize the set-up. With respect to the energy-efficiency, results so far have shown that data transmission over larger distances through the subsurface is a feasible option. To support the conclusions on the energy need per bit of transmitted data, additional experiments are foreseen. (authors)

Schroeder, T.J.; Rosca-Bocancea, E.; Hart, J. [Nuclear Research and Consultancy Group (NRG), P.O. Box 25, NL-1755 ZG Petten (Netherlands)] [Nuclear Research and Consultancy Group (NRG), P.O. Box 25, NL-1755 ZG Petten (Netherlands)

2013-07-01T23:59:59.000Z

230

Monte Carlo Studies of the Radiation Fields in the Linac Coherent Light Source Undulators and of the Corresponding Signals in the Cerenkov Beam Loss Monitors  

SciTech Connect (OSTI)

In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields in permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the event files, to compute Cerenkov production and then to simulate the optical coupling of the BLM detectors, accounting for the transmission of light through the quartz.

Santana Leitner, Mario

2010-09-14T23:59:59.000Z

231

Sandia National Laboratories/California site environmental report for 1997  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

1998-06-01T23:59:59.000Z

232

Weld Monitor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring of Laser Beam Welding Monitoring of Laser Beam Welding Using Infrared Weld Emissions P. G. Sanders, J. S. Keske, G. Kornecki, and K. H. Leong Technology Development Division Argonne National Laboratory Argonne, IL 60439 USA The submitted manuscript has been authorized by a contractor of the U. S. Government under contract No. W-31-109-ENG-38. Accordingly, the U. S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes. Abstract A non-obtrusive, pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld

233

Independent Oversight Review, Idaho National Laboratory- September 2011  

Broader source: Energy.gov [DOE]

Review of the Occupational Radiation Program as Implemented and Recently Enhanced at the Idaho National Laboratory

234

International Conference Synchrotron Radiation Instrumentation SRI `94  

SciTech Connect (OSTI)

This report contains abstracts for the international conference on Synchrotron Radiation Instrumentation at Brookhaven National Laboratory.

Not Available

1994-10-01T23:59:59.000Z

235

Brookhaven National Laboratory site environmental report for calendar year 1995  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

1996-12-01T23:59:59.000Z

236

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uniformity and Profile: Uniformity and Profile: Although the beam profile at NSRL can be tuned to a variety of shapes and sizes, the most common profile used in radiobiology experiments is a "square" beam with a uniform center of approximately 20 x 20 cm2. A picture of this beam profile captured with the Digital Beam Imager is shown below. Figure 1: Beam Profile observed using the Digital Beam Imager showing four T75 flasks with a small amount of medium in the bottom of each flask. False color indicates the beam intensity is uniform across the 20 x 20 cm2 exposure area. Note that the foam used to hold the flasks is not registered by any change in intensity, and is essentially invisible in this image. Hot spots at the periphery are a by-product of octupole focusing magnets.

237

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spill Structure: Spill Structure: Under normal operating conditions, the Booster uses a 3.8 second cycle, with the extracted beam delivered during a 0.3-0.4 second interval. This is called the "Slow Extracted Beam", or SEB. Schematically, this would look like figure 1. Figure 1: Spill schematic of the beam delivery to NSRL. In reality, the beam delivered to NSRL is not uniformly distributed in time, but has time structure on many different levels. An ion chamber in the beam shows the slow time structure of extracted beam. Figure 2 shows the beam intensity as a function of time during normal slow extraction. Figure 2: Ion Chamber measurement of the time structure of the NSRL Beam Intensity during standard slow extracted beam. Vertical axis is proportional to beam intensity, horizontal axis is in milliseconds.

238

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Species and Energies Used Previously at NSRL Ion Species and Energies Used Previously at NSRL Ion Species [1] Energy [2] (MeV/nucleon) Maximum Intensity [3] (ions per spill) LET [4] (keV/m) H-1 50 - 2500 6.4 x 1011 1.26 - 0.21 He-4 50 - 1000 0.88 x 1010 5.01 - 0.89 C-12 65 - 1000 1.2 x 1010 36.79 - 8.01 O-16 50 - 1000 0.4 x 1010 80.50 - 14.24 Ne-20 70 - 1000 0.10 x 1010 96.42 - 22.25 Si-28 93 - 1000 0.3 x 1010 151 - 44 Cl-35 500 - 1000 0.2 x 1010 80 - 64 Ar-40 350 0.02 x 1010 105.8 Ti-48 150 - 1000 0.08 x 1010 265 - 108 Fe-56 50 - 1000 0.2 x 1010 832 - 150 Kr-84 383 403 Xe-131 228 1204 Ta-181 292 - 313 1827 - 1896 Au-197 76 - 165 1 x 107 4828 - 3066 Sequential Field (Fe/H) 1000 Various 150/0.2 Solar Particle Event [5] 30 - 180 Various 1.26 - 0.21 [1] Different isotopes of some ions are also available. With the

239

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample Holder Layout: Sample Holder Layout: NSRL maintains a wide variety of sample holders ready for users to mount standard sample containers in. This includes holders for four T75 flasks, six T25 flasks, and several arrangements for small test tubes. If you cannot make use of the existing sample holders, then NSRL staff can fabricate a custom sample holder to fit your needs. Most sample holders are carved out of low-mass polyethylene foam shown in the photographs below using a hot-wire cutter. This foam produces minimal scatter and fragmentation of the incoming heavy ion beam. It is sized for easy fitting into the sample flipper. If the sample holder you need is not already available, we can usually make up a custom holder for you on short notice. Figure 1 shows the Hot Wire Foam Cutter.

240

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Illumination Levels in NASA Support Rooms in Medical and NSRL Facilities Illumination Levels in NASA Support Rooms in Medical and NSRL Facilities A. Readings in Medical Room Macro-Environment Micro-Environment Macro-Environment Micro-Environment (in Foot Candles) (in Foot Candles) (in Lux) (in Lux) 9-274 21.5 3.5 231 37.7 11-143 58 3.8 624 40.9 11-211 58 4.2 624 45.2 11-212 35 4.5 377 48.4 11-213 44 4.3 474 46.3 11-214 36.5 5.5 393 59.2 11-221 51 6.2 549 66.7 11-231 24.5 2.9 264 31.2 11-232 37.5 3.5 404 37.7 11-244 35.5 2.8 382 30.1 B. Readings in NSRL Room Macro-Environment Micro-Environment Macro-Environment Micro-Environment (in Foot Candles) (in Foot Candles) (in Lux) (in Lux) A-1 57 24 613 258 A-2 81.5 32 877 344 A-3 51 11.8 549 127 Top of Page Last Modified: July 15, 2008

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stacking Samples: General Considerations Stacking Samples: General Considerations Stacking Samples: The Paradoxical Effect of Shielding Samples on a Table (or The Advantages of Foam Sample Holders) Stacking Samples: General Considerations When planning beam time requests, an important consideration is how many samples can be exposed at the same time. The large beam spot with uniform illumination (about 20 x 20 cm2) allows for as many as four T75 flasks or six T25 flasks to be contained within the beam center. Under certain conditions it is possible to stack multiple samples along the beam direction. The effect of stacked samples can either increase the dose or decrease the dose depending on the heavy ion being used, the beam energy, and other considerations. The details of dose delivery need careful consideration before sample stacking is utilized.

242

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flipper: Flipper: When exposing cell samples to the NSRL Beam, some users keep the cell samples in sample containers (such as the T25 or T75 bottles) with only a small amount of medium to keep the cells healthy. Putting the cells into the beam usually involves orienting the containers so that the cells are no longer covered by the medium. This can cause the cells to dry out or become damaged, degrading the results, so it became important to keep the time-out-of-medium to a minimum. To that end, users make use of the remote sample flipper which allows the containers to remain horizontal until immediately before the beam is delivered. The experimenter can then "flip" the samples up into the beam for the exposure, and then flip them back down as soon as the exposure is complete. This means that the cells will be out of their medium for typically less than a minute instead of the ~4-5 minutes required for the complete access. Pictures of the sample flipper in horizontal and vertical position illustrate the procedure. Controls for the sample flipper are a simple manual switch that the experimenters operate, with the help of NSRL operators.

243

Solar Radiation Research Laboratory (Poster)  

SciTech Connect (OSTI)

SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

2012-07-01T23:59:59.000Z

244

SSRL- Stanford Synchrotron Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

this within 7.5 months with beam turn in the followin g month--2 months ahead of the completion milestone. Richard Boyce, responsible for the magnet and supports acquisition,...

245

BNL NASA Space Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Incubator: Incubator: NSRL has available an incubator that has been modified to allow samples requiring strict environmental controls to be placed in the beam for long exposures. The incubator provides a temperature and humidity controlled enclosure, and has thin kapton windows to allow passage of the beam with minimal interaction. Ports in the incubator allow for calibration inside the incubator. The incubator itself can be mounted on the rails in the target room so that users can prepare their samples in the cell preparation rooms, and then roll the incubator into the target room for easy placement in the beam. The dimensions of the inside of the incubator are [need numbers here]. Several photographs below show the incubator mounted on the beamline rails in the NSRL Target Room ready to take beam.

246

Monitoring SERC Technologies Solar Photovoltaics  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

247

Progress in Z-Pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories.  

SciTech Connect (OSTI)

Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions.

Bailey, James E.; Haines, Malcolm G. (Imperial College, London, United Kingdom); Chandler, Gordon Andrew; Bliss, David Emery; Olson, Richard Edward; Sanford, Thomas W. L.; Olson, Craig Lee; Nash, Thomas J.; Ruiz, Carlos L.; Matzen, Maurice Keith; Idzorek, George C. (Los Alamos National Laboratory, Los Alamos, NM); Stygar, William A.; Apruzese, John P. (Naval Research Laboratory, Washington DC); Cuneo, Michael Edward; Cooper, Gary Wayne (University of New Mexico, Albuquerque, NM); Chittenden, Jeremy Paul (Imperial College, London, United Kingdom); Chrien, Robert E. (Los Alamos National Laboratory, Los Alamos, NM); Slutz, Stephen A.; Mock, Raymond Cecil; Leeper, Ramon Joe; Sarkisov, Gennady Sergeevich (Ktech Corporation, Albuquerque, NM); Peterson, Darrell L. (Los Alamos National Laboratory, Los Alamos, NM); Lemke, Raymond William; Mehlhorn, Thomas Alan; Roderick, Norman Frederick (University of New Mexico, Albuquerque, NM); Watt, Robert G. (Los Alamos National Laboratory, Los Alamos, New MM)

2004-06-01T23:59:59.000Z

248

Establishing cytogenetic biodosimetry laboratory in Saudi Arabia and producing preliminary calibration curve of dicentric chromosomes as biomarker for medical dose estimation in response to radiation emergencies  

Science Journals Connector (OSTI)

In cases of individual radiation overexposure, it is important to provide suitable dose assessment, medical triage, diagnoses and treatment ... for effective medical management of a suspected acute radiation over...

Khaled Al-Hadyan; Sara Elewisy; Belal Moftah; Mohamed Shoukri; Awad Alzahrany

2014-04-01T23:59:59.000Z

249

Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1970-1992: The JANUS Program Survival and Pathology Data  

SciTech Connect (OSTI)

A research reactor for exclusive use in experimental radiobiology was designed and built at Argonne National Laboratory in the 1960`s. It was located in a special addition to Building 202, which housed the Division of Biological and Medical Research. Its location assured easy access for all users to the animal facilities, and it was also near the existing gamma-irradiation facilities. The water-cooled, heterogeneous 200-kW(th) reactor, named JANUS, became the focal point for a range of radiobiological studies gathered under the rubic of {open_quotes}the JANUS program{close_quotes}. The program ran from about 1969 to 1992 and included research at all levels of biological organization, from subcellular to organism. More than a dozen moderate- to large-scale studies with the B6CF{sub 1} mouse were carried out; these focused on the late effects of whole-body exposure to gamma rays or fission neutrons, in matching exposure regimes. In broad terms, these studies collected data on survival and on the pathology observed at death. A deliberate effort was made to establish the cause of death. This archieve describes these late-effects studies and their general findings. The database includes exposure parameters, time of death, and the gross pathology and histopathology in codified form. A series of appendices describes all pathology procedures and codes, treatment or irradiation codes, and the manner in which the data can be accessed in the ORACLE database management system. A series of tables also presents summaries of the individual experiments in terms of radiation quality, sample sizes at entry, mean survival times by sex, and number of gross pathology and histopathology records.

Grahn, D.; Wright, B.J.; Carnes, B.A.; Williamson, F.S.; Fox, C.

1995-02-01T23:59:59.000Z

250

Clinical Application of In-Room Positron Emission Tomography for In Vivo Treatment Monitoring in Proton Radiation Therapy  

SciTech Connect (OSTI)

Purpose: The purpose of this study is to evaluate the potential of using in-room positron emission tomography (PET) for treatment verification in proton therapy and for deriving suitable PET scan times. Methods and Materials: Nine patients undergoing passive scattering proton therapy underwent scanning immediately after treatment with an in-room PET scanner. The scanner was positioned next to the treatment head after treatment. The Monte Carlo (MC) method was used to reproduce PET activities for each patient. To assess the proton beam range uncertainty, we designed a novel concept in which the measured PET activity surface distal to the target at the end of range was compared with MC predictions. The repositioning of patients for the PET scan took, on average, approximately 2 minutes. The PET images were reconstructed considering varying scan times to test the scan time dependency of the method. Results: The measured PET images show overall good spatial correlations with MC predictions. Some discrepancies could be attributed to uncertainties in the local elemental composition and biological washout. For 8 patients treated with a single field, the average range differences between PET measurements and computed tomography (CT) image-based MC results were <5 mm (<3 mm for 6 of 8 patients) and root-mean-square deviations were 4 to 11 mm with PET-CT image co-registration errors of approximately 2 mm. Our results also show that a short-length PET scan of 5 minutes can yield results similar to those of a 20-minute PET scan. Conclusions: Our first clinical trials in 9 patients using an in-room PET system demonstrated its potential for in vivo treatment monitoring in proton therapy. For a quantitative range prediction with arbitrary shape of target volume, we suggest using the distal PET activity surface.

Min, Chul Hee [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Zhu, Xuping [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Winey, Brian A. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Grogg, Kira [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Testa, Mauro [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); El Fakhri, Georges [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Bortfeld, Thomas R.; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Shih, Helen A., E-mail: hshih@partners.org [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

2013-05-01T23:59:59.000Z

251

Identification of radionuclides for the spectroscopic radiation portal monitor for pedestrian screening under a low signal-to-noise ratio condition  

Science Journals Connector (OSTI)

Abstract The spectroscopic radiation portal monitor (SPM) is widely used for homeland security. Many research groups are studying the radionuclide identification method which is one of the most important factors in the performance of the SPM using the large size of a thallium activated sodium iodide (NaI(Tl)) detector. In this study, we developed the radionuclide identification method for the SPM for pedestrian screening using a single NaI(Tl) detector that is small in size (2in.), which is much smaller than those in the existing studies under the low signal-to-noise-ratio (SNR) condition. From the anomalous radionuclide spectrum, the noise component was effectively reduced by the wavelet decomposition and the proposed background subtraction method, and the signal component was enhanced by the principal component analysis. Finally, peak locations which have been determined by the peak search algorithm with a valley check method were compared with a pre-calibrated and constructed radionuclide database. To verify the radiation identification performance of the proposed method, experiments with various kinds of sources (137Cs, 133Ba, 22Na, and 57Co) and different SNR values (from distances of 10150cm and for scan times of 15s) were performed. Although the high-SNR condition was explored as well, most experiments were conducted under the low-SNR condition to verify the robustness and reproducibility of the proposed algorithm. The results showed that over 98.3% of the single radionuclide detection rate was achieved regardless of which radionuclides were used, up to 50cm under the worst SNR condition (1s of scan time) and up to 90cm under the best SNR condition (5s of scan time). Furthermore we achieved accurate identification of multiple radionuclides at 40cm with only 1s of scan time. The results show that the proposed algorithm is competitive with the commercial method and our radionuclide identification method can be successfully applied to the SPM for pedestrian monitoring, with a small detector size and a short scan time.

Eungi Min; Mincheol Ko; Hakjae Lee; Yongkwon Kim; Jinhun Joung; Sung-Kwan Joo; Kisung Lee

2014-01-01T23:59:59.000Z

252

Radiation protection standards: their evolution from science to philosophy  

Science Journals Connector (OSTI)

......require a new shielding evaluation (plan review), and they will certainly require...2001). Radiation protection standards: their evolution from science...control Radiation Monitoring standards Radiation Protection standards......

R. L. Dixon; Joel E. Gray; B. R. Archer; D. J. Simpkin

2005-12-20T23:59:59.000Z

253

Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Aerosol Models for Radiative Flux Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology E. Andrews Cooperative Institute for Research in the Environment University of Colorado Boulder, Colorado E. Andrews, J. A. Ogren, P. J. Sheridan, and J. M. Harris Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado P. K. Quinn Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington Abstract The uncertainties associated with assumptions of generic aerosol properties in radiative transfer codes are unknown, which means that these uncertainties are frequently invoked when models and

254

DOE 2013 Occupational Radiation Exposure Report  

Office of Environmental Management (EM)

available on the U.S. Department of Energy Radiation Exposure Monitoring System Program Web Site at: http:energy.govehssoccupational-radiation-exposure Foreword iii MATTHEW B....

255

RADIATION ONCOLOGY TARGET YOUR FUTURE  

E-Print Network [OSTI]

. · Radiation therapist - a health professional who designs, calculates (plans) and provides the radiation dose and monitors the delivery of radiation therapy, taking into account the protection and safety of patientsRADIATION ONCOLOGY TARGET YOUR FUTURE #12;A Career in Radiation Oncology YOUR CHOICE SAVE LIVES

Tobar, Michael

256

Radiation shielding and dosimetry experiments updates in the SINBAD database  

Science Journals Connector (OSTI)

......characterisation of the radiation source, it describes...National Laboratory, Radiation Safety Information Computational...Internet Nuclear Physics Radiation Protection instrumentation Radiometry Research Software Validation...

I. Kodeli; H. Hunter; E. Sartori

2005-12-20T23:59:59.000Z

257

Lawrence Livermore National Laboratory environmental report for 1990  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R. (eds.)

1990-01-01T23:59:59.000Z

258

Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring  

SciTech Connect (OSTI)

In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

B.M. Gallaher; R.J. Koch

2004-09-15T23:59:59.000Z

259

Environmental Monitoring Plan  

SciTech Connect (OSTI)

This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

1993-07-01T23:59:59.000Z

260

Low-Cost Wireless Sensors for Building Monitoring Applications...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Wireless Sensors for Building Monitoring Applications Low-Cost Wireless Sensors for Building Monitoring Applications Lead Performer: Oak Ridge National Laboratory - Oak...

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Lawrence Livermore National Laboratory Environmental Report 2010  

SciTech Connect (OSTI)

The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

2011-09-14T23:59:59.000Z

262

Historical Photographs: Lawrence Berkeley Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lawrence Berkeley Laboratory Lawrence Berkeley Laboratory [Small Image] 1. A whole body counter (circa 1964) at the Berkeley Donner Laboratory. Such counters were used in human radiation tracer studies and for measuring AEC worker radiation exposure. (294Kbytes) [Small Image] 2. Early treatment for Parkinson's disease at the Berkeley Donner Laboratory (134Kbytes) [Small Image] 3. Donner Laboratory carbon-14 metabolic study apparatus (146Kbytes) [Small Image] 4. Respiration analysis using injected radioactive tracers at Donner Laboratory (circa 1968). (217Kbytes) [Small Image] 5. A patient under a positron camera. The camera was a diagnostic tool developed at Donner Laboratory, Berkeley, to photograph radioactive tracer concentrations. Unlike a whole body scanner, this device photographs a single, specific area of the body. (146Kbytes)

263

Preliminary Notice of Violation, Los Alamos National Laboratory - EA-96-07  

Broader source: Energy.gov (indexed) [DOE]

Violation, Los Alamos National Laboratory - Violation, Los Alamos National Laboratory - EA-96-07 Preliminary Notice of Violation, Los Alamos National Laboratory - EA-96-07 December 18, 1996 Preliminary Notice of Violation issued to the University of California related to an Unauthorized Facility Modification at the Los Alamos National Laboratory (EA-96-07) This refers to the Department of Energy's (DOE) evaluation of the circumstances surrounding two issues involving modifications associated with or affecting [a facility] at Los Alamos National Laboratory (LANL). These two issues included an unauthorized modification of [radiation] monitors in the TSFF and a sump modification in the basement of [a building], which contains some [facility] safety features. On July 16-17, 1996, the DOE Office of Enforcement and Investigation conducted an on-site

264

Environmental monitoring plan  

SciTech Connect (OSTI)

This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 52 refs., 10 figs., 12 tabs.

Holland, R.C.

1997-02-01T23:59:59.000Z

265

Groundwater quality monitoring well installation for Lower Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This report documents the drilling and installation of 11 groundwater quality monitoring (GQM) wells on the perimeter of Lower Waste Area Grouping (WAG) 2. Lower WAG 2 consists of White Oak Lake and the embayment below White Oak Dam above the Clinch River. The wells in Lower WAG 2 were drilled and developed between December 1989 and September 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at Lower WAG 2 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of three basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at Lower WAG 2. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents.

Mortimore, J.A.; Lee, T.A.

1994-09-01T23:59:59.000Z

266

Uzbekistan Radiation Portal Monnitoring System  

SciTech Connect (OSTI)

The work proposed in this presentation builds on the foundation set by the DTRA funded demonstration project begun in 2000 and completed in December of 2003. This previous work consisted of two phases whose overall objective was to install portal radiation monitors at four select ports-of-entry in Uzbekistan (Tashkent International Airport, Gisht-Kuprik (Kazakhstan border), Alat (Turkmenistan border), and Termez (Afghanistan border)) in order to demonstrate their effectiveness in preventing the illicit trafficking of nuclear materials. The objectives also included developing and demonstrating capabilities in the design, installation, operation, training, and maintenance of a radiation portal monitoring system. The system and demonstration project has proved successful in many ways. An effective working relationship among the Uzbekistan Customs Services, Uzbekistan Border Guards, and Uzbekistan Institute of Nuclear Physics has been developed. There has been unprecedented openness with the sharing of portal monitor data with Lawrence Livermore National Laboratory. The system has proved to be effective, with detection of illicit trafficking, and, at Alat, an arrest of three persons illegally transporting radioactive materials into Turkmenistan. The demonstration project has made Uzbekistan a model nonproliferation state in Central Asia and, with an expanded program, places them in a position to seal a likely transit route for illicit nuclear materials. These results will be described. In addition, this work is currently being expanded to include additional ports-of-entry in Uzbekistan. The process for deciding on which additional ports-of-entry to equip will also be described.

Richardson, J; Knapp, R; Loshak, A; Yuldashev, B; Petrenko, V

2005-06-10T23:59:59.000Z

267

Remaining Sites Verification Package for the 100-F-36, 108-F Biological Laboratory, and for the 116-F-15, 108-F Radiation Crib, Waste Site Reclassification Form 2007-003  

SciTech Connect (OSTI)

The 116-F-15 waste site is the former location of the 108-F Radiation Crib that was located in the first floor of the 108-F Biological Laboratory. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-05-24T23:59:59.000Z

268

Enforcement Letter, Sandia National Laboratories- February 27, 1998  

Broader source: Energy.gov [DOE]

Issued to Sandia Corporation related to Work Control Deficiencies associated with operating Radiation Generating Devices at Sandia National Laboratories.

269

Idaho National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Idaho National Laboratory Review Reports 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site, April 2013 Review of the Facility Representative Program at the Idaho Site, March 2013 Activity Reports 2013 Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013 Review Reports 2012 Review of Radiation Protection Program Implementation at the Idaho Site, November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Idaho National Laboratory, July 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review, June 2012

270

Radiation protection, radioactive waste management and site monitoring at the nuclear scientific experimental and educational centre IRT-Sofia at INRNE-BAS  

Science Journals Connector (OSTI)

......monitoring system (RMS) for...with an integrated semiconductor...database. The control of the workplace...monitoring system providing...soils, plants, underground...selected plants-bio-indicators...detector systems are placed...from several control points...radioactive waste treatments and interim......

Al. Mladenov; D. Stankov; Tz. Nonova; K. Krezhov

2014-11-01T23:59:59.000Z

271

Using Three Dimensional Cell Culture and Tissue Architecture to Monitor an  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Three Dimensional Cell Culture and Tissue Architecture to Monitor an Three Dimensional Cell Culture and Tissue Architecture to Monitor an Adaptive Response in Mammary Epithelial Cells Mina Bissell Lawrence Berkeley National Laboratory Abstract Exposure of tissues to ionizing radiation results in targeted effect on cells as well as non-targeted effects on tissues. Although, targeted effects such as the DNA damage response have been studied extensively, non-targeted effects leading to modification in tissue architecture and tumor progression have been less studied and are not well understood. The mammary gland is a tissue that has been shown to be susceptible to tumor formation and cancer progression following exposure to ionizing radiation. In conjunction with the laboratories of Mary Helen Barcellos-Hoff and Catherine Park we showed previously that in the presence of TGF-β,

272

Mobile Climate Monitoring Facility to Sample Skies in Africa | Department  

Broader source: Energy.gov (indexed) [DOE]

Mobile Climate Monitoring Facility to Sample Skies in Africa Mobile Climate Monitoring Facility to Sample Skies in Africa Mobile Climate Monitoring Facility to Sample Skies in Africa January 18, 2006 - 10:47am Addthis WASHINGTON, D.C. -- The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program is placing a new, portable atmospheric laboratory with sophisticated instruments and data systems in Niger, Africa, to gain a better understanding of the potential impacts of Saharan dust on global climate. Dust from Africa's Sahara desert-the largest source of dust on the planet-reaches halfway around the globe. Carried by winds and clouds, the dust travels through West African, Mediterranean, and European skies, and across the Atlantic into North America. Unfortunately, Africa is one of the most under-sampled climate regimes in the world, leaving scientists to

273

Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2010  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 10 and 11, 2010. The U.S. Environmental Protection Agency (EPA) Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, analyzed the samples. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and for tritium using the conventional and enriched methods.

None

2011-01-10T23:59:59.000Z

274

Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

None

2009-12-21T23:59:59.000Z

275

Monitoring SERC Technologies Solar Hot Water  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

276

Radiation Safety Training Basic Radiation Safety Training for  

E-Print Network [OSTI]

Radiation Safety Training Basic Radiation Safety Training for Sealed Source Users for Physics 461 & 462 Modern Physics Laboratory Spring 2007 #12;Radiation Safety Department, University of Tennessee Purpose: To provide basic radiation safety training to the users of sealed sources located

Dai, Pengcheng

277

Radiation Safety Training Basic Radiation Safety Training for  

E-Print Network [OSTI]

Radiation Safety Training Basic Radiation Safety Training for X-ray Users for Physics 461 & 462 Modern Physics Laboratory Spring 2007 #12;#12;Radiation Safety Department, University of Tennessee Protocol Title: Basic Radiation Safety Training for X-ray Users Drafted By: Chris Millsaps, RSS Reviewers

Dai, Pengcheng

278

RADIATION PROTECTION, RADIOACTIVE WASTE MANAGEMENT AND SITE MONITORING AT THE NUCLEAR SCIENTIFIC EXPERIMENTAL AND EDUCATIONAL CENTRE IRT-SOFIA AT INRNE-BAS  

Science Journals Connector (OSTI)

......related to radioactive waste treatments and interim...site to the temporary storage of radioactive waste operated by SE . Removal...The comprehensive long-term monitoring of the IRT...protection and radioactive waste management in the design......

Al. Mladenov; D. Stankov; Tz. Nonova; K. Krezhov

2014-07-01T23:59:59.000Z

279

Radiation safety design for the J-PARC project  

Science Journals Connector (OSTI)

......2001). Radiation safety design for the J-PARC...present status of the radiation safety design study for J-PARC...instrumentation Protons Radiation Dosage Radiation Monitoring...methods Risk Factors Software Software Validation......

H. Nakashima; Y. Nakane; F. Masukawa; N. Matsuda; T. Oguri; H. Nakano; N. Sasamoto; T. Shibata; T. Suzuki; T. Miura; M. Numajiri; N. Nakao; H. Hirayama; S. Sasaki

2005-12-20T23:59:59.000Z

280

OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE  

Office of Legacy Management (LM)

F F O R THE NEVADA TEST SITE ' i A N D OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1978 Nuclear Radiation Assessment D i v i s i o n Environmental Monitoring Systems Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 October 1979 This work performed under a Memorandum o f Understanding No. EY-76-A-08-0539 for t h e U.S. DEPARTMENT O F ENERGY OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE A N D OTHER TEST AREAS USED F O R UNDERGROUND NUCLEAR DETONATIONS January through December 1978 by R. F. Grossman Nuclear Radi a t i o n Assessment D i v i s i o n Environmental Monitoring Systems Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 This work performed under a Memorandum o f Understanding No. EY-76-A-08-0539

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory  

SciTech Connect (OSTI)

The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

2007-10-01T23:59:59.000Z

282

Bettis Atomic Power Laboratory  

SciTech Connect (OSTI)

The Bettis Atomic Power Laboratory (Bettis) is owned by the US Department of Energy (DOE) and has been operated under Government contract by the Westinghouse Electric Corporation since 1949. The Bettis Site in West Mifflin, Pennsylvania conducts research and development work on improved nuclear propulsion plants for US Navy warships and is the headquarters for all of the Laboratory's operations. For many years, environmental monitoring has been performed to demonstrate that the Bettis Site is being operated in accordance with environmental standards. While the annual report describes monitoring practices and results, it does not describe the nature and environmental aspects of work and facilities at the Bettis Site nor give a historical perspective of Bettis' operations. The purpose of this report is to provide this information as well as background information, such as the geologic and hydrologic nature of the Bettis Site, pertinent to understanding the environmental aspects of Bettis operations. Waste management practices are also described.

Not Available

1992-01-01T23:59:59.000Z

283

Science @WIPP: Underground Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

284

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

285

Low Dose Radiation Program: Links - Organizations Conducting Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conducting Low Dose Radiation Research Conducting Low Dose Radiation Research DOE Low Dose Radiation Research Program DoReMi Integrating Low Dose Research High Level Expert Group (HLEG) on European Low Dose Risk Research Multidisciplinary European Low Dose Initiative (MELODI) RISC-RAD Radiosensitivity of Individuals and Susceptibility to Cancer induced by Ionizing Radiation United States Transuranium & Uranium Registries Organizations Conducting other Radiation Research Argonne National Laboratory (ANL) Armed Forces Radiology Research Institute (AFRRI) Atmospheric Radiation Measurement (ARM) Program Brookhaven National Laboratory (BNL) Center for Devices and Radiological Health (CDRH) Central Research Institute of Electric Power Industry (CRIEPI) Colorado State University Columbia University

286

Sandia National Laboratories: Structural Health Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and reduce downtime. A particular focus is to mitigate the large rise in costs for offshore O&M due to access difficulty, weather, high sea states, etc. using structural health...

287

Sandia National Laboratories: system-level monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

288

RADIATION SAFETY COMMITTEE The Radiation Safety Committee shall advise the Provost on all policy matters relating to radiation safety;  

E-Print Network [OSTI]

RADIATION SAFETY COMMITTEE Functions The Radiation Safety Committee shall advise the Provost on all policy matters relating to radiation safety; formulate campus radiation safety policies in compliance the Risk Manager) monitor the performance of the Radiation Safety Officer as it relates to implementation

Sze, Lawrence

289

Laboratory Fellows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were confirmed by the Laboratory Director. Brenda Dingus has pioneered work in gamma-ray bursts and is a major contributor to the relatively young scientific field of...

290

Laboratory Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models. - 5814 A neutron detector like this one at Los Alamos National Laboratory is...

291

Radiation Induced Mammary Cancer  

Science Journals Connector (OSTI)

......Induced Mammary Cancer R.L. Ullrich * R.J. Preston # * Department of Radiation Therapy, University of Texas Medical Branch, Galveston, TX 77550 # Biology Division Oak Ridge National Laboratory Oak Ridge, TN 37831, U.S.A Over the last......

R.L. Ullrich; R.J. Preston

1991-12-01T23:59:59.000Z

292

Forbush decrease effects on radiation dose received on-board aeroplanes  

Science Journals Connector (OSTI)

......information provided by the US FAA to promote radiation safety for air carrier crew members. Radiat...Cosmic Radiation Humans Monte Carlo Method Radiation Dosage Radiation Monitoring methods Software Solar Activity...

P. Lantos

2005-12-01T23:59:59.000Z

293

Calculation of collective effects and beam lifetimes for the LBL (Lawrence Berkeley Laboratory) 1-2 GeV synchrotron radiation source  

SciTech Connect (OSTI)

In designing a third-generation high brightness synchrotron radiation source, attention must be paid to the various collective effects that can influence beam performance. We report on calculations, performed with the code ZAP, of the bunch length, the transverse emittance and the beam lifetime (from both Touschek and gas scattering) for our 1-2 GeV storage ring. In addition, we estimate the growth times for both longitudinal and transverse coupled bunch instabilities. Bunch lengths of about 20 ps should be obtainable and intrabeam scattering emittance growth is small. For a limiting undulator gap of 1 cm and residual gas pressure of 1n Torr, the beam lifetime is about 5 hours in the single-bunch mode; in the multibunch mode, lifetimes in excess of 6 hours are expected. These results indicate that all performance goals for the facility should be achievable.

Chattopadhyay, S.; Zisman, M.S.

1987-03-01T23:59:59.000Z

294

Monitoring materials  

DOE Patents [OSTI]

The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2002-01-01T23:59:59.000Z

295

Performance Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

296

Radiation safety system  

Science Journals Connector (OSTI)

......disable this safety function and...circuits and software. Other required...source in case of radiation monitors. Feedback...from other non-safety systems to prevent...write and check software. The expected...logic systems for safety functions can...levels of prompt radiation hazard. ACS......

Vaclav Vylet; James C. Liu; Lawrence S. Walker

2009-11-01T23:59:59.000Z

297

Renewable Energy Laboratory  

Open Energy Info (EERE)

success of any solar energy success of any solar energy installation depends largely on the site's solar resource. Therefore, detailed knowledge of an area's solar resource is critical to installation planning and siting. To help with these efforts, the National Renewable Energy Laboratory (NREL) and the National Climatic Data Center (NCDC) have updated the National Solar Radiation Database (NSRDB). Since 1992, the database has provided solar planners and designers, building architects and engineers, renewable energy analysts, and countless others with extensive solar radiation information. The 1991-2005 NSRDB contains hourly solar radiation (including global, direct, and diffuse) and meteorological data for 1,454 stations. This update builds on the 1961-1990 NSRDB, which contains

298

Containment & Surveillance Systems Laboratory (CSSL) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Containment & Surveillance Systems Laboratory Containment & Surveillance Systems Laboratory May 30, 2013 The Containment and Surveillance Systems Laboratory is an arm of the highly acclaimed ORNL Safeguards Technology Integration Center. This lab is used to evaluate and develop custom technology, as well as integrate, mock up, and stage equipment for evaluation deployments for a variety of containment and surveillance applications. Activities in this lab focus on integrating technology for sealing, monitoring, and tracking nuclear material in a variety of environments. It is well suited for developing, integrating, and deploying active and passive tamper-indicating devices and enclosures, unattended and remote monitoring systems, and wired and wireless attribute-monitoring systems. Applications

299

Cosmic Radiation Protection Dosimetry Using an Electronic Personal Dosemeter (Siemens EPD) on Selected International Flights  

Science Journals Connector (OSTI)

......administration to promote radiation safety for air carrier...aircrew to cosmic radiation. Radiat. Prot...1995) EPD Software Version 8: Electronic...Health and Safety Laboratory, New...Physics of cosmic radiation fields. Radiat......

Hiroshi Yasuda; Kazunobu Fujitaka

2001-03-01T23:59:59.000Z

300

Betsy Sutherland - Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Betsy M. Sutherland (Deceased) Brookhaven National Laboratory From: 07/01/1977 - 10/7/2009 Passed Areas of Interest Betsy Sutherland heads the Biology Department's User Support Team for the NASA Space Radiation Laboratory (NSRL) at BNL. The NSRL project, carried out jointly with BNL's Collider-Accelerator and Medical Departments, provides the only source in the US of high energy heavy charged particles, used in assessing the effects of space radiation on biological systems, materials and instruments. The Biology Department NSRL support team consists of eight scientific, professional and administrative staffers. They provide scientific and facilities support to over 200 User groups from all over the world, and collaborate in development and maintenance of the NSRL. Betsy Sutherland also chairs the BNL Scientific Advisory Committee for Radiation Research, advisory to NASA and to the BNL Associate Laboratory Director for Nuclear and Particle Physics on research at the NSRL.

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Annual report shows potential INL radiation dose well below safe regulatory  

Broader source: Energy.gov (indexed) [DOE]

Annual report shows potential INL radiation dose well below safe Annual report shows potential INL radiation dose well below safe regulatory limits Annual report shows potential INL radiation dose well below safe regulatory limits August 9, 2011 - 12:00pm Addthis Media Contact Tim Jackson, DOE-Idaho Operations Office 208-526-8484 The U.S. Department of Energy's Idaho Operations Office reported this month that radiation from the site falls well below limits established by the U.S. Environmental Protection Agency. The annual report's conclusions are supported by direct environmental monitoring data routinely taken during the year, and show that activities at the Idaho National Laboratory (INL) site are protective of human health and the environment. Data shows that the INL site potential radiation dose is less than 1% of

302

Independent Activity Report, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

Activity Report, Lawrence Livermore National Laboratory Activity Report, Lawrence Livermore National Laboratory - October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities [HIAR LLNL-2012-10-23] The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013. Independent Activity Report, Lawrence Livermore National Laboratory -

303

RHOBOT: Radiation hardened robotics  

SciTech Connect (OSTI)

A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

1997-10-01T23:59:59.000Z

304

Laboratory Directors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew...

305

MICROSYSTEMS LABORATORIES  

E-Print Network [OSTI]

15 nm MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA AUGUST 2014 #12;MTL Annual Research Report 2014 Director Jesús A. del Alamo Project........................................................................ 47 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel Cells

Culpepper, Martin L.

306

Monitoring and Mitigation of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mitigation of Mitigation of Sustained Localized Pitting Corrosion FINAL REPORT DOE FEW 49297 YuPo J. Lin, Edward J. St.Martin, and James R. Frank Argonne National Laboratory Argonne, IL 60439 January 2003 Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 Monitoring and Mitigation of Sustained Localized Pitting Corrosion Submitted to: Nancy C. Comstock U.S. Department of Energy (DOE) National Petroleum Technology Office By: YuPo J. Lin, Edward J. St.Martin, and James R. Frank Argonne National Laboratory Argonne, IL 60439 January 2003 The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-Eng-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on

307

Raciometry J. W. Griffin, Technical Monitor ARM Instrument Development Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

J. W. Griffin, Technical Monitor J. W. Griffin, Technical Monitor ARM Instrument Development Program Pacific Northwest Laboratory Richland, Washington the end of FY93 are noted. Fiscal Year 1993 is the third and final year of the initial (3-year) funding cycle for ARM- funded instrument development projects. That is, IDP principal investigators will be required to submit a new proposal in order to be considered for funding beyond September 30, 1993. As for the first funding cycle, continuation proposals will be peer-reviewed and funding awarded on a competitive basis. Goals of the Instrument Development Program The primary goal of the Atmospheric Radiation Measurement (ARM) Instrument Development Program (lOP) is to develop fieldable atmospheric sensing systems which 1) provide a needed atmospheric observation/

308

AZARD ARNING For Educational, Research and Diagnostic Laboratories  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 CHEMICAL HYGIENE PLAN, Biological Safety, Hazardous Waste Management, Fire Protection, Insurance Services, Hazard Communication, Accident Investigation, Air Monitoring and Safety Education) Environmental Safety - Radiation Safety Office

Rubloff, Gary W.

309

Preliminary Notice of Violation, Los Alamos National Laboratory - EA-96-07  

Broader source: Energy.gov (indexed) [DOE]

6-07 6-07 Preliminary Notice of Violation, Los Alamos National Laboratory - EA-96-07 December 18, 1996 Preliminary Notice of Violation issued to the University of California related to an Unauthorized Facility Modification at the Los Alamos National Laboratory (EA-96-07) This refers to the Department of Energy's (DOE) evaluation of the circumstances surrounding two issues involving modifications associated with or affecting [a facility] at Los Alamos National Laboratory (LANL). These two issues included an unauthorized modification of [radiation] monitors in the TSFF and a sump modification in the basement of [a building], which contains some [facility] safety features. On July 16-17, 1996, the DOE Office of Enforcement and Investigation conducted an on-site

310

Lawrence Berkeley Laboratory Affirmative Action Program. Revised  

SciTech Connect (OSTI)

The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

NONE

1995-06-01T23:59:59.000Z

311

Federal Laboratory Consortium | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Laboratory Consortium The Federal Laboratory Consortium for Technology Transfer (FLC) is the nationwide network of federal laboratories that provides the forum to develop...

312

Simulation and modeling for the stand-off radiation detection system (SORDS) using GEANT4  

SciTech Connect (OSTI)

A Stand-Off Radiation Detection System (SORDS) is being developed through a joint effort by Raytheon, Los Alamos National Laboratory, Bubble Technology Industries, Radiation Monitoring Devices, and the Massachusetts Institute of Technology, for the Domestic Nuclear Detection Office (DNDO). The system is a mobile truck-based platform performing detection, imaging, and spectroscopic identification of gamma-ray sources. A Tri-Modal Imaging (TMI) approach combines active-mask coded aperture imaging, Compton imaging, and shadow imaging techniques. Monte Carlo simulation and modeling using the GEANT4 toolkit was used to generate realistic data for the development of imaging algorithms and associated software code.

Hoover, Andrew S [Los Alamos National Laboratory; Wallace, Mark [Los Alamos National Laboratory; Galassi, Mark [Los Alamos National Laboratory; Mocko, Michal [Los Alamos National Laboratory; Palmer, David [Los Alamos National Laboratory; Schultz, Larry [Los Alamos National Laboratory; Tornga, Shawn [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

313

Solar Position Algorithm for Solar Radiation Applications (Revised...  

Office of Scientific and Technical Information (OSTI)

Afshin Michael Andreas afshinandreas@nrel.gov (303)384-6383 Measurement & Instrumentation Team Solar Radiation Research Laboratory National...

314

Brookhaven National Laboratory site environmental report for calendar year 1993  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at BNL and presents summary information about environmental compliance for 1993. To evaluate the effect of BNL operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, ground water and vegetation were made at the BNL site and at sites adjacent to the Laboratory. Brookhaven National Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment were evaluated. Among the permitted facilities, two instances, of pH exceedances were observed at recharge basins, possible related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant (STP) to the Peconic River exceeded on five occasions, three for residual chlorine and one each for iron and ammonia nitrogen. The chlorine exceedances were related to a malfunctioning hypochlorite dosing pump and ceased when the pump was repaired. While the iron and ammonia-nitrogen could be the result of disturbances to the sand filter beds during maintenance. The environmental monitoring data has identified site-specific contamination of ground water and soil. These areas are subject to Remedial Investigation/Feasibility Studies (RI/FS) under the Inter Agency Agreement (IAG). Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at BNL are minimal and pose no threat to the public or to the environment. This report meets the requirements of DOE Orders 5484. 1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

Naidu, J.R.; Royce, B.A. [eds.

1994-05-01T23:59:59.000Z

315

Preliminary Notice of Violation, Los Alamos National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Events involving Radiation Protection and Quality Control Requirements at the Chemistry and Metallurgy Research Facility at the Los Alamos National Laboratory, (EA-98-10)...

316

Laboratory Access | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

317

Sandia National Laboratories: Federal Laboratory Consortium Regional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& CapabilitiesCapabilitiesFederal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia Federal Laboratory...

318

BROOKHAVEN NATIONAL LABORATORY SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 1994.  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment were evaluated. Among the permitted facilities, two instances of pH exceedances were observed at recharge basins, possibly related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant to the Peconic River exceeded. on ten occasions, one each for fecal coliform and 5-day Biochemical Oxygen Demand (avg.) and eight for ammonia nitrogen. The ammonia and Biochemical Oxygen Demand exceedances were attributed to the cold winter and the routine cultivation of the sand filter beds which resulted in the hydraulic overloading of the filter beds and the possible destruction of nitrifying bacteria. The on-set of warm weather and increased aeration of the filter beds via cultivation helped to alleviate this condition. The discharge of fecal coliform may also be linked to this occurrence, in that the increase in fecal coliform coincided with the increased cultivation of the sand filter beds. The environmental monitoring data has identified site-specific contamination of groundwater and soil. These areas are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement. Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public or to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

NAIDU,J.R.; ROYCE,B.A.

1995-05-01T23:59:59.000Z

319

A new solar radiation data manual for flat?plate and concentrating collectors  

Science Journals Connector (OSTI)

A new solar radiation data manual is nearing completion by the National Renewable Energy Laboratorys (NRELs) Analytic Studies Division under the Solar Radiation Resource Assessment Project and the Photovoltaic Solar Radiation Research Task. These tasks are funded and monitored by the Photovoltaics Branch of the Department of Energys Office of Energy Efficiency and Renewable Energy. The new manual is entitled Solar Radiation Data Manual for Flat?Plate and Concentrating Collectors. For designers and engineers of solar energy related systems it gives the solar resource available for various types of collectors for 239 stations in the United States and its territories. The data in the manual are modeled using diffuse horizontal and direct beam solar radiation values from the National Solar Radiation Data Base (NSRDB). The NSRDB contains modeled (93%) and measured (7%) global horizontal diffuse horizontal and direct beam solar radiation for 19611990. This paper describes what is contained in the new data manual and how it was developed.

W. Marion; S. Wilcox

1994-01-01T23:59:59.000Z

320

Overview - WIPP Effluent Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of the WIPP Effluent Monitoring Program Compliance with Title 40 CFR Part 191, Subpart A Environmental Standards for Management and Storage L. Frank-Supka, D. J. Harward, S. C. Casey May 2005 INTRODUCTION This document provides an overview of the effluent air monitoring activities at the Waste Isolation Pilot Plant (WIPP), in Carlsbad, New Mexico. The WIPP Effluent Monitoring Program is designed to comply with the U.S. Environmental Protection Agency (EPA) radiation protection standards for management and storage of spent nuclear fuel, high-level radioactive waste and transuranic (TRU)-waste at the WIPP. The standards issued by the EPA are contained in Title 40 Code of Federal Regulations (CFR), Part 191, Subpart A. The standards require the

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Long-Term Dosimetry of Solar UV Radiation in Antarctica with Spores of Bacillus subtilis  

Science Journals Connector (OSTI)

...biologically harmful ultraviolet radiation in Antarctica with a biological...hanced springtime ultraviolet radiation at Palmer Station, Ant- arctica...monitoring studies at Tokyo, Japan. J. Radiat. Res. 30:338-351...Ozone depletion: ultraviolet radiation and phytoplankton biology in...

Monika Puskeppeleit; Lothar E. Quintern; Saad el Naggar; Jobst-Ulrich Schott; Ute Eschweiler; Gerda Horneck; Horst Bcker

1992-08-01T23:59:59.000Z

322

National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

323

Patient radiation exposure during different kyphoplasty techniques  

Science Journals Connector (OSTI)

......could reduce dose and radiation-associated risk...the risk of developing radiation-induced stochastic...specific computer software is available, providing...developed at the Medical Radiation Laboratory of the Finnish...Radiation and Nuclear Safety (STUK)(12). The......

Denis Panizza; Massimo Barbieri; Francesco Parisoli; Luca Moro

2014-01-01T23:59:59.000Z

324

In Summary: Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998  

SciTech Connect (OSTI)

Scientists from the Environmental Science and Research Foundation, Lockheed Martin Idaho Technologies Company (LMITCO), the US Geological Survey, the Naval Nuclear Propulsion Program Naval Reactors Facility, Argonne National Laboratory-West, and others monitored the environment on and around the INEEL to find contaminants attributable to the INEEL. During 1998, exposures from the INEEL to the public were found to be negligible. The US Department of Energy (DOE) and LMITCO made progress in developing and implementing a site-wide Environmental Management System. This system provides an underlying structure to make the management of environmental activities at the INEEL more systematic and predictable. Pathways by which INEEL contaminants might reach people off the INEEL were monitored. These included air, precipitation, water, locally grown food (milk, lettuce, wheat, and potatoes), livestock, game animals, soil, and direct ionizing radiation. Results from samples collected to monitor these pathways often contain ''background radioactivity,'' which is radioactivity from natural sources and nuclear weapons tests carried out between 1945 and 1980. According to results obtained in 1998, radioactivity from operations at the INEEL could not be distinguished from this background radioactivity in the regions surrounding the INEEL. Because radioactivity from the INEEL was not detected by offsite environmental surveillance methods, computer models were used to estimate the radiation dose to the public. The hypothetical maximum dose to an individual from INEEL operations was calculated to be 0.08 millirem. That is 0.002 percent of an average person's annual dose of 360 millirem from natural background radiation in southeast Idaho.

A. A. Luft; R. B. Evans; T. Saffle; R. G. Mitchell; D. B. Martin

2000-06-01T23:59:59.000Z

325

Sandia National Laboratories: radiation waste cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

waste cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

326

Ris National Laboratory Radiation Research Department  

E-Print Network [OSTI]

Introduction In the event of a nuclear or radiological emergency resulting in the dispersion of radioactive of the dispersion of radionuclides following a nuclear accident. However, gamma measure- ments obtained from Abstract. In the event of a nuclear or radiological emergency resulting in an atmospheric re- lease

327

Measurement of radiation impedance of stepped piston radiator  

Science Journals Connector (OSTI)

It was noted in a paper given in 1972 [A. H. Lubell J. Acoust. Soc. Am. 52 1310 (1972)] that the radiation mass of a stepped piston underwater loudspeaker was approximately half of the value expected from simple piston theory. Recently the integral equation approach was used to compute the radiation impedance for the Lubell Laboratories model 98 underwater loudspeaker and new measurements were made. This paper reviews the measurement and data reduction procedures and compares measured and theoretical radiation impedances. The original observation of reduced radiation mass is supported. A companion paper covers the integral equation computation. [This work was supported by Lubell Laboratories Inc.

Alan H. Lubell

1986-01-01T23:59:59.000Z

328

An Optimized International Vehicle Monitor  

SciTech Connect (OSTI)

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to evaluate detector configurations to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of special nuclear materials. We designed a new detector configuration that improves the sensitivity of available drive-through vehicle monitors by more than a factor of 5 while not changing the nuisance alarm rate.

York, R.L.; Close, D.A.; Fehlau, P.E.

1999-07-16T23:59:59.000Z

329

SULI at Ames Laboratory  

SciTech Connect (OSTI)

A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

None

2011-01-01T23:59:59.000Z

330

Ris Report No. 367 Ris National Laboratory  

E-Print Network [OSTI]

in Motor Vehicle 8 2.2. Electronic Instruments for Spectrometer System 9 2.3. Ge(Li) Detector System 9 2 ENVIRONMENT GAMMA RADIATION GAMMA DETECTION GAMMA SPECTROSCOPY GLOBAL FALLOUT IONIZATION CHAMBERS Li of Environmental Gamma Radiation Using a Mobile Ge(Li) Spectrometer System by S.P. Nielsen Risø National Laboratory

331

Operating Experience Review of the INL HTE Gas Monitoring System  

SciTech Connect (OSTI)

This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

L. C. Cadwallader; K. G. DeWall

2010-06-01T23:59:59.000Z

332

Monitoring SERC Technologies Geothermal/Ground Source Heat Pumps  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory Project Leader Dave Peterson about Geothermal/Ground Source Heat Pumps and how to properly monitor its installation.

333

LANL: Ion Beam Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Materials Laboratory (IBML) is a Los Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to materi- als research through the use of ion beams. Current major research areas include surface characterization through ion beam analysis techniques, surface modification and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion accelerator and a 200 kV ion implanter together with several beam lines. Attached to each beam line is a series of experimental stations that support various research programs. The operation of IBML and its interactions with users are organized around core facilities and experimental stations. The IBML provides and operates the core facilities as well as supports

334

Assessment of the occupational radiation exposure doses to workers at INMOL Pakistan (200711)  

Science Journals Connector (OSTI)

......measures and safety of workers during...been sent to the Radiation Dosimetry Laboratory...fabricated computer software . The calibration...PNRA and IAEA radiation protection and safety guidelines...radiation and for the safety of radiation sources. (1994......

Khalid Masood; Junaid Zafar; Tasneem Zafar; Haroon Zafar

2013-06-01T23:59:59.000Z

335

Pajarito Monitor: a high-sensitivity monitoring system for highly enriched uranium  

SciTech Connect (OSTI)

The Pajarito Monitor for Special Nuclear Material is a high-sensitivity gamma-ray monitoring system for detecting small quantities of highly enriched uranium transported by pedestrians or motor vehicles. The monitor consists of two components: a walk-through personnel monitor and a vehicle monitor. The personnel monitor has a plastic-scintillator detector portal, a microwave occupancy monitor, and a microprocessor control unit that measures the radiation intensity during background and monitoring periods to detect transient diversion signals. The vehicle monitor examines stationary motor vehicles while the vehicle's occupants pass through the personnel portal to exchange their badges. The vehicle monitor has four groups of large plastic scintillators that scan the vehicle from above and below. Its microprocessor control unit measures separate radiation intensities in each detector group. Vehicle occupancy is sensed by a highway traffic detection system. Each monitor's controller is responsible for detecting diversion as well as serving as a calibration and trouble-shooting aid. Diversion signals are detected by a sequential probability ratio hypothesis test that minimizes the monitoring time in the vehicle monitor and adapts itself well to variations in individual passage speed in the personnel monitor. Designed to be highly sensitive to diverted enriched uranium, the monitoring system also exhibits exceptional sensitivity for plutonium. 6 references, 9 figures, 2 tables.

Fehlau, P.E.; Coop, K.; Garcia, C. Jr.; Martinez, J.

1984-01-01T23:59:59.000Z

336

Gap and stripline combined monitor  

DOE Patents [OSTI]

A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

Yin, Y.

1986-08-19T23:59:59.000Z

337

Ion Monitoring  

DOE Patents [OSTI]

The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2003-11-18T23:59:59.000Z

338

Optical instrumentation for vibration measurement and monitoring  

Science Journals Connector (OSTI)

Monitoring of machine tool vibrations is an important aspect of precision manufacturing ... of a simple and unique instrument for precise vibration measurement that can be used in industry. The ... laboratory. Th...

Devdas Shetty; Ahad Ali; Jonathan Hill

2011-06-01T23:59:59.000Z

339

NREL: Solar Radiation Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Photo of two researchers standing on a platform near a solar tracker at the Solar Radiation Research Laboratory. The Solar Radiation Research Laboratory gathers solar radiation and meteorological data on South Table Mountain. NREL's Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar radiation components since 1981. Since then, it has expanded its expertise to include integrated metrology, optics, electronics, and data acquisition capabilities. In addition, the SRRL provides facilities for outdoor performance testing of new research instrumentation and energy conversion devices such as photovoltaic modules. The SRRL is located on NREL's South Table Mountain site in Golden, Colorado, where it has excellent solar access because of its unrestricted

340

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Laboratory Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy...

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

RADIATION ALERT User Manual  

E-Print Network [OSTI]

not contaminate the Inspector by touching it to radioactive surfaces or materials. If contamination is suspected Environmental Area Monitoring 16 Checking for Surface Contamination 16 5 Maintenance 17 Calibration 17, and x-ray radiation. Its applications include: · Detecting and measuring surface contamination

Haller, Gary L.

342

Independent Activity Report, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

October 2012 October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities [HIAR LLNL-2012-10-23] The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013. Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 More Documents & Publications

343

Electrostatic monitoring  

DOE Patents [OSTI]

The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

Orr, Christopher Henry (Cumbria, GB); Luff, Craig Janson (Cumbria, GB); Dockray, Thomas (Cumbria, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2001-01-01T23:59:59.000Z

344

Seismic Monitoring - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curation Services Ecological Monitoring Environmental Surveillance Meteorology and Climatology Services Seismic Monitoring Seismic Monitoring Email Email Page | Print Print Page...

345

Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directorate Directorate Subject: Controlled Access to the VUV Ring Number: LS-ESH-0013 Revision: D Effective: 5/17/2012 Page 1 of 8 M. Buckley B. Chmiel E. Zitvogel Prepared By: Approved By: Approved By: *Approval signatures on file with master copy. Revision Log 1.0 PURPOSE Controlled access to the NSLS VUV ring is necessary for maintaining personnel safety and stability to the accelerator beam and equipment. 2.0 SCOPE The NSLS VUV ring area is a controlled area that has several personnel hazards. These hazards primarily consist of radiation and electrical. All persons entering the VUV ring need to be aware of these hazards prior to entry. Personnel requiring access to the VUV Ring during non-maintenance periods must follow the Controlled Access requirements within this procedure. Controlled access is the monitoring and

346

ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Integrated Column Description An Integrated Column Description of the Atmosphere An Integrated Column Description of the Atmosphere Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific Northwest National Laboratory The "other" Washington ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Credits to Credits to * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Outline Outline * A little philosophy

347

Acoustic radiation due to surface wave breaking.  

Science Journals Connector (OSTI)

While wave breaking is continually occurring at the sea surface its transient and sporadic nature makes it difficult to measure. Experimental results are presented that show how acoustic methods can be used as a remote sensor of this fundamental process. Sea surface?generated acoustic radiation (40 to 4000 Hz) is directly related to a quantitative measure of the boundary dynamics; i.e. the Toba variable. The frequency spectrum of the radiation remains remarkably unchanged over a wide range of environmental conditions but the correlation between the sound pressure level and the Toba variable undergoes an abrupt change when spilling breakers start to occur. Results support the use of acoustics to remotely measure the rate of energy being dissipated by wave breaking and the wavelength of the dominant gravity wave component. Theoretical studies have related the field measurements to analytical and laboratory results cited in the literature indicating that remote monitoring of the rate of occurrence and size distribution of infant (freshly entrained) bubbles may be possible if splashes on the surface do not radiate significant sound. Signal processing algorithms for the remote measurements discussed above are enhanced by eigenstructure analysis of the measured cross?spectral density matrix. [Work sponsored by ONR and NUSC.

Robert M. Kennedy; Stewart A. L. Glegg

1992-01-01T23:59:59.000Z

348

An optimized international vehicle monitor  

SciTech Connect (OSTI)

The security plans for many DOE facilities require the monitoring of pedestrians and vehicles to control the movement of special nuclear material (SNM). Vehicle monitors often provide the outer-most barrier against the theft of SNM. Automatic monitors determine the presence of SNM by comparing the gamma-ray and neutron intensity while occupied, to the continuously updated background radiation level which is measured while the unit is unoccupied. The most important factors in choosing automatic vehicle monitors are sensitivity, cost and in high traffic applications total monitoring time. The two types of automatic vehicle monitors presently in use are the vehicle monitoring station and the drive-through vehicle monitor. These two types have dramatically different cost and sensitivities. The vehicle monitoring station has a worst-case detection sensitivity of 40 g of highly enriched uranium, HEU, and a cost approximately $180k. This type of monitor is very difficult to install and can only be used in low traffic flow locations. The drive-through vehicle portal has a worst-case detection sensitivity of 1 kg of HEU and a cost approximately $20k. The world`s political situation has created a pressing need to prevent the diversion of SNM from FSU nuclear facilities and across international borders. Drive-through vehicle monitors would be an effective and practical nuclear material proliferation deterrent if their sensitivity can be improved to a sufficient level. The goal of this project is to evaluate different detector configurations as a means of improving the sensitivity of these instruments to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of SNM.

York, R.L.; Close, D.A.; Fehlau, P.E.

1997-03-01T23:59:59.000Z

349

Energy Management and Control Systems and their Use for Performance Monitoring in the LoanSTAR Program, Technical Report prepared for the Lawrence Berkeley Laboratory, University of California, Energy and Environment Division  

E-Print Network [OSTI]

Detection: Any data transmission errors should be automatically detected and corrected. Errors can occur, not only due to faulty or inaccurate sensors, but also when transmitting data from the site. Since data are traveling over commercial telephone lines... Management and Control Systems to per- form this same data collection task. One emphasis of this stage of the work was on formalizing the evaluation process, by developing guide- lines to assess the usefulness of an EMCS for monitoring. These guidelines...

Heinemeier, K. E.; Akbari, H.

1993-01-01T23:59:59.000Z

350

INTEC Groundwater Monitoring Report 2006  

SciTech Connect (OSTI)

This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

J. R. Forbes

2007-02-01T23:59:59.000Z

351

Overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the US Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological and Environmental Sciences Laboratory (RESL), the US Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG and G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities is integrated with the overall INEL Site surveillance program. Air, water, soil, biota, and environmental radiation are monitored or sampled routinely at the INEL. Results to date indicate very small or no impacts from the INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL. 7 refs., 6 figs., 2 tabs.

Smith, T.H.; Hedahl, T.G.; Wiersma, G.B.; Chew, E.W.; Mann, L.J.; Pointer, T.F.

1986-02-01T23:59:59.000Z

352

Corrosion Monitoring System  

SciTech Connect (OSTI)

The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

Dr. Russ Braunling

2004-10-31T23:59:59.000Z

353

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Sciences Experimental Facilities (ESEF) Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Ion Beam Laboratory Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test Technology Facility Research Engineering Sciences Experimental Facilities (ESEF) The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer,

354

OFFSITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE  

Office of Legacy Management (LM)

OFFSITE ENVIRONMENTAL MONITORING REPORT F OFFSITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE A N D OTHER TEST AREAS USED F O R UNDERGROUND NUCLEAR DETONATIONS January through December 1979 Nuclear R a d i a t i o n Assessment D i v i s i o n Environmental M o n i t o r i n g Systems Laboratory U. S. Envi ronmental P r o t e c t i o n Agency Las Vegas, Nevada 89114 A p r i l 1980 T h i s work performed under Memorandum o f ' Understanding No. EY-76-A-08-0539 f o r t h e U.S. Department o f Energy This page intentionally left blank OFFSITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1979 G. D. P o t t e r , R. F. Grossman, W. A. B l i s s , D. J . Tlom6 Nuclear Radiation Assessment Division Environmental Monitoring Systems Laboratory U. S. Envi ronmental P

355

Lawrence Livermore National Laboratory  

Broader source: Energy.gov [DOE]

Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security.

356

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

357

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

358

Cataractogenic effects of proton radiation  

E-Print Network [OSTI]

of proton radiation damage. The purpose of this study was (1) to determine the relative cataractogenic effects of different proton en- ergies, (2) to determine the relative cataractogenic effects of different radiation doses and (3) to determine... Laboratory in 1945 and 1946. Ten victims were exposed to various doses of moderately fast neutrons and hard gamma rays. In the eight survivors, two radiation cataracts resulted (15). In 1948 it was reported that five nuclear physicists with a common...

Kyzar, James Ronald

2012-06-07T23:59:59.000Z

359

Alpha Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

360

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network [OSTI]

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Restoration Monitoring-A Simple Photo Monitoring Method | Department...  

Energy Savers [EERE]

Restoration Monitoring-A Simple Photo Monitoring Method Restoration Monitoring-A Simple Photo Monitoring Method Restoration Monitoring-A Simple Photo Monitoring Method Restoration...

362

Radiation: Radiation Control (Indiana)  

Broader source: Energy.gov [DOE]

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

363

Radiation Exposure Monitoring Systems - Other Related Sites ...  

Office of Environmental Management (EM)

Other Related Sites DOE - Main Home Page - the home page for all DOE information and web sites. DOE EHSS Information Portal - source for EHSS information across the complex....

364

PDSF Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PDSF Monitoring PDSF Monitoring The plot below is a measure of the read and write rates a single user would experience via the PDSF batch system. Jobs are submitted sequentially every hour to the debug queue. If a jobs doesn't finish in 8 minutes, it is killed and a -1 rate is written out. The read rates are calculated by copying a directory containing 2 files totaling 274 MB from the eliza directories to the $TMPDIR on the node running the job. The write rates are calculated by untarring a tarball on the eliza directories. The write rates are typically around a factor of two slower than the read rates, because the data still has to travel to the compute node and then back to the eliza for writing. The I/O rates are taken from the ganglia monitoring and serve as a measure of the amount of

365

Invited Article: Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan  

SciTech Connect (OSTI)

Inhalation of radon ({sup 222}Rn) and its short-lived decay products and of products of the thoron ({sup 220}Rn) series accounts for more than half of the effective dose from natural radiation sources. At this time, many countries have begun large-scale radon and thoron surveys and many different measurement methods and instruments are used in these studies. Consequently, it is necessary to improve and standardize technical methods of measurements and to verify quality assurance by intercomparisons between laboratories. Four international intercomparisons for passive integrating radon and thoron monitors were conducted at the NIRS (National Institute of Radiological Sciences, Japan). Radon exercises were carried out in the 24.4 m{sup 3} inner volume walk-in radon chamber that has systems to control radon concentration, temperature, and humidity. Moreover, the NIRS thoron chamber with a 150 dm{sup 3} inner volume was utilized to provide three thoron intercomparisons. At present, the NIRS is the only laboratory world-wide that has carried out periodic thoron intercomparison of passive monitors. Fifty laboratories from 26 countries participated in the radon intercomparison, using six types of detectors (charcoal, CR-39, LR 115, polycarbonate film, electret plate, and silicon photodiode). Eighteen laboratories from 12 countries participated in the thoron intercomparisons, using two etch-track types (CR-39 and polycarbonate) detectors. The tests were made under one to three different exposures to radon and thoron. The data presented in this paper indicated that the performance quality of laboratories for radon measurement has been gradually increasing. Results of thoron exercises showed that the quality for thoron measurements still needs further development and additional studies are needed to improve its measuring methods. The present paper provides a summary of all radon and thoron international intercomparisons done at NIRS from 2007 to date and it describes the present status on radon and thoron passive, one-time cycle monitors.

Janik, M., E-mail: mirek@fml.nirs.go.jp; Ishikawa, T.; Omori, Y.; Kavasi, N. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, 263-8555 Chiba (Japan)] [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, 263-8555 Chiba (Japan)

2014-02-15T23:59:59.000Z

366

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and room-temperature semiconductors for detection arrays of x-rays, gamma rays and neutrons. User Support The facility's special capabilities include: low-noise environment to test solid-state detectors for x-ray, gamma-ray, and neutron response mass spectrometry to quantify contaminants in detectors and detector-grade materials photoluminescence and thermally-stimulated current to measure

367

Environment/Health/Safety (EHS): Radiation Protection Group: Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Who To Call Who To Call Rad Training Dosimetry Telemetry Laser Safety Radiation Safety Committee Pub-3000 Ch. 21 Forms RPG Procedures RPG Internal Radiation Safety Committee Charter Purpose The Berkeley Lab Radiation Safety Committee (RSC) is appointed by, and reports to, the Laboratory Director and is responsible for advising LBNL Management on all matters related to occupational and environmental radiation safety. The Radiation Safety Committee reviews and recommends approval of radiation safety policies and guides the Environment, Health and Safety Division and radiation user divisions in carrying out these programs. The scope of its actions will generally be in issues of broad institutional concern and impact, or areas of potential high consequence either in terms of safety or institutional needs.

368

Ames Laboratory Logos | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

369

Enforcement Letter, Sandia National Laboratories - February 27, 1998 |  

Broader source: Energy.gov (indexed) [DOE]

National Laboratories - February 27, National Laboratories - February 27, 1998 Enforcement Letter, Sandia National Laboratories - February 27, 1998 February 27, 1998 Issued to Sandia Corporation related to Work Control Deficiencies associated with operating Radiation Generating Devices at Sandia National Laboratories. This letter refers to the Department of Energy's (DOE's) evaluation of Sandia National Laboratories' (SNL's) report of potential noncompliances with the requirements of 10 CFR 835 (Occupational Radiation Protection). The noncompliances, which involved operational and work control deficiencies related to the use of three radiation generating devices (RGDs), were identified on October 1, 1997, and reported to DOE on October 21, 1997, in the Noncompliance Tracking System (NTS). Enforcement Letter, Sandia National Laboratories - February 27, 1998

370

1984 environmental monitoring report  

SciTech Connect (OSTI)

The environmental monitoring program has been designed to ensure that BNL facilities operate such that the applicable environmental standards and effluent control requirements have been met. A listing, as required by DOE Order 5484.1 of BNL facilities, of environmental agencies and permits is provided in the Environmental Program Information Section 3.0, Table B. Since the aquifer underlying Long Island has been designated a ''sole source'' aquifer, the Environmental Protection Agency (EPA) Drinking Water Standards have been used in the assessment of ground water data. However, the limits prescribed in the regulations are not directly applicable to the monitoring well data since (1) the standards apply to a community water supply system, i.e., one serving more than 25 individuals, and (2) the standards represent an annual average concentration. Since the monitoring wells are not components of the Laboratory's water supply system, the EPA drinking water standards are employed as reference criteria to which the surveillance well data is compared. The standards also serve as guidance levels for any appropriate remedial action. 36 refs., 9 figs., 40 tabs.

Day, L.E.; Miltenberger, R.P.; Naidu, J.R. (eds.)

1985-04-01T23:59:59.000Z

371

Guidelines for Retrofit Performance Monitoring  

E-Print Network [OSTI]

equipment capable of monitoring 12 or more channels and utilizing a variety of different sensors is often required and typically used. Two such data loggers have been used successfully at the Oak Ridge National Laboratory (ORNL) in field monitoring... of this equipment can still be significant, however, ranging from $500 to $1 800. Equipment of this type has not been used by ORNL in field tests. A partial listing of data loggers in this price range can be obtained from the author. TEMPERATURE RECORDING...

Ternes, M. P.

1987-01-01T23:59:59.000Z

372

VII. SOLAR RADIATION DATA COMPARISONS In this section some of the solar radiation data  

E-Print Network [OSTI]

18 VII. SOLAR RADIATION DATA COMPARISONS In this section some of the solar radiation data gathered by the UO Solar Monitoring Network is presented in tabular and pictorial form and related to similar information from other Western U.S. sites. A comparison of the amount of incident solar radiation is made us

Oregon, University of

373

Tritium monitor  

DOE Patents [OSTI]

A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

Chastagner, P.

1994-06-14T23:59:59.000Z

374

Tritium monitor  

DOE Patents [OSTI]

A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

Chastagner, Philippe (Augusta, GA)

1994-01-01T23:59:59.000Z

375

Developing a Proficiency Testing Plan for your Laboratory Author and Presenter: Jeff C. Gust  

E-Print Network [OSTI]

by the participating laboratory. Why does my laboratory need a Proficiency Testing Plan? Regardless of the standard. The laboratory is required to plan and review the monitoring process. This section goes on to suggest severalDeveloping a Proficiency Testing Plan for your Laboratory Author and Presenter: Jeff C. Gust Vice

376

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

377

Oorange: A Virtual Laboratory for Experimental Mathematics  

E-Print Network [OSTI]

organized as a virtual laboratory, which presents a uni ed user interface integrating all the above- jects Monitor and control: Object inspection; 2D and 3D viewers Running the experiment: Animation objects Recording the experiment: Archiving and scripting Disseminating result: Documentation A hybrid

Polthier, Konrad

378

Oorange: A Virtual Laboratory for Experimental Mathematics  

E-Print Network [OSTI]

laboratory, which presents a unified user interface integrating all the above components. In order composed of ob­ jects ffl Monitor and control: Object inspection; 2D and 3D viewers ffl Running: Documentation A hybrid language scheme underlies the design: interpreted scripts in Tcl manage tasks requiring

Polthier, Konrad

379

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Argonne Laboratory Director Peter Littlewood (left) talks with a small business owner during the second annual "Doing Business with Argonne and Fermi National Laboratories"...

380

jevans | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

jevans Ames Laboratory Profile James Evans Associate 315 Wilhelm Phone Number: 515-294-1638 Email Address: evans@ameslab.gov Ames Laboratory Associate and Professor, Iowa State...

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sustainability | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set...

382

Independent Oversight Assessment , Idaho National Laboratory Site - May  

Broader source: Energy.gov (indexed) [DOE]

Assessment , Idaho National Laboratory Site - Assessment , Idaho National Laboratory Site - May 2010 Independent Oversight Assessment , Idaho National Laboratory Site - May 2010 May 2010 Environmental Monitoring at the Idaho National Laboratory Site The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), performed an assessment of environmental monitoring and surveillance at the DOE Idaho National Laboratory (INL) Site during March through April 2010. The assessment was performed at the request of the DOE Idaho Operations Office (DOE-ID). HSS reports directly to the Secretary of Energy, and this INL sitewide environmental monitoring program assessment was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations with

383

Robot Reworked to Analyze Radiation in Japan | Department of...  

Energy Savers [EERE]

Robot Reworked to Analyze Radiation in Japan Robot Reworked to Analyze Radiation in Japan April 14, 2011 - 2:30pm Addthis A technician at Idaho National Laboratory demonstrates the...

384

The Evolution of the Federal Monitoring and Assessment Center  

SciTech Connect (OSTI)

The Federal Radiological Monitoring and Assessment Center (FRMAC) is a federal emergency response asset whose assistance may be requested by the Department of Homeland Security (DHS), the Department of Defense (DoD), the Environmental Protection Agency (EPA), the Nuclear Regulatory Commission (NRC), and state and local agencies to respond to a nuclear or radiological incident. It is an interagency organization with representation from the Department of Energys National Nuclear Security Administration (DOE/NNSA), the Department of Defense (DoD), the Environmental Protection Agency (EPA), the Department of Health and Human Services (HHS), the Federal Bureau of Investigation (FBI), and other federal agencies. FRMAC, in its present form, was created in 1987 when the radiological support mission was assigned to the DOEs Nevada Operations Office by DOE Headquarters. The FRMAC asset, including its predecessor entities, was created, grew, and evolved to function as a response to radiological incidents. Radiological emergency response exercises showed the need for a coordinated approach to managing federal emergency monitoring and assessment activities. The mission of FRMAC is to coordinate and manage all federal radiological environmental monitoring and assessment activities during a nuclear or radiological incident within the United States in support of state,local, tribal governments, DHS, and the federal coordinating agency. Radiological emergency response professionals with the DOEs national laboratories support the Radiological Assistance Program (RAP), National Atmospheric Release Advisory Center (NARAC), the Aerial MeasuringSystem (AMS), and the Radiation Emergency Assistance Center/Training Site (REAC/TS). These teams support the FRMAC to provide: ? Atmospheric transport modeling ? Radiation monitoring ? Radiological analysis and data assessments ? Medical advice for radiation injuries In support of field operations, the FRMAC provides geographic information systems, communications, mechanical, electrical, logistics, and administrative support. The size of the FRMAC is tailored to the incident and is comprised of emergency response professionals drawn from across the federal government. State and local emergency response teams may also integrate their operations with FRMAC, but are not required to.

NSTec Aerial Measurement System

2012-07-31T23:59:59.000Z

385

Groundwater level status report for 2009, Los Alamos National Laboratory  

SciTech Connect (OSTI)

The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

Koch, Richard J.; Schmeer, Sarah

2010-03-01T23:59:59.000Z

386

Groundwater level status report for 2010, Los Alamos National Laboratory  

SciTech Connect (OSTI)

The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

Koch, Richard J.; Schmeer, Sarah

2011-03-01T23:59:59.000Z

387

Record Series Descriptions: Lawrence Berkeley Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berkeley Laboratory Berkeley Laboratory LBL Business Manager/Research and Development Administrative Files Life Sciences Division Administrative Files of Baird Whaley,Administrator Administrative Files of Administrative Assistants to the Directors of the Biology and Medicine Division and Donner Laboratory Donner Clinic and Donner Pavilion Patients/Subjects Index Card Master File Donner Laboratory Clinical Logs and Notebooks Donner Laboratory R&D Project Case Files High-Altitude/Decompression Studies Patient Medical Records Research Medicine and Radiation Biophysics Historical Files Statistical Summaries Thomas Budinger Files Patricia Durbin Files John W. Gofman Files Joseph G. Hamilton Records Joseph G. Hamilton Materials: Edwin M. McMillan Papers Hardin Jones Files John Hundale Lawrence Files

388

Bettis Atomic Power Laboratory. Environmental summary report  

SciTech Connect (OSTI)

The Bettis Atomic Power Laboratory (Bettis) is owned by the US Department of Energy (DOE) and has been operated under Government contract by the Westinghouse Electric Corporation since 1949. The Bettis Site in West Mifflin, Pennsylvania conducts research and development work on improved nuclear propulsion plants for US Navy warships and is the headquarters for all of the Laboratory`s operations. For many years, environmental monitoring has been performed to demonstrate that the Bettis Site is being operated in accordance with environmental standards. While the annual report describes monitoring practices and results, it does not describe the nature and environmental aspects of work and facilities at the Bettis Site nor give a historical perspective of Bettis` operations. The purpose of this report is to provide this information as well as background information, such as the geologic and hydrologic nature of the Bettis Site, pertinent to understanding the environmental aspects of Bettis operations. Waste management practices are also described.

Not Available

1992-01-01T23:59:59.000Z

389

1993 Radiation Protection Workshop: Proceedings  

SciTech Connect (OSTI)

The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

Not Available

1993-12-31T23:59:59.000Z

390

Enforcement Letter, Oak Ridge National Laboratory - May 31, 2002...  

Broader source: Energy.gov (indexed) [DOE]

- May 31, 2002 Enforcement Letter, Oak Ridge National Laboratory - May 31, 2002 May 31, 2002 Issued to UT-Battelle, LLC related to Unplanned Radiation Exposures at Oak Ridge...

391

Commercial Fisheries Biological Laboratory  

E-Print Network [OSTI]

scientists; a substation with a laboratory on Chincoteague Bay; and a sampling substation at Point Pleasant

392

Low Dose Radiation Research Program: Low Dose Radiation Effects in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Effects in Differentiating Human Lens Cells Radiation Effects in Differentiating Human Lens Cells E.A. Blakely1, M.P. McNamara1, P.Y. Chang1, K.A. Bjornstad1, D. Sudar1, and A.C. Thompson2 1Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; 2Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California. Introduction The human lens is one of the most radiosensitive organs of the body. Cataract, the opacification of the lens, is a late-appearing response to radiation damage. There are few data available on the late radiation effects of exposure in space flight to charged particle beams, the most prevalent of which are protons. Basic research in this area is needed to integrate the responses of both critical and other representative tissues

393

Low Dose Radiation Research Program: DOE Lowdose Radiation Program Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using a Low LET Electron Microbeam to Investigate Non-Targeted Using a Low LET Electron Microbeam to Investigate Non-Targeted Effects of Low Dose Radiation. Authors: William F. Morgan1 and Marianne B. Sowa2 Institutions: 1Radiation Oncology Research Laboratory, University of Maryland, Baltimore MD 21201 2 Chemical Structure and Dynamics, Pacific Northwest National Laboratory, Richland WA 99352 We have recently installed a low LET electron microbeam that generates energetic electrons to mimic radiation damage from gamma and x-ray sources. It has been designed such that high-energy electrons deposit energy in a pre-selected subset of cells leaving neighboring cells unirradiated (Figure 1). In this way it is possible to examine non-targeted effects associated with low dose radiation exposure including induced genomic instability and

394

Five-Laboratory  

National Nuclear Security Administration (NNSA)

Refer to LA-UR-05-3594 Refer to LA-UR-05-3594 Agenda for the Five-Laboratory Conference on Computational Mathematics 19-23 June 2005 Повестка дня конференции пяти лабораторий по вычислительной математике 19-23 июня 2005 г. Agenda for the 5LC 2005 Refer to LA-UR-05-3594 1 Monday 20 June 2005 08:15 J. Kamm, LANL Welcome to the Five-Lab Conference Session 1A Deterministic Transport Chairman: N. Gentile, LLNL 08:30 R. Shagaliev, VNIIEF VNIIEF Methods for Numerical Simulations of Multi- dimensional Problems of Radiation and Particle Transport 09:30 Deterministic Transport: Labs' Perspectives J. Chang H. Scott S. Pautz A. Shestakov LANL LLNL SNL VNIITF 10:30 Break Session 1B Deterministic Transport

395

Argonne National Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne National Laboratory Fighting friction Graphene offers dramatic improvement over conventional mechanical lubricants Read More Forecasting supply Researchers use real-world...

396

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

397

Heat Transfer Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a wide range of mechanical systems and vehicle cooling applications. Understanding how...

398

Sandia National Laboratories: National Renewable Energy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

399

Sandia National Laboratories: Idaho National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho National Laboratory Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels,...

400

Radiation transport in inhomogeneous media  

SciTech Connect (OSTI)

Calculations of radiation transport in heated materials are greatly complicated by the presence of regions in which two or more materials are inhomogeneously mixed. This phenomenon is important in many systems, such as astrophysical systems where density clumps can be found in star-forming regions and molecular clouds. Laboratory experiments have been designed to test the modeling of radiation transport through inhomogeneous plasmas. A laser-heated hohlraum is used as a thermal source to drive radiation through polymer foam containing randomly distributed gold particles. Experimental measurements of radiation transport in foams with gold particle sizes ranging from 5-9 {mu}m to submicrometer diameters as well as the homogeneous foam case are presented. The simulation results of the radiation transport are compared to the experiment and show that an inhomogeneous transport model must be applied to explain radiation transport in foams loaded with 5 {mu}m diameter gold particles.

Keiter, Paul; Gunderson, Mark [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Foster, John; Rosen, Paula; Comley, Andrew; Taylor, Mark [AWE Aldermaston, Reading, RG7 4PR (United Kingdom); Perry, Ted [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

About Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

402

Ames Laboratory site environmental report, calendar year 1995  

SciTech Connect (OSTI)

This report summarizes the environmental status of Ames Laboratory for calendar year 1995. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs.

NONE

1997-01-01T23:59:59.000Z

403

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY  

E-Print Network [OSTI]

1/17/2008 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY In 2002, the National Research distribution and monitoring systems. Over 20 contaminants of concern were evaluated over the course Guidance Levels for Selected Submarine Contaminants. #12;1/17/2008 OAK RIDGE NATIONAL LABORATORY U. S

404

Airborne chemical baseline evaluation of the 222-S laboratory complex  

SciTech Connect (OSTI)

The 222-S Laboratory complex stores and uses over 400 chemicals. Many of these chemicals are used in laboratory analysis and some are used for maintenance activities. The majority of laboratory analysis chemicals are only used inside of fume hoods or glove boxes to control both chemical and radionuclide airborne concentrations. This evaluation was designed to determine the potential for laboratory analysis chemicals at the 222-S Laboratory complex to cause elevated airborne chemical concentrations under normal conditions. This was done to identify conditions and activities that should be subject to airborne chemical monitoring in accordance with the Westinghouse Hanford Company Chemical Hygiene Plan.

Bartley, P., Fluor Daniel Hanford

1997-02-12T23:59:59.000Z

405

Long-Term Surveillance and Monitoring Program Annual Site Inspection and Monitoring Report  

Office of Legacy Management (LM)

Monitoring Program Monitoring Program Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites Annual Report for the Period January 1,1998, Through December 31,1998 February 1999 This file contains inspection data for the Shiprock Site only. Long-Term Surveillance and Monitoring Program Annual Site inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites 1998 Annual Report February 1999 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-966587335 Task Order Number MAC 99-06 Document Number SO0184 Contents Page 1.0 Introduction .......................................................... SHP-I

406

Enforcement Letter - Argonne National Laboratory East  

Broader source: Energy.gov (indexed) [DOE]

6, 1996 6, 1996 Dr. William H. Hannum Argonne National Laboratory-East 9700 South Cass Avenue Argonne, IL 60439 Re: Noncompliance Report NTS-CH-AA-ANLE-ANLEER-1996-0001 Dear Dr. Hannum: This letter refers to the Department of Energy's (DOE) evaluation of Argonne National Laboratory-East's (ANL-E) report of a potential noncompliance with the requirements of 10 CFR 835 (Occupational Radiation Protection). This potential noncompliance, which involved the unexpected, uncontrolled radiation exposure of an ANL-E temporary employee during January- August 1995 was identified by ANL-E on December 11, 1995, and reported to DOE on March 1, 1996, in the Noncompliance Tracking System (NTS). The exposure to the ANL-E temporary employee resulted from radiation streaming from a storage vault which was used to store a high level

407

Ultrasonic techniques for process monitoring and control.  

SciTech Connect (OSTI)

Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

Chien, H.-T.

1999-03-24T23:59:59.000Z

408

Assessing exposure to radiation  

SciTech Connect (OSTI)

Since the founding of Lawrence Livermore National Laboratory, we have been world leaders in evaluating the risks associated with radiation. Ultrasensitive tools allow us not only to measure radionuclides present in the body but also to reconstruct the radiation dose from past nuclear events and to project the levels of radiation that will still be present in the body for 50 years after the initial intake. A variety of laboratory procedures, including some developed here, give us detailed information on the effects of radiation at the cellular level. Even today, we are re-evaluating the neutron dose resulting from the bombing at Hiroshima. Our dose reconstruction and projection capabilities have also been applied to studies of Nagasaki, Chernobyl, the Mayak industrial complex in the former Soviet Union, the Nevada Test Site, Bikini Atoll, and other sites. We are evaluating the information being collected on individuals currently working with radioactive material at Livermore and elsewhere as well as previously collected data on workers that extends back to the Manhattan Project.

Walter, K.

1997-01-01T23:59:59.000Z

409

E-Print Network 3.0 - aid molecular-based monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitored dry-matter losses for evaluation of all machine operations. Determined field efficiency Source: Texas A&M University, Spatial Sciences Laboratory Collection:...

410

E-Print Network 3.0 - animal population monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1008 OCCUPATIONAL HEALTH Summary: , and is announced in periodic mailings from the ORC. The laboratory animal veterinarians and SHC personnel monitor... with those from other...

411

E-Print Network 3.0 - annual groundwater monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. Monitoring programs established on the ORR assess ... Source: Pint, Bruce A. - Materials Science & Technology Division, Oak Ridge National Laboratory Collection: Materials...

412

INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION  

E-Print Network [OSTI]

of the impact of ionizing radiation on several types of ecosystems, atmospheric aerosol, and heavy metal. Stubos Computer Simulation of Atmospheric Pollution S. Andronopoulos Analyses & Assessment of Environmental Pollutants S. Andronopoulos ENVIRONMENTAL RESEARCH LABORATORY A. Stubos Diagnostics of Boundary

413

Danger radiations  

ScienceCinema (OSTI)

Le confrencier Mons.Hofert parle des dangers et risques des radiations, le contrle des zones et les prcautions prendre ( p.ex. film badge), comment mesurer les radiations etc.

None

2011-04-25T23:59:59.000Z

414

SRNL Deploys Innovative Radiation Mapping Device | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SRNL Deploys Innovative Radiation Mapping Device SRNL Deploys Innovative Radiation Mapping Device SRNL Deploys Innovative Radiation Mapping Device November 3, 2011 - 12:00pm Addthis The Savannah River National Laboratory completed successful deployments of the RadBall, a gamma radiation-mapping device. The Savannah River National Laboratory completed successful deployments of the RadBall, a gamma radiation-mapping device. AIKEN, S.C. - The Savannah River National Laboratory (SRNL), EM's national lab, has made strides with remote technology designed to reduce worker exposure while measuring radiation in contaminated areas. uilding on a successful collaboration with the United Kingdom's National Nuclear Laboratory, SRNL completed successful deployments of RadBall, a gamma radiation-mapping device, after testing the technology. The device

415

EIS-0028: Lawrence Livermore National Laboratory and Sandia National Laboratories- Livermore Sites, Livermore, CA  

Broader source: Energy.gov [DOE]

The statement assesses the potential impacts associated with current operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories , Livermore, adjacent sites. This includes the impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing comprehensive monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of the laboratories include: (1) shutdown and decommissioning, (2) total or partial relocation, (3) scaling down those operations having greatest impact , and (4) wider use of alternate technologies having reduced impact .

416

Further Findings Concerning Electrical Energy Monitoring in an Industrial Plant  

E-Print Network [OSTI]

The Energy Systems Laboratory (ESL) at Texas A&M University has monitored the real-time electrical energy consumption, demand, and power factor of a large metal fabrication plant in Houston, Texas for twelve months. Monthly reports that present...

Lewis, D. R.; Dorhofer, F. J.; Heffington, W. M.

417

2002 WIPP Environmental Monitoring Plan  

SciTech Connect (OSTI)

DOE Order 5400.1, General Environmental Protection Program, requires each DOE | facility to prepare an environmental management plan (EMP). This document is | prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment; applicable sections of Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) Part 834, ''Radiation Protection of the Public and Environment'' (draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1, which is the driver for the annual Site Environmental Report (SER) and the guidance source for preparing many environmental program documents. The WIPP Project is operated by Westinghouse TRU Solutions (WTS) for the DOE. This plan defines the extent and scope of WIPP's effluent and environmental | monitoring programs during the facility's operational life and also discusses WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP Project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

Washington TRU Solutions LLC

2002-09-30T23:59:59.000Z

418

Biotechnology Laboratory Spring 2012  

E-Print Network [OSTI]

CH369T Biotechnology Laboratory Spring 2012 Instructor: Dr. Gene McDonald Office: WEL 3.270C Phone, and at the same time to introduce you to issues associated with various biotechnology laboratory operations. After

419

Implementation of standards for individual monitoring in Europe  

Science Journals Connector (OSTI)

......conditions of temperature, humidity, lighting, background radiation, etc. as these...received by a worker in order to perform the medical examination prior to employment or classification...monitoring period, dose reporting and cost. The issues regarding the methodology......

E. Fantuzzi; J. G. Alves; P. Ambrosi; H. Janzekovic; E. Vartiainen

2004-11-01T23:59:59.000Z

420

WIPP Monitoring Program Ensures Worker Safety | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Monitoring Program Ensures Worker Safety Monitoring Program Ensures Worker Safety WIPP Monitoring Program Ensures Worker Safety March 3, 2011 - 12:00pm Addthis Media Contact Deb Gill U.S. DOE Carlsbad Field Office (575) 234-7270 CARLSBAD, N.M. - Officials with the U.S. Department of Energy's (DOE's) Carlsbad Field Office (CBFO) are citing the recent accreditation of the Waste Isolation Pilot Plant (WIPP) Laboratory as a cause for reflection on the important role environmental monitoring has played during WIPP's 12-year history. In February, the WIPP Laboratory, which operates out of the Carlsbad Environmental Monitoring and Research Center (CEMRC), was accredited by the DOE's Laboratory Accreditation Program for the fourth consecutive time. The lab received accreditation for conducting in vitro radiobioassay

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

WIPP Monitoring Program Ensures Worker Safety | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

WIPP Monitoring Program Ensures Worker Safety WIPP Monitoring Program Ensures Worker Safety WIPP Monitoring Program Ensures Worker Safety March 3, 2011 - 12:00pm Addthis Media Contact Deb Gill U.S. DOE Carlsbad Field Office (575) 234-7270 CARLSBAD, N.M. - Officials with the U.S. Department of Energy's (DOE's) Carlsbad Field Office (CBFO) are citing the recent accreditation of the Waste Isolation Pilot Plant (WIPP) Laboratory as a cause for reflection on the important role environmental monitoring has played during WIPP's 12-year history. In February, the WIPP Laboratory, which operates out of the Carlsbad Environmental Monitoring and Research Center (CEMRC), was accredited by the DOE's Laboratory Accreditation Program for the fourth consecutive time. The lab received accreditation for conducting in vitro radiobioassay

422

Sandia National Laboratories: Photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microelectronic Photovoltaics On June 13, 2012, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar Sandia National Laboratories semiconductor engineer...

423

Sandia National Laboratories: Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

424

Sandia National Laboratories: EC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

425

Sandia National Laboratories: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

426

Sandia National Laboratories  

Broader source: Energy.gov [DOE]

Sandia National Laboratories' (SNL) primary mission is to provide scientific and technology support to national security programs.

427

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal, Materials Science, News, News & Events, Partnership,...

428

Cytogenetic Biodosimetry Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cytogenetic Biodosimetry Laboratory Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides.

429

Oversight Reports - Idaho National Laboratory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Laboratory National Laboratory Oversight Reports - Idaho National Laboratory April 15, 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site March 12, 2013 Independent Oversight Review, Idaho Site, March 2013 Review of the Facility Representative Program at the Idaho Site December 3, 2012 Independent Oversight Review, Idaho Site - November 2012 Review of Radiation Protection Program Implementation at the Idaho Site November 14, 2012 Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing Waste Treatment Project - November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project

430

INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION  

E-Print Network [OSTI]

LABORATORY C. Housiadas Dynamic Reliability of Complex System & Decision Analysis I.A. Papazoglou Laboratory: Research, Development and Services *reports to the Director of the Centre REACTOR SAFETY RADIATION PROTECTION HEALTH & PHYSICS OF THE REACTOR F.Tzika SUPPORT TO GAEC A.G. Youtsos TECHNOLOGICAL

431

Argonne Tribology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tribology Laboratory Tribology Laboratory CemeCon coating chamber CemeCon coating chamber Engineers in Argonne's Tribology Laboratory conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels, and fuel/lubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing together). The Laboratory is equipped with a full range of coating development, friction and wear testing, and characterization facilities. Evaluation of Coatings and Systems The Tribology Laboratory evaluates high performance coatings primarily intended to protect engine-component surfaces that undergo sliding and rolling contact in advanced transportation systems. Also tested are systems powered by diesel and gasoline engines, as well as

432

Leadership | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

433

Monitoring your job  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jobs Monitoring and Managing Jobs Monitoring and Managing Batch Jobs These are some basic commands for monitoring and modifiying batch jobs while they're queued or running. NERSC...

434

Utility Monitor September 2010  

E-Print Network [OSTI]

Utility Monitor September 2010 Why monitor utility syntax? Enforce and Maintain Company-Wide DB2 Utility Standards. Jennifer Nelson Product Specialist, Rocket Software © 2010 IBM Corporation © 2010............................................................................................................... iv 1 Why Monitor DB2 Utility Syntax

435

a Wireless Sensor Network for Environmental Monitoring  

E-Print Network [OSTI]

transmitters #12;Sample sensors: #12;Sample sensors: PAR: Photosynthetically Active (solar) Radiation sensora Wireless Sensor Network for Environmental Monitoring a Wireless Sensor Network for Environmental technology: a truly self configurable, low-cost, maintenance-free, ad-hoc sensor network (not based on Zig

Gburzynski, Pawel

436

Argonne National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

437

Laboratory Computing Resource Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computing DOE Logo Computing DOE Logo Search BIO ... Search Argonne Home > BIO home > Laboratory Computing Resource Center BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Argonne National Laboratory Logo Laboratory Computing Resource Center In 2002 Argonne National Laboratory established the Laboratory Computing Project to enable and promote the use of high-performance computing (HPC) across the Laboratory in support of its varied research missions. The Laboratory Computing Resource Center (LCRC) was established, and in April 2003 LCRC began full operations with Argonne’s first teraflops computing cluster, Jazz. In 2010 Jazz was replaced by Fusion, with a peak performance of 30 teraflops (and still growing). We just acquired Blues which will a performance of 100 teraflops.

438

Structural Health Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring Impedance Methods Lamb Wave Propagations Time Reversal Acoustics Sequential Probability Ratio Test Extreme Value Statistics Remote Monitoring Building upon previous...

439

Routine Radiological Environmental Monitoring Plan, Volume 2 Appendices  

SciTech Connect (OSTI)

Supporting material for the plan includes: QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS AIR; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR WATER ON AND OFF THE NEVADA TEST SITE; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS BIOTA; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR DIRECT RADIATION MONITORING; DATA QUALITY OBJECTIVES PROCESS; VADOSE ZONE MONITORING PLAN CHECKLIST.

Bechtel Nevada

1998-12-31T23:59:59.000Z

440

Comparison Measurements of Silicon Carbide Temperature Monitors  

SciTech Connect (OSTI)

As part of the efforts initiated through the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to make Silicon Carbide (SiC) temperature monitors available, a capability was developed at the Idaho National Laboratory (INL) to complete post-irradiation evaluations of these monitors. INL selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. To demonstrate this new capability, comparison measurements were completed by INL and Oak Ridge National Laboratory (ORNL) on identical samples subjected to identical irradiation conditions. Results reported in this paper indicate that the resistance measurement approach can yield similar peak irradiation temperatures if appropriate equipment is used and appropriate procedures are followed.

J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Environmental monitoring report for calendar year 1985  

SciTech Connect (OSTI)

The results of the environmental monitoring program for CY85 for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. All of the tokamak machines, the Princeton Large Torus (PLT), Princeton Beta Experiment (PBX), and the Tokamak Fusion Test Reactor (TFTR), has a full year of run time. In addition, the S-1 Spheromak and the RF Test Facility were in operation. The phased approach to TFTR environmental monitoring continued with the establishment of locations for off-site monitoring. An environmental committee established in December 1984 reviewed items of environmental importance. During CY85 no adverse effects to the environmental resulted from any operational program activities at PPPL, and the Laboratory was in compliance with all applicable Federal, State, and local environmental regulations.

Stencel, J.R.

1986-05-01T23:59:59.000Z

442

Los Alamos scientists monitor Santa's magical journey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientists monitor Santa's magical journey Scientists monitor Santa's magical journey Los Alamos scientists monitor Santa's magical journey Los Alamos trackers will use state-of-the-art technology to mark the course taken by St. Nick and his eight tiny and highly efficient reindeer. December 21, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

443

Going green earns Laboratory gold  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

444

Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research  

SciTech Connect (OSTI)

A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

NONE

1995-06-01T23:59:59.000Z

445

Independent Activity Report, Los Alamos National Laboratory - August 2012 |  

Broader source: Energy.gov (indexed) [DOE]

2 2 Independent Activity Report, Los Alamos National Laboratory - August 2012 August 2012 Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory [HIAR LANL-2012-08-16] The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site. Independent Activity Report, Los Alamos National Laboratory - August 2012 More Documents & Publications

446

Health risk assessment for the Building 3001 Storage Canal at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This human health risk assessment has been prepared for the Environmental Restoration (ER) Program at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. The objectives of this risk assessment are to evaluate the alternatives for interim closure of the Building 3001 Storage Canal and to identify the potential health risk from an existing leak in the canal. The Building 3001 Storage Canal connects Buildings 3001 and 3019. The volume of water in the canal is monitored and kept constant at about 62,000 gal. The primary contaminants of the canal water are the radionuclides {sup 137}Cs, {sup 60}Co, and {sup 90}Sr; a layer of sediment on the canal floor also contains radionuclides and metals. The prime medium of contaminant transport has been identified as groundwater. The primary route for occupational exposure at the canal is external exposure to gamma radiation from the canal water and the walls of the canal. Similarly, the primary exposure route at the 3042 sump is external exposure to gamma radiation from the groundwater and the walls of the sump. Based on the exposure rates in the radiation work permits (Appendix C) and assuming conservative occupational work periods, the annual radiation dose to workers is considerably less than the relevant dose limits. The potential risk to the public using the Clinch River was determined for three significant exposure pathways: ingestion of drinking water; ingestion of contaminated fish; and external exposure to contaminated sediments on the shoreline, the dominant exposure pathway.

Chidambariah, V.; White, R.K.

1991-12-01T23:59:59.000Z

447

Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of lab building SREL Home Faculty and Scientists Research Technical Reports Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research Opportunities Field Sites...

448

Application of microfluidics in waterborne pathogen monitoring: A review  

Science Journals Connector (OSTI)

Abstract A review of the recent advances in microfluidics based systems for the monitoring of waterborne pathogens is provided in this article. Emphasis has been made on existing, commercial and state-of-the-art systems and research activities in laboratories worldwide. The review separates sample processing systems and monitoring systems, highlighting the slow progress made in automated sample processing for monitoring of pathogens in waterworks and in the field. Future potential directions of research are also highlighted in the conclusions.

Helen Bridle; Brian Miller; Marc P.Y. Desmulliez

2014-01-01T23:59:59.000Z

449

Independent Oversight Review, Idaho National Laboratory - September 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Review, Idaho National Laboratory - September Review, Idaho National Laboratory - September 2011 Independent Oversight Review, Idaho National Laboratory - September 2011 September 2011 Review of the Occupational Radiation Program as Implemented and Recently Enhanced at the Idaho National Laboratory At the request of the Office of Nuclear Energy, and in accordance with Independent Oversight priorities, the Office of Safety and Emergency Management Evaluations within the U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS) performed an initial independent assessment of the Battelle Energy Alliance, LLC (BEA) occupational radiation protection program at the Idaho National Laboratory (INL). The HSS Office of Worker Safety and Health Policy provided a subject matter expert to support this independent review. HSS examined the effectiveness

450

Waste Isolation Pilot Plant Environmental Monitoring Plan  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2008-03-12T23:59:59.000Z

451

Energistics Laboratory facility  

Science Journals Connector (OSTI)

Energistics Laboratory in Houston Texas is a leading laboratory for the testing of HVAC equipment. For over 15 years this facility has ensured the highest standards in leading?edge HVAC technology and architectural testing capabilities. Testing capabilities include both industry standard rating procedures and mock?up testing to simulate field conditions. The laboratory is open to developers owners architects engineers general contractors manufacturers and others who require independent component testing and evaluation.

2001-01-01T23:59:59.000Z

452

Plasma Radiation  

Science Journals Connector (OSTI)

... JUST over ten years ago the first book on plasma physics as a subject in its own right appeared; in a gradually swelling stream ... been surprisingly few monographs. One topic which has had scant coverage in any form is plasma radiation (except for spectral-line radiation which has been dealt with very fully in ...

T. J. M. BOYD

1967-07-01T23:59:59.000Z

453

Radiological Contamination Control Training for Laboratory Research  

Broader source: Energy.gov (indexed) [DOE]

3 of 3) 3 of 3) RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH Student's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page TERMINAL OBJECTIVE............................................................................1 ENABLING OBJECTIVES...........................................................................1 I. RADIOLOGICAL CONTAMINATION................................................. 2 A. Comparison of Radiation and Radioactive Contamination ..................... 2 B. Types of Contamination.............................................................. 2

454

FY 2005 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

455

Sandia National Laboratories: TCES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TCES Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

456

Sandia National Laboratories: perovskites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

perovskites Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

457

Sandia National Laboratories: NSTTF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSTTF Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

458

levin | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Education and the Ministry of Science and Technology, Lviv State University, Lviv, Ukraine, 1988 - 1998 Visiting Scientist (periodically) at the International Laboratory of...

459

Procurement | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

460

Mentoring | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Rick Stevens, Associate Laboratory Director, Computing, Environment & Life Sciences Argonne is committed to cultivating a climate that promotes meaningful relationships that...

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental service to northern New Mexico," said Jeff Mousseau, associate director for environmental programs at the Laboratory. "Having local companies of this high caliber...

462

Laboratory disputes citizens' lawsuit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

showing Laboratory storm water controls," said Susan G. Stiger, associate director for Environmental Programs. "Rather than a lawsuit, we had hoped to continue our work with...

463

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

commitment to the environment and the public," said Jeff Mousseau, associate director for Environmental Programs at the Laboratory. This is the fifth master task order agreement...

464

National Laboratory Liaisons  

Broader source: Energy.gov [DOE]

The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy Management Program.

465

Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About ORNL History Historical Photo Gallery To view historical photographs of the laboratory, browse the collections below. Clinton Engineering Works Department of Energy...

466

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

467

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

468

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis Sandia and the Electric Power Research...

469

Laborativ matematik; Laboratory mathematics.  

E-Print Network [OSTI]

?? Research indicates that a more hands-on education in mathematics could improve how students relate to mathematics. Laboratory mathematics is a way of making mathematics (more)

Kresj, Ida

2010-01-01T23:59:59.000Z

470

Sandia National Laboratories: LVOC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Opens at Sandia's California Site On June 13, 2012, in Cyber, Cybersecurity Technologies Research Laboratory, Energy Assurance, Energy Surety, Facilities,...

471

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

472

budko | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

budko Ames Laboratory Profile Serguei Budko Scientist I Division of Materials Science & Engineering A111 Zaffarano Phone Number: 515-294-3986 Email Address: budko@ameslab.gov...

473

Sandia National Laboratories: EPRI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis Sandia and Electric Power Research Institute (EPRI) are delighted...

474

Sandia National Laboratories: RTC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

475

Sandia National Laboratories: NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

476

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that's the hallmark of the Laboratory. This year's stories include alternative energy research, world record magnetic fields, disease tracking, the study of Mars, climate...

477

Sandia National Laboratories: Climate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

478

Sandia National Laboratories: Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

479

Disclaimers | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the United States Government or Iowa State University, and shall not be used for advertising or product endorsements purposes. COPYRIGHT STATUS: Ames Laboratory authored...

480

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

Note: This page contains sample records for the topic "radiation monitoring laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

482

Underwriters Laboratories: Streamlining Interconnection  

SciTech Connect (OSTI)

Summarizes Underwriters Laboratories' work under contract to DOE's Distribution and Interconnection R&D to develop a streamlined system to interconnect distributed generators with the utility grid.

Not Available

2003-01-01T23:59:59.000Z

483

Underwriters Laboratories: Streamlining Interconnection  

SciTech Connect (OSTI)

Summarizes Underwriters Laboratories' work under contract to DOE's Distribution and Interconnection R&D to develop a streamlined system to interconnect distributed generators with the utility grid.

Not Available

2003-10-01T23:59:59.000Z

484

Standards and Calibration Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our customers and services include: INL programs, the Department of Energy, Bechtel Bettis Inc., the National Oceanic and Atmospheric Administration, Argonne National Laboratory...

485

marit | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marit Ames Laboratory Profile Marit Nilsen-Hamilton Associate 3206 Molecular Biology Bldg Phone Number: 515-294-9996 Email Address: marit@iastate.edu Education: Postdoctoral Cell...

486

Laboratory announces 2008 Fellows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab announces 2008 Fellows Laboratory announces 2008 Fellows Robert C. Albers, Paul A. Johnson and Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos...

487

Sandia National Laboratories: RO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RO ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency, Facilities, Global Climate & Energy, Materials...

488

Sandia National Laboratories: desalination  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to saltwater to meet their water ... ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency,...

489

Sandia National Laboratories: CIRI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy Laboratory (NREL) will work in support of H2USA, the ... Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for...

490